
摘 要

本文利用Hirota方法，双线性B诎hInd变换，Darboux变换与Wronsklan技巧对一些
非等谱孤子方程与具自溶源mKP方程的精确解进行了研究．

在第一，三章中利用Hirota方法，双线性B{icklund与Wronskian技巧分别对非等谱变

系数KdV，KP方程进行了研究．在第二章中通过Darboux变换与双线性Ba出lund变

换方法对非等谱KP方程进行了求解．通过以上对非等谱变系数孤子方程的研究我们可

以发现非等谱与等谱有着一定的区别，其特点主要表现在：在等谱孤子方程中振幅随着

时间的变化是不变的，而对于非等谱孤子方程是不成立的，在非等谱中振幅是随着时闻

的变化而变化的；在等谱孤子方程中一般Darboux变换与双线性B诎lt-nd变换都是自变
换，也就是由方程的已知解求出新解，再以所求得的新解作为已知解，求出更新的解，周

而复始，在非等谱方程中这两种变换往往是非自变换，即由一个非等谱方程的解不能得

到自身的新解，而是得到另—个非等谱方程的解；利用Hirota方法得到的解与Wronskian

技巧得到解在恢复等谱孤子方程的解时是一致的，而对于非等谱方程是不成立的．

第四章主要对具自溶源mKP方程进行了研究．首先由mKP系统的线性问题出发，推

导出具自溶源mKP方程；然后通过一定的变换，具自溶源mKP方程可以写成双线性的

形式，利用Hirota方法不仅可以得到单孤子，双孤子与三孤子解的表达形式，而且可以

猜测出Ⅳ孤子解的表达式．由于在具自溶源mKP方程的时间发展式中多出了一个非线

性项的表达式，所以在证明Wronskian形式的解时就不能按照一般Wronskian形式解的

证明过程来证明，所以我们提出了一些新的行列式的性质以及证明技巧证明了具自溶源

mKP方程具有Wromkian形式的解．对于具自溶源mKP方程我们得到两种形式的解，

其中Hirota方法得到的Ⅳ孤子解是猜测出的，而Wronskian形式的解仅仅进行了验证，

最后我们证明了两种解在恢复孤子方程的解时是一致的．

关键字t Hirota方法。Wronskian技巧，双线性B糊und变换，Darboux变换，非等
谱孤子方程，具自溶源mKP方程．
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Abstract

In this paper，we consider the solutions of Some nonisospectral soUton equations and the

mKP equation with self-conslstent sourcl葛by Hirota method，bilincar B缸klund transformation，

Darboux transformation and Wronskian technique．

h Chap l and 3．we consider the nonisospectral and variable-coemcient Kdv and KP equa-

tions by Hirota method，bilinear B置cklund trans丘omation and Wronskian technique，In Chap

2，we study the nonisospectral KP equation by Darbonx and bilinear B{idklund transformation．

We also analyze nonisespectral characteristics of the obtain solutions．Solutions in the Hirota's

form and in Wronskian form are different both formally and essentially．These two kinds of

solutions are not same for recovering the N soliton solutions fmm the transformations．To the

noniscepectral soliton equations,the obtain solutions travel with time-varying shape and speed．

It is worthwhile to mention that Darbotlx㈣tion and bifinear Bickinnd transformation
are auto-BSEdund transformations for the iscepectral soliton equations，but these do not true

for the noulsospectral solitons equation．As a matter of fact．they transform olle noniscepectral

soliton equation to another．

h Chap 4，from the linear problem ofmKP equation，we can derive the mKP equation with

self-consistent 80urce8．On the other hand，we also hope to find the multbsollton solutions ofthe

mKP equation with self-consistent sort_tees through Hirota method and Wronskian technique．

These two direct methods both depend on the bilinear forms of the evolution equations．We

first present a set of dependent variable transformations to write out the billnear form of the

mKP equation with self-consistent sources by whlch we call derive one-，two-，even three-soliton

solutions successively through the standard Hirota’8 approach．These results can help 118 to

find out the time evolution easily and conjecture a general formula which denotes N-soliton

solution but is only conjectured and not verified．Next，with the help of the message Oil the

time evolution obtained by me删of Hirota method．we can construct a Wronskian and try to

verify it to satisfy the related bilinear equations．Since there iB a nonlinear term(1ed to by the

concerned source)in the time evolution,we have to develop solDte novel determiuantal identiti糟

and employ Bome special treatments which啪di矗erent from the known standard Wronskian

technique 80 that we锄finish the Wmnskian verifications．Finally,we present a process to
show that the solutions of the bilinear equations obtained through the above two direct methods

are the same for recovering the solutions of mKP equation with self-consistent source8 from the

Ⅱ



original dependent variable transformations．

Keywords：I-Iirota method，Wmnskian technique，bilinear Bgcklund transformation，Dar-

bonxtransformation，nonisnspectralsolitonequations，mKPequationwithself-consistent 80urce8．
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Preface

Thesolitontheoryis8nimportantbranchofappliedmathematicaandmathennticalphysics．

As e∞ly as 1844．the study of the solitary wave have been begun．But not until the concept of”

sont∞”Was proposed by Kenskal and Zabnsky in the middle of sixties in the present century,

Wa9 the related research developed rapidly．The theory of Solitons is attractive and exciting．It

bring togeth口many branches of mathematics，some of which touch on deep ideas，especially in

the field of nonlinear mathematics．

In many mathematical subjects of soliton theory,it is an important thing to study the

Solutions of the nonlinear evolution equations．Over the years．a variety of methods for finding

explicit Solutions of partial differential equations have been developed．The discovery of the

inverse scattering transform(IST)for the KdV equation WaS a big breakthrough in the analysis

of nonlinear evolution equation【43]．Many soliton equations have been revealed to be exactly

eolwble by this method．Besides the IST，there m Some famous direct approaches．Such as，
Darboux transformations[15，17】，Hirota mcthod[10]，and Wronskian technique[12】etc．

In 1971，Hirota【10】first proposed the formal perturbation technique，called the Hirota

method later,to get N-soliton solutions of the KdV equation．The Soliton solutions can be

presented by WronsklaⅡwas first proposed by Satsuma[44]，but the Solutions were not based

oB the bilineⅡequation．The Wro∞kian technique[12]Was developed by Freeman and Niumlo

for directly verifying solutions to bilinear equation．These two direct methods both depend

on the bilinear forms of the evolution equations．Hirota method provides 8 remarkably sim-

pler technique for obtaining the N-soliton solutions in the form of all Nth-order polynomial

in N exponentials．Wronskian technique provides an alternative formulation of the N-soliton

solutions，．m terms of some function of the Wronski determinant of N functions,which allows

verification ofthesolutionsbydirect substitutionbecausedifferentiationofaWronskiaaiseasy

and its derivatives take 811niL?Ⅱ"compact forms．To the Hirota method，the basic thoughts of

Our obtaining the exact N-soliton Solutions a弛a8 follows．We first present a set of dependent

variable transformations to write out the bilincar form of the evolution equation by which骶

ca,n derive one-，two-，even three-soliton solutions successively．These results伽help ns to

conjecture 8 general formula which denotes N-soliton solution but is only conjectured and not

verified．Next．With the help of the message on the time evolution obtained by mealⅢof Hi-
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rota method．we can construct a Wronskian and try to verify it to satisfy the related bilinear

equations．The B茜c．klund transfonnntion(BT)is another direct method for deriving solutions

from a known solution of the concerned equation．However，solving the set of partial-differential

equations often restricts it to be further used．In 1974．Hi：rota proposed a kind ofBT in bilinear

form[11]，by which it is easy to find multisoliton solutions．In this method，the linear problem

of the evolution equation can been written the bilinear form bY a set of transformation．From

the bilinear equation，it is easy to derive the soliton solutions．In this paper，similar to the

isospectral soliton equation，through a set of transformation we write the nonisospectral KdV

and KP eqtmtions into the bilinear form．Based on the bilinear form，we can obtain the flO-

lutions by Hirota method and Wronskian technique．In chapter 4，the soliton solutions of the

mKP equation with self-consistent sourc嘲are derived by the Hirota method and Wronskisn

technique．

Soliton solutions with self-consistent sources a地hnportant models in many fields of the

physics，such 8,6 hydrodyne．】mies，solid-state physics，plasma physics，etc． For example，the

nonlinear SchrSdinger equation with self-consistent sources represent the nonlinear interaction

ofen electrostatic hlgh-frequency wave with ion acoustic wave in n two component homogeneous

plasma．The KdV equation with self-consistent sottrce8 describes the interaction of long and

short capillary-gravity wavcs．The KP equation with self-consistent som-c魈(KPESCSl d瞎口ib曙

the interaction of long wave with a short—wave packet propagating Oil the善，V plane at KS

angle to each other．Until now．much development has been made in the study of soliton

equation with self-consistent加删Ⅱ嘲．For example，in(1-．I-1)·Schr6dinger，AKNS and Kaup-

Newell hierarchies with self-consistent source8 were solved by the inverse scattering method．

Also a type of generalized binary Darboux transformations with arbitrary functions in time t

for solne(1+1)-dimensional soliton equation with self-consistent sollrce8，which offer a nonauto-

B茜dduud transformation between two soliton equation with self-consietent 80llrccs with different

degrees of sonrce8，have been constructed and can he used to obtain N-soliton，positon and

negaton solution．In(2+1)-dimensional锄，帅∞e results to the suliton equation with self-
consistent飘m嗍have been obtained．The soliton solution of the KPESCS哪fist found by
Mel’nih【22，231．However，since the explicit time part of the Lax represent of the KPESCS

by inverso∞att既ing transformation was qlⅡte complicated[22，23】．In Ref【361，in the framework

of Sato theory and by trnstmg the constrained KP hierⅡchy as the stationary one of the KP
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hierarchy with self-consistent 80Ur嘲，the Lax representation of the KPESCS were naturally

gotten．And the generalized binary Daxboux transformation for the KP equation with self-

consistent SollrM w∞constructed．In Refll4]．we obtain the KPESCS through the linear

problem of KP system．the nmtisoliton solutions of the KPESCS are derived by the Hirota

method and Wronsklan technique．In chapter 4，we develop the idea present in ae04]to study

the mKP equation with self-consistent(mKPESCS)．From the linear problem ofmKP equation，

we get the mKPESCS．Through a set of dependent variable transformations，the biliuear form

of the mKPESCS axe obtained．By the bilinear equation，we can get the soliton solutions b

Hirota method and Wronskian technique．

Recently there has been considerable interest in the study of variable-coefflcient generali‰

tions of the sollton equations．The need for studying them j8 due to the fact that the physical

situetions in which equations with oon8tant coefficients arise tend to be highly idealized SO that

equations with variable coeff】cients and∞nj加峨'戗删parameters may provide more realistic
model．for example,in the pmpngation of(small-amplitude)surface w8I憎in straits or large

channels vorticity．In Ilef【4】，Chart and Li describe some extensions of the inverse scattering

in solving a nonisospectral and variable coefficient KdV equation with time varying nonvml；8h-

ing bo佃dary condition，obtained some nonpropngating soliton solutions and demonstrate their

behavior(the coeiflcients of the evolution equations are time varymg，the Scattering problem is

nonisospectral and the time wying boundary condition is n眦nani8hing)．In 1992，Chan et

州obtained the n-soliton solutions for a nonisoepectral variable-cuefficlent KP equation by
the dm强ing method and studied in depth the two·8“ton ca8e bY appropriately decomp∞ing

them into individual solitons in order to examine their interactions．In Chapter 1-3．w study

the nonisospeotral KdV and KP equations by HirtOa method，B苴cklund transformation and

Wronskian technique．We妇analyze nonisospectral characteristics of the obtain solutions．
Solutions in the Hirtoa’s form and in Wronskian form a地diffe∞nt both formally and e88en-

tiaUy．These two kinds 0f solutions a砖not 8anle for弛∞verjng the N solon solutions from

the transformations．To the nuais0叩ectral 80litcm equations，the obtain solutions travel with

time-varying shape and雄e札It is worthwhile to mention that Darboux transformation and

billnear B五dklund transfmmation are auto-Bgcklund transformations for the jsⅨ驴Ⅸ舡面∞fiton

equations，but these do not true for the mmis叩p∞嘲solitons equation．As a matter of fact，
they transform one no州ral soHton equation to another．

3



Chapter 1

Exact Solutions for a Nonisospectral and Variable-coemcient KdV

Equation

The bilinear form for a nonisospeetral and variable．coefficient KdVequation is obtained and

80me exact soHton solutions axe derived through Hirota method and Wronskian technique．We

also derive the bilinear B赴_khind transformation from its Lax pairs and find solutions with the

help of the obtained bilinear Backlund tranMormation．

1．1 Introduction

The physical situation in which many inte卑rsble equations with constant coefficients arise

tend to be highly idealized．Therefore，equations With variable coefficients and nonisuspectral

eigenparameters may provide reslmfic models in many m删situation．Thus，recently there
has been much interest in study of the variable coemcients generalizations of completely inte．

gmble nonlinear evolution equations[1—91．For the variable coefficient KdV(vcKdV)equation

t‘t+^l(6t‘‰+t‰)+4J12‰一hs(2u+。tb)m-0， (1．1．1)

where hi=h1(t)，h2=h2(t)and hs；hs(t)axe all arbitrary function of t．The initial value

problem of eq．(1．1．1)w聃sovled via the inverse scattering method by Chan and Li【4】．Lou et

口L【7】studied its infinite converse law．Zhang et面．【8】diB‘mssed its symmetries．Fan et以【9】has

obtained the Backlund transfommtion(BT)by the homogeneous balance method．

The Hirota method[10]，BT[1l】and Wronskian technique[12]are three efficient direct ways

to find soliton solutions for nonlinear equations．Recently,Zhang et以【13】study the soliton for

the KdV equation with loss and non-uniformity terms by use of Hisota method and Wronskian

technique．In this paper．w would like to consider the vcKdV equation through above three

methods．The bilinear form of the vcKdV equation is gi舶n and one-，two-soliton solutions are

obtained through the standard Hirota method．A general formula which denotes higher order

solutions is also givem h a way similar to the isoepect．red equation．from the Lax pairs we c∞

derive the bilinear BT for the vcKdV equation by the variable transfornmtion&We also obtain

the solution in Wronskian form．The methods used here can be applied to other nonisospectral

soliton equations．

The paper is讲乎mi∞d a8 follows．h See．2，聊solve the vcKdV equation by the Hirota
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method．In Sec．3 solution in Wromklan form is proven．In Sec．4．the soliton solutions for the

vcKdV equation ate obtained by bilinear BT．

1．2 Bilinear form and Hirota method

With the help of the dependent variable transformation

u=2(1n，)一， (1．2．1)

eq．(1．1．1)can be transformed into the bilinear form

DxDtf·f+hi礁|·|+4h2D：f·|一th3D：f·f一2h3ffz=0。 t1．2．2、

where D is the well-known Hirota bilinear operator

噬D}o·b=(如一a，)l(魂一西)”a(x，t)6(一，t，)J一：；∥曲

This bilinear equation further suggests

，皇’+hl《‰+4712，』≥一zh3西≯一^3，11)=o’ (1．2．3n)

⋯， 2墙’+2hl，』‰+8_112艘一2zh3增一2h3舻
．．

=一DiD‘，(1】·，(1)一hiD：，(1)·，(1)一4h2噬，‘1)·，(1)+zh3D：／(1)·，(1’+2^3，(1)．以¨，(1．2．3”

under the perturbation expansion

／ix，t)=1+，(1)f+，(2)c2+，《3)一+⋯． (1．2．4)

儆ing
，(1)=‘‘，l(t)毋，6=女l(t净+∥， (1．2．嘲

from eq．(1．2．3)，we obtain

Il，t(t)=h3kl(t)，ul#(t)=一^1c‘，1(t)砖(t)一4h2wl(t)kt(t)， (1．2．5b)

and

Io)=0，j=2，3，⋯． (1．2．5c)
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Thus，the one-soliton solution for the vcKdV equation is

u=掣槲鲁．
Similar to the one-soliton solution，if we take

，(1)=∞l(t)萨t+忱(t)扣，白=磅(t净+伊，u=l，2)

then

，(2)=‘‘，l(t)“，2(t)毋+‘2+A12，

e舢=(鲁特器)2，呲)=h3k,(t)'啪)刊-啪嘲嘞啪荆，

(1．2．6)

(1．2．7a)

(1．2．7b)

D=1，2)，

(1．2．7c)

’

io)=o’j=3，4'⋯． (1．2．硼

Therefom，the“n∞nt∞solution is obtained bom eq．(1．1．1)，where

，=1+‘‘，I(t)毋+屹(t)扣-1-(dI(t)(d2(t)61f!+(2+4”． (1．2．8)

This process can be extended to the three-soliton solution，four-soliton solution and 80 on．

Generally,we obtain

，=∑唧f∑助(岛+1n岣(t))+∑山脚^l】， (1．2．9a)
／B---0，1 jfl l曼j<l

白=㈣z+以如=＼删kj(Z)+-㈣k,(O／2， (1．2．96)

b』(t)=^3b(t)，哟，t(t)=一J11岣(t)霹(t)一4h2。j(t)kj(Z)， (1．2．9c)

wherethe 8mi80btainoV凹allpossible combinstionsof心20，1 O=l，2，⋯，Ⅳ)．

1．3 Exact 80llltions in the Wronskian form

In this section，we show that the bninear equation(1．2．2)has a solution in the fonowing

，=Ⅳ(九，如，⋯，如)=

九鼽
如讹

牵N 8夺N

aⅣ一1加

aⅣ一1也

扩一1毒N
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where the entries幽0=1，2，⋯，N)axe under the following conditions

We observe that

。 碍(t)。咖口2彳奶，
奶，t=一4hl奶,zZZ一4h2九$+xk3咖#，

．厶=IN一-2，ⅣI，k=IN'-2-3，N一1，ⅣJ+1if'2-2，N+11，

厶。=IN一-4，N一2，N一1，NI+2IN7-～3，Ⅳ一1，N+11+IⅣ-：-2，N+21，

．厶。=IN'-：-5，N一3，N一2，N—l，NI+31N一-4，N一2，Ⅳ一l，Ⅳ+1

(1．3．2a)

(1．3．2b)

(1．3．3a)

(1．3．3b)

+2Ij＼厂=3，N,N+11+31N一-3，N—l，N+2i+∽r=2，Ⅳ+3I． (1．3．3c)

From(1．3．2∞，we have

^=一4h1[IN一-4，N一2，N—l，NI—IN一-3，N—l，N 4-11+IN一-2，N+21]

一4k厶+霉^3厶+掣^3，' (1．3．缸)

缸=一4hl(IN一-5，N一3，N一2，N—l，NI—IN一'-3，Ⅳ，Ⅳ+lI+IN一-2，N+34]

一4J12，嚣Ⅲaf．．ffi+hafz+生譬旦砒，
Substitution of(1．3．1)in(1．2．2)gives

(1．3Ab)

Zn，一厶^+^1(厶。，一4厶。厶+3忍)+4^2(正。，一露)一$b(厶。，一露)一^3，厶

=12h1(IN一-3，N一2，N—IlIN一-3，N,N+lI+IN"=3，Ⅳ一2，NIIN一-a，N—l，N+1

一IN—-、3，N—l，NIIN7-、3，N一2，N+11)=0， (1．3．5)

where we have make the use of the fact

唾掣垂掣I旷tI)}lN一-·I=亳3=1掣I厉叫2， na删

N'=II[IN'=-5，N一3，N一2，N—l，ⅣI—IN一-4，Ⅳ一2，N—l，Ⅳ+11+21N一-3，N,N-I-1

一IN一-3，N一1，Ⅳ+纠+IⅣ：2，Ⅳ+31]=【一IN一-a，N一1，NI+IN一-2，N+11]2．(1．3．8b)
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Thus we have complete the verifications．

An explicit form of奶which meets the conditions(1．3．2a)and(1．3．2b)∞be given明

奶=唧(t)e譬+(一1)j一1b(t)e一譬，j=1，2，⋯，Ⅳj (1．3．7口)

?”(t)=一互1_111碍(t)町(t)一2h2岛(t)q(t)， 妨水)=；^1k；(0bAt)+2^2∽)bA班(1．3．76)
Then similar to Rd．[14]，the Wronskian(1．3．1)can be written柏

，：(：)哗韭∑矗q(勺㈤_cIkt(t))唧【i1∑N(勺岛+垒譬生ln町(t)+垒手盘hbAt))】．。
‘=士ll<j<l 。J=l

。 。

(1．3．8)

1．4 BT for the vcKdV equation

In this section，m first derive a bilinear BT of eq．(1．2．1)from the Lax pair

妒h=n—u)识

A=^1锄≯+[xh3—2hi(u1+2^)一4M如一b(Ⅳ一1)庐，

and then find solutions with the help of the obtained bilinear BT．

(1．4．1a)

(1．4．1b)

Through the transformation(1．2·1)and毋=芋，it is not difficult to derive the following
bilinear form

9：g·|=Ⅺf。

Dtg·，+^1(D：+3)d)ffi)g·，一zhsDzg·，+4^2D叠9·，一hs(N一1)g，=o’

(1．4．20)

(1．4．2b)

AⅫsoliton solution corresponds to，=1．Then，substituting，=1 into(1．4．2d)and
(1．4．2b)(N=1)，we have

Let^=华，then

9b=蛔，

m+_Ill(9士螺+3A9k)一zh39ffi+4J129￡=o．

9=m=nl(t)c譬+h(t)c一譬

(1．4．3a)

(1．4．3b)

(1．4．缸)

蠡l，t(t)=^3詹l(t)’。1，l=一互1nl(t)^1七}(t)一2^2n1(t)h(t)，bl,t=；h(t)^1瑶(t)+2kh(t)h(t)，
(1．屯4∞

which is the one soliton solution to the vcKdV equation．
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Ifwe take，。gl，from【1．4．1)(N=2)，We can obtain the two 80litOn solution lbr the vcKdV

equation(1．1．1)where

g=92=c1(Ohl Ct)啦(t)e‘1笋+6l(t)62(t)e华】+c2(t)【口l(t)62(t)e‘1乎+6l(t)n2(t)e：‘^乎】，
(1．4．5a)

cl(t)=h(t)一‰(t)，c2@)=一(≈1(t)+‰(t))，‰t(t)=h3k,C0，

叼一(t)=一；q(t)^l碍(t)一2J12aj(t)b(t)，b，t=互1％(t)^l譬(t)+2_『12b(t)b(t)，j=l，2．(1．4．56)
Similar to the two soliton solution．Taking，=92，from(1．4．1)(Ⅳ=3)，we can obtain

g=靠=c3(0b1(t)口2(t)03(t)e主L±譬垃+6l(t)62(t)63(t)ejc|2盘1

+q(t)扣l(t)眈(t)63(t)eh±穹‘血+61(t)62(t)口3(t)e二生七乒】
+乌(Ohl(t)62(t)03(t)e薹l=譬地+6l(t)。2(t)63(t)ej止P】
+匈(t)阻(t)d2(t)口3(t)e=王砖}4擞+nl(Otn(Ob3(Oe‘L=譬盈】， (1．4肋)

cs(t)=(kl(t)一k(t))(h(t)一b(t))(如(t)一b(t))，

c‘(t)=(h(t)一如(t))(☆l(t)+b(t))(如(t)+b(t))， (1．4．6b)

cs(t)=(％l(t)+k(t))(＆1(t)一b(t))(如O)+b(t))'

岛(t)=(＆1(t)+k(t))(h(t)+J13(t))(如(t)一b(t))， (1．4．6c)

^％(t)=h3k,(O，日忱I(o=一；q(t)_111碍(t)一2h2aj(t)kj(t)，

％^=；吩(t)J11碍(t)+2，126，(t)b(t)，j=l，2，3． (1．4．6d)

Generally,t她，=gN一1，we∞obtain

F=gⅣ=．至。巍。硝均b(t)一肌钟))exp呸1圣N锄白+丝笋ln吩(t)+三≯ln啪))】，F士119<l 。J。l
。 。

(1．4．7a)

b一(t)=J13b(t)，d，一(t)=一；叼(t)^l碍(t)一2h2q(t)巧(t)，吣=互1％(t)_111k；(t)-I-2h2bj(t)岛(t)．
(1．4．7b)

Finally,we obtain the Wronskian form solution for the bilinear BT(1．4．2)．

k

9=IⅣ：1I，，=IN一-2，rI，r=I．．·，o，lIT， (1．4．8)
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where奶satisfies(1．3．2)and西，denote the N-soliton solution and(N一1)-soUton solution of

vcKdV equation，respectively．Substitution of these functions in(1．4．1)and using

掣加(圣N掣2彬叫薯掣，)
=(一IN一-3，N一1，Ⅳl+IjV：2，N+I[)[N-"Z2，fl+lN'=li(1#'=4，N一2，N一1，f J—IN-"：-3，Ⅳ，71)，

(1．4．9a)

掣如H粪掣硝刮篓华，，
=-(IN一4，N一2，N一1，ⅣI+IN一2，Ⅳ+2D JN一2，rf

+IⅣ：2，NI(IN一-4，N一2，N一1，rI—IN一-3，Ⅳ，rl， (1．4．9∞

掣班：c圣N掣舭刊詈掣蹦
=(一IⅣ一3，N一1，Nl+IN一2，Ⅳ+11)(IN一3，N一1，rI

+lⅣ：ll(IⅣ：5，N一3，N一2，N一1，rI—lg'=-3，N+l，fI)， (1．4．9c)

we cmobtain

N—-—3，N一1，NIIN一-2，rI—IN一-2，NIIN'='-3，N—l，rI+IN-'=3，Ⅳ’rIIⅣ：1I=0，(1．4．10a)

6h1(t)(IⅣ：3，N一1，N-I-111N=2，rI+IN一-3，Ⅳ+l，rlIN一-II

—IN一-2，N+llIⅣ：3，N—l，rI—IⅣ：4，N一2，N—l，NIIN一-2，rI

+IN一-2，NIIN一-4，N一2，N—l，fl—lⅣ：4，N一2，N,'rlIN"=11)=0． (1．4．10b)



Chapter 2

The Exact Solutions for a Nonisospectral and Variable-coefficient

KP Equation

The bilinear form for anonisospeetral and vaxiable-coefficient KP equation is obtained and

80me exact sofiton solutions 3xe derived through Hirota method and Wronskian technique．We

also derive the bilinear BRcklund transfonuation fIom its Lax pairs and find solutions with the

help of the obtained bilinear Bicldund transformation．

2．1 Introductinn

Inrecentyears，muchattentionhasbeenpaidOUthestudyofnonlineardifferentialequations

with variable coefficients[1，2,4-6】．c：han，Zheng[4]and chan，Li[5]studied the nonisospectral

and variable-coefficient KdV equation bY the method of B五c&lund transformation and inverse

8∞‘te她In 1992,Chan et吐f6】obtained the n-soliton solutions for anonlsospectral variable-
coemcient KP(vcKP)equation by the dressing method and studied the interactions of two-

soliton solution．

The Hirota methed[10]，B{iddund transformation(BT)[11】and Wronskian technlque[12]are

three efficient direct ways to find soliton solutions for Donlinear equations．Recently,Zheng ct

4L【13J studythesolitonfortheKdVequationwithleesandnon-tmifozmltytermsbynseofHimta

method and Wronskian technique．In this paper,we would like to consider the vcKP equation

through above three methods．The bifinear form of the vcKP equation is given and o*．two-

soIRon solutions a∞obtained through the standard Hirota method．A geneTal formuh which

denotes higher order solutions is also givem In a way similar to the isospeetral equation，from the

Lax pairs we can derive the bilinear BT for the vcKP equation by the variable transformations．

However it is not an auto-BiicUund transformation．We also obtain the solution in Wmnsldan

form．The methods used here can he applied to other nonisospectral soliton equations．

’m paper is organized柚followsn-In Sec．2，we solve the vcKP equation坶the Hirota
method．In S∞．3 solution in Wmnskian form is proven．In Sec．4．the sollton solutions for the

vcKP equation船obtained坶bflineax BT．

2．2 Bifinear form and Hirota method
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●

We consider the generalized variable-coefficient KP equation

tlt 2_『l(“％∞+6uuz+3ff2w鲫)+btuz一女(扰‘∞+2u+2V％)-ablxuv一2abltoy，tq￡=“，(2．2．1)

and its Lax padrs

n九=慨+“曲，

也+A毋+B札+D≯。+刀九。=0

h 2一vh(t)／2a—b2(t)／4，E=-4h，D=zh0)+2v々(t)／a，

B=。奄(t)一6hu，A=一3^％+wbl(0／2—30hw，+D≈一(Ⅳ一1)

u=2(1n，)。，

eq．(2．2．1)啪be transformed into the bilinear 6蛐

h(DD‘，+3舻焉，·，)+h噬，-，一10D：，．f+2Af+2tlDxDuf．，)

一ablxD$Od·，一2abt／J—DzDtf·f=o．

where D is the well-known Hirota bilinear operator·．．

磁1’mqnd·6=池一劫r(岛一勺)”@一剐aa(z，玑啪(一，yt，t，)I一。∥≈．r爿．

We expand，into power series of a small parameter e船

，=1+，(”e+，(2)E2+，(3)E3+⋯．

Substituting(2．2．5)into(2．2．4)and娜ating coefficients of yield

(2．2．2a)

(2．2．2b)

(2．2．2c)

(2．2．聊

(2．2．3)

(2．2．4)

(2．2．5)

h—O⋯)+3a2，(，1’)+h．矗p一|；}(z砖爹+乃1’+2V乃P)一ablxfO)一n61，：1)一，!P：0，(2．2．6∞
2hf～(一2)+3D2船)+撕删一2七(删+∥+硼卜缸6l$搿一撕垆一删

=一h(Z磋ffif(1)·，‘1’+3舻D；，(1)·．，《1’)一61噬，(1)．fO)+詹($理，(1)．fO)

十税1’，(1’+2以B，(1’·，(1’)+曲。巩B，(1)．，(1’+2口h矗1)，(1’+坟Dt，(1)．，(¨，(2．2．6b)



Taking

，(1)=坩10)扣怖，‘l=pl(t)茹一衍(t)”／o+f(0’，卵1=叮1(t)霉+者(t)掣／a+叩P)， (2．2．ra)

from(2．2．6)，we have

pl#(t)=一助l(t)+61者(t)，吼，dt)=一kql(t)一h卉(t)，

"l。t(t)=6l"l(t)洳l(t)+吼(t)】一b2tOl(t；)研(t)+qi(t)1， (2．2．7b)

to)=0，j=2，3，⋯．

So the one-soliton solution for the vcKP equation isu=掣槲丛学
From eq．(2．2．7．8)，we know that at time厶the 0ne sor_Iton achieve its peak value

vp(t)=幽挚业，
On the line，in铆plane，definedb the equation

(2．2．7c)

皤(t)一薪(t)l／ay4-眈(t)+m(t)司+lnwl(t)=0． (2．2．10)

The velocity of the one soliton at time t has the components

％(t)=(晏){一(1n"l(t))／伽l(t)+口1(t)】一b(t)一pl(t)b／n}

嘶(t)=一a(妄){z／b(t)一pl(t)】+(Intt，1(t))／晴B)一衍(t)j}．
Similar to the one-soliton solutiom if we take

，(1)=铆(t)efl怖+忱(t)庐怖，

白=pj(t如一露(t)F／n+妒’，仍=仍(tk+孝(t)掣／口+嘭o)，J=l，2' (2．2．11n)

，∞=”tct№ct，芦怕怖坳“”，∥”=鲁等i蒜港；是导罢器，(2．2．11∞



功#(t)=-kp，(t)+b1霹(t)，毋#(∞=-kq,(O—b1《(t)，

‘吁，(t)=bzw,(t)[pj(t)+劬(t)1一b2wj(t)曰(t)-i-霹(t)】，j=l，2， (2．2．11c)

fu)=0，j=3，4，⋯． (2．2．11d)

Therefore the two-soliton solution is obtained from(2．2．3)here

，=1+"1(t)一1十帆+tll2(t)e妇+啦+t01(t)tI，2Ct)eel+町1+矗+啦+A怯． (2．2．12)

Decomposition of the two soliton solutions and their interactions are studied in detail in m嗣．

This proc∞s can be continued to the three-，four-soliton solutions and SO on．Generally,we

have
N N

，=∑唧【∑f，(岛+嘶+Int吩O))4-∑Ejq如11， (2．2．13d)
e--一-0,1 ，=l 11j<l

白=乃c咖一霹∽咖+妒，嘞=啪净+谚(t)”肛+∥，幽k髂装等器彦轰击{裂．
(2．2．13b)

巧≯(t)=-kpj(t)+6l考(t)’劬，#(t)=-kqAt)一6l霹(t)，

toj,dt)=611吩(t)幻(t)+劬(t)】一62t吩(t)叼(t)+牙(t)】． (2．2．13c)

wherethe 8mistakenover 811possible combinationsofq。0，1 D=1,2，⋯，Ⅳ)．

2．3 Exact 00lution8 in the Wronskian form

Inthepresent section,weshowthatthebilinearequation(2．4)hasasolutioninthefollowing

Wronskian form

，=I矿(≯l，屯，⋯，庐_Ⅳ)=

机a加 ⋯aⅣ一1机

锄a如⋯aⅣ一1如

夺N 8由N⋯8N一1耷N

=10，1，⋯，N一11=iN一-li，(2．3．1)

where the entries锄U=1，2，⋯，NJ enjoy the following conditions

‰=一：惦，
蛳=4^妨，一+警口奶∞+zh奶口一￡k奶，一(Ⅳ一2)6l‰．

We observe that

^=IN一-2，NI，k=IN一-3，N一1，NI+IN一-2，Ⅳ+11，



丘。=IN一-4，N一2，N—l，NI+21N一-3，N—l，N+1I+IN一-2，N+21， (2．3．3b)

‰=IN一-5，N一3，N一2，N一1，NI+31N-：'-4，N一2，N一1，N+11
+2IⅣ：3，N,N+l J+3IN-23，Ⅳ一l，N+2j+IN：-2，N+31． (2．3．3c)

u8ing(2．3．2a)we have theⅣderivative

厶=：(J庐3，N—l，NI—IN一-2，N+II)， (2．3．缸)

．f如=壶(1^仁5，Ⅳ一3，N-2,Ⅳ一1，NI—IN一-3，N一1，Ⅳ+2I
+2IN一-3，N,N+Xl—IN=4，Ⅳ一2，N—l，Ⅳ+11+IN7-、2，N+31)． (2．3．4b)

From(2．3．2b)and(2．3．4)，we have

，t=4h(IN一-4，N一2，Ⅳ一1，Nl—IN一-a，Ⅳ一1，Ⅳ+Xl+IN一-2，Ⅳ+21)

一2ykla(IN一-3，N—l，NI—IN一-2，N+11)一$klN一-2，NI—N(N-I)kiN-：_ii

—zbl(IN一-3，N—l，NI—IN-z_2，N+II)+biNS-2，NI， (2．3．5口)

，缸=4h(1矿'15，N一3，N一2，N—l，NI一协厂=3，Ⅳ，Ⅳ+Xl+IⅣ?=2，Ⅳ+3I)

一2Ⅳk／n(1Ⅳ：4，Ⅳ一2，N一1，NI—IN一-2，Ⅳ+21)一zk(IN一：-3，N—l，ⅣI+IN一-2，N+X1)

一kIⅣ：2，NI—NCN-1),klN一2，Ni—b,(IN"：-3，N—l，NI—pr=2，Ⅳ+lI)

一zh(1Ⅳ：4，Ⅳ一2，N一1，NI—I』V：2，Ⅳ+2I)+6l(p，。=3，N一1，Nl+lff=-2，N+II)，(2．3．5b)

Substitution of(2．3．1)in(2．2．4)give,

2^(k，一4fx．fz。+3危+3妒，坩，一3舻名)+2bl(fz=／一层)
-2fk(f=／一岛一2kfff一4yk({m!一l|i小一ho帆k|一2(Ial一{|i☆

=2^(厶一，-4fzIffi。+3兄+3a2‰，一302名)

一8h(IN'：-5，N一3，N一2，N一1，NI—IN=3，N,N+Xl+IN'：-2，N+31)IN"=11

+8h(1N'：'-4，N一2，N一1，NI—IⅣ：3，N一1，N+11+IN'=2，Ⅳ+21)IN一-2，Ⅳl

=24^(1Ⅳ’=3，Ⅳ一2，Ⅳ一lIIⅣ：3，Ⅳ，Ⅳ+II—IN一-3，N一2，NIIN一-3，N—l，N+Xl

+IN一-3，N一2，N+IlIN一-3，N—l，NI)=0． (2．3．6)
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So the eq．(2．3．1)with(2．3．2)solve(2．2．4)

Let∞define the entries

如=对Aj(0JJ+町马(t)e一嘶，0=1，2，⋯，Ⅳ) (2·3·7n)

山#(t)=一6瑚(t)由(t)一(N-2)blp,(0Aj(t)，马，t(t)=62霹(t)马(t)+(Ⅳ一2)btqj Ct)Bj(t)，
(2．3．7b)

If we take o≯=1 and ni=(一1)j一1，then similar to Ref．[14]，the Wronskiaa(2．3-1)can be

written∞

Ⅳ Ⅳ N N

，=1I【ql(t)一彩(t)1唧【∑(一嘶+ln马(t))】∑a【p【∑勺(菇+豸)+∑勺El山·】，(2·3·sa)
1匀<l j=1 e=o，l j=1 19<l

6=专，+h A，(t)+∑如，(t)+锄(t)】，’‘=’跆一h马(t)+∑【q，(t)一啦(t)】一1+∑【ql(t)一嘶(t)1—1，
’≠‘ j>l ‘”

(2．3．Sb)

So we give anotheT form of solution(2．3．1)．Howevef，the solutions(2．3．8)and(2．2．13)8xe

slightly different for the covering of the N-soliton solution from the transformation(2·2-3)·One

can find that there is time-dependent initial phase in each岛+呓in the solution(2·3·8)，which

is different from(2．2．13)．

2．4 BT for the vcKP equation

In this section,we丘r8t derive a billneax BT of eq．(2．2．1)from the Lax pair(2．2．2a)and

(2．2．2b)，aad then find solutions with the help of the obtained bilinear BT．

Through the trandonnation(2．2．1)and妒2，，it is not difficult to derive the following

bilineax form

口巩g·，=谚9·，’ (2．4．1a)

Dtg．，一Jl(噬+3aIb成)9·，+($h+2可k／a)珑9·f+bzf=g+zkDzg·，一(Ⅳ一1)kgf=o'(2．4．1b)

which is just the BT for the vcKP equation(2．2．1)．

A姗soliton solution CorrespolldB to g 2 1．Then,substituting g。1 into(2．屯10)and
(2A．1b)(N=1)'啪have

—o，t=厶。， (2．4．2a)

一氕一h(一，霉。+3n，卿)+($bl 4-2vk／∞，品+bl厶一∞k厶=0． (2·4·2b)



Its solution can be given by

I=，1=A1(t)efl+B1_(0e～’Il，

where{l，仇axe defined by(2．2．11b)and

A1≯(t)=blpl(t)A1(t)一62p}(t)A10)，岛JO)=一6lql(t)B10)+b2q1Si*)Sl(*)． (2．4．3∞

So one-soliton solution for the vcKP equation(2．2．1)is

u=2(1n^)龆=2Ik(A1(句乒1+Bl(0e一机)】辫=她学业mch2盟业笔幽． 12．4．4)

If we take g 2^，from(2．屯1)，we can not obtain the two s01]ton solution for the vcKP～一
equation(2．2．1)．Taking

9=Alit)eel+BI(t)e-'n，Al，t(力=-b2pSit)A1(t)，毋。t(t)=62衍(”口p， (2．4．51

which is the solution to the equation

t‘t=矗(tk解+6l“b+聍t‘，坤)一知(甜k+2¨+2暑『tIlr)一n61孰～一2ablt吩，t％=“，"=2(hg)嚣，
(2．4．6)

then the solution of(2．2．1)generated by the bginesr BT(2．4．1)(Ⅳ=2)is givea by

I=，2=^1(t№(t№(t)毋掩+h2(t)Bl(0Bz(0e'Ⅶ一懈

+hs(t)Al(t)B2(t)eh一韶+h4(t)A2it)Bl(t)e‘'-'n， (2．4．7a)

^l(t)2pl(t)一p2(t)，_112(t)=砚(t)一q2(O，hs(t)=一bl(O+q2(01，h4(t)=一b0)+叮1(t)】，

山≯(t)=一6鳟口(t)由(t)，马，t(t)=62霹O)易(t)，D=l，2)， (2．屯7∞

and岛，嘞，pat)，锄(力a地(2．2．11b,c)．
Similar to the two soliton solution．If we take the solution of(2．4．6)

g=h,(t)A,(t)A2(t)eIll代2+^2(t)Bl(t)B2(t)e—m—m

+^3(t)Al(t)恳(t)毋叫扫+k(t)也(t)Bl(t)扣一， (2．4．8口)

九t(t)=～62霹(t)匀(t)一6l乃(t)山(t)，BjJ(t)=62霹(t)易(t)+h仍(t)岛(t)，D=l，2)，(2．4．86)
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from(2．4．1)(Ⅳ=3)，wem derive

I=，3=h5(t)Al(t№(t№(t)乒-怕+妇+hs(t)Al(t)A2(t)B3(t)毋均一船

+b(t)Al(t)B2(t)As(t)e6一啦+6+hs(t)B1(t)A2(t)A3(t)e一，，I{电+妇

+l码(t)Bl(t)B2(t)Az(t)e-m一啦+6+hlo{t)Bl(t)A2(t)B3(t)e一．，l+如一啦

+hll(t)A1(t)B2(t)Bs(t)≯一m一。+h12(t)Bl(t)B2(t)Ba(t)e-rtl--。12一韶， (2．4．9a)

hs(t)=陋1(t)一p2(t)】咄(t)一m(t)lIpa(t)一p3(t)】，

‰(t)=瞳l(t)-p2(t)]b(t)+q3(t)]Dni(t)+口3(t)】，

hr(t)=函1(t)+qd0]【p3(t)+q2(t)l[pl(t)一b(t)】，

hs(t)=bit)-ps(0]b(t)+口1(t)1b(t)+口lO)】，

b(t)=晒(t)+ql(0]b(t)+口2(t)1klO)一口20)】，

hlo(t)=b(t)+吼(t)】b(t)+q3(0]胁(t)一q3(t)】，

hli(t)=咖1(t)+驰(t)】{q2(t)一q3(t)]b1(t)+驰(t)】，

h12(t)=kl(t)一q2(t)][ql(t)一q3(0]胁(t)一q3(t)】， (2．4．9b)

^J(t)=一6硝(t)南(t)一blpj(t)Aa(t)，岛，t(t)=62谚(t)马(t)+6l劬(t)岛(t)，0=l，2，3)．
(2．4．9c)

Generally,taking the N一1 soliton solution of the eq．(2．4．61

N-1

9=∑II(2Et一1)【E仍(t)+(勺一1)qj(t)一Efpl(t)一(q一1)口l(t)】
e=O，1 l<jd

N--I

唧{∑b(白+ln山(t))+(勺一1)％一ln岛(t))】h (2．4．iOa)
jfl

where

白=乃(t)$一考(th／口+∥，珊=毋(t净+孝(t)F／a+’】!}时，

巧≯(t)=一l纷(t)+61考(t)，口JJ(t)=一‘呀(t)一h孝(t)，

山，(t)=一6砑(t)山(t)一(Ⅳ一2)h乃(t)山(t)，

岛，t(t)=62霹(t)马(t)+【Ⅳ一2)6lpJ(t)岛(t)'O=l，2，⋯，N一1)， (2．4．10b)

18



we cm get the N-soliton solution expressed by eq．(2．2．3)with

N

，=∑Ⅱ(2q一1)[esPj(t)+(￡j一1)qj(t)一￡fpl(t)一(q一1)位(t)1
e=0，l 19“

Ⅳ

唧{∑b(岛+ln如(t))+(勺一1)(r／j—lnBj(t))】)， (2．4．1la)
j=i

乃，t(t)=一R呀(t)+61考(t)，qj，t(t)=-kqj(O一6l孝(t)，

山，t(t)=一62司(t)如(t)一(N一2)h聊(t)如(t)，

马，t(t)=62霹∽马O)+(Ⅳ一2J61功(f)弓0)'D=l，2t⋯，Ⅳ)． (2．4．11b)

Finally,we obtain the Wronskian form solution for the bilinear BT(2．4．1)．

Let

，；iN一-li，9=IN一-2，fI，r=I⋯，0,11r， (2．4．12)

where奶satisfies(2．3．2)and，，9 denote the N-soliton solution of veKP equation and(N—1)．

soliton solution for the equation(2．4．6)，respectively．Then

9k=IN7-、3，N—l，rl，9xz=IN一-4，N一2，N—l，卅-t-p厂=3，N,rI， (2．4．130)

蛔=IN-：-5，N-3，N-2，Ⅳ一l，fI+2p厂：4．Ⅳ一2，Ⅳ’rl+IN一-3，N+I，rl， (2．4．13b)

如=I(IN'：-4,N一2，N—l，rI—IN'：-3，Ⅳ，r1)， (2．4．13c)

跏=：(1庐5，N一3，N一2，Ⅳ一1，r|_lⅣ：3，N+I，rI)， (2．4．13d)

鲰=4h(IN一-5，Ⅳ一3，N一2，N—l，fI—IN一-4，N一2，Ⅳ，rI-I-IN一-3，Ⅳ+1，rI)

一笔k(IN=4,N一2，N—l，fI—IⅣ：3，Ⅳ'r1)一。t,IN'-：'-3，N—l，rI
(Ⅳ一1)(Ⅳ一2)
2

●

klN一-2，rl—zb,(1N：-4，N一2，N—l，叫一IⅣ"-s-s，Ⅳ’卅)， (2．4．13e)

Substitution(2．3．3-5)and(2．4．13)in(2．4．1)舀嘲

21N一-2，NIIN一-3，N一1，rI一2IN'-=lllN。'23，Ⅳ’叫一21N一-2，fIIJV：3，N一1，Ni=0，(2．4．14)

6h(IN一-2，NIIN"='-4,．V一2，N一1，rf—IN’-、IIIN7-、4,N一2，Ⅳ，rI

—IⅣ：2，r¨Ⅳ：4，Ⅳ一2，Ⅳ一l，NI)+6^(IⅣ：1IIⅣ：3，Ⅳ+1，rI

+IⅣ一2，din一3，N—l，Ⅳ+1l—IⅣ一3，N—l，fIIⅣ一2，N-I-11)=0， (2．4．15)

Thus删每i丑g that the B缸kl,md equation(2．4．1)a弛indeed satiefied．



Chapter 3

Darboux and Biicklund Transformations for the Nonisospectral

KP Equation

Darbonx transformation and Backlund transformation in bilinear form for the nonlsospectral

KP equation axe first investigated．Corresponding solutions are derived by nsiog the Backinnd

transformation in bifinear form．It hasbeen shown that these transformations are auto-Biicklund

transformations for isospectral problems while not for noniscspectral one8．

3．1 Introduction．

It is a powerful practice to utilize the id％of Backl∞d transformation(BT)[11l and Darboux

transformation(DT)[15]in constructing solutions for nonline&r evolution equations．Recently

in the past decade．a unified explicit form 0f Bicklund transformation can be obtained for

目蛐isnspectrsl equations，such a8 KdV，mKdV and l(P equations[11，15-17]．These integrable
equations with constant coefficients is regarded to be highly idealized in the physical situation．

However，equations with variable coefficients and nonisnspectral eigonparameters may provide

more realistic models，in the propagation 0f(small-amplitude)mr白伪waves in straits or large

channels of(slowly)va珥hlg depth and width and nonvanishlng vorticity【1】．Therefore，recemly

there has been much interest in studying the nonisnspectral and variable coefficients generaliza-

tions of completely integrable nonlinear evolution equations【1-6，9，18，19】．
In this paper，N-time8 DT for the nonisnspectral KP equation is first constructed．And

then from the Lax pair of nonis∞pectral KP equation．a BT in bilinear form啪be derived．
Moreover，some exact solutions are obtained with the help of bilinear BT．It is worthwhile to

mention that DT and bilinear BT are auto-Bftcldund transformations for the isnspectral KP

equation,but this dose not true for the n衄Ii||0Bp∞tral KP equation．As a matter of fact，they

transform one nonisnspectrsl KP equation to another．

Thestructureofthispaperj80rganized柚follows．In section2．N-tlmesrepeatedDTforthe

nonisoepectral KP equation is derived．In section 3．BT in bilinear form of the nonlsnspectra]

l(P equation is constructed．Moreover,corresponding soHton solutions珊investigated by using
the bilinear BT and Wronskian technique．

3．2 Darbomt transformation for the nonisospectral KP equation



The KP equation reads

(妣+6嘶+“删k+3t锄=o'

and Lax representation for(3．2．1)is

九=咖“+t‘也

4也=A(“)≯，

(3．2．1)

(3．2．2a)

(3．2．2b)

A(¨)=一4a3一钆a一3‰+扩1坳)，a=瓦0，扩1=￡． (3．2．3)

Assumethatt‘bethe solutionofKPequation(3．2．1)anddenotethefixed solutionof(3．2．2)

by也·ThenDTisdefinedby[15]
．

≯【1】-如一鲁氟 (3．2．4口)

,41】=“+2a2In机． (3．2．4的

It js known that equations(3．2．2)axe covariant with respect to the action of lyr(3．2．4)．

≯【1】，u[1】satmfy

如f1】=≯hfl】+u【l】咖11】，

4纯【1】=A似【1】)咖【l】

namely

(3．2．5d)

(3．2．删

and u【11 satislies KP equation(3．2．1)．Equation(3．2．2∞，(3．2．缸)and(3．2．56)imply that

铘】-4‰一鲁弛=(舭)似一(型茅)加等m)咖=蛳【l】)删． (3．2．6)

Thus the covariance of(3．2．2)with respect to the action of DT(3．2．4)leads to the following

lemma．

Lemma 2．1：ifⅡis the solution of KP equation(3．2．1)and加is a solution of(3．2．2)and lyr

is given by(3．2．4)，then the formula(3．2．6)holds．

Bused On the DT(3．2．4)缸KP equation(3．2．1)．Now we construct DT for nonisuspectral

KP equation．

ConsideT the nmlj80sp。ct珀1 KP equation[20]

4铆+F(Ⅱ龆*+6tnb+3扩11切)+2$～+4扩1蜥=0， (3．2．7)



anditsLax pair

where

屯=也*+u妒，

4也=口A(t‘)毋+2B(缸)≯+G∞)虫

B(u)=一2(萨+“)，c(∞=一2a—a-1u．

(3．2．8d)

(3．2．8b)

(3．2．9)

Theorem 2．1：A∞ume that“be the solution of nonlsospectral KP equation(3．2．7)and如

satisfies(3．2．8)，then the Darboux transformation is defined by

纠11=如一等咖 (3．2．1弛)

u【l】="+2护hA， (3．2．10b)

and DT(3．2．10)tran面orm Lax representation(3．2．8)into the Lax representation a8 follows

如【11=qbzz[11-I-Ⅱ【1】咖【11， (3．2．1la)

4也【1】=l，A(t‘【l】)≯[1l+z口(u【l】)曲【l】+G(“【1】)妒【1】一2如【1】， (3．2．11b)

and“【l】satisfies nonisospectral KP equation

4t‘t【11+弘(t‘船。【11+6u【1】u。【1】+3arlt‘聊【l】)-I-2xu口[1]+4a一1u，【11+2u。【l】=o． (3．2．12)

Proof：It is easy to find that(3．2．1la)hold．To prove(3．2．1lb)，w need to show the following

equality：

铴【l】=4‰一警妨t
= (¨(Ⅱ)≯+善B(u)毋+G(t‘)纠。一(堑型生虫±型誓血堕±!她k咖
一鲁(¨扣)妒+妇(u)妒+G(u)纠
=v【【^(")妨。一(墨％謦)。妒一鲁A扣)纠 (3·2·13)

+z【(口(u)纠。一(』o碧虹)。毋一警口(u)纠
+B(u)≯一!o碧丝咖+(c(“)纠。一(14碧照k毋一％≠(D(“)咖)

=yA(u【1】)咖【1】+柏(u【1】)≯【11-b C(Ⅱ【l】)咖f11—2机【1】．



Lemma2．1 implies the coefficient of口hold．Therefore we only need to check the equality：

(靴)佻一(星学)扩等踯)≯：口(叩De[1】'(3．2．14a)

脚)≯一旦学州G(蛳)；一(里学)护等G(嘶叫u【1】)雄】-2钟】．
Using(3．2．10a)，we have

B(“【1】)纠l】=一2(铲+“f1】)(拓一等妨

．2(一‰+鲁妒一訾≯+鲁‰一u屯+u鲁纠，
and the left terms in f3．2．a4a)

=(-2‰地啦一(型铲)加警(一2‰一她纠
一z‰地九+z鲁妒+。鲁k+z等砷一：学咖

(3．2．14b)

(3．2．15)

(3．2．16)

Comparing(3．2．15)with(3．2．16)，it is immediately found that equality(3．2．14a)hold．

In the sillli】ar way,"cm find that(3．2．14b)held．Equations(3．2．11)lead to(3．2．12)．This

completes the proof．

Let咖，屯，⋯，如be solutions of(3．2．8)．We define the WronskianW of女functions九，妇，

⋯，机b甲

Ⅳ(也，⋯，九)=诎(A)，如=茄咖，1s毛j≤七． (3．2．17)

u,ingⅡ【i】，≯嘲and如同to denote the action of／-times repeated DT(3．2．10)On the initial

solutions¨，曲，奶．We have

奶灌【il=妨，一【司+u嘲九【i】， (3．2．18a)

4如^旧=yA扣嘲)奶嗣+zB“问)奶嗣+c扣【i】)九【f】一2i≯抽问． (3．2．18b)

Lemma 2．2：For arbitrarytntegraJl，女(1≤J≤n一1，1S％≤l一1)，wehave

Ⅳ(咖+t明，⋯，咖+羽)=旦』垒堡二型生堕号％三等f二删，(3．za9)
Ⅳ(嘲+-【玎，⋯，咖¨【叮'妒叻=!鱼坐二卫生丝旦弓岩三哥垒丛坠：!上兰坚二旦． (3．2．∞)



Proof：According to(3．2．1弛)，we have

嘲+-明=咖“，口一-】一宅亲笔寻幽“口一·】， (3．2．21)

茄删=矿OJ-1(‰【j-l卜黼帆¨1)
；筹‰㈣一薹嘶誓糟)o_¨锹【f-1】

=aqj+l一∑c磐1boa一^啦，^+1

=ohj+l一(60J啦，l+c：1．160J—ldI，2+⋯+cJl"⋯-2k．，zaej一1+boa叼)， (3．2．22)

where bo，m=(％崔寻)(m)，口I一=护dn-i咖+。p-a]，m=l，⋯，j，n=1，⋯，j+l，then
-矿(毋件l明，⋯，也+★问)=

#11．2—60。lal．1 m鼻一(bo，2al。t+bo,lal，2)⋯al，^+t一(bo．kal。1+罐一lb，·一IdI丑+···+b。1GI，^)

d2t2一bo．1a2，l a2,S一(bo：o崆．1+60，la2，2)⋯42’蚪1一(60，In2．1+砚一160^一id2二+⋯+60，la2，·)

毗二一60．10,k。1毗J一(bo,2att．1+b．1口k,2)⋯oI，k+l二(b，·啦，I+砚一lbo，七一Iak,2+⋯+bo，lak，·)

口I．2

O．2,2

●●●

口★12

口Io

n20

●●-

4^．3

m．k+t

啦．t+t
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a2A+t

akA+l

+马射．1

a1，1

a2,1

-●●

ak,1

口10

口20

●●●

ak,2

口lj

d2j

ak,k

=业幽岂错}产绁业'(3223)

¨¨

¨

m

毗

“

^

^

．

^

以啦

～

‰

盘

盘

．

盘

m啦

一

％

d

d

．

d

m屯

一

如●●●●●●t1●●●l

瓯+

●，●●1r●●I●，●，1r●●I



where B1J=(一1)j一1蠕宁U_-2，⋯，＆+1)．
Similaxly,the formula(3．2．20)can be proved．This completes the proof．

Theorem2．2：Assumethat“isthesolutionofnonisospectralKPequation(3．2．7)，毋l，也，⋯，≯Ⅳ

are the solutions of(3．2．8)，then N-times repeated DT(3．2．10)is given如≯M；蹴渊，
“M=t‘+2a2hw(≯l，如，⋯，如)，

and“【fq，毋【川satisfy

姒卅=锄啪+uM≯姗，

鳓M=yA(uM)咖∽+￡B(t‘M)纠明+c∞M)妒堋一2N咖x[N]，

and

(3．2．24)

(3．2．25)

(3．2．26口)

(3．2．26b)

妣M+v(t‰$M+6t‘mu霉吲+30—1u．n旧)+缸嘶IN]+4扩1嘶IN]+2Nuz[N]=o．(3．2．27)

Proof：Using【3．2．10)，(3．2．19)and【3．2·20)

币m=妒【Ⅳ一l】一铡篇咖【Ⅳ-l】=华糕掣=堕糍黑1IN筹篇岛逊一．．一粥锱． (3．z．28)
Ⅳ(如一 一21'如【Ⅳ一2】) Ⅳ帆，九，⋯，如)’ ⋯⋯～7

“m=”【Ⅳ一1】+2a2ln庐ⅣIN—11

=u【Ⅳ一2】+2扎虮IN一2】+2扎监絮蔷竽趔
=叫Ⅳ一21+202hW(qbN—lIN一2】，如【Ⅳ一21)=⋯=u+2021nW(加，忱，⋯，如)．(3．2．29)

It is easy to find(3．2．26)from the proposition 2．1．

For emp]e，in ordeT to find one-soliton slution for the nonisospectral KP equation(3．2．12)，
we start from the solution q=0 for nonis∞pectral KP equation(3．2．7)．The solution for(3．2．8)

qbl=1+wx(t)ekt(tM抑，kl,t(t)=一嘴(t)，‘‘，lJ(t)=一；‘‘，l(t)h(t)． (3．2．‰)

Then from(3．2．10砷w find that

u【l】：2a2In(1+wx(t)毋(咖卧^}(t)什印’)，

25

(3．2．31)



which j8 one-soliton solution for the uonisospetral KP equation(3．2．12)

3．3 Billnear B苴cklund transformation for the nonisospectral KP equation

In this section，we first derive a BT in billnesr form of(3．2．7)from the Lax pair(3．2．8)

Through the transformation

u=2(hif)。，曲=了g，
J

it is not difficult to derive the bilinear form as follows

Dvg·／；D：g·f，

4D￡g·，+口(珑g·，+3DzDvg·，)+2zD：F·，+2，鼬=0．

Substituting g=1 into(3．3．知)and(3．3．2b)，we have

—k=|n，

一4，t+”(一厶一+3厶p)+2z厶z=0，

then

’·”
，=^=毋+c叫Il，

fl=虹(t)z—k}(t)F+f(o)，，n=一ql(t)z一者(力F+罐∞，11．t(t)=i1—2l(t)，口1，f(t)=

女1(t)=西2i，q1(t)=石2i．
Thus we cⅫderive one-soliton solution for the nonisospectral KP equation

(3．3．1)

(3．3．2a)

(3．3．2b)

(3．3．3n)

(3．3．3b)

(3．3．缸)

一弘1 2(t)，
(3．3．4∞

(3．3．4c)

u=2陋(毋+e-啦)k． (3．3．5)

If we take g 2，1，we m not obtain the two-soliton solution for the nonisospectrai KP

equation(3．2．7)．协蛐唱

g=口l(t)一1+h(t)e一啦， (3．3．6n)

nl(t)2南，6l(。)2南， (3’3。卿

which is the solution to the equation

锄+甜(‰+6t‘tk+3扩1t‘押)+2a嘶+4扩1嘶"1"2uz=0，u=2(1099)==， (3．3．”



then the solution generated by the bilineax BT(3．3．2)is阳bY
，=，2=cl(t)扣{电+ea(t}e一’Il一啦+c3(t)∥‘—啦+c4(t)e一．Il+妇， (3．3．8a)

c1(t)=陋10)一‰O)】，c2(t)=b(t)一q2(t)1，

c3(t)=一降l(t)+啦(t)】，c4(t)=一【如(t)+口l(t)】， (3．3．8砷

6=kl(t)z一≈}(t)Ⅳ+{(o’，目1=一q1(t)z一衍(t)”+q(o)，

kc(t)=；砰(t)，硒“t)=；碹(t)’口1“。=一；卉(t)，q2,t(t)=一；建(巩 (3．3．8c)

啦。)=≤裔，k(t)=≤茜． (a．3．8d)

Similar to two-soliton solution,three-soliton solution can be derived．

Taking the solution of(3．3．7)

9=c1(00l【t)d2(t)毋+6+c2(t)bl(力k(幻e-哪—忸

+es(t)al(t)62(t)毋叫氍+c40)61(t)82(t)e一吼+如， (3．3．9a)

白=向(亡净一碍(t)|r+g∞，彩=一彩(t)霉一孝(th+锣’，

雠)=一知)，础)=孙)，删=(南)2，∽)=(高)2'u=l’2)，(3．a9b)
from(3．3．2)，weⅢderive

，=，3c5(t)01(t)02(t)啦(t)毋+乜+缸+弼(t)ol(t)啦(t)b(t)尊+如-稻

+研(咖1(t)62(t)03(t)毋呻怕+傀(t)h(tk(t)幻(t)e一叩1均伯

+匈(t)6l(t)62(t)03(t)e。哪。’啦+妇+clo(t)h(t)n2(t)63(t)e一仉+b—1格

+cll(t)n1(t)62(t)63(t)毋—班—班+c12(t)h(t)k(t)63(t)e—唧1一搬哺， (3．3．10a)

岛(t)=【h(力一k(t)】№(t)一女3(t)】陋l(t)一b(t)】，

cB(t)=陬(t)一勉(t)】陬(t)+弛(t)】降l(t)+弼(t)l，

。7(t)=僻1(t)+口2(t)1【b(t)+q2(t)】【＆1(t)一b(t)1，

cB(t)=陬(t)一蚝(t)】【幻(t)+口1(t)】陆(力+吼(t)】，

c9(t)=陋3(t)+91(t)】畸(t)+口2(t)】【91(t)一q2(t)】，
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ClO(t)=[k2(t)+ql(t)][k2(t)+q3(t)][q1(t)一裆(t)】，

c11(t)=限10)+啦(t)1‰(t)一驰(t)】碑I(t)+船(t)】，

c12(t)=[ql(”一q2(t)】【q1(t)一q3(t)I(q2(t)一驰(t)】， (3．3．10b)

6=b(tⅫ一碍(t)V+毋’，t)3⋯q3(0z蠢(t)Ⅳ+拶)，
k3,t(t)=；磕∞，％(t)=一》∞，d3(t)=(南)2’b3(t)=‘丽2)2． (3f3．1哟

Generally,take the solution of(3．3．7)

g=∑Ⅱ(2q一1)[qkj(t)-I-(勺一1)毋0)一cl向0)一(q—1)鲰(t)1

唧{∑白(白+h吩(t))+(勺一1)(聊一b吩(t))】)， (3．3．11a)

here

白=k#Ct)x一譬(th+∥，嘶=一劬(t净一孝(t)∥+面∞， (3．3．1lb)

啪，=知，删=一狲删=(南)肛1删=(南)肛1朋．s．t-。
we can酣

，=，Ⅳ=∑Ⅱ(2tl一1)bb(t)4-(cj一1)劬O)一Etkt(t)一(q—Z)qdt)]

呻{∑【勺(白+1nⅡJ(t))+(勺一1)(仍一ln6，(t))】)， (3．3．12a)

f^r=kN(t)z一碣；(th+专妒，叩Ⅳ=一口Ⅳ(t)$一衣(t)F+叼霉’， (3．3．12b)

酬t)_知胁“t)=一知(t)’删=(南)肛1’6Ⅳ(t)-(赤)肛1．
(3．3．12c)

Finally,we obtl血the solution in Wronskian form for bilinear BT(3．3．2)．

，=Ⅳ(咖，如，⋯，如)=

机鼽⋯oN一1籼
也 a屯 ⋯aⅣ一1咖

母N 8夺N⋯8N一1牵N
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=IO，1，⋯，N一11="，：ll，(3．3．13口)



g=IN一-2，rl，f=}0，⋯，0，11T， (3．3．13b)

where九satisfies

奶，l，：一奶Ⅳ，奶#：一Ⅳ奶≯。+；z奶∞一；(Ⅳ一1)也∥ (3．3．14a，b)奶，l，=一奶Ⅳ，奶#=一Ⅳ奶≯“+言z奶∞一言(Ⅳ一1)也∥ (． ，)

From(3．3．14b)，we have

吼=一F(IN—-、5，N一3，N一2，N一1，fl—IN一-4，N一2，Ⅳ，fI+∽厂：3，N+1，rI)

一扣庐47Ⅳ屯Ⅳ-1，卅互1。IN一-3，Ⅳ，rI一；l肛3，N-l'rI， (3肌5)

，t=一y(IN"'2"-4，N一2，N—l，NI—IN—-、3，N一1，N+11+IN"="-2，N+2I)

一知IN=-3，N—l，NI+；z∽，‘=2，Ⅳ+11． (3．3．16)

Then it j8 easy to prove that(3．3，13)with(3．3．14)solve(3．3．2)in the way similar to the Ref．[12]．

Define the entries

咖=aj(t)ecJ+6j(t)e嘞，白=磅(t净一碍(t)F+芒_；o)，仍=一口j(t)z一露(t)口+前田，(3．3．17a)

删=抑伸c忙跏瑚，=(南)¨删=(南)肛1一矗t，酌
Similar to Re￡【14】，the Wronskian(3．3．13a)can be written∞

，=(一1)掣∑ⅡN(2el--1)bb(t)+(q—1)劬(t)一q断(t)一(q—1)毋(t)】
e=O，1 1生，<l

N

exp{∑【勺(白+ln吩(t))+(￡J一1)(珊一6』0))】)． (3．3．18)
j=1

which is the蛐e to(3．3．12)．



Chapter 4

The Multisoliton Solutions of the mKP Equation with Self-consistent
Sources

The mKP equation with self-consistent sollrce8 is derived through the linear problem of the

mKPsystem．ThebilinearformofthemKP eqtmtionwith self-consistent 80llrcesiBgivenandthe

N-soliton solutions are obtained through Hirota method and Wronskian technique respectively．

The coincidence of these solutions is shown by direct computation．

4．1 Introduction

The study of the soften equations with self-consistent source8(SESCS)have received COIl-

siderable attention in recent years．The rea80n may he that these equations can model many

phy日icai interestingpm and also result many mathematical interesthg treatmente[21—36】．
The SESCS canbe constructed through 80me mathematical ways[24-29]．One ofsimple method8

isu8iDgthehlgh-orderconstrainedflowsofsolitonequations，naⅡlely,thehigh-orderconstrained

flows ofsoliton equntions are considered∞the stationary equations ofthe SESCS[27-29]．Most of

the source8 obtained in this way are all related to eigenfunctions becauBe the variational deriva-

tives of eigonvdnss a舶related to eigenfunctions． Some studies have also shown the SESCS

exhibit multisoliton sohitions[27]，f30．36】．With the help of some special treatments，the inverse

scattering method and Darheux transformation have been snece鹊fully used to find N-soliton

solutions of the SESCS such a8 the KdV．KP and mKP equations with self-consistent sources．

It will be shown from the solutions that the 80urce8 may result the variation of the velocity of

s01itons[253，【37】．

One of the purposes of this paper is to derive the hierarchy of the mKP equation with

self-consistent柏哪嘲in the way which j8 directly based on the eigenfunctions of l烈mrsion
operator．Thj8 method．di珏ereot slightly fmm the one using constraInt nⅢ，is easy to give the
Lax representations of the hierarchy．We have found that目Dlne other hierarchies of the SESCS，

such∞the l(P equation with self-consistent seta'嘲[14]，啪be also曲_tained in this坝眼On
the other hand．聊also hope to find the multi-soliton solutions of the mlaP equation with

soft-consistent 80urom(mKPESCS)through Hirom methed[10]and Wronskian technique[38-

411．These two direct methods both depend on the bllinear forms of the evolution equations．

Hjrota method provides a remarkably simpler technique for obtaining the N-soliton solutions



in the form of an Nth-order polynomiai in N exponentials．Ⅵko刀幽aⅡtechnique provides an

alternative formulation of the N-soliton solutions，in terms of some function of the Wronski

detmrmlnant of N functions，which allows verification of the solutions by direct substitution

because differentiation of a Wrouskian is easy and its derivatives take similar compact forms．

The basic thoughts ofour obtaining the exact N-sollton solutions axe a8 follows．We first present

a set of dependent variable transformations to write out the bilinear form of the mKPESCS by

which we c&n derive one-，two-，even three-soliton solutions successively through the standard

Hirota’Sapproach，TheseresultscaⅡhelpll8tofindoutthetimeevolutioneasilyand conjecturea

general formula which denotes N-soliton solution but is only conjectured and not verified．Next，

with the help of the message on the time evolution obtained by mea∞of Hirota method．m can

construct a Wronskian and try to verify it to satisfy the related bilinear equations．Since there is

a nonlinear term(1ed to by the concerned sours)in the time evolution，骶have to develop soine

novel determinantal identities and employ some special treatments which afro different from the

known standard Wronskian technique[38-41】so that we can finish the Wronskian verifications．

Finally,Wepresentaprocesstoshowthatthesolutionsofthebilinearequationsobtainedthrough

the above two direct methods axe the 8ame for recovering the solutions of mKPESCS from the

original dependent variable transformations．In other words，these two kinds of solutions are

ullifom To our knowledge．it is the first time to obtain the mKPESCS and solve it by Hirota

method and Wronskian technique．

We棚T姐ge the paper as follows．We first derive the hierarchy ofofthe mKPESCS in Sec．2．

Then we solve the mKPESCS by mea珊of Hirota method and Wronskian technique in Sec．3

and 4 respectively．At last，in Sec．5 we show the-nlformity of the results in Sec．3 and 4．

4．2 The mKP equation with self-consistent sottrces

Consider the spectral problem and蛔adjoInt Mmciated with the mKP equation

％=垂％+2“圣$，

‰=一雪％+2u面／p

Suppose that the time evolution of the e咖nfuI】cti佃垂is given by

西t=A圣

(4．2．1)

(4．2．2)

(4．2．3)



where A is a operator function of dand a-1(a=鑫and 0-1a=aa一1=1)．The compatibility
of(4．2．1)and(4．2．3)requim that A satisfy

Nowwetake

2uta-如+酽+2．8，卅；0， (4．2．4)

2铆a=如一A一一2如a一2uAx一2【u，A]O

A=。oa3+ola2+a20+口(圣霍一,I'0-1虫￡)，

(4．2．5)

(4．2．6)

where aj(j=0，1，2)狮undetermined functions of"and its derbratives，and a is姐arbitrary
constant．Substituting(4．2．6)into(4．2．5)and equating coefllcients p∞m of最we obtain

2啦=n2灌一口2脚一2ua2,z+2aou删=+2atuffiz+2口2牡z一20(西mkt

01擅一口1，g$一‰声一2纰l声+600tl材+4alUz=0，

咖谢一no，搿一乩1芦一2uao'霉+6知‰2 0，

a0,z=0．

From(4．2．8)一(4．2．10)，we work out in坞弘lⅪorder that

(4．2．7)

(4．2．8)

(4．2．9)

(4．2．10)

a02-4,812—1‰，a2=一6扩1‘啼一6蚝一群． (4．2．11)

Substituting(4．2．11)into(4．2．7)and setting口=-1，we obtain

撕+‰掰+3a-1t锄一6铲1‘l+6(a-1～)％一(垂皿k=0． (4．2．12)

This equation together with spetral problems他2．1)and(4．2．2)constitutes the mKP equation

with a self-consistent Bour∞．瑾ta越ng口=0．髓啪d．咖e the mKP equation

他+‰+3扩1t切一吼‘2t‘120． (4．2．13)

Obviously,the mKP equation withN self-conslstent JOUIm c∞be defined in a shnnar way,
which is expressed柏

Ⅳ

t‘I+“m+3扩1t锄一6铲锄+6(旷1嘶)‰一∑(奶勘k=0， (4．2．14)
j=l



嘶，，=句口+2t‘西椭

圣3褂=一圣j芦+2u圣i芦

(4．2．15)

(4．2．16)

ⅣA⋯403 12u02一(6a一1嘶+6us+6u2)0-∑(奶吗一吻扩1畅’霉)． (4．2．17)
J=i

4．3 Billnear form and Hirota method

Inthefollowing，we shajlgivethe soliton solutionofthemKPESCSbyuseofHisotamethod．

With the help of the dependent variable transformations

“=(1n导J)。，吻=≥，％=孑， (4．3．1)
Ⅳ J

the mKPESCS(4．2．14)一(4．2．16)cn be transformed into the bilinear forms

噬g·，一巩9·，=0， (4．3．2)

Ⅳ

Dtg·，+D：g·，+3D,Dyg·，=∑b々， (4．3．3)
j=l

D口k·}一D孙i·l=0，

D口8i·g+略j·9=01
where D is the well-known Hirota billnear operator

珑!岣m地no·b=限一∞)‘(岛一如)“(魂一西)“口扣，“0b(z'，以矿)I一。∥砷，lr=l

Expanding／，9 and～，sj拍the series

，=1+—动孑+lC4)e4+，(6)E6+．-．，

9=1+9(2)E2+9(4)E4+⋯，

～ffih；1)e+谬’一+⋯，

彤；毋’e+妒c3+，一．

Substituting“．3．6)一(4．3．9)into(4．3．2)一(4．3．5)and equating coefficients or e yield

穗一好+|鎏+|≯ffi0,
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(4．3．4)

(4．3．5)

(4．3．6)

(4．3．7)

(4．3．8)

(4．3．9)

池3．10)



建2一孝’+露璺+矗4)+珑9(2)·，(2)一Dvg(2)·，(2)=o， (4．3．11)

Ⅳ

9f2)+观+蚓一矗21一艘+3脚=∑巧’班 (4．3．12)
j=z

垂4’-F⋯a(4)．+3～a(4)一，fq一以盆+3，』4)+Dtg(2)·，(2’+D29(2)·，(2)

ForN=1，let

Ⅳ

+3如Bg(2)·，(2)=∑(码1’sP’+谬’毋’)，
J=l

螂一^；生=0，

础一啦+岛碍1’·，(2)一噬砖¨·，(2)=o，

捌+‘尝=o，

甥+如+巩毋’·严)+磋母’·．fC2)=o'

^(1)=一缸瓦瓣·， 6=?tz+k12”“3。t—r晟扛№+f”
3(1’=而西丽而-em，”1----qlz--q12”一493t一／o‘风(批：+世’．

By solving(4．3，lo)-(4．3．17)，we have

，(2)害6l毋+小，bl罩一口l，

∥=al扣怖，口l=向，

^≯)=0，。})=o，l=3，5，⋯，

，(m)=o，∥’呻；0，m=4，6，⋯，

therefore the one-soIit锄a solution is gim b

u=DJl高筹k

(4．3．13)

(4．3．14)

(4．3．15)

(4．3．16)

(4．3．17)

(4．3，18)

(4．3．19)

他3．20)

(4．3．21)

(4．3．22)

(4．3．23)

(4．3．24)



圣。=—-—d—2r(k干li+≯q1)131(t)eh，皿t=—V／竺2雩(k亏l警+q1)卢l(t)ern．
ForN=2，ifwetake

磅’=一∥昂了i历百两毋，岛=幻z+kj2y-4砖t一／o‘岛(z)如+∥，

《1’=、／ii干i瓣，tlj=q3x-咖一4霹t一／o。岛(z)出+∥’，j=1，2．
From(4．3．10)一(4．3．17)it can be worked out that

，(2)=61毋{饥+幻e缸+’揸，b‘=一仉．

g(2)=8l毋+小+a2eq24"恤，oJ=b，nP=一雁丽端毋+妇怖柑，∥=一面丽端毋“一，
aP=止两i丽鲁焉一伯慨撕，一≯=何丽t面(q2仙--q1))。柏怖，

．，(4)=blb2eel+m+缸+m+知，

∥=al口2亭I+仇怕+铂+^15，

eAl2 2 111=!!丛坐=塑!
(h+q2)(‰+qx)’

砖’=0，s；l’=0，J=1，2，I=3，5，

，㈣=0，g(m)=0，m=6，8，⋯．

So the two-soliton solution is

，1+a1毋伽+d2扣+幄+dl眈毋怖怕+椎+A12，
u 2【T再墨而再五孬丽干币器雨再葫而J。’

圣l=一J—2(k,+q—1)卢l(t)e0
奶=一妇西丽如

(4．3．25)

(4．3．26)

(4．3．27)

(4．3．28)

(4．3．29)

(4．3．30)

(4．3．31)

“．3．39)

， 他3．40)

， (4．3．41)
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3

3

3

3
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3

3

3

3

4

4

4

4

4

4

4



吣腼一t丽未裂群篡‰奶=伍葡丽丽丽菇爨羔‰
a皿1u甜'lot』V=a让屺three∞nton solution can be derived．where

g=1+aleel+m+aee缸+m+n3毋+铂+01n2毋机怡怖+A1，

+alasefl+’，l+妇+啦+A13+02幻e钰卜’扭+妇+啦+A13

+0182d3eh+帆+‘2+啦+妇+僻+^t2+^13+^∞．

，=1+61—1斗印+62扣+啦+be缸斗啊+blk≠1+，，l+缸+啦+A”

+矗163毋怖+妇+'珏+^l。+6263毋怕+妇+僻十^13

+616263毋怖均怖+o+诒+^2。¨13¨砑．

毋=堕(kj+二堕q1)监(kt-型I-_5#)q1)(kl，O<㈨=1，2，3)．。 ，、．，、’，J，⋯，‘，oJ‘

_I}-。一痧丽【62扣制。丽(k2--面‘1)+b扣+铂撕两(ks葡-k1)
+如b扣+'12+白+．】3十加【(自k2l+-啦kl№)(ks+-弼)』，k!!l

k#一∥面i历酉秘胁扣怖惫{等+b扣怖蛳面(k3瓦--k2r)
帕-b扣+m+矗+啦撕“”{鲁宅碧}笔÷等Lhs=-厕丽p-舢丽(k3--k1)+b扣+啦雨(ks-k2)
+61b毋机怕+啦十A”、(。ks．-Yhl¨)(叼ks，-啦h，)]，

．s·2∥两i而蟊砂胁扣+啦+打石(q2雨--q酉1)+b扣+啦栅面((／3i--q酉1)

+kb毋怖+矗+礴¨”訾}爵{芸亍等，，
+西3毋怖+捃((q2qs+-bq2_))

+6163ea怖地怖+¨^13i(啦q2，--。qllJ)L(啦qs t-Bq2J)]，
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(4．3．42)

(4．3．43)

“．3．45)

(4．3．46)

(4．3．47)



where

一何鬲丽渺161毋+m丽(q3-葡q1)+幻抄渊
+h62毋怖+缸怖+^12瓦(qs+-训q1)(口3q3+-秽q2)I (4彻)

Generally,we have

白=b。+砖耖一4碍t—r岛(z)出+酽，
协=毋z一咖一4孛一Z‘岛(枇+妒，
唧=巧，b=一日)，J=1，2，3．

g=∑∞叩【∑脚(白+嘶+唧)+∑脚埘岛l】，
p=o·l j=l lS，<l

Ⅳ Ⅳ

f=∑唧【∑脚(白+啦+∞)+∑脚加山l】，
p：=o，1 j=l l<j<l

k=-2J2(k+‰)风(t)扣∑唧【∑一嘞+嘶+竹+％)】
p=0，1 l<j(，”

Ⅳ Ⅳ

exp【∑，巧(6+嘞+∞+i9+马。)+ ∑fqm山d，
3>rn l<_s<6jJ@m

8。=2~／2‰+qtn)风(t)沙∑唧【∑蜥(≤，+协+口，+G锄)】

唧I∑聊(白+协+口J+if+岛。)+ ∑ ～阳山11，

白=b。+碍v一4kSt—f岛(：)出+妒，

仍=毋$一孝V一4霹t—r岛(：)如+∥，

砂·=％i黯乐等，毋l=(鲁告)．一l=(等焉)，
踟=(蹴)，
eq=口j=白，

e铀=(糕)，
印=b=一毋．

(4．3．53)

(4．3．54)

(4．3．55)

(4．3．56)

(4．3．57)

(4．3．58)

(4．3．59)

“．3．60)

here the Bum is taken over aⅡpossible combinations of脚。0，1 0=l，2，⋯，Ⅳ)．When

岛(t)=0，(4．3．54)and(4．3．55)is jnst the solution for mKP equation(4．2．13)[42]．



4．4 Wronskian method

4．4．1 Wronskian method for the mKP equation

Through the transformation“=(】n})z，the bilinear form of the mKP equation is

珑g·，一岛g·，=0， (4．4．1)

Dtg·，+磋9·，+溉巩g-，=0． (4．4．2)

The mKP equation has the Wronskian form solutions∞follows

9=

，=

护九

护扔

俨曲Ⅳ

aⅣ一1咖

aⅣ一1屯

aⅣ一1≯Ⅳ

=I以∥"，⋯，西(N--1)

=10，1，⋯，Ⅳ一11=I厉-11，
aⅣ曲1

aⅣ也

护每N

(4．4．3)

=I咖(¨，咖(21，⋯，∥川I=Il，2，⋯，ⅣI=I费l’ C4．4．4)

where奶sattdy

牵i∞=锄静，

由{軎=一曲5∞％．

From(毛4．5)and(4．4．6)，it is easy to obtain

厶=lⅣ：2，NI，．，嚣=IN一-3，N—l，Ⅳl+IN一-2，N+lI，

，嚣=IN一-4，N一2，N—l，NI+2IⅣ：3，N一1，N+lJ+IN一-2，N+2I'

矗=一IN'：-3，N一1，NI+IN'：'-2，N+11，

岛=一IN'：-4，N一2，N—l，ⅣI+IN一-2，N+21，

^=一4[IN'：-4，N一2，N一1，ⅣI—IN一-3，N一1，N+ll+IN—-、2，N+2l】，

如=IN～-I，Ⅳ+11，gzz=IN～-2，N,N+1I+IN'：-1，N+21，

gzffi==IN—-—3，N—l，N，Ⅳ+1l+2IN-：-2，n，N+21+Ig：-I，N+31，

38
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C4．4．6、

(4．4．7)

(4．4．8)

(4．4．9)

(4．4．10)

(4．4．11)

(4．4．12)

(4．4．13)
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9-=一IN—-—2，N,N—ll+IN—-—1，N+21， (4．4．14)

gⅫ=一IN—-—3，N一1，N,N+11+IN—-—1，Ⅳ+31， (4．4．15)

m=一4[IN—-—3，N一1，Ⅳ，Ⅳ+11一IN—-—2，N,N+2I+IN—-—I，N+31， (4．4．16)

Substituting(4．4．7)·(4．4．16)into(4．4．1)-(4．4．2)，we have

D强·|一Dvg·f=gn|一29=fz+gf“一bv|一g|0

=(g。一曲)，一‰厶+g(厶z+矗)

：2iN～-2，N，N+1110，N～-2，N—ll-2IN～-2，N一1，N+1110，N～-2，NI

-I-21N—-—2，N—l，Nil0，N—-—2，N+1I=o． (4．4．17)

Dtg·|+D乞g·|+3D=D口g·|

=弧f—g扎+gm|一39；；k+39。|。t—gfzn+3tgq|一g|凡一gvk+|tp9、

=(gt+‰+的h)，+g(-Yt一，j。+3岛)+3y,(-g=一跏)+‰(k一．6)
=e[-Ilv—-—3，N一1,N,N+1110,N=3，N一2,N—lI

’

一IN—-—3，N一2，N—l，NIIO，N～'-3，Ⅳ一l，N+1I

+IⅣ：3，N一2，N一1，Ⅳ+1110，N—-—3，N—l，Ⅳf1

+6[IN～-2，N,N+2rio，Ⅳ：2，N一11+IN～-2，N一1，』VllO，N=2，Ⅳ+21

—1if'=2，N一1，N+2110，N-=2，NI】=0． (4．4．is)

4．4．2 Wronskian method for the mKP equation with self-consistent 50urc馏

In this section,w will derive the solution in the Wronskian form for mKPESCS．

The Wroaskian form solutions for the mKPESCS can be written a8(4．4．3)，(4．4．4)and

却1

讹

aI‰一1

A‰

触n+1

唪N 8串N

aⅣ一2妒l 0

扩吨仍0

矿一2妒m—l 0

∥一2妒m 1

矿一2妒m+1 0

栌川由N 0

(4．4，19)

机忆～‰‰‰～



where

s。=再i瓦丽而

8≯1 萨庐1 ⋯alⅣ一1西1 0

a如 铲如 ⋯aⅣ一1如0

a≯m—I

触。

a西m+1

铲如I一1

铲‰

铲咖m+l

8耷N 铲牵N ⋯8N—1由N 0

九=西+(一1)j一1e一嘶，

奶=(七m—b)(幻+口m)毋+(一1)j一1(‰一毋)(劬+蠡h)e唧，O<m)， (4．4．22)

咖=(幻一七m)(b+qm)eO+(一1)J一1(田一qh)(嘶+矗m)嚣一珊，D>m)， (4．4．23)

First，we show that the Wronskian determinants，，口and Jk，‰sati由the bilinear equation

(4．3．2)and(4．3．4)．Expanding／,g and^，卵坶the ruth row，we have

Ⅳ

，=∑(一1)_+j∥-1(d‰+(一1)’”1e一枷)钿， (4．4．24)
J=l

N

，t=∑(一1)”“伊一1【(一4醇一岛(t))d‰+(一1)m-1(叼+岛(t))e一籼pk可， (4．4．25)
J=l

Ⅳ

9=∑(一1)m+／伊【e6“+(一1)”一1e一伽’】l?知， (4．4．26)
l=l

Ⅳ

吼=∑(-1)m+t∥【(一4砰一岛(t))e钿+(一1)m-I(蝴+岛(t))e一”】c；m，(4．4．27)
／-=1

where钿And‰珊the oDfactor of，and g respectively．Obviously‰=‰1．
Tn section 3．1，Wehave shownthat，’gwith岛(t)=0，D=1，2，⋯，Ⅳ)satisfiesthebillnear

equation ofmKP equation(4．t1)．So,what_e should do is to prove the s吼of all∞枷＆妇‘
for a fixed岛iO at the细o side of(4-3．3)a∽equal．

Without loss of generality,the following discussion will he restricted the case of届m(t)．

B艘舶18e there i8 only the first term D‘g·，=m，一g，t including口k(t)sad note the equality

∥(扣一(一1)”1e—枷)1矽-1(dh+(一1)”-1e—‰)】
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一∥(e如-t-(一1)一1e一“)JP-1(e‰一(一1)一1e一“)J

=2(一1)“一1d靠一嘶·忙‰(一日h)J一1一霸i1(一日h)‘】， (4．4．28)

then the term for届m(t)at the left side of(4．3．3)can be written a8

N-IN-1

一编㈣(一1)“一1咖一铆{∑∑(一1)‘"嘛(一‰)’～一簖1(一‰)1％且删
j=l 1=1

N-I

+∑(一1)M嘛(-qm)Ⅳ～一kN-1(一‰)1％l‰Ⅳ
1=1

N--l

十∑(一1)’+Ⅳ【碟(-qm)J-1一蝣1(一gm)Ⅳ】％Ⅳ‰，
j=l

+【硪(一qm)Ⅳ一1一碟--1(一qm)Ⅳ1IokⅣAmⅣ}． (4．4．29)

By means of the genera]determinant identity

lQ，口，bllQ，c,dl—IQ，o，cllQ，6，dI+lQ，口，dllQ扣，cI=0， (4．4．30)

whereQis an(Ⅳ一1)×(N一3)matrixandn，6’c and d representN一1 columnvectors，itis

not di伍cult to prove that

Gw=IM(j)，NI，j=1，2，⋯，Ⅳ一1， (4．4．31)

钿=lo，M0)I，J=l，2，⋯，Ⅳ一1， (4．4．32)

(确AmJ+1一q耐AmJ+1=fo，M(1，j)'Ⅳl(kⅣ，(1 S l<j≤N一3)， (4．4．33)

I?kⅣ一l‰J+l—l钿AmⅣ=lo’M缸N一1)，NI(习孔Ⅳ，j=1，2，⋯，Ⅳ一2， (4．4．34)

where the matrix M(I，J)is defined by

M(1，j)=11，2，⋯，z—l，l+1，⋯，j一1，j+1，⋯，N—II(N—l，×(^r一3)， (4．4．35)

肘U)=1172，⋯，j一1，j+1，⋯，Ⅳ一ll(,v—Z)x(N一21． “．4．36)

Using(4．4．31)-(4．4．36)，the expression(4．4．29)be(x)me6

Ⅳ-3 N-2

—2风(t)(一1)”一1咖咖{∑∑(一k‰)‘簖4一(一k)卜l】Io’M(1，j)，NI
1=1 3----1+1

N-2

+∑(-kmqm)’蛾-10一(一k)Ⅳ-1-’110，M抗N一1)，NI
j=l
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^r一1

+∑砩一(一‰)I】‰
1=1

+(一岛mqm)Ⅳ一1(奄m+‰)AnⅣ，％Ⅳ． (4．4．37)

Now we turn about k and‰．Obviously,from(4．4．20)we have

s。=缸i瓦：历丽(一1)卅Ⅳ％Ⅳ
While from(4．4．19)，_|lm Ca,f1 be written∞

Jl-，I=一以丙再磊瓦而办一mk，

wherek isaN×Ⅳdeterminant

JI’，I=

一．L咖 一五卵’⋯一工毹Ⅳ一∞0

一上勰)

工棚
工妒跛l

一工∞嚣一2’0

工西嚣一2’ 1

L,。l,(I。v-．2)0

却嚣’⋯工群一习0

=(一1)’’卜1I工·O，工·1，工·2，⋯，工·(Ⅳ一2)，下m

(4．4．38)

(4．4．39)

=lb·0+口·1+2，b·1+口·2+3扣·2+口·3+4’⋯，b·(Ⅳ一2)+n·(N一1)+Ⅳ’,rm

工=b+胡+护，b=一k‰，4=qra—k，钿=(‰l，k，2，⋯，如，Ⅳ)T． (屯4．40)

By simple ana／ysis for N X N determinant

lFO，j)，"rraI=10，1，⋯，j一1，j+1，⋯，J—l，j+l，j+2，⋯，Ⅳ’‰I， (4．4．41)

we obrain
N-!Ⅳ

矗=(一1)”一1∑∑IV(1，，)，‰J(一‰口m)‘
l=O j--a+1

[(qra—k)’斗1一c}卜2(‰一岛，1)’斗3(-／hqra)+c知一a(q--k)’斗5(一kgm)2

肺¨Ⅳk卜一“簖一‰k卜
眦∑芦
+

“

+

M‰‰．如

一

L五

一

二



一c扛l一4(‰一‰n)’-l-7(-kraqm)3+···

f(一1)12净(一^hq。)22乒】 if J—l is odd

+1(_1)宁G芋(一k‰)半(如一训jf川js㈣ (4且地)

We show further the algebraic 811121 after lF(1，j)，‰I be expressed柚

c—kmqm)‘笺篑#． ∽删

Because of comparing the coefficients of the terms(一‰‰)4q岔卜”-1(一kP in(4．4．42)and

(4．4．43)，we have

(翟l—l—c生I一2cmJ--一11--3+c譬l—3c；l二墨5+⋯+(一1)“(翟l一。一l=1，n≤砖。一l—1)】’(4．4．44)

∑(一1)。谨c7-,一¨=1． (4．4．45)

n n--1

∑(一1)‘磁c孓l。一1=c孓H+∑(一1)‘(嘴一1+qk一-11)c互H—l+(一1)“c7-,一。一l
k=0 ^=l

=∑i-1)‘砖一l(c孓l一扣l—c知小2)

。∑(一1)‘c基1”j-～l-¨． (4．4．46)

Usmg the induction for n of exprc∞ion似4．46)'it may bem that the equanty(4．4．44)01"
(4．4．45)is true．As a result，we obtain immediately

k=(一1)”以‰+钿‰(t)扣一铀
‘

t善黑c～，‘(盛甚譬)m力,N-1,驯
+譬1(一㈧-(世丢岩竺)㈣肌l--0 ＼ '"’1“ ，

+等c一蚓。(监专麓竽)㈣,N-1,rmI
+(一‰gm)Ⅳ一1I矿=2，‰|)



=(一1)”~／2(‰+‰)风(t)d‰一枷t窆譬c一㈧·(紫h∽,N-l,驯1 =1 j--J+l 、 m’’” ／

+薹(留警)m刃,N-1,驯+誉1(一叫‘(芷掣1IP(f／)IⅣ，rmII= 、 ’⋯’’”

+警c一㈧‘(监专拦#)㈣,N-I,‰I
+(一k‰)N-IIⅣ：2，‰I) (4．4．4”

heree(t，j)istheⅣx(iv一3)matrixwithoutl column andJ column,p(t)istheⅣxⅣ一2

matrix without I column．Obviously we have

IP(1，j)，Ⅳ一1，Ⅳ’thl=IO，M(1，j)，ⅣI(一1)m+Ⅳ，lP(O，Ⅳ，1hI=IO，M(1，N一1)，ⅣI(一1)m+。Ⅳ，

IP(O，N一1，7_mI=Io，^f(j)I(一1)m+Ⅳ，Pl(O，j)，N一1，Ⅳ，,rml=l?南(一1)’’件Ⅳ，

IⅣ一2，丁．mI=Am^r(一1)卅Ⅳ． (4．4．48)

So

^。‰=(一1)”鹚。(t)J-一枷

{∑∑(一k‰)‘函∥一(一k)卜'lo，M(Z，j)，ⅣI
1=1#--4+I

+∑毓一(一k)1c南

+∑(一k锄)‘簖-1-1一(一k)Ⅳ_1-|】10'M(1，Ⅳ一1)，Ⅳ|

Ⅳ一2

+∑(--km‰)1【口：一‘一(一岛。)Ⅳ—q‰
1----0

+(一k‰)Ⅳ一1(k+‰)A洲)％Ⅳ (4．4．49)

wherefore the term for届m(t)at the right side of(4．3．3)equal(4．4．37)．That j8 to say that

Wronskian form(4．4．3)，(屯4．4)and(4．4．19)，(4．4．20)satisfy equation(4．3．3)．



Next，we will prove hm and，sarisfy【4．3．4)．Using the abbrevisted notation，it can be

obrained

h。∥=(一1)m缸ii丙万咖一m【-|二(庐4)，L(N一2)，L(N一1)，‰l

+IL(矿二3)，三Ⅳ’‰I+(磕+q磊)lL(ff--2)，‰|】 (4．4．50)

hm，。=(一1)m以瓦再i瓣一n-[IL(萨-3)，L(N一1)，‰I+(k—qm)lL(N'i 2)，‰|】'
(4．4．51)

Jl’，l口=(～1)”、I／2(km+‰)风(t)扣一”肛(矿二4)，L(N一2)，L(N—1)，‰I

+I工(厅二3)，工Ⅳ’‰I+2(k—q,。)IL(N---3)，L(N一1)，‰l+(k—qfn)2I工(矿二2)，‰l】．(4^52)

Substituting(4．4．50)-(4．4．52)and Wronskian，and its related derivativem(4．4．7)into bilineax

equation他3．4)gives

【-I五(ji：4)，L(N一2)，L(N一1)，Th J+(qm—k。)陋(ji：3)，LCJV一1)，fhl

+‰‰陋(疋2)，‰Ⅲ^厂=1 J+[IL(g"-3)，L(N—1)，‰I
一(q。一岛。)I工(甭：2)，,'m1]lN一-2，NI—IL(ff--2)，7饥flⅣ：2，Ⅳ+lI=0， (4．4．53)

But we can work out that

(‰+七m)I二(ji：4)，L(N一2)，L(N一1)，，．mI

N-3Ⅳ—口

=∑∑(一k‰)‘暖，一(一kp一‘1【(qfn—k)2+k‰】IP(j'J)，N—l，Ⅳ，rmI
l=0，刊+1

．Ⅳ—3Ⅳ一2

+∑∑(一k口m)‘澎-l一(一k)卜‘1(‰一k)lP(j，j)，N一1，Ⅳ+1，‰l
l=0j爿+l

A'-S N-2

+∑∑(一k‰)‘【q岔L(一岛，I)j～]lP(t，j)，N,N+l，‰I
I=Oj=l+l

_Ⅳ一2

+∑(一k‰)m簖一2一一(一k)Ⅳ—纠liP(1)，Ⅳ一l，‰I
l=0

Ⅳ一2

+∑(一k‰)H1簖-2一一(一k)Ⅳ一2—1(‰一k)IP(f)，Ⅳ，‰l
l---o

Ⅳ一2

+∑(-／tmqm)件1鹾一扣‘一(一毫。)Ⅳ一2一liP(1)，Ⅳ+1,zml， (4．4．54)



(‰+k)IL(N一3)，L(N一1)，‰I
Ⅳ--3 N-2

=∑∑(一‰gm)‘【q牙L(一k)’一‘】(钿-k)Ie(i，j)，N一1，N,rm J
I----0 j=t+1

^，一3^r一2

+∑∑(一kqm)。【靠‘一(一k)j-t】IP(f，j)，Ⅳ一1，Ⅳ+1，‰I
1=0 j=／+l

Ⅳ一2

+∑(一‰锄)Ⅲ蟛一1一一(一k)Ⅳ_1．‘胪(I)，N一1，‰l
1=0

N-2

+∑(一k‰)‘蟛“一一(一k)Ⅳ'1-11(口m一‰)IP(z)，Ⅳ’‰l
l=O

^r一2

+∑(一kqm)‘蟛一1一一(一k)Ⅳ一1一lIP(0，N+1，‰I． (4．4．55)
l=O

Ime．ing(4．4．47)，(4．4．54)and(4．4．55)into the left side of(4．4．53)lesves∞衄the terms

^，一3Ⅳ一2

∑∑(一k‰)‘【口∥一(一k)j一‘1(一IP(f，J)，N-I,N,1-．,IIN"C2，Ⅳ+lI
|---0 j=l+l

+IP(1，J)，N—l，N+1，r,。llN—-、2，ⅣI—IP(t，j)，N,N+1，，-mIlⅣ：11)
Ⅳ—2

+∑(一kqm)‘簖+1--1--(一k)N+I-1(1P(z)，N,,r。IINA--*1-(P(／)，N-1，rmIlⅣ：2，ⅣI)
l=0

N-2

+∑(一‰‰)‘蟛-l_(一k)Ⅳ一‘】(IP(f)，N+I，T,．]IN"Z'-II-IP(0，N-1，‰|I扩=2，N+ID
l---0

^r一2

+∑(一k口m)‘蟛一H一(一k)Ⅳ一1一‘】(}PU)，N+I，‰lI^厂=2，NI-IP(m)，N：．IIN'-C2，Ⅳ+1I)
I---0

+(一kq，，I)Ⅳ一1‰+k)J矿=2，‰I肛‰‰I扩=l卜(gm—k)l扩=2，ⅣI—IN一-2，N+II]，
(4．4．56)

noting that

—Ie(1，j)，N一1，N,I",．IIN一-2，Ⅳ+11+IP(1，j)'Ⅳ一1，Ⅳ+1，7hIlⅣ：2，ⅣI

—Ie(t，j)，N,N+1，zm)IN"：-II

=c一-，Ⅳ+1l P笔刃P量力：；ⅣN一-。1ⅣNⅣN++。I‰7"'It
—IP(t，j)，Ⅳ一1，Ⅳ'Ⅳ+IlIN一-2：',,,I



=一IP(1，j)，Ⅳ一1，N，N+111Ⅳ-=2，7．ml， (4．4．57)

lPO)，Ⅳ'7．仍lpIf：1f～JPU)，JV一1，t．m J}Ⅳ：2，ⅣI

：l以D三。?Ⅳ一1 2钿J—JP(I)，Ⅳ一l，J＼rJlJ＼仁2，锄l
1 0 P(1)l N一1Ⅳ,rm I’⋯

。” ⋯”

=-IP(O，N一1，NIIN一-2，’hI， (4f4．58)

lIP(1)，N+l，‰|IⅣ：1l—IP(1)，N一1，‰||j、『：2，N+111

：P二?肛：：●：‰b(j)’Ⅳ-l’Ⅳ+1¨Ⅳ：2，‰IOI P(j)j N一1Ⅳ“钿I。⋯
” ⋯。

=-IP(Z)，N一1，N+llIN一-2，7h|’ (4．4．59)

[IP(0，N+1，‰¨Ⅳ：1l—IP(0，N一1,T．IIN一--2，Ⅳ+11]

；f P∞三。?ⅣⅣ●1‰i—lP(I)'Ⅳ，Ⅳ+1IlⅣ：2，‰I
1 0 P(f)l N N+1 Tm I。⋯‘

” ⋯。

、 ；-IP(Z)，N,N+lIl矿=2，‰I， (4．4瑚)

then(4．4．56)n，duce to

(一IⅣo 2，‰I){∑∑(一k‰)‘【q∥一(一岛nP—z]lp(／，J)，N一1，N,N+lI

+∑(一岛n‰)。囟Ⅳ+卜L(一‰)Ⅳ+1_t]lP(0，N一1，NI

+∑(一k。口。)‘簖一一(一≈。)Ⅳ一‘】|P(f)'Ⅳ一l，N+11

+∑(一k口m)‘簖一1一一(一k)Ⅳ一1-z]lP(1)，N,N+11

一(一k‰)Ⅳ_1(口m+k)‰‰I矿=lI+(k一‰)l^仁2，NI～IN一-2，Ⅳ+ll】)t (4．4．61)
which jsj耐一jN亡_2，7h”工(ji’1)1=0．
At last，the renmmed problem iB to prove that Wromklan 8m and g髓tis母equation(4．3．5)．

锄=缸i瓦丽而I庐2，Ⅳ'‰I，

sm∞=心(k+‰)‰(t)【Ij扩=3，N—l，Ⅳ'‰l+l矿=2，N+I，‰11’ 他4．62)



80t,y=∥丽=i；：：历：而【一JN～-3，N一1，Ⅳ'‰I+IN～-2，Ⅳ+1，‰m (4．4．63)

Substituting(4．4．12)·(4．4．14)and(4．4．62)一(4．4．63)into(4．3．5)

岛8m·妒+珑8m-g=‰，徊一8m珊+8’，l#$g一2sm#gz+8mgzz

=(。m，，+}m，％)9—28m#9j+8nr／,(妇￡一跏)

=雁iF磊藏而[1Ⅳ=2，N+I，‰IIⅣ：2，N一1，NI

IN～-2，N,r,。[IN～-2，N一1，N+11+IN～-2，N一1，r,．．．1lN～-2，Ⅳ’Ⅳ+11]；0． (4．4．64)

4．5 Coincidence of the solutions

By now，we have found two kinds solutions of the bilinear equations【4．3．1)一(4．3．5)，where

(4．4．3)-(4．4．4)and(4．4．19)-(4．4．20)arejuBtverifiedwhereas(4．3．54)·(4．3．57)isonly conjecture&

Inthissection,wewill8hOWthesetwokindsofsolutionsarethe8ameforrecordingtheN-soliton

solutions from the transformation(4．3．1)．

Byvirtueoftheadditionruleofdeterminams，“．4．3)mbe representedbythe8llmof2Ⅳ一1
Vandermonde determinants．So we have

，=∑(2E2—1)(2e4—1)⋯(2cf譬广1)A(elkl"i-(el—1)口l，f2如+(屹一1)口27,-o『，EⅣ七Ⅳ+(fⅣ一1)qN)
‘=u．1

Ⅳ

“p{∑b岛+(勺一1)珊】)
j=l

【钥 Ⅳ N

=∑II(2e镛一1)1I k岛+(EI一1)卯一勺b一(q一1)口j】唧{∑【cj白+(勺一1)珊】}
e---O-1 k=l l<jd j=1

；(一1)掣∑IT(2EJ—1)【qb+(q一1)毋一f．1kl一(q一1)qI】。币{囊【勺白+(勺一1)彤】)．
e=0,1 l<j<l J=l

(4．5．1)

whcl℃△(E1七1+(el-1)ql，白岛+(E2一1)92，⋯，￡IvkN+(*N--I)qN)denote8anNxNVandermonde

determim嘧withthe entries E1h+h—1)啦，包恕+＆一1)啦，⋯，啊h+如Ⅳ一1)qN andthe

8mM E=o，1 refersto eachofthe勺=0，l，O=1，2，⋯，Ⅳ)．
Noticing that

f!皇=!!b坠±!皇二12受=皇鱼=!皇二!!堡!
卿一啦
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and

(4．5．1)becomes

=(鬻)。1均Mq赢-q“,／卜哪。(氆)掣‘=(鬻)q(筏)。[渊r ㈣，

。；匙Ⅳ[等；÷著塞高r。唧e。妻／V。qq如，，

，：fi(qt-qs)。路卜嘶’∑。p【壹勺(‘+正)+圭￡jcl幻】’ (4．5．3)
l匀<l ￡=Ojl ，2l l匀(1

where

毋licks,,十m)=菇，毋Ⅱ(田一m)一1Ⅱ(锄一毋)一1=e--rnj． (4·5·4)
j判 J>l JⅪ

Similart09

g；矗(ql一句)石二。(-哪一如’∑唧【∑N Ej(《+叼+呓+6j)+∑IV"．E，。‘A，d． (4．5．5)
l匀<l e=O,1 j=l lsJ<‘

It may bem t胁the砌ton solution constructed from(4．5．3)and(4．5．5)is the lm,lne酆the
one hom(4．3．54)一(4．3．57)with eq=一鲁，e，H=1．

’“

We咖deal with善m and^m jn 8 8hlli】ar way to／,g．(4．4．20)c柚be rewritten聃

a加 萨血

鼢 a2锄

a女m一1

a咖，，．

a咖hl

a2冉，l

铲‰

铲咖ol

⋯矿一1籼0

⋯8^r一1扔0

aⅣ一1曲m一1 0

∥一1咖’，I 1

矿“妒kl

8☆ 铲牵NI⋯铲。毒N 0

where为；(一i)垆+争+l一1)5e-'el,,i。{。】．so

8。=止‰+蛳)届，I(t) II (毋一卿)唧【∑(一嘶一6，)】
Ⅳ

l!g<‘洲≠m J=lJ≠“
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(4．5．6)



Ⅳ

∑唧【∑勺(6+呓+a唧)+∑勺(￡+唧+嘭+b+打r+c：fm)+∑E1*lAjt]．(4．5．7)
e=0，1 J<m j>m 19<l

From(4．4．19)，"have

k=一缸i瓦5葫不如一伽

妒l a01 ⋯∥-2’b1 0

忱8如 ⋯aⅣ一2仍0

惦I—l Mn—l-．．aⅣ一2咖n—l 0
‰M。 ⋯aⅣ一2‰ 1

吒+l却0l⋯扩‘2“l 0

由H 鼬N ⋯栌q由H 0

where

蝣=(一弧b—k)(巧+曩，II)毋+争+(-lF(q．一‰)(毋+k)e一哪一鼍i】，D>m)． (4．5．9)

Itis easytoderive
“

^m=一以(km+锄。)口h(t)(一1)N-m(一i)Ⅳ—1“∑II(2e强一1)1I【El硒+(q一1)佛一勺巧一(勺一1)qjl一 【譬】 Ⅳ

e=0，l k=I l匀d

唧{乏：【c，白+(勺一1)协】)II{I(南。一劫)(b+咖。)p【(qfn一彩)(劬+岛。)】1一々’

IIt【(磅一k)(码+‰)卜【(口J一口m)(码+k)】l’)

=一缸i丽(一1)掣∑II(2El-1)b白+(￡j—1)田一日岛一(日一1)鲥
exp[杰。c俐扫卧[黔黯瑞nII。1(彩训c留圳，
Ⅱ【(‰一彩)(彩+k)】唧{∑b白+(勺一1)t／a]}

=一以(k+qm)风II佃一彩)II(白+k)扣唧【∑(一％)】



N

∑％p【∑勺(￡+嘭+B哪)+∑勺(￡+叩二+‘霄+岛。)+∑eje,Aj,]． (4．5．10)
c；o．1 j<m j>m 1S3<1

From(4．5．3，4．5．5)and(4．5．7，4．5．10)，m find that the solution嘞，皿，gotten by Wronskian form

j日identical with the one gotten by Hirota method with eq=一鲁，印=1．
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