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Abstract

In this paper, we consider the solutions of some nonisospectral soliton equations and the
mKP equation with self-consistent sources by Hirota method, bilinear Bicklund transformation,
Darboux transformation and Wronskian technique.

In Chap 1 and 3, we consider the nonisospectral and variable-coefficient KdV and KP equa-
tions by Hirota method, bilinear Bicklund transfromation and Wronskian technique. In Chap
2, we gtudy the nonisospeciral KP equation by Darboux and bilinear Bicklund transformation.
We also analyze nonisospectral characteristics of the obtain solutions. Solutions in the Hirota’s
form and in Wronskian form are different both formally and essentially. These two kinds of
solutions are not same for recovering the IV soliton solutions from the transformations. To the
nonisospectral soliton equations, the obtain solutions travel with time-varying shape and speed.
It is worthwhile to mention that Darboux transformation and bilinear Backlund transformation
are auto-Backlund transformations for the isospectral soliton equations, but these do not true
for the nonisospectral solitons equation. As a matter of fact, they transform one nonisospectral
soliton equation to another.

In Chap 4, from the linear problem of mKP equation, we can derive the mKP equation with
self-consistent sources. On the other hand, we also hope to find the multi-soliton solutions of the
mKP equation with self-consistent sources through Hirota method and Wronskian technique.
These two direct methods both depend on the bilinear forms of the evolution equations. We
first present a set of dependent variable transformations to write out the bilinear form of the
mKP equation with self-consistent sources by which we can derive one-, two-, even three-soliton
solutions successively through the standard Hirota’s approach. These results can help us to
find out the time evolution easily and conjecture a general formuia which denotes N-soliton
solution but is only conjectured and not verified. Next, with the help of the message on the
time evolution obtained by means of Hirota method, we can construct a Wronskian and try to
verify it to satisfy the related bilinear equations. Since there is a nonlinear term (led to by the
concerned source) in the time evolution, we have to develop some novel determinantal identities
and employ some special treatments which are different from the known standard Wronskian
technique so that we can finish the Wronskian verifications. Finally, we present a process to
show that the solutions of the bilinear equations obtained through the above two direct methods
are the same for recovering the solutions of mKP equation with self-consistent sources from the

I



original dependent variable transformations.

Keywords: Hirota method, Wronskian technique, bilinear Bécklund transformation, Dar-
boux transformation, nonisospectral soliton equations, mKP equation with self-consistent sources.
Classification Code:



Preface

The soliton theory is an important branch of applied mathematica and mathematical physics.
As early as 1844, the study of the solitary wave have been begun. But not until the concept of »
soliton ” was proposed by Keuskal and Zabusky in the middle of sixties in the present century,
was the related research developed rapidly. The theory of solitons is attractive and exciting. It
bring together many branches of mathematics, some of which touch on deep ideas, especially in
the field of nonlinear mathematics.

In many mathematical subjects of soliton theory, it is an important thing to study the
solutions of the nenlinear evolution equations. Over the years, a variety of methods for finding
explicit solutions of partial differential equations have been developed. The discovery of the
inverse scattering transform (IST) for the KAV equation was a big breakthrough in the analysis
of nonlinear evolution equation(43]. Many soliton equations have been revealed to be exactly
solvable by this method. Besides the IST, there are some famous direct approaches. Such as,
Darboux transformations{15,17], Hirota method[10], and Wronskian technique{12] etc.

In 1971, Hirota[10] first proposed the formal perturbation technique, cailed the Hirota
method later, to get N-soliton solutions of the KAV equation. The soliton solutions can be
presented by Wronskian was first proposed by Satsumal[44], but the solutions were not based
on the bilinear equation. The Wronskian technique[12] was developed by Freeman and Nimmo
for directly verifying solutions to bilinear equation. These two direct methods both depend
on the bilinear forms of the evolution equations. Hirota method provides a remarkably sim-
pler technique for obtaining the N-soliton solutions in the form of an Nth-order polynomial
in N exponentials. Wronskian technique provides an alternative formulation of the N-soliton
solutions, in terms of some function of the Wronski determinant of N functions, which allows
verification of the solutions by direct substitution because differentiation of a Wronskian is easy
and its derivatives take similar compact forms. To the Hirota method, the basic thoughts of
our obtaining the exact N-soliton solutions are as follows. We first present a set of dependent
variable transformations to write out the bilinear form of the evolution equation by which we
can derive one-, two-, even three-soliton solutions successively. These results can help us to
conjecture a general formula which denotes N-goliton solution but is only conjectured and not
verified. Next, with the help of the message on the time evolution obtained by means of Hi-



rota method, we can construct a Wronskian and try to verify it to satisfy the related bilinear
equations. The Bicklund transformation {BT) is another direct method for deriving solutions
from a known solution of the concerned equation. However, solving the set of partial-differential
equations often restricts it to be further used. In 1974, Hirota proposed a kind of BT in bilinear
form([11], by which it is easy to find multisoliton solutions. In this method, the linear problem
of the evolution equation can been written the bilinear form by a set of transformation. From
the bilinear equation, it is easy to derive the soliton solutions. In this paper, similar to the
isospectral soliton equation, through a set of transformation we write the nonisospectral KdV
and KP equations into the bilinear form. Based on the bilinear form, we can obtain the so-
lutions by Hirota method and Wronskian technique. In chapter 4, the soliton solutions of the
mKP equation with self-consistent sources are derived by the Hirota method and Wronskian
technique.

Soliton solutions with self-consistent sources are important models in many fields of the
physics, such as hydrodynamics, solid-state physics, plasma physics, etc. For example, the
nonlinear Schraodinger equation with self-consistent sources represent the nonlinear interaction
of an electrostatic high-frequency wave with ion acoustic wave in a two component homogeneous
plasma. The KdV equation with self-consistent sources describes the interaction of long and
short capillary-gravity waves. The KP equation with self-consistent sources{KPESCS) describes
the interaction of long wave with a short-wave packet propagating on the z,y plane at an
angle to each other. Until now, much development has been made in the study of soliton
equation with self-consistent soources. For example, in (141)-Schrodinger, AKNS and Kaup-
Newell hierarchies with self-consistent sources were solved by the inverse scattering method.
Also a type of generalized binary Darboux transformations with arbitrary functions in time ¢
for some (1+1)-dimensional soliton equation with self-consistent sources, which offer a nonauto-
Bicklund transformation between two soliton equation with self-consistent sources with different
degrees of sources, have been constructed and can be used to obtain N-soliton, positon and
negaton solution. In (2+1)-dimensional case, some results to the soliton equation with self-
consistent sources have been obtained. The soliton solution of the KPESCS was fist found by
MePnikov{22,23]. However, since the explicit time part of the Lax represent of the KPESCS
by inverse scattering transformation was quite complicated[22,23]. In Ref[36], in the framework
of Sato theory and by treating the constrained KP hierarchy as the stationary one of the KP



hierarchy with self-consistent sources, the Lax representation of the KPESCS were naturally
gotten. And the generalized binary Darboux transformation for the KP equation with self-
consistent sources was constructed. In Ref[14], we obtain the KPESCS through the linear
problem of KP system, the mutisoliton solutions of the KPESCS are derived by the Hirota
method and Wronskian technique. In chapter 4, we develop the idea present in Ref[14] to study
the mKP equation with self-consistent(mKPESCS). From the linear problem of mKP equation,
we get the mKPESCS. Through a set of dependent variable transformations, the bilinear form
of the mKPESCS are obtained. By the bilinear equation, we can get the soliton solutions by
Hirota method and Wronskian technique.

Recently there has been considerable interest in the study of variable-coefficient generaliza-
tions of the soliton equations. The need for studying them is due to the fact that the physical
situations in which equations with constant coefficients arise tend to be highly idealized so that
equations with variable coefficients and nonisospectral parameters may provide more realistic
model, for example, in the propagation of (small-amplitude) surface waves in straits or large
channels vorticity. In Ref[4], Chan and Li describe some extensions of the inverse scattering
in solving a nonisospectral and variable coefficient KdV equation with time varying nonvanish-
ing boundary condition, obtained some nonpropagating soliton solutions and demonstrate their
behavior(the coefficients of the evolution equations are fime varying,the scattering problem is
nonisospectral and the time varying boundary condition is nonvanishing). In 1992, Chan et
al[5] obtained the n-soliton solutions for a nonisospectral variable-coefficient KP equation by
the dressing method and studied in depth the two-soliton case by appropriately decomposing
them into individual solitons in order to examine their interactions. In Chapter 1-3, we study
the nonisospectral KAV and KP equations by Hirtoa method, Bicklund transformation and
Wronskian technique. We also analyze nonisospectral characteristics of the obtain solutions.
Solutions in the Hirtoa’s form and in Wronskian form are different both formally and essen-
tially. These two kinds of solutions are not same for recovering the N soliton solutions from
the transformations. To the nonisospectral soliton equations, the obtain solutions travel with
time-varying shape and speed. It is worthwhile to mention that Darboux transformation and
bilinear Bicklund transfromation are auto-Backlund transformations for the isospectral soliton
equations, but these do not true for the nonisospeciral solitons equation. As a matter of fact,
they transform one nonisospectral soliton equation to another.



Chapter 1
Exact Solutions for a Nonisospectral and Variable-coefficient KdV
Equation

The bilinear form for a nonisospectral and variable-coefficient KdV equation is obtained and
some exact soliton solutions are derived through Hirota method and Wronskian technique. We
also derive the bilinear Biicklund transformation from its Lax pairs and find solutions with the
help of the obtained bilinear Biacklund trapsformation.

1.1 Introduction

The physical situation in which many integrable equations with constant coefficients arise
tend to be highly idealized. Therefore, equations with variable coefficients and nonisospectral
eigenparameters may provide realistic models in many physical situation. Thus, recently there
has been much interest in study of the variable coefficients generalizations of completely inte-
grable nonlinear evolution equations[1-9]. For the variable coeflicient KdV (vcKdV) equation

tit + by (6uty + zre) + 4hous — ha(2u + zus) = 0, (1.1.1)

where k) = hi(t), hy = ho(t) and hy = hs(t) are all arbitrary function of £, The initial value
problem of eq.(1.1.1) was sovled via the inverse scattering method by Chan and Li[4]. Lou et
al.7] studied its infinite converse law. Zbang et al.[8] discussed its symmetries. Fan et al.[9] has
obtained the Bicklund transformation(BT) by the homogeneous balance method.

The Hirota method[10], BT{11] and Wronskian technique[12] are three efficient direct ways
to find soliton solutions for nonlinear equations. Recently, Zhang et al.[13] study the soliton for
the KdV equation with loss and non-uniformity terms by use of Hirota method and Wronskian
technique. In this paper, we would like to consider the vcKdV equation through above three
methods. The bilinear form of the vcKdV equation is given and one-, two-soliton solutions are
obtained through the standard Hirota method. A general formula which denotes higher order
solutions is also given. In a way similar to the isospectral equation, from the Lax pairs we can
derive the bilinear BT for the vcKdV equation by the variable transformations. We also obtain
the solution in Wronskian form. The methods used here can be applied to other nonisospectral
soliton equations.

The paper is organized as follows. In Sec.2, we solve the vcKdV equation by the Hirota



method. In Sec.3 solution in Wronskian form is proven. In Sec.4, the soliton solutions for the

vcKdV equation are obtained by bilinear BT.

1.2 Bilinear form and Hirota method

With the help of the dependent variable transformation
u = 2{In f);3,
eq. (1.1.1) can be transformed into the bilinear form
D:Dif - f+ mD3f - f +4haD3f - f —ahsDLf - f —2haf f =0,
where D is the well-known Hirota bilinear operator
D,D}a-b=(0; — 88 ~ 8¢) a(z, )02, t | =g =t
This bilinear equation further suggests
S 4 h Sy + Ao f D — chaffl) — haffD =0,

2 + 20 S8, + 8hp f D) — 20h3 {2 — 2h £

st

under the perturbation expansion
fe) =1+ fVe+ fAD& 4 fAS 4.

Taking
V=), & =k)z+EY,

from eq. (1.2.3), we cbtain

Fua(t) = haki(), w1a{t) = —hywn ()k3 () — dhown ()ka (2),

f9=0, j=23,..

(1.2.1)

(1.2.2)

(1.2.3a)

=—D D, fM. 1) _ th:f(l) O 4h2D§f(1) .f +zhg D2 fW pop, p1) —f},l), (1.2.35)

(1.2.4)

(1.2.50)

(1.2.55)

(1.2.5¢)



Thus, the one-soliton solution for the v¢KdV equation is
2
u= lemsech"'%— (1.2.6)

Similar to the one-soliton solution, if we take

SO = wi (et +wa(t)e?, & =ki(Hz+€", (7=1,2) (1.2.7a)

then
f(2) = wl(t)wg(t)ef”'f""‘“, (1.2.7h)

_ 2

e = (%)  Eialt) = haky(8), wyelt) = —haw,(OIR3(E) ~Ahata (OKs(8), (G =1,2),
(1.2.7¢)

and
9 =0, j=34,-... (1.2.7d)

Therefore, the two-soliton solution is obtained from eq. (1.1.1), where

f=14wi(t)e’ + wa(t)ef? + wy(thwo(t)efr Hizthz, (1.2.8)

This process can be extended to the three-soliton solution, four-soliton solution and so on.

Generally, we obtain

N N
= Z exp[Zp,({, +Inw,(t)) + E Azl {(1.2.9q)
g=0,0  j=1 1<j<i
ek O an_ (k@) -k®Y
kia(t) = haks(t), wje(t) = —hw;(t)A3 () — dhow;()k, (2), (1.2.9¢)

where the sum is obtain over all possible combinations of u; =0,1 (j =1,2,---,N).

1.3 Exact solutions in the Wronskian form
In this section, we show that the bilinear equation (1.2.2) has a solution in the following

Wronskian form

h O - aN—1¢1

s _1 -
$ 0 - Vg = (0,1, N=1]=|N"1], (131)



where the entries ¢,(j = 1,2,---, N} are under the following conditions

_ Kt
b ( ) (1.3.20)
¢j’t = —4h1 ¢J,zzz - 4h2¢j'z 4 zh3¢j'z, (1.3.2b)
We observe that
Jo=IN=2,N|, fez=IN—8,N—1,N|+|N=2,N+1, (1.3.3a)

Josz=IN—4,N-2,N—1LN|+2IN—3,N—1,N +1] + [N =2,N +2], (1.3.3b)
fozzz =|N—6,N~3,N-2,N-1,N|+3|N—4,N -2, N -1, N +1
+2AN=3,N,N+1|+3N -3, N~ 1, N+2+|N—-2,N+3|. (1.3.3¢)

From (1.3.2b), we have

fi=—4m|N=4,N-2,N-L,N|-|IN-3,N-L,N+1|+|N=2,N +2]

—thofo + ahots + XDy (13.4a)
fu=—4m{N=5,N-3,N-2,N—1,N| - uv-s N,N+1+|N-2,N+3]
—4h2f=z + zh3fu + h3fz m—’lh fzs (1'3'4b)

Substitution of (1.3.1) in (1.2.2) gives

fnf = fafe + Mfozsaf ~ Afzasfs + 3f00) + dhe(foaf — f2) — oha(foef — f2) ~ haf 2
=120 (N —3,N~2,N—1||N"3,N,N+1j+IN-3,N-2,N||[N=3,N - 1,N +1|
-IN=3,N-1LN|N=3,N~2,N+1)) =0, (1.3.5)
where we have make the use of the fact

k() k’ - k2

j=1 =1 ;~1
or
INS1|N=5,N-3,N-2,N—1,N|-[N“4,N-2,N- LN+ 1| +2[N=3,N,N +1]
~IN“3,N-1,N+2|+|N=2,N 43| =[-|[N =3, N-LN|+|N=2, N + 1|2 (1.3.6b)
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Thus we have complete the verifications.
An explicit form of ¢; which meets the conditions (1.3.2a) and (1.3.2b) can be given as

¢ = aj(t)eT + (<175, 0e-F, j=1,2,--,N, (13.7a)

a,,t(t)———hlk?’(t)a,(t) 2hak,(t)aj(t), bj(t) = h1k3(t)b,(t)+2h2k,(t)b,(t), (1.3.7)

Then gimilar to Ref [14], the Wronskian (1.3.1) can be written as

. N

1= ™ Y T aloh)-ak) el E( ety + 8 1050 + L= i ().
e=t11<5<!
(1.3.8)
1.4 BT for the vcKdV equation
In this section, we first derive a bilinear BT of eq.{1.2.1) from the Lax pair

Gz =(A—u)d, (1.4.1a)
b = hytia + [ths — 2 (ug +2X) ~ dhy]dy — ha(N — 1), (14.1)

and then find solutions with the help of the obtained bilinear BT.
Through the transformation (1.2.1) and ¢ = t}, it is not difficult to derive the following
bilinear form ,
Dg-f = Mf, (14.20)
Dig-f +M(D} +3AD;)g - f — zhaDyg - f + 4hoDsg - f — ha(N — 1)gf =0, (1.4.20)
A zero soliton solution corresponds to f = 1. Then, substituting f = 1 into (1.4.2a) and
(1.4.2b)(N = 1), we have

92z = g, (1.4.30)
9t + h1(gzzs + 37gs) — zhags + kg, = 0. (1.4.35)

Let A= 4, then
g=g =ape? +he T, {1.4.4a)

1 1
kre(t) = haka(f), are = —5a1(d)Ak(E) = 2hoar(thkut), Bus = Sh(OAKI(E) + Zhabr ()R (8),
(1.4.4b)
which is the one soliton solution to the veKdV equation.



If we take f = gy, from (1.4.1)(N = 2}, we can obtain the two soliton solution for the veKdV
equation (1.1.1) where

9= 0 = a®mBab)e™ T + aOhHe T + a)n Obb)e™T + bt t)e ™72,
(1.4.5a)
a(t) = ki(t) = ka(t), ca(t) = —(kolt) + k2(t)), Kjpe(8) = hsk, (),

1 1 }
ajlt) = —Ea,-(t)hlk?(t)-Zhgaj(t)kJ(t), bys = Ebj(t)hlk_?(t)+2hzb, Bk, (1), j=1,2. (1.4.5b)
Similar to the two soliton solution. Taking f = g9, from {1.4.1)(N = 3), we can obtain

§=3= c3(t)[al(t)a2(t)aa(t)eﬂﬁ22ﬂi + bl(t)bz(t)bs(t)ei‘:éthl

susgite)

+ea(®)or (Doa(ba @)™ F2 + b (t)br(aa()e ™S
s (D]ar(B)ba ()as (e F + by (Daz(ba(t)e ™ F5)

os()b (Daz(Sas®e ™ 4 oy (1)bo(t)ba(t)eF 2, (1.4.6a)
c3(t) = (ku(t) — k2(2)) (ko () — K3(2))(ka(2) — Ka(t)),
cs(t) = (ku(t) — ka(t)) (Ra () + Ka(}) (R2(2) + Ka(2)), (1.4.68)
c5(t) = (ku(t) + k2(2)) (R (2) — ka(2))(k2{2) + k3(2)),
cs(t) = (k1 {t) + k2 ()} (k1 (2) + ka(2))(k2(2) — Ks(2)), (1.4.6¢)
Bis) = ok (0, 014(t) = ~ 20, (Db K3(E) — 2hma (001 (8,
bye = %bj(t)hlk?(t) + 2haob, (8K (), 5 = 1,2, 3. (1.4.6d)
Generally, taking f = gn—1, we can obtain
N 1 N # + 1 1~ )]
g=gv=3. [I mile;ki{t) — piki(t)) exp(5 S (it + 5 Ina;(t) + —= mb,(#))],
pu=%11<p<i =1
(14.7a)
iet) = Baks(0), anelt) = ~30s(O0R3(0) ~ Zhaay(Oks(8), byg = SB5(ORLRTCE) + 2habi(0y (0.
(1.4.75)
Finally, we obtain the Wronskian form solution for the bilinear BT (1.4.2).
Let
9=IN=1|, f=IN=2,7, r=[---,0,1T, (14.8)
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where ¢4 satisfies (1.3.2) and g, f denote the N-soliton solution and (V — 1)-soliton solution of
veKdV equation, respectively. Substitution of these functions in (1.4.1) and using

N B Ry ® )

LT w1 DL

J=1

= (-|[N=3,N-1,N|+|N =2, N+1))IN = 2,7|4+|N = 1|{{N = 4, N-2, N-1,7|-|N = 3,N, 1),

(1.4.9a)
k t ( ) N-1 kz t
Bt s =3 07— 0(Y 2
7=1 =1
=—(IN=4N-2,N-1L,N|+|N=2,N +2))|N = 2,7|
+HN -2, N|(|N’-‘4 N-2,N-1,7|-|N =3,N,7], (1.4.95)
K2 (t pag )
N() 9fz= ZJ_‘ Ve~ Q(Z‘i_fz)
1=1
=(-|[N-3,N -1,N|+|N-2,N+1|)(|N"-‘3,N—1,r|
+IN=1(N=5N-3,N-2N—1,7| - [N =3,N +1,7)), (1.4.90)

we can obtain
IN=3,N-1,N||N=2,7|— |[N—2,N|[N=3,N —1,7|+|N —3,N,r||N = 1| = 0, (1.4.10a)

6h(E)(IN=3,N=1,N+1||N=2,7| +IN=3,N+1,7||N =1
~-IN“2,N+1|jN-3,N-1,7|—|[N—4,N-2,N-1,N||IN - 2,7|

+{N=2,N|INZ4,N-2,N-1,7{ - |[N=4,N - 2,N,7||[N = 1}) = 0. (1.4.108)
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Chapter 2
The Exact Solutions for a Nonisospectral and Variable-coeflicient
KP Equation

The bilinear form for a nonisospectral and variable-coefficient KP equation is obtained and
some exact soliton solutions are derived through Hirota metbod and Wronskian technique. We
also derive the bilinear Bicklund transformation from its Lax pairs and find solutions with the
help of the obtained bilinear Backlund transformation.

2.1 Introduction

In recent years, much attention has been paid on the study of nonlinear differential equations
with variable coefficients(1,2,4-6]. Chan, Zheng{4} and Chan, Li[5] studied the nonisospectral
and variable-coefficient KdV equation by the method of Bicklund transformation and inverse
scattering. In 1992, Chan et al.[6) obtained the n-soliton solutions for a nonisospectral variable-
coefficient KP (vcKP) equation by the dressing method and studied the interactions of two-
soliton solution.

The Hirota method[10], Bicklund transformation(BT)[11] and Wronskian technique[12] are
three efficient direct ways to find soliton solutions for nonlinear equations. Recently, Zhang et -
al.[13] study the soliton for the KdV equation with loss and non-uniformity terms by use of Hirota
method and Wronskian technique. In this paper, we would like to consider the vcKP equation
through above three methods. The bilinear form of the vcKP equation is given and one-, two-
soliton solutions are obtained through the standard Hirota method. A general formula which
denotes higher order solutions is also given. In a way similar to the isospectral equation, from the
Lax pairs we can derive the bilinear BT for the vcKP equation by the variable transformations.
However it is not an auto-Bicklund transformation. We also obtain the solution in Wronskian
form. The methods used here can be applied to other nonisospectral soliton equations.

The paper is organized as follows. In Sec.2, we solve the vcKP equation by the Hirota
method. In Sec.3 solution in Wronskian form is proven. In Sec.4, the soliton solutions for the
vcKP equation ave obtained by bilinear BT.

2.2 Bilinear form and Hirota method

11



We consider the generalized variable-coefficient KP equation

Ut = h{tizzs + 6uty + 30wy ) + bruz — k{zue +2u + 2yuy) —abizuy, — 2abiwy, w, =1, (22.1)

and its Lax pairs
a¢y = s + U,

é: + A¢’ +B¢= + D¢u + E¢zm =0,
h=—yb(8)/2a —by{t)/4, E = —4h, D =zb(t}+2yk(t)/c,
B = zk(t) — 6hu, A= —3hu, +wh ()/2 - 3ahw, + Du— (N —1).

Through the transformation
4= 2(In f)zz,

€q.(2.2.1) can be transformed into the bilinear form

h(DLf - f+30°Dyf - [)+DLf - f — K(zD2f - f +2fof + 2yDyDyf - f)

—abj,:L‘DzD,,f‘ f- zablfyf- D Df - f=0,

where D is the well-known Hirota bilinear operator + -

(2.2.2a)
(2.2.20)

(2.2.2¢)

(2.2.2d)

(2.2.3)

(2.2.4)

DLDPD}a-b=(8; — 82) (8 — 8y)™(0 — O )"alz, 9, 0BT, 1/, )|z =z yr=p,=t-

We expand f into power series of a small parameter ¢ as
f=1+fWet fOSE 4 fOS 4.,

Substituting (2.2.5) into (2.2.4) and equating coefficients of ¢ yield

(2.2.5)

R(F e + 36215 4 1D = k(s D + £ 4 2970 ~ abiz £ - aby £D - £ = 0, (2.2.60)

2h(f2, + 302 fD) + 25, f2 - 2k(zfD + fO + 295 2) - 20012 fD — 20b, £§D ~ 22

= —h(D* FU. M 4342 p: F. f(l)) -5 .y k(zD? FO.

+2f0f® 24D, Dy f D . f) 4 abyz DDy fV - £B 4 20y 51 £ + DD D . 1), (2.2.65)

......
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Taking
fY 2w (O, & =mte-py/a+E", m=allc+d@y/atnl’, (2270
from (2.2.6), we have
p1a(t) = —kp1(8) + bip}(8), qu2() = —ka1(t) - bigi(8),

w14(t) = i (e () + @1 (1)) — e (B[P (2) + G (@), (2.2.75)

and

_f(]') =0, j=2,3,-. (2.2.7¢)
So the one-soliton solution for the veKP equation is

oo PO Q@F o6 tm+ o)

. 5 (2.2.8)
From eq.(2.2.7-8), we know that at time ¢, the one soliton achieve its peak value
vy = Pt all (229)
on the line, in zy plane, defined by the equation
[ @) - pi() oy + [pr(t) + @1 (t)=] + Inwn (t) = 0. (2.2.10)
The velocity of the one soliton at time ¢ has the components
1) = (-G @)/ pa(8) + 2109 - [at) ~ 21D/}
and
i) = —a(%){zl[eh (&) = pu(8)] + (mwy () /il (1) — I CO)]}-
Similar to the one-soliton solution, if we take
FO = un ()P + wo(t)e*™,
& = pit)z ~p2y/a+ €7, n =gz +EWyla+n, i=12 (2.2.11a)
then
f(‘l) - wl(t)wg(t)e&"'e""""""’*"”, elt? = [p1(2) — pa(t)]lqn (2) — Qz(t)] (2.2.11b)

" [t) + 2®)]lp(t) + ()
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PJ,t(t) = '_kpj )+ bwf(t), 0.1t} = —kg, () - le_?“):
wig(t) = by (8)[p, () + ¢, (8)] — Bawy (D[ (8) + G2)], 5 =1,2, (2.2.11¢)
D=0, j=3,4,.-. (2.2.11d)

Therefore the two-soliton solution is obtaired from (2.2.3) here
£ =1+ (@M 4 unp(D)eBH™ 4wy (t)wy(t)ehr T Hm+An, (2.2.12)

Decomposition of the two soliton solutions and their interactions are studied in deiail in Ref[§).
This process can be continued to the three-, four-soliton solutions and so on. Generally, we

have
N N
F=Y exp[}] &+ +lnws®)) + Y ejadyl, (2-2.13)
e=0,1 2=1 1<i<d

_ [pl®) = pi()][@u(?) — g;(2}]
(i) + g, (8)]lpy (2} + au(t)]
(2.2.13h)

& =piz - Oy/a+E0, 1= gz +@Byfatnl), et

pglt) = —kpj(t) + bipl (1), gje(t) = —has(t) — gl (2),
wialt) = by (O3 (8) + 0, ()] — baw, D) + O (2.2130)
where the sum is taken over all possible combinations of ¢; = 0,1 (j =1,2,---,N).
2.3 Exact solutions in the Wronskian form
In the present section, we show that the bilinear equation (2.4) has a solution in the following
Wronskian form
$ 04 - N

b Oby o NIy

F=W(d, 2, ,¢n) = =0,1,---,N=1]=|N=-1}, {231

------

¢y Oy - Ny
where the entries ¢,(j = 1,2,---, N) enjoy the following conditions

1
biy = "E‘#j,zz, (2.3.20)
2k
$is = 4hdjzes + ;y‘ﬁa’m + T $j 2z — 2hdjz — (N — 2)b1djz- (2.3.2)
We observe that
fo:=IN=2,N|, foz=IN—-3,N—1LN|+|N-2,N+1|, (2.3.30)
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fooz=|N-4,N-2,N=LN|+2IN=3,N~1L,N+1|+|N-2,N +2, (2.3.30)
fozwz =|N—5,N—~3,N—2,N-1,N|+3N—4,N-2,N-1,N +1]
+2IN=3,N,N+1|+3N=3,N—1,N+2|+|N=2,N +3|. (2.3.3¢c)
Using {2.3.2a) we have the y derivative

fy= %uN":s,N —LN|-INT2,N +1]), (2.3.40)
f = 2%(]N’:s,z\r-3,N—2,N —1,N|-{N-3,N-1,N+2|
+2ANZ3,N,N+1|—[N—4,N-2,N-1L,N+1|+|N—2,N +3|). (2.3.4b)
From (2.3.2b) and (2.3.4), we have
fi=th({N-4 N-2,N-1,N|—-[N-3,N~1,N+1]/+|N-2,N +2))

2
—zb((N=3,N =1, N| - [N =2,N + 1)) + [N — 2, N|, (2.3.5a)

—2yk/a(IN"3,N = 1,N| - IN=2,N + 1)) = sk|N =2, N] - Y = n—yg

fio=4h(N=6,N-3,N-2,N-1L,N|-|N=3,N,N+1|+|N—2,N+3))

—~2ykfa((N=4,N -2,N = 1,N| - [N =2,N + 2|) — zk({N =3, N = 1, N| + |[N = 2, N + 1))

N(N-1)
2
~zb ([N = 4, N~2,N=1,N|-|N =2, N+2))+b,(|]N — 3, N—1, N|+|N =2, N+1|), (2.3.55)

—k|N=2,N| - KMN=2,N|-b(N~3,N-1,N| - [N=2,N +1)

Substitution of (2.3.1) in (2.2.4) gives
2 frzznf — 4fzfrax + 3f 2 + 30 i f = 32 £7) + 201 (foaf — f7)

~20k(focf = f2) ~ 2k fof = WK(fryf = f2hy) — 2200 fyf = 2feef — fufe)
= 2h(foreaf — 4fefzzs + 312 + 30% i f — 307 f))
—~Bh(N=5,N—3,N-2,N-1,N|—|[N=3,N,N+1|+|N =2, N +3)IN -1}
+8R(IN=4,N-2,N -1, N|-[N—3,N-1,N+1|+|N—-2,N +2))|N - 2,N|
=UR(|N=3,N-2,N-1[N=3,N,N+1|—|[N=3,N-2,N|[N=3,N~1,N +1|
+NZ3,N-2,N+1|N=3,N-1,N))=0. (2.3.6)

) 1]



So the eq.(2.3.1) with (2.3.2) solve (2.2.4}.
Let us define the entries

¢ =af A(e¥ +af By(t)e™™, (j=1,2,---,N) (2.3.7a)

Ajat) = —bap () A;(0) — (N — 2o, (D A,(8),  Byalt) = bag (1) B, (8} + (N — 2)bg;(#) B, (1),
(2.3.70)
If we take «f =1 and aj = (~1)’~", then similar to Ref.[14], the Wronskian (2.3.1) can be

written as

N N N N
f= 11 lat®) — g expld(—ns + I Bs(2))] 3 exp[>_e5(&; +0,)+ 3 €14z, (2.3.80)

1<g<i =1 €=0,1 1=l 1<a<t
£ =&+ A0 +Y i) +a)], 5;=n-B,{1)+Y lg,®)-a@®] ™+ Y la @) -g®]™,
# >l >j

(2.3.85)
So we give another form of solution (2.3.1). However, the solutions (2.3.8) and (2.2.13) are
slightly different for the covering of the N-soliton solution from the transformation (2.2.3). One
can find that there is time-dependent initial phase in each &) + 1, in the solution (2.3.8), which
is different from (2.2.13).

2.4 BT for the vcKP equation

In this section, we first derive a bilinear BT of eq.(2.2.1) from the Lax pair (2.2.2a) and
(2.2.25}, and then find solutions with the help of the obtained bilinear BT.

Through the transformation (2.2.1) and ¢ = ¥, it is not difficult to derive the following
bilinear form

alyg-f = Dig-f, (2.4.1a)
Dug-f —h(D3+3aD=D;¢)y-f +(zbr4-2yk/a)D2g- f+br fzg+zkDrg-f—(N-1kgf =0, (2.4.15)

which is just the BT for the vcKP equation (2.2.1).
A zero soliton solution corresponds to g = 1. Then, substituting g = 1 into (2.4.1a) and
(24.16)(N = 1), we have
—afs = frey (2.4.20)

—ft = h(= fraz + 30fz)) + (b1 + 2yk/0) foz + br fr ~ 2k fz = 0. (2-4.2b)
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1ts solution can be given by
f=f=A(t)e" + Bi(t)e™, (2.4.3a)
where &, are defined by (2.2.115) and
A1 g(8) = bip1 () A1 (t) — bapd(£) Ar(2), Brg(t) = —buq1 (8}Ba () + bag} (8) By (2). (2.4.30)
So one-soliton solution for the vcKP equation (2.2.1) is

v = 2(In fi) sz = 2[In(A1(t)e* + By (t)e ™™ )]z
_p®)+a@f oG +mtlndi(t) -lnBi(t)
= 7 se 2 .
If we take g = f,, from (2.4.1), we can not obtain the two soliton solution for the veKP — .,
equation (2.2.1). Taking

(2.4.4)

g= A + Bi(tle™, Avlt) = -blAit), Bult) =bdWBY,  (245)
which is the solution to the equation

1y = h(tiggg + But; + 3P wyy) — k(zug + 2u+ 2yuy) — ab1Tuy — 20b1wy, Wz =14, 4 =2(Ing),

then the solution of (2.2.1) generated by the bilinear BT {2.4.1}(N = 2) is given by o
F = fa = k() A1 () Az(£)e™1 82 + by () By (1) Baft)e™ ~™
+ha(£) A1 (t) By (t)e¥ ™™ + hy(t) Ao(t) By (£)eS* ™, (2.4.7a)
hi(t) = pi(t) ~ palt)y he(t) = qu(t) — 2(t), ha(t) = ~[pr(t) + (D], halt) = —[p2(t) + 1 t)],
Ajet) = —bapl(0)A5(8), Bjs(t) = bdj(1)B;(8), (G =1,2), (2.4.70)
and £, 7,9, (2),,(2) are (2.2.11b,¢).
Similar to the two soliton solution. If we take the solution of (2.4.6)
g = hy(£) A () A2(t)ehr T4 4 hy(£) By (1) Ba(t)e™ ™
+ha(t) A1 (£} Ba(t)ef ™™ + ha(t) Az(t) By 2)e ™, (2.4.8q)

Aja(t) = ~bapl(8)A;(t)~ bup; () As(2), Bia(t) = bag} (t)B;(t)+big;(8)B; (1), (G = 1,2), (24.8Y)
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from (2.4.1)(N = 3), we can derive
f = fa = hs(t) A1 (£) Az(t) Aa(t)eF1 63488 4 Rg(t) Ay (£) Ao(t) Ba(t) et HEa

+hr(8) A1 (8) Bo{t) Aa(£)e¥ V6 4 hg(t) B (£) A (t) Ag(t)e ™ HE s
+ho(t)B1(t) Ba(t) As(t)e™ ™Mt 4 hyg(t) By (£) Aa(t) Ba(t)e M Hia—m
+h11(t) A1 (£) Ba(t) B3(t)e*t ™™™ 4 hyo(t) By () Ba(t) Ba(t)e ™™™ | (2.4.9q)
hs(t) = [po(t) — p2(B)]ip2(t) — p3(e)][p1 (2} ~ p3{t)],
he(t) = [p1(t) — p2()){pa() + as(2)][p1(2) + g3 (2)),
h(t) = [p1(£) + @2(t)][ps(2) + 2(2)][pa () — Rs(2)],
ha(t) = [p2(®) — pa(®ilp2(2) + a1 (D)][pa(2) + a1 (2)),
k() = [p3(t) + a1 (t)]lpa(t) + g2 (t)][@: (£) — @=(2)),
hao(t) = [p2(t) + a1 (®)]lp=(t) + ga(tlas () — as(8)],
h11(t) = [p1(t) + @2()][e2(2) - gs(B)]lp1 (2) + ga(8)],

h12{t) = (g1 (t) — q2(t)1 (2} - g5(2)][g2(2) — ga(t)], (2.4.95)
Aye(t) = —bapl(8)A5(8) — bupi(8) A, (8),  Bjslt) = bag} (1) By (8) + bug; (8)B3(8), (G = 1,2,3).
(2.4.9¢)
Generally, taking the N — 1 soliton solution of the eq.(2.4.6)
N-1
g=Y. T (e —Dlespilt) + (e — Day(t) — epi(t) — (& — Dar(t)]
e=0,1 1<y}
N-1
exp{ 21 [ej(&; + I 4;(2)) + (¢5 ~ 1)(ns — In B;(#))]}, (2-4.10a)
j=

where
& = pi(tyz - P(wla+ED, 1y =gz +FOu/a+n",
Pig(t) = —kp;(H) + b1p}(8), g)e(t) = —ka;(t) ~ bug} (1),
Aj(t) = ~bap) (D) As(8) — (N — 2bups(8) 45 (2),

Bjs(t) = bag}(2) Bj (1) + (N - 2)brps(2) Bs(t), (G = 1,2,--+ , N - 1), (2.4.108)
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we can get the N-soliton solution expressed by eq.(2.2.3) with

N
F=3 TI @a—Dlepst) + (e — as(t) — eplt) - (e — Dar(t)]

e=0,1 1<y<!

N
exp{D [e;(& + In 4, (2)) + (¢ — 1)(n; — m B, ()]}, (2.4.11a)
j=1

pislt) = —kpi(t) + b1p3(), @selt) = —ka;(2) — brgi (1),
Ajf(t) = -bap ()4, () — (N — 2)bp; () 4, (2),
Byi(t) = b (£) B;(t) + (N ~ 2)bapy (8) B5(2), (5 = 1,2,---, N). (2.4.118)

Finally, we obtain the Wronskian form solution for the bilinear BT (2.4.1).
Let
f=IN=1, g=IN=2,7, 7=|-,0,1f, (2.4.12)

where ¢, satisfies (2.3.2) and f,g denote the N-soliton solution of vcKP equation and (N — 1)-
soliton solution for the equation (2.4.6), respectively. Then

0 =|N=3,N-1,7|, gsz=|N-4,N—2,N—1,7|+|N=3,N,7], (2.4.13q)
Gozs =N =5, N-3,N-2,N-1,7{+ 2N ~4N -2, N,7| + [N =3, N +1,7|, (2.4.13b)
- é([}v’—‘ 4N -2, N —1,7|~|NZ3,N,7)), (2.4330)
Gyr = &(w’-‘ 5,N—3,N~2,N~1,7—|[N=3,N+1,1), (2.4.13d)
0 =4h({IN—-5,N-3,N-2,N —1,7| - IN—4,N ~2,N,7| + [N —3,N +1,7))

_35’,_"(11\1’:4,1\7 ~2,N~1,7| - |[N=3,N,7)) - zk|N = 3,N - 1,7

-Qy—“-”zﬂ'—'i)kw’: 2,7| — zby (N — 4, N 2 2N -1,7|—|N=3,N,7]), (2.4.13¢)
Substitution (2.3.3-5) and (2.4.13) in {2.4.1) gives
2AN—2,N|IN=3,N~1,7|-2]N = 1||N = 3,N,7|-2|]N = 2,7||N = 3,N~1,N| =0, (2.4.14)
6h(IN=2,N|IN=4N-2,N-1,7| - [IN=1||]N—4,N —2,N,7]
~IN=2,7|N=4,N —2,N —1,N)) + 6h(IN - 1{jN —3, N + 1,7|
+HN=2,7|[N=3,N-1,N+1|-|[N=3,N-1,7}[N=2,N +1)) =0, (2.4.15)

Thus verifying that the Bicklund equation (2.4.1) are indeed satisfied.
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Chapter 3
Darboux and Bicklund Transformations for the Nonisospectral
KP Equation

Darboux transformation and Bicklund transformation in bilinear form for the nonisospectral
KP equation are first investigated. Corresponding solutions are derived by using the Bécklund
transformation in bilinear form. It has been shown that these transformations are auto-Béicklund
transformations for isospectral problems while not for nonisospectral ones.

3.1 Introduction.

It is a powerful practice to utilize the idea of Bicklund transformation (BT)[11] and Darboux
transformation (DT)[15] in constructing solutions for nonlinear evolution equations. Recently
in the past decade, a unified explicit forms of Backlund transformation can be obtained for
some isospectral equations, such as KdV, mKdV and KP equations]11,15-17}. These integrable
equations with constant coefficients is regarded to be highly idealized in the physical situation.
However, equations with variable coefficients and nonisospectral eigenparameters may provide
more realistic models, in the propagation of (small-amplitude) surface waves in straits or large
channels of (slowly) varying depth and width and nonvanishing vorticity [1]. Therefore, recently
there has been much interest in studying the nonisospectral and variable coefficients generaliza-
tions of completely integrable nonlinear evolution equations [1-6,9,18,19].

In this paper, N-times DT for the nonisospectral KP equation is first constructed. And
then from the Lax pair of nonisospectral KP equation, a BT in bilinear form can be derived.
Moreover, some exact solutions are obtained with the help of bilinear BT. It is worthwhile to
mention that DT and bilinear BT are auto-Béacklund transformations for the isospectral KP
equation, but this dose not true for the nonisospectral KP equation. As a matter of fact, they
transform one nonisospectral KP equation to another.

The structure of this paper is organized as follows. In section 2, N-times repeated DT for the
nonisospectral KP equation is derived. In section 3, BT in bilinear form of the nonisospectral
KP equation is constructed. Moreover, corresponding soliton solutions are investigated by using
the bilinear BT and Wronskian technique.

3.2 Darboux transformation for the nonisospectral KP equation
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The KP equation reads
(4ut + 6““2 + uﬂz)g + 3“W = 0, (3-2-1)

and Lax representation for (3.2.1} is

by = Puz +ud, (3.2.2a)
Ay = Al)d, (3.2.20)

where
Alw) = —40° - 600~ 3{ug + 0"y, 0=, 7= [ (323)

Assume that u be the solution of KP equation (3.2.1) and denote the fixed solution of (3.2.2)
by ¢1. Then DT is defined by(15]

=g = bz
¢{1] = ¢2 ¢1"’¢, (3.2.4a)
wl] =u+20%Ind;. (3.2.4b)

It is known that equations (3.2.2) are covariant with respect to the action of DT (3.2.4). namely
¢[1], ul1] satisfy

#ull) = eclt] + w111, (5.250)
44:[1] = A(u[1])4{1], (3.2.5b)
and u[1] satisfies KP equation (3.2.1). Equation (3.2.20), (3.2.4a) and (3.2.5b) imply that

Au)é
]

Thus the covariance of (3.2.2) with respect to the action of DT (3.2.4) leads to the following

Adall] = 4ig, — %fﬂ: = (A, — (290 4 %A(uw = A@Dell.  (3.26)

lemma.
Lemma 2.1: if u is the solution of KP equation (3.2.1) and ¢, is a solution of (3.2.2) and DT
is given by (3.2.4), then the formula (3.2.6) holds.

Based on the DT (3.2.4) for KP equation (3.2.1). Now we construct DT for nonisospectral
KP equation.

Consider the nonisospectral KP equation[20]

4ty + Y(tzzz + Butiy + 30 uyy) + 2zuy + 40wy, = 0, (3.2.7)
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and its Lax pair

¢y = dzz + ud, (3-2.80)
4y = yA(u)d + zB(u)d + Clu)d, (3.2.8h)

where
B{u) = -2(6* +u), Clu)=-20-8'u (3.2.9)

Theorem 2.1: Assume that u be the solution of nonisospectral KP equation (3.2.7) and ¢,
satisfies (3.2.8), then the Darboux transformation is defined by

ol1) = ¢s — %”qs, (3.2.10a)
ylj=u+28%Iné, (3-2.100)

and DT (3.2.10) transform Lax representation (3.2.8) into the Lax representation as follows
(1] = ¢2(1] + ul1]4f1], (3.2.11a)

Age(1) = yA(uft])g(1} + zB(ul])4[1] + Clul1])4[1] - 2¢:1], (3-2.11b)

s .

and uf1] satisfies nonisospectral KP equation

4us1] + y{ugea[l] + 6ullug[1] + 30 gy [1]) + 2zuy[1] + 46710y [1] + 2u,{1] = 0.  (3.2.12)

Proof: It is eagy to find that (3.2.11a) hold. To prove (3.2.11b), we need to show the following
equality:

apl] = 4(d: - L24)

= (A@W)$+ zB(u)d + Clu)p); ~ (RAENICMN,) 4
—#12 (4 A(u)$ + zB(u) + C(u)9)

= yl(Au)d)s — (2512),6 — G2 A(u)g] (3.2.13)
+2{(B(u))z — (232),0 — £ Blu)¢]
+B(u)p ~ B84 + (Clu))s — (Z3).0 - £2(Clu)g)

= yA(ul])¢ll] + 2B(u{1]}4{1] + Clult])¢(1] - 2¢:[1].
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Lemma2.1 implies the coefficient of y hold. Therefore we only need to check the equality:

B(u)‘;bl ¢1,:|.'

(B(u)d)e — (—— o

)a$ — == B(u)¢ = B(u[1])4{1], (3.2.14a)

B (u)¢1 C(“)d’l

B(u)p ~ ——¢+ (Clulp)s = (—— )20~ ¢1”C( )¢ = Clult])4l1] - 2¢[1). (3.2.148)

Using (3.2.10a), we have

B = —28° + u{t]) (g, — 222 Bg)

Yo Eﬂ - ¢1.x¢1.zx _4_’1_,;:_ - ¢1,¢,~
= A—rzz + N ¢ ___‘ﬁ% ¢+ S Prz ~ iy + 4= ¢), {(3.2.15)
and the left terms in (3.2.14a)
= (2050 — ug)s — (Lbzz 20 o Mx (g 2ug)
) é1
= - ¢1_v=’i 21_12 ?_1_’?_ — $1281,22
= ~2pny — 2udy + 2 ) ¢+2 Y Gz +2 4, ud 2————% $. (3.2.16)

Comparing (3.2.15} with (3.2.16), it is immediately found that equality (3.2.144) hold.
In the similar way, we can find that (3.2.14) hold. Equations (3.2.11) lead to (3.2.12). This
completes the proof.
Let ¢, ¢2,- -+, ¢n be solutions of (3.2.8). We define the Wronskian W of k functions ¢, ¢,
oo i by o
W(dr,: -, ) =det(A), Ay= md’,, 1<4,j<k (3.2.17)
Using uli], ¢fi] and ¢,[i] to denote the action of i-times repeated DT (3.2.10) on the initial
solutions u, ¢, ¢;. We have
$y.5li] = bj,zali] + ulil, [4), (3.2.18a)

i4li] = yA(eli))¢5(8] + 2B(uli)gsli} + Clulil)gy[d] — 2id;.[4)- (3-2-185)

Lemma 2.2: For arbitrary integral [,k(1 <I<n—1,1 <k <[l ~1), we have

W(¢l[’ - 1]7 ¢l+l[l - 1]1 .- yéH’k[I - 1])
¢ill -1 '

W(¢t[‘ - 1]# ¢l+1[l - l]: T a¢l+k[l - I]s 4’[‘ - 1])
$ift - 1] |

W(drall], -~ draall]) = (3.2.19)

W (g lll, -, Suexllh 9l) = (3.2.20)
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Proof: According to (3.2.10a), we have

1l —
dunall = drasclt -1~ 2=l =l (3.221)
aift —1]
then )
¥-1 g1 drall - 1
8211 ¢H‘![[I 9z9- 1(¢l+‘l,5[1 1] ¢ [l d’H-t[l ]
Azl 1] o 1-ny (b
331—1 ¢1+’-z[l 1] ZC.? 1 4’?[[ ] )(J ! k)(ﬁ,(_*_)'[l—l]
1-1
=8y — 3 Chibojnaine
h=0
= ay g1 — (bojai1 + Cl_yboj—16v2 + -~ + CJTho2015-1 + bopag), (3.2.22)
where bO,m = (%:gn[l__"li])(m)’ Oy = f‘,’;;-‘rfﬁmll - 1]1 m= 1?'“1.1.5 n= 1"":j + 1, then
W{diall],-++, drall])) =
o12 = bp1011 613 — (Bo201,1 +Boa01,2) -+ B+~ (bokors +Ch_ybos—1012+ - -+ Bo,1a1,8)
| ma- bo1023 023 — (bo2aa,1 + Bo,uaz,2) - 8241 ~ (Bostzg + Ch1Bos—1822 + -« + bojpaze)
ax2 = bo10k1 Or3 — (bo2axa + Doak2) - Ok ~ (Bokars + CL_ibor_18k2 +--- +bpraes)
d12 G138 * Lkl a1 13 01,k+1 a1,1 612 414 0 GLik+l
o 22 a23 Bkl +B, G21 G623 - 02441 +B, az1 4G22 a4 * G2,k41
G2 Ox3 *°* Okk+l Gr1 Grg3 * Bkkdl Gkl 8k2 Oid ¢ Ok
ai1 G1k-1 ¢ G1k4l 81,3 412 ¢ Gk
62,1 G2k-1 02k 41 @2 - G2
+"‘+B|_‘k o ok +Bl,,§+1 o *
a1 OGkk-1 ¢ Bk k+1 Gr1 Ox2 - Gk
ap,1 602 * Gok+1
__ 1 e ez ot S | WA~ 1 gl — 1), duall ~ 1)) (3.2.23)
#ift -] . éill - 1] ' ’
Gr1 Ok2 "t Gegel



¢’ Dli-1]

where By j = (—l)f'lJm— (i=2--,k+1).

Similarly, the formula (3.2.20) can be proved. This completes the proof.
Theorem 2.2: Assume that u is the solution of nonisospectral KP equation (3.2.7), ¢1,¢2,---,én
are the solutions of (3.2.8), then N—times repeated DT (3.2.10} is given by

¢[‘N] — W(¢1,¢21"'s¢N$¢)

- Wi, ¢z, ¢nN) ! (3:224)
U[N] = u+2321nW(¢;, ¢21' ot 1¢N)y {32.25)

and u[N), §[N] satisfy
¢y[N] = $2:{N] + u[N]¢[N], (3.2.26a)

4¢4{N] = yA(u[N]))¢[N] + zB(u[N])¢|N] + C(u[N])$[N] ~ 2N 4[N}, (3.2.26b)

and

4[N+ y(tzag [ N]+6u[ Nz [V]+ 30 11y [N]) + 200, [N} 440 1y [N] + 2N, [N] = 0. (3.2.27)

Proof: Using (3.2.10),(3.2.19) and (3.2.20)

o = i - 1) - 2T =gy 1y - PO LR 1D
_Wign 1 [N-2.¢nN-2,¢[N-2) _ _ Wibi,do,---,¢n,4) (3.2.28)
W(¢N—1[N"213¢N[N-2D W(¢1$¢27"‘1¢N) ’ -
w{N] = u[N — 1] +28% In¢n[N - 1]
=u[N-2+2° Ingn_, [N -2 +26°In W“‘”’ﬁ_l‘[ﬁ’ f ’;][N %)
= u[N -2+ 28 lnW(gn-1[N — 2}, g5 [N =2]) = - = u+ 288 W ($1, 62, -, n)- (3.2.29)

It i8 easy to find (3.2.26) from the proposition 2.1.

For example, in order to find one-soliton slution for the nonisospectral KP equation (3.2.12),
we start from the solution u = 0 for nonisospectral KP equation (3.2.7). The solution for (3.2.8)
reads

$ =1+ w ()R k() = —2k2(t), wiu(f) = —-;—wl(t)k; (2). (3.2.30a)
Then from (3.2.10b) we find that
ull] = 207 In(1 + w (et O=+HOwE"), (3.2.31)
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which is one-soliton solution for the nonisospetral KP equation {3.2.12).

3.3 Bilinear Bicklund transformation for the nonisospectral KP equation
In this section, we first derive a BT in bilinear form of {3.2.7) from the Lax pair (3.2.8).
‘Through the transformation

4= 20 f)pey b= % (3.3.1)
it is not difficult to derive the bilinear form as follows
Dyg-f=Dlg-f, (3.3.20)
4Dg- f +y(D3g- f +3D:Dyg - f) +22D2g - f + 2fg: = 0. (3.3.25)
Substituting g = 1 into (3.3.2a) and (3.3.2b), we have
—fy = fzu (3.3.3a)
—4fe + Y(—fraz +3fey) + 22fz2 =0, (3.3.35)
then
IS f=f1 =e€1 .l,.e—ﬂl (3_3.4a)
&1 =kt -ty +£7, m=-qa)z-g@y+n’ k) = —k’(t), Qt) = ——‘h i),
(3.3.4b)
b)) = 5y a1(t) = 5 (3.3.40)
1 , q + t- o}
Thus we can derive one-soliton solution for the nonisospectral KP equation
u = 2In(eft + &™), (3.3.5)

If we take ¢ = f1, we can not obtain the two-soliton solution for the nonisospectral KP
equation(3.2.7). Taking

g= al(t)eel + bl(t)e"" {3.3.6a)

ai(t) = ™ (t), bi(t) = (3.3.6b)

which is the solution to the equation

n (t)

4m+y(uzzz+ﬁuuz+33‘1uw)+2zu,+43“u, +2u; =0, u=2(logg)ss, (3.3.7)
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then the solution generated by the bilinear BT (3.3.2) is given by
= =)t 4 oy (t)e MM 4 ca(t)eft ™ 4 gy(t)e ™ TE, (3.3.8a)

ar(t) = [ki(t) — k2(t)), c2(t) = [qu(t) — 22(2));

e3(t) = —fk1(t) + q2(t)], ealt) = —[ka(t) + @ (2)], (3.3.85)
& =k(tz - B+ &7, m=-atl- @y +1,
balt) = R0, ko) = %k%(t), aalt) = —aqf (0, walt) =380, (3389
a(t) = £ ( t), bo(t) = m( 5 (3.3.8d)
Similar to two-soliton solation, three-soliton solution can be derived.
Taking the solution of (3.3.7)

9 = ci(t)as (az(t)e™ 1 + oa ()1 ()b (H)e

+es(D)ar (B)b2()€5 ™™ + ca(t)br (Blag(t)e ™ e, (3.3.90)
& = ki(t)z - @)y + €2, 1= ~g)z - FOy+n),
bt = ~3K200, alt) = 380, ay(0)=(

from (3.3.2), we can derive

k(t))’ by() = ( (t))2 (=12), (33.9)

1 = facs(t)ar(taz(t)as(t)eir 6488 4 cq(t)a; (£)an (2)bs(t)ess +oo—

+er(t)ar ()b (t)as () s + cy(t)by (Haz(t)as(t)e M HtE
+op(t)br (H)ba(tdag(t)e ™™ M+ 4 ¢0(2)by (than(t)bs(t)e M Ho2 ™
+en (B)ar ()b2()ba(£)eH T 4 erp(t)by ()2 (D)ba ()™ "™, (3.3.10a)
es(t) = [ka (£} — k2 ()] [k2 (8) — ka(O)][Ra (2) — Ra(t)]s
es(t) = k1 (t) ~ k2()]ik2(8) + ()] (8) + a3(t)],
er(t) = [ku(t) + (ks (2) + g2(D)][k1 () — R3],
cs(t) = (kz(t) ~ ka(A)]ik2() + @ {B][ks(8) + 1 ()],
o(t) = [ka(t) + q1(D)][ka(t) + =(t)]lr (1) — g2(2)],
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c1o(t) = [k2(2) + @ ()] [k2(2) + g3 (D)][ () — a5 (2)),
en(t) = [ki(t) + q2(2)](g2(2) — as(hfki (2) + ga(2)],
c12(t) = [qi{t) — g2(t)]{q1 (2} — g3 (D)][ga(t) — @a(t)], (3.3.10b)

where
£ = ka{t)z — KB(Dy + &7, na——qau)z By + 9,

hsalt) = B0, asslt) = —3B0), aslt) = (o (t) P bat) = (m)z. (3.3.100)
Generally, take the sclution of (3.3.7)
N-1
g= 3, IT e -Dleik;(t) + (g — 1gj(2) — ehi(t) ~ (& ~ Vat)]
e=0,11<<d
N-1
exp{ Y [e(¢; + na;(1)) + (¢ — 1) (s — by ()]}, (3.3.11q)
=1
here
& = kiz — 2@y +£0, n=—g)z -y +1, (3.3.115)
ki) = 22t -t——lqzt =2 " 2 \"" 3.3.11
i) = 5k (0), gialt) = 5,(), a,(t) = 50 , bi(t) = @ , (3.3.11¢)
we can get )
N
f=mn=7% I a~Dlgk ) + (6 —1)g)(t) — erk(t) — (a1 — Dar(t)]
e=0,11<3<i
N
ap{;[fj(fj +1na;(t)) + (¢ - Diny — lnby ()}, (3.3.12a)
J=
En =kn(t)z — K0y + &0 nv = —an(d)z — ah(Oy + 1), (3.3.128)
k2 N-1 9 N-1
belt) = 5840, anel) =340, v = ()« = (o) -
(3.3.12¢)
Finally, we obtain the solution in Wronskian form for bilinear BT (3.3.2).
Let
b 0 - Vg
e g1 .
F=Wgnbatm)=|® O T T T e N—1 = N1, (83.130)
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g=IN=27], ={0,---,0,1]T, (3.3.13b)
where ¢; satisfies
Piy = ~P1zz Dit = ~YPjazz + %xd’]m - %(N ~1)¢, . (3.3.14q,b)
From (3.3.14b), we have
g=-~y(N=5,N-3,N-2,N-1,7|— IN=4,N-2,N,7| + [N =3, N +1,7])
-%z|N’1‘4,N ~2,N=1,7+ -;-zuv‘: 3,N, 7| - %uv’: 3,N~1,7, (3.3.15)
fi=—y(IN"4,N-2,N -1, N| - [N=3,N-1,N 1|+ |N=2,N +2)
—%zm’l'a, N-LN|+ %x(NTZ,N +1}. (3.3.16)

Then it is easy to prove that (3.3.13) with (3.3.14) solve {3.3.2} in the way similar {o the Ref.[12}.
Define the entries

$; = a;(Del + bi(t)e™, & =ki(t)z — KDy + 7, 05 = —gi(t)e ~ Gty +1{”, (3.3.17a)

1 1 2 \¥! 2 \M!
k) = SE20), ) = —2 30, as(t) = (m) , bylt) = (m) . (317)

Similar to Ref.[14], the Wronskian (3.3.13a) can be written as

N(N-1) N
F=E077 3 1 e Dlegks ) + (€5 — Vgy(8) — erlt) — (e — Da(8)]
=01 155

N
exp{Q_lej(65 + Ina; () + (5 — 1{ny — b (D]} (3.3.18)
=1

which is the same to (3.3.12),
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Chapter 4
The Multisoliton Solutions of the mKP Equation with Self-consistent
Sources

The mKP equation with self-consistent sources i8 derived through the linear problem of the
mKP system. The bilinear form of the mKP equation with self-consistent sources is given and the
N-soliton solutions are obtained through Hirota method and Wronskian technique respectively.

The coincidence of these solutions is shown by direct computation.

4.1 Introduction

The study of the soliton equations with self-consistent sources (SESCS) have received con-
siderable attention in recent years. The reason may be that these equations can model many
physical interesting processes and also result many mathematical interesting treatments[21-36).
The SESCS can be constructed through some mathematical ways{24-29]). One of simple methods
is using the high-order constrained flows of soliton equations, namely, the high-order constrained
flows of soliton equations are considered as the stationary equations of the SESCS[27-29]. Most of
the sources obtained in this way are all related to eigenfunctions because the variational deriva-
tives of eigenvalues are related to eigenfunctions. Some studies have also shown the SESCS
exhibit multisoliton solutions[27],{30-36). With the help of some special treatments, the inverse
scattering method and Darboux transformation have been successfully used to find N-soliton
solutions of the SESCS such as the KdV, KP and mKP equations with self-consistent sources.
Tt will be shown from the solutions that the sources may result the variation of the velocity of
solitons[25],(37). ‘

One of the purposes of this paper is to derive the hierarchy of the mKP equation with
self-consistent sources in the way which is directly based on the eigenfunctions of recursion
operator. This method, different slightly from the one using constraint flows, is easy to give the
Lax representations of the hierarchy. We have found that some other hierarchies of the SESCS,
such as the KP equation with self-consistent sources[14], can be also obtained in this way. On
the other hand, we also hope to find the multi-soliton solutions of the mKP equation with
self-consistent sources (mKPESCS) through Hirota method[10] and Wronskian technique(38-
41]. These two direct methods both depend on the bilinear forms of the evolution equations.
Hirota method provides a remarkably simpler technique for obtaining the N-soliton solutions
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in the form of an Ntb-order polynomial in N exponentials. Wronskian technique provides an
alternative formulation of the N-soliton solutions, in terms of some function of the Wronski
determinant of N functions, which allows verification of the solutions by direct substitution
because differentiation of a Wronskian is easy and its derivatives take similar compact forms.
The basic thoughts of our obtaining the exact N-soliton solutions are aa follows. We first present
a set of dependent variable transformations to write out the bilinear form of the mKPESCS by
which we can derive one-, two-, even three-soliton solutions successively through the standard
Hirota’s approach. These resuits can help us to find out the time evolution easily and conjecture 2,
general formula which denotes N-soliton solution but is only conjectured and not verified. Next,
with the help of the message on the time evolution obtained by means of Hirota method, we can
consiruct a Wronskian and try to verify it to satisfy the related bilinear equations. Since there is
a nonlinear term (led to by the concerned source) in the time evolution, we have to develop some
novel determinantal identities and employ some special treatments whick are different from the
known standard Wronskian technique{38-41] sc that we can finish the Wronskian verifications.
Finaily, we present a process to show that the solutions of the bilinear equations obtained through
the above two direct metheds are the same for recovering the solutions of mKPESCS from the
original dependent variable transformations. In other words, these two kinds of solutions are
uniform. To our knowledge, it is the first time to obtain the mKPESCS and solve it by Hirota
method and Wronskian technique.

We arrange the paper as follows. We first derive the hierarchy of of the mKPESCS in Sec.2.
Then we solve the mKPESCS by means of Hirota method and Wrenskian technique in Sec.3
and 4 respectively. At last, in Sec.5 we show the uniformity of the results in Sec.3 and 4.

4.2 The mKP equation with self-consistent sources
Consider the spectral problem and its adjoint associated with the mKP equation

®, = Byp + 2uds, (4.2.1)

Oy = —Vpp + 2uT,, (4.2.2)

Suppose that the time evolution of the eigenfunction & is given by

Qt = A¢’ (4.2-3)
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where A is a operator function of @ and 8- (8 = £ and 8718 = 39~ = 1). The compatibility
of (4.2.1) and (4.2.3) requires that A satisfy

2ud — Ay + (07 + 2ud, A] = 0, (4.2.4)
or
20 = Ay — Apy — 24,0 — 2uA, ~ 2u, AJD. (4.2.5)
Now we take
A=0p® + 0, + 020 + a(DTY — 337'¥,), (4.2.6)

where a;(j = 0,1,2) are undetermined functions of u and its derivatives, and « is an arbitrary
constant. Substituting (4.2.6) into (4.2.5) and equating coefficients powers of 3, we obtain

2uy = a2y — G2,0x — 2ua2,z + 200Uzez + 20102z + 20207 —~ 20(BV),, (4.2.7)
A1,y — 1,7z — 202,27 — 2081 5 + Bagtzy + dastiz = 0, (4.2.8)

80,y ~ Gozx — 201 2 — 2uag z + baguz = 0, (4.2.9)

&z =0. (4.2.10)

From (4.2.8)-(4.2.10), we work out in regular order that
ap = -4, ay=-12u, a7 = —68 11y — 6u, — 6u°. (4.2.11)
Substituting (4.2.11) into (4.2.7) and seiting a = ~1, we obtain
th + Yezz + 33'114,, - 6ulu; + G(B'Iu,)u,, — (®%), =0. (42.12)

This equation together with spetral problems (4.2.1) and (4.2.2) constitutes the mKP equation
with a self-consistent source. If taking a = 0, we can derive the mKP equation

Ut + Uppr + 30 Uy — 6uluy = 0. (4.2.13)
Obviously, the mKP equation with N self-consistent sources can be defined in a similar way,
which is expressed as
N

1 + gz + 30 My — 6tup 4 6(0 T upuz — D (8585): = 0, (4.2.14)
i=1
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Bjy = Bjzz + 2uBjpz, {4.2.15)

Uy = ~Vjms + 2085z, (4.2.16)
while the operator 4 becomes
N
A =48 — 1208 — (607 1uy + 6uy 4+ 62)0 - ) (8,7, - 3;0719;,). (4.2.17)
=1

4.3 Bilinear form and Hirota method
In the following, we shall give the soliton solution of the mKPESCS by use of Hirota method.
With the help of the dependent variable transformations

h

u=(n %),, ®; = ";" ¥, = 3}i, (¢3.)
the mKPESCS (4.2.14)-(4.2.16) can be transformed into the bilinear forms
Dlg-f—Dyg-f=0, (4.3.2)
N
Dig-f+D3g-f+3D,Dyg-f = ,2 h,8;, {4.3.3)
Dyhj-f~D3h;-f=0, 4.34)
Dysj-g+D2s;-g=0, (4.3.5)
where D is the well-known Hirota bilinear operator
D,DyD}a-b=(3; — 8z) (B ~ B8y )™ (8 — 8 )"a(z, 1, )02, Vs V)t =y =t
Expanding f, g and hj, 85 a8 the series
[=147O& 4 fWe 4 §OS 1. (4.3.6)
g=14g0& 440 ..., (4.3.7)
hi=he+h0S 4., (4.3.8)
8= s$1)e+ sg-a)ez +-- (43.9)
Substituting (4.3.6)-(4.3.9) into (4.3.2)-(4.3.5) and equating coefficients of ¢ yield
8 - oP + 12+ 5P =0, (43.10)
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gid — o + 1 + S + D@ - B — Dy . fB =g,

......

N
o +42 4+ 3982 - P-4 2=y h}l) 8‘(?_1)’
i=1

ot + 9 + 305 — £ ~ £ + 3 + Dug® . 1 4 DI . 4@

N
430206 = Y6 + 170,
1=

......

B

g~ Pz =0

h(a) h{3) +D, h(‘) f(2) D2 h(l) f(?) -
m, 0 _
8yt 82 =0,

o3 4 o0

he+ Dysl) - g 4 Dih?) f® =0

------

For N=1, let

W = ~20k + ), 1= iz + Ky~ 2kfs - f Piledds +65,
o) = 2l + @B ()™, m=quz — gy —4qlt - / Prl)dz + 1.

By solving (4.3.10)-(4.3.17), we have
fA=pbrtm py= g,
¢P =geftm g =k,
W =0, & =0, 1=35,..,
™ =0, 9("') =0, m=4,6,--,

therefore the one-soliton solution is given by

14 aleﬁ“‘"‘
[111 1 +b18€1+m ]21

3

(4.3.11)

(4.3.12)

(4.3.13)

(4.3.14)

(4.3.15)

(4.3.16)

(4.3.17)

(4.3.18)

(4.3.19)

(4.3.20)

(43.21)
(4.3.22)

(4.3.23)

(4.3.24)



8, =Y (k1 + q1)B(T)ehr ¥, = V2(ky +quﬂ1(t58'”.

1+ ot 1+ byefitm

For N = 2, if we take

WY = — 2l + B0, & = ko + Ky -kt — [ 5, (2)de + €7,
(1
8:(,-1) = \/ 2(kj +q;)51(t)8"‘, =0T~ QJzy - 4q:;’t __[0 ﬁj(z)dz + r’;(,m’ i=L2

From (4.3.10)-(4.3.17) it can be worked out that
f(z) = ble€1+ﬂ1 + b26£z+mi bj = =4qj,

gD = g ef1tm 4 goefrtm, a, =k;j,

WY = — 2tk + 4By 2 e,

(k1 + @2)
@ _ _ (k2 — k1) g4
hy' = —y/2(k2 + 2)Ba(t)lr o tar )ef +m

2(k1 + q1)B1(t)az éqg T zl) emHbatmtin
® = JJ2uk2 + @)Be(b)a :92 oy q‘;em-i—fwm

f(4) = b1b2351+m+52+"n+412,

g = gapttmtisimtan,

I - k)@ — q)
(k1 + @) (k2 + @)’

hsl)zoa s_(Tl):ol j=1’2’ l=3’5’

fM =0, ¢ =0, m=68,--.
So the two-soliton solution is

1+ ale€l+m + a2e€3+'ﬂ + alazefiﬂl"’e’m"”‘"
=1 1+ hefitm 4 bpefatm 4 by bpefr+miatm+An #

14+b a-k) 61 +Eatmtin
®) = —/2(ks + q1)Ba()e" e vere
1+ a1ef1tm + agefa i + ajagefrHm+iztm+An

1+ bl%H?"‘l hatfi+m
2 = —\/2(k2 + ) a(t)e® i ,
1 4 a1e83tM + goefatm 4 grapefitm+iHntArn
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(4.3.25)

(4.3.26)

(4.3.27)

(4.3.28)

(4.3.29)

(4.3.30)

(4.3.31)

(4.3.32)

(4.3.33)
(4.3.34)
{4.3.35)

(4.3.36)

(4.3.37)

(4.3.38)

(4.3.39)

(4.3.40)

(4.3.41)



1+as 5‘_’2"21; emtéztmtin
@1 = /20 + )Bi(D)e™ e :
1+ hefttm 4 hpefrtm 4 by hpebt tmtiatm+iis

@ %g:_;z%emﬁﬂm
U= ‘/Z(kz + g2)Baft)e™ TT bt bQ:E,ﬂ, + by bpeii tmttatmt A

Similar, for N = 3 the three soliton solution can be derived, where

g =140, 4 gpefatm | guefstm 4 g gpefitmtiatmtis
ta 0zt TS tA 4 o g, platmtiatmtArs

+ala2aae&+m+€z+nz+€a+ns+Au+Am+An ,

=14 b efHm 4 byefat 4 paefatm 4 b hyeht +m+iatm+hiz
by byefr PmAiatmtdis | pp, L2 tmtbatmtAis

.thzbae&ﬁn+€z+m+€s+ﬂa+Am+Ais+Azs’
ki — ki)(gs — .
el = ——"—'—Ek: +q:))8::+33, (.1 < lf]al = 1,293)'
(k3 — k1)

I 1 3 ix (k2 — _kl_...) fatmtinld TR0
hy = —/2(k1 + q1)Bs ()€ [boe®r T ita) byet ™ (k1 + 43)

2+m+eatm+Azs (K2 — K1) (k3 — k1)
+oahae ? (k1 +g2) (ka +qs)]’

= - ¢] 14+m (k2_k1) +naHix (ka —kz)
" 2z + w)falt)e et ke ¥a) backt (k2 +a3)

s b Hin Ay (82 — 1) (k3 — ks)
+hbact Gt ) (2T 5) "

- +m k3 — K1) g (K3 — K2)
hy = ~\f2(ks + g3)Pa () [brefr+™m v’ byefrtm *To)

tm+Eatmt+As (K3 — F1) (ks — ko)
Fhiboet ’ ? (k3 +qt) (k3 + @2) b

_ i (@2 — @) i (93— 1)
=2 )BT e T s b

rtmetmtAn (@2 — @) (6 — @)
Hhabaet (@ +k) (@ + ks)l’

_ m (@2 —q1) i (95— 92)
= 2ks + @) et B by mrin O

f14m+amrintAss (@2 — 41) (03— )
Fhibse (g2 +k1) (g2 + ks)]’
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(4.3.42)

(4.3.43)

(4.3.44)

(4.3.45)

(4.3.46)

(4.3.47)

(4.3.48)

(4.3.49)

(4.3.50)

(4.3.51)



1 ( - 2 ( - )
83 =/ 2{k3 + g3)f3(t)e™ [Brefrtm (g;_-‘—_q]:_; + byekrtm H

14 +E2 Agz \43 T HLJ (q3 (11) (q3 Q2)
+oibaet - (s + k1) (@ + kz)]’ (4.3.52)

where
¢
E=ka+ kzy - 4k3t - [ Bi(z)dz + 5('0):

n; = g% ~ ¢y — 4t — f ﬂg(Z)dz+n, ,

aj=Fkj, by=—q, §=1,23 (4.3.53)
Generally, we have
N N
g= Y exp[d pil&+ni+ai)+ X Ay, (4.3.54)
p=01 =1 1<
=Y exp[E i+ nj+v) + E BitmAj, (4.3.55)
p=0,1 j=1 1<j<i

hn = =24/ 2k + m)Bu()™ Y expl D ps(&5 + 5 + v + Bug)]

p=0,1 1<ji<m

N N
expl Y pils+m+v+in+Bm)+ Y. pimAzl, (4.3.56)
>m 1<3<l,34#m

8m = 2y 2(km + Gm)Bn(®)e™ T expl 3= puy{&; + 15 + 05 + Comy)]

»=0,1 1<i<m

N N
exp[ Y il tnitaj+in+Cimd+ Y pimAz, (4.3.57)
j>m 1<i<igd#m
& = ko + K2y — 4k3t — f B)(2)dz + €2, (4.3.58)
w=go-gu—dgit- [ B+ D, (43.59)
k;j —k)lg; —a) -k g —q
et = L.L_‘_-"__. efn = Cn {4~ 0 ,
(ks + @) (ke +5)’ hte) ¢ o+ k,
ebmi = ___l‘;. Cmi = (M~
km +g; m + k;j ’
€Y =ag;=k; e =b=—qj. {4.3.60)

here the sum is taken over all possible combinations of p; = 0,1 (j = 1,2,---,N). When
Bj(t) =0, (4.3.54) and (4.3.55) is just the solution for mKP equation (4.2.13)[42).
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4.4 Wronskian method
4.4.1 Wronskian method for the mKP equation
Through the transformation 4 = (In i),, the bilinear form of the mKP equation is

Dig-f~Dyg-f =0, (4.41)
Dy -f+D3g-f+3D:Dyg-f=0. (4.4.2)
The mKP equation has the Wronskian form solutions as follows
¢ Ok .- Vly
=g, 1), ... V-1

------

¢ Oy o IV lgn

=i0,1,---,N—1| =N -1, (44.3)
b Ph - N
g=| 20 T Eh ] g g g N = IR, 44)
8y Fpn - Moy
where ¢; satisfy
iy = Prazs (4.4.5)
b1t = —4bjzzz- (4.4.6)

From (4.4.5) and (4.4.6), it is easy to obtain

fo=IN=2,N|, fez=|N—3,N—LN|+|N=2,N+1|, (4.4.7)
foo=|N-4N-2,N-1,N|+2[N—3,N-1,N+1/+|N=2,N +2], (4.4.8)
fy=—IN=3,N=1,N|+|N=2,N+1], (4.4.9)
foy=—|N=4,N~2,N-1,N|+|N=2,N +2|, (4.4.10)

fi=—4[N“4N-2,N-1L,N|-IN=3N~-LN+1|+|N-2,N+2], (4411)
gz=IN—LN+1|, gz=|N—2,N,N+1|4|N-1,N+2|, (4.4.12)
93z =N-3,N-LN,N+1+2N=2,n,N4+2|+|N "1, N +3}, (4.4.13)
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=—|[NZ2,N,N-1|+|IN=1,N+2|,

goy=—IN=8,N~1L,N,N +1|+|N=1,N +3],

a=—4N-3,N-LNN+1|-|[N—2,N,N+2|+|N-1,N +3,

Substituting (4.4.7)-(4.4.16) into (4.4.1)-(4.4.2), we have

Dig f- Dﬂg “f = 9zaf — 29 Sz + 9f2s ~ (gyf —gfﬂ)

= (Goz — yy)f —29:fz + 9(fez + fv)

=2AN=2,N,N+1|jo,N—2,N— |- 2N =2,N -1, N +10, N =2, N]

+2IN=2,N-1,N|[0,N=2,N+1|=0.

Dyg-f+D3g-f+3D;Dyg- f

(4.4.14)
(4.4.15)

(4.4.16)

(4.4.17)

=0f ~ 9ft + Gzocf — Yzafz + 9z faz — 9fzzz + 3(gzyf - g:cfy - gyfz + .f:wg)
= (9: + Grzz + 39&11)f +g(~ft = frza + 3fzy) + 3fz(”gzz - gy) + SQz(fzs - fy)
=6~{N-3,N—1,N,N +1)o,N_3,N -2,N —1|

~IN=3,N-2,N~1,N|jo,N 3, N~1,N +1]

+|[NZ3,N-2,N-1,N +1(0,N Z3,N - 1,N]]

+6(|N=2,N,N +2|l0,N=2,N-1|+|N=2,N~1,N||o,N =2,N + 2|

~IN=Z2,N-1,N+2|jo,N=2,N[]=0.

{4.4.18)

4.4.2 Wronskian method for the mKP equation with self-consistent sources
In this section, we will derive the solution in the Wronskian form for mKPESCS.
The Wronskian form solutions for the mKPESCS can be written as (4.4.3),(4.4.4) and

hm = —/2(km + Gm)Brn ()~

th i

Yo Oin
Um-1 Mm—1
Ym  Wm
Ymi1 MWmpr -
¥y OyYwn
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Vg 0
A " |

-

‘ 8N-2¢m—-l 0
’ aN-2¢m 1

aN—2¢m+l 0

. (4419



0 Pp - V0
8o b 9 8"“¢2 0

"o -]
8m = 2(k‘m + qm)ﬁm (t) a¢m_l 82%—1 6N ¢m_1 0 ] (4'4'20)
a¢m 32% ee aN_I% 1

8ms1 Pbmyr -+ o 0

......

dn Poy - M pn 0
where
¢, = ek + (_I)J'—le-ﬂj’ (4.4.21)
¥ = (km = kj)(kj + am)e¥ + (=1)" " {om — q)){g; + km)e™, (j < m), (44.22)
i = (K — km) (ks +gm)e¥ + (~17 (g — gm)(gs + m)e ™, (G > m). (44.23)

First, we show that the Wronskian determinants £, g and Ay, 85 satisfy the bilinear equation
(4.3.2) and (4.3.4). Expanding f,g and f:, g: by the mth row, we have

f= i(—l)'?‘+j3’"(e‘“ + (=1)™ 1) Ay, (4.4.24)
=1

-

N
fo= Y (F1)"H@ (483 - By(1))ef + (—1)™ L (4g] + Bj(2))e ™} Am;, (4.4.25)

J:l

N
g=Y (1™t + (1) e ™]Cpu, (4.4.26)
=1

g = é(—l)'"”a' [(—4k} — Bi(t)et + (—1)™ (4q] + Bi(t))e ™ ]Crms, (44.27)
where Ay,; and Cpy are the cofactor of f and g respectively. Obviously Cpy = Ay,

In section 3.1, We have shown that f,g with 5,(t) =0,(j = 1,2,---, N) satisfies the bilinear
equation of mKP equation (4.4.1). So, what we should do is to prove the sum of all coefficient
for a fixed 8;(t) at the two side of (4.3.3) are equal.

Without loss of generality, the following discussion will be restricted the case of B,(t).
Because there i3 only the first term Dyg - f = g.f — gf¢ including £, (t) and note the equality

[0 (¥ ~ (=)™ e[ N e + (-1) e ™)
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~ [ (et + (-1t e — (-1 )]
= o~ Lebm M (—gm)t — k5 —gm)'], (4.4.28)

then the term for B,,(2) at the left side of {4.3.3) can be written as
N-1N-1

~2BmB)(=1)" {3 3 (=) K~ ! = B ) 1Ot Amg

j=1 i=1

N-1
+ 3 (DY (—gm)V ™ ~ kY (=g Y ICmt Amn
I=1

N1
+ Z (_1)J+N [kg(”Qm)j_l - ki;l(—Qm)N]cmNAmj
j=1
+km(~gm)¥ ! — k(= gm) " IComiv A }- (4.4.29)

By means of the general determinaut identity

1Q.a, b”Qsc’dl - IQ1 a,c/|@,b, dl +|Q,a,d||Q, b,cl =0, (4430)

where Q is an (N — 1) x (N — 3) matrix and g,b,c and d represent N = 1 column vectors, it is -

s

not difficult to prove that
Cmy = |M(3),N], §=1,2,-,N-1, (4.4.31)
Amy =0, M)}, j=1,2,---,N -1, (4.4.32)
CrmiAmi+1 = CoiAmgsr = 10, M1, 5), NiCun, (1S1<j<N-3), (44.33)

CoN-1Amjst — CmjApn = [0, M(j,N —=1),N|Cpy, §=1,2,---,N =2, (44.34)

where the matrix M([, 5} is defined by
M(LJ) = Il‘l 21"' Jl - 1al + 11 b 7j - l'rJ + ll"':N - 1](N«—l)x(N—3): (4'4'35)

M) =|1,2,--+,5-1,j +1,---, N~ lI(N—l)X(N—2)' (4.4.36)

Using (4.4.31)-(4.4.36), the expression (4.4.29) becomes

N-3 N2
2B () (=1)" b ML S Y (kg gl = =k 10, M1, 5), N
=1 y=i+1
N—2 + r )
+ 3 (~kmgm¥ g 7 = (k)Y A0, M (5, N - 1), N
j=1
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N-1
+ 3 (g ~ (~Fm)'1Crmt

i=1
N-1
+ Y (—Emgm) Ham T = () V) Ay
=1

+ (~Emm) ¥ km + @) Amn } O - (4.4.37)

Now we turn about A, and s,,. Obviously, from (4.4.20) we have

8m = \2(km + Gm) B ()(=1)™+ Cra. (4.4.38)

While from (4.4.19), hy, can be written as

b = = 20km + m)Bm(t)e™ M Ry, (4.4.39)

where h,, i8 a N x N determinant

~Lp  -Lg - -Lg"P 0
~Lém-t —Lgw - -Léf ™ 0

;-u
il

Lém L) - L™V
Lémir Ly - Lel? 0

------

Lon Loy - L™V 0

=(=1)YL.-0,L-1,L 2,7+« ,L-(N = 2),7m|
=[b-0+a-142,b-14a-24+3,b-24+a-34+4,--,b-(N=2)4+a-(N—1)+ N, 75|
L=b+ad+&, b=—kntm: 6=qn—Fkm Tm=(Om1,0m2:***0mnN)T- (4.4.40)

By simple analysis for N x N determinant

1F(L7), Tl = 10,1, )l = LI+ 1,5 - 1,5+ 1,5 +21"’5N17ml: (4-4-41)
we obtain
. N-1 N
hp = (_l)m_l Z z IF(Ifj)ifml(_kam)‘
1=0 j=it1

[{gm — km) ™" = Clt_2lgm — kY ™~ kintm)} + CF-y_3(@m = k)’ ™~ 3(~kingm)?
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—03—1—4(Qm - km)] dl_T("'km‘Im)s +

(1) (b)) if j—1 is odd
* iha 1 L (4.4.42)
-1 C.Lr (—kmam) T (gm — k)] i j—1 is even
We show further the algebraic sum after |F(1, f), | be expressed as
(—km m)lw- (4.4.43)

m + km
Because of comparing the coefficients of the terms (—kmgm)'gi """ 1(—k,)" in (4.4.42) and
(4.4.43), we have

Crit = Cl g 2Cp o+ Oy s Ch s+ (- CT oy =1, "<[ (G-1-1), (4444)

S(-DFCECE g =1 (4.4.45)
k=0

But

Z('—l)"c"c"—a-k-t =Cl 1+ 2(-1)"( 1+ Co 1 )Ch g gy + (—1)"CP gy
k=1

n—1

"'Z( —1)*Ck_,(C? rt—k-1=Cri x2)

= f‘:_:o(-l)"c'.’:_lc;:,i._z. (4.4.46)

Using the induction for n of expression (4.4.46), it may be seen that the equality (4.4.44) or
(4.4.45) is true. As a result, we obtain immediately

hm = (=1)™/2(km + gm)Bon ()i~

N-3 N-2 -
{z z (“kam)l (‘"___!'M) IP(l,j),N— levaI

=0 j=i+1 + km

N-2 N-l—t _ (1 y\N-1-]
+ 3 ot (B0 1,
=0

N-2 ! ~ N=|
+ X (o) (Lh—ﬂr—"k:—)—‘) P, N =1, 7

+ (—kmam) ¥ Y N =2, 1]}
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= (<1)™y/2{km + gm) B (1)

N-3 N-2 I
(2 3 chntelt (B 120, -1,
I=1 j=i+1

1
+ 3 (Bl 10, -1,
i=1

N-2 (qfix—l -1 _ (__km)N-vl-l

I
+ ¥ (~Emgm) Py

I=1

N-2 N-—| N-1
_ tf 9w — ("_km)
+ EO( kmdm) ( Gm + bk

+ {~kemnge) VN =2, 7]} (4.4.47)

here P(l,3) is the N x (N —~ 3) matrix without / column and j column, P(!) is the N x N — 2

) |P{), N, |

) |P(l)1N_ 1,""l'r||

matrix without I column. Obviously we have
IPQ,7), N — 1, N, ra| = |0, M(L, ), N[(-1)™ 7, |P(), N, 7} = 10, M (3, N = 1), N|(~1)™¥,

[P}, N = 1,73 = {0, MB|(-1)™¥, P|(0,5), N =1, N, 7} = Coos(-1)™*",
IN = 2,7] = Ann(-1)"*". {4.4.48)

So

hpsy, = (_])m2ﬁm(t)efm—’lm
N-3 N-2

{3 Y (~kmam)eh’ - (~kaY 0, M, 5), N|

=1 §=i+1
N-1
+ Z [?!n - (_‘km)J]ij
i=1
N-2

+ Z(—kmq,..)‘[ N (k)Y 10, M(LN ~ 1), N]

N-2

+ Y (~kmgm) gl = (—km)¥ A

=0
+ (—km@m) ¥ "k + gim) A }Crmnv (4.4.49)

wherefore the term for £, (t) at the right side of (4.3.3) equal (4.4.37). That is to say that
Wronskian form (4.4.3), (4.4.4) and (4.4.19),(4.4.20) satisfy equation (4.3.3).
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Next, we will prove hy, and f satisfy (4.3.4). Using the abbreviated notation, it can be
obtained

hmy = (1) 2(km + am)Bm(t)efm M [-iL(ﬁ 4),L{N - 2),L(N ~ 1), T
+ |L(N = 3), LN, Tm| + (K, + @)LV = 2), 7] (4.4.50)
z = ("l)m\/ 2(km +qm)ﬁm(t) m—ﬂm“L(ﬁ 3)a L(N - 1);Tm1 + (km - ‘Im)IL(ﬁ: 2)1 Tmﬂa

(4.4.51)
Rmzs = (~1)™/2(km + gm)Bim (£ [ LV = 4), L(N = 2), L(N ~ 1), 7|
HIN = 8), LN, 1]+ 2( ke —gun) | L (N — 3), L{N —1), Ty |+ (b — g 2I LAV = 2), 7], (4.4.52)
Substituting (4.4.50)-(4.4.52) and Wronskian f and its related derivatives {4.4.7) into bilinear
equation (4.3.4) gives

[~|L(N = 4), L(N —2), LN = 1), Tn] + (g ~ ken) LN = 3), L(NV = 1), 735
+em@m| LV = 2), 7 [lIN = 1] + |L(F = 3), L(N — 1), 7:m]
~(gm — km)IL(V = 2, T IN= 2, N| ~ [L(N = 2), mlIN=2,N + 1| =0, (4453
But we ca.n work out that ’

(gm + km)IL(V = 4), L(N ~2), L(N = 1), |

N-3 N-2
=Y ¥ (~kmom)le - (~kmY (@m ~ km)? + Emgm][P(,5), N = 1, N, Ta}
1=0 j=i+1
N-8 N-2 ]
+ 3 Y (k) oyt — (~kmY N (am ~ k)| PG5 N = 1L,N 41,7
=0 j=i+1
N-3 N-2 ) )
+ 3 Y (kmom) i@ ~ (~kn) PR 1), NN + 1,74
=0 j=i+1
N-2
+ 3 (—kmam) 2 lam 2 (~kw) V2P, N~ 1,7
=0
N-2

+ 2 (~kmgm) am > = (k)™ 2t — k)| P (), Ny
=0

N=
+ Zz(—qu)'“[q,’X’”" — (~km)" 2N PU), N +1, 7], (4.4.54)
=0
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(am + km)|L(N = 3), L(N = 1), 7|
N-3 N-2

=Y ¥ (~kmam) gl — (—kmY Nam — kn)|P(1,5), N = 1,N, 7
1=0 j=I+1
N-3 N-2 .
+ Z z (-kmqm)l[qin-‘ - (_knl)j-t]IPUajLN - 11N + I,Tml
=0 j=I+1
N-2
+ Y (~kmgm) g - (k)Y TP, N - 1,7
=0
N-2
+ Y (kngm) a7 = (=km)" Y (gm — km)IP(), N, 7]
=0
N=-2
+ 3 (~kmgm) [ 7 = (k)Y N PE), N 4 1,7 (4.4.55)
=0

Inserting (4.4.47), (4.4.54) and (4.4.55} into the left side of (4.4.53) leaves only the terms
N-3 N-2

S Y (~kmgm) 'l — (k¥ PE, 3 N =1, N, 7 [[N = 2, N +1]

1=0 j=i+1

+|P(L,5),N = L,N 41, 7ulIN = 2,N| = |P{L, ), N, N + 1, 7||[N = 1)
N-2

+ 3 (~Emgm) g = (=) VNP, N, [N = 1|~ [P(), N ~ 1, 7 [[N = 2, N])
=0
N-2 — e

+ 3 (~kmam) g™ = (~km)* (P, N + 1,7l N = 1| = |P(1), N = 1, 5 ||N = 2, N +1})
=0
N-=2 ——

+ 3 (~kmgm) [~ ~ (= km) ¥ P(), N+1, 7 )\N = 2, N|—|P(m), N, [N ~ 2, N+1])
=0

(=Fm@m)” " gm + k) |V = 2, 7| ol N = 1| = (g — )iV — 2, N| = [N =2, N + 1]},

(4.4.56)
noting that

~\P(l,3),N = 1, N, 7 {IN = 2, N + 1| + [P(, 5}, N = L, N + 1,7|IN = 2, N|

—|P{, 5}, N,N + 1,7,)IN = 1}

= 1)N+1 P(,7) 0o 00 N—-1 N N+1
0 Plj)l j N-1 N N+1 7
-|P(laj)sN"l,N,N-l-l”N":g,.rml
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=—|P(l,j,N =1, N,N + 1]|N = 2,7,

(4.4.57)
|P(1), N, | N = 1} — |P(1), N = 1, 7,0]|N = 2, N}
_ Py O 0 N-1 N = —IP(l),N-l,NllNTZ,rm[
0O P! N-1 N 14
=—|P(l}, N —1,N|IN =2, 7|, (4.4.58)
(1P, N + 1, mm|IN = 1| = |P(1), N = 1,7||[N =2,N + 1]]
_|F® O 0 N-1 N+1 7m —|PU),N = 1L,N + 1}N =2, 7]
O Pl I N-1 N+d 7
= <|P(l), N = 1,N + 1IN = 2,7}, (4.4.59)
IP@,N +1,7|IN =1} = |P(}),N ~1,7[N =2, N + 1]
S| PO O ONNEL Tm i by NN 41N 2,
0O PO I N N+1 m
N = —|P(I), N,N +1||N = 2,7, (4.4.60)
then (4.4.56) reduce to
' o N-3 N-2 . .
V=21 Y. Y (~kmgm)g? = (~km P YIP5), N =1, N,N + 1
=0 g=l+1
N-2
+ Y (—Fmgm) g = (k)| P(), N — 1, N
I=0
N-2
+ 3 (~kmgm) [gh ™ - (k)Y PO, N -1, N +1)
=0
N-2
+ 3 (~kmtm) o5 1 — (k)Y NP), NN + 1
=0
~(~kngm)" " (gm + km)[km@mIN = 1] + (km — gn)IN =2, N}~ [N =2, N +1]]}, (4.4.61)

which is just —[N' = 2, 7 |JL{N + 1)| = 0.

At last, the remained problem is to prove that Wronskian s,, and g satisfy equation (4.3.5).

sma = 2km + @) B ()N = 2, N, 72,

Smss = Y 20om + VB IN =8, N — 1, N, 7 + INTLN 4 L, 7mll,  (4462)
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Smy = ‘I‘ 2(km + QM)ﬂm(t)[—lN‘j3i N-1,N, Tﬂ’I| + |NF: LN +1, Tﬂll]' (4'4'63)
Substituting (44.12)-(4.4.14) and (4.4.62)-(4.4.63) into (4.3.5)

Dysm+ g+ D2spy g = 339 = 3m9y + 8,228 — 28m,20z + SmOre

= (Sm,y -+ 3m,zz)9 — 28529z + 8 (022 — Qy)

= \/2{km + ) B (O)IN = 2,N + 1, 7[[N =2, N ~ 1, N}

NS, N, |IN“2,N-1,N+1|+|NZ2,N - 1,7 |IN-2,N,N+1]] = 0.  (4.4.64)

4.5 Coincidence of the solutions

By now, we have found two kinds solutions of the bilinear equations (4.3.1)-(4.3.5), where
(4.4.3)-(4.4.4) and (4.4.19)-(4.4.20) are just verified whereas (4.3.54)-(4.3.57) is only conjectured.
In this section, we will show these two kinds of solutions are the same for recovering the N-soliton
solutions from the transformation (4.3.1).

By virtue of the addition rule of determinants, (4.4.3) can be represented by the sum of 2¥-1
Vandermonde determinants. So we have

F= Y (2a-1)(2¢~1)-- ey ~Daek +a—1)a, e2kz+e2—1)gz, -+ enkn+(en —1)gn)
e=0,1

N
exP{z{fzfz + (g5 —- 1)71.1']}

im1

4 N

N
=Y [[ex—1) I] [k + (e = Dt — €5k — (€5 — Dazlexp{3_[ei&; + (e5 ~ Dmsl}

€=0,1 k=1 1<i<d =1

N
N{N-1

= (-0 Y I @a—Dieshs + (e — gy — etk — (e — Dadexp{ T lesty + (e — D).

e=0,11<i<i =t
(4.5.1)
where Ale1k1+(e; —1)q1, eoko+(e2—1)gz, - - - yen kv +(en—1)gn) denotes an N x N Vandermonde
determinant with the entries e1k; + (e1 — 1)q1, eoka + {e2 — 1)qo, - ,enbn + (ev — 1)gw and the

sum over ¢ = 0, 1 refers to each of the¢; = 0,1,( = 1,2,---, N).
Noticing that
(26 = Dlesk; + (e — B)g; —eky — (e — 1)qy]
4G—q
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=(k-+q: (1-a)e k¢+q;)“"”“ (kt-kz)qﬂ
q—q a—-9
« €4
=(J+q, k,+q,) [(ka—lsj)(qc*fb) (4.5.2)
%) [k +a)ki+a)]

and

1<i<I<N (ky + a){ki + q;} 1<

(4.5.1) becomes

N ZN (=) N s . N
= I (@ —ag)e&=""" 3 exp[> (6 + 1)+ Y gady, (4.5.3)
1<3<d €=0,1 =1 1<3<d
where
& T[tki + @) = €%, & [[{as ~ o) [Tt — @)~ = €7, (4.54)
J# it >3
Similar to g

N ¥ N . N
g= [[ (@ g)elsmt=" S ey gl +ai+n+0)+ Y gady  (455)

153t e=00  j=1 1<j<h
It may be seen that the soliton solution constructed from (4.5.3) and (4.5.5) is the same a8 the
one from (4.3.54)-(4.3.57) with % = -, ¥ =1, C e

We can deal with s,, and b, in a similar way to f,g. (4.4.20) can be rewritien as

= 2(km + gm)Bm(t)

o Pk - Nl 0
Ao P, 3”"1(52 0
| O¥m-1 Pma o ¥y 0
by Phm o WP, 1
i1 Py o VP

et sme ser

, (4.5.6)

f

By  Pon - BV lgy 0
where ¢; = (~i)[ef+¥* + (~1)fe~¥~¥1]. So

N
tm=y2kmtem)bn®) [l (w-adexp] 3 (-nj-b)]

1<i<hjd#m j=lj#m
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N
Z exp[z e,-({,- +n+ Cmy) + Z g (fi + 8, +1; + by + 7+ Cjm) + Z g6 Ay (4.5.7)
e=0,1 i<m i>m 1<l

From (4.4.19), we have
hun = ~yf2(km + qm)Bm (E)eFm ™

t oy cer N2y 0
th i) cer GV 0
Y-t Om-1 - Vg 0
m OYm SO b “2m 1
b1 Wmpr - 8V My 0

(4.5.8)

------

’

¥n Oy o yy 0

where

¥ = (—i){(k; — k) (kj + gm)e¥ T H + (<17 (q) — gn)(gs + k) ¥~ T, (G > m).  (4.5.9)

It is easy to derive
4] N
hm=—1[2(km + )@~V =)V T] Ceae—1) [ lecki+ (1)@ — ;5 ~(e5~1)g;)
e=0,1 k=1 1<

N
exp{3_lerts + (&5~ Dml} TT b — ki) (ks + 9] [lgm — 43)(g + K]~}

=1 j<m

TT {[(7 = k) (ks + 9m)) [(95 — gm) (@) + k)" ~7}
i>m

=~/ 2(km +a)Bn @D T [T @t = Dlesks + (e — gy — eske ~ (&1 — Var]

«=0,11<3<i

N o
, (kj — km)(Kj + gm) ._
exp[:'=1z.:':¢éru(-’fbH j=l£I¢m [(GJ‘ ~ am)(g; + km)] ,.H.“"’ W) + ko)

N
II l(am — 95)(g; + km) exp{ 3 _lei&; + (e5 — Vm,]}

j<m j=t

N
=~y 2(km +am)Bm ] (@ —a5) [I (g + km)e*™ exp[3_(—n5))

1<y . i#m i=1
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N
Y expY (6 + 0+ Bm) + Y (& +my +in+ Bum) + 3 gadyl.  (45.10)
€=0,1 j<m i>m 1<l

From (4.5.3,4.5.5) and (4.5.7,4.5.10), we find that the solution &;, ¥, gotten by Wronskian form
is identical with the one gotten by Hirota method with e® = -g, W=1.
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