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Abstract

The wide spread of the first generation transgenic cotton which expresses CrylAc has played an
important role in the integrated pest management of cotton. However, there is a risk for resistance
evolution of the cotton bollworm (Helicoverpa armigera). Therefore, a strategy of pyramiding different
Bt genes in cotton is much valuable for managing the resistance risk from the target pest. One of
requirements for the dual (pyramided) gene strategy to work is that the two toxins must have different
modes of action, which means that there must be a low probability of cross-resistance between the two
toxins. Here, we reports the investigation on the cross-resistance of CrylAc-resistant H. armigera
strains (LFR;o and BtR) to Cry2Ab by bioassay and other methods for understanding the molecular
basis of resistance to CrylAc and cross-resistance to Cry2Ab, the binding kinetics between the BBMV
from CrylAc-susceptible and -resistant strains of H. armigera and Cry toxins (Cryl A and Cry2Ab). In
addition, the interaction analysis between the esterases from CrylAc-susceptible and -resistant strains of

H. armigera were conducted. The results were as follows:

1. Bioassays between Cry toxins (CrylAa, CrylAb, CrylAc and Cry2Ab) and larvae of a CrylAc-
susceptible (96S) and two -resistant strains (BtR and LFR;;) were conducted for investigating
cross-resistance of CrylAc-resistant strains to Cry2Ab in H. armigera. The resistance ratios (RR)
of the BtR and LFRj strains to CrylAc and Cry2Ab were 2971.3- and 1.1-fold, and 253.0- and
1.0-fold, respectively, indicating that the CrylAc-resisrant strains of H. armigera had no
cross-resistance to Cry2Ab.

2. Binding in vitro and surface plasma resonance were conducted for binding kinetics between the
toxins (CrylA and Cry2Ab) and BBMYV, the results suggested that CrylA could not compete with
Cry2Ab either in the CrylAc-susceptible strain of H. armigera or in -resistant strains, it also
indicated that Cryl A could not share the binding site with Cry2Ab in H. armigera. In a word, the
difference of binding sites between the —susceptible and —resistant strains may be contributed to
no cross-resistant to Cry2Ab in H. armigera.The data from the binding kinetics implied that the
binding ability of CrylAb to the binding site 1 and CrylAc to site 2 decreased, and the decrease
of binding ability corresponding to the increase of resistant ratio. At the same time, we observed
that the binding ability of CrylAb did not decrease anymore until it decreased to some degree,
but the CrylAc did not stop decreasing until it lost the binding ability to binding site 2. To our
surprise, there was no difference in the binding affinities of CrylAc and BBMV between the
Cryl Ac-susceptible strain and —resistant strain of H. armigera, but the binding site concentration
of CrylAc and the binding ability of CrylAc in —resistant strain were lower than in the
—susceptible, the results from Surface Plasma Resonance (SPR) suggested that the velocity of
association in CrylAc-susceptible strain was higher than in —resistant strain during the binding

procession may be answered for this conflict. All these results suggested that the changes of
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binding ability of the CrylAc to BBMV is the main reason for its resistance, but the binding
ability was affected by the binding affinity, binding site concentration and the velocity of
association during the binding procession.

Esterase and alkaline phosphatase may be also contributed to CrylAc resistance in H. armigera.
We surveyed the activity of the total esterase, alkaline phosphatase and acid phosphatase in the
CrylAc- susceptible and —resistant stain of H. armigera by microplate reader 550. The results
indicated that the activity of total esterase in —susceptible was lower than that in —resistant strain
of H. armigera, but the activity of alkaline phosphatase in CrylAc-resistant strain was
significantly higher than that in —susceptible strain of H. armigera. The interaction analysis
between esterase and CrylAc protoxin and toxin were also investigated, the results suggested that
the esterase of CrylAc-resistant strain could bind with CrylAc protoxin and toxin, but the
—susceptible strain could not. At the same time, the ability of activation of CrylAc protoxin in
CrylAc-suscptible was stronger than that in —resistant strain. According to these results, we
proposed that once H. armigera resistant to Cry1Ac, the reduction of alkaline phosphatase would
affect the activation of CrylAc protoxin, at the same time, more esterase could bind with CrylAc
protoxin and toxin, and this binding would reduce or lose the chance of CrylAc toxin binding to
the receptor on the midgut of epithelium, and these procession would cause H. armigera reduce

its susceptiblity and resistance to CrylAc.

In a conclusion, these results demonstrated that Cryl A and Cry2Ab had different binding sites in H.

armigera and provided a potential mechanism for the lack of cross-resistance between CrylA and

Cry2Ab toxins, and it also suggested that Cry2Ab could be used to delay the evolution of H. armigera

resistance to CrylAc.

Keywords: Bt cotton, CrylAc-resistance Helicoverpa armigera, Cry2Ab, cross-resistance, alkaline

phosphatase
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F—F it

I 234 ST B (Bacillus thuringiensis, Bty —Fip = [CFRHYESH R, 76 H B 2 1)k 2 v £
B HA R LS PE I A AT i, PRI SRR A 21k HLU 440 E (Insecticide Crystal Proteins, ICPs)
88- N B F (8-endotoxin), ‘Bl H HTN 85 12 IAEYIAR 252 — o Bk HU] A Beka 4 i) 48 A
AT LA 2 va B AR B, i oA DR B 2 A I & 3o Bole i« 386 22 4k v R R
M GE . AR AESIAEL (Wu and Guo, 2005). R #5248 55 5211 2 24 (Environmental Impact
Quotient, EIQ) —— — kT~ 2 i IR Z 0] B — 5P B 3 A) i PR SB A 558 T g jsi mi 1) 52 5k g vk
—— M ELRW], 19965 2220054 F v/ 2% b A S ik — - 0 DY T = A i R v P e o
FH 24 TR 2% BURDS ERBE IR B E FH AR T 14% (James, 2006). AT, 4t BeREAZ FAE B
B O ORI L RS A M LR S DA I S .

SR, BEAE Bt A B Bt SERED G K, 5 AN Cry JERIFEVEY) A4 3 IR HF 28
ik, AR E AR A K RINER 32 2] Bt % R A m k%, PR donk Bt Btk
WA — AN AR ) BRI H R b, DS ME——Fioo Bt AF£E UM 1) I TR] B 1L,
HEWANFZ IR SF e TeHEEH . X0#E H A H 1 R 2= N g 5 T LA Bt
P2y (MeGaughey et al., 1985; Tabashnik et al., 1990; Shelton et al., 1993; Martinezz-Ramirez
et al., 1995; JHYRIESE, 1996; Huang et al., 1997; L K55, 1998; #HMFE, 2000a). 2003 4,
Janmaat Fl Myers &I = PR SRR Bt AE7edutt, X 24k /el m —> S5 == 40 ot
Bt PrikE 14 (Janmaat and Myers, 2003). K06, 767 324 A Bt HilFIFFHE Bt /ED AR, EH
XF B I A N s SC Bt 1 U AN I TE] b (1 )@ IT C4(De Maagd et al., 1999), diE =« A&
FIZH22”, BT R don Bt BIHTHERLTD T 1 Bt S0 Bt VEYIR3EAT 3 R 2k S a BELL A E
K8 Bt BEEY) 0 A5 dir AR U ) H 2

ARERMEAAT Bt ML E 0L, M Bt IS HFERPLIEIANT, 2838 T g T Bt
PR AR R AR EERL, IR T B AN Bt 2R B R HHUIERI SRR, IR Bt ARV i
WABLSRIR AT TS . f e 0T B L Bt TR AR Y Bt R R A AR T i R T R ——&
125 25 PR SLYEH R (Surface Plasma Resonance, SPR)IEAT T/ 4H,  FExt HAEZAS IR 045 T 1)
L [ o

1. 1 Bt £ AR

A BAREE I TREBORAEMR AR P APUHEB R ZIMTLE 7 I BeRR, PRI ReUE A SE
PURRCR, BO)ON 2 H R B LUt BT BINBIG k. E 19965 S DA AL A 5 [ 7 i ALl
LA, JCRR T AR AR S N PRI . 199647, & B BURF & UCHEAE S BT U 72 16 N 1A T
PR, 1997EMIALHE AT A BEREOAYG, 19974 AL HEBEAT R LA A2 o 19994, 3k
[ A (Monsanto) 23]y A FEUARHBE A )BT ST AR AL BT A5 73531 SE ST il F) e 6 DRI O
FeHhni33B. GKARVIAH RS, FEARAFAON AR5 A 22 s VAR 56 m LA Mk Iz AR s e A
A B, SE I L2 W] A 33BA R AR [ 1 3B —— I b —— (AR T BLA 10
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T AWEAT . I, B UM AR AN KT K.

20014F AT, R ABORE AL E 2R T S S s X (anmr A, WIEg,  InARFNLPEAEA),
R L5007 kil #28 $120064F, TR E B ) 12 Bl T4 5 SR DX, Pl i AR A 4 4
(11077 22 B e 21 7 20065F 19350 73 A BT, Ja43REE /AL, b4 R AE A RL T AR 1) 66 %6 (James,
2006). BT [ KRR A 50 R A% ORI 2148 HU) e 50 R 4% T EE 244 F (W et al., 2003; Wan
etal., 2004; 2005; 25 =45 2006; %FLH, 2007). HEJamesZiit, F20064F, (UfFEE. hE.
BURE. WORHIE. BUARAE. 7. mdE. SRR BHME LLEAE A IO E BT FiiE LABEE D A
FILRIREIE1340 77 22 bii(James, 2006). {HANH B AR 24 —FF, BEAABREAEN)) 22 Rl
FObR T AR A T R B AL~ AR P, M S 3Bk 42k L ILRHAE (Wu and Guo, 2005).

IEGERE R 2O Cryl AcHAEPTIE ™28, ZFBUEYIHIE R BRI DU tH, Hrp XU
LRI MR N A —Fh LU A R F it . % 2 21120064F, HSEE i 1L#R (Monsanto) 2y & il i) #%
CrylAct+Cry2 AbJEPAIRE /R E . KRN AR, SsPhab AR 5 1 By S A A A . [RIINF,
TBUEY)E RPITEG B REE  R BE, —8 BAT 5 JgK Cry #5538 AN AR IR B ft BRI (s 5
R H B ) WA N BIRR A AR ) DL A8 — AR B BRI B ki 46 . 91, 20054F,  HH Syngenta
(Greensboro, NC, USA) A ] FF & HIVIP Cotton™ g AL AERE N H BB T E B (James, 2006).

1. 2 Bt & S51EAHNIE

1. 2. 1 BtHI%EE

1989 4, Hofte Fl Whiteley AR5 4 i CLHRIE t >k 1) 42 /> Bt #5 87 2L 2 L 1R 7 41 1)
(IR PRI AR A RS2 T F 4 H-W 22K R 450, K Bt s d AR b BUR K3, 14
W, pulHP ST, I, O, VAV kdr 4. H T80 853 5 B i A s etk 1
U0} i 5 RN H R B AT B T2 i B B s e, IV XU H R R A 8
IV 2 A0 R 1 D 68 5 ORI H R A d ik, ARG RE— R T SRS # 8 AL B,
C HMRARMILR B, KI5 /NG FBRER IR A 5L R B o TR IR 7 91) 22 S 3 s 11 2 D1 I
B, FAMEAPONRE H B4 AT R Cyt B AR5 1 (Hofte et al.,1989). J& ok i1y
Bt WA RKILKZE LYK, Bt B MK ASE T 5, R RRELAETFZ AL,
BAEENI T RRGAE T H— DI IREE, H T2 R EA U R (74, 1993), Jir
DA e AR AR it e e AR B A7 A0 1) 1) 8 R3S o i 60 [ 5 2 TRD R A FLpvp o)

1995 4, 7EToH HEG B2 S5 25 B8 W B Crickmore A 25 53 1R % HUSH A 2 11 2 DR i 44
Z2 GL 0P HEAE TR A 2R RN, AT B I T IX . HIRA I H-W REARIFZE: B R
Gt 4y JEE K2 18 % HUS AR B VSRR 7 A 0 [RD R S 10 AN T 2% B8R O (AN ] o e IR R M 1)
76 S K /NKE R HUR AR R o DU 5 2 IR /N T 45% (i Cryl F Cry2 Z WD AT 45%
A 75%2. 18 (@ CrylA F1 CrylB Z[a]). 75%% 95%2. [ (Wl CrylAa Fl CrylAb 2 [i]) FilH]
PEPEAE 95%LL (U CrylAal F1 CrylAa2 2 [i]). [RIBF, ZEdr 4 057k B pre, Bridar
DAL RNE B AT BT R AR B i AN TR ROk 0 B B S =L DY A
KB TS BE /NG R0 S BEFIBT $7 41 4507 4E 5 (Crickmore et al., 1995), il l1: CrylAa2.
XA TR S H AT BRAT Bt BEAT 2 Ay 44 1) B
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1. 2. 2 BtBIG&HI5THhEE

HEBE R S S AW E VI, Bk, S5 Bt S5 Dhaex ToF9T B o) Bt =k
PUPE RO LBE R 70 B S AR R L 21

FUHT C e B 2K Bt iR g RN, JF 43 R AH N 2 A s B IRy 41, (H R SR
B 45F 1K) Bt dh iR AR 32441k, HIFEH T CrylAa. Cry3Aa Al Cry3Bb 5 /050 LR il
A EE FI(Li et al., 1991; Grochulski et al., 1995; Frutos et al., 1999; Morse et al., 2001) )45k . —
M s, Btigs WA A4 k(domain): 253K 1 (domain 1, D 1), £5#3 Il (domain
II, DII). 4ifsklll(domain III, DI, & a5k LY F=ogeAR. Hdb, DI ATk
BEM N B, EAE Bt R HUPLH R R SCBEAE AR T S 5 Al B Y % FL(Gazit et al., 1995;
1998); D IIAL FAREERI ), R PE A Be D 1A DILZ 1A — A B K PEAZ L Sk, LT
Uity ) SE P AE B 32 5 2 AR I TR ) FN &5 45 o B2 e B8 224 H (Grochulski et al., 1995; Masson et al.,
1994; Rajamohan et al., 1996, 1998); DIIINIAL T C %, & PIULR AT I B 318 A )2 4L 1) &0
gity, A5 Bt BRI RAT SRS, B0y, DI REW4EFree REF M IF e BRI
AURE SRR, [N, RTREIEA By 1k R 7 3K 2 1 LR AR O E ] (Masson et al., 1994;
Bosh 1994; De Maagd et al., 1996; Ballester et al., 1999).

1. 2. 2. 1 CrylA HI&# 51088

Grochulski %5 X YGATH A BUG  H £ VR PER CrylAa SEAH =AN45D 1. DI
1 DIy (& 1.1) (Grochulski et al., 1995).

Ho, A FENIID T 8 ANodBHEdlk, Bk 7 ANPSECEK. SRR F %8 1 ANMr T
FH SR PRI A K 7K PR BR B 1T e — A B R, X —Z5 T RES S T Al L, i L, %5
b5 0 A 4 B 3R (A0 KW T AT 35 ACRIT T I 1 3% ) 14 A ) 45 R 3 1 5 )+ 73 AR BL (Lesieur et al.,
1997)0 Z L5 IEAED 11 55 WEAE FH I 0 200 R A2 3 K A A4 A e 5 40 M B4 T, A7 1 g e o
o as i, R R R g K e 5 A B L 45 S SR 1 ol e N B A i
22 /N KR (1 M 8 7 20 B o SR 5 T BT PN SR T 536 7K 17T 40 3% T 7K P 128 3l 1

DII =4 2 AT B 318 F )2 (sheet) 4L e, LA “AHEEHREL” #8544 (“ Greek key”
topology) EFEAE—ild, T B-=HAE B — A= MIE BRI k%, AT AT T o ) 5 0 B vk
K BEA 73 F I B T g M T AR X, BRI, LS8R R/ K
FAERAMEAN, FMxgWRkE TRHREMNARL M, s S T2 EE AR
GIESEAFa

DI T C ¥, ZPARPATH B 18 EA gy, 5 p-REHm 4
(B-jelly roll topology), #EMEIKZr 11 C s iR KA IR T B 478 Fr )= 2 W), XM 45 i) fig
FF-Bi 1k B U (B B K I B R AR . SR AN, R RPEES S T SN 4S5 R
B ImIE A e

QIR I HHBERIR B 5 CrylAa & & FYR AL Cryl A S 448 1 (1 Cry1 Ab,
CrylAc)[f) =AM I Y 5 CrylAa 43 AHARL



A A A 2 e 1 2718 3 B iR

DI

& 1.1 Bt % CrylAa B9 F&# (Grochulski et al., 1995)

Fig. 1.1 Structure of CrylAa

1. 2. 2. 2 Cry2A HI&#H 51088

Morse 5% [R]RF X i 81 H RUSUR H 35995 2010 Cry2 Aasi 5 2 (1 S AR S5 04T T 00T, 0 iR -
HARCry2Aas T ISR IS 5CrylAa—FF, HD I B 20 7815 273 NEIEREIE, | 8
AN B AT R B AL B D ITELHG 28 274 A7 1K R & B (Asn) 3 474 A7 1) 552 2 R (Lle), 1% 45
P BUARTE — i) b g AR X, ARAER A 454 FOR 2RI, g =ABIi@h Z4m. 5
HAh s # AR 2, DA A E F )z i — & BaE i — BroalB i A DITEFEEE 485
7 1 21 2 (His) B o 1R 365 633 A7 (I 20 (Tyr) s A2 F 4 M 19 S 1) P AT B0 BT 48 v J2 T X T 3
TR R PR 52 00 &5 K (Mlorse et all., 1998; 2001). 3% = /> 45 4 38 1 A6 B 1) (BAD T (R 25 3k 25 1)
LCrylAaffi b, DITFIDIZ R 147 Fl 6" o A3 = B, %R E AR D Z AR IX,
{EATS RE 4 FF 55 Cry 1 AL 25 0] 5 ¥4 (English et al., 1994).

1. 2. 3 Bt BY{ERHIE

VEZ 235 8 WEYIL 2 . LGV B2 R0y A 2R S5 D7 THEOT T B & I VE LI, (H3 H
BN IEMAEEAR KB — AR SRR T I3 2 ST B sl L & TR B 1 Btk HLU AT (A bl AURk B2 Rk
WOG, e, FEmE s e R R AR, 2 A 25 BRIN- B 1R1294> S SR R ik
FERC-u) 2, NN HRA R BRI R R A0 B R0 WK/ NE62~65kDa [i],
H & Al 1k (Hofte and Whiteley, 1989; Gill et al., 1992; Rajamohan et al., 1998; Schnepf et al.,
1998), % frBhie 5 A g bR g b ItRe e vk sz R s A i, BT BB AR S, R
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SR B AIFET (Bravo et al., 2002; 2004; Knowles, 1994; Pietrantonio and Gill, 1996; Rajamohan et
al., 1998; Schnepfet al., 1998; Whalon and Wingerd, 2003). [K1tt, Btag i) & 4% 3&— N2 AR
—IM S, EWREL NP BRA RS D AR T R RN AR 2) ArEEsRE R A
Jn i A5 T A0 ok A 1 R ke L B R K I s A A IR R R AR T B 3) BRI
Do BUs R AR 5 b i b R i bRy et S AR S S, AN AT K 2 21 48 A B L (Hofmann et
al., 1988a; 1988b; Van Rie et al., 1989; 1990); 4) JEREEEIIFLIF, FEREIRE “ &7~ M “K
m” SEERET. XML FET LU EL.2 (Whalon and Wingerd, 2003)2K £ 7 .

Ingestion

Bt Spores

C Bt Receptor

' o ‘

% ] Insertion ? Binding ;

e b, Top
Wiew

hhﬁﬂb
> J—

Toxin ._ﬁ_;cc pLor

Processing

Midgut

1.2 Bt HZE/EA#1IE (Whalon and Wingerd, 2003)

Fig. 1.2: Mechanism of Bt protein toxicity (Whalon and Wingerd, 2003)

TE R B E P90 16 1) 28 8O CrylAc B Bk LAl b, B T )L B GPLIA @ il
(1) Bt B =2 H(EUIKEE . B PE R MG S5 M DhRE S, Jurat-Fuentes F1 Adang #&H T CrylAc
10 M 28 20k () 4 A 20 (Jurat-Fuentes and Adang, 2006), 41Kl 1.3 fizs. fbfi1il 4 CrylAc
75 2 A 5 A AT T PR ) CrylAc B8 38 504K, #8701 CrylAc 2 5= Al LLAYLZ) & H
T P T T T A 1Bj<ﬂ3 P CrylAc 53 % 5 M 28 Al b R B R B &5 6, JFU0AE 40 e 9 4%
B R G PE S Sl B . BSR4 G5, KA1 CrylAc # 2% SAARE0E— 0 i LB ik
EYMS GPI- %ﬁ%%@(@%ﬁﬁﬂ&@i%ﬂ%ﬂk% N)&it, XEHEAE A ERRETIEEJipid
rafts) 1, BERML S S TR LR B LRI E TR AMER, —
D5 M55 5 R = AE AN B AL, o — 7 OE A R N AR S R T TR S IR O 2 45 T
ST R B S S BRI, 7RO SO B4 A S FIB B R U O EAE R R
A 75 AT I AL - i & S BUR AT,
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HevCadLP s

Cry1Ac crystal oligomer

Totein
3 Oligomer
\nsertlﬂn

L]

O 8
p-catenin
Osmotie shock

Signalling pathway

1.3 CrylAc ZEMEF R K B{EFAEXE (Jurat-Fuentes and Adang, 2006)
Fig. 1.3 Proposed model for the mode of action of Cry1Ac toxin in Heliothis virescens larvae.

1. 3 BHX Bt RS EA L EA

B HOG R A e AL 2 — P R 24 A 5L, (Caprio and Tabashnik, 1992; Georghiou and
Taylor, 1977a; Taylor et al., 1983; Tabashnik and Croft, 1985), BtfF A —FikErk A= M 4% Bt A
WAL o S O A HTHEEAG I B 7R 2 =38 RIEHL 22 A1 (PUMEBE DR, Pt BEp
M H, BEMERESE), LY (ARH, SR EAER], FRETE) MgfER 1 Gk
AN &, HE 2R, it 25 Hu X )& 4% ) (Geroghiou and Taylor, 1977a, 1977b; Rosenhein and
Tabashnik, 19900, 7EUt, FRAT WA T ARG A, B4, BALBERIDO BT M AL H 5 .

eSS H o HUR, RBUE B i (A AR “44 17 (Tabashink et al., 1998).
BRI HTERE U (DR DX —FhCry 1 AT R IFUEREOR T-5001; () KA () XCrylC
ARETCAZ s ) X Cryl AR R 2/ — NS P IBAEFR 4565 ) N BRI e BIH BT R Ik, B
2% MPICryl Achl RFF G 174h (Tabashink etal., 1998), F/D47 = A/ RIS R 00 200K
YHD2/h & EIER R343R R FF &85 17 (McGaughey et al., 1985; Van Rie et al., 1990; Gould
etal., 1995; Tabashink et al., 1998). VX BHUME K — L4 AKFSr b M, (HAE DT I IE KT
LOOF% UM AR 1 I Al RE A8 BEAE AL w i Cry AT SR KIBHEY)_EAFIE (Tang et al., 1997,
1999; Ramachandran et al., 1998; Tabashnik et al., 2000; 2003).

Mg b, 7EBON BRI T R — AN R (R R OV AR . LR g, S
ARG AR AN LI T R i 40 2% R RRAIR), B I R RE XS B AR B
(Heckel, 1994). Heckels3#1 T F BN Bthu = 2= B 10M i EALEE J Foasi A% =X, H N H Hr py4RiE
K&, LLR TSI IR 500 B HOM B A 1) E 2 2R

1 BtH# i

Bt A7 B Rl Va2 HAE T TTAG, 2 SR B B JUAR A 15 AN B i sl B ) ik
H AT R RIS, 3 T RE B R I BTIE R 7 /E (Aronson et al., 1991; Heckel, 1994).

2) Bt HE H R
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BB R RO R AR AR T, 75 P BRI RS8N A G A T B 20 A R AT
A BUEVEI RS E BEEIR . A0 AL BE B KM AN 50 4 BT 25 3 0 B KA, AR AT RE I SRR T
BT B S P PR LA A, R T AR R R BN AT R U . o TR AR S KB R
AN B R HGETE, AT PEC T ke A R TP RO EAS R R, BTRA
RS SEUR A PR FYTEE, 2001).

7F FiBte HD-198771% [ B 73 4 (Plodia interpunctella) itk i 5 198", Hifk i & h I e B
(100 25 11 /K PR A 1035 P A BB B R A, I ELGF Cry T AT 75 22 1R iR 4 T 44K (Oppert et all., 1996).
HE— P (A TR IR Cry 1 AcBBUB A (1) A 5 v i b — P 32 B2 (1 i P it 2K 585 D) AH G (Oppert et al.,
1997). {EBEJE B R IR EEA Cry | AbHT 2 2 I PUIE & 0 Cry LAbEE 2 I 1145, AT IE
TN ZE T RERNMR, TR RS0 80T Bk A4 (Herrero et al., 2001a), fif HiXF
Pt & 2 B HPIMER) . Forcada® 5 4G 7000 28 SO HTIE i RCP73-3 i 5 H X Cry 1Ab (1)
PR, HBURSRAMLILE, Pk S &R TR Cry LAbHTEE 25 1N T W a5y, HX G4k 11
Cryl AbEE 15 fif NP (Forcada et al., 1996).

3) RS LR LR R g A

BEFR S bR Al E R e R S AR S G B I SR A A i B N BT AR B () b
MU ZKAR G IR 2 h %0 Fr BEBE RS A B b i b 2 4 b iR IR 2% i % (Brush Border Membrane
Vesicles, BBMV) &R g &, SEEAMMB L, JFm & R 80t

2 SRR, B S RARE SIS ) S B I R R AR AR . — LR
B R UBBMV 5BtiE = 45 G At ) 588 )R RIEADG, e el REAS b, HbEFpRE343-Riih &
[IBBMV 5 Cry | AbRg 2% (ISR R ) T B T 5065, (4560 SR BE AT 8% o 1 RIS 55— A2 AT
BRI IR Cry L CadE Bu i it Z WP IR Sl R S A ) — 850, AETHE i R b 45 A0 s TR 58 2401 L gk
i AR 3RS, XU T T Cryl AbSS A7 RUR SUR 30T BUrk =4, 1 Cry1Cagh & A7 R FE
() T e AT LUPERE I T it 285065 Cry 1 a5 B2 BURK ) i 8] (Van Rie et all., 1990). 2 BN S 1) 7
EHfE T Cryl B 7ERSEMIEIBBMY A iR RIS R ) (R W 2852 AR E, 6 Kb A7 25
EHH BRI TE 5 (I Cry 1B, 5 KSR (BBMY A 5 8 1S5 A ), S S RIGBBMY ) AR &5
Fo TR RSN R B RIS 4 85 1 I Cry LAb S W % [UBBMV #LL 5155 Fl1 ) 45 4 (Hofmann et
al., 1988).

SRIMT,  HoAl— L850 5 R W BBMV 5 5 2= 1 45 & i ) 5 #8280 2 AU GBI, WiCrylAc
X} i #0dk (Lymantria dispar (Linnaeus)) i & # 1%, CrylAbXf I JL-F- L7, HCryl AbXf 5 2K 1)
BBMV 44 fig 1 51K K i T Cry 1 Ac 1 45 4 fiE /1 (Wolfersberger, 1990).

FEXTCryl Ac AT i E U I 2E A YHD2 1, 5 Cry 1 AcHICry 1Ab (15 &4 G # HA &
FERIAE AU S5 & Be ) A R I, AEHURAT T BEAS HATPE I Cry 1 Aalf 45 & g )N R i 3%
(Lee et al., 1995). s&abitraliG R, EMZEREY, CrylAaZAfimA g54, 1MCryl AbRR
T SR S ALE A UANE S AR B A, Cryl Ackk LA BE4E & 2 AR s ARIBAR, 38 AT DAL,
AL EC (Van Rie et al., 1989; Lee et al., 1995).

4> LI TE B

PN A R A, JFER A SR B R EE R SBBMVE;
B I T AL R e ) 52 BB FLIRTE UG B AR e, 25 5 ma H e 2 28 70 40 M b % R AL,

7
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XFE R AEBUR BCR KA TH 11, BRI Herk i) A2, i HaX M E R & AR R e, BRI 2 &
WA H U

5) Tl bRz g s S AR FRIAT 4 b i Rk skt A7 AT B AT B ot Be ™ AE Hidk

R B HONB™ AP A S Z M 2R, HH TR Bt R 5 BBMV 2 A4 &
877 DA B A P VAR 1) A S s i) B HOR B A= i 1) 35 B2 K 38 (Ferré and Van Rie, 2002).
I, TR dANBtRE R Z A S BtEER N4 Gt B B2

1. 4 RERBtZAREBEARESHEMNXER

MIA AR IRERE, ERRAKRN AR EEAAEL T LBt A E A KN
(Aminopeptidase N, APN) (Knight et al., 1994; Sangadala et al., 1994; Gill et al., 1995; Valaitis et
al., 1995; Lee et al., 1996; Garner et al., 1999). 45444 [1(Cadherin-like) (Vadlamudi et al., 1995).
B % BRI (Alkaline Phosphatase, ALP). JJl5} 2 [ (Actin) (English and Readdy, 1989; Sangadala et
al., 1994; McNall and Adang, 2003; Jurat-Fuentes and Adang, 2004b) F1E 52 (Glycolipid) (Griffits
etal., 2005) %.

1. 4. 1 SKBEEN

Z Ik N(Aminopeptidase N, APN) & — FloHl 2 4k % 15 156 WL B £ % &5 A (glycosylphosp-
hatidyl inositol anchored protein, GPI-anchored protein), ‘&) ¥ZAF7E T aMEYIH, A2 & A
SR IR AL ) 73 R 2 IR 7y 42K S IREN (N (EC 31411112). A (EC31411117). P
(EC 31411119) FIW (EC 314111116) (Ticku et al., 1992).

Edihfly ERAFERAPN, B8 TERENE 2 kMK K, HA 45 WHEXXHFINZ
FERBEEEACAT /0, DUBEREIER (0 B 5 e ULEE (GPY) 5 B bl I BBMVAE, &8 T IR, &
B I SR B B R bR G b, I K AR 20 IR 2 i e ) T PR 2 R IR . AN [R) 2R AR ) APNOO AN [] 1)
R A AF RS AE . BT 5T R W APNE B H B dUb CrylA 55 3 R 244, WA 8 &
(Helicoverpa armigera (Hiibner))(Liang et al., 2004; Wang et al., 2005a)%H 5L K% (Manduca
sexta)(Harvey et al., 1979; Vadlamudi et al., 1993; Knight et al., 1994; Luo et al., 1996).  H 2F &
i (Heliothis virescens)(Gill et al., 1995; Luo et al., 1997a). £ #3# (L. dispar)(Valaitis et al., 1995;
Lee et al., 1996; Garner et al., 1999). /3% (Plutella xylostella)(Luo et al., 1997b). X7 (Bombyx
mori)(Yaoi et al., 1997; Hara et al., 2003). ¥r&U#& ik (Trichoplusia ni (Hubner))(Lorence et al.,
1997)4%, ENFRRKARIEN, EMZ RS FEE DB EHE R R 87 (CERERE,
2003; XL T4E, 2004),

AN B I APNRE 5 AR Btag 2 45 &, 1 H IR — B SR AN [ APN 5 Bt 2 1) 45 & R
WA A —FE. B, EMHE R, CrylCRE 5 106kDalfJAPNE: 45, HANGELS 4 115kDalt)
APN, TMiCrylAcHI45 &7 NNNIEGFAH I, &AL 115kDalfiAPNSS & . fE8E sk, CrylAc
454 100kDaffJAPN1, {HCryl AbHICrylAa4h & HARANF 1)) 1 (Hara et al., 2003). {H7E 00 2 4
WA R R, BT % Y 120KD I APNRE S 5 Cry LA K 137 5 % (CrylAa. CrylAb
FICrylAc) K AR 45 & o XA AR L, APNIL A 51X = fh s £ 454, (H H A Cryl Acfig 5 APN2

8
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GEy o TR IR R IR Cry | A7 25 32 AR APN [ cDNA B Wi 76 K kT & vh B 47 [ RE ) e e ik, DA
K/ y30kDalfy ik 7= Py il 2 Hoad,  GeAS I BRI KoK EEBBMV EAPNA3F), sy &
154kDaJAPNH] 5 CrylAc. CrylAbMICrylFRi &= 454, 2. 3FPAPNH HCrylAc4i &GiiA s
Cryl AbMICry 1 F5; & & 45 (Hua et al., 2001).

AT FAPNE e 5 Cryl AR IR f 3 RAERE 45 & o K&EBBMV Loy 7843 4
100f1110 kDafJAPN[F] T A 5 Cryl AR E RS &, KA 115kDa JAPNY Cryl Aa®i % K 4 Ff
k45 4 (Jenkins et al., 2001). AL, RIERIKKIBBMV EAPNH 5CrylCRE R4 4, Hib
FH I () 2 JH R R I BBMV _ 120k Daff APNA 5 Cry ICRE % 45, CrylCRE & 2 Mt — A4
T H106 kDafJZ IKEFN(Luo et al., 1996). Daniels i M1 # K IEBBMV _E—FP 4l 4L 120
kDa ZUIKBENAfE 5 Cryl Aci)—Fh AR RS54 (AR VE R ZUIKBENED 22 85 7 AR P4 T B
TR E SR, I 52 ARE A, P AR AR PR 44 R EC A4 BV % (ligand blot) %7 5Bt
BERAGIE AR FIEA—E 5 # %455 (Daniel et al., 2002).

B2, BHAPNAE B 2 I —Fr R B2 Ak, LS PUEm =A% DG, HE RUAPN
AERE ST A B £ R AR RIS G, AR RERMAPNRE S AR FIBtE R4S, FH—R©E
AR APN 5 Bt#; 5 I 45 G Be A —FE, =& Z I OCR A i B i) —— X WG R

1. 4. 2 $ERER

58 5 1 (cadherin) 8 F B 2 6% 37 H B HUH 59— 28 = E B2 A& £k 1 (Vadlamudi et al.,
1995; Francis et al., 1997; Nagamatsu et al., 1998; Wang et al., 2005; Flannagan et al., 2005). A%
WFFT R WIAE IR R R S I 25 R b, B RG H EF2 Cry 1A R 3R IOHE AR 24K, 1 BB e 3k
W0 RGP ) AR S 5 B N BB 16 ™ AR B UIAH O, A3 B R H R B AT X —
MWTFTEE R
Vadlamudi%§ B X EMH 5L R EBBMV R I T CrylA 5 25 0 — Mz AR 5850 & A 0 &5
FIARARARL,  F% k245 4G 85 A (Cadherin-like) (Vadlamudi et al., 1995). Francis%52li4l, T &K ik
HBBMV ECrylAb 555 132 ABT-R1, FCAVEKEE . B PEREIR Me M. o -HIRE 7 M. B -7
B I L - U T i R I i R W AN TR, AN GO A XSS T B S 54K . Cry1AaMICrylAc
L BT-RI7E 73 Pt ik 8 AE B RI45 6 5 Cryl AbAHARL X 3 BABT-R1 1] fig /& Cry 1A 55 3 1) =1 B2 0%
4 1 5% #& (Francis et al., 1997). Nagamatsu%5s K M E R ERNFAE PS5 B E A
(Concanavalin A)J W 1 175kDalt) B & 1, &R B H450.01%~0.02%, {H'EH1E %
HE PR B IMIEI R R S BOE S5 &, JFRRIREE RN K& Ry, i HX A 5 A7
ES RN, AEAET NN, MBUE 2T, RUZEARA RSB AREH, T
Je ¥ Hodr 4 HBtR175 (Nagamatsu et al., 1998). #E— L HISZE R, 2K BR1757E SO &
THREAT R I B R AR Cryl Aah I, 4l TEA 2 K AR A4, TR IS F it A2 T e
XRYIBIR175 L S8 T X Cryl A2 @ i o2, ] —F S EAE e, d3t—D ik
T BtR175/2Cryl Aaff]—/> %2 & (Nagamatsu et al., 1998).
AN B I BBMV L 2 AR SR 2 3 45 5 ) 7 3R M RAS — 2 M) AR 2156 3 W], 3FfCry1 A
(CrylAa. CrylAbMICrylAc)#iz #8nl L& 4t B I At 1 45 & o X LR a5 3 1 [ Us PR AR
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wr, e TR T REAE B AR AT LRI 45 507 2. ARl R i, B G ax 3 p B 22— i
HABRMAZ TPk ef g ma LW, e — RIS E D B3R — a5 507 A,
AT RES . WT K, WEOAMFE . FH 240 ) 5 A N 280585 8 1 2 AABIR1758E4T
B A B 2B R 56 AT W82 2 Cry LA I Cry LA %2 AR B 456, CrylAa S5 2R A E A
IR R SE AN Ty o T A EAT A2 0 5 I R I3 i 2 2% 1 Cry 1 Aa i 28 0 5 A 4)) UK 7 ) 5
XU R 2 5 AR SRR ) R B IE ARG

KPR A ZAIE R R 0T LG XS e 2 M E, HE B ARG A A .
Jenkins% 48 T Cryl Aasi 2 I — A N LHR R AR W #5285 R ER R A AR 45 &, HA]
AR R 5 AR IKEEN ) 45 4 (Jenkins et al., 2000). Jenkinsfff 5% & B : 1 Cryl AcH &k 4 3k
[ . CrylAaff) 4t #3811 F1Cry 1 Ab ) £5 Fy 3k ITTZH B 1) @l 75 25 A 5 X A BtR 175 LA 1R & 2%
Dy, AR RS 2RSS A AR o AR R R 45T, B Cryl Aai 521 45
Pyt 11 5 BtR 1750 454 %5 )4 5¢ (Jenkins et al., 2001). SUIb AR K&, BSR4 0t B A%
RBERGE I, EATCryl Act AR, (HXFCrylAasi 2 HR U . Nagamatsus K H K N &
Wrae kL, BB RIEBR17S, RJGK XL B S CrylAafi #4545, 45 R KIBIR175HIN
Uity B Jig — AN T R I IX Sk A2 (A BER 17555 Cry | AR 35 (1 45 4547 (Nagamatsu et al., 1999).
Gomez %5 % I W T 1K R BOR 1 Ik i i 8] 7 BER1FIBtR175 | 5 Cryl ARE £ 45 & N E SR T
5, 4 S HITDTNN K¥ R 2’ LDETTN**! (Gomez et al., 2001; 2002). Al ., BtR1
FIBtR17545 4 Cryl ABE 2 1) 45 6 3 A 5 35 AN .

FESHZERO M, 85 G B 1 (HevCaLP) 41 ¥ 52 A A A 0 5 Cry 1 Aci i 16 7= 21 25 DI AH
%K. HevCaLP KGR S8 T Hidk S RYHD2HIKCBhyb I BBMV 5 Cryl AaZh & fig 11 i) F %, {H
AW Cryl AbFICry 1 AcH) 45 45 B J1(Lee et al., 1995; Jurat-Fuentes et al., 2004a(Lee et al., 1995;
Jurat-Fuentes and Adang 2004). Gahan%$ A\ & ILAf CrylAcHi P miA10 12845 14 2F 7 ik YHD2
i FR N Cryl ATE 38 2 AR R B5RG 2 (R DRURZE T 4l N AL o 7 SRR AR vh i i DR IR e i 7 )
mRNA K 5.5kb; 11 7EHUIE HUAA A B PR ) 3 s = A7 = b, R/l & 7.8 4.4F12.1kb.
740 43 W1 22 WA B bE L U7 .8kb B B L S R UK 5.5kb 2 T — B 2. 3kb (1) Y F i N 7 471 o 1 P 58 A8
Je T I I B P A SN, S ZE A Y HD2 5 3 52 A4 ARG 2 1 5 R 1) 45 )8 31 T R .
252 ARG 8 11 JE R B iy 44 9 Bt-R4( Gahan et al., 2001) . Gahan%: 47 i T %fCryl AcfICry2Aa
A HUE I ZE AR CPT3 50 &R, X Cry LAcHU I F AT 55 K52 Wi (1 BtR-5 BRI A7 T 12 Bi#F 10 |,
XFIABATT S HT R HRE AR, I AR AT A0 Cry LACH A S Pt YHD2 i &, X CrylAc
A T I BR-4FE I T B9 |, (HBtR-4FIBtR-5 Xf Cry2Aal& A W& 5. M1
N CP73 8 A& N Cry2 Aaf HiE A2 K Cry L AcHitE 51, i /& DL SR 39 4% S 67l 11 (Gahan,
2005).

MorinZE AWFFT T X Cryl AcHit: A 310015 FIFRLLE Bl &R, 0 HT U SLHUIE = 2 15 S kG
A SZARIE R i D X I3 G R 548 (el 2 MY 6, F— AN RAS 3 /b S EE R 45 O IX 15
() EU B R 8N B AR IR AR AL, T HLIT AT (R 2K R A2 A Cry LA 45 6 85 4 8 1 K _E 3 (Morin et all.,,
2003). [, flfiTEE I PCRIGTTEEIRAS Trl 23380 JEK 741, #5717 LIDNA K JERE )
IPTPERE R 7 VR I 21 4% FON B BU e 2 R, BB %S @ riel s rlr2. rlr3. 212 . r2r3,
313+ rls + r2s.  r3s FlssZ5E 105 F % (Morin et al.,2003). Tabashinik5 N F it 77 ¥2:7E AZP-R I

10
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APHIS-98R /NS R i 2 b %85 T 1], 12, 135518 (Tabashinik et al., 2004). FRZEETE T
FEE U ARG B KL TR, TR T R 82 SR R F ot Cry LACI 244, A, 32 H1 52 SERT-PCR
(5504 TSR A BRI FE AR R P R IE . BFFUR T, AR 4e X Cryl A A gtk E
BRGEE AR IA ] R, SRR (R R A R AR T T 5 b I BBMV S & 1)
CrylAclf kb, X n]HE M B Cryl Acr = AE P EE R R 2 — (L REZRAE, 2004). XuZEii
BT & N Cryl Achit b S64 5 AR dUMPERIE TR W . BUdk 7= A A2 PR AR5 R 2 1 K 1R 1258
PR AR ST, AR T — ARSI T TAA, RS FER, S BRI 2 k&
FIAL A7 4282 FE R HE (Xu et al., 2005)

1. 4. 3 WREIHBEREIANHNED

ol et T2 Wl 5 DA I LA — N A R B0 P o, S agl A2 S 1 06 e A 1ol IR TR JUL IR GPI 4 € o
FLAE 1989 “EI i, English Ml Readdy A A 25 42 i o i)k 1k 175 2 W (alkaline  phosphatase,
ALP)T] fig J& CrylAc 3% K (English and Readdy, 1989). FfiJ5, Sangadala 2% 1) S5 % W 0 2K
Wk bR IR B R I VR S A RE S N CrylAc BEERINGS A, JFHEWT & nT 58 M 5 R ik
CrylAc %2 ¥4 (Sangadala et al., 1994), AHARAT ) A& IR 4 I0F IF A5 [ AAT 240 1 R .

T3 2003 47, McNall&5iz HI 8 E A B 15 IR B 1 700 2 R i b A7 75 P A8 (R BtRg 3%
R e Bl 0 IR A LN 2% 19 (Actin) (McNall and Adang, 2003). At AT T3 3k 2 AH R XUR FfL 9k 22
AL TR BBMV A Cry 1 Ac 32 1K 8 4L A GPLAS & 0 2 R & B 4L, B e 10 3 K i Fis &L
(Peptide Mass Fingerprints, PMFs)[#) /743 %] 65KDal#CrylAcf] 52 {4 1 ALP( McNall and
Adang, 2003).

R 2 0 0 R R T T R S (HVALP) B /& Cry 1 Ac ) 52 f& (Jurat-Fuentes and Adang, 2004b).
Jurat-Fuentes®5 {E YHD2 [ 565l b0 3 YHD2-BIN KB, HIXTHi#, J5#H M CrylAc AT 73 1%
FpetE, JF BHXFCryl AbFICry1 Aclf) 45 7 BE 1198 59 (Jurat-Fuentes et al., 2002). X845 4¢3 0 5
T HevCaLPZ 5 THEHISL, e 2SS THEM . h T i EIXA W, AT T
Pl B duhfig bRz an s s B ZE 5, KIS Cry 1 AclAIAE RE VN GalN At Js vk 5E 1 1) K 5
#t % % (Soybean agglutinin, SBA) 5 BBMV g4 &, (HR/bAMWI & A4 &M E D T
(Jurat-Fuentes et al., 2002). H -z —4 %3¢ il i GPIAH & 1 40 5 85 FTHVALP. gk — 28 ()6
R HPLE S R(YHD2-B, CXC, KCBhyb) 16 1 % i i vf MR A T B R YDK, Hrbi
P b 22 YHD2-BH JIEBBMV 1) i 14 B35 198 1l (10 37% 14 LE RRCRE b R YDK& /D> 1 3 £ . 1% YDH2-BAI
YDK 224 JE ARF [ AE R, FiARK Cryl Ackust, H 2 op itk i R B 11 & 5 5 YDK BT
AT A UE T AE 0 2F Ak R a8 R B 5 Cry 1Ac BT 1 % U #H ¢ (Jurat-Fuentes and Adang,
2004b).

[, A AT T 3 OO F K 9 7 72 R BT i R (YHD2-B, CXC, KCBhyb) i) fis 1t i 2
ity (1) B A T B8R R YDK, 2 W 20 R0 o P Tl TR Il v M () 9> S P AR A OG . AR
—PiPEd AR CXC Y, BBMV 5 CrylAc fI2E A1) 58U AR YDK 80, Bl 2 Wi 1)
RIS PO S, (HARI S CrylAc B45 4 (Jurat-Fuentes et al., 2003). Pitk, o] L
(R s 0 Tl TR I e P gk 2 g R 2 AU o0 78 3R UM R 38 0 2 DT AH OC R R AR AR T HTLBE 1
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ANTERE

Fernandez 5578 3% & AL (Aedea aegypti) 1) H i & BIE ik GPI i« K/NA 65KDa (14
PERE IR MG AZ LA A A Cryl1Aa (D) EES2 A4 . 78 F IR RN C (Phospholipase C)4b Bl % J At
ol b g0 R R UK BBMV i, fEAEM AN EL GPL 7 AU e S CryllAa KR w45 &
I . FHZERZHTI 78040 T X — 65KDa &, 1 200 il ME B R B vE . 45 1R
] GPI-ALP & 52 Cryl1Aa )5 & APy 5 P () 5 22 (1) 7)1 52 {4 (Fernandez et al., 2006).

McNall HIAdangifi i WesternZi A8 45 5 Ik 5t 55 S0 77 kB 5 5E T 53— 43KDIF CrylAcZ 44
8 N WL 2 1 (Actin)( McNall and Adang, 2003). Krianamoorthy %5 7E 8 25 7 ik b i ik £ 11 41 1)
AW RIRBIK E E, I8 E N Cryl Aclf) % 4 (Jurat-Fuentes and Adang, 2006). F5Z |, Jlli
BN O B 2 AR — EARAERE ), DR LN 1 5 R O T 2 A L A A SR 2 R
gre fHJE, WURCrylAc R 5 HR H E 45 & N5 R A R K 2 Il 7 38 SN i)
illlez) =g = IV.-aa o (B S | i s - S P L BN S0 (0 o et 32 e -4 S P MK il - S SR g - S R ED 0]
VAR 51 40 B P 11045 2 2% 3 25 B 48 1) 47 5 (Lilien and Balsamo, 2005). Cryl A®; 2 5 854, &
M1 455 5 BT S 2000 40 B P9 40 0 37 12 38 % (apoptotic pathway) 3G 5 Cry 1) 55 P 4 5< (Zhang et
al., 2005; 2006). Jurat-FuentesFl1 Adang#E M 7E 08 28 Ak, — 73 Cry L AcH F A ik & B #e4E H
T, 2R ST (W11 1.3, Jurat-Fuentes and Adang, 2006).

1. 4. 4 FEBS

AR T AE S MR N T LM B R . FAE19994E FII %, SilvaZe il M 7ER T
Iz (Culex pipiens) () 1 iz H o4 %2 0 11 15 7] g2 —FPBtig R 2468 3 (Silva et al., 1999). 2001
F, Griffitts 55 & IR 20 AL P 26 da 55 i R AT 26 HL (Caenorhabditid elegans) Hbre-538 K 4w 5 11
B-1,3-F-FURH L B i 55 Bt B 26, bre-5%E R 1 B 2k £ 3 S X CrySBHULYE 9 77 2E
(Griffitts et al., 2001). 20054, Griffitts® P X RIAE XL HAR W AAE— RIS IR Rk &4, &
Aefg S BtaE 28 RAERF R4S &, 10 HLIX P 45 G A8 T X B Bk AL S D A R . X R
KA G W B R 5 | T W B A 42 RN Besg 2 I Bk, IR A X g Bk 7= A 1) 3 EEH L (Griffitts
et al., 2005). 7 Al 2B b B R B R O, BB A RN B,
Kumaraswami 55 71 /N Mk (1) Cry TAcHT P i & b & I HL W8 I 2R 4 5 9 1) 2 B I T 0260 &
ECOR VAT W A B0 ) e R BtEE R DI RE AR, (HHEE E M AAN RS 5 T PUE I
(Kumaraswami et al., 2001),

B, BEHE N Bt HvE O, Bk (1 5 PO G IR 2 AR R DR B o B R v . B
JU Bt PTHENLE 2RI 2R, ANF RIS AE Bt # R PUENLEIAF . wH, B
Bt [IPLER 2 RN R /E 458, ik, RERAMBWIST Bt 5 K2 K&K (12T Bt Hitlk
(08 ), R kg R 43 B AR R W) FE ) e R R A A R A B AR 25 Bt M) B AL
F7 ke 2R AR I AE

1. 5 FHHMEAERR

B B R LR, T HORBEAHTIE O™ 5 aH BB A ] RESEA T, DA 22 3 Lt
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PEVE P (Insect Resistance Management, IRM) 515 LA Hi(Brunke and Meeusen, 1991; Denholm
and Rowland, 1992; Gould, 1994, 1998; Tabashnik, 1994a, 1994b; Caprio, 1994; McGaughey and
Whalon, 1992; Alstad and Andow, 1995; Liu and Tabashnik, 1997; Zhao et al., 2003), FEAFELLR
JUAS I T AR 45 it
1) 5 S I (A 22 B A AL T 3R

T SRS T T o) P e PRI 3% A 1 ) I e A AT A, AT IS BB v 5 JOi H . SRR DR R
WAy € YA 5 32 BU A 52 24 2 s R F 400 3, XM R I ash 1R s, Rk
BER A ERIETE M KPR B R A R DY) bR I R ke v, AT REAE T L ey U 3
M5 20 FH WAL ZEIE ,  IXERE BEAR 47 1) S 22 Hi M (Wilson et al., 1992; Gould, 1998). IXF Sl Hy
MEANT LSRR BT, R REY)A S i TR (. inBtEE R NAEAN AR ThARIA, TR
PEID AL B 450 K 0 [ I SR VR A A2 08 (R BURR 4y T ) A AR T, T vl S 22 P A R A2 L
BEIRT B, YERE H A) R RS

B, ERIPERERKIFAR T HA R BOVAL U R A Bt 2=/ — Sl B
FIEEIL, e ALl LU R RIS, FF U] BEAEAN R A A B Bo g FIAN[R] i 4L 231 4 3k
WEFE, IXFE— R WS B 2811 45 F 02 Ik i A ZE 28 HUk ) 7= 42 (McGaughey and Whalon, 1992;
Frutos et al.,1999), KM AN & 143 v B
2) ARSI/ RN

M A HT R D) AR R Bt R, RS R R RIE AR & (0 75 3R AL AR 20
BRURANMA, S2m TR H “PihE” FIRRAT MR T, EEATERN T HORE S, A REON F
U A T AT B E 2 HUIE R RACR o (T I B A R L S ' S0 AT FH [R) SEB 0 AT R B, %
A 1 EE BENEUE W] I SRS AT B T SE G2 pUPE R A AR, AERECE K, BN LE “ pidt”
AMAALT- S A2y, IXFE—RAZ SRS EAINIE T PUE R A T AN SE 22 UML) 7 A2 (Frutos et al.,
1999).
3) gt B R T SR e

TSR Ky el LI R0 77122 (Gould, 1998; Frutos et al., 1999; Zhao et al., 2003). %5
W BN F BN BRI BT R PE R, H— IR BRI B A SR B DR ], IS Al Ay = Rl R P 2
ka1 (SS), %G T (RS), MPIMELE T (RR). BEH oy LHMA T AEBtREEER,  SS.
RS. RR=FNEH MU REAANT, A5 AR IAHBYEY VA RRAMAA BEAFIT « AR K& 1S T
P HISS R S FEBHYEY) B RG> IRR B AT AZ G, AR i /R 15 4% , SSHHUAIRR SR HEAT AT
PAERFUARS, MRSEBHEY EAREAAE, Bltk, REERIBIAEFEP AR, MIMELE T 41
PER R

EAZSRIS A R IR 58, 2RI IS S T DU N =AMBGR: 1) WA HTIEIER H A
fiX, A<10-3; 2). EaPkwifl: 3). PUrEMABENBURAARE B HAChC. (HRIRZ IR, L
FHIFAFFEIX AN FAF I —ADE A B, TERCYN F K (Ostrina nubilalis) M 2F A0 4H
BRI /RS A2 AN 5 4 B PR B AR RS P8 % [ (Frutos et al., 1999; Burd et al., 2003). Mk, %
FeWE L2 B TR I AR P S Brtl ol . B AnTEBHERERN TR BB B, A0k n] Reox iR 2IAEBHiE bR
oK S 3UE AL TARE SRR F (Chileutt and Tabashnik, 2004). FFK, 1ZHHE ) 55— NS L2
HeF SO R BURME I A — B RIS HE T TR SO, A A 3 HOn 25 28 A BURTE
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5

RS ZEAFEI, RIE—FE 200 — i dOm 5wl g &, H0 o) — R o e rh SRR 4
AU, RIAS ] 58 58 4k 21 5 71 & PR HE(Gould, 1994; Roush, 1997).
4)  OBrREER KM

R R R B TR RE 2 S AT 5 B AN R AR A7 s m A O 2 1, el K JE Cry
B 28 B0 [ A AT I 75 31 B A8 BLH TV I 75 3= 5 A RLRR AR AT SR A8 R B SR R AR AR . 8
FE R R I8 BT RT3 AT SR I Cry BE 2 I RN, A A 7 B o B b = AR s g i R i
(vegetative insecticidal proteins, Vips)5 | T AAI 19 (Schnepf et al., 1998), X4k U [ 7E 4514
Fihae b5 Cry B AN, iy Eo6 58 H R H B 3% (Liu et al., 2003; Lee et al., 2003;
Williamson et al., 2003), BRI ARG 5 1 A —Ffogir (10 35 DA e AFEAR Y T SR AST I e LU L DR R A7)
FHSyngenta (Greensboro, NC, USA) A w#FAM VIP Cotton™ L} 12002 ~20034F 715 [ 58 i sk
(http://www.icac.org/cotton_info/tis/biotech/documents/ recorderdocs/june 03.pdf ), 200544 fL Uk
A H )R T B (Bates et al., 2006) .

Foh—AE Cry #5252 M Photorhabdus luminesecens HL4lifh R IEE 5 A, 74k UYL n)
DAG IS aF FI0T, Sl BAEY) ool el H O H 3 A R dis P (Liv et al., 2003). R 1 #
# A LUSE, P luminescens #A 4 AT BEAT JLANAS R T H 8 g i 1R % O PEBE PR (Williamson, 2003).

BT B B A A% HOE I 0 £ 3 R R R] DU B E D 2 BEE R AR . Bt S5 Cry 33
ANIE] () Vip R 3 8T 2 ARUEAT T AR 9IS [F] 55 U e ) o AR IR SE AR 75 3= 0 AR RERR (1) 22 4 P
PR IE A RIS o
5) XU AR

T2 PRI & 5 T T HOG R 38 A UM IR B L — Rl B R BT IR AR AR B, A
PR O AT Z7 B AU Bt 75 ZPUIEM S (Tabashnik et al., 2002; Zhao et al., 2003; Bird and
Akhurst, 2004).

R T RENS KA L R EY) it MK 75 A LAAN, XU R RV E P RS I <<y 7 B/ 4 > S s
AP F, 58—, TEEPEY) b N 2 LU NS BE DR S 20, BN A
A2 Ht AT e, B, 2458 O A i — P PUANEURSINT, O6f 55— i PR AT B4 SRR i
ST, U S RV E AR A I, AT AR SE /N TR R EE 4P T (Bates et al., 2005). Roush
(1998) BB R HHEYIRIENE RS 5% — 10% W Frodl T Hurk s A 2 R S5 6 T W fie
FEPMEYISE G R RE S 30% —40% IR BT, JEH AR T RO XU B R ) e A8 BT B L T
AT PASEIL B K R 7 o

M TG PR A LR R XA BRT 400 P P [ 3 G ) IS A il e SRR AL ) (9
A2 —AH R IE D) . R IR AN RN ) Cry B8 22 REE IELZPUIE I & JE, (R SR BE DR R4
B R R RIS MoR, e 0 SRR E IR 323 1 2K« Zhao®%(Zhao et al., 2005) LA— %)
CrylAc FICryl CHUPERERATAE 53 ) 40,1 F10.34 1) /NI AN R B TN SR EHEAT T 5T 247
KRR % NI IE 224 ~2640U5, WA IR RIVEDII [ MO, 25 RBURMG 24 R XOE R 1
Bb=, 7 AR B R DR RE AR AUODUIE RTABL AR AN BEAETG 3R W] XU o DR A 40 R B0 5 DR A0 ) T st e
A EE FUMORE e XU P E ) B s A i B o DRI, AR, 20034F I8 1 L VFFLA(Cry 1 Ac)
XU e PR (Cry 1 Ac+Cry2 Ab) s Bl T [R) S R, BIAE D28 1k 1 SR IR AR 1 28 7=, A i
B B 1) bl DA RIIEZEHTIE I HUR (Bates et al., 2005).

0
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Haz b, 20024, 55 AL MEBollgard 11 (CrylAc+Cry2Ab, Monsanto Company) B {X{E
WP AN 5 [ e L AEEAT R AR AR ™, 200545, sV BRI SR SN s 2B 7B B, JEA:
BN A HEBollgard 11 T-20064F 1 461k A A2 7= Bt (James, 2002; 2005).

BIME 2, {EBAHIRFEE S R IABOR KR F I = Ho$8 , F JONBHEY) = A fitEA 2
CREAS” P, WOt “AATEE” )R] Ai(Bates et al., 2005). ARTT, ELEIAKR, FAMIAR I E B
BEYIPIPERIE . XA Re S LARLAREREA R D EEE: 2 IRIKPImPtEmZE: 3) MIE
BtYEY) sl Ee 4 B bR (U R RN SR R M RE s 4) BRI Rk I Rl 2 R IR H .

Rk, FATEFH ESCHR B et B mE S BUED AT I E R BRI RN, AN BE 20 R HL
— L AR BT VR A DB IE IS R BUEDIREA T LG Biva . B, fEBOCRY, i H#
PE3E, AR A A5 R 55 T OR BRI R 2. IR, AT — AN Puithvh B g BE I M)
TR B W22 A H o BUEYIHIYER VG PR 020 DAGTIE I T A A A, (RN E A 20 %
JERNEUE S B RIS HUIEIR B FE M, 4 LAV BT v AP B5 va f Ttk AT B4 H [A] 1)
TGP, K1LARA W F RHTPE S B A A 0] S8 1 1 7

Size and gioption
placement Fitnaes Secon_d
Grower cost of generation
Refuge compliance resistance plants
: __ Multiple
Biology toxins
of insect "
Insect 5 v |
resistance @ <«— | ove
Susceptibility management toxins
to toxin / i
High Inductible
dose L— and other
romoters
Expression P
level
, Cultural controls " Natural
FIeS|§tar_roe Regulation and other enemies
Hionitor IPM tactics

El1. 4 200 REAXMBEMINIEAEREAEE (Bates etal., 2005)

Fig. 1. 4 Factors affecting the efficacy of IRM strategies for insect-resistant transgenic crops

1. 6 BR-FERGESINEMRHFIAEF—RAFEFHREREA

B2 A8 11 9 Bt 3 2 18] (K AR LA A AS B 8 -8 A T AR LA . BP9 R LBt
RERZ MR OAE o 2 U R AMRC g 578, RS B R R Rkt T hnid, Ra
Bbmc i R R 5 A B IR Sl AR A SRR 7, 28 A, SR A TR M B R A
5 IR AR S RE S KD o B BARIE R 2 AN EAE I ASPIRES, [R5 )24
BB R A A G L oot M AR AT SE I o iy oy o — Pk sh s &
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(KT8, JCVERAU AR N IR LS O o

VF 2208 £5OR B e B3 i A, G o B S 2 3 i A% B 1 3L 9k £ K (Surface Plasmon
Resonance , SPR). " MK A= WA BAE R BEEE ST, J& TSN AR R e AT %07
IEADREN E AL 53 I B, RIS RT AR ST 855l 25 1) 30 ) 24Tk, HoAT LRI 50 1 1A)AH
TAERME BRAST, ] LUK JE s AT ) V2 3l P BT B AR T 9T 6

1. 6. 1 SPRETIERIE

SPR & — MG ISR o 24— TRV (0 O 41 016 LA — 5 A1 NS S A T2 < B ) B R 3
T A A4 ORI 5 m SRONI DY PR U8 1) et B < B A 3 0 P T iR PR UL I, DB RITRS & AN i 5 |
KA I, RIRTNAE & IR, IR K e A SN DGR B A )N, BN NS OG
F1E S SPRA . SPRABifi 4 8 A AT R (0 R4 AR AL, TS R AR LS SR & 0 1
B RELE . TERSPRIIL EA AT 2 — )8 5 1A B S T A7 45 (Stefan et al., 1991).

AT TR A D' (PR 2 oA R T 55 25 A NI A JRAE ST b R A4 SO INE - A SRR
BRI B TARN, AERAN T3 T0 A5 2 A R 5 RS 5 St 32 B 2 b . SPROV By
HAE 5 8 2 I ) A BT AT S R AR AR, T A T MR AT R AR . BRI, AT B A
<P T R A TR AT R A, AN [ s A R A T A5 2 1 A AN R TR T R — MRk, B AR
JE T AN, SPRIFIMT LY 5% 5 AN [H] (Stefan et al., 1991; LT, 1997).

SPR “EWtt s b A=W 43 71 ELAE ] 43 FT (Biomolecular Interaction Analysis, BIA)IF &3 T
KR, B PRET SRR R e E L TR IR AR (4 RS E—— I ——3K, &
WAL S RN, a0 R oy Ik A g &, Wl R i R i 2 05, - B0ER A
B, S5 RS TR AR, A SRR A 2, T R AR SO D T ik
DAL 45 5 (1) 5iR 55 5L 4R 0 0 SPR M e 1 e e () B8 2y, Al A I Fl 0 PO % 0 gl vy LA RS 0 380 A= 4
S FIRIVERT, R, FoAi st ol DA LA I SPR A 5 1 e 2% vy W ) 431+ Ta] PR AR ELAE Y o dn SR 1]
NSRRI E, h REAR R 1 4 A1 1) S AR R 0 EAM ) H AR A=) 73 1 3047 € AT I (RS AR D5, 2003). &
1.5 SPRIF LA J BE 4]

Sample 0 0 . o O
Flow channel O
N f
Sensor surface o) O Oy O
~ & &
Gold film ——

Glass slide

Polarized Reflected
light light

E1.5: SPRIL{EEERER (7 L%, 1997)

Fig. 1.5 Principle diagram of SPR
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SPRAEAME I FE AT (D EW > T HIAT AR CRBIC, 255D 5 (QBURIZ R AR (9
LB BT R ) 5 GRS I A ORADEBEEIRBO 5 (@ fE S/l )E5M
A 3. fERTSPRRHE I EY KA b, AT e ® . A VE Fl B [ 2 Pharmacia 2y
w27 [FIBIAcore (X%, I HHILA & LW 70 TR AR 0 A BORBIA . AEBIARJMGE s 5l
11 Rl R et 04 i ISR s O A PSR 7 ¢ 97 371 7o T P B e O R (B
(K145 G, R AL I R 45 5 P T R R AR AR, 3 EURIE A R I T R 1424k, 5 HEESPR
FPEIARAL, ) DIOE A XA AL I 7 5 T A ELAE A

1. 6. 2 SPREVMFSERIMS

SPRUGVAAERE T 731 (AR EL AT AL i HAT AR (A0 F8 FEARRC A sg i Aer il A& n] LAEA T3l
T1EE MR s ST BRI T AR AR R O T Nk Jr %8s SPRIINGE AU SRR
PEMIR Y T IRARIRGL, i FLE IR K A2 16, I Be N BRI T 3R AR N A BT SPRIE
AT A REME I, R A5 (B (RIBIE 5 A0 K 03 AR LA Y (R I e AR sl RO, SIS D 53 S 2 (1)
gitr e, ROET NS, KR ARSI LI o IXA SRR D A SR A ]
T R T I o

FESPR-BIA RS il b, AR AT ASRE: (1) e lE——0RLe 0y 7 4 TAIEAEHI? (2)
RE——AHEZ DL G0 170 (3) sy ——MIAEH R g SRR sl 2 7 4)
SRAPE——H AR AT 2 K (5) WA ——2 SAAAEARAT SR AR 2 (6) AHILAR AR
KN4 GBS A FRE R S AFAERT R ZR ? SPRIFIIRLEE i, AT HATAE 1 R el ke, o
T P R E Y SN R, W A - AR IR A AR SRR AR
AR 4K BRI RE . SR S REIESS, WOARRE. WL 258t SE
S A S TR BT

1. 6. 3 SPRESZE-ZIREESHHINE

1T SPRAEAR LT (W FTAE MRy T IR AR ELAE L, PR, AEREST B B2 AR H 1 S BtRE R AH
HAERTTARR T 2N B, v DR AR G R AN R R 2k, fEOER
RN IS 55 PR LB ST R I MR L. ARk, R AT il )
X pi, JES ST TR LA .

SPR A B4 56 [H TR 6 WK1 Adang Jréil T i SR AL DN ] T019T Bt #R 5 B2 4k
FI%E S 45 5 S W (Masson et al., 1994; Masson et al., 1995a; 1995b; Hua et al., 2001). F-7E_E/ M40
90 “EARHI, Masson S5 itiz HIZ VAN E T =424 (Choristoneura fumiferana) BBMV
Hl CrylA, JHH5TT BBMV 5 CrylA S BAH BAE A o A ATT 30 ek 542 [ g 0 R B2 [ o 9 A 7
203 5% BBMV [ 05 b, AN T I 1 E ORISR ST Tk Bt B
R AR EA SR, AR5 RV KRR R S BBMV i G IE s A Uy (0 & i
KA 2R Z [0 BBMV [ 5% 4+4E H (Masson et al., 1994).,

[, Masson AT 1A HLAEMH BT L 00 20 A0 RN D o KIS A5: it ) B2 e i b Bz 40 i i
(brushborder membranes) I f77E Bt B2k, TRMATZH SPR HoRMEAT THIFL, BFFTRIL,
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JH R A — K74 120 kDa (12K 8 1685 37 CrylA 8% (CrylAa.CrylAb Hl CrylAc)
ghty. WD RIL, CrylAa fl CrylAb 5Z2 M (45 A WAL S A 1A, 439
REF35 55 2 0 45 R 1T RS2 AR 3R (1 AL 05 2. CrylAce 52MEE ARG A SHE 2 4, 1
AT 8 R IR T R ZARE AR 2, 55 1AM T 8 R AR 2 AR A A s 1, o
HHISE AN ) L BT AR 3~4 £ (Masson et al., 1995a). [7] 5, {4715 Bt # 2 [H @ 45 05 AL, % BBMV
VERRBNHIR AL RIS R, W — RASHOMT, BT &R R EAENEN, JFdaHE
TF 9T Bfl 52 52 PR 2R (1 RIS R UK AN 45 4 25 1 (Masson et al., 1995a). Ji& KA1z H %At
— IR T CrylA B35 W ZERR T 2l e ) 170 kDa (1) APN 254 (130 12245 bE, Al R4k
L1 170kDa 1) APN [E5E 75 CMS5 5 b, SR )54 Bt 22 s RBIAH, AT WIS Ak A e 2
A1 Bt SR EE A (Lo et al., 1997). Hua AN Bt A 85 2 [ 5w BIAEMME G R 1, KBS
[ 5E 1K) Bt i A RE 2 [RIVR B UE T Bt fifk 6 WR#ER S BBMV IRGRIRE N KM, i Bt #
A5 BBMV [RAHTLAERT, AT B RO R ORUR 15 S Bt 25 25 152 44 25 (Hua et al., 2001).

Li %5F /| Biacore 3000 CrylAb #l Cryl1Ca [f 2 7E CMS {7 I, WPtk FHRRUE & & 1) R
FoKIE ) BBMV i sl AR 8 &0, W 7 # %R 5 BBMV (K26 M1 ) (Li et al., 2004). 444
U & 1) BBMV Jliik Cryl1Ab B R, &I SPR ({55 2218 M FFL K, IEM T CrylAb 5
BER AR LS S A LE . TPLIES R BBMV 5 Cryl Ab (1456 RIS S RAH2ZZ 057 1 K
ST B MIHTIE AL BBMV 43 51385 Cry1Ca iGN, K INAE SPR _FJLPHAZRIE S, # ] CrylCa
M H VIG5

Gunning % MARES HA)) HOEL BRI T SR, (R I 3E i 28 SERR I ¥ 77 V20K Cry 1 Ac ] s £E B F IR
T, W% BB T R BRI Cry 1 AcA7 7 LB R K 455 58 J1(Gunning et al., 2005) . Xie55i# i PCR
T VE S R IA T 2 A0 R B O ARG B 1, IR 8 RURAR (R R A T SR
i, RGRHEHAEABEESH B, REREE I CrylAb, CrylAclE it sl AHE 8y K ik
U IX SR ITE R I IR, AR 2 A0 5K 1 AN SRR I AR e s L 5 Cry LAGE &
BE R FE K K (Xie et al., 2005). Kato AXfCrylAa. Cryl AbMICrylAc— i 2 A EBUR IR 5K
A PXSHIFLIE S AZPXRT 7 EBBMYV, AR5k [ E fECMS 7 b, N ISPRECRIIS T # % Y
BBMV A EAEH, #5045 R B R4 CrylAchi M ik 120 00045 (1) /N S2 ik i ZPXR I BBMV 5
CrylAafICryl Acl 45 &8 1040 Bl Bg 15 $)0. 7ng/mm?®, {HCryl Abf 454 JLF Al LLZIE At (Kato et
al., 2006).

2, BEA SPRAUEIE M AARIL, HAE B dU b i) B s Ok JEHAEWTIE B JU Bt
PUENLEIh, B TR R R AR G, AT EEBCA S [, TR et — A
T BATATAR LI ik, B DA PR BT R R ¥ . 7346, BT SPRAEA AR I Dhae,
M6 A 3 F0B 1 F ERBSZ A4 8 (1 i b AR (1) 7 9220 45 58 i i

1. 7 FXHARES

Fe L S RAR KR, B R R A, R AL SRR, X R PRk i 2%
FA, AL 90 AW, Wb, AR PIRSAERRAE T X, PIARAES dUE Fe ik 50% L L,
SERAC I T 30% 4, HEATHIRIE 100 1278, TR, BT HAAG & TIH) .
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BIHIE RGN PO BRI PR BT R AR PRBE I8 BV A8 ) iR AR A4, B — AN R UL ek
ARG BEPUE R EUT MR KRR (ST 6, 19985 MM, 1991, 1993). Hif% Huff &
ST A 2 I S R AR A 7 () R R 2

% Bt PR R R AR D AR 7 U I e Rz, AE AR 7 1 At g
RIE. FIBMRLH AEILE, Bt-CrylAc MiAE AR AT ke, Wt 4 i S U 2545 B
AR E] T EE/EH (W, 2007). K10, B Bt A% B8 B B3 I0RT Bt-Cry 1 Ac M AER0 i AR
RIS, JUHETE Bt-CrylAc #3{EH, %A1 CrylAc FEDSTERG ALK A HR 4 S = I 4Rk,
135 MR AN R SIS Z 2] CrylAc A B AW E Rk Se, F 2 AR E f——Hp 4 dxt
CrylAc Bk =R PTRE . 18 e 1 L2 LA A R ST WA I, 77 Bt AR AR LR i
X, HRR I CrylAc [HTPERERSNEAAT ETIES, [FN, & Bt ARRESRN, FR% dx)
CrylAc [ 32 AT R AR P (Lietal., 2004; Z2[EF, 2006), KMARe H5F CrylAc PP
CLBR AN AR T i

ST, 20 B A BERMCAT LR tH o T AT IR B DR ) LR T SR AR Ok
Bt Hithwm A M. 2002 45, 1 Monsanto 2] FF & H# 0N FE R K Bollgard 11 (CrylAc+
Cry2 Ab)7E 36 [FARG R S A ™ HT, GFEEE. WAF. Mk S7 et I SE mm
LA 5 Ok T AU AL R Bt (James, 2002; 2005). 174845 500 5 IR ELAT 75 b A o
() AN T PR B A e N RS B DR R F 7 O —HF, B AN AR A B .

ANTF) O Bt (R BBURFE AN, (IR 1R AT 47K CrylAc HUVERRE U Cry2Ab 22 Bt
PEMHRIE . R, Bt B3 -S2 AR 456660 (1 SR R B UM Y IR A8 A Bl A R A2 B HO6S Bt Btk =4
B ZHLE . Rk, ASCMWREREE AR Bt S R-RARESRENI N AIEREH AN T
Bt-Cry1Ac ffeHuiE AR otk CrylAc IHUHENLEILL L6 Cry2Ab BB, W1 T CrylAc Hitk
W8 ) CrylAc IHTHENLEL L S HN Cry2 Ab BIHTHEFIAR N R HLEE .

LR O Cry1Ac IPTVENLER IR ST, S 3RATTEEAT Bt A HH (¥ 5 d 25 0 SR 5 BER)
i Bt #3A0 Bt AR A 253 (00 BT AT SEREABSAKHE . TFST Bt-CrylAc HUPEMIEXT Cry2Ab
BT RS, X T 4EZE Bt-CrylAc Fifefffi HAE arFin: Bt K B dupiikva B R A B e S
X, RN F ] Cry2Ab B TS M.
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HEZE CrylAc It B3t Cry2Ab BIHUIENE

TEZ 0 Bt AEVIHTE G BESEG T, FO Ak A2 — Bl REAT AR I 9% B 0] Bt B R itk i) 5
i% (Tabashnik et al., 2002; Zhao et al., 2003; Bird and Akhurst, 2004). K, XU (Cryl Ac+Cry2Ab)
Bt JE[AI# Bollgard 11 (Monsanto Company) WizifiZl, IHET AL, AR, LEH. SBP5H.
SRR AN e AR A [ 2K A 4R HEE Bollgard 11 #E N R AL A7 B Be (James 2002; James 2005) . 1fij %
A4 5 XU B DA R B AT R P ARG A 1) — AN AR D B RT3 & CrylAc 55 Cry2Ab Z M AELE
T HBE.

ARFEDAASES 3 24 ZARIKIE TR CrylAc $UbE i RFIGUR S R HOAF SN S, @A
VI E I JTVEREE T 0 CrylAc HAT i BEHUIE R SE5 = LAY Cry2Ab (BT, 4 CrylAc i
FEPUPERERS A B A S BATH] Cry2 Ab 2415021 B8 SR

2. 1 #¥RIEFA*
2. 1. 1 #HiXBRHERER

UK R (96S, LF):  96S, 1996 4K HIM M A ¥ 2 M LF i &4 2002 4K HiF ALY
HH ], RG340 2 9 F N AR % 22 A 1 IR FZ Al AT o 2% SRR RS, 2000a);

Bt HiPE R =ANERFIMES R4 BtR. Bt A1 LFR10. H BtR K5 T 96S, H CrylAc
RER ML 75 AR, HE H RS MRS (2000b), b, D ORis e REm 9 BEAC ) — 2L,
TR 27 £, 49 AAH1 69 AR50l 5 BEAR 968 AT A4 G gk SRk ik Bl b4t Bt AWl R, H
Bt A& AL 76 fRCREEMEE, 2000b); Hrlkdil & LFR10 KJE T LF W&, S Wu 575, R
F MVP 11 1% & 1fij J8(Wu and Guo, 2004).

2. 1. 2 FERFIENE

% o Wy 52 ¥ R250 (Coomassie Brilliant Blue R250) « EGTA (ethyleneglycol-bis
(B-aminoethy-lether)-N, N ~ -tetraceticacid)~ BKM:(Imidazole)>k H Sigma /A #l;

135 18 1 BSA (Albumin Bovine V). | —4e 56 B8 (sodium dodecyl sulfate, SDS). %
i G250(Coomassie Brilliant Blue G250) Wi ltf%(Acrylamide)s  FE SCRUN M I iZ(N, N7
-Methylen-bis-acrylamid)%§>K Fl Novon;

B-FHMILALEE. N, N, N“, N~ -JUHIL A "N, N, N, N7 -tetramrthyl ethylene diamine,
TEMED)X H [ Serva A w; H 2 M (Glycine)>k H Amersham 2 7] ;

Fr#E >+ 8 12K H Pharmacia, JERURERVEDE ARG R A A ;

oAt trats A2l R i .

21



R AROD R e 1 2 A i S o 5 CrylAc HUPERRER O Cry2 Ab AOHTVEI 2

ik & a0 L 3K15, Sigma 23T ;

H I DF-D HLIKAY,  JE R TR LR ol
DYCZ-24D XU B RIS . EAL, JERtiis—4G)
eI NG 248 Eagle Eye System, JE[H Stragene A #);

2. 1. 3 ERAREER. EPROH

(1) 30% [ TR I I e
A A T 29¢g
PR SO J ik e lg
IN7K E 4542 100 ml

(2) 3 i SDS-PAGE 220 -
HEHE 15¢g
SDS 345¢
Tris 1.034 g
B Sk LRE 7.5 ml
IR s
IN7KE 4542 50 ml

(3) SDS-PAGE 4 & ik (10%):
ZBTK 1.9 ml
1.5M Tris-HCI(pH8.8) 1.3 ml
30% [ A I N 1.7 ml
10% SDS 50 pl
10% MR (AP) 50 pl
TEMED 2 ul
AAATR 5 ml

(4) SDS-PAGE K4 5 (5%)
ZETK 1.4 ml
30% 1) M B 0.33 ml
IM Tris-HCI (pH6.8) 0.25 ml
10% SDS 20 pl
10% 1 TR R F2 (AP) 20 pl
TEMED 2l
SRR 2 ml

(5) 5 5 SDS HLIKZZ e A2 :
Tris 15.1g
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SDS(HLIKk ) 5¢
HER 9%g

7K EZR S 1000ml, %% pH=8.3, JWFREA 1 £%
(6) J-tifi:

xR R-250 025¢g
KPR 10 ml
FH 45 ml
LT K 45 ml

(7) Wi
KR 10 ml
FH i 45 ml
ZETK 45 ml

(8) 50 mM PBS(pH 7.4):
Na,HPO,* 12H,0 17.91 g/L
NaH,PO,*2H,0 7.80 g/L

B F - RS pH R 7.4, &R KH

2. 1. 4 BtEHERHELYK

Bt #: % : CrylAc Ml Cry2Ab #5234 (1 AV RR B D IR 30 8T AE PR A sk AN 5%
Pefit; P ETE i HD-73 BRRkT BRI, 15+ K H] E.Coli &ikfF 3.

20% MVP LK F2[E Mycogen /A 7] 77 i

Bt A AR WAL R BE Bt BIFFCIF R 3t Rt 16000 TU/mg, J& B. thuringiensis
subsp. kuratski (Btk) & 51

2. 1. 4. 1 CrylA BFEZERLML

PP Cryl A B F1(CrylAa.CrylAb & CrylAc)ff)4litk 2 ] Garczynski (Garczynski et al., 1991)
Al Luo % (Luo etal., 1997b) /5%, HISEHE 5 58 FH AR I3 iE A0, IRBEERB M/ T, N-gii il
C-Uiy &M V) 25—y, MBIRARHIEMER R FZAZ 0B, A5 PRkl 5 A BAT, 193140
ABF IR 3R o 5 R BRI FLUK PR g oA U 2

2. 1. 4. 2 Cry2Ab Hy4ifk

H1T Cry2Ab 2 WKIAT B ik iRk,  HAAT 6 X His Fr2%, DA 3l IR AR AN 2 AT 10 5
EARAAGIZE . AR AL ) S A5 AT
D) FERMAOACRE: R RIE PTG A IV I8 S WD, A 10 000X g, 4°CEL
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10min, FFUCHEH T 22008 1 #(50mM PBS, pH7.4, 0.5M NaCl), i 0.45um JEfH;

2)  JHGEME 1 14T 5 SRR, FEH13AE 2 2ml/min;

3) B 1D FTAEBOE I SERZATRE, FEEIIEC 1ml/min;

4) RIS 100 200 500 100, 200, 300, 400 mM BRIEZEE 3 JHEATRY BOUERE, 457
WK 2ml/min, OB KB BRI, RS AE 280nm AL E OO BE4E, JFH
SDS-PAGE Fa il £ ¥ B i i .

5)  FTEHKRYE 5 MR TR 20% 0 OB YE 3 MR, WY 2ml/min, A7
T4 Cuks.

2. 1. 4. 3 Cry2Ab BRI £

T AESE I AR o N 7 wKe, i K oS B 1 D) (A AR A B BT E R, ik ek
g, VR R 2L KM . FRATIRA T 4 B IE M IR 5 AT, i S P BRI IE AT
R B IR BE (LA #h B 1R B SR B AIC 3 3 e 1 e ), FARIENT A S IR (o1 b s e
FRRCGE )Y (BANEE, 1996).

D ENTAEAAEEE: SEH 2%NaHCO;, 1mM EDTA (pH 8.0)IZ2 iR ENTAE 2 10 min, X5
HZEAGEVEROE, FH 1mM EDTAZ 10min, T80 TR ML, oiE 4CAE R
{RAELE 2% NaHCOs, ImM EDTA (pH 8.0)2Em ', JH2Z B 2% 10min;

2)  CRAMEREARNENTR T, R IREIENT AP, BONENTIR T 4 CETE A
PRG3R 2R

3)  KENTERIMBENELE T, WEGRVRESE, TR R TIRACH R4

4) Wedit J5 I RE i ] SDS-PAGE il .

2. 1. 5 BEARSEHNE

PLAS I3 1185 11 BSA AR, 2 Bragford (1976)1F) 5 1E05E AT HEEL ) BBMV Fl4lifk i 1)
Cryl A SR AR A RS &,

2. 1. 6 WBRABPHRFHRENAE

MBS OB T R FR AP W 27 £2°CL AHXHRIE R 75+ 10%. 6JEIH 14:10 h (L:D).

AN SE J7vE S B GE A S I AR BRI E R MG 4, 2000a): 1587 86 4% R P LA H1 31 50~
60°CHI, ¥ Bt B IMABIAR, HESTHCHCR IR E I RL . Rkl 5, K547 Bt AL
TR e N TSN 24 FL/MRH, ARG, ARG ™. B 24 fL/MICh — S, BRI
SANES. 7RG, WA R AR BRI A

2. 1.7 BRSO

AN HNE RS N IR A BT, SRR LR E S R, DU, AR5
POLO-PC (LeOra Software, Berkeley, CA)HLIZ T2, K & i 50 N FTWLCsoo
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H A AR 27 e 1 - 218 S o5 % CrylAc JUMEMEE 2O Cry2Ab (IFLIENNE

Wi1l-W 2 .
[R= —————— % 100 —mmmmmmmmmmeee- 2~ (1)
W1
2 S AR EE A3 Inhibition Ratio
|4 [ i S 38 1A Average mass of the control group
W2 oo Rp— APV )AH Averag mass of the treated group

2. 2 GREHH
2. 2. 1 Cry&&Egiaik

2iALLf (K3 111 SDS-PAGE B LKA TR, LA BSA S X, & 2.1  CrylAc [M2E4E2%L
KB, BATAT LR RIS (K P BAT 140, e TEN SRS A E A RN
H(E 2.1), BOYFRATPE LA EEER, WEWMEN CrylAa fl CrylAb (26 RCR &l .
AT Cry2Ab, th ek H TR BERIAMEAEH, HAH 6 X His-tag, PIE2iL R
T, AR 7245 mi, e RISRRZ AT MR RRIE I H AR BB SE AR ATAE B, AR5 H
B AT AN R LK PRI R VR A T R IR A B 204 1Y) Cry2Ab. BIFFTAEL, 7EBKIMKIEZ ) 100mM I (1)

<+—66kDa

o B
M o

1 2 3 1 2 3 4
B 2.1: CrylAcHiZh{k B 2.2: Cry2AbRy&hfk
1. 4ifbiiffICrylAc 2. 4lifbJ5¥ICrylAc 3. BSA 1. 4k RTiCry2Ab  2~3. 4lifbJ5ICry2Ab 4. BSA
Fig. 2.1 Purification of CrylAc Fig. 2.2 Purification of Cry2Ab
1. unpurified CrylAc 2. purified CrylAc 3. BSA 1. unpurified Cry2Ab 2~3. purified Cry2Ab 4. BSA

Ve R 8] T ORI ORI DR I, BB AT IR v Rk bR S ke, DU Gt A
mh RS A K R I 52 S SR . I SDS-PAGE &I, 1F R KNIZRIE H R E A S5 H IR 2 4y
WA, HAREAKANAA 70kDa, T a4 5 & IUFE FT R 1 DR e b e LB RIRE /N
70kDa ¥ H 4517 (K] 2.2)
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o R ML 4 1 5

55 CrylAc PUERR#¢ T Cry2Ab [T

% 2.1 CrylAcHii. BGRER(BIR, Btl, LFRg 96S, LF)X Cryl AcBIHtEE 8 % 3 Cry2 Ab Byt
Table 2. 1 Toxicity and resistance ratio for CrylAc and Cry2Ab toxins in susceptible (96S, LF) and resistant (BtR, BtI and LFR,() H. armigera strains

7% (Toxins)

ES

(Strains) CrylAc Cry2Ab

WLCs* 95%FL Slope + SE RR" WLCs 95%FL Slope = SE RR
96S 0.003 0.001 ~ 0.005 0.936 £+ 0.106 — 0.148 0.074 ~ 0.255 0.542 + 0.050 —
LF 0.003 0.002 ~ 0.005 1.051 £ 0.116 1.0 ND¢ ND ND ND
Btl 6.681 5.339 ~8.390 1.113 + 0.103 2227.0 2.799 1.927 ~ 4.041 0.648 + 0.048 18.9
BtR 8.914 4.705 ~20.505 0.903 £ 0.100 2971.3 0.161 0.065 ~0.372 0.477 + 0.043 1.1
LFRq 0.759 0.407 ~ 1.152 0.966 = 0.118 253.0 0.150 0.070 ~0.272 0.539 = 0.050 1.0

*WLCso HA7: mg#f 2/glilkl].

O UM (B S R WL Cso /USRS i Z296S [FIWLCsp).

¢ BAME

* WLCs values are expressed in micrograms of toxin per gram of diet.
® Resistance ratio (WLCs5, for resistant strain/WLCs, for 96S).

° No detection
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2. 2. 2 HWXBRMEAI CrylAc BIn$EE

H % CrylAcif) 20% MVP ITAF &5 il SREAT A, &5 R 1. BUZ S 3R 96SHF Cry 1 AclfWLCs
[FI{E R 0.003 mgk /gL . 1M Bk BRI G (R et i R BIKIWLCso A 6.681 mgik /gl kL,
FIXFCry ACHUR i &R 96STT 5, HXICrylAci$itEfEEuL 2227.0 % (& 2.1); FIFER), X TH
Cryl AcEf 2 HL#% 75 AR K IBR T &, JEWLCso b 8.941mg#k F/ghilkl, HirEfi¥ch 2971.3
s TMILFR o FIPTIEAE R, 253.0 fife

2. 2. 3 HXBRMEAEI Cry2Ab HHHIEE

APz R, Cry2 AbST FI Bt HUFRITRE K (5% Cry L Ach TR SRR 2227 5 1B R 17
F14 2,799 mghR F/ghikl, 2 Cryl AcBUE S R 96SH 18.9 1% (% 2.1), ULHABtLE R4 Cry2Ab
TEAEAZ H UM . M Cry2 AbXS Fl #—25 (1 Cry 1 Ac 73 2 0 1% (1) 9 AN B ZRBtRAILFR o [RIWLCsoZ3 51 A
0.161 1 0.150 mg#s (/g kl, FEUE T R 96SIIWLCso (0.148 mgx [F1/glkl) 43, £
X Cry2 Ab A A H AT

2.3 #Hig5ihie

BEAE Bt AEA) 0 K MR, (43 35 LU Bt 25 28 7 AR Uitk i iy B AR 5 fin () — N B ZE R 35
IEZE B O Bt BUbER) A, K Bt VEBIRIAEF A, BEARA TR T LRGSR 1D
¥ Bt /EW) 1 3R (MR IA A HIE — 2 AT LLAVER - BUBAMAAEAE s 2) st/ eedr B ok,
SR B e B BT 13T, 04 Bt YEMIERIA I 3L 0 RRUR AN A Al AR AT,
I JEEA BT IR 2 WA BUBANMR SR AL T ™ 13407 30 ARIFEVEHAFER Bt 283 4)
LE [ —VEM N N2 Bl Bt 2£[X(Zhao et al., 2003). FEIXEEHME 1, 55 ASFIEE PUAS VA At
FUASCAT 80t B A T FH R 7925 o A XU 5 DRI ) A FH PR 7 A2 e N TR DR ) 55 e ) 4 LA i 5
A FEECE AR FH REARAL AR —FF, it R U2 MAREAAEAT B .

Tabashnik 5538 52560 K I CrylAc BA Bk 042 HURHMETE Bollgard 11 (CrylAc+Cry2Ab)
ARSI CrylAc B HUMERILCEL Hix) Cry2Ab A HA A B it (Tabashnik et al., 2002b);
Akhurst &3 CrylAc HriEfie ft BX dh R& A4 CrylAa, CrylAb. CrylAc #il Cry2Ab [f] Bt
A% HU1 Dipel 88U, (HX H &9 CrylAc () MVP B3 Hi0E, X Ui CrylAc Hith sl & BX %} Cry2Ab
ANEA AL H ik (Akhurst et al., 2003); {H)&, Gould 25 &I A CrylAc Hiik M ZERUE XS Cry2A
HAZHHiIE(Gould et al., 1992), X Bt T ANF B HO AN F] 3 2 (A8 BLpTvERE BEA — 2. I,
JUE AN O A A RS, (HAEFRE, T CrylAc HilEies Bt Cry2Ab (A8 T HidEx; T4 31
FIH Cry2Ab s&3EH % E .

ARSLIGRY, SEUKR R 96SHLER, HH—MCrylAchiiiE 75 )5, BRI RN CrylAcHAf
2971.3 fEMIm BEPLPE, 11 5 — R —Cry 1 Acak HUER [ E I LFR o i 220 Cry 1A HLPEAE HCh
253.0 ff5. M0 Cry2 AbIZEMIIE KW, Cry2AbXf & 5 ) 5 U R A, XU T H
B[R Cry LAk HUER 7 126 T 2K KT M5 > Cry LACHE 22 Ui il RBIRFILFR 02 A 26 Cry2 Aby ™ A
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AHAUE, B Cryl Ac B A FUIERIARE JUF AL Cry2 Ab R A 411

AR EA Z R a3 10 Bt BRIk m R i Hihe s & B, AEYE RVZ 5 R4 CrylAc
A 2227.0 f509PetE, [FIEE, FO6F Cry2Ab P24 T 29 18.9 A5 1Ptk . 7= A X FhELG 1 J5L I ] fg
PIAS s — AR Cry2Ab WIS EA E, FRRATE M LS T, Preld) Cry2Ab
TR A 2218, 55— RBEEm TRalh S 2MaiEn, FRAEZSMERRIENT,
Pk 2218 . AT JGE AT REVE R, XuiW] 1 2 MEe g0 T 1842 B It Bt IitE R
@ RE, BRI 22 2 DR SR W 7 2 JE ) (1) N o o T AT IR

EAMIFFTRI, Cry2Ab (IR iR CrylAc thA—FE. B4 Adamezyk 2550 KL, 55—
AL IE A Bollgard (Cry 1 Ac)FIH MIRRAHLLER, 55 AL IL M Bollgard 11 (CrylAct+Cry2Ab) i
HH H i H 5 s AR /D, W Cry2Ab 1A CrylAc IR IHLEEA —FE, 574 e RAEXT CrylAc
FEANEBUR T = A ik AN K S I (soybean looper) (Adamczyk et al., 2001); Stewart 11 Chitkowski
SERFAR K INAE Bollgard 1T R HI T, MHAC R, 5% 5 450 gk (Pseudoplusia includens) FlHLHL 5744
i (Spodoptera frugiperda) 1%L Bollgard A1 MR o )/ (Stewart et al., 2001 ; Chitkowski et al.,
2003). Kk, MF KA HRIEM AN, Bollgard IT A7 A T4 KB VAT . EIEWIRTSCHTYFRI,
ANTR) F HO AR A 25 3R I U A — 4, EJ R E M BEAE T, Cry2Ab 5 CrylAc [ [A] I
ST AT B R HH A S0 3 1 S o 0k — 20 1) 1) 0 R i
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B=E CrylAcfi. B mmEtLE

M Bt FAEFIBLEE AT 50, BSOS Bt HiE i) A 52 218 2 R 5T, ERIR A BRE. 45 E 07
JA A PR SR A A 2 S 1) B OGS Bt FLPE R AR PSR B B IO Bt KB 2 Bt R
AN TG AL 1 B 25 ) AH 5% (Oppert et al., 1996, 1997; Sangadala et al., 1994;  Forcada et al., 1996, 1999;
Herrero et al., 2001; Li et al., 2004; Jurat-Fuentes and Adang, 2004b; Gunning et al., 2005; Sayyed et
al., 2005). Gunning EUNTERES R, BRly & = R RINEfE RS S E 2 MR, e 2
FEJE EZRf Cryl Ac Xt b fiz b B A I BEA M L, 28 380 Cry 1 Ac X B HURE PR R BEAR, RO HT
PE#) T+ (Gunning et al., 2005). TMAEEREGT, HktE R IR (alkaline phosphatase, ALP) A
s Rz O Bt it 3 EEERY . Sangadala 555 #3E CrylAc AT B R WG I (1) 95 1
B 52%, i) CrylAc FG WL MR M & AH B./E F] ¥ (Sangadala et al., 1994); M Jurat-Fuentes Fl
Adang S SGI0AUE T HUE b FR mF O B8 19 W A 1) 20 B R 93D L 5 80T 0t 1 A e 1 )
A%, JFIhE CrylAc B3R BRAAG SRR, HAFEX CrylAc HIMER) LTF, RUIMHZF A
g, T B Bt I S P 2 1 i 2> 55 Bt M B AH G (Jurat-Fuentes and Adang, 2004b).

N T RELFIR T ## CrylAc Bty EARES G R AR AR, [0 B ERRE 5 CrylAc HUPEm
KA, AT BEHR RSN ) 25T 8 T % i 2R RS BRI L B Tl R 15 0 M1 P 1 2 M
1NN CrylAc BisEs . MR MIAHEAER] .

3. 1 RlERE
3. 1.1 #iXRB5EE

USR] 96S il R L BtRAh R L EATIIZAZ T AAF 1 1UF133(96S8 X BIR Q) F 10(96S3 X
BtR?Q), FARIATRI 5 M A WA 5. AEME AR, A T UK R 96SIT S, BR. Figo Al
Fioo X Cryl AcHiPEAE R 300 2971 {5, 8 Al 9 4, Al BRI 3~d4meltf, SREUAHE —2UH
ghih, FSKE 20 SR BLOE T, WRRGER A S RIE ] B4 T80 C UK R

AT A 2RO R PR FEAL I CrylAc BiRE 3 DL RS G L) CrylAc 73R, H
Al R WA

3. 1. 2 FERFIEINE

Xof A AR A0 - FE IR (p-NPP). o- &R Z5 I (a-naphthyl acetate). [ 7 *% RR #:(Fast
blue RR salt)%$4 F Sigma A&, HA4 4T,
B bRA A Bio-Rad /A /= i, %524 Microplate Reader 550.
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3. 1. 3

(M

2

3)

“4)

®)

(6)

0

®)

©

BRI B L2 i iR RO Ee i)

02MPBS (pH 7.0, 6.0)
0.2 M Na,HPO4*12H,0  71.64 g/L
0.2 M NaH,PO,4*2H,0 3121 g/L
¥R, WJEE % pH 3 7.0 Rl 6.0
0.02M PBS (pH 7.0)
0.02 M Na,HPO,* 12H,0  7.164 g/L
0.02 M NaH,PO,*2H,0  3.121 g/L
B WA, a2 pH 2 7.0
02M FEERZZM  (pH 4.6)
1.15 ml 99.5%0K Z.1& SEZ¥F] 100 ml
1.64 g Jo/KEE IR AN 28K E 45 %) 100 ml
B HIRA, M pH £ 4.6
0.0075 M X - KL R IR B
0 0.1392 g XJ-AHFER IR —4h, FHZEIM/KE &£ 50 ml
0.1 M &5 AL
0 0.4 g SN, FZER/KEZR S 100 ml
5x 1070} - A I AR Y I
HL0.139 g X -y, A I E 23 10 ml, BCHIEE 0.1 M BEE
B 0.5 ml, FHZEMAEZRE] 100 ml

0.04 M L Z 80 - ER BR v T (pH 9.6)
EL bb 2244 0.825¢g K E A E] 100 ml
36% ihiR 1.724 ml R/ E 23] 100 ml

BHEIRE, I pH 3 9.6
BRI buffer A

Triton X-100 1.6 ml

TR 10g

VR PP R b

H10.02 M IR 22 pB0E 4 51 100 ml
BEME 2 GR buffer B

Triton X-100 0.05 ml

0.02 M ¥R 2% P 2 25 2] 100 ml
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(10)  FEAEAL O

a- LR ZE S 1.86
[ 747 2% RR 2 0.6

FHIE S B AR T, FH 0.2 M PBS (pH 6.0)7E %3] 100 ml
(1) &g (pH 8.9)

48 ml 1 N #/#2+36.3 g Tris+Z81H/K E 72| 100 ml, % pH £ 8.9
(12) 2R (pH 6.7)

48 ml I N #h/8 +5.98 g Tris + Z&1H/K 4% 100 ml, 44 pH F] 6.7
(13) MBI

30 g MEIE% +0.8 g Bis + 20K 23] 100 ml
(14)  HIKZEMIR (pH 8.3)

0.6 g Tris +2.88 g H& M +7&M/K 225 1000 ml
(15)  MEMEA O

a- LR ZE S 0.0186
[ 74 2 RR 2 0.2

G S N AR AT, PR pH 6.0 [¥) PBS 22 %% 100 ml
(16) 0.1 M PBS (pH 7.0)
0.1 M Na,HPO,*12H,0  35.82 g/L
0.1 M NaH,P04*2H,0 15.6 g/L
WA, WS pH 7.0
HE AR W SO S T STk
3. 1. 4 ESREHIE. BEHNEREELSHH

3.1 4.1 EERIHIE

FifE i 43 A ] 16 B (1) 1) %6 2 I Gunning %5 (1) J77%:(Gunning et al., 1996; 2005), #f#3k4) Mok
FETRELH, O 200 pl buffer A, fRIRAI3, 4°C, 10 000X g B0 10 min Fr75 35 RO 4 B -

BT i 5 F B R (E 2 8 Gunning 25 1) 777560t L& A28/ (Gunning et al., 2005), {134 20
ke I 1 ml buffer B, {R#RAI2%, 4°C, 10 000X g &L 10 min Fr3 L3 B4 B

Pl r s AR S S I E 2 [ Bradford 7774 %€ (Bradford, 1976).

3. 1. 4. 2 FRIEST

Pk S I TR R
7.5% 5 BRI A5 s B IR 2.5 ml, NIEBEE 4.9 ml, 5% TEMED 0.6 ml, 7K 11.8 ml,
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BRI 0.2 ml, #f LA ORI S), RARE NI, MK ES, #E 10 min,
] i W R R T 7K 3

4% BUZ 2% s Bz IR e MR 1.25 ml, WMEIENZ 1.32 ml, 5% TEMED 0.3 ml, /K 7.0 ml,
RBRIRNEZ 0.1 ml, RERS) RO BRI, AR, SRS EE 10 min, 455 E
J5s BRI, IR G

HURE 20 wl, 4°CEREEHD 250 V LK, ApbE Sl e 20 B IR RG Iy 452 ok ik, FH TRty G (o
O34T A 1

3. 1. 4. 3 BaBRISE VRN E (BT BEEh /) 521%)

BB AR Al ) ) 273k I R s I AT el i, R AERE R, PIMAR 202 N o g S
SEBENE 1 H 7 v FLAAR S B Gunning 25 T8 (Gunning et al., 2005).

RESEEEME T S AP P AL 10 plBgH, 285 H 2 B R i 25 s A 240 wl
buffer C, %X HBio-Rad /A ) fiiMicroplate Reader 550 5 HAE 450 nm AWK GAE, % 58 B (1]
B 15 s il — VOB BAE, Hidsk 20 W, BRfE S N Bl B 27°C 0 SEEG LB 3 IR, REK
HEAK 6 &, FENE 6 MG 5 BOGE BAE 0~3.5 LI B v 5L R N, DLW
S KRBT J(mOD + min™ ¢ mg), HISAS #/FREAT BE N (SAS, 1998).

TR ER R RS 0T 50111 A L, 2 Bessey (1946)H 757, RIVIBA W &FH 0.4
M [ H 2 R 720 wl, BEVE 30 ul, 0.0075 M X -Ail R B IR — ANV 150 plo IR RR
A Ja, 48 3T CARB IR GIR G - 30 min J5 AR 0.1 M A5 600 pl 811 .. A Microplate
Reader 550 7t 405nm Kb E SO GAE . LIS A SR O IR HEth 26 T SAS B A 1E4T
WE N .

TR BEMR R R BETE M. ] 0.2 M BRTRZZ i AURF 0.4 ML L Z AN - Eh MRV . ek A
3 % [ B B R IS P R T 5 o ] SAS BRAFEAT W2 I

3. 1. 5 CrylAc ISE5SHANBEEER
3. 1. 5. 1 CrylAc FE SEREERIKIMFHI1EH

Z [ Gunning% 1) J77%(Gunning et al., 2005), R Cryl Achi# 3 MF R 70 HpHM 9.5 (KK
LRIV RE A 9 ANVREERRIE . B S0 pIFRRG YR, FEANA 100 pl BiR RINKREERER, 5 Z [T
LIRS0 4x10°, 8x10°, 2x107, 4x107. 8x107. 2x10°, 4x10°, 2x107, 8x10° pg/ml,
LAINA 100 plBRERANZE B IR, SR T 60 min 52 S BRBEE L, AR R RS Tk AR 4k ke
e EEl SRR AT RS .

3. 1. 5. 2 PEBEEN CrylAc s R KIBEM#1E A

Z: i Karumbaiah [ )72 I i 5))(Karumbaiah et al., 2007).
SERER:, K20 pg (¥ CrylAc AIEER A 1.5 ml M08 ],

Brh, RS S ngy 10 g
20 pg+ 30 pg. 50 pg A1 100 pg Al PEE A BRI R Z.08, =

WLV 2 /N R G )
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AR 2 e 1 - 24 (0718 3C H 5 CrylAc §i. RS HUNERMG LU

AWK 7 10 min uz&rw\“ R HJE M 3 X SDS EAEZZ MR 5 P 10 min, X5 sibridt
1T SDS-PAGE Wik JHZ% G2 db A gutt, It 40, .

SE IS8 - *Eﬁmgi%bﬁmﬁjﬁn)\ﬂ@%n CrylAc HI#E RN, 2V, e w5
TR N, VI TE] 385 1 mine 10 min. 30 min. 60 min. 2 hr. 4 hro J& 223/ [H
ERSER . HH S AT g, B R ATE M,

3. 2 HRES#H
3. 2. 1 EBgEHAT

BATS 4 R e AT T 08, 45 R 3.1, ECryl AclBU i & 96SH, FrA 1L AE WL
P45 LU IS BT ) 45117 o T AE Cry 1 AcHTlE S R BtR Y, FLHRREG 4515 W A Cry L AU i R T 57 o X
ENHATAT, RIHEENIZRAZ G —F 1, Fig (96S3 XBIRQ)MF40(96S3 X BIRQ) A A
FHFE B (K] 3.1), HF RS E 3 <37 mesk, %%TE*%%AEH%?KP Wik LA T T

febE, TR, PIRh 28 I ARAE B 1% 0 2 Sk Ul B R I 1R 1524 T e S5 PR B IE K .
BR BtR Fy; Fio 965 968 Fio Fieo

B 3.1 ZmARbaEE R IkE
Fig. 3.1 Esterase analysis of H.armigera (96S, BtR,F;z and F;) on polyacrylamide gel

3. 2. 2 E&EMSR

SABREEEPE M R I, X Cryl Ac BA bt I&FB’JWAEHHE@[&?riﬂ%ﬁ?@zﬂinn/\%u:%%%w:
(K74 3.1) 7ECry 1 ActHU N & 96SH, BEiEEHAT 139.3 mODemin'emg™, Ml RBR
HA R SRR E461.5 mODemin 'mg'l); :%%TﬁﬁﬂsgﬁﬂsgB@E@E@ﬁ?ﬁﬁﬁ}%‘ﬁﬂ 187
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mODemin'smg ' Al 181 mOD*min'emg', —FHHH BHEIEZE TG 3.1). FINRE& S RERYE R NS
Vit PP Tl R R It P T M U S W] s % ot R v R TR A TR W )l P G S R 2 S, (LR
F RO B PR TR I M ik s TR A AR s T P AT F AR R R 5 U ) A T R
RAPUrES R 28], HANFRZ R A WA 2. ik, BRE2 50281 S5 8L Hont
CrylAcHIFUIEB UIA G, Forh 55 Otk il e 19 g ) AR A B R 3 o LU IS 2 A8 i AXF 5 o P F o 7E
it 3% P 7 T PR 22 St ] T AR AL L MR ()AL T AN AR RIS AL 1), AR A0 A T RIS P A A
B
F 3.1 ZBLHRARPZIEGEENE

Table 3.1 Determination of total esterase, alkaline phosphatase and acid phosphatase in H.armigera

R S I TRl P T R e B . 1 R P Tl 2 il v 12
strain Activity of total esterase Activity of Alkaline phosphatase Activity of acid phosphatase
96S 139.3+1.27a 693+128a 349+1.89a

BtR 461.5+4.14b 285+4.13b 336+ 146a

Fisa 187.3£2.09 ¢ 403+2.09c¢c 333+0.76a

Fis0 181.2+1.72¢ 412+1.71¢ 342+0.82a

Ee PP PR REIORER B, WA p=0.05 (Duncan’s H & 2K %)

Note: Different case letters in same subcolumn was significant difference, p=0.05 (Duncan’ test)

3. 2. 3 CrylAc BIEZEXEREERINHIAE

A BRBE -5 Cry L Al 25 22 IR R T ) BEMETS PR AZ 40, wT AW Cry L Al 73 352
A BRBAN A SRR HUPES R IONEREAE 5 Cry 1 Acii s MHLHTRE RS 15, 1T ABUEK
ARE(E 3.2); CrylAcHT 838X Fisan Froo H IIBEAES PERU MR B — 200k, AL4i5he

A RPUEA R Z 8], RYIRTR BAE WA 28T AP AR R A BL, SEE— B 0] T ek
FER AR R R S PEERTC K
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AR 2 e 1 - 24 (0718 3C 5% CrylAc $i. JEHIEY dUNENE UL

96S
100 == - /

Flso'A

g e

BtR Fio

Esterase activity %

0 400E-08 8S00E-08 200E-07 4.00E-07 S8.00E.07 2M0E.06 400E-06 200E-D5 BO0E-05

CrylAc protoxin conc. (nug/ml)

968

i

100

Fls@
80 r

BtR

o

g

60

Esterase activity %

40 -

[J 1 1 1 1 1 1 1 1 ]
0  4.00E-08 8.00E-08 2.00E-07 4.00E-07 8.00E-07 2.00E-06 4.00E-06 2.00E-05 B.00E-05

CrylAc toxin conc. (ug/ml)

3. 2 CrylAc HIE & (A) F1E R B) MR B &M R I HISIER
Fig. 3.2 Esterase inhibition by CrylAc protoxin (A) and CrylAc toxin (B) in 96S, BtR,
F|s4 and Fy4o strains of H. armigera.

3. 2. 4 BeEg& YT CrylAc BIEZRBVEERIER

Sk BH A TS T Cry 1 Ac i 75 25 B 1) A oe &R, A1 R RV A & B I EREE 5 20 pg )
CrylAcHIFF 5 Vo ZEREI, X TRUR R, RS 10 pgrl W HER AN Cryl AcHi R 1
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AR 2 e 1 - 24 (0718 3C 9 =% CrylAc §i. M HUNENEELAL

B A T, TIAE 20 pglihd JATTRT LU 28 (0 2 S 2 32 il I SR 1 46, K/ 65 kDa /i
(B 3.3 A); 1t FFEAC WITE 20 pgM T AGBEE, 40pgitf REF 2R 2E MG AL I B (1 44 (K 3.3
B). fE RN HTHIICry L AcHT REZR IR — S LU T, Hilkdh RBIRAE 60 pglEMRAIN 4 K BLA JR 75
BB, 21 100 pg it REF 1) LR BT AR 4 B Ak 1) 251 (1 3.3 ©)

protoxin

200 protoxin

protoxin

3.3 965 (A). Fi (B)FABtR (C) P ARER & EFEMRAXICry1AcHTHRAEEREFIER
e AHREIGE R 87278 DN BRI T ] v PR AR 1 T o
Fig. 3.3 Cryl Ac protoxin activation by increasing esterase from larvae of 96S (A),
F; (B)and BtR (C) strains of H. armigera.

Note: The number below the lane corresponding to the amount of protein in the esterases
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A L AR 2 e 1 20 18 3 B CrylAc fi AR tLNENG LEHL

5 LT SES A F, JRATIERE T 5 50 pg IR B I %l R BEMEBON 20 pg CrylAc %
RHATACEE,  CAWIAERAE RO B S R MRV, 45R WP 3.4 Pos. 2] 968 il R I BREE AL
B, 761 min WEURAE T BEME, 7E 1 min~60 min P, FRATTAT LA 21 J5 2 34 B = 4% /M
MPT IR IRISE 460, 1E 60 S BIIN, 65kDa [HER 1457 st AR S, 2 /M S RER B

10 min 30min 60 min hr  toxin

Protoxin 1 min
Protoxin M Imin 10min 30min 60 min toxin
Protoxin Imin 10min 30 min 60 min toxin

[E 3.4 CrylAc RIS REARRE M AR P IBEHEIIFE (A, 96S; B. F1;C. BtR)
Fig. 3.4 The activation of CrylAc protoxin procession in different strains
of H. armigera. (A. 96S; B. Fy; C. BtR)
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26 AT B B AR A B 4, UL AT 75 3% O 5 W IR I AR (&) 3.4 A). FHF O BRRER
ARPRIN, WERGAAE R 1 20505 REtm I 200 S A0 I R 85 5 P S 2R, 10 208 o] LA 2 4 %
il =25 P S B 4R . BEE R I TR BO3G G, 1 /NI S, 40090 B 2 38 A IS B fd 2 65
kDaZc A, F 4 /NP, JREE R ORI AL 65 kDaZi A7+ 2 By 3.4 B). BRI AN
BB AT 5 2R AR BE 5 SR R TE 1~10 20, JREEZRTFURB M, (HACH AN, 21 30 24
I, BEIEERIE B R s R 2 NN, JHIGE B 45 LU 2 1Y 65 kDati 14541, 21 4 /)
I, HiEE R A PR A 7 3R (K] 3.40).

3. 3 Hw5iig

& PR B TR I g 2 o0 A T B MU AR ) A TP (Egucchi, 1995), Bl Bl 195 1 8 10 3 1
5 BB Cryl Ac HIBUBE S )5 . English 1 Readdy 84 4RE 7E M 2 30k h A2 4E— K /N A 72kDa
(o PE B RR R, HLRERE CrylAc FrHlibl, UimAmEBERREERG A Cry 1 Ac 7EMH 2F R0 ik Py 2P IR R
3 ) M5 (English and Readdy, 1989). 7EXHE KMk, Sangadala 25 8 313 Cryl Ac 5 K Al ik
IR N M 3G 1 B 52%, [RII R I CrylAc Xk 2% 12 16 e 117 7% 2k A FRARAE
(Sangadala et al., 1994). ifii Zhuang Z57E 4 B 00 5L Mk b Rz 40 i (1 IR S i 2 I 66kDa )
H, & Ed GPI 4 E (Zhuang et al., 2002); Bi)5, Jurat-Fuentes A1 Adang WA Al 17T & LI
K/ 68kDa [1EL (3t /& Zhuang 25 K ILIISANEE A, WL SLIGI0UE T i TPt b 3 ik i
T3 TG T 1) 2 TA 12 (R 9/ T S 80T e % T TR A e 1) BRI, JE B 1 Cry 1 Ac TR 3845 B i M,
RESET B CrylAc $itM: ) L F+(Jurat-Fuentes and Adang, 2004b). Gunning 45\ K ZEARAS HL
, WERAGEELHE ISR AR EE R ARk, R ARRE R L, XA e
FE 228 Cryl Ac Xl bR 4 IR E R, e B Cryl Ac X B AUEEVE I FRAG, R0 Ptk
[¥) |- T1(Gunning et al., 2005). AWFFEMFEFEARIL TIX IS, PRI 5 BRIV 2 EAH
B, I CrylAc B 22 FE A0 I3 20 BRI AR PR R L, UG R IMEEL Y CrylAc Z IANRESS
&, ARGk RS A CrylAc BT dE ZANEEE R, XE—EFE FKAF T Gunning 511555 .

7 I BteHD-198 fifi 1% [ I BE 45 W (P. interpunctella) it it 5 198", P i & iR By it &
IR AR (5 PR AU R A, JF FUX Cry 1A 2 25 R4 FH B4 i (Oppert et al., 1996). Hf—
A IRIAE 582 W0 Cry LA CHEURK P 1) FBEAIC 5 v i v — Tl 32 2 2 11 1 114D Gk 2K 2% D) AH G (Oppert et al.,
1997). 1M H., ZEB 5 (RF5T b R BAZAIEEST Cry L Ab T 5 2 PTIE & A Cry L Ab#E 21 11 4%, M
ML 72825 TR B, T8 s 2k m S 207 Btk i)™ 4E (Herrero et al., 2001). 3k
TIN5 T A i) B REE F 4 h PADIRARE 1) ok 2 % 1 T A A PR M TR R0 i, R I R IR TR
PERE TR NG /7 A W M 22 5, U i 28 i (e e B R It 2 9 ol AE T B0 ol R R 2 2 ol
TE, DRI B T 2 16 0 1) PR AT T i S5 A8 EROGF Cry LA CHTPEAR G, B AR BN A 155 T3 — 2 W2
TR AR FER M EABRAIE o 124518 1RSS4 S 1 P25 72 0 FE T B e A1 1) S 2k 55 7
%o

Forcada 14 & 7000 27 Ok BTk i & CP73-3 H, HBUK RALE, HXF CrylAb HiEE & 1)
IR, mAES NG Cryl Ab 753 K70 ## Ntk (Forcada et al., 1996). fEFATIHIWT
FUPORIL, T R I RIS, AEAH R R) AR FIAE 2 10 Cry1Ac BUEE 28 T 5 22 (1 156 i 1)
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BEGTIE I ETT g e R BT R 25 A5 il AR (U BREHAAL BE CrylAc AR AL,  BARTE AR Y
PR PP AAAE = 25 T RIS A o (B BBUER A 2800 I+ 3 R e A T I St ek il R A I, A
1o BRI AT P RIS B 2R, 283 R IR, TPl R AE 10min J& A THG BLW 2 1 b 1) 2
=AM R BJRIEBIRGE N 65kDa 5 2% 7 Wi ity ZEA N TR AS—HF, BUBN R 2R3 R AP
RPN B 1 /NI 2 /NIRRT 4 NI o [RII, SX U TR BUVE RGN, R AR B RN
AR ACATIRBE, i aE 2 A A lee 55000 s A4 e B b i b e 4 S L i) 32 4R %
A, ATERBILT, NI, R RS Al DR B b i b S A0 M b S AR S 5 1 B
RIERD, AGRmIED LR FEE RN CrylAc TEER MBUBTERAR, B E dOx 35 R I AL B AR
AU I IRAT SR Y] T AR IREEEXT CrylAc F2E 2% (I BEMF A IR LR, JFR
AP HOE X CrylAc B2, DA HRERRE K A2 40 S AR B B Cryl Ac IIPLPESDIAR .

I, X 28 A S AR S AR, AL 1 AR TH) T 1 A I (e PR 1 T 1 W il A PR 11
I P ) I S AE RS L3897 DO, U] T AERRAS IR, 55 Cryl Ac HUPEAH IR ME i ) 32 A% -
FEEIREAL, (w2 BLBR AR IR S P EEBU K .

CRRULEWISEE AL, FATHENIAE CrylAc HUMEAT B HUAPA S TR 1095 00 A0 ok 694 M I 1 )
S5 CrylAc PUIES ORI Bk DR NG AE 10 9> FRAIR T CrylAc 33 20 A R IR BRI
CrylAc BE& RC%, AT13 Al RAEH 40K Cryl Ac B3 AR &Ko o RIS, TG A0 39 A 15 15
BEREAT EZ NS CrylAc 53 R EARRE IR ST &, Si B INETE AR CrylAc B 5 g 1
PEANN b3 3R A5 A OBl lb s ARG B JOX Cry 1 Ac 25 28 R 3 ANBUR I w2 BB R PG,
BB PR BT
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R AL AR e 1 22 A R S DU CrylAc HUPEAi# dt BBMV 55 Bt 55 3 HIAH HLAE ]

FME CrylAc a5 8 BBMV 5§ Bt S8 EEHA

Oddou 25 & BLAEMH 2E ik h CrylAc 5 140kDa Fi1 120kDa PR 324A (4, 1% — 170kDa
M2k EAT LIS &3 CrylAa Ml CrylAb 456, (HATREAE/EA [ 1 455 17 25 (Oddou et al.,
1993), R Rk CrylAc 7 120kDa )4 [ (Garczynski et al., 1991; Knight et al., 1994),
{H72& Cry L Ab U 1) & — K/ 210kDa [ 85 1, 1fi Cry1C 2545 185 11 4 40kDa (Vadlamudi et al.,
1993). Bk, Bt #HHE YL Bt ZIARLFE R — XN KR, ARMFRATRELS SARMNEN,
Hn] B8 45 A AH R 1) 8 AN [R] 45 5 A7 £ (Garezynski et al., 1995).

ZHTONR, AR R4S AT R 255 A7 RURAS YUk = A I R Al . INERS — FE A ST 45
RKFE, CrylAc HrihEMise Mt Cry2Ab JEAAAAEAS H v, S ATERER Hurb 2 15 a2 A Ok 4
SRR SE CrylAc FUrEME X Cry2Ab ANEAERZ HPLIENE? B H T M1k, WMARH
WFIE NG A 8h S 2 sk a4k 20 7 (048 B RFRIE CrylAc HUPERRE Ut Cry2Ab R EATAZ HHTEMIA
. BT, AT AASMRILE S INEII T CrylAc iR firf )l BBMV 5 Cry2Ab
H CrylA B RN G )E 2R, GG AL BRI M AR T Cry2Ab Xt CrylAc HiPERR#
HURLEEAZ B PRI IR, R, S80I WA T AR Xt Cryl Ac P A PPk i 2 ML

4. 1 #E5E7H
4. 1. 1 #ikig%eH

A% B (BUR A R 96S. LF; HiMEdi&: LFRy. BtR)
4. 1. 2 EERH

PMSF (phenylmethylsulfonyl fluoride). T & &#(D-mannotil). CHAPS(3-[(3-cholami- dopropyl)
dimethylammonio]-1-Propanesulfonate)55>K [H NOVON, b 5t £r P AW HAR A FRA vl 444 s

B-FFELEE NNN - N7 DU L ZfZ(N, N, N, N ” -tetramrthyl ethylene diamine, TEMED)
K Serva &) HaM(Glycine)k H Amersham 2+ ;

FrifEsr 845 2K H Pharmacia, JbRURERVEYIHEARA A w25

Na'?Ik [ Pharmacia, H [H [R]47 2% 2 7] 24

HoAt oy thraty A 7l A8 .

4. 1. 3 BoEGFR. ZEHEREETS

1) ZZM A

manitol 300 mM
EGTA 5 mM
Tris-HC1 17 mM
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A AR 2 e 1 - 20 18 S

PMSF(LFH B AN)
i pH % pH=7.5

(2) ZZMP B:
manitol
EGTA
Tris-HC1
i pH & pH=7.5

(3) L2 C:
A
EGTA
PMSFELHILAN)
Tris-HC1
CHAPS
i pH % pH=7.5

(4) SDS-PAGE 47 i (10%):
ZETK
1.5M Tris-HCI(pHS.8)
30% [ A I N
10% SDS
10% iR E: (AP)
TEMED
AT S ml

(5) SDS-PAGE 4 & it (8%)
ZETK
1.5M Tris-HCI (pHS.8)
30% ) A I I
10% SDS
10% iR (AP)
TEMED
SRR 5 ml

(6) SDS-PAGE 4 l5:(5%)
ZETK
30% [ A I I
1M Tris-HCI (pH6.8)
10% SDS
10%id Bt R £ (AP)

P CrylAc FitkAiE L BBMV 5 Bt 5 2 A HAF A

41

1 mM

150 mM
2.5mM
8.5 mM

150 mM
5 mM

1 mM
20 mM
1%

1.9 ml
1.3 ml
1.7 ml
50 wl
50 pl
2 ul

4.6 ml
2.5 ml
2.7 ml
100 pl
100 pl
6 ul

1.4 ml
0.33 ml
0.25 ml
20 pl
20 ul



R AL AR e 1 22 A R S DU CrylAc HUPEAi# dt BBMV 55 Bt 55 3 HIAH HLAE ]

TEMED 2 ul
II\_QLJI‘ 42"( /l:l 2 ml
(7) IR L 2% H i (PBS):

FAAbah 8g
Ak 02g
Na,HPO4 144 g
KH,PO, 024 ¢

Bk £ 2248 1000 ml | HCL i pH {E % 7.4, =i K#
4. 1. 4 FENFZEHF

UL 72U L RC-Plus 26, 3818 Dupoint (FLF5) 2 7]+
fE AR DF-D KA, b5 R n B 5 oy

DYCZ-24D X ALK, EathioN—4G%)

Btk 115 22 48 Eagle Eye System, F2[H Stragene /A 7 ;
Spectrum752 RSN LI Ee T, B AGRA R A H

4. 2 RWHZE
4. 2. 1 B A, BRE BBMV Nil&55M%

BBMV [1]i] £ 2 . Wolfersberger [ 2 3 £5.07%(Wolfersberger and Maurer, 1987, Wolfersberger,
1993), BBMV [1)#ifi# 5 i Knight 1 Lee %5 X503k ¥ /7% (Knigh et al., 1994; Lee et al., 1996)). HAk
IR

D) BSR4 HUE UK B 1S e, GRS 3. 4 2 B T, T,
H 0.7%0) NaCl iyt i, WeoK, FRE S & T-70 CUKSE R A7 (e KA n] i it
6 > H)EH L% BBMV;

2)  M-TOCUKHHECH g, N9 fREERIKAIISEME A THat, FHEREs% S
VK BT IR 5138, A 1 0 BIKkdA 1 4y %h, B 5~6 Ik;

3)  AESIRMBTTIINAGEAR 24 mM MgCl, JRAJE TUK 115 438, 4°C, 4500 rppm (2
450 Xg)E0 15 434l

4)  HU LW, 4°C. 16000 rpm (30 500 X @)L 30 205k

5)  FHFULIEM 0.5 551 B BARR VKA i A, RS, EEBE 3). 4),

6) X 16 000 rpm B I ITTIER TUKR 220 B 1, BIF3 2R 1) BBMV,
{RA7F-80° CUKAR 5

7) ¥ BBMV M-80°CUKAS HELH, UK R,

8)  4°C. 16000 rpm &0 15 F34f, PFriGULERIT TUKR IS Ml C i, 1RG5

9) BTk BRI, 4°C. 18 000 rpm (32 000 X g)FLr 30 205k, LiEEIN
%if#1 BBMV.
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o R AR R B 22 R i S BIUEE CrylAc FUMER L BBMV 55 Bt 22 (AR 1 1 )
4. 2. 2 Bt HEEMBULFRC

HARAE T2 M Luo S5 034E 7775 (Luo et al., 2006), 1% 77V & E4E Garezynski$e H ) &%
—T(Chloramine-T)7%: I i LA S0 1M 3K (Garczynski et al., 1991). 4e444lifb i 1% & 1 Na P T
bRt CPLRKIER), b5 HISephadex G—50 73 T-HiFEHEAT 4355, FHIFT-603 # 714 IR RRAR Skl 2 1
AT TR IG , 455 SDS-PAGEHLIK, 13 2IFRiCHF (ICryl AZE o #EAGIE AR 4 I Cry 1A
FIBORETE, T4 & 5e8 . BB
1) 7E 100 pl PBSZEMH A 0.5 mCi Na' 1Al 0.1 mg&dii-T, BRI 10 ug Bt 1, #
RIS 60s, F 0.125 mglE W AR (L 2.4 mg/ml(w/v)IKEHTPBSH) £k
SRV 5

2) 5 ml [y Sephadex G-50 7> F-ifiAEsr & Lbr A moil. J6H 0.07 M ELLEZ
Wi(pHS.6) - #iAE T, T2 20 mg/ml BSA (pHS8.6) [ & Lk 244 £k 22 ph i #
A, &5 20 ml [FIFE 0.07M [ B G240 25 22 gt s

3) KGN PR N E MRE SR, BB, AT LS mlp B O R,
FT-603 # M4 R URAR K I HOROR S g+

4) B TR AT RO T I 419y HEAT SDS-PAGE, #RJ5 ] X-ray & F #5471 80, LA
SR FIRRIC IR

4. 2. 3 BtHEEL CrylAc FURMHRIEIMRICLE &3 HETR

et

otk
. AT

G55 S 4y A VAN RE TR 5 K R B A R S S G 4 A K . 22 I Garcezynski A Tabashnik 55
f] /5 12:(Garczynski et al., 1991; Tabashnik et al., 2000).

4. 2. 3. 1 MWRELR

1) {EPBS P I 2 ul bRidiF S AR, ARE P IMAANFRIER BBMV (ASE
I91BE 5. 10, 25, 50 100, 200nM 6 AN REERASE), f5¢)5 in PBS 2 A2 22 100ul, =

i =Y 60min.
2)  12000Xg 5.0 10 min Ji5, ] 500 pl 55 0.1% BSA ] PBS Z2iitis 2 U, Adas ik
B TSR 1 5

3)  EANIEAE R AR A A M, R3] 5 A 5BBMV IR k4 518 . AER:
VRGO RSB PR IR R A T I R AR TR R E 1000 R RFRICEERE A, R
Y55 5BBMV VY. 60 min, Ja2DBEE 2),

4. 2. 3. 2 MIFESLR

1) 7 BBMV "IIANGEEARIC SRR A, BB, SRS IAAS R B 1) [
FhARARC IR A AR 3 0. 0.05. 0.1, 0.2, 0.5, 1.0, 2.0, 5.0, 10.0. 100, 500
1000nM 3t 12 ANREERRRE), o il PBS Z20Pifikh 2 28 100ud, F¥ &MY 60min;

2)  12000Xg £5.0 10 min, H 0.1% BSA [ PBS Z2iMi 500 pl HE¥s 2 Ik, Al ik B
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TR 5
3)  MWEAMEMETEE AR A EHE, MaEREESY BBMV R & 1.

4. 2. 3. 3 MWAELER

SR TE P A R A R A R [RS8 4 4 A il KB — 80 (BAEFR L I X35 22 (TR BBMV
RGP A B A R RSRERPRC R A, FFEL SRR 7 4545 60 min, fRZINE#E
15 BBMV M FF PRS- AH, e m i S o4 o

4. 2. 4 FIESH

[ H Ligand F£/7(Munson and Rodbard, 1980)HE4T £k 70 #r , 15 21 45 &7 5K 5 Re AE RSN
PEH AL Kd. ] SAS Bt AT W2 MG .

4. 3 GHR5HH

4. 3. 1 Cry BERHLERIE

F g Z AT ARG SS, 1L 5 ml Sephadex G-50 4 F- i tF AT 702, 193 hnic i )&
HEH, R ERNIET SDS-PAGE HLiK, R85 H Xeray I3 T 200, R4 HO6 AR/
SR AR . Bl 4.1 4 SDS-PAGE 45 %, 4R BTN Bt #4525 108 580 Bl 4511
B EYE, 53] Cry2Ab.  CrylAa.  CrylAb Al CrylAc &85 2 UGS Ik Ry 4.5, 2.9 | 3.1
F1 3.8 mCi/mg.

1 2 3 4 5 6
4.1: "I¥RiCE H AYSDS-PAGE HEjk &l
1. '"PLCry2Ab2. FEMME 3. "P-CrylAa 4~5. "PI-CrylAb 6. '*I-CrylAc

Fig. 4.1 SDS-PAGE analysis of '*’I-Cry toxins.
1. '"PI-Cry2Ab 2. blank 3. 'I-CrylAa 4~5. 'I-CrylAb 6. '®I-CrylAc

4. 3. 2 Cry SESHBREARRENKIMRMCEETR
4. 3. 2. 1 WHEERRFEFHRS

BT EEHIR T AR5 ZBBMV 5 Cry l AcFI Cry2 AR BB, 18560 26 W T A i &R 1)
BBMV#Jfig 5 Cryl AcHICry2 Ab K AR5 45 o CrylAcy & il R BRI SE 4 45 B 4.2 s, &
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B ARTE 50 ng/mli BIRES P I-Cryl Ack BRI SE £, 8 ih RAERORE: R EB KRR
4.3 N R JUh BBMV S Cry2 AbE A EE & &, HCrylAc—FF, 96S. LF. LFR;(MIBtR
[IBBMVIAHELE 100 pg/mlitt 5 Cry2 AbK AR S5 4, HLi R S5 A R KRN 19.3%- 19.2%. 20.2%
A1 19.1%.

—— 965 —a—LF —a—[LFR10 —e—DBtR

<
=
S Os -
% I
N D
o E
® 5107
_K o
il é
8 5
$
0
0 50 100 150 200 250 300 350

Vesicle protein(pg/ml)
BBMV & HKE (ug/ml)

4.2 96S. LF. LFRoFMBtRE-FARBBW SCrylAcLESIAFIE RN E
Fig.4.2 Saturation binding between CrylAc and BBMV from 96S. LF. LFR,, and BtR.

—+—96S —&—F —a—1FR10 —e—BtR
20

15 -

R (%)
%o binding of labeled Cry2Ab toxii

<o

jug 10 +

IEIN

0 50 100 150 200 250 300 350
Vesicle protein(ng/ml)

BBMV & H#KEE (ug/ml)

4.3 96S. LF. LFRoFNBtRE TEABBMV S5Cry2AbLE S18F1ERINE
Fig. 4.3 Saturation binding between Cry2Ab and BBMV from 96S. LF. LFR;, and BtR.
FLigandF2 /5 0] LA M1 45 HE SRR PE B B0Kd (nM) RL & 8 54 A BERt (pmol/mg 8 F1){E, WL
4.1 AN[FIRBUEFR FE AR LUt R 5 Cry L Ac IR SE R B 2K A C W s 22 7, e B ) U7
VA 22 50(3K 4.1); BJE, &0 RTES P1-Cry L AcH [R5 35 4+ IN IR 45 A7 SR AR 2= 8, &
AR FERAE AR AT DL . BB R 968 (47.30 pmol/mg 3 1) LF (45.90 pmol/mg 2%
F)Z A R 22 e AN W2, AH 2 5 T I Bt i 5RLFRy (20.01 pmol/mg & 1) HIBtR (6.86
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A AR 2 e 1 - 20 18 S

pmol/mg H11), MU RIIRULEHER RN 7 15

P CrylAc FitkAiE L BBMV 5 Bt 5 2 A HAF A

F AN CrylAc F1 Cry2Ab FZEAMPER E Kd fH+20— 20 ST ARN & 4G5 RE

ML, #EZ, ARBUREEZRE I RS CrylAc Al Cry2Ab HIZRATIHEA 2L,
£ Cry2Ab 5% & BBMV &5 5 N5 G407 sl IR 22 5%, 1{ES CrylAc 45 &, BUgh
E I TRE VASR Nl ST E AR IRE LI E

& 4.1 1740 B E M ABBMY SR CE RAIFFIEE KK (W) RESHLSIRERE (omol /mgEH)

Table 4.1 Dissociation constants K4 (nM) and binding site concentration Rt (pmol/mg of protein) values calculated

from '#I labeled toxins on BBMV from different strains of H. armigera

CrylAc CrylAb Cry 2Ab
Strain
Kd + SE Rt+ SE Kd £+ SE Rt+ SE Kd+ SE Rt+ SE
96S 0.56+0.20a 4730+6.70 a 0.90+0.37a 10.08+2.10a 0.60+0.23a 11.08+5.13a
LF 0.62+0.18 a 4590+598a 0.89+041a 10.13+£ 098 a 0.54+0.16a 10.57+6.10 a
LFR;, 0.78+0.24a 20.01+£243Db 0.83+0.56a 10.88+6.10a 0.67+0.20a 12.13+5.80a
BtR 0.73+0.32a 6.86+341c 0.84+0.71a 9.73+3.56a 0.63+0.17a 11.34+6.23 a

Ee WA h P EERRE LRz B, BFE KA p=0.05 (Duncan’s Hi IR ZEKI L)

Note: Different case letters in same subcolumn was significant difference, p=0.05 (Duncan’ test)

4. 3. 2. 2 BUXRZR96S. LF P RIESEF4E S

B, AU R 96S. LEESE S 4h & Ll KRz, A LIRRE—38. H, 7
HIBLCryl AcHIE4 4541, CrylAa 5Cryl Ab U 7E sk B (SnM) I 4 58 5 P T-Cry 1 Ac35 4, T
HCrylAa (1554 715 Cryl Ab3S, {HCry2AbAfE 5 PI-Cryl Ac K /E a4 3 W Cry 1 AcfIf7 s5 fig
o3 B Cryl AafICry LA A, AR ATE 2 U] T CrylAcif A7 fE 41 Cry1Aafl Cry 1 AbJIT iRl A
T I R(E 4.4),

1004
804
60+

40+

RKETH (%)

% of max. binding of labeled Cry1Ac

20+

0
0 10" 100 10° 102 10°
competitor conc.(nM)

TEHYIRE (nM)
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KSR (%)

% of max. binding of labeled Cry1Ac

1004 B
¢« t e e L, . ‘.
80-
60+
40+
20+
0
0 104 10° 10 102 108

competitor conc.(nM)

TP (nM)

4.4 HBMAE 9GS . LFB)HEFRS”1-CrylAcHIRIBERES
Fig. 4.4 Heterelogous competition for labeled CrylAc in 96S (A). LF (B)

(HMCrylAa ACrylAb ¥ CrylAc @Cry2Ab)

F P 1-Cryl AbCA B 20 %, B fICy L AFICry2 AbT 45 55 4 it (5% 4 i R IR,
CrylAcHERITF 1 5 P I-Cry1Ab3E 4+, 1t W] Cryl AcHEiR M CrylAbIT A A 55 {HCrylAa A 75
WRE (10nMD I A BB LA EISES, WU Cry lAbMAF/ECry LAaT A RER A At [FIFE
(1, Cry2AbANREIUARZI-Cry1Ab (€ 4.5), $tWICry2AbRISS &7 S AN T-Cryl1Ab.

KREGH (%)

% of max. binding of labeled Cry1Ab

i

100+

80+

60+

404

20+

L B S S50l B n L DN h L BN Ll B mm il ma
0 10" 10° 10 102 10°
competitor conc.(nM)

SEAPIRIE (nM)
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KEEF (%)

% of max. binding of labeled Cry1Ab

i

100+ B

80+

60+

40+

o
-
o

Y

10° 10! 10? 10°
competitor conc.{nM)

TP (nM)

El4.5 BEMAE S A). LF B HEFERS"I-CrylAbHIRERS
Fig. 4.5 Heterelogous competition for labeled CrylAb in 96S (A). LF (B)
(HMCrylAa ACrylAb ¥ CrylAc @Cry2Ab)

M7E 5 PL-Cry2 AbIIFE 4 25 5, A TR I =FhCrylA(CrylAa. CrylAb. CrylAc)¥AfEL
ZRAETEGH(E 4.6), it BT AT DS AN 7ERUS S & 96SHT, Cry2Ab5 CrylA(CrylAa.
CrylAb. Cryl Ac)NAEILZ24s &7 1 o

RRGEHR (%)

% of max. binding of labeled Cry2Ab

100+

80+

60+

40+

L . m S R AL L EE S kLl B s L)) B e m Al s e mmm n a i) pud
0 10 10° 10° 102 10°
competitor conc.(nM)

SELIKIE (nM)
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R AR e 1

=2 AT P CrylAc FitkAiE L BBMV 5 Bt 5 2 A HAF A

BREEEHE (%)

% of max. binding of labeled Cry2Ab

1004 B

80+

60+

404

20+

O o e L S L e e e e e e e
0 10 109 10 102 10°
competitor conc.(nM)

TEGPIRIE (nM)
El4.6 BUHMZFE96S (A). LF B)FREEES"I-Cry2AbIRIREES

Fig. 4.6 Heterelogous competition for labeled Cry2Ab in 96S (A). LF (B)
(HCrylAa ACrylAb ¥ CrylAc €Cry2Ab)

4. 3. 2. 3 PiERALFR,PHREZSES

FEHUME S RLFR 0, CrylAa 5Cryl Ab U ERRIE (SnM)I A R85 P T-Cryl Ac R 2E e 4
gh4y, ULWCTy LACHIAL FREHE 73 8 Cryl AaRICry LAbFT RS, BACHIAN 2 e E i B T Cryl Acibff

74 Cryl AafICry
Ui Cryl AafrBE

LAbFT R T IR (B 4.7)s 53— 71, CrylAa W3E4rHE ) Cryl1 Abgg,

S B 5 & D B 2 Cry 1Aa 5 BBMV FSE R A fiCry1Ab (K 4.7). 5

96SELEL T &, CrylAbIKSE4+HE ) N, UiWIZELFR o /h vl e R AE M2 : ok 5 Cryl Actt 5
(&AL b Bk (6] 4.4, 18] 4.7).

REEEFR (%)

% of max. binding of labeled Cry1Ac

i3

CrylAcflifig 5

100+

80+

60+

40+

20+

0=

competitor conc.(nM)

SEAIREE (nM)

4. TMMERALFRAZERE”I-CrylAcIFIRZS
Fig. 4.7 Heterelogous competition for labeled CrylAc in LFR g
(HCrylAa ACrylAb ¥ CrylAc ®Cry2Ab)

55 CrylAb3agr, HARAEEIT IR CrylAb, 105 96SHILEF L LT =,
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AR TR (B 4.5, B 4.8), FHEM R AT RS 3 Hm S AR AL R AR T B8 Bl
Bk, 13 CrylAcSBBMVIIS GBS T M Cryl Aaxf'®I-Cryl Abf35 4+ B I ¥ A T I, X i
W] 7 e K INAT e 5 Cry LADZE & (A A, 5 Cry 1 Aadh & 1A S R A SR, ARG AT S A
J& 5 Cryl AbMICryl Ac kA 45 & (R4 15 o

100+

80
&
B 60~
<o
ﬁ\

40+
i3

20+

% of max. binding of labeled Cry1Ab

[0 o s e L e L e e e L
0 10 10° 10 102 108
competitor conc.(nM)

TEEPIRIE (nM)
4. 8 ERARLFRAPEZEFEESI-CrylAbMIRIBES

Fig. 4.8 Heterelogous competition for labeled CrylAb in LFR,
(HCrylAa ACrylAb ¥ CrylAc @Cry2Ab)

EABUES R —FE, LIRS H Cry2 Ab/E N e e e i sa e, AR R R e S5 e
—FPCryl AZE AT S PE(E 4.7~ 4.9), X TAEDTIE S RLFR 01, Cry2 AbfJSRANBE 5 Cry 1A

KA EE AR
100-
80+
60-

404

RREEH (%)

% of max. binding of labeled Cry2Ab

20+

O'U—I—'-FFH'"—'-HWH!'—I—!-FFHHI—'-I-FHHI'—'—'-FHHH-
0 10" 10° 10" 102 10°
competitor conc.(nM)

TEGPIRIE (nM)
4.9 HMRALFRAZEFEES"I-Cry2Ab I FFEES

Fig.4.9 Heterelogous competition for labeled Cry2Ab in LFR,
(HCrylAa ACrylAb ¥ CrylAc €Cry2Ab)
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o [ R DRl 2 B S A $PUE CrylAc FirEHE# Ht BBMV 5 Bt #2 HOHI 4R H
4. 3. 2. 4 PIERRBRYKFRERFLES

E UK ARG RLFR o LT 75, 7EBRYY, Cryl AbEARP1-Cryl AclfIfE J) B35 T 1%,
BLHICry LAbMICry L AcE S A UK A2 T R Bk 2, A A3 — B AN RESL A7 s o 5
TR T R MU i RLFR o FHELAL,  CrylAalfIsegrae JHAR WA TR (8 4.9, 4.12). X5k
O B e K A S5 AN 5 Cry LACHICry 1AbAT 5%, 115 Cry 1 Aalfy 45 447 6.

FIXT T HiME 5 RLFR g, CrylAc AR PI-Cry 1 AbI RS I BIHE— 25 (0 R4, Uil CrylAct
Cryl AbJITRE 4 5 I 52 AR BT AU 45 45 B ) B AR 42 HOW Cry TAcHt eI B m it —22 % (15148,
4.11); fHCrylAaffIsa4BE IR A TR, ALY EAKRE, Cryl AafiT Ul A siAk
AR

100+

R
[
(&}
T s0d
S
4;; =
%\1:[ ‘5 60+
® 2
-
5 £
P
©
E 204
kS
=
0 s L e )
0 104 10° 10! 102 10°
competitor conc.(nM)
SEPYIREE (nM)
B 4.10 R ABRPEFRE "I -CrylAcHIRIRES
Fig. 4.10 Heterelogous competition for labeled CrylAc in BtR
(HCrylAa ACrylAb ¥ CrylAc ®Cry2Ab)
o
5 1004
[
&)
3 80+
<32
S
5 b} 60+
@ 2
b -E 40
ey
X
(3]
£ 9204
s
=
(0 o e e e )

0 101 100 101 102 10°
competitor conc.(nM)
TLYIREE (aM)
B4 11 MERABRFZREES”I-Cryl IR REES

Fig. 4.11 Heterelogous competition for labeled Cry1Ab in BtR
(HCrylAa ACrylAb V¥ CrylAc €Cry2Ab)
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BRI, E BR X CrylAc fIPTPERIIE 2971 fi5, {H Cry2Ab WHZAEES Cryl A 2K
Fsadr (KB14.12). B TR MR E AL F S A0 .

100+

(%)

% of max. binding of labeled Cry2Ab

60+

Nt
o
N\

o

N

40+

20+

0 101 10° 10" 102 10°
competitor conc.(nM)

SEGIIREE (nM)

4.12 MR FBRAZFERS"I-Cry2AbFRR S
Fig. 4.12 Heterelogous competition for labeled Cry2Ab in BtR
(HCrylAa ACrylAb V¥ CrylAc €Cry2Ab)

4. 4 Zit5itie
4. 4. 1 CrylAc HitEtE8 B3} Cry2Ab ;8B X EH R R VE

LR TN T, AR BE R LA A GG TR A58 B Pt 3L al. Morse &I
T Cry2A 5 CrylA MEEER)TIIA—FE, B E A A [F 1) 52 44 45 4 Y % (receptor binding
epitopes)(Morse et al., 2001); Jurat-Fuentes 55 [ 5K B CrylA Fil Cry2Aa %585 CrylAc HithAH
ZERE CXC ) BBMV 454, {H CrylAa fil Cry2Aa ELAG AN A 1A 45 4437 55 (Jurat-Fuentes et al., 2003).
A, Liao KINAEMVE A, Cry2Aa RAETES CrylAc (45447 fi(Liao, 1999). Gahan 253 ik
AFLP 55777 RIS Cry1Ac P2 AEPUIE I PIAS EZEHUMER 15 CP73 % Cry2Aa i Jo )% (Gahan et
al., 2005), ZSEIGFEMULI] T CrylAc 5 Cry2Aa A2 B M.

MO G Rk G, R IR — AN E . 380 T &5 el & 3 1% 1)
1 BER MR Cry L Ac 5 Cry2 Aalf) A8 HLHLIE R R, AR BRI EA MR 10 45 Gl SRk AT RGN 1
H, BHACALL, WARNAAHKWIIE, Fik, AT T RGN, Eir—5dh, &A1
LA e I T % Cry 1 Ac AT Pk RS IR A X Cry2 Abr= B8 T gt . ifEA T o, K
I H NGS5 30 2= R A0 BE I B T Cry LAHTMERR 42 N Cry2 Ab AN AEAS H LI I AR 2 A AL At
WP R B Tl & 78 Cryl Ac UK W &R 36 J2 7E CrylAc B P i &b, Cry2Ab A fiE 5 ' T-Cry 1A
(PI-CrylAa . "PI-CrylAb f1'”I-CrylAc)sc 4, [Ai}, CrylA(CrylAa . CrylAb FiCrylAc)th A
85 P 1-Cry2 Abse4r, X UL TAEMEL i, Cryl AMRSE &4 AN T Cry2Ab. 45 407 15 I AR ]
ST RAAY PR UL, RS AL AL T IR R AR L E, Bk si it Tito0
WKL AE . Bz, I ARE T 0] LA Cry LAZEER 115 Cry2 AbAS RE AL 52 3L W] (1) 45 517 1
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FECryl AcHUHERRE UG Cry2 AbBA 77 A28 B HTHE AR A TR
4. 4. 2 CrylAc FiER e B R RE

U6 Bt HUtE =B R A TR R AR B, SR SZRNS S FLRNTER. T
YRI5 5 255 23R (Heckel, 1994; & VTAE, 2001), {H7E 252K 454 e I B BA N
A& B HOG Bt AP L . Hofmann 5 (Hofmann et al., 1988b) A1 H AR 10 HEAT 45 & S2 5%,
UESE CrylAb F1 Cry 1B X S5 MR IRy AN [F] (1) o3 He il 55 255 A7 s (R S8 FPEAH 5K o Van Rie 5%
T AR I R R AR ZE R i b R A R PR S I S A A e B SRR EREE Y T R 5
Bt [R5 32 R 8 (-3 58 1 1 45 4 AE 1 2 IEAHSS(Van Rie et al., 1989; 1990). )&, #&ZWF5TiE
B 55 B 3R 45 A IR e I S AR IR A e 5 O B PR AR U R R R, 1 HLIA] — Bt 85 O AN B
HAEZ AR B B R 225, i E— RRACHAS R Bt 2 (BRI B2k &5 507 A1
Z5, HE— Bl el Ge Ao Bt SN 2 RS2 4K, AR Bt & W Ay e dL g0 M2 4k
R, Bt 55 B S 2 AR I 4 B, HEAS R T BRI NG A IR R, s B 2RI 4 (Heckel,
1994; Tabashnik et al., 2000; Ferré and Van Rie,2002; 2 M55, 2003).

TEASEIG RN, BB LTE, CrylAc s tRBBMVIKI 4G & B8 N . JATLAAT A B
FURBL: TEBURS R, Cryl AafEBUR S R AETE AN S5 A0, BIRATTCARTH A7 550 1 10
Cry LAbTERUR T R P AEAE A G B A, Hoh— A2 5 CrylAadb 24 G0 a0 1, SR8 Xt
CrylAc/™ 4 425 £ PUPER, Ho 507 50 1 4558 ) T B AEBUR S R N, Cry1AckR T B 5 CrylAa
MCry L AL G407 550 1 F 2 41, B v LI 22 45 G 0 3, 1T ERAT 425 RS PihEmdorE i &k
RTH0 2 EEARES (Luo et al., 2006). AHFFTH, BATAINH T —ABUrER LR 253 51
PUPES RLFR o, 45 RN, %00 R 5ROk M 425 it 4h & e A — 2, (H 5 HUs S &ML,
LFR o CrylAc5 {7 i1 2 BIS5 & Re ) R RRIMAS & R AEGR o AR P0PE T2 2971 50, Hirkdh &
BREFH 5 425 5 AAR 45 & g I——Cryl Ac 547 5 2 (G S iR AR T 8ok . 45 & 1
(R8> AFAE =P e ZAREE A8 AR . AR Bk DL AR B 1 BB G A s R A
St EARET, BARPIVER RBRP A 2 A5 CrylAck A 454, HJEA7 AL 2 15fie 5CrylAb
RAEE, RYIE 2 IRAAAE, B 8RR, EAGEE BN M 2 il s Kb L I 4 &
PLRURAE T AR 5w, T Bt — A T AW 2 3 T BORIAT I AU 2 -

I, TN CrylAc 54 & RS G BE I RIERI T RN R B, - h &%) CrylAc 1
SRAVEHBOEA 3, TRFEEZER, W2 uis iR BBMV 5 CrylAc 4568 Mi%— 3.
A AR PE S R PSS a0 BACTBUR G R Bk, 72535 BBMV 4Gt i,
ZIEH B ES I TER, Wi SFBCT X5 7 EAERE

SEA T AR BE D T B B BT S AR B AN IR, X AR A B TS TR
VR IRAE [R5 56 R B0 5 H K sE PR 4 Kd 8 b, Buik il RS BREUE S ROFEW B2 R e
SEAALRUREE b, SR E A R BN ZE R, 0 Cry2Ab # CrylAb AR, A, it
PEAZR T CrylAc (245G 7 R BE I AR TR0 2R o XU TR don) Bt B T itk LS, B
SRSEAWVEBAT AT A, ARG5S A7 AR B AT) 0 BRI DRI A% R 9 4557 580 R 98D vl g
SERCMABUE = A X — AN 3R, X5 DATTAE /N SR 2 100 rh 4108 1 45 R AHL (MacIntosh et

2
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al., 1991; Gill et al., 1995). MacIntosh %A Yy, & EOXFIILZMREA, B T2 AEEARGHHE
Gh, ATREIEA BN ES S T /EH (Maclntosh et al., 1991), {HITREMFIRZESE T, &
BT R 2RERIER, AR T DRI

I, BATR THABUR S R, & AR MBS, HEERE: 96S K1 CrylAc
MRAEAE B 7 A Ak 2 1, 10 LF i R R R dh 65 5 4EJ5 (2002 4F) ) Bt AP, (HSEE0 R,
CHEEEAE TR R, ROV GG RS0, FIR, TR o Bt
AP 07 2 — AN AT 2218 1 7R
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e QSR R e 2 VAT WL FREL I BBMV 5 Cry2Ab. CrylA 454 i B (1) S &

FHE 8% H BBMV 5 Cry2Ab.CrylA &3
2RISR E

1155 21 AR (Surface Plasma Resonance, SPR)JE T H A e K (1) —Fh o] )3z A T
I A= 7 DA EAE TR AR o e LA AR AN S IS U (R0 £, RN SPR 5@ A 2 il 3R
ARGy TR AR ARG, 1T HOE R R AT 81, S8 R4 AR Ko TR 7R N BREE ; SPR
HEAT SEIS R R W, wT AT A AT 7 AR 40K 2 1 AH ELAE TR IRE P PRy mORRAE S IR s S
MG LfRe, AT 86 RMVMSIAERE, X ELAAEATEL .. mMRAEV Bt #5
5 RS Bt B2 E EAR, B B S A WA AR, PR SPR 7R 881
WSR2

WRT—F ik, BATRMAEA T LT B R A% 2 BBMV 5 CrylAc g5 &R, B
SR CrylAc X JLAN 2 BBMV [FSERIE R 8—HE, RISRR)—3, (R & mssiaaeih—F.
IfERE %S BBMV G idfid, el AL emRES S THEM. Bk, R4 3HEEEE A
#X} CrylAc $i BRI I BBMV 5 CrylA. Cry2Ab RIS 454 IWE5T, SKsh i &
- AR ED S S5, SRAREX — P JE G U R, 56 EAA A bR ac 45 B HE AR 2L 1) TE A o

5. 1 #MR5E7RE
5. 1.1 fRkE

1) fd EAFES: CrylAc, CrylAb, Cry2Ab
2) HHAE
CrylAc HUBFIEE: 96S, [FIZH %
CrylAc PUPEREE: BtR, [R5 %
LFR, [FZH %

5. 1.2 EEANESXSE

Sephadex-G50 & Pharmacia 23 &) 7= i ;

SPREFEREIAFN: N—FIEIFHIWI%Z (N-hydroxysuccinimide, NHS) « N—Z3E—N' — (4
H— Z N FE) — B k% (N-ethyl-N-(3-diethylaminopropyl, EDC) Fl1ELER 2,
i i

SPRE HHBSZZ 1 : 10 mmol/ L HEPES (pH 7.4). 150 mmol/ L NaCl. 3.4mmol/ L EDTA . 0. 005
%R I L FIP20;

CM5i5 2 SPRA & IR X i 435 1 GE Healthcare s w7 i, He kA0 i

SPRAY #% A GE Healt hcare/A @] ;= iy, 7“5 )y BIAcore 3000.
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5. 1. 3 FEREIRTATE

5 SPR A, X TS I K 48 bl B 11 PR BEORAE S AR R, 25 P i S5 05 THT A T R, Al BRI
T 5 T R SR ) O B U o AT R el AL A0 0.45 pm B, AR B AR TR AT R T 0.45
um HEAPERENLL, JSEN SR E R R, W ERE AL E R E . [N, T
WOAWENAN) BBMV 52 NS HR B sb b S U, DALy — SRS 00 1 nl & 3 A7 LA (A IR
IXEARZIR IAFAE AR e RE S LR (R [ 445, RN a8 i) R AR . AIEAS
S PRI i T AR B 2 SRR — N AR

5.1. 3. 1 BtExEfNE

W R, TR DUE SR Bt B RIS A B TR IRE ALY CrylA KR, H
T AL CrylAb F1 CrylAc #1045 FL R AE SPR AUITRE SR VFREM T R, H oWk
WA, MACh B AR S B RS RS AR LS pH 4 7.0 1 1mM [¥) PBS Z2ptiit, P, 3
AT JEOR I BR ANV R 22 vl 1mM 1) PBS (pH 7.0)Z2 /0, SR JEilid 0.45 um 985S, K5
FEURTBCE 48 /NN, B E AR AW 5 R ICREEAT SDS-PAGE HLUkAG I,  FH Bradford J7 &
Horp R (A 7 (Bradford, 1976)

5. 1. 3. 2 BBMV HJHEIALER

Fo 55 = T IR 7 VAR BUORR S U B R 0 BBMV i, CBidse a1k 16 000 rpm 250075 21 (13T
BT HBS 2ot . BT TR R B R, NS HRZ MR, AreEEHT
B PR IRA A 7 IR AR IR SR A B, UARERAE A H . Ak, JATEATIR
T AL IR 28 04, Sephadex-G50 AILEHA A FIfikE. F 4> T Ik 44l BBMV (1)1
(S I
D HTH%: S Sephadex-G50 (135 BIXTFURIA T AL, AR5 BT 3L TR0
P A 2], k7 FH HBS W7 T 4 FEUKET 2% B sl BB 1 i 2D Bk 47

2) FEFMPE: FETFUR 7 BFE S 20T, T EERE T HBS WA T -4 s

3) A BT HBS 1 BBMV R R T, H 1.5 ml ANE IS, [ 66T HE 280 nm
AR A0 B 1 U {1

4) XPTBCAE AL T 0.45 um [W9ERS, SR 51T SDS-PAGE, ¥ 5AK& 43 BBMV
VERSTHR, JF e 20 & R &

5. 1. 4 SPR#EN BtEXS5XRAMKRES

5.1. 4. 1 BtEENEE

K SERIC I 7 V28 3 Fh Bt 8 28 IRKIKRNEAE CMS 5 R IR KR FE 676 SRS
W n— lE oy S e . e e kR, HBS 220 LA 5 pl/min [F1E 2 GIE R ézzt
FrRim. FRBEA) AR AE 4 1 BIAcore 3000 R GEMIIRAE T T. BB BUTE .
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1) EAGE: A 40 ul LA 11 (viv)IREET 0.1 M N — SR FEBE F I W i (NHS) Al N—
LHEN' — (S CHE—ENE)— i W% EDC) WA, 1ot Fr i SRR i, A
Az jl NHS-BiR, 4 8 1 AR RS AL IR 5 T A

2) AR E . R I RRIE CART, ﬁﬂz\%ﬁ}ﬁjﬂfﬁﬁ%#%ﬁﬂﬁ pH HHTHIR,
FAY pH IG5 5915 8 1 B — o LBV Tl b ot i 3R T, 3 s SRAS i B, RU
{H(Response Unit) N 1) pH 22 BABCA AR THC s

3) ARG K 100 pl A 100 pg/ml Bt 2311 10 mM ZFRENRRICZZ pTEAE 5 pwl/min 11
AR 8 v A (RS R T, A8 B 1 PR e e R 0 SR T 3 6 SR R R RS R A L
Ve R A e e i b, O R B P S N GRS 8 ok 5 e 1 AR G
P RRIDE TR L Ao R m 3 o L2 380 g S AR UMW, %A S N T Bt B SiE S
2101 1) NHS-BR )¢ W it 725

4) S hr BERE NHS-BRIGE I AERCAF S R EAN 1M R (pH 8.5) 40 pl, i
Z 5 BRI NHS-BR 5N DU S Pk A, DA J5 S A e v R AR AR R 3L

+
4t

5)  HIKE 10 mM [ H 28R - Eh IR 2% M (pH 2.0) el AR SLAN 25 5 (WG A4 . BE ik 545 31 1) H 2k
LSRR 2 72 SN T MEAA (4 [ 2 R

5.1. 4. 2 Z&RZEBBMV 5 BtSZNERMES

H 25 i 22 5 AT BBMV HTHBS 22 s M B B 4 B2, LA 15 pl/min R A VG L8 7 1)
FW, DLWEEK S RBMMV Y 3 FiBtRE R IKSEAIE. 25551 0.1 M H3PO4(10 p)Xf s v 2 Wk
ATHA, DURE S R 4G ae)s, AmnlH T2 ool . 80080 #2485 F Biacore [ 4% il £k
b Bh 112 (kinetic) BN HE T, SEIRVELRE N 25°C. [N, %A N IRAG A BE AL K B B 3hin
bR e AR R A S5 T, BRI E R

5.1. 4. 3 BtEEEZTWMABBMV TR SEE DI

%8 Hua 2519 7J57%:(Hua et al., 2001), FFHo&E 4 1E1E. ¥4 5% BBMV 5 3 uM Bt 35 %1
UK A 60 min, AR5HXIR G AR T AIROR G MR 5. uﬁilmuﬁa%
AR FES I B IR AR OGRS R, JEF T IE, WS IRE 5IREGY)1 SPR
5574k, WM RUAER AZIER A F0 UG 1, TR =K.

5.2 SGRESW

5. 2. 1 BtiEZ%E. BBMV B8

FAl 138 3 SDS-PAGE ] Ab 3 J5 Bt 7 3 FF it 55 A BT bR I — 35 A7 X0 (] 5.1), wiWids
Cryl A#FFIH I 0.45 pmyf %50 Cry LAFE 2P WA MW, R %07 0ok Ab B Bt#: 3 LA 3SPR
Tt I ELRIE ATATIR . X BBMV 1AL B, UEFH‘J#W'%M%%W&{EE Hoe TVFZ, M

TE Ik 5 A B 1) Ao/ Ao A IAE il T ANAEAEAZ IR - R 38 ik SDS-PAGE A FUAT: ity 4% i A1 Ah BE i
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rhELAME R B 25 1 S BTN MB 0 BBMV 5 Cry2Ab. CrylA 4541 FEH)S2intil

— (Kl 5.2).
1 2 1 2
B 5.1 SEAT(1) . 5 (2) CrylA FREKITERE B 5.2 LEAET(1) . 5 (2)BBMV Bk ERE
Fig. 5.1 Comparison analysis between treated Fig. 5.2 Comparison analysis between treated
and untreated toxin by SDS-PAGE and untreated BBMV by SDS-PAGE

5. 2. 2 BtEHEZMETE

AT R R IR i R B R B, =R B A W B i pHAEL 433 4 4.0 (Cry1Ac)+ 4.0 (Cry1Ab).
5.0 (Cry 2Ab). JILVEAG . REIBCRIE AR IR, FRA TR =il (1 DAL i 7 X e fECMS St iy |,
5.3 MU & RIS S R OTE S B IE S, K EBRATRT DA AN RN TE b e
(R L (R 1 000 JE4R LA (RUYZRE WA R F o6 B IE [ 2 F9AR  1 ng/mm?®), il e
Cryl AbfflIE A, FOO M I AR A 2 700RU (B 5.3A), AH 7085 7 X —lid b il e i 8
WIE KL N 2.7 ng/mm?, AHRHL, CrylAc(/&8 5.3B)HMICry2Ab(l 5.3C)itiE L AT [ & i 4 4
51%.2.8 ng/mm*F1 3.1 ng/mm?.

Rl
40000

il

350004 %

000
I

Rezponse

it

25000

20000 4

15000 Ad .l‘l P vy t t Fy A4 t lll

T
I 500 1000 1500 2000 2400 3000 300
Time 5
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RU
45000

B
40000 +
)il
35000 -
E_SDDDD 4
g
25000 4
20000 +
15000 P ; s s PP ; ;
0 500 1000 1800 2000 2500
Time =

RU

50000

C

40000 H A
]
]
E
o
2 30000
[]
4

20000

10000 Ad i Add t i Add .lll.l t t

0 500 1000 1500 2000 2500 3000
Time .
5.3 CM5 i K 38E53E % SPRISEE (A, CrylAc B. CrylAb C. Cry2Ab)
Fig. 5.3 Sensorgrams obtained on immobilization of Bt toxins onto sensor

chip CM5 (A. CrylAcB. CrylAbC. Cry2Ab)

5. 2. 3 Bt&EE5%M% BBMV HERHES

¥ 25 i ZRBBMV HIHBSZZ M, AR S5 100 v 3R 10, IXFEFATT g BB L SPRAX AL 5% T K 1) iy
IS5 P SR AT 75 35 S BBMVIRI S5 & K/ o FEFEARE S G IS — B Bo 2 45 5 IR B, #6Fokis
BT, e S o R JE Al N 2R GEA TS A R R, DR R — AN N AR . 7ESPR
I kineticBE N, K AR AT SU0ME, 53000 E PR G e, RN, AEARE e AV i 2%
FUWT S G 7y B R SE N B AT AR . BATRIL, EAK =MBtEEE T, CrylAcHBUSMN R 963
(2 e s g, W N SRR 187 +30 RU, S Uik il RBRIG S5 & 555, AN SR AT 141 + 28
RU, TMILFR of 0N 58 E N AT 35 2 8], A 158 £ 33 RU, #iHCrylAckf =N RHIBBMVZ;
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A e B HUE G aR I B . MR EE G M Ze I, 96Sih RAEL GBI 45 G I W B
FBREFR, UiWIAELE A R P U S RBBMV 5 8 £ Cryl Acigi om THidEdh &R . HL, &
it ZR LR BB BN (0 A B B A 1) — B, WA R RZESR: (] 5.4 A). T CrylAbs = Flag
H %M ZBBMVEE & it B f A0, S0 R 96S. Btk i RBRAILER o145 75 1 i [ 56 5 43
W2 162 £29 RU. 145 + 32 RUFI 102 +20 RU, 1ff H =M & 5 Cryl Abff 25 45 th & Rl R 55— 3%,
HLFR o) 25 & I (R 25 LE B AN R K, TR S I B AS i R b 25 i R T A e 22 57

A5 Cryl Aclbigde sk, CrylAbL# i RINEE A HE)IET9(K 5.4A, B). Cry2Ab5 % i RBBMVIY)
SELT IR N SR 37k 183 + 41 RU (96S). 177 + 27 RU (LFR;o)#1 181 + 36 RU (BtR), —#7F
Cry2 AbHH 45 & I B30 R 2 20, I R Cry2 AbIEE S e I EABE 25 (B 5.4 C).

LFRq A
400 —
%]
5 96S
5 300 — X
[13]
Q
§
g
£ 200 —
3 T~BR P—e
-g \——‘___
= \u___ﬁ__‘_h‘__‘_______-_k__~_
§ 100 —

0 | 1 | 1 1 |
0 50 100 150 200 250 300
Time (Sec)

400 B
i //f//f”f”"-—ﬂﬂ_—_
£ 300
8
g
5 96S
L 200 /K}/
=
5]
5 x‘?
& \\LFRIO
S 100 -
[

T~ B
0 1 1 1 1 1 1
0 50 100 150 200 25b0 300

Time {Sec)
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400 - C
77}
=
= 300 =
=]
5]
5]
E LFR; 96S
€ 200 =
5]
[
-
5}
£ X
£ 100 = BtR
I
=]
)
0 | | | T | |
0 50 100 150 200 250 300

Time (Sec)
5.4 £mABBMW 55K EEEHERE (A, CrylAc B, CrylAb. C. Cry2Ab) &Y
BB & SPRIESE
Fig. 5.4 The SPR sensorgrams of the interaction between CrylAc (A), CrylAb (B), Cry2Ab (C) and BBMV from

96S, LFR |, and BtR strains of H.armigera

5. 2. 4 BtHZEAEZMABBMV ARESHES

FATH AR K BBMV 5 3 uM AR R GRS R)REG 5, B UK R E 60 min,
RGBS R, WA EANIZ MRS F A GRS . £ 5.1 NJURRERAAES R PRSEF 4G
M S AEL o

% 5.1 CrylAb. CrylAc #0 Cry2Ab 7£ & dh % BBMV FRYTEHE5S SPR Na (&
Table 5.1 The response values of SPR for binding competitions among CrylAb, Cryl1Ab and
Cry2Ab in BBMV of different strains of H. armigera.

Wi {H (Response Unit, Average + SE)

I 5 AH s
Immobilized influx
96S (RU) LFR,, (RU) BtR (RU)
CrylAb 96+ 10a 82+ 14 ab 65+8 b
CrylAc
Cry2Ab 165+ 18a 150+22a 156 +25a
CrylAc 22+4 a 65+7 b 90+ 13¢
CrylAb
Cry2Ab 148+12a 149+ 15a 146+t 11 a
CrylAb 155+22a 151+10a 145+21a
Cry2Ab
CrylAc 153+12a 155+10a 151+23a

Ee WATPFEEARFE LR R B, BFEKTA p=0.05 (Duncan’s Hi LR ZEKI4Y)

Note: Different case letters in same row was significant difference, p=0.05 (Duncan’ test)
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5. 2. 4.1 BtHELZES HFE BBMV FHS&ES

UKL, 4 96S HUK N R BBMV Hid &) Bt 5% (CrylAb. CrylAc. Cry2Ab)iK Bild &
60 min J&, Kt BRIPUANEIE AT RHR A Y)S HBS Sk 3 s LA 15 pl/min [R9
B R, MRS R RS A G 3l ) - 5.5 AR, e CrylAc 1)@
TG, CrylAb FWiNAEA 97 10 RU iy, BEWIAE 96S /i &R ) BBMV H', BBMV 4 CrylAb 45
A G WAL R CrylAc 454, 1T Cry2Ab 7E1ZI03E M NAETE 165 = 18 RU Zi 47, 1XHI Cry2Ab
7E 968 fih RTINS G A UL, UL Cry2Ab W45 G 07 A BERE CrylAc Tl 5.5 A). [FIE
M B N SR T LA Y CrylAc X CrylAb FISE4+A% 7 LX) Cry2Ab B354+ 8 155 .

MAE CrylAb i |,  CrylAc HIMIRNAE K 22 + 4 RU, $HIRSY T BBMV 5 CrylAc 784>
4545 )5, CrylAb BRI AT HAS % CrylAc B4 H24 A EH Cry2Ab ] BBMV

400 — A
£
- 300 —
=
=
v
% Cry2Ab
g
S 200 —
a-) \\_—
=
= /
©
=
00— N—
= \
S

CrylAb
0 T T T T T T
0 50 100 150 200 250 300
Time (Sec)

400 — / .
i
— 300 =
=
=
©
s
g Cry2Ab
§ 200 -
&
P~
- -h'—"—-—-__
@
o]
8
1 CrylAc
L

0 T T T T T T
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Time (Sec)
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400 —
C
ook
= 300 —
=
=
(4]
% CrylAc
8
S 200 —
5}
[~
=]
(5]
3 CrylAb
& 100 — Iy
I
o
]
0 T T T T T T
0 50 100 150 200 250 300

Time (Sec)
5.5 Bt ZREHHMA 965 BBW HHTHLES
A. CrylAc 5 CrylAb. Cry2Ab 354+ B. CrylAb 5 CrylAc. Cry2Ab 3¢9+ C. Cry2Ab 5 CrylAb. CrylAc 354+
Fig. 5.5 Competition binding analysis of Bt toxins in BBMV isolated from Cry1Ac-susceptible strain 96S
A: CrylAc competed with Cryl1Ab and Cry2Ab B: Cryl Ab competed with CrylAc and
Cry2Ab C: Cry2Ab competed with CrylAc and CrylAb
(FVRAT ), FmINARh 148 + 12 RU, JXA1 Cry2Ab 55 968 SRR SRS 2 I (K05 5 9 8 G (5 3
PE225%, B Cry2Ab MZE & A7 ni S CrylAb AN, H CrylAb Xt Cry2Ab A L858 1 56 4+ g 71 (&
5.5B).
X T Cry2Ab i1, CrylAc Fl CrylAb [HaNAELE 155 £ 22RU Fl 153 + 12RU, [fjiX 5P Fp

HRA A R PR MR A A EIE S, U CrylAb F1 CrylAc TR si s Cry2Ab (45447
RAFE(E 5.5C).

5. 2. 4. 2 BtEEALFRABABBMVHAHNESES

LR, I Cry | AcIBIE IV, #Cry LAb# 5 5 BBM VTR & 5 (R G E 8 7 R
SPRIZ/REGMINAL LY 82 + 14 RU, WEWIMH S G/, B TLFR o RBBMV 5 Cryl Ab4
G WA AL St CrylAcki &, HEFGRE AR T UK &R 96S, UiHI{ELFR ot R, IAFAEN
Cryl AbJITANRESS & IH R Cry LAcES S IS5 S A i, fHCry 1 A 45 4 RE ) AU S R 959 . AT
T-Cry2Ab, WINAELE 150 £ 22 ARU, XFI'EAELFR o P FF RS S HZ R A B2, YHIAELFR
1, Cry2 AbINES A A AR Cryl AcHT iR, CrylAckf Cry2 AbIFISE 4+ 45 B 11 45 G I B i id %
5 5 TCry1Ab (8 5.6 A).

KA Y. VR A Pl i [ 2 R Cry LABISE, - XY 75 Cry TAcIPTR G W) 1 NAR R 65 + 7RU, 2
F e TAERBUE S B R N (R IR N 22 + 4 RU, UHIBBMV 5 Cryl Ac4i & )n, A ALl ffiCryl1Ab
4545 BUE BECry L AbREFICry2 AbSe 4, X2 HBURM R 96SHT ATy, Wit T 58Uk &
96SAHLL, LFR;oH 15 Cryl AcHICry 1 AbJE [R]85 IR 45 G A st R A T X% o {H Cry2 Ab (1) WA 2k
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R AP AR e I 22 A 1 S B KR BBMV b Cry2Ab. CrylA 4546 12 (1 S ikl

149 £ 15 RU, FrREM L2 (1ISPRIF & AU M R 96SAH LA KK Z R, WHILEPIIEN RLFR o
Cry2 AbIIA s AT KA B2 (8] 5.6 B)o

MAEE T Cry2 ADIBIE R, ToI8 K5 Cry l AR & W AR S Ok I sh AHE 2 5 Cry 1 Ab
RS PIRE SABC R B A, IR EE TRGm M NAE, 437004 155 + 10 RUAT 151 + 10 RU, Pl
Cry2 AbTELFR o1 [ 45 6 RE J1 A IS5, 1T Cry 1 AcH 34+ 45 4R 1 EhCry LAbBE 5(F&] 5.6 C).
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[&]
g Cry2Ab
S 200 =
18]
[
o]
o
9 CrylAb
L 100 = Ty
[
=]
L)
0 T T T T T T
0 50 100 150 200 250 300
Time {(Sec)
400 — B
i
m 300 —
=
=)
&
E Cry2Ab
S 200 —
5]
=31
ks
© CrylAc
£ 100 — /
I
[=]
o ‘_\__—i__
0 I | | | | I
0 b0 100 1560 200 2b0 300
Time (Sec)

64



rhELAME R B 25 1 S WL FREL I BBMV 5 Cry2Ab. CrylA 454 i B (1) S &

400 = C
e
=
=
[i]
‘é CrylAc
g
S 200 — /
[+
e K
] e
it
[+]
L 100 = /
—
= CrylAb
0 T T T T I |
0 50 100 150 200 250 300
Time (Sec)

5.6 BtHREEMMERALFR. BBWHHRSES
A. CrylAc 5 CrylAb. Cry2Ab 354+ B. CrylAb 5 CrylAc. Cry2Ab 34 C. Cry2Ab
5 CrylAb. CrylAc 354+
Fig. 5.6 Competition binding analysis of Bt toxins in BBMV isolated from CrylAc-resitant strain LFR,
A: CrylAc competed with Cry1Ab and Cry2Ab B: Cry1Ab competed with CrylAc and Cry2Ab C: Cry2Ab

competed with CrylAc and CrylAb
5. 2. 4. 3 Bt HHR# BR R% BBMV HHIE&44

EPLPEM & BR WY, 24 Cryl Ac MIE TP, Cryl Ab #5844 4 iF, SPR ([0 WA fE7E
65 + 8 RU, it WIZEHIME A & BtR 1 BBMV L, CrylAc 5 Cryl Ab f74E LA (45 647 14, 1H CrylAc
A CrylAb T ANBES: G iS5 & SAEAE(B 5.7 A)s % T Cry2Ab, WANAEAE 156 25 RU, it
W] Cry2Ab 145G 07 A RERE CrylAc BTikRl(El 5.7 A).

400 =

P

200 — /”_’_—‘ \zip‘b

300 =

Corrected Resonance Units

100 = / CrylAb
0 T T | 1 I I
0 50 100 150 200 250 300
Time {Sec)
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400 =

300 =

Cry2Ab

P S

Corrected Resonance Units

CrylAc
0 T T T I T |
0 50 100 150 200 250 300
Time {Sec)
400 = C
4
— 300 =
=
=
®
3]
g CrylAc
)
o
= ¥
o
e
8
£ 100 — CrylAb
3
0 T T T T I |
0 50 100 150 200 250 300
Time (Sec)

5.7 Bt HER7EMIEMA BR BBW HHIZHES
A. CrylAc 5 CrylAb. Cry2Ab 34 B. CrylAb 5 CrylAc. Cry2Ab 5i4+ C. Cry2Ab
5 CrylAb. CrylAc 34+
Fig. 5.7 Competition binding analysis of Bt toxins in BBMV isolated from Cry1Ac-resitant strain BtR.
A: CrylAc competed with Cry1Ab and Cry2Ab B: Cry1Ab competed with CrylAc and Cry2Ab C: Cry2Ab
competed with CrylAc and CrylAb

2 Cryl Ab JBIEFFIUN, % CrylAc () BBMV IS4 Cryl Ab M NAE % 90 + 13 RU, it
HIZEHLPE S & BIR ) BBMV 1, BBMV 5 CrylAc 454 ), VA A7 s al it Cryl1Ab 4540 (&l 5.7 B);
M54 Cry2Ab FIIRGW S Cryl Ab 454 M NAE K 146 + 11 RU, #iH] Cry2Ab 5 BBMV 455
AN CrylAb 5 BBMV 1454 (K 5.7 B).
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FIRERT, HFRATHE Cry2Ab JE RN, FRATHF T Cry2Ab 5 CrylAc A1 CrylAb (454 R
71, SPR &R IR, Cry2Ab 5 7 Wi AR 7371 8 145 + 21 RU A1 151 + 23 RU, W] CrylAc
Al CrylAb 5 BBMV K455 AT Cry2Ab [F454, Cry2Ab [NE5 G AL A RER, Cry1Ab Hl CrylAc
Pk, TR Cry2Ab XFEATTHIZE S 2454 R JJAH 43, 2 CrylAc MR T CrylAb(K
5.7 C).

5. 3 #Hit5itie
5. 3. 1 SPROABtEHEESE CrylAcHi. Bi&& BBMV BIEHE4S

T I 2370 0 7 VR FRAT T AR A B H b i PR I I BBMV P AL RV S, AT IA 2 SPR AT 1)
B o [FII IE ) S SRR 1) 7V K SR B R AR T e AECMS B b, e T R R 1 e B
R IDELZE PRI B A pHAB 2 3 M« 4.0 (CrylAc)~ 4.0 (CrylAb). 5.0 (Cry2Ab). 52 J& 5 A 2 i 13k
J JCrylAc (2.8 ng/mm?). CrylAb (2.7 ng/mm*)HICry2Ab (3.1 ng/mm®).

Cry2Ab 5 Cryl A 45647 SUAN A CrylAc PLPERE HU6 Cry2Ab AMELEAS HTPE AR #EA=
LR T8I SE SR AE S SRR A T AT A, O R AR BUR R R YIRS R, AP CrylA R
(1) BBMV RGPS & R85 1 Cry2Ab B iIf5 5, H5 Cry2Ab e g G L Bz 1
Cry2Ab 5% 5 % BBMV HIE A YRZ Cryl AcCryl Ab JBIE R, [FFERESEE S SPR 55, L
FEPIANTTIRIEE T Cry2Ab 5 Cryl A [R28 5 AR HUR N AR SL R IR 45 G A 0t

X Cryl AR R A FE PR TOR I : FERURS R P, CrylAcSBBMVIR G G TR SR A
Cry 1 Ab I8 N AN e 5 KRG SPRAE 5, Ui W EBURK i R Hh Cry LAbANE 5 Cry 1Acsa 4, 1]
Cry LAbANRERAIBRCry lAc LAAMAI 45 B4 s 2 Cryl Ab S BBM VTR G W) 4 Cry 1 Acill i iy U E
S B RIES 24, B CrylAbSBBMV IR WV 5, 143 4> Cry 1 Aclf) 45 4 07 s A RE Bt
Cryl AbFTIRS: RIRERT, LEXTHUNE i RLER o FIBRUATHISTIN & . ZELFR o, SRS R AH
L, Cryl AbXfCryl Aclfsa4+fe 14530 T ok, X nlfe & T CrylAclIAXT &5 A R0 R i 51k
A4k MIZEDUPE L RBRH, Cryl AbXfCry 1 Aclf 34+ A8 5 2t 0 K naiw, B ks ptk
(380, CrylAclf 4 &g HAEZE LI F . Ik, CrylAcks & 68110 BT fE2 Ap 4% daxt
CrylAc Pt = — NEE R IR .

Wk E—= TR AL EAR CrylAc 645 RISEA) —2, (HZ5 G e ) MIRIEAR AR 22 7
KRR — A E R, FES A R e e MR ES S THEM. AR SPR X}
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Fig. 5.8 Binding model between Bt toxins and Cry1Ac-susceptible strain of H. armigera
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CrylAa CrylAb CrylAc Cry2Ab

Site 1 Site 2 Site3 Site 4

[E5.9 Bt FF5 CrylAc #T14HMR40H (RR=253. 0) B SHRELE
e WOBLRRG SR TR
Fig. 5.9 Binding model between Bt toxins and Cry1Ac-resistant strain of H. armigera (RR=253.0)
Note: The blue dashed arrows indicated that the binding capability decreased.
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Site 1 Site 2 Site 3 Site 4
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Fig. 5.10 Binding model between Bt toxins and Cry1Ac-resistant strain of H. armigera (RR=2971.3)

Note: The blue dashed arrow indicated that the binding capability decreased, and the red dashed arrow
indicated that the binding capability lost.
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