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Abstract

Asian corn borer, Ostrinia furnacalis Guenée, (ACB), is the primary insect pest targeted by
transgenic Bt corn in China. Bt corn can provide season long protection from this insect, but its success
will be short-lived if ACB adapt to Bt corn. The primary strategy for delaying ACB resistance to B¢ corn
is to provide refuges of non Bt corn and other host plants. However, the feasibility of refuge strategy
depends on the biology of resistant colony and inheritance of resistance. We investigated the biology of
a laboratory-selected CrylAb resistant colony of ACB and inheritance of resistance, which included the
survival of resistant colony fed on diet incorporated with Cry1Ab protein and transgenic Bt corn event
MONS10, mating attractiveness between resistant and susceptible colonies, cold tolerance among
resistant, susceptible and their hybrid progeny F, colonies, resistant gene dominant level, mater effect,
stability, and the cross resistance between CrylAb and CrylAc.

There were 70% survival of larvae and 60% pupation rate when resistant colony fed on the diet
incorporated with 100ng/g CryAb. The larval developmental time of resistant colony was significantly
longer (5 days) than susceptible. The average pupal weight of resistant colony was 42.0% less than
susceptible. When the resistant colony was exposed to the high dosage of CrylAb protein diet, the
survival and the pupation decreased in a few generations and then increased. This indicated that ACB
would evolve resistant to Cry1Ab when it was selected by the Cry1 Ab protein.

Bioassays with neonate of resistant and susceptible colonies infested on whorl leaves, fresh husks
and silks of Bt corn Event MONS810 for 4 generations, showed that the resistant colony could not
survive more than 7 days on the whorl leaves and husks of Bt corn, but it could complete the
development of larva and average pupation rate was 14.5%. This was the first report that
laboratory-selected Bt resistant colony could complete the development of larva on fresh silk of Bt
maize. The expression of CrylAb protein in the silk of Event MON810 was 585.46ng/g (fresh weight)
according to enzyme-linked immunosorbent assays.

Among four type of mating combinations (RRxSS/RR, SSxSS/RR, SS/RRxSS, SS/RRxRR), the
inter-population mating was 43~62.5% in the combinations of RRxSS/RR, SSxSS/RR, and SS/RRxSS,
no significantly was observed between the inter-population and intro-population mating, i.e. the mating
between resistant and susceptible moths was random. However, the inter-population mating was only
28.0% in the combinations of SS/RRXRR, which was significantly lower than intro-population mating.
This indicated that the resistant males were more attracted to the resistant females, i.e. the mating
between the inter- and intro-population. In this case, when the population density of resistant males was
higher, the mating within resistant population could be higher, and the resistant homozygous of
offspring were increase. Both resistant and susceptible moths had the same daily mating activity rhythm.
This indicates that if resistant and susceptible moths emerge synchronizing well, the daily mating
activity rhythm would not affect the random mating between resistant and susceptible colonies.

The suppercooling points were tested for diapaused and non-diapaused larvae of resistant and
susceptible colonies and their F; progeny. There was no significant difference in suppercooling points

and freezing points between resistant (-11.5 ) and susceptible (-11.4 ) colonies of non-diapaused
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larvae. The suppercooling point of diapause larvae from resistant colony was significant higher than
those from susceptible and F, progeny of resistant and susceptible colonies. There were no significant
different among susceptible and F, progeny of resistant and susceptible colonies. Although the
suppercooling point was only 1.5  higher for resistant colony than susceptible, this could not impact
the overwintering of resistant larvae.

Susceptibility to the CrylAb protein was determined by dose mortality response for resistant,
susceptible colonies and their F; progenies. Significant differences in susceptibility were observed
among the four colonies. LCsq of resistant colony was 33.80ug/g, which was 106 fold greater than that
of susceptible colony. F; progeny from RRxSS was more tolerant than the susceptible colony and F,
progeny from SSxRR. The magnitude of differences were 18 and 6 fold greater based on the LCsg
values. LCsy between susceptible colony and F; progeny from SSXRR was not significant different. Dy ¢
values, the dominance level of resistance gene, were 0.22 and 0.63 for SR and RS, respectively. This
suggested that resistance to CrylAb in Asian Corn Borer transmission to the F; was incomplete
recessive with mater effect. In addition, the survival of the four colonies were evaluated by infesting the
neonates on fresh silk of Bt corn MONS8I10, the results indicated that the resistance to B¢ corn is
complete recessive (Dy=0). Although the resistant colony could survive on the silk of Bt corn, all
hybrid F, progenies could not. This suggested that the refuge strategy could be a functional strategy to
delaying ACB resistance to transgenic Bt corn if the random mating occurs between resistant and
susceptible moths.

Cross resistance was evaluated by determining the susceptibility to CrylAb and CrylAb of
Cryl Ab resistant colony and CrylAc resistant colony, respectively. LCsos of CrylAc resistant and
susceptible colonies to CrylAc protein were 9.6746pug/g and 0.6894ug/g, respectively. This indicated
that resistant colony had evolved 14.0 fold resistant to CrylAc. Based on LCs, CrylAb resistant
colony evolved 10.4 fold resistant to CrylAc protein and CrylAc resistant colony evolved 6 fold
resistance to CrylAb. This indicates that there is a high cross resistance between Cryl Ab and CrylAc in
ACB. Because the resistant level of CrylAc resistant colony was low, the neonate larvae fed on the silk
of Bt corn MONS19 that produces CrylAb protein could not survive.

When Cryl1Ab resistant ACB maintained on the diet without Cryl1Ab protein, the development
time of larvae was decreased from generation 3. After 6 generations, the development time of larvae
was not significant different with susceptible colony, which was significant shortened than resistant

colony with selecting pressure.
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10 12
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3
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1
1.2.2.3 Bt CrylAb
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Antibody-coated 96-well microtiter plates
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PBST PBST 20x 50ml-+ 950ml =1000ml PBST(1x)
MEB 0.4g Nonfat Dried Milk + Tween-20 0.5g +PBST 100ml
ECM 0.1g +25mIPBST
Positive control + MEB 2ml =32ng/ml, 10
250ul 32ng/ml  16ng/ml 8ng/ml 4ng/ml 2g/ml Ing/ml 0.5ng/ml
(Alkaline phosphatase enzyme conjugate) 110ul Ilml ECM
10
1.2.233
a. 1/10 000 TA450 CAHN 0.4
ImIMEB,
38mm
b. MS1 Minishaker IKA 120001/min

8 5415D eppendorf
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c. Bt 100ul

1h 4
d. 300ulPBST, 3
e. 100ul
f. 1h
g. 7
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i. 20
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2min
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1 CrylAb
Table 1 Development of Cry1Ab resistant ACB fed on diet incorporated with Cry1Ab protein

(ng/g) (d) % % mg) 9 g
1 100 21 60.5 52.0 52.43 1:1.31
200 21 37.5 26.0 49.47 1:1.74
400 21 48.0 36.5 49.11 1:1.38
9 100 20 77.5 67.5 55.23 1:0.90
200 20 37.0 27.0 46.45 1:1.45
400 20 42.5 36.0 45.60 1:1.06
2.1.2
2
100ng/g 4 200ng/g 9
9 24d 8.12 d 100ng/g
(RR) 57d 9
9 3.1d 2.6d
2
Table 2 Development time and pupal weight of reisitant colony maintained on different diet
CrylAb d mg
(ng/g)
+ SE + SE
RD 200 23.72+1.04 a* 29 19 37.82+2.55 a* 50.24 28.25
RR 100 21.33+0.38 b 23 19 38.43x1.78 a 47.12 29.50
npr 0 18.22+0.57 ¢ 21 16 39.88+3.71a 56.39 27.14
SS 0 15.60+0.48 d 18 13 67.68+£2.73 b 83.18 57.64
* Duncan’s (= SE) ( F=31.05; df=3,36; P<0.0001, F=29.74; df=3,36;
P<0.0001)

* Meanst SE within a column followed by the same letters were not significantly different according to Duncan’s test. (Development time:

F=31.05; df=3,36; P<0.0001, pupal weight: F=29.74; df=3,36; P<0.0001)
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Development time ( day)

npr

mg
Pupal weight

30
25
20
15
10
5 1 1 1 1 1 1 1 1 1 1 1 J
1 2 3 4 5 6 7 8 9 10 11 12
Generation
2
Fig.2 The development time of different colonies
RD RR npr SS 100ng/g
100ng/g 200ng/g
RD 4 7
100ng/g
RR 3 6
(2
1.75 100ng/g  200ng/g CrylAb
CrylAb
[ —4—RR —&— npr
—6—SS —¥—RD
1 2 3 4 5 6 7 8 9 10 11 12
Generations

Fig.3 Pupal weight of different coloies
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4 100ng/g CrylAb RR
100ng/g RD
6 RR
CrylAb 9 RR
8 9
RR 3
2.2 CrylAb Bt
2.2.1 Bt
Bt MONS&10 CrylAb
24 h Bt Bt
Bt Bt Bt Bt
48 h Bt Bt
Bt Bt 3d
Bt 94% 3 CrylAb
Bt
Bt MONS&10
3d Bt
3 MONZ810
Table 3 Survival of resistant and susceptible colonies fed on the whorl leaves of B¢ and non-B¢ maize
: o I
1d 2d 3d
Bt RR 100.0+ 0.0 a 100.0+ 0.0 a 972+ 1.4
Bt SS 98.6x 1.4a 972+ 14a 944+ 1.4
Bt RR 972+ 28a 25.0+ 4.8b 0.0+ 0.0
Bt SS 91.7+ 2.4b 2.8+ 2.8¢ 0.0+ 0.0
"RR— SS— RR—resistant colony SS—susceptible colony

1

(LSD ) P>0.05

¥ The means within a column followed with same letter were not significantly different (P>0.05) according to r-test (LSD) (1d, F=3.46 ; df=3 ,8 ;

P=0.0713 ; 2d, F=302.04 ; df=3 , 8; P<0.0001 ; 3d, F=3715.33 ; df=3 ,8 ; P<0.0001)

222 Bt

2221
Bt MONS10
24h Bt
Bt

CrylAb

Bt

20

Bt
48



h 72h Bt
Bt
Bt 95% 5

Bt MONS10
4d Bt

4 MONZ810

Bt

Bt 4d

CrylAb
Bt

Table 4 Survival of resistant and susceptible colonies fed on the husks of B¢ and non-B¢ maize

* o 1
1d 2d 3d 4d
Bt RR 100.0+ 0.0 a 98.6+ 1.4a 95.8+ 42a 958+ 42a
Bt SS 100.0+ 0.0 a 972+ 2.8 a 972+ 28a 958+ 24a
Bt RR 91.7+ 2.4 ab 34.7£ 2.8b 2.8t 2.8b 0.0+ 0.0b
Bt SS 84.7£ 6.1b 1.4+ 14c¢ 0.0+ 0.0c¢ 0.0+ 0.0b
"RR— SS— RR—resistant colony ~SS—susceptible colony

1 (LSD ) P>0.05

Y The means within a column followed with same letter were not significantly different (P>0.05) according to r-test (LSD) (1d, F=5.14; df=3,8;

P=0.0286; 2d, F=479.30; df=3,8; P<0.0001; 3d, F=368.22; df=3,8; P<0.000 4d, F=529.00; df=3,8; P<0.0001)

2222 Bt
Bt MONS810
Bt
7d 2
70% 47%
Bt 5d
59%
CrylAb Bt
Bt Bt MONS&10
Bt
15%~47% Bt
1
Bt 10%~33%
Bt
4 1
3 2~8d Bt

21

CrylAb
5d 97%
5d
5
1.4%~29.3%
5d 91%
Bt 4
3
Bt
Bt
Bt



[44

5 4 MONZ810
Table 5 Survival of resistant and susceptible colonies fed on the silk of Bt and non Bt maize

% T % mg d
3d 5d 7d 15d

RR, Bt 100 0.00 a 972+ 14a 91.7+ 24 a 833+ 42a 75.0£ 2.4 a 42.48+ 1.73 ¢ 17.04+ 0.37a
SS Bt 84.7+ 1.4b 76.4+ 50D 65.8+ 14D 51.4+ 3.7b 50.0+ 2.4Db 81.42+ 3.25a 18.95+ 0.86a
RR; Bt 81.9+ 1.4b 63.91 740 514+ 73 ¢ 472+ 690 37.5% 6.4c 56.37x 1.77b 18.73% 0.69a
SsS Bt 23.6+ 2.8 ¢ 2.8+ l4c 2.8+ 1.4d 0c

RR, Bt 99.0+ 1.0a 93.8+ 3.6a 89.6+ 3.6a 75.0+ 74 a 65.6 9.5a 43.88+ 1.45b 21.22+ 0.43 ab
SS Bt 96.9+ 2.0a 70.8= 5.1b 63.5+ 2.6b 56.3+ 2.7b 542+ 45a 51.85+ 391 a 20.00+ 0.41b
RR, Bt 643+ 7.1b 345+ 52¢ 29.8+ 59¢ 25.6x 6.2 ¢ 16.1£ 3.9b 40.35+ 0.81b 23.49+ 0.68 a
SS Bt 28.1£ 52 ¢ 0d

RR; Bt 938+ 3.6a 91.7+ 5.6 a 80.2+ 4.6a 67.7 49 a 594+ 8.6a 4530 2.54b 22.33+ 0.53b
SS Bt 100.0+ 0.0 a 83.3+ 6.4 a 73.6+ 5.0a 653+ 5.0a 583+ 24a 7232+ 2.25a 21.86% 0.32b
RR; Bt 51.0£ 520 427+ 6.0Db 27.1x 720b 18.8+ 2.1b 11.5£ 2.6 b 47.76% 4.86 b 2933+ 1.70 a
SS Bt 2.8+ 28¢c Oc

RRy Bt 98.6+ 14a 958+ 2.4a 93.1+ 14a 83.3+ 8.7a 70.8+ 12.7a 38.17+ 0.48b 20.58+ 0.17b
SS Bt 84.7+ 1.4Db 70.8% 4.2b 63.9+ 50D 542+ 24D 472+ 6.0b 53.99+ 1.62a 2141+ 0.33b
RR, Bt 278+ 3.7¢c 9.7+ 14c 69+ 14c¢ 42+ 24c 14+ 14c¢c 48.40%+ 0.00 b 23.00+ 0.00 a
SS Bt 2.8+ 2.8d 0d

*RR— SS— RR—resistant colony SS—susceptible colony
1 (LSD ) P>0.05

Y The means within a column followed with same letter were not significantly different (P>0.05) according to r-test (LSD) (1  3d: F=389.94; df=3,8; P<0.0001; 5d: F=79.47; df=3,8; P<0.0001; 7d: F=87.35; df=3,8; P<0.000
15d: F=59.67; df=3,8; P<0.0001; pupation: F=75.00; df=3,8; P<0.0001; pupae weight: F=279.14; df=3,8; P<0.0001; development time: F=1.55; df=2,6; P=0.2863. 2, 3d: F=26.58; df=3,15; P<0.0001; 5d: F=65.24; df=3,15;
P<0.0001; 7d: F=55.46; df=3,15; P<0.000  15d: F=28.92; df=3,15; P<0.0001; pupation: F=31.30; df=3,15; P<0.0001; pupae weight: F=138.67; df=3,15; P<0.0001, development time: F=8.62; df=2,6; P=0.0048. 3, 3d:
F=122.08; df=3,10; P<0.0001; 5d, F=55.13; df=3,10; P<0.0001; 7d: F=87.33; df=3,10; P<0.0001 15d: F=78.17; df=3,10; P<0.0001, pupation: F=32.82; df=3,10; P<0.0001; pupae weight: F=70.04; df=3,10; P<0.0001;
development time: F=13.7; df=2,6; P=0.0026.4, 3d: F=332.00; df=3,8; P<0.0001; 5d: F=346.54; df=3,8; P<0.0001; 7d: F=279.91; df=3,8; P<0.0001 15d: F=74.93; df=3,8; P<0.0001; pupation: F=24.47; df=3,8; P=0.0002;
pupae weight: F=8.62; df=3,8; P=0.0026; development time: F=10.78; df=2,6; P=0.0245.)




223 MON&IO0

CrylAb

¥y =0.0203x""* £0.0007 »=0.9991

Bt y=4.3016x""7"+£0.8005 r=0.8295

Bt 585.4571 (ng/g)

ELISA MONS10 CrylAb

585.5ng/g( ) Bt CrylAb
585.5ng/g( )
2.3
2.3.1
4 80%
>5 10~30
5
3.7%~7.5% 7.4%~12.5%
6 4
Table 6 Percentage of moths mated in four combinations types
%
RS /SR RR/SS

RRx SS/RR 54 42.59 46.30 3.70 7.41

SSx SS/RR 57 38.60 50.88 3.51 7.02

SS/RRx SS 40 50.00 30.00 7.50 12.50

RR/SSx RR 29 24.14 62.07 6.90 6.90
232

RRx SS  SSx RR
RRx RR  SSx SS 7
RRx SS SSx SS
SSx RR RRx RR

Bt

23
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Table 7 Percentage of inter-population mating in four combinations

% 95% po=0.5 a=0.05
RS SR '} P
RRx SS/RR 47.92 33.78 62.05 0.29 >0.05
SSx SS/RR 43.14 29.55 56.73 0.98 >0.05
SS/RRx SS 62.50 45.73 79.27 1.41 >0.05
RR/SSx RR 28.00 10.40 45.60 2.20 <0.05
233
150
( 8
Table 8 Number of eggs laid per female from different mating combinations
/
+ SE*
RRx RR 162.42+ 33.67 585 24
RRx SS 150.34+ 21.59 413 15
SSx RR 183.35+ 33.46 555 18
SSx SS 191.29+ 23.79 521 58
* F=0.48; df=3,99; P=0.6944
234
1 17:00 2 10:00 23:00
4:00 4
2.4
5- 8
24.1
Bt

24
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Number of mating

S

*RR X RR ORR X SS
X o o
ASS X RR x SS X SS
. o a o
X A x (] A x (] X X
» A ® S A - 12 &
X o) X A X A X A a A a ® X ® A
17:00 20:30 22:30 23:30 0:30 1:30 2:30 3:30 4:30 5:30 6:30 8:00 9:00 10:00
Time
4

Fig 4 Mating time of resistant colony and susceptible colony
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Fig 5 Changing curve of body temperature of F, (SR) colony
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min
7 ss !
Fig 7 Changing curve of body temperature of susceptible colony
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Fig 6 Changing curve of body temperature of F, (RS) colony
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Fig 8 Changing curve of body temperature of resistant colony




9 RR (SS)
Table 9 The supper-cooling points and freezing points of non-diapaused larvae of resistant and susceptible colonies

(SCP) (FP)
RR -11.52+ 0.53" -7.14 -18.02 -2.84+ 0.377 -0.76 -8.48
SS -11.39+ 0.931 -6.90 -18.81 2237+ 0.347 -0.55 -5.79
1 t- =-0.13 df=39 P=0.9008 r=-0.88 df=39 P=0.3845

' The means within a column were not significantly different (P>0.05) by r-test. =-0.13  df=39 P=0.9008 r=-0.88
df=39  P=0.3845

10 (RR (SS) F; (RS SR)
Table 10 the suppercooling point and freezing point of diapaused larvae from resistant, susceptible, and F; colonies

() ()
RR -16.97+ 0.44a" -6.34 -25.08 -3.49+ 0.19 -0.59 -9.73
RS -16.81+ 049 a -12.22 -22.16 -3.35¢ 0.26 -0.9 -6.54
SS -18.08+ 0.21 b -12.65 -21.18 -4.21+ 0.31 -1.59 -10.49
SR -18.18% 0.31b -14.37 -22.48 -4.09+ 0.41 -1.96 -12.75
) (LSD ) P>0.05  ( , F=3.16 ; df=3,139 ; P=0.0260 ;

, F=2.12 ; df=3,174 ; P=0.0997)
" The means within a column followed with same letter were not significantly different (P>0.05) according to #-test (LSD) (Suppercooling point,

F=3.16 ; df=3,139 ; P=0.0260 ; freezing point, F=2.12 ; df=3,174 ; P=0.0997)

11 (RR (SS) F, (RS SR)
Table 11 Suppercooling and freezing points of diapaused larvae from resistant, susceptible, and F, colonies

() ()
+ SE + SE
RR -18.34+ 049" -8.03 -23.23 -4.92+ 0.34 ab" -1.08 -11.62
RS -19.91% 0.40 b -14.63 -24.2 426+ 021 a -2.26 7.9
SS -19.82+ 0.32b -15.74 -24.22 -5.70% 0.40 be -1.82 -13.31
SR 2033+ 0.35b -16.04 -24.62 -6.26+ 034 ¢ -3.82 -14.25
* (LSD ) P>0.05 ( , F=4.83 ; df=3,139 ; P=0.0032 ;

, F=6.94 ; df=3,139 ; P=0.0002)
" The means within a column followed with same letter were not significantly different (P>0.05) according to #-test (LSD) (Suppercooling point,

F=4.83 ; df=3,139 ; P=0.0032 ; freezing point, F=6.94 ; df=3,139 ; P=0.0002)
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RR SS F, RS SR
Fy
F, 1
Fy
F, 10
Fi
1~2 11
13.42 14
243
12
12 4
Table 12 Correlation between the suppercooling point and larval weight of 4 Asian corn borer colonies
mg (r) Prob>|R|
RR 43.49+ 1.64 -18.34+ 0.49 0.1066 0.5422
SS 47.77+ 1.38 -19.82+ 0.32 0.1813 0.2972
RS 59.16+ 2.49 -19.91+ 0.40 -0.0669 0.7072
SR 50.99+ 1.58 -20.33+ 0.35 -0.2808 0.1022
3.
10 Bt
Plutella xylostella (L.) Bt Bt
Tabashnik 1990 Shelton 1993
16~21 Dipel ES Bacillus thuringiensis sub. kurstaki CrylAa CrylAb,
CrylAc, Cry2A, Cry2B 60~70 Huang 1997 1999a,
1999b, 2002 Bt MONS810 Brll Brl76
DBT418 35~42d 4 1~9
<0.5 ( <lcm) DBT418 5
Huang 2002 Dpel ES
Bt DBT418
27 CrylAb 107 CrylAb
MONZ&10
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4~5 Mason 1996, 1995

sheath-collar

Guthrie 1980

He 2000
Bt
Bt ; Bt ,
MONS10 Btl1 Diatraea
grandiosella Dyar 176 19% Koziel 1993 Amstrong 1995 Williams 1997
1998 Archer 2000 2001 MONS10
He 2003 MONS10
CrylAb
MONS10
MONS10 CrylAb 9.35ng/g 0.31pg/g
0.09ug/g AGBIOS 2001 MONS10 Bt
585.5ng/g MONS10 Bt
CrylAb
CrylAb
Alstad  Andow 1995
Bt
Bt
Bt
Bt

Groeters 1993

Bt

29



75%

CrylAb
Semme 1999,
2000
1979 -20 -80
1997
1~2
1.82 Sjursen(2000) 1 7 -35.3 9.4
1 -35 7 55
-40 -12 Zachariassen 1985
( 2002)
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CrylAb

5 69 13 (Sim  1991) Spodoptera.
littoralis 500 CrylC 1
5 2 (Muller-Cohn 1996)
CrylAc Bolin 1999
Plodia. interpunctella 343-R Dipel 29
(McGaughey  1988)
(Liu 1996, Perez 1997, Tabashnik  1995)
Bt
Bt
CrylAc
(Gould  1995) YHD2 CrylAb  CrylAa CrylCa CrylBa
CrylCa CrylAc 50 CrylAb
Cry2Aa 13 53  (Gould 1992) CrylAa CrylBa
CrylCa CrylCa (Spodoptera exigua) CrylCa 850
CrylAb Cry2Aa Cry9Ca (Moar  1995)
/
Georghiou  Taylor 1977 Alstad  Andow 1995
Bt (Metz  1995,Tang 1999,
Zhao  2000) Huang (1999) Bt Dipel ES
80
CrylAb CrylAc
CrylAb  CrylAc ,
Bt
Bt
1.
1.1
Bt CrylAb 3.4 mg/mL CrylAc
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3.25mg/mL

Bt CrylAb MONS10
CrylAb RR
1999
CrylAb 2.5ng/g (CrylAb/ )
40~70% 1 27
CrylAb 100 100ng/g (CrylAb/ )
CrylAb
nprl npr2  npr3
CrylAc Rc
CrylAc 2.5ng/g (CrylAb/ )
40~70% 1
Bt SS
(RS) RR SS
24 L:D 16:8h 80%
F SR Qre*Jss RS Qssxdrr
1.2
1.2.1
CrylAb  CrylAc
CrylAb 0.01 pg/g 0.1 ng/g lpg/g 10pg/g 20pg/g 40ug/g  80ug/g
48 1
3 144 26+ 1 70%= 10%
16:8
1.2.2 Bt
MONS10 4 SS RR SR RS
1.23 CrylAb
5 30 -20

Bt-Cryl Ab ELISA Bt
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1.3

1.3.1 SAS PROC PROBIT LCsy LCy 1
b t
1.3.2 SAS PROC ANOVA
1.3.3
Stone (1968)
D 2log LCyps —log LC, —log LC
log LCpy —log LC
LCrr LCss LCis F, D -1
1 -1 1 0~1 -1~0
0-1 Bourguet Dic Dic= logLCgrs—logLCg
/(logLCgr—logLCs) Liu  Tabashnik
D+1
Dy =——
2
1.34
Roush  McKenzie (1987)
_ MLy — ML
M MLy, — ML
MLgr, MLgs, MLpg F,
Dy 0O 1 0 1
2.
2.1
2.1.1
13 Cryl Ab F LCs
Table 13 LCs4s of Cry1Ab protein to RR, SS, RS, and SR colonies
LCsy ngl/g 95% D Dic
SS 0.3164 0.1173 0.7306
SR 0.8981 0.2477 2.6008 2.8 -0.5533 0.2234
RS 5.9172 2.2436 12.4290 18.7 0.2539 0.6270
RR 33.8001 30.0708 38.1966 106.8
"RR— SS— RS SR— F,

* RR—resistant colony, SS—susceptible colony,RS SR—F, from the reciprical crosses between resistant and susceptible colony.
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LC5:=33.8001pg/g

LCs0=0.3164pg/g CrylAb 106.8 13
Stone (1964) D F; SR
D -0.5533 F, RS D 0.2539
Liu  Tabashnik DLc=(D+1)/2 Dic 0.2234  0.6270
CrylAb
14 CrylAb F, LGy
Table 14 LCygs of Cry1Ab protein to RR, SS, RS, and SR colonies
LCoy ng/g 95% D Dic
SS 5.9786 2.3648 24.3062
SR 8.5514 2.9073 67.8324 1.4 -0.7421 0.1290
RS 69.7056 29.4362  374.5276 11.7 0.7702 0.8851
RR 95.8892 78.6333 125.2778 16.0
LCy 14 F, SR D -0.7421
F;, RS D 0.7702
F, 9
F,
D 1
D value
0.5 F
0 ~C Y 1 1 1 1 1 1 1 1 ]
10 20 30 40 50 60 70 80 90 100
%
mortality
0.5 F LR A A—A—A— A A—A
-1
9 F1 D

Fig.9 Relationship between 2 F, inter populations and D values

34



15 u
Table 15 p test for LCsos of Cryl1 Ab protein to RR, SS, RS, and SR colonies

i SS SR RS RR
P
SsS - 1.3730 4.5829 9.9277
SR 0.1698 - 2.5411 6.0173
RS 0.0000 0.0111 - 3.9518
RR 0.0000 0.0000 0.0001 -
LCs (ng/g) 0.3164 0.8981 59172 33.8001
CrylAb U 15 SS
LCs0=0.3164pg/g SR (LCs0=0.8981pg/g) SS CrylAb
Cryl Ab F, CrylAb
RR LCs5=33.8001pg/g RS LCs0=5.9172pg/g
SS R RS RS
SR CrylAb
F, CrylAb
LCy U 16 CrylAb
SR LCoo=8.5514pg/g SS LCoy=5.9786pg/g RS
LCoy=69.7056pug/g RR LCo0=95.8892ug/g SR SS
RR
16 LGy p
Table 16 p test for LCqs of Cry1Ab protein to RR, SS, RS, and SR colonies
i SS SR RS RR
P
SsS - 1.4240 2.7913 4.5783
SR 0.1544 - 4.1406 6.5048
RS 0.0052 0.0000 - 0.4835
RR 0.0000 0.0000 0.6288 -
LCo (ng/g) 5.9786 8.5514 69.7056 95.8892
17 t
Table 17 #-test of slopes among dose-mortality curves of RR, SS, RS, and SR colonies
P 4 SS SR RS RR
SsS - 1.1552 0.8380 6.6056
SR 0.2480 - 0.3704 4.4496
RS 0.4020 0.7111 - 5.1763
RR 0.0000 0.0000 0.0000 -
(b) 1.0040 1.3094 1.1964 2.8300
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100
80 F
X SS
g eor o SR
g
o
= 40 | A RS
® RR
20 F
0 J
0.001 0.01 0.1 1 10 100 1000
ug/g
Dose
10 Fy
Fig.10 Dose-mortality curves of RR,SS, RS and SR colonies
T 17 RR
F, LCs
2.1.2  MONSI10
18 F, MONS10
Table 18 Survival of RR, SS, RS, and SR colonies fed on the silk of MONS&10
* o 1
d3 ds d7
Bt RR 98.6x 1.4a 98.6x 14a 958+t 24a
Bt RS 98.6x 1.4a 944+ 1.4 ab 944+ 28a
Bt SR 93.1+ 2.8 a 93.1+ 2.8b 91.7£ 24 a
Bt SS 100.0+ 0.0 a 98.6x 14a 944+ 14a
Bt RR 27.8+ 3.7b 9.7t l4c 6.9+ 14D
Bt RS 2.8+ 28¢ 0
Bt SR 6.9+ 3.7¢c 0
Bt SS 14+ 14c¢ 0
"RR— SS— RS SR— F,

" RR—esistant colony, SS—susceptible colony,RS SR—F; from the reciprical crosses between resistant and susceptible colony

1 (LSD ) P>0.05

I The means within a column followed with same letter were not significantly different (P>0.05) according to r-test (LSD) (d3: F=377.14; df=7,16;
P<0.0001; d5: F=1308.86; df=7,16; P<0.0001; d7: F=844.57; df=7,16; P<0.0001)
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MONS10 F, 18

MONS10 90%
MONS10
Roush  McKenzie (1987) Dyi= MLrs—MLgs / MLgr—MLss
ML DML 0 10 1
19
19 F, MONS810 D,

Table 19 Dy Value of F| from resistant strain and susceptible strain reciprical crosses

* d3 ds d7
% Dm % Dme % Dme
SS 98.9 0 100 0 100 0
SR 92.5 0.24 100 0 100 0
RS 97.2 0.06 100 0 100 0
RR 71.8 1 90.1 1 92.8 1
"RR— SS— RS SR— F|

" RR—esistant colony, SS—susceptible colony, RS SR—F, from the reciprical crosses between resistant and susceptible colonies

2.1.3 CrylAb
Vr= 0.0203x"* £0.0007 »=0.9991
Bt Vg = 4.3016x"7*°" £0.8005 r=0.8295
CrylAb CrylAb
25.06ng/g 4.19ng/g
15.25ng/g 11
30 r
a
25 1 L
E’ 20 1 b
15
S ol
§ ‘
57T -
0 s s .
5
11 Cry 1Ab

Fig. 11 Quantity of Cry 1Ab protein in resistant ACB
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22 CrylAb CrylAc

2.2.1
20 LCs CrylAb 106.8 CrylAb
CrylAc 10.4 CrylAc 14.0 CrylAc
CrylAb 5.9 CrylAb  CrylAc
LCy 21 CrylAb
CrylAb 16.0 CrylAc 8.6 CrylAc
CrylAc 6.0 CrylAc CrylAb
1.7
20 CrylAb  CrylAc LCsp
Table 20 LCs¢s of Cry1 Ab, Cryl Ac proteins to Cryl1 Ab and CrylAc selected colonies
’ LCso pglg 95%
CrylAb CrylAc
SS Cryl1Ab 0.3164 0.1173 0.7306
CrylAc RR CrylAb 1.8560 0.8740 3.5917 59
CrylAb RR CrylAb 33.8001 30.0708 38.1966 106.8
SS CrylAc 0.6894 0.5234 0.8948
CrylAb RR CrylAc 7.1796 3.6328 12.8601 10.4
CrylAc RR CrylAc 9.6746 6.3982 14.2269 14.0
" CrylAcRR: CrylAc , CrylAb RR: CrylAb ,SS:

" CrylAc RR: Cryl Ab resistant colony; Cryl Ab RR: Cryl Ac resistant colony; and SS: susceptible colony

21 CrylAb  CrylAc LCy
Table 21 LCyys of Cryl1Ab, CrylAc proteins to Cryl1 Ab and CrylAc selected colonies

LCop (ng/g) 95%
CrylAb  CrylAc
SS CrylAb 5.9786 2.3648 24.3062
CrylAc RR CrylAb 9.8671 4.8366 41.5874 1.7
CrylAb RR CrylAb 95.8892 78.6333 125.2777 16.0
SS CrylAc 10.9036 7.8657 15.9247
CrylAb RR CrylAc 94.2223 43.5756 381.8489 8.6
CrylAc RR CrylAc 65.0198 40.8045 123.1585 6.0
CrylAc CrylAb CrylAb CrylAc
U 22 CrylAb CrylAc LCs0=7.1796ng/g
CrylAc CrylAc (LC5¢=9.6746pg/g)
CrylAc (LC50=0.6894g/g) CrylAc CrylAb
LCs0=1.8560ug/g CrylAb LC50=33.8001pg/g
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LCs,=0.3164pg/g Cry1Ab CrylAb

CrylAc 23 CrylAc CrylAb
CrylAc LCy Cryl Ab CrylAc CrylAb LCy
Cryl Ab CrylAc
22 CrylAb CrylAc LCsy 1
Table 22 p test for LCsq of CrylAb, CrylAc protein to Cryl Ab and CrylAc selected colonies
M CrylAb CrylAc
i SS CrylAcRR  CrylAbRR SS CrylAbRR  CrylAcRR
CrylAb SS y 3.0007 9.9277 1.6020 5.5048 6.7177
CrylAcRR  0.0027 - 7.9364 2.5685 2.7967 3.9863
CrylAbRR  0.0000 0.0000 - 25.9881 4.7204 5.8787
CrylAc SS 0.1092 0.0102 0.0000 - 6.6895 10.7597
CrylAbRR  0.0000 0.0052 0.0000 0.0000 - 0.7818
CrylAcRR  0.0000 0.0001 0.0000 0.0000 0.4343 -
LCs (ug/g) 0.3664 1.8560 33.8001 0.6894 7.1796 9.6746
23 CrylAb CrylAc LCy
Table 23 p test for LCyys of Cryl1Ab, CrylAc protein to CrylAb and CrylAc selected colonies
1l CrylAb CrylAc
i Ss CrylAcRR _ CrylAbRR SS CrylAbRR  CrylAcRR
CrylAb S8 - 0.6194 4.5783 0.9677 3.3946 3.6281
CrylAcRR  0.5357 - 4.0492 0.1729 2.8942 3.0560
CrylAbRR  0.0000 0.0001 - 10.0828 0.0310 1.2703
CrylAc SS 0.3332 0.8627 0.0000 - 3.7041 5.3405
CrylABRR  0.0007 0.0038 0.9753 0.0002 - 0.5971
CrylAcRR 0.0003 0.0022 0.2040 0.0000 0.5571 -
LCo (ug/g) 5.9786 9.8671 95.8892 10.9036 94.2223 65.0198
24 CrylAb CrylAc t
Table 24 t-test of slopes among dose-mortality curves of CrylAb, Cryl Ac protein to Cryl Ab & Cryl Ac selected colonies
1l CrylAb CrylAc
P SS CrylAcRR  CrylAbRR SS CrylAbRR  CrylAcRR
CrylAb SS - 2.3229 6.6056 0.4781 0.7169 3.003
CrylAcRR  0.0202 - 2.7059 2.2459 1.8088 0.6520
CrylAbRR  0.0000 0.0068 - 6.8975 5.7337 4.5344
CrylAc SS 0.6326 0.0247 0.0000 - 0.4620 3.2581
CrylAbRR  0.4735 0.0705 0.0000 0.6441 - 1.9475
CrylAcRR  0.0027 0.5144 0.0000 0.0011 0.0515 -
b 1.0040 1.7662 2.8300 1.0678 1.1462 1.5489
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100

80
0 CrylAc RR-Cryl Ab
B = 60 4 CrylAb RR-Cryl Ac
g ------ ) A CrylAc RR-CrylAc
40 F
¢ SS-CrylAc
20 F % SS-Cryl Ab
0 CrylAb RR-CrylAb
0 N s
0.001 0.01 0.1 1 10 100 1000
(ug/g)
Dose
12 CrylAb CrylAc -
Fig 12 Dose-mortality curves of Cryl Ab & CrylAc proteins to CrylAb & CrylAc selected colonies
CrylAc CrylAb CrylAb CrylAc
T 24 CrylAb CrylAc
b=1.1462  CrylAc CrylAc (b=1.5439)
CrylAc Cryl Ab CrylAc
CrylAc CrylAc CrylAb
b=2.83 CrylAb  CrylAc b=1.7662
b=1.004

222 MON810

25 CrylAc MONS810
Table 25 Survival of CrylAc resistant and susceptible colonies fed on the silk of MON810 maize

% ! mg)
3d 5d 7d 7d
Bt SS 100.0+ 0.0 a 98.6+x 1.4 a 98.6+ 1.4 1.14+ 0.0l a
Bt SS 2.1+ 2.1b 0b
Bt CrylAc RR 100.0+ 0.0 a 98.6+x 1.4 a 98.6+ 1.4 1.02+ 0.05b
Bt CrylAc RR 6.3+ 63D 42+ 420 0
! (LSD ) P>0.05

I The means within a column followed with same letter were not significantly different (P>0.05) according to #-test (LSD)

CrylAc MONS10
MONS10 Bt
CrylAc Bt
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1%

26 MONS10

Table 26 Survival of 3 generations resistant colonies without selected pressure fed on the silk of MON810 and its negtivae control

* %)! mg mg)
o 1 1
3d 5d 7d 15d
Bt RR 93.8+ 3.6a 91.7£ 5.6a 80.2+ 4.6 b 67.7x 490 59.4% 8.6a 4530+ 2.55a 493+ 044D 223+ 0.5b
Bt nprl 91.7£ 29 a 69.8+ 4.6b 61.5+ 2.0c 50.0x 1.7¢ 39.6x 4.0b 41.89+ 0.90 a 7.15+ 0.27 a 227+ 03D
Bt npr2 98.6+ 1.4a 972+ 28a 93.1+ 3.7a 69.4+ 50D 56.9+ 3.7a 42.55+ 0.63 a -- 20.2+ 0.2b
Bt npr3 100.0+ 0.0 a 958+ 0.0a 944+ 14a 86.1+ 3.7a - - - -
Bt RR 51.0£ 520 427 6.0 c 27.1x 3.6d 18.8+ 2.1d 11.5+ 2.6 ¢ 47.76+ 4.86 a 1.95+ 0.24 ¢ 293+ 1.7a
Bt nprl 427+ 43D 219+ 52d 19.8+ 5.5d 9.4+ 3.6d 52+ 20c¢ 41.28+ 2.71 a 0.92+ 037 ¢ 290+ 1.5a
Bt npr2 11.1+ 3.7d 0.0+ 0.0¢
Bt npr3 278+ 2.8 ¢ 42+ 00e 14+ 14e 0.0+ 0.0e
*RR nprl npr2  npr3 1 2 3
*R30— resistant colony; nprl, npr2, npr3 — resistant colonies maitaind on the non-Cryl Ab protein diet for 1, 2 and 3 generation(s)
i (LSD ) P>0.05

Y The means within a column followed with same letter were not significantly different (P>0.05) according to #-test (LSD) (d3: F=87.11;, df=7,20; P<0.0001; d5: F=76.12; df=7,20; P<0.0001; d7: F=110.58; df=7,20; P<0.0001;

d15: F=103.00; df=7,20; P<0.0001;Pupation: F=36.53; df=7,20; P<0.0001; Pupae weight: F=0.85; df=4,13; P=0.5168; Larva weight: F=67.38; df=3,11; P<0.0001;Development time: F=014.82; df=4,13; P<0.0001)
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2.3.1 9 CrylAb
CrylAb 3 6
2 3
232 3
25 MONS10 1
Bt 5d 7d 15d
7d 7.15mg 4.93mg
2 3
MONS10 1
521% 11.46% 2 Bt
2 5d 3 7d
CrylAb Bt
2
3.
Dic
Bt
1Ac
SEL-MEL NO-Q CrylAc Dipel D¢ 0.29  0.09
BL CrylAb D¢ 0.34 YHD2 CP73-3 CrylAb
CrylAc D¢ 024 031 Bt LCs
Cry3Aa(CC) Dic 0.88
SEL KS-SC-R CrylAb(CC) Dipel D¢
0.71 0.86
D Bt
Bt
1Ac- Loxa A CrylAc 0 1Ca-
Crylc-Sel CrylCa 0 1Ac- CrylAc
0 Bt
(Bocrguet  2000)
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BL

CrylAc-SEL S. littoralis F,
(MacIntosh 1995, Sayyed  2000a, Chaufaux  1997)
CrylAb
CrylAb
F;  LGCs 33.80 032 5.92 0.90pg/g F, M c
0.22 0.63 CrylAb
Amparo 1995 F,
Mousseau 1998 maternal effect
2003
CrylAb
MONS10 F, Dy =0
MONS10 MONS10
FIFRA 1998
25 Bt 25
Dme Bt
CrylAb CrylAc 85%
LCs CrylAb  CrylAc
CrylAb CrylAb 106.8
CrylAc 10.4 CrylAc CrylAc 14.0
CrylAb 5.9 CrylAc  CrylAb
Bt
(2800 ) Dipel R -0.26
-0.30 13 LCs LCs 22
R=-0.06 (Tabashink 1994) Loxa A
Javelin 2-3 7 150-300
(Tang  1997)
(Liu 1996 Perez 1997 Tabashnik  1995)
SEL CrylAb
5 69 13 (Sim 1991) Spodoptera.

littoralis 500 CrylC 1 5
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R=-0.31

Bolin

(McGaughey
1999

Cryl Ab

44

343-R
1988)

Dipel
CrylAc
CrylAb

Tabashink

CrylAb
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CrylAc
CrylAb
Cryl Ab
CrylAb
CrylAb
107
70% 60%
16d
CrylAc 14
CrylAb

Bt-CrylAb ELISA

CrylAb

CrylAb
CrylAb Bt
Bt
CrylAc
CrylAb CrylAc
38 CrylAc 31 CrylAb
LCsg CrylAb CrylAb
CrylAb 100ng/g
21.1d 37.5mg
64.6mg CrylAc
MONS810Bt CrylAb 4
MONS10
293% 14% 16.1% 11.5%
MONS10 585.46ng/g
MONS10
CrylAb

RRx SS/RR  SSx SS/RR  SS/RRx RR  SS/RRx SS

23

SS/RRx RR 50%

4 3 23 1:30 4:00

32 24 75%
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F1

-11.5 -11.4
Fi
1~2
CrylAb F
RR (SS) Fi(RS,SR) LCs 33.80 0.32
592 0.90ug/g LCsg Dic 022 0.63 LCs n
F, RS SR SR
LCy
CrylAb
Bt Fy
D=0 MONS10
Bt
CrylAb CrylAb CrylAc
LCsp  33.80pg/g 7.18ug/g  CrylAc CrylAc CrylAb LCsg
9.67ug/g 1.86pg/g CrylAb  CrylAc  LCsyp  0.32ug/g  0.69ug/g LCs
CrylAb  CrylAc CrylAb
107 CrylAc 10 CrylAc
CrylAc CrylAc CrylAc 14.0 CrylAb
59 CrylAc  CrylAb
CrylAc MONS10
9 3
6
CrylAb
CrylAb Bt

Bt
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12.

13.
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15.

16.

17.
18.
19.

20.
21.

22.

23.

Bt
2003 46 3 299~304
Bt 1999 11 3 141~146
Bt
1997 24 4 373~374
1987 14 2 43~44
Bt
21 2001 . 344~349
2004 41(1) 7~10
2002 22 12 2202~2207
1981 8 241~247
2003 40 1 36~37
RAPD
2003
2003 46(1) 108~113
1997 5(4) 72~73

77
1999
26:324~328
BiCrylAb
2003
Bt
2003 30:97~106
Bt
2004 47(2) 141~145
1987 14 4  259~262
1987 14 1 9~14
2000 27 3
33~36
1997 40 20~24
1995  562~574
. 1995,

AGBIOS. Agriculture and Biotechnology Strategies Incorporated. 2001. Crop database, MONS810.
Essential Biosafety. (http://www.essentialbiosafety.info/dbase. php)
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