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摘要

离散余弦变换是广泛应用于信号处理、图像处理领域的重要工具之一，已经

被多个国际标准所接受，如JPEG、MPEG、H．263等。DCT应用到实际系统中

的前提是具有能够快速实现的算法，自从1977年第一个真正的DCT快速算法出

现以来，寻求更快、更规则、更简单的DCT快速算法一直是信号处理领域的一个

热点研究方向。

作为正交变换的DCT算法具有计算复杂度适中、快速算法等特点，在数字信

号处理等方面有着广泛的应用。由于应用领域的不同，也出现了很多形式的DCT

算法。

本论文主要研究的是二维离散余弦变换的快速算法设计，其研究的重点是实

现二维DCT变换的直接分解算法。论文工作分为三个部分：

一．对DCT算法进行总结，概括和描述了近几年出现的DCT算法并进行分类。

二．在研究已有DCT算法的基础上提出了一种改进的快速算法一部分和分解

算法(PSDA算法)；在PSDA算法中，通过引入部分和的定义，实现了频域输出数

据的分集；通过频域输出数据的分集将二维DCT变换转换为若干个一维DCT变

换；PSDA算法还给出了部分和的计算方法及组成部分和的公共加法项的合并原

则。

三．从VLSI实现的角度出发，提出了部分和分解算法的VLSI结构，基于该

结构的RTL代码通过了综合和FPGA原型验证，为该算法的后续研究和应用提供

了理论基础和实现参考。论文最后给出了PSDA算法的VLSI实现结果；指出了

PSDA算法未来的应用前景和发展方向。

相比其它DCT算法，本文提出的PSDA算法实现了以下几个方面的创新和改

进。

1．提出了部分和相等的分集准则，通过该准则实现了对频域输出数据的分集，

并证明了每一个分集内的元素为时域输入数据部分和的一维DCT变换输出。

2．通过对频域数据进行子集划分，将一个二维DCT变换转换为若干个一维

DCT变换，完成DCT变换的乘法运算次数减少了一半。

3．提出了部分和的计算方法和公共加法项的合并原则，通过合并公共加法项

减少了加法运算量。
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4．传统的DCT算法是针对输入数据长度为2n进行计算的，但是在很多应用

领域中都要用到长度非2“的DCT算法，而素长度的DCT算法是非2“长度DCT

的核心。因此本文在2“长度PSDA算法的基础上提出了改进的二维素长度PSDA

DCT算法，该算法是基于频域输出数据与部分和的转换和映射关系，将二维素长

度DCT变换分解为多个一维素长度DCT变换。同已有的素长度DCT算法相比，

减少了一半的乘法计算量。

5．提出了基于2“长度PSDA算法的VLSI结构，同间接算法的VLSI结构相

比，该结构具有不需要转置变换，处理延时低的优点；同其他直接算法的VLSI结

构相比，该结构具有更规则的结构，和更少的乘法器和加法器开销。

6．目前的DCT IP核都是针对2n长度的，并不能满足完全实际应用中的需要。

本文在PSDA算法的基础上，分别基于FPGA和ASIC工艺进行了素数长度DCT

的D核设计。仿真和综合结果表明，该设计结构简单、层次清晰，具有高度的规

则性和模块性。

关键词：离散余弦变换， 快速算法， 部分和分解算法(PSDA)， VLSI实现
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ABSTRACT

ABSTRACT

The discrete cosine transform is one of the important tools in signal processing and

image／video processing．It is now accepted by several international standards，such as

JPEG,MPEC弓H．263．etc．The precondition for using DCT in practical system is the

algorithms for fast implementation of DCT．Since the first true DCT fast algorithm is

proposed in 1 977，looking for the faster,more structured and simpler algorithm for DCT

is one of hot research topics in signal processing fields．

As an Orthogonal transform，DCT has many fast computation algorithms．In the

different application fileds，there are different types of DCT algorithms．

刀}e thesis deals with the fast algorithms of 2D—DCT and their VLSI

implementation structures suited for implementing in hardware and parallel processing．
And the thesis emphasizes on the research of direct--decomposition algorithm for 2D—

DCT．It contains three parts：

1．The thesis summarizes the fast algorithms for DCT and classes them into several

types．

2．The thesis presents a new fast 2一D DCT algorithm(PSDA)．By the definition of

partial sunl，all allocation algorithm is designed on the frequency output data．By the

computation of partial sum，the 2D--DCT is converted to several l D—DCT，and the

partial sum decomposition algorithm utilizes only half multipliers and discards

transposition memory comparing to RC algorithm．

3．The thesis presents the corresponding VLSI structure of partial sLIm

decomposition algorithm(PSDA)and points out the applition field of PSDA in the

future．

Compared to other DCT algorithms，such innovation is archived in the following：

1．ne thesis presents the definition of partial sum，researchs the sub—set

allocation algorithm based on partial sum and the computation of partial SLIm．

2．Ⅵa the sub—sct allocation based on partial slam。the original Two—Dimensional

DCT transfclITn iS coverted into several One．Dimensional DCT transforms．

3 The theis researchs the property of partial sum，deduce and present out a new
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algorithm for computing 2疗×2刀type 2D—DCT based on partial sum shaftng memod．

Illustrate how to decrease add operations times during partial sum computation．The

algorithm costs fewer multipling and adding times than other known 2D--DCT
algorithms．
4 Research a new algorithm for computing prime number sized 2D--DCT baSed

0n panlal sum decomposition and convert the original two dimensional computation to

several 1 D prime number size DCT computations，and deduce out the computation

complexity of the algorithm．And the algorithm gets the archjeveIIlent of about half
multiplying times comparing to RC algorithm．
5 Research the 2疗×2露type 2D—DCT VLSI structure based on PSDA．Comparing

to the in-direct VLSI structures，it doesn’t use transposition RAM and archieves a lower

processlng delay．Comparing to the direct VLSI structures，it has a more re2udar

structure and fewer multiplier and adder cost．

6 Research the q×g type 2D--DCT VLSI structure based on PSDA(g is a prime

numb哪-Comparing to the in-direct VLSI structures，it doesn’t use transposition RAM
and archieves a lower processing delay．

KeY Words：discrete cosine transform(DCT)，partial sum decomposition
algorithm(PSDA)，fast algorithm，VLSI Implementation
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第一章绪论

技术背景和研究意义

第一章 绪论帚一早 三百y匕

数字图像处理(Di百tal Image Processing)又称为计算机图像处理，它是指将图像

信号转换成数字信号并利用计算机对其进行处理的过程。数字图像处理最早出现

于20世纪50年代，当时的电子计算机已经发展到一定水平，人们开始利用计算

机来处理图形和图像信息。数字图像处理作为一门学科大约形成于20世纪60年

代初期。早期的图像处理的目的是改善图像的质量，它以人为对象，以改善人的

视觉效果为目的。图像处理中，输入的是质量低的图像，输出的是改善质量后的

图像，常用的图像处理方法有图像增强、复原、编码、压缩等。图像处理技术在

许多应用领域受到广泛重视并取得了重大的开拓性成就，属于这些领域的有航空

航天、生物医学工程、工业检测、机器人视觉、公安司法、军事制导、文化艺术

等，使图像处理成为一门引人注目、前景远大的新型学科。 随着图像处理技术的

深入发展，从70年代中期开始，随着计算机技术和人工智能、思维科学研究的迅

速发展，数字图像处理向更高、更深层次发展。人们已开始研究如何用计算机系

统解释图像，实现类似人类视觉系统理解外部世界，这被称为图像理解或计算机

视觉。70年代末MIT的Marr提出的视觉计算理论，这个理论成为计算机视觉领

域其后十多年的主导思想。图像理解虽然在理论方法研究上已取得不小的进展，

但它本身是一个比较难的研究领域，存在不少困难，因人类本身对自己的视觉过

程还了解甚少，因此计算机视觉是一个有待人们进一步探索的新领域。

数字图像处理的信息大多是二维信息，处理信息量很大。如一幅256×256低

分辨率黑白图像，要求大约64kbit的数据量；对高分辨率彩色512×512图像，则

要求768kbit数据量；如果要处理30帧／秒的电视图像序列，则每秒要求1Mbit'"

22．5Mbit数据量。因此对计算机的计算速度、存储容量等要求较高。

21世纪的人类社会已经进入了信息化时代。数字化后的信息，尤其是数字化

后的视频和音频信息具有数据海量性，它给信息的存储和传输造成较大的困难，

成为阻碍人类有效获取和使用信息的瓶颈问题之一。因此，研究和开发有效的多

媒体数据压缩编码方法，以压缩的形式存储和传输这些数据是非常有必要的。

视频数据压缩目前的主要目标是追求较大的压缩率、较快的压缩解压缩速度
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以及尽可能好的图像重构质量，同时也在向压缩数据的处理如数据组织、检索、

重构等方向发展，力求发展一个比较完整的图像压缩处理解决方案，因此在这方

面仍有许多的工作要做，其中最基本的就是要有比较合理且高效的压缩算法。

1．1．1图像压缩算法基本框架

标准化是产业化活动成功的前提，标准的制定保证了数据流可以在不同的终

端和应用间交换。自国际无线电咨询委员会(CCIR：International Radio Consultative

Committee)于1982年通过了电视演播室数字编码的国际标准(CCIR 601号建议)以

来，视频编码技术日趋成熟，目前的国际视频编码标准己有很多种。如国际标准

化组织(ISO：International Standardization Organization)和国际电子学委员会(IEC：

International Electronics Committee)下属的活动图像专家组(MPEG：Moving Pictures

Experts Group)组织制定的MEPG--l，MPEG--2， MPEG一4标准，国际电信联

盟(ITU：Intemational Telecommunication Union)带lJ定的H．261和H．263标准，以及

ISO／IEC下属的MPEG和ITU下属的视频编码专家组(VCEG：Video Coding Experts

Group)共同成立的联合视频小组JVT(Joint Video Team)最新完成的H．264标准也称

为MPEG--4 AVC(Advanced Video Coding)，以及国内第一个针对音视频产业需求

制定的标准AVS(Audio Video Standard)等都是基于混合编码(Hybrid Coding)框架之

上的。这里的所谓混合编码框架是指综合运用预测，变换以及熵编码的编码框架，

有以下三个主要特点：

l、利用帧间预测消除图像间的冗余，利用帧内预测消除图像内的冗余。

2、通过对预测残差进行变换和量化来消除图像内的视觉冗余。

3、利用熵编码来消除统计上的冗余。

在实际应用中，编码端首先通过帧内预测或帧间预测，得到相应的残差数据

块，对原始图像数据块或残差数据块进行二维变换，然后在变换域中对变换系数

进行量化，最后进行熵编码，即采用变长编码或者算术编码等。而在解码端，则

对残差的变换量化系数进行反量化反变换，然后和预测值相加即可得到重建图像

块。

图l一1是图像和视频压缩系统的结构框图。由图可知，变换是系统中的一个

核心部分。
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1．1．2离散余弦变换

图1—1图像和视频压缩系统

研究表明，视频数据、图像数据或其残差数据在空间域上仍有着较强的相关

性。进行变换的目的就是为了将这些在空间域上有较强相关性的数据变换到以变

换矩阵的归一化向量表达的变换域上。在变换域上，这些信号的变换域表示的相

关性就很弱，有利于进一步进行压缩处理。因此，变换是视频编码和图像编码中

非常重要的部分。当今流行的视频编码标准中大多采用了离散余弦变换作为它们

的核心变换。

离散余弦变换是由离散傅立叶变换(DFT)发展过来的，由于离散傅立叶变换在

数字信号处理频谱分析等领域中己成为有力的数学工具，但其缺点是复数域运算，

运算量太大以至难以实时处理，为克服这些缺点，1974年，Ahmed等人构造了一

种实数域变换一DCT【11。由于该变换性z日,匕。-,，4lⅨ3适用于人类语言及图像信号的特点，从

这个意义上，DCT常常被认为是接近K—L变换性能的次佳变换。

DCT有一个重要性质，就是它的变换矩阵的基向量很近似于Toeplitz矩阵(即

沿对角线方向的元素都相同)的特征向量。这就是说，对Toeplitz矩阵DCT将非常

接近K—L变换。统计表明，人类的语言、图像等信号的自相关矩阵常常表现出具

有Toeplitz矩阵的特点。从这个意义上来说，DCT是比较适合对语言、图像等信

号作变换处理的一种变换，它的性能接近于K—L变换。

DCT还具有以下性质：

1)对于具有高相关性的数据(信号)，DCT具有非常好的能量聚焦性，经过变换，

信号能量的绝大部分被集中到变换域的少数系数上；

2)DCT具有可实现的快速算法；

基于以上优点，离散余弦变换被广泛应用于JPEG压缩／解压缩、DVD／VCD播

放机、电缆电视、HDTV、图形与图像处理卡、超声波／核磁共振成像系统、数字
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录像机、数字照相机、视频电话与会议系统、图像传输系统等。目前DCT／IDCT

已成为运动图像压缩标准(MPEG)和静止图像压缩标准(JPEG)等的重要组成部分。

实际的应用促进着快速算法的发展，在这之后，针对各个应用领域，不同形

式的DCT算法也应运而生。DCT变换也出现了多种扩展形式，如音频压缩中使用

的修正离散余弦变换(MDCT)，H264标准中使用的整型DCT变换等。

在音频编码中，编码器通常将PCM数据分成若干个等宽的子带等待心理声学

模型的判断，做进一步的量化压缩，这种压缩法我1fInq做sub--band coding。这种

方式由于是等宽的频带滤波，不符合人耳的听觉特性的，对后续量化阶段的处理

不利，相邻子带间也容易发生混叠效应。为了克服以上缺点，音频编码器使用

MDCT转换，进一步将划分成更细的频带，提高对频率的解析度。

离散余弦变换并不是整数可逆的，因此，在利用有限计算精度的计算机来实

现DCT变换域编码时，只能是有损的编码。虽然这对于很多应用是可以允许的，

但还有一些应用却不允许有任何的图像失真，比如医学图像和遥感图像。此外，

一些应用还要求有损和无损编码同时兼顾，即算法要统一。而对于这些应用，就

需要实现可逆的整数DCT变换。

进行整数DCT变换的方法有很多，有代表性的有基于矩阵分解的分裂基DCT

算法和基于提升结构的算法。但是最根本的原理是利用了提升结构的特点，使逆

变换得到的值与原始值没有差别。

提升结构不仅能实现灵活的正交变换，而且还能达到无损压缩效果，因此在

变换编码中是一个非常有用的工具。1999年后发展起来的二进制DCT算法利用提

升结构消去了乘法，只用移位和加法来实现，得到基于提升结构的无乘法DCT。

整数DCT算法的另一个优点是若有足够的字长来表示数据的话，那么中间的误差

可以完全消除，实现信息在传输过程的无损。

综上所述，离散余弦变换是音视频编解码的核心变换。因此研究DCT／IDCT

算法及其VLSI实现的地位日趋重要，尤其是高性能低功耗的算法及其VLSI实现

结构。

1．1．3 ASIC技术概述

专用集fi茈电路(ASIC：Application Specific Integrated Circuit)是--种为专门目的

而设计的集成电路，它与标准集成电路或通用集成电路有着很大的区别。从1948

年第一只半导体晶体管问世以后，微电子技术就得到了日新月异的发展，50年代

4
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中期可用于工业上的产品以锗材料制作的结型半导体晶体管为多，由于锗材料比

硅材料具有较高的载流子迁移率，因而较易于实现高频性能。但锗材料制作的半

导体器件有着固有的缺点。50年代末出现的硅平面制造工艺技术，不但成为硅半

导体晶体管的基本制造工艺，也成为将多个分立器件制作在同一块面积不大的硅

片上的集成电路的基本制造工艺。硅器件有效地克服了锗器件所存在的缺点，这

种技术也一直沿用到今天。

1．1．3．1 ASIC电路的分类

ASIC电路可分为以下三个类别。

1)全定制集成电路

全定制集成电路指设计和制作(所有的逻辑单元和掩膜版)都是按定制的方式

进行的集成电路。设计者需要对电路版图进行最精细的制作，以免浪费芯片上任

何一个平方微米的空间，由于这些专门设计的IC产量高，适用于通用的应用目的，

故称它们为全定制通用集成电路(full--custom IC)。

2)半定制集成电路

半定制集成电路指所有的逻辑单元预先进行设计，但其中一些或所有的掩膜

版按照定制方式进行制作的集成电路。使用单元库中预先设计好的单元可以大大

的简化设计。半定制集成电路可分为标准单元集成电路和门阵列集成电路。

31可编程ASIC电路

可编程ASIC指所有的逻辑单元都预先进行设计，但没有一块掩膜版是按定

制方式进行制作的集成电路。它主要分为两类：可编程逻辑器件(PLD)和现场可编

程门阵Yt](FPGA)。

1．1．3．2基于标准单元的ASIC设计流程

对于P核的ASIC验证，大致的流程如下：

1)设计输入，采用已有的Verilog HDL代码即可。

2)逻辑综合，使用逻辑综合工具将设计输入的Verilog HDL代码转化成门级网

表，通过网表来描述逻辑单元间的连接关系。

3)系统划分，如果有必要，将大系统划分为几个ASIC。

4)布图前仿真，检查设计的功能是否正确。

5)布图规划，在芯片上排列网表模块。
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6)布局，决定模块中单元的位置。

7)布线，单元与模块之间的连接。

8)提取参数，确定真实的互连电阻和电容。

9)布图后仿真，加上互连线负载后检查设计是否能够正常工作。

一般来说，步骤1—4为逻辑设计部分，5—9为物理设计部分。随着工艺的不

断提升，现代的设计方法逐渐倾向于前后端设计的融合。

1．1．3。3 ASIC的单元库

单元库是ASIC设计的关键部分，对于可编程ASIC而言，FPGA公司以成套

设计工具形式提供逻辑单元库，通常用户没有其他选择。而对于标准单元ASIC设

计来说，可有3种选择：ASIC供应商(开发ASIC的公司)提供单元库；从第三方

单元库供应商处购买单元库；建立自己的单元库。

第一种选择采用ASIC供应商单元库，要求用一套ASIC供应商认可的设计工

具输入并进行仿真设计。出于某些原因，在日本，一般的模式是采用ASIC供应商

提供的工具，而在美国，欧洲以及其它地方的设计者情愿选择自己的工具。

ASIC供应商的单元库通常是虚库一单元都是空框或者说是虚的，但含有足够

的版图信息。完成版图后，将网表传递给ASIC供应商，在芯片制造前将其填入空

框内。

第2种和第3种选择是由用户决定购买还是开发。如果购买单元库来完成

ASIC设计，用户就拥有制造ASIC的掩膜板(加工模具)，这也称为客户控制的加

工模具。

库供应商利用ASIC芯片加工厂提供的工艺信息开发单元库，ASIC芯片加工

厂(不同于ASIC供应商)仅是制造，不提供设计帮助。如果单元库满足芯片加工厂

的加工规格，则称其为合格单元库。这些单元库一般都很贵(可能几十万美元)，但

如果单元库符合几个加工厂的规格，就可以选择最合适的加工厂。这表明，对大

批量生产，购买较贵的库最终费用比其他解决方案低。

第3种选择是自行开发单元库，很多大的计算机和电子公司会做此选择。尽

管单元库开发过程既复杂又花钱，但是如今已设计的单元库多数是自行开发的。

不管哪种方法，ASIC单元库的每个单元必须包括以下内容：

11物理版图

2)行为级模型

3)Verilog／VHDL模型

6
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4)详细时序模型

5)N试策略

61电路原理图

71单元图符

8)连线一负载模型

9)布线模型

以上列出的某些方面，像版图，图符等等的库单元内容是显而易见必须有的，

但对于行为级模型等内容，这里要做一个简单的介绍。

行为级模型是指对单元电路做的一种高层次的描述，这是因为用户在对一个

定态的ASIC系统作详细的时序分析时需要花费大量的时间，为了节约时间，在

电子系统分析的初期采用行为模型可以大大缩短仿真时间。

ASIC电路设计者为了掌握电路关键路径的时序性能，就需要对每一个库单元

有各自对应的时序模型。一般库设计人员是通过对单元电路所做的参数提取来仿

真库单元电路的延迟时间。

为了在实际布线完成前估算出引线的寄生电容，就需要对给定大小的电路模

块中线网的电容进行统计估算。这常常采取查表的方式，也称为连线一负载模型。

这里还需要每个单元的布线模型。直接用物理设计或版图工具处理大单元太复杂，

此时需要比较简单的物理版图表示法一虚库法，但它仍需包含所有必要的信息。

虚库可能包含的信息为：告诉自动布线工具能在单元上何处布线，以及连接到单

元的位置和类型。

1．1．4超大规模集成电路(VLSI)

自从1958年美国德州仪器公司发明集成电路以来，特别是在最近的20年，

集成电路技术的发展，已成为当代科技界最引人注目的焦点之一。在当今世界上，

无论是科学技术、军事、经济，还是人们的日常生活，都早己和它密切结合，息

息相关。

集成电路由于电路复杂程度不同，可根据集成规模分为小规模集成电路、中

规模集成电路、大规模集成电路和超大规模集成电路。对于数字集成电路来说，

习惯上认为小规模集成电路是集成度小于10个门电路或集成元件数少于100个元

件的集成电路；中规模集成电路是集成度在0～100个门电路之间，或集成元件数

在100"-'1000个元件之间的集成电路；大规模集成电路是集成度在100个门电路

7
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以上或集成元件数在1000个元件以上的集成电路。大规模集成电路是在一般中、

小规模集成电路的基础上发展起来的，中、小规模集成电路一般是以简单的门电

路或单级放大器为集成对象的，而大规模集成电路则以功能部件、整机、子系统

为集成对象。从分立元件发展到集成电路是半导体电子技术发展的一次飞跃；从

一般中、小规模集成电路发展到大规模集成电路是又一次飞跃，并且还在向超大

规模集成电路发展。超大规模集成电路一般指集成度达1万个门电路或集成元件

数在10万个元件以上的大规模集成电路。

随着超大规模集成电路(VLSI)和专用集成电路(ASIC)的广泛应用，集成电路设

计已经不再是集成电路行业单独包揽所能胜任的了。由于芯片内部电路的规模越

来越大，线路越来越复杂，集成电路专家很难应付各种用户的要求。ASIC技术的

特点是提倡用户自行设计IC。自行设计ASIC是电子、信息业发展的方向。目前

许多集成电路工厂向用户开放，接受用户自行设计的芯片版图进行专用芯片的加

工。电子专家只要掌握了VLSI设计技术，就可以设计自己的专用芯片，将原来安

装在一块印刷电路板上的电路，集成在一个芯片内。从而大大缩小整机的体积，

降低功耗，提高性能，增加可靠性和保密性，节省装配成本。现代电子产品的更

新换代，很重要的一条，就是要依靠VLSI技术，要求电子产品设计师自己设计

ASIC。

一个复杂数字系统往往由许多功能模块构成，而设计者的新思想往往只体现

于部分单元之中，其它单元的功能则是通用的，如FFT，FIR，IIR，Viterbi译码，

PCI总线接口，调制解调，信道均衡等。这些通用单元具有可重用性，适用于不同

的系统。如果预先设计好这些通用单元并根据各种工艺对布局和布线进行优化，

从而构成具有自主知识产权的功能模块，称之为IP(Intellectual Property)模块，也

可称为P核(IP Core)。那么，相应的，针对不同的数字图像系统，就必须采用不

同的处理方法和算法才能加以解决，不可能研制一个图像处理ASIC芯片就可以解

决所有的信息处理问题。但是图像处理的许多算法都建立在一些基本运算之上，

如加法，乘法，离散卷积，矢量内积，矩阵相乘以及FFT变换，DCT变换和图像

矩阵计算等。而它们在图像分析与处理以及图像压缩编码中有着广泛的应用。所

以，开发人员可以设计出图像处理基本运算和算法的VLSI宏单元电路，建立具有

自主知识产权的基本运算和算法芯片核(简称基本运算和算法口核)库，可以方便

的构建专门应用的图像处理算法芯片。因此，本文的大背景就是开展图像处理核

心变换算法研究和口核设计验证技术研究。充分考虑基本运算的内在并行性，研

制可复用图像处理基本运算与算法IP核，为嵌入式实时图像处理系统芯片的研制
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提供关键技术。针对实时图像数据，该算法的IP核可以与国内自行设计ASIC或

RISC CPU核结合在一起，组成极具特色的高效图像处理系统芯片，满足实时图像

处理的需要。开展基本运算可复用IP核的设计工作，对于提高图像处理系统芯片

的设计效率具有积极意义。同时这些IP核也适用于通信，家电，工业检测，医学

诊断等图像处理应用领域，具有巨大的经济价值。

当前世界半导体市场增长最显著的领域是IP核。在国外，目前自主开发和经

营IP核的公司主要有英国的ARM，Amphion，美国DeSoc，Rambus等。以ARM

公司为例，在1985年ARM公司设计开发出第一块拥有自主知识产权的RISC处

理器模块，1990年首次将其IP专利权转让给Apple公司。到2003年全球已有IBM，

TI，Philips，NEC，Sony等几十家公司采用其IP开发自己的产品。有关IP核设计

的报道首次出现在1997年召开的CICC(专用IC国际年会)的“单元建库”论文分

册上。1998年在美国加州的硅谷召开国际年会“半导体战略论坛”上，以IP产业

的现状和发展为大会专题，共有48个全球著名的微电子公司的主要负责人作了大

会发言。同年，“半导体战略论坛98”组织了IP专题研讨会。在1999年“ASIC Status

99”的国际年会上论文总量的三分之一是围绕IP核的设计开发的文章。这些关于

IP设计的国际年会从另一个角度展示了P产业迅猛的发展势头。

目前国内总体来说在IP的开发和应用方面还处于初级阶段。令人可喜的是，

近年来国家在口产业上也有了很大的动作。科技部于2000年启动了“十五"国家

863计划超大规模集成电路SOC专项工作。目前，我国己初步建成起具有自主知

识产权，品种较为齐全和管理科学的国家级m核库：并掌握国际水平的SOC软硬

件协同设计，IP核复用和超深亚微米集成电路设计的关键技术。由摩托罗拉向中

国释放M--Core而触发的产业界SOC一口讨论实质上是我国IP产业的启动。我

国IP产业正在从概念阶段向实用阶段过渡。最近几年，数字电视和高清电视核心

芯片、多功能和智能手机相关芯片、MP3、闪存和视频播放等新概念电子产品SOC

以及CPU和DSP等基础IC成为中国IC公司开发的热点。而图像处理口核既可

作为数字电视和高清电视专用芯片的核心，又可与通用CPU，DSP结合作为图像

处理系统解决方案，有着良好的通用性和广泛的应用。正因为有着上述优点，图

像处理P核的研究与设计成为近几年产业研究的热点。

1．1．5离散余弦变换及其VLSI结构的发展现状

1974年Ahmel等首先提出了DCT概念【l】，随后DCT在数字信号处理的各个
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领域迅速得到应用，应用的需要激发了人们对DCT快速算法的研究，由于FFT的

优异性能，最初的DCT快速算法基本上都是建立在FFT基础上的。但是研究表明，

直接设计的DCT快速算法将具有更高的效率，1977年，w．H．Chen，C，H．Smith，

S．C．Fralick利用对DCT变换矩阵的直接分解，第一次提出不通过FFT实现的FDCT

算法【2】，至此以后出现了多种DCT快速算法。其中，最多也是应用得最普遍的是

长度为2”的算法。由于应用中对DCT长度的要求，针对非2”长度DCT的算法研

究受到人们的重视，实时处理应用要求以更快的速度实现DCT变换，通过数字滤

波器以及硬件实现DCT的途径也越来越受到人们的注意。最初的DCT算法是基

于FFT的，Haralick／3】用N点FFT构造了第一个基于FFT的N点DCT算法，随后

Narashima和Petcrson[引、Tsang和Milerl5l、Makhoul[61、Vetterli和Nussbaomert 7】也

提出基于FFT的DCT算法。第一个直接设计的FDCT算法是由Chela等根据矩阵

分解方法提出的，计算8点DCT只需要16次乘法，比基于FFT的DCT算法减少

了1／6，由于矩阵分解的方法不是唯一的，因此，存在类似的其它矩阵分解算法。

Lee[8】提出了一种以COS函数的倒数作乘法因子的快速算法，但当变换长度较大时

将出现很大的乘法因子，使运算过程中产生的计算误差变大。Hou[9】提出了一种与

Lee算法类似的算法，但使用COS函数作为乘法因子，避免了Lee算法中的计算误

差大的问题。Hou和Lee算法具有相同的计算复杂性，计算8点DCT都只需要12

次乘法，达到了最少的乘法次数。Chan和Ho[10】、Wu和Paoloni[¨】将Hou算法推

广到二维DCT。Arguello和Zapata[121、Britanak[13】【141，提出了修正的Hou算法，

减少了算法中的移位操作量，根据应用中并非所有DCT系数都需要的特点，

Skodras[”】提出了计算DCT低频系数的截断算法。应用中往往需要非2”长度的DCT

快速算法，Yangll6】等提出了第一个素因子DCT实现算法并将算法应用到硬件实现

中【17】，然而，他们的算法要求比较复杂的下标映射。Wang和Yiptl8】推广了Yang

的算法，提出了一组计算离散三角变换(DTT)的素因子快速算法。随后，Lee[19】也

修改了Yang算法，用查表的方法通过两个映射表来实现下标映射。针对快速变换

算法的硬件实现，Chakrabarti和Jajat20】提出了计算素因子DCT和离散哈脱莱变换

(DHT)的Systolic结构，其下标映射类似Lee算法。Lee和Huang[2I】修正了Lee算

法，提出了另一种素因子DCT算法，输入下标映射采用Ruitanian映射，而输出下

标映射则采用Lee算法的映射方法。不同于素因子算法，Heid锄an【22】提出一种将

奇长度DCT转化为同长度DFT的算法。Chcn和Siu[23】利用数论方法，提出了一

种将DCT转化为循环卷积的快速算法，并建议采用分布结构实现卷积【241。Guo等

【25】修iEY Chela和Siu算法，提出了素长度DCT的Systolic阵列算法。

10
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在各种一维DCT快速算法不断提出的同时，为了适应多维信号处理的需要，

二维及多维DCT算法的研究也受到人们的重视，Kamangar和Rao[261提出了一种将

二维DCT转化为一维变换的算法，Haque从变换矩阵分解的角度出发，修改了

Kamangar和Rao的算法【271，Nasrabadi和King[281、Vetterli[29】采用类似一维的方法，

提出将二维DCT转换为二维DFT的实现算法。Cho等[30-32]通过输入输出下标映

射的方法，将N×N二维DCT用N个N点一维DCT实现，乘法复杂性降低到行

列法计算的一半；Huang和W033】用类似的方法给出另一种将N×N二维DCT用

N个N点一维DCT实现的算法。

除了上面所述的各种DCT算法，还有多种将DCT转换为其它变换进行计算的方

法。Duhamel和Guillemot[34】利用快速多项式变换算法提出了另一种计算二维DCT

的方法。Ta掣”】提出用快速离散Radon变换实现二维DCT。

在研究各种DCT快速算法的同时，为了适应实时信号处理的要求，获得更快

的变换速度，人们也在寻找采用硬件或并行处理的DCT实现方案【36-441。

1．2本文的创新点

本文主要对离散余弦变换的快速算法设计及其VLSI结构进行了研究，研究内

容包括一维DCT快速变换算法，二维以及高维DCT快速变换算法，DCT快速算

法实现的VLSI结构研究等几个方面。本文的主要创新点简述如下：

1．提出了一种计算二维DCT的快速算法一部分和分解算法(PSDA)。利用积

化和差的性质，该算法将变换形式中的两个余弦因子相乘的形式转换为两个余弦

因子相加的形式。在时域上将余弦因子相同的数据进行累加求得部分和。根据部

分和相同的准则，将频域上的数据进行子集划分，同一集合内的频域数据为其相

关部分和的一维DCT变换输出。

2．研究了PSDA算法在2”×2”长度二维DCT中的应用，提出了变换输出的频

域子集划分理论，部分和的计算方法及公共加法项的合并原则。与目前已知的高

效直接算法(Cho算法和森川良孝算法)相比，PSDA算法有着更少的乘法次数和加

法次数。

3．研究了PSDA算法在qxq(q为素数)长度二维DCT--II变换中的应用。PSDA

算法将二维数据变换转换为若干个N点一维素数长度DCT奇系数或偶系数的计

算；进而将奇系数或偶系数的变换转化为循环卷积或扭循环卷积的形式，解决了

当前常用高效算法只适用于长度为2”的情况而不能应用于素数长度的问题。
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4．研究了PSDA算法在2n×2打长度二维DcT—II变换中的VLSI实现结构。

一般一个硬件算法结构的优劣主要决定于三个性能参数：面积，速度，精度，在

此三个参数基础上，还要求结构规则，具有模块化，这样有利于设计及版图布局

布线。PSDA算法的VLSI结构着眼于减少使用乘法器和加法器的数目。该结构使

用了2胪1个乘法器和2川个加法器。相对于行列分解法结构(RCM)，该结构不需要

转置存储器，而加法器和乘法器的数量与之规模相当。相对于其他直接算法，该

结构所用的乘法器的数量是最少的。

5．研究了PSDA算法在qxq(q为奇素数)长度二维DCT--II变换中的VLSI实

现结构。该结构的核心为一个部分和计算单元和矩阵变换单元。相对于行列分解

法结构(RCM)，该结构不需要转置存储器，加法器和乘法器的数量与之规模相当。

1．3全文结构安排

本文主要研究二维DCT快速算法及其VLSI实现结构，文章的内容安排如下：

第一章为绪论，首先介绍了离散余弦变换(DCT)的概念：然后介绍了应用背景，

实现原理和未来发展趋势；最后说明了本论文所要解决的问题和取得的成果。

第二章为离散余弦变换(DCT)快速算法及其VLSI实现综述。首先指明了DCT

快速算法发展中面临的主要问题，重点说明了DCT快速算法所要解决的关键技术

问题，综述了各种一维和二维的DCT快速算法的发展概况。一般的DCT快速算

法可划分为两种：间接算法和直接算法。两种算法都是集中在蝶型结构上，而且

目的都是为了减少乘法和加法的计算量。其次介绍并总结了适合VLSI实现的各种

DCT硬件结构的特点。介绍了基于乘法器，分配算法，脉动阵列，CORDIC算法

等当前流行的DCT结构。最后介绍了ASIC技术和ASIC设计流程。对EDA开发

工具进行了简单的说明。

第三章叙述了数论基本知识，分别叙述了同余，唯一分解定理，剩余类，简

化剩余系，同余式，中国剩余定理，原根和指标，为后续章节的展开提供理论基

础。数论理论在快速变换领域有着广泛的应用。由于很多正交变换系的核函数是

三角函数，而三角函数对2万做求模运算具有不变性。因此快速变换的算法研究可

以转化为数论中的同余问题。在一维DCT变换中，当变换长度为合数时，通过数

论中的中国剩余定理可以将一个长序列的一维DCT变换转换为一个多维短序列

DCT变换。从而大大减少了计算复杂度。当变换长度为素数时，通过数论中的原

根与指标可以将一维FFT变换转换为循环卷积，一维DCT变换转换为循环卷积或

12
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扭循环卷积。循环卷积的计算可以通过先求两个序列Z变换乘积的反Z变换求得。

而数论理论中的同余式理论在这个领域得到了广泛的应用。

第四章叙述了一维离散余弦变换(DCT)的快速变换算法设计。一维DCT快速

变换算法是所有DCT快速变换算法的基础。本章详细叙述了2”，矿，素长度以及

任意长度DCT变换算法，为下一章的部分和分解算法打下基础。第一部分叙述了

2订长度DCT的常用快速变换算法一基2递归分解算法。第二部分为矿长度的基g

递归分解算法。第三部分为素长度DCT快速算法，算法的核心在于去掉变换核中

的(2针1)项，将(2x+1)k形式转换为m形式，再通过数论理论中原根的特性，将原

变换转换为循环卷积的形式。最后为任意复合长度的一维DCT快速算法的设计思

想，通过中国剩余定理，阐述了一维DCT与多维DCT之间的相互转换关系。通

过坐标变换，一维DCT可以分解为多维DCT，而多维DCT也可以转换为一维DCT。

第五章为二维离散余弦变换算法研究。利用数论理论，本章提出了二维DCT

变换的部分和分解快速算法(PSDA)。PSDA算法是一种直接分解算法，其核心思

想为将二维DCT变换直接转换为若干个一维DCT变换实现。根据同余理论，将

频域输出划分为若干个子集，每一子集内的所有元素构成一个～维DCT变换的输

出。第2节详细讲述了2”×2疗型部分和分解算法的推导和实现。在本节中给出了

部分和定义，分析了部分和的特性，提出了变换输出的子集划分准则，部分和的

计算方法，公共加法项的合并原则。第三节把部分和算法扩展到qxq(q为奇素数)

型二维DCT，将变换输出划分为四个分量之和。第一个分量为一个(q--1)／2x(q--

1)／2型二维DCT，PSDA算法可以将其直接转换为2(g一1)个(g一1)／2长度循环卷

积的计算。第二个分量和第三个分量为一个一维DCT变换，可通过第四章中叙述

的算法求解，第四个分量为一个常量。本节最后一节给出了PSDA算法在该类型

DCT中的运算复杂度。

第六章是PSDA算法的VLSI实现。第二节讲述了PDSA算法的VLSI结构设

计。该结构的核心是部分和的计算。根据PSDA算法原理，经过预处理对该类型

DCT的每一列输入数据，某一特定余弦因子对应的元素不会超过两个。这两个元

素可以通过查表法选出累加得到部分和输出。最终的变换输出可以既可以通过乘

加运算求和输出，也可以使用其他一维DCT变换模块输出。在本节中，分别给出

了2打×2一型和q×q型DCT的VLSI结构。第三节讲述了算法的ASIC验证过程，

并将验证后的IP核与其他公司的产品进行了比较分析。

第七章总结了全文的设计工作，提出了算法未来的发展方向。
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第二章离散余弦变换(DOT)快速算法及其VLS I实现综述

本章叙述了一维离散余弦变换，二维离散余弦变换及其主要研究方法；介绍

了当前主要的离散余弦变换VLSI结构和ASIC技术的基本开发流程。

2．1引言

自从离散余弦变换被提出来以来，DCT已经被广泛的应用在数字信号处理

中，特别是语音及图像数据压缩，自适应滤波以及通信系统等领域。目前基于8

×8的二维离散余弦变换(2D--DCT)被广泛的应用在各种图像和视频压缩标准中，

诸如JPEG，H．261，MPEG一1，MPEG一2，H．263，H．263+和MPEG--4。DCT是

图像和视频压缩系统中的一个核心部分，它主要是完成数据变换的功能。类似于

离散傅立叶变换，DCT也是把一个信号或者图像从空域变换到频域中。DCT根据

图像内容的重要性把图像分成不同的部分。对于大多数的图像来说，信号能量主

要集中在低频部分。压缩一般都是通过丢弃高频信息来实现的，因为高频信息的

损失不容易被人的视觉系统察觉。在选取均方差准则下，KLT是信号处理的最佳

变换，但是KLT没有快速算法，且计算困难，没有实用价值。在有快速算法的次

佳变换中，DCT的基向量最接近KLT，因而发展很快。本章首先对离散余弦变换

各种算法的发展作简单综述，然后重点讨论适合于VLSI实现的DCT算法结构。

2．2 DCT快速算法

2．2．1一维离散余弦变换(1一D i)cT)的快速算法

DCT首先由N．Ahmed等人于1974年提出【1】，N点l—D DCT(Y(k)-萨[0，

N一1】)对应{X(，z)：咒=[O，N一1】)有如下四种变换方式：

(1) DCT—I

一辱2驴州等)，
砌，=辱2驴u㈣cos(等)，

14

k=0，1，⋯N

／'／=0，1，⋯N

(2一la)

(2一lb)
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(2) DCT—II

掷，=辱》徊s(％笋)，
工c力，=√专暮qxc后)c。s(!三竺主；竽)，

x(尼)=篓√专c。c。x(刀)。。s(!三鱼主：；等)，
砌，=辱蓦删帅s(警)，
删=居》cos(
砌，=括鼢胁(

k=0，l，．．．Ⅳ-1

n=0，1，⋯N一1

k=0，1，⋯N一1

n=O，1，．．．N-1

k=0，1，⋯N-1

刀=0，l，．．．Ⅳ-1

(2—2a)

(2--2b)

(2—3a)

(2—3b)

(2—4a)

(2—4b)

其中：

q={1 77互k七=：0。，,2N，⋯Ⅳ一，
通常采用的是DCT—II，说到DCT和IDCT时大多是指(2--2a)和(2--2b)。

为了有效的计算DCT，许多算法被提出，一般DCT快速算法分为两种：间接

算法和直接算法。两种算法都是集中在蝶型结构上，而且目的都是为了减少乘法

和加法的计算量。

间接算法是利用DCT和DFT，DHT等正交变换之间的关系，用DFT或DHT

快速算法来计算DCTE2-3】。间接算法过程简单，主要工作是处理算法间的转换，因

此往往需要加一些额外的操作步骤，由于将其他变换的快速算法应用在DCT中总

有其自身的局限性，所以现在算法上已很少有人采用间接算法来计算DCT。

直接算法包括DCT变换矩阵分解，递归算法两种技术，不同之处在于矩阵分

解是利用稀疏矩阵分解法将变换矩阵分解，而递归算法是由较低阶DCT矩阵递归

产生较高阶DCT矩阵，可以说递归算法是分解算法的逆算法，但递归算法较矩阵

分解算法有良好的数值稳定性。

近年来提出了许多计算离散余弦变换的算法。这些算法大部分都需要12个乘

法器和29个加法器来实现一个8点DCT，如表2—1所示。

差
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表2—1 8点DCT各种算法的计算量

作者 Chen Wang Lee Vetterli Suehiro HOH

乘法器 16(13) 13 12 12 12 12

加法器 26(29) 29 29 29 29 29

W．H．Chen的快速算法【471，是第一个发表的算法，用的是非常普通的结构，算

法中用到的乘法器和加法器数目可以很容易地减小到表2一l括号中的数字。Wang

的算法能够很容易从他的DCT算法得到离散正弦变换(DSTl，离散小波变换

(DWT)，离散傅立叶变换(DFT)。1984年，B．{2Lee提出一种使用余割因子的DCT

矩阵分解算法【481，得到Cooley--Tukey式的简单结构，受到广泛重视，它的第一

级非常普通，但是在最后一级并不是通常的数据流，需要反余弦值作为系数，这

会引起数据溢出的问题。Vetterli在他的算法中用到了递归公式，而且加法操作需

要紧跟在递归计算模块后，这增加了算法中通讯结构的复杂度。1987年，几乎同

时有三篇论文论述了DCT的递归算法【49。50·511，其中H．S．Hou的快速算法较具有

代表性。近几年出现的新算法大多是这几种算法的改进。Feig--Winograd通过把

DCT看做是一种循环旋转运算，证明了在有理数域上计算长度为2丹的1一D DCT

所需的最小实数乘法次数为2时l--n--2[521，对于8点的一维DCT，最少需要11次

乘法。Loeffier的DCT快速算法【53】达到了这一极限，它是将DCT运算转为旋转运

算。

2．2．2二维离散余弦变换(2--D DCT)快速算法

二维N×N点DCT定义为：

删，=警薹笺棚灿s{警)xcos{警)
(k=O，l，．．．，M—l；Z=0，1，．．．Ⅳ一1) (2--5a)

(所=0，1，．．．，M-1；n=0，1，．．．Ⅳ一1) (2—5b)

c(七)：{1 742 k=o
【 l k=1，2，．．．N—l

2一DDCT的快速算法主要有两种：行列分解法(RCM)及非行列分解法

(NRCM)。RCM方法是将N×N的数据按行(或Y0)方向进行N个1一D DCT计算，

产生中间矩阵，然后对中间矩阵再按列(或行)方向进行N个l—D DCT计算，最后

得到2一D DCT结果。

16
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NRCM即直接分解法，典型的直接分解算法是2一D矢量基DCT算法。2一D

矢量基算法通常为l—D DCT的二维扩展，采用矢量基算法乘法数会减少至行列

分解算法的75％。2一D矢量基DCT算法主要有基于B．GLee．的算法和基于Hou

的算法。对于较长长度的DCT，基于Hou的算法较基于Lee的算法性能优越。目

前最有效的2--DDCT直接分解算法主要有森川良孝等人的算法与N．I．Cho等人的

算法【301，这两种算法都将乘法运算量减至传统行列分解法的50％。森川良孝算法

采用切比雪夫多项式同余形式，把2一D DCT转换成N个N点l—D DCT和长度

为N的切比雪夫多项式变换。N．I．Cho算法采用三角函数法，将长度为2”的2一D

DCT表示为两个新的二维变换之和，再利用换序移位和附加的实数加法运算，将

两个新二维变换转换为N个N点l--DDCT。Feig--Winograd证明了在有理数域上

计算长度为2”的2一D DCT所需的最小实数乘法次数为22时1--n2”一2，z+1，现在

还没有达到这个极限的算法。

2．3 DCT的VLSI结构研究现状

对于2一D DCT的硬件结构，也分为行列分解法(RCM)及非行列分解法(NRCM)

两类。对于2一D DCT RCM方法框图如图2—2所示，此结构采用的算法为各种

～维DCT的快速算法，行和列的1一D DCT结构相同，因此有时为了减少面积只

用一个1一D DCT处理单元完成两次l—D DCT计算，当然这样影响操作时间。

对于高吞吐量RCM系统，为了快速安排行列转换模块之间的数据流，需要复杂的

中间数据转换电路(TRAM)。一般快速转换电路需要大量芯片面积，目前，已有无

中间转换电路的RCM系统，其中很多是脉动阵列实现的结构。NRCM系统没有矩

阵转换电路，采用的算法是各种非行列分解2一D DCT快速算法，它往往要求整

个NXN输入数据同时参与计算，因此I／O处理及数据传递电路复杂，使得它们的

VLSI实现在性能上不如RCM系统。因此，现在行一列分解的方法仍然被广泛地

应用在2～D DCT芯片设计中。
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Clock

时域

输入

频域

输出

图2一l二维DCT行列分解法框图

一般一个硬件算法结构的优劣主要决定于三个性能参数：面积，速度，精度，

在此三个参数基础上，还要求结构规则，具有模块化，这样有利于设计及版图布

局布线。现在已有多种DCT算法结构被提出，这些结构都有各自的缺点，因此在

各种应用中这些结构并存。另外，因为每种DCT算法都有它自己的特殊性和应用

领域，不是所有的算法都适合于VLSI实现。一个算法VLSI实现的有效性主要基

于算法中算术单元之间的数据传递的复杂性，而不是算法的计算量。

本文沿用1998年陈禾，毛志刚等人的分类【541，比较各种DCT算法结构的优

缺点和概述当前研究的状况。

2．3．1基于乘法器的DCT结构

此类结构多采用W．H．Chert的算法【4】直接用乘法器去实现DCT，改善此类DCT

结构的关键在于乘法器结构的改进，例如1995年A．Madisetti等人提出的2一D DCT

结构【131，采用了乘数再编码乘法器，用冗余的SD编码(带符号数编码)来代替普通

的乘数数位，使越过乘数中的一串零的平均移位长度增加，从而减少乘法中的加

法操作，提高乘法速度。此类DCT结构往往因引入乘法器而导致面积增加，且因

乘法过程中要有截断舍入，带来的误差将影响精度。另外，此类结构虽具有模块

化，但结构不规则，不利于布局布线。

2．3．2基于分配算法(Distributed Arithmetic--DA)的DCT结构

基于DA算法的DCT结构由于其结构紧凑，高度规则化，精度高，速度快而

广泛应用在各个领域中。DA方法最早是由Peled与Liu于1974年提出的【551，其基

本思想是通过ROM查找表，利用ROM和累加器(MAC)代替了乘法器。因为DCT

中的余弦系数为固定系数，因此结果可以预先计算出来存于ROM中，根据输入数

据对其取址即可。
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1987年，由M．T．Sun等人首次将DA技术引入DCT中，并将其实现[561。其

2一D DCT采用RCM方法，对于l—D DCT采用Chela算法，然后用DA方法实

现。基于DA技术的DCT有高度规则性结构，非常适合于VLSI实现，而且计算

是以分配方式进行的，截断被限制，因而能获得较其它结构更高的精度。但是DA

算法结构采用位串行实现，这样限制了速度，另外ROM的取址限制了DCT运算

制度。很多研究员从这几个方面入手，对基于DA方法的DCT结构提出了改进，

例如1992年，S．Uramoto等人提出的基于DA方法的DCT／IDCT结构通过采用列

交迭存储器的布局结构和双层ROM电路两种技术【5。71，减少了硬件传播时间，并将

DCT与IDCT的存储内容用一块ROM来完成，减少了ROM的尺寸：1994年

M．Matsui等人提出了一种时钟频率达200MHz的DCT结构【581。它将广泛应用在存

储器电路中的双轨逻辑(输入／输出为互补双值)应用于MAC中，显著的减少了传播

时间，加快了DCT运算速度。但此结构要求的工艺复杂，要同时用到三种工艺，

因此成本很高。

2001年Sungwook，Yu等人提出了一种基于递归DCT算法的规则DCT结构【591，

该结构较之传统的基于W．H．Chert算法的行列分离结构面积又减少了17％。而且

吞吐量保持不变。在不使用部分和技术的情况下，该方法就已经急剧减少了ROM

的大小。如果再使用部分和技术，就进一步减少了ROM的个数且将比特并行加法

器换成了比特串行加法器。

2002年，Ahmed，Shams等人提出了～种新的分配算法结构唧】，他们称之为

NEDA。该结构较以往DA结构的不同之处在于它把固定系数分配到比特域，使得

不再需要任何的ROM了，并且进一步通过挖掘加法器阵列的冗余性把加法次数降

到最低。这样，该结构就不需要任何的ROM，乘法器，和减法器，所以非常适合

低功耗的应用场合。

2．3．3 DCT的脉动阵歹lJ(Systolic Array)实现

脉动阵列概念最早由H．T．Kung于1982年提出【6l】，阵列由一组简单，重复的

处理单元(PE)组成，每个PE执行固定的，简单的操作，每个PE只与其相邻的PE

有规则的联接，操作时，数据经过连成流水线的PE，沿途得到连续的有效处理。

这种高度的并行处理结构，大大提高VLSI的速度，且结构非常规则。DCT的脉

动阵列种类比较多，采用的算法也各不相同，结构实现的主要工作是选取合适的

PE单元，按照陈禾等人的分类将DCT脉动阵列分成以下四类：
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①基于FFT类型的DCT脉动阵列

因为FFT技术较成熟，因此最先提出的几种DCT结构都是基于FFT脉动结

构的，在FFT脉动阵列的基础上经简单变换实现DCT，有代表性的是N．I．Cho等

人于1990年提出的结构【621。

一般在很多实时，高速信号处理中对DFT，DCT脉动结构的要求是： 1)每

个PE要有最少的周边单元；2)数据以数据流形式输入，以数据流形式输出；3)不

要求数据预载，即数据参与计算时才载入PE。因此针对Cho中的不足，N．R．Morthy

等人于1994年提出了一种改进结构【63】，符合高速DCT脉动阵列结构VLSI实现的

要求。此结构组成的2一D DCT，虽属RCM方法，但无需转换阵列TRAM。

②基于三角分解法的DCT脉动结构

此类结构是由三角公式进行递推得到的一系列递归公式构成的脉动阵列。基

于三角分解法的DCT脉动结构最早由L．W．Chang等人于1991年提出∽】，其原理

是将DCT变换核cosine进行三角分解得到一系列递归公式，这些递归公式构成了

1一D DCT线性脉动阵列。C．L．Wang等人于1995年提出一种脉动阵列【651，其三角

法是基于切比雪夫多项式，此结构有更少的I／O端口及更高规则结构。

③直接基于DCT定义的脉动结构

此类结构是直接由DCT定义出发实现脉动阵列，例如C．L．Wang等人于1995

年提出的一种线性脉动DCT结构m】，对于N×N点2一D DCT，此结构只需N个

PE单元，有较高的规则结构，且不用做电路改动，可直接来设计DST，DHT的脉

动结构。

④基于各种l—D DCT快速算法的脉动阵列

此类脉动阵列是根据各算法的自身特点来寻找PE的。例如马维祯等提出的

DCT脉动结构是通过利用Homo"规则将Vetterli--Nussbaumo．的快速算法写成递

归形式而实现的【67】。Y．T．Chang于1995年提出的2--D DCT结构是无转换TRAM

的RCM方法，其算法是基于Chela的快速算法，对行和列的1一D DCT采用了不

同的PE单元。它要求N为偶数即可，不必为2的指数，与其它2一D DCT脉动结

构比，它更有简单，更规则的数据传递与控制电路。而C．M．Wu与A．Chiou于1992

年提出的一种基于Lee算法的SIMD(单指令流多数据流)脉动结构【681，只有四个处

理单元(PE)，对应8点l—D DCT算法流图中每一级的四个蝶型运算。

脉动阵列通过并行及流水线处理可获得较高处理速度，且其具有模块化，规

则结构，局部内联等特点，适合于VLSI实现。但脉动阵列往往要求多个数据同时

参与计算，因此通常有较复杂的I／O处理。另外，因每个PE内有多种算术运算，
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截断与舍入误差会影响精度。而且由于一个PE内多种运算并存，有时会有多个乘

法运算，因而面积往往很大，且脉动阵列结构的时钟控制电路复杂。这些原因使

得现在各种应用中采用脉动阵列DCT结构的并不多见。

2．3．4基于CORDIC运算技术的DCT结构

CORDIC是坐标旋转数字计算机的同义词。这种计算是Voider于1959年提出

来的【69】。这个概念虽然由来已久，但它的实现和应用还在继续发展，因为此技术

简化了体系结构，提高了速度，降低了算术模块的功耗。考虑下列计算：

X．=X cos0一Y sinO=(X—Y tanO)cosO

Y’=Y cos0+X sin0=(Y+X tan0)cos0

CORDIC算法是一个通过以角度Q，=arctan2吖进行矢量旋转而得到的迭代

过程。通过采用CORDIC算法，旋转运算中的乘法器可仅由an／减法器与移位寄存

器来实现，减少了电路，并通过采用流水线结构，加快了数据传输速度。

1 990年，Duh与Wu首次将CORDIC引入DCT计算中【70】。E．EMariators等人

的旋转结构利用DCT中每个CORDIC旋转角度是预先确定的事实，找0的表达式，

减少运算量，也减少了硬件【7l】。而EZou等【721是将DCT结构进行改进，使得完成

一个DCT需较少CORDIC计算，获得了较高的吞吐量。

但现在CORDIC算法结构应用于实际的例子很少，这是因为此结构虽占用面

积少，吞吐量高，但速度较其它结构慢，且精度较低。不过将CORDIC算法引入

DCT这一算法刚刚起步不久，以后会有所发展。

2．3．5其它2-D DCT结构

近年来提出了很多用直接法实现的DCT结构，通过采用不同的技术提高处理

速度和精度，使占用的面积更少。例如C．T．Chiu等人于1992年提出一种帧递归网

络(Lattice)2--D DCT结构算法【73】。此算法是一种直接2--D方法，即NRCM方法。

系统仅要求2个1一D网络DCT模块阵列。NxN点的2一D DCT总乘法量为8N，

是目前所有2一D DCT算法中乘法数量最少的，并且它对N的尺寸没有限制。1996

年V．Srinivasan等人将此算法实现[74】。此设计不足之处在于，其硬件结构较RCM

结构复杂，且精度较低。在一些图像压缩应用中，如JPEG，MPEG，还有采用规

格DCT(scaled DCT)算法的结构。因为在图像压缩编码处理中，图像中的每一像素

经过DCT后的变换值要除以预先给定的量化矩阵中对应的系数，然后量化取整并
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进行熵编码。因此在一些结构中，将量化引入DCT或IDCT中，这就是规格DCT

的思想[751。采用此算法可减少乘法运算量，对8点DCT只需5次乘法。但此算法

精度较差，且结构不规则。而S．C．Hsia等人于1995年提出的一种连续系数2--D

DCT并行VLSI结构【76】，将解压缩系统中的Z排序，运动补偿，逆量化等与IDCT

有机地结合起来，提高了效率，加快了速度，但是电路复杂，缺少通用性。T．S．Chang

等人在2000年设计了成本非常低的DCT处理树77】。算法采用直接算法，并且采

用基于分配算法的位级(bit--level)力fl法器和共用子模块等方法来减少硬件实现的

代价。整个处理核占用的面积非常小，但是处理速度低，并且精度较差。

2．4本章小结

本章研究了DCT的快速算法及VLSI设计结构。近年来提出了很多实用的快

速算法，比较有代表性的是Loeffler等发表的算法和基于傅立叶变换的缩放DCT，

其中Loeffier算法中的乘法器数目已经达到了理论下限。对2一D DCT的VLSI

实现结构进行了分类和比较，总结了各个结构的优缺点。2一D DCT的VLSI实

现结构，也分为行列分解法和直接法两类。行列分解法结构采用的算法为各种1

一D DCT快速算法。行和列的1一D DCT结构相同。直接法它往往要求整个N×N

输入数据同时参与计算，因此I／O处理及数据传递电路复杂，使得它们的VLSI实

现在性能上往往不如行列分解法。

因此，在考虑硬件实现时，主要考虑计算的复杂度，速度，芯片面积，精度

等因素，总是在计算的时间和芯片面积上折衷，所以现在有多种DCT算法结构被

提出，这些结构都有自己的优缺点。基于乘法器的DCT结构计算速度快，但是此

结构往往因为乘法器的引入而导致面积的增加，而且因乘法过程有截断舍入，带

来的误差将影响精度。基于分配(DA)算法的DCT结构具有结构紧凑，高度规则化，

精度高，速度快的优点，但是DA算法结构采用位串实现，这样限制了速度，另

外ROM取地址操作也限制了DCT运算速度。脉动阵列结构具有处理速度快，且

其具有模块化，规则结构，局部内联等优点，适于VLSI实现。但脉动阵列往往要

求多个数据同时参与计算，因此通常要求较复杂的I／O处理。另外，因为每个PE

内有多种算术运算，截断和舍入误差将会影响精度。而且由于一个PE内有多种运

算并存，有时会有多个乘法运算，因而面积往往很大，且脉动阵列结构的始终控

制电路复杂。这些原因使得现在各种应用中，DCT采用脉动阵列结构的并不多见。
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基于CORDIC算法的结构具有占用面积少，吞吐量高的优点，但速度较其它结构

慢，且精度较低，因而应用于实际的例子很少。
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第三章与DOT变换相关的数论理论

本章中叙述了一些数论的基础知识，如同余，同余式，原根，指标等，在后

续章节中，将使用这些理论进行DCT快速算法的研究。

3．1引言

数论这门学科最初是从研究整数开始的，所以叫做整数论。后来整数论又进

一步发展，就叫做数论了。确切的说，数论就是一门研究整数性质的学科。

自古以来，数学家对于整数性质的研究一直十分重视。我国古代许多著名的

数学著作中都有关于数论内容的论述，比如求最大公约数、勾股数组、某些不定

方程整数解的问题等等。在国外，古希腊时代的数学家对于数论中一个最基本的

问题一整除性问题就有系统的研究，关于素数、合数、约数、倍数等一系列概念

也已经被提出来应用了。后来的各个时代的数学家也都对整数性质的研究做出过

重大的贡献，使数论的基本理论逐步得到完善。

数论是一门高度抽象的数学学科，长期以来，它的发展处于纯理论的研究状

态，它对数学理论的发展起到了积极的作用。但对于大多数人来讲并不清楚它的

实际意义。

由于近代计算机科学和应用数学的发展，数论得到了广泛的应用。比如在计

算方法、代数编码、组合论等方面都广泛使用了初等数论范围内的许多研究成果；

目前，在雷达领域中，数论中的中国剩余定理被用在脉冲多普勒雷达上，解目标

的距离模糊和速度模糊，在接收雷达的天线阵列中解目标到达角的模糊；在信号

处理理论中，基于中国剩余定理的数论变化是一种重要的快速变换方法；在IC设

计中，应用中国剩余定理可以获得高效的IIR滤波器设计的方法；中国剩余定理还

奠定了目前世界上最流行的公钥加密技术(即RSA)的基础。原根和指标理论，多项

式变换理论在快速变换领域中得到了广泛的应用。

数论理论在DCT快速算法研究中也有着广泛的应用。第二节叙述了同余的概

念及其基本性质，数的唯一分解定理和简化剩余系。在第三节第-d,节中叙述了

一次同余式，高次同余式的求解；第二小节叙述了中国剩余定理；第--d,节叙述

了高次同余式的解数及解法。第四节叙述了原根与指标，给出了原根存在的条件。
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本章所引用定理的证明请参考【78】。

3．2同余

3．2．1同余的概念及其基本性质

给定一个正整数m，把它叫做模。如果用m去除任意两个整数a与b所得的

余数相同，则称a，b对模m同余，记做a三b。如果余数不同，则称a，b对模聊

不同余，记做a≠b。只有零的模称为零模。下面讨论的对象仅为整数的模，由定

义易得：

定理3．2．1．1

1)任何模中必含有0

21若a，b在模中，则a m+b n也在模中，朋，甩为任意常数。

定理3．2．1．2模中两个元素a及b，则对任意的整数m，刀，a聊+6 n所组成的整数

为一个模。

定理3．2．1．3模中任意一个非零元素，必定是模中最小正整数的整数倍数。

定义．设a，b为二整数，将既能被a整除又能被b整除的最大正整数d称为a，b

的最大公因数，用符号0，6)表示。

定理3．2．1．4(a，6)有如下性质：

有整数x，Y，使d=(口，b)---ax+6y

1)任二整数z，Y，必有(口，6)I ax+by

2)若e a，e b，则e I(a，6)

在DCT变换中，变换核函数为余弦函数cos((2x+1)h／2N)。该余弦函数具有周

期性，周期4Nrr。因此，核函数中的余弦因子系数(研1)七与(2x+1)k(mod 4N)等价，
因此DCT变换可以转换为同余问题来研究。

3．2．2唯一分解定理

定理3．2．2．1若p为素数且pl ab，贝,JJp a或P b

定理3．2．2．2若c>0，及(口，b)=d，贝,lJ(ac，bc)=dc

定理3．2．2．3甩的标准分解式是唯一的。换言之，若不计次序，则以仅能由唯一之

方法表示为素数之积。

在一维DCT变换中，如果变换长度是一个合数，可以用唯一分解定理将这个
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合数分解为若干各素数之乘积，将一个长序列变换转换为若干个短序列变换，从

而大大减少运算的复杂度。

3．2．3剩余类及完全剩余系

在3．1．1中引入了同余的概念。由于有了同余的概念，可以把余数相同的数放

在一起，这样就产生了剩余类的概念。

定理3．2．3．1若坍是一个给定的正整数，则全部整数可分为m个集合，记做‰，

Kl，⋯，‰一I。其中Kr(r=O，1，⋯，m一1)是由一切形如qm+r(q=O，±l，±2⋯)
的整数所组成的。这些集合具有下列性质：

(I)每一整数必包含在而且仅在上述的一个集合里面。

(ID两个整数在同一个集合的充分与必要条件是这两个整数对模m同
企
／■、o

定义定理3．2．3．1中的叫做模m的剩余类，一个剩余类中任一数叫做它同余的数

的剩余。若ao，aJ，⋯，口m—l是m个整数，并且其中任何两数都不同在一个剩余

类里，则ao，al，⋯，am—l叫做模m的一个完全剩余系。

定理3．2．3．2设m是正整数，(a，m)=1，b是任意整数，若x通过模m的一个完全

剩余系，则戤+6也通过模m的完全剩余系，也就是说，若ao，al，⋯，am—l是

模m的完全剩余系，则aao均，aal+6，⋯，aam-I+6也是模m的完全剩余系。

定理3．2．3．3若ml，m2是互质的两个正整数，而工1，x2分别通过模ml，m2的完全

剩余系，则m2xl+聊l娩通过模mlm2的完全剩余系。

定义0，l，⋯，嬲一1这掰个整数叫做模m的最小非负完全剩余系；当m为偶数

时，--m／2，⋯，一1，0，l，⋯，m／2—1或--m／2+l，⋯，一1，0，1，⋯，m／2

叫做模聊的绝对最小完全剩余系；当m为奇数时，--(m--1)／2，⋯，一l，0，1，

⋯，(m—1)／2叫做模m的绝对最小完全剩余系；

如果将模m的剩余类看成一个元素，剩余类的相等就可以用同余来刻画，同

余的运算性质就可以转化为剩余类的运算性质。这样，模m的剩余类的集合对这

些运算就作为一个环，称为剩余类环。如果模是合数，那么就有不等于零的剩余

类，相乘后为0，即有零因子。这就为抽象代数提供了一个有零因子的环的具体例

子。上述环中所有与m互质的剩余类对乘法构成一个群。当模m为素数P时，上

述的环构成一个域，通常记为肋。它有P个元素，这是有限域的一个重要例子。

对于多项式的同余也可以有类似的结论。
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在DCT变换中，如果可以将用完全剩余系来表示余弦因子系数(2x+1)k，那么

就可以把对原余弦因子系数的研究转换为对完全剩余系的研究。

3．2．4简化剩余系与欧拉函数

上节讨论了完全剩余系的基本性质，本节进一步讨论完全剩余系中与模m互

质的整数，这就需要引进简化剩余系的概念。在讨论简化剩余系的过程中，需要

用到数论上一个很重要的概念，欧拉函数。以下先给出几个定义。

定义欧拉函数妒(口)是定义在正整数上的函数，它在正整数a上的值等于序列0，

l，⋯，口一l中与a互质的数的个数。

定义如果一个模m的剩余类里的数与m互质，就把它叫做一个与模m互质的剩

余类。在与模m互质的全部剩余类中，从每一类中各任取一数所作成的数的集合，

叫做模m的一个简化剩余系。

定理3．2．4．1模m的剩余类与模m互质的充要条件是此类中有一数与m互质。因

此与模m互质的剩余类的个数是‘P(聊)，模m的每一简化剩余系是由与m互质的9(m)

个对模m不同余的整数组成的。

定理3．2．4．2若al，a2，⋯，a9(朋)是缈(，，z)个与m互质的整数，并且两两对模m不

同余，则al，a2，⋯，嘞(m)是模m的一个简化剩余系。

定理3．2．4．3若(口，m)=l，x通过模m的简化剩余系，则ax通过对模m的简化剩

余系。

定理3⋯2 4 4若mI，m2是两个互质的正整数，xl，x2分别通过模m1，m2的简化剩
余系，则rn2zl+ml x2通过模mlm2的简化剩余系。

推论若mI，m2是两个互质的正整数，则(p(聊l肌2)=(p(m1)(P(M2)。

定理3．2．4．5设a=pl“p2“⋯肼珊，则
1 1 1

缈(口)=a(1一二)(1一二L-)⋯(1一—L)(3--1)

3．2．5欧拉定理与费马定理

欧拉定理设m是大于l的整数，(a，m)=1，则

a尹‘”’兰l(modm)

推论(Fermat定理)若P是素数，则

aP兰a(modp)
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3．3同余式

3．3．1基本概念及一次同余式

若用们表示多项式f(x)=a．x”+口川，一+⋯ao，其中ai是整数，又设m是一
个正整数，则

f(x)兰0(rnodm) (3—2)

叫做模m的同余式。若an≠0(mod m)，则n叫做(3～2)的次数。

定义若a是使．](a)-0(mod，，z)成立的一个整数，则X三a(mod m)N做(3--2)的一个

解。

讨论方程

a,x+b三0(mod聊) (3--3)

的整数解。

定理3．3．1．1若(口，m)l b，贝JJ(3--3)有(口，肌)个互不同余的mod m解。反之则无解。

定理3．3．1．2同余方程
口I xl+⋯h-an Xn+6三0(modm) (3--4)

有解Ol，⋯，％)的充分必要条件为(al，⋯，a。，m)I b。若此条件适合，则其解

的个数(模m不同余)为m万_1(al，⋯，a。，m)。

本文第五章研究了部分和分解算法。而部分和的求解需要计算对应某一特定

余弦因子的二维坐标。定理3．3．1．2可以求得构成某一特定余弦因子系数的坐标的

个数。

3．3．2中国剩余定理

定理3．3．2．1中国剩余定理设m】，m2，⋯，mk是k个两两互素的正整数，

m=mlm2⋯mk，m=miMi，f_l，2，⋯，k，则同余式组x-bl(mod mI)，x兰62(mod

m2)，⋯x---b“mod mk)的解是

alxl+⋯+anXn+6兰0(roodm) (3—5)

其中肱。肱=--1(modmi)，i=1，2，⋯，k。

定理3．3．2．2若bl，b2，⋯，巩为分别过模所I，珑2，⋯，m|j}的完全剩余系，则过

模m=mlm2⋯mt的完全剩余系。

在一维DCT变换中，如果变换长度是一个合数，将这个合数分解为若干个素

数之乘积后，则可以将原来的一维坐标转换为多维坐标，中国剩余定理可以建立
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起这种一维坐标至多维坐标的映射。

3．3．3高次同余式的解数及解法

本节应用以前的结果，初步地讨论一下高次同余式的解数及解法。通常是先

把合数模的同余式化成素数幂模的同余式，然后讨论素数幂模的同余式的解法。

定理3．3．3．1若m1，m2，⋯，m女是k个两两互质的正整数，m=mlm2⋯mt，则同余

式

f(x)兰0(modm) (3—6)

与同余式组

厂(石)三0(modm)i=l，2，⋯，k (3—7)

等价。并且若用力表示fix)--O(mod聊f)，f_l，2，⋯，k对模mf的解数，丁表示

对模m的解数，则

T=TiT2⋯n (3—8)

由唯一分解定理可知任一正整数m可以写成标准分解式：即

m=pl引p2“⋯皿甜

由定理3．2．3．1知，欲解同余式似)-0(mod研)，只要解同余式组
f(x)三0(roodpi“) i=1，2，⋯，k

因此下面就来讨论

f(x)兰0(modp4) (3—9)

但是由模的性质很容易知道适合(3--9)的每一个解都适合同余式

f(x)三0(modp) (3—10)

因此欲求(3--9)的解，可以从式(3—10)的解出发。

定理3．3．3．2设

x兰xl(modP)

即 石=硇+prl，n=O，±1，±2，⋯ (3—11)

是(3--10)的一解并且pf I厂’“)(厂’∽是厂∽的导数)。贝JJ(3-11)冈lJ好给出(3—9)

的一解(对模p。来说)：

X=xa+P4如，ta=0，±1，±2⋯

3．3．4素数模的同余式

在3．3．3中，解高次同余式的问题归结到了素数模的高次同余式，但是还没有

提出一般的方法去解素数模的同余式。
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f(x)耋0(modp)，f(x)=％r+an—lr叫+⋯ao (3—12)

其中P是素数，而a一≠O(modp)。

定理3．3．4．1同余式(3--12)与一个次数不超过p一1的素数模等价。

定理3．3．4．2设k<n，而x=af(modp)(卢1，2，⋯，妨是(3--12)1拘k个不同解，则

对任何整数X来说

f(x)兰(x-aO(x-m)⋯@-aOfi(工)(modp) (3—13)

其中fk(x)是咒一k次多项式，首项系数是a打。

定理3．3．4．3

(i)对任何整数工来说，

XPl-1三(x-1)(x-2)⋯(x-(p-1))(modp)

(ii)p一1)!+l-O(modp)，

定理3．3．4．4若，l≤p，则同余式

f(x)暑0(mod p)，f(x)=z”+口。一lx”‘+⋯ao (3—14)

有挖个解的充分与必要条件是以翮除xP-x所得余式的一切系数都是P的倍数。
在计算循环卷积时，通常不直接按定义式计算。而是先计算原序列的z变换，

然后将z变换相乘，最后通过逆z变换求得循环卷积结果。而z变换可以转换为模

一个高阶项后的高次同余式。由于该高阶项一般是可分解的，可以通过中国剩余

定理把高次同余式转换为若干个低次同余式，从而大大减少计算复杂度。

3．4原根与指标

本节讨论同余式

X”三a(mod所) (3—15)

在什么条件下有解。在讨论过程中要引进原根与指标这两个概念。这两个概

念在数论中是很有用的。本节通过对原根与指标的研究，最后要把(3—15)对某些

特殊的m有解的条件利用指标表达出来。

3．4．1指数及其基本性质

由欧拉定理知道：若0，聊)=1，m>l，则口咖)兰l(mod，，z)。这就是说，若(口，

m)=l，m>l，则存在一个正整数)，满足ar兰l(mod m)，因此也存在满足上述要求的

最小正整数。故有

定义若m>l，(a，聊)=l，则使得同余式
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a7三l(mod聊1

成立的最小正整数y叫做对模m的指数。

若a对模m的指数是妒(所)，则a叫做模，，z的一个原根。

定理3．4．1．1若a对模m的指数是6，则l=ao，⋯，a卜1对模m两两不同余。

定理3．4．1．2若a对模m的指数是J，则ar善ar’(mod m)成立的充分必要条件是

Y羞y7(mod 03，特别地，ar兰l(mod m)成立的充分必要条件是6I)，。

由定理2及欧拉定理立刻得出

推论若a对模m的指数是6，则6lp(m)。

定理3．4．1．3若X对模m的指数是口6，则，对模m的指数是b。

定理3．4．1．4若X对模聊的指数是a，Y对模聊的指数是b，并且(口，6)=l，则砂

对模m的指数是如。

3．4．2原根存在的条件

任给一模m，原根是不一定存在的。实际上，只有在m是2，4，P口，2p口p是

奇素数)四者之一时，原根才存在。

定理3．4．2．1若P是单素数，则模P的原根是存在的。

定理3．4．2．2设口≥l，g是模P。的一个原根，则g与g+∥中的单数是模2p 4的一

个原根。

定理3．4．2．3模聊的原根存在的充要条件是m等于2，4，矿，印口，其中P是单素

数。

定理3．4．2．4设m>l， 驴沏)的所有不同质因数是gl，92，⋯，g七，留，肌)=l，则g

是模m的一个原根的充要条件是

g妒‘“’悼≠l(mod聊)， i=1，2，⋯，k (3--16)

3．4．3指标及以次剩余

在某些特定情况下，模m的原根是存在的，本节就在这两种情况下引进指标
的概念，并推出它的基本性质。进一步应用指标的性质来研究下列同余式

，兰a(modm)，(口，m)=l (3—17)

有解的条件及解数，并且求出模m的原根的个数。

在本节里假定m是P口或2p。，c：9(聊)，g是模m的一个原根。

定理3．4．3．1若)，通过模c的最小非负完全剩余系，则∥通过模聊的一个简化

剩余系。
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利用定理3．4．3．1可以对每一个与模m互质的数引进指标的概念。指标的概念

与对数的概念很相像，而原根相当于对数的底。

定义设a是一整数，若对模m的一个原根g，有一整数)，存在使得下式

a三97(mod所)，y≥0

成立，则y叫做以g为底的a对模m的一个指标。

由定义可以看出，一般来说，a的指标不仅与模，，z有关，而且与原根也有关。

由定理3．4．3．1可知任一与模m互质的整数a，对于模m的任一原根g来说，a的

指标是存在的。若(口，聊)≠1，则对模m的任一原根g来说，a的指标是不存在的。

定理3．4．3．2若a是一个与m互质的整数，g是模m的一个原根，则对模m来说，

a有一个以g为底的指标， 并且以g为底的a对模m的一切指标是满足下列条件

的一切整数：

y兰y7(modc)，y≥0

a的以g为底的指标的mod c最小非负剩余记做indga(或inda)

定理3．4．3．3设g是模m的一个原根，是一个非负整数，则以g为底，对m有同

一指标y的一切整数是模m的一个与模互质的剩余类。

定理3．4．3．4若al，a2，⋯，a。是与m互质的n个整数，则

ind(ala2⋯an)兰ind(a,)+indm+⋯+inda．(mod c)

特别地，

ind(a”)三ninda(mod c)

定理3．4．3．5若(，l，c)=d，(a，所)=l，则

(i)N余式

X“兰a(modm)

有解(即a是对模m的n次剩余)的充分必要条件是；d ind a；并且在有解的情况

下，解数是d。

(ii)在模m的一个简化剩余系中，n次剩余的个数是c／d。

推论a是对模In的n次剩余的充分与必要条件是
三

a4兰1(modm)，d=(以，c)

定理3．4．3．6若(口，_7，1)=1，则a是模m的一个原根的充分与必要条件是(ind a，c)=1。

在一维素长度DCT变换中，可以利用原根的特性把变换核函数内的(2x+1)k

转换为两个幂函数a-Sa7相乘的形式，进而把DCT变换转换为循环卷积来减少运

算复杂度。
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3．5本章小结

本章叙述了一些数论的基础知识，如同余，同余式，原根，指标等，为第四

章一维DCT快速算法研究和第五章二维DCT快速算法研究提供理论基础。在后

续章节中，将使用这些理论进行DCT快速算法的推导。
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第四章一维DCT快速算法研究

本章归纳了两种基一2 DCT递归分解算法；提出了一种基一g DCT算法，利

用循环卷积，给出了一种十分高效的实现素数长度DCT快速算法，根据数论关于

数的分解定理，提出了任意复合长度DCT算法的设计结构。

4．1引言

众所周知，1965年Cooley--Tukey提出的快速傅里叶变换(FFT)算法开创了数

字信号处理(DSP)的迅速发展，基本Cooley--TukeyDFT算法的各种改进也导致了

数字器件技术的发展。同样地，1974年离散余弦变换(DCT)的提出也在DSP领域

产生了重要推动作用。最初DCT算法是建立在FFT基础上的，通过把DCT转换

为DFT加以实现。1977年Chela、Smith和Fralick利用DCT变换矩阵的分解提出

了第一个真正的DCT快速算法。随后的二十多年里，各种DCT算法不断提出，

如时域抽取(DIT)算法、频域抽取(DIF)算法、分裂基算法、基于其它变换(DHT、

DWT等)的算法、素因子算法等，这些算法主要从算法的计算复杂性减少和算法

结构的简化着手，来提高算法的实现效率。在各种已经存在的DCT算法中，大多

数都是针对长度为2的幂的情况。而在实际应用中，对DCT长度的要求往往是多

样的。当出现要求的变换长度非2的幂时，通常要采用数据加长的方法，先将被

变换数据长度增加到某个2的幂，然后再利用已有算法进行变换。这样处理虽然

可以利用现有算法实现变换，但是，由于数据长度的加长，无疑增加了计算量，

从而降低了实现效率。另一方面，由于数据的加长，必然使得变换产生边沿失真，

虽然提出了一些克服(减小)失真的方法，但这种失真是固有的。如果直接使用数据

长度的快速DCT算法，那么，将可以从根本上消除边缘失真。随着DSP技术的发

展，对处理速度的要求也越来越高，硬件实现和并行处理是实现高速处理的一个

有效途径，同时，计算机技术和数字器件的发展也为DSP基本部件的硬件实现和

并行处理提供了条件。

本章将研究各种可能长度的一维DCT快速算法，为后面的二维DCT快速算

法设计做好准备。本章首先讨论长度为2的幂情况，归纳了DCT--II的递归分解

算法并给出了一种DCT--III的递归分解算法。(也作为本章其它长度算法以及下章
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二维DCT算法的一个组成部分)；第3节研究了长度为奇素数幂的一维DCT快速

算法，论述一种基一q DCT算法；第4节研究了奇素数长度一维DCT快速算法，

将素长度DCT转化为循环卷积计算；第5节将研究任意复合长度的情况，阐述了

任意长度快速DCT算法的设计思想。

4．2一维DCT的基2递归分解算法

4．2．I DCT--II的基2递归分解法

耶却(尼)萎iv-1m胁斋(2n+1)；k=0,1,．．-N-1(4--1)

础)：』‰ 矧
【1 k≠0

xc2七，=篓{：c_，cos紊c2，l+1，2尼 尼=。，l，⋯譬一1
。4—2，

聊驴萎砌胁紊(2肼1逊 拈o，l'⋯詈～ ⋯、
邪从1)2萎砌灿素(2肼1)(2¨1)

Ⅳ(，z)：x(咒)+x(Ⅳ一1一咒) ，l：0，1，⋯N，一1(4--3)

u(七)=彳(2足)=萋工(甩)cos素(2，z+1)2尼 七=0，1，⋯譬一l (4—4)

vI(以)：工(，1)一x(Ⅳ一1一以) 刀：0，1，⋯，iN—l(4--5)
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则(4—2)中的奇下标部分可改写为

坤M，：孓炳弘邶㈣删㈣^⋯，譬一· c4吲

这是一个长度为N／2的第4类DCT，下面来讨论其算法。

4．2．2 DCT—IV的基2递归分解法

根琚二角幽_致明积化利左任厦

2cosacosfl=Cos@+历+cos(a-p)

有下面两个转换式：

cos--疗(2k“)(2肼1)Ⅷs紊(2尼一0(22N ¨1)一 ’

2Ⅳ、

=2 cos
n(2行+1)木cosZk(22N N咒+1)

， ，

2c。s丽7／"(2咒+1)木cos紊(2尼+1)(2n+1)2N、
。

2N、
一 ‘

=Cos号七(2咒“)+cos焉(后+1)(2刀“)
把这两个转换式分别应用到公式(4--6)5b，将构造出相应的算法。

4．2．2．1算法1

将

cos紊(2¨)(2州)懒紊㈨-1)㈣“)
=2

cos三(2咒+1)‘cosNk(22N 以+1)、 ，

应用到(4—6)式中，有

X(2k+1)+X(2k一1)七：1，⋯，iN一1

=窆⋯帅s蠢㈣+1)Icos争㈣“)n=0 L 厶』’ J o’

删=署啪№s扣+1)]
令

V(咒)=V协2cos素(2甩+1) ，z=0，1’．一，iN—l

(4—7)

(4—8a)

(4—8b)
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计算上面这个新的长度为N／2的序列的DCT系数：
～N一1

矿(尼)=萎9 y(胛)‘c。s秀足(2咒+1) 后=o，l，⋯，譬一1 (4—9)

可以从这些系数构造原序列DCT系数的奇下标部分：

x0)_-，．v(o)

X(3)=矿(1)一X(1)

X(5)=V(2)-X(3)

用矩阵表示为

石(1)

x(3)

X(5)

X(N—1)

X(N一1)=y(譬一1)一X(N一3)

l

2

1
．

一一 l

2

1
， ．

一 一l l
2

1
1 1

一一 l —l

2

v(o)

gO)

矿(2)

y(譬_1)

(4—10)

现在把奇偶两部分结合起来，用矩阵分解的形式给出算法一的完整表达：

c(Ⅳ)=S(N，了N)·

M(要)
二

Tc争
-c争
．-c等

cc等

i(争
-^(争

c(争
(4—11)

其中，

C(N)为修正的N点DCT变换矩阵(省略正交化因子)：

I(N／2)为N／2阶单位矩阵；

i m／2)为N／2阶反单位矩阵；

S(N，N／2)为N阶2分换序矩阵，将偶下标数据顺序排于前半部分，奇下标数

据顺序排于后半部分。
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膨c争

，，Ⅳ、

。【i)2

2cos三
2Ⅳ

l

2

1
1

一一 l

2

三 一l 1
2

1
l 1

一一 l —l

2

一'
3石

ZCOS一2Ⅳ
，、

5万

ZCOS一2Ⅳ

N N
一×一
2 2

2 cos．(．．．N．．．．．．．．．-．．．．．．I．．)．．．z．．c—
2Ⅳ
N N
一×一
2 2

±兕在分析算法一的计算复杂性。根据递归分解的关系，算法所需的计算量为

乘法：

∥m(Ⅳ)=2／am(2)+了N

加法：

肛(柳嘲(学)+Ⅳ+(却
如果递归分解可一直进行到2点DCT，由于／．／州(2)=1，／．t口(2)=2，那么，

DCT--II算法的计算复杂性可表示为：

∥。(Ⅳ)：iN．1。g：Ⅳ(4--12a)

肛(川：iN．(31。g：Ⅳ一2)+1(4--12b)

观察图中DCT一Ⅳ的实现形式，可以发现N点DCT--W经过第一级旋转因

子相乘处理后可以转换为N点DCT--II的形式，再加上最后一级迭代运算增加了

N一1次加法运算，故DCT一Ⅳ算法的计算复杂性：

‰(忉：Ⅳ+iN．1。g：Ⅳ(4--13a)
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咧)=孚．109 zⅣ
图4—1给出了16点DCT--II的算法流程。

“0J

“i)

x(2}

x(3)

“4l

村5I

《6’

xf7l

xf8I

“9)

x(10)

x‘lIl

点(12J

x(131

置(14 J

x‘I 5J

]I|i=1[、／二=X¨且：：：二：：二：】＼／『=N亿×¨懦二二。门：二二：二二二：
烈 f／仁 )巡彦Z 2／二＼¨墙×¨肛二弋：二：：：二
烈∥仨：濮乏=n舳二 二二 二．尼：：：：：：二二
二渤膨仨二∥二心(删抽、 ／二 ×。，抖二＼二 ： ： ： 二二 ：
二’、避膨虻 ’∥一K。Ⅷ。二》∈二c孙二 二-尼二＼r／1：：二二：
二魄萨夕／二 了一L肺／＼伽X⋯二弋 ：＼，： ：二 ：=：凝㈨嵋二二二二二二．尼二：二二：二二：
二彳㈣心＼二“Ⅲa 【 入 厂 X¨“】二 二 ： ： 二二 二
2／／／／一繁≮。Ⅲ，王＼＼版3*二鳓二 二脆二＼二二：凸二二：
M一虻。Ⅵ二)沁优 ／一＼“届X¨H?≮尼二／：＼二二 ：硎一K蝴：x⋯二二二二垤二∥二＼二／二＼二心：
到一虻¨朋二∥K。㈨＼厂≥><<¨Ⅱ二＼二二＼： ‘一＼’／’＼’·、_ ▲、·

刁一忙n昭：二∥ K。孙=考H<二。拂二 二蛇二＼／又匕
]一[。州了 I¨肿／＼“舟=><■N二＼<：＼二：二二＼二

Cn／M=2co!；箐

4．2．2．2算法2

利用

图4—1算法I的16点DCT信号流程

2cos蠢㈣+1)螂紊(2M)(2川)

=瞄ⅣX k(2，l+1)+cos三N(后+1)(2，l+1)

式(4—7)可改写成

邵M，：知细s弘㈣㈣州㈣凡⋯，譬一·

定义

(4—13b)

X(o’

X侣)

Xf4，

X(12)

X《2)

X¨0I

X(6)

Xfl4)

XfI J

Xo，

Xf5}

Xfl3)

XO’

Xfll’

X仃J

X<15)

2cos丽／／"(2刀+1)cos紊(2，z+1)(2k+1)
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咖卜毒
利用其DCT系数

”=0，l’．一，iN—l(4--16)

丝一1

y(七)=艺V(咖cos景足(2玎+1)n=O 』’

可以获得原DCT奇下标分量

X(2k+1)=矿(尼)+v(k+1) k

这一关系可写成如下矩阵形式：

Z(1)

X(3)

X(5)

X(N一1)

类似算法1，将算法

其中，

C(Ⅳ)=S

r《帅誊
．f，Ⅳ、
彳Iij2

40

(4—17)

(4～18)

(4—19)

、，
Ⅳ一2

，■LC一严
歹-

)_

下

Ⅳ一2

成

从

写

解峥
完枞7

脘

趟2

绷

∽

1●●●●●，●●●●j1川-_—_Ⅳ一2Ⅳ一2

．埒

．Ⅲ

‘l●●■

．．

1

¨
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尺(学)：
二

1

2cos三
2Ⅳ

1

． 3zr
2c0S——
2Ⅳ

1

． 5zr
2 COS-----------——

2Ⅳ

N N

一×一
2 2

观察算法l和算法2的分解，可以看出，两种算法的结构基本相同，具有相

同的计算复杂性。算法二中所使用的乘法因子恰为算法一中所使用乘法因子的倒

数，当N较大时，算法二中出现较大的乘法因子，所以可能引起较大的计算误差。

图4—2给出了算法2的16点DCT信号流程。

Cklm=(2瞄可
图4—2算法2的16点DCT信号流程
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4．2．3 DCT--III的基2递归分解法

长度为N的一维序列{x(n)：，l=0，1，⋯，N--1)的DCT--III变换定义为：

耶却㈤篓m胁静㈨+1)；k=0,1,．-．N-1(4--20)
其中：

砸，：』‰ 瑚
【1 七≠o

为正交化因子，为了讨论方便，下面将省略此因子。如果长度N为偶数，我们将

序列《雄)按下标的奇偶特性分两部分处理。令：

型一l

砸)=艺堆帅s务泓+1)； 删，1'⋯譬一1n=0 ’二 ‘

。2 (4--21)

一N一1

B(七)=萎2 x(2露+1)cos紊(2刀+1)(2足+1)；露=。’1，⋯譬一1
则：

X(足)=a(k)+雪(女) k=O，l，⋯N一1(4--22)

B(幼是一个长度为N／2的第4类DCT，其算法在4．2．1中已有阐述，这里不再

重复。参照定义式，A(妨恰为长度N／2的DCT--III，如果长度N是2的幂，那么，

对上面缩短了一半的DCT可继续进行类似的递归处理，直至长度降到2。

掣一1

彳(N-l-k)=窆地帅s务(2Ⅳ-2k-1)n=0 ，，。’

。2

：N一1

=￡n=0地帅s务㈣+1) (4．23)
，'‘’

2

：爿(七)； 七=0，1，．．．冬一1
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删-1“)。萎啦肼№)co素(2肼1)(2N-2k-1)H=U
⋯

．N=_一I

一∑雄肼1)cos素(2肘1)(2从1)(4-24)n=O 厶』’

：一B(七)； 后：0，l，⋯Y．一l

将序列x(咒)={x(0)，顶1)，缸咒))重新排序，得到新的序列y(，z)={

顶0)，x(N／2)，x(N／4)，x(3N／4)，⋯，x(1)，缸3)，⋯，刑一1))。
现在把A(幼和B(硒两部分结合起来，用矩阵分解的形式给出算法的完整表达：

c(忉=S(N，了N)·

M(2) C(2)

T(2)

M(掣)
4

Tc等

Mc等

Tc等

cc争
c《，

(4—25)

其中，

C(N)为修正的N点DCT--II变换矩阵(省略正交化因子)；

I(N／2)为N／2阶单位矩阵：

i(N／2)为N／2阶反单位矩阵；

s(y，N／2)为N阶换序矩阵，将偶下标数据顺序排于前半部分，奇下标数据顺

序排于后半部分。
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I(N一2)

1

2

1

2

1

2

1

2

—1 1

，(掣)
4

。．?N、

一．f(了)

2 cos．(．．．N．．．．．．．．-．．．．．．I．．．)．．．x．．．
2Ⅳ

×

现在分析算法一的计算复杂性。假设NxN点DCT--IV所用的乘法次数“朋(玎)，

加法次数为“口(n)。根据递归分解的关系，基2的DCT--III算法所需的计算量为

乘法：

加法：

又：

∥m(Ⅳ)=“m(等)+“m(等)+⋯“m(2)+1 (4--26)

肛cⅣ，=(协c警，+Ⅳ)+(％c等，+譬)+⋯+讹c2，+2(4--27，

Ⅳ一2
×

Ⅳ一2

、J
Ⅳ一2

，JLZ

Ⅳ一2
×

Ⅳ一2

三驯
SOo2

里ⅢSOO2

兰州S0o2

)

r-争呼

“

．一
Ⅳ一2Ⅳ一2

，

^，

、J、，
Ⅳ一4Ⅳ一4

“

．“

、，
Ⅳ一2
“
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“mcⅣ，=Ⅳ(，+圭-。g：Ⅳ)
姒Ⅳ)-孚．1092Ⅳ

如果递归分解n--I--直进行到2点DCT，由于U所(2)=1，Ua(2)=2。令N=2疗，

算法的计算复杂性可表示为：

∥m(Ⅳ)=1+∑2‘+Zk·2扛1
七=l 七=l

n-I

=2”一1+∑(尼．2卜1)‘J＼ ，

=2“小赳=“一1+—生LI

：n．2“一 咒>0

讹c人9=(％c譬，+Ⅳ)+(讹c等，+譬)+⋯％c2，+2

H—l

=2肿1-2+3·E(k·2“1)
★=l

=2“+1—2斗3．

n-I

=24+甩+E(3k·2扣1)
k=2

=(3n一2)·2¨+l n>0

图4—3给出了16点DCT--III的算法流程。
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图4—3 16点DCT--III信号流程

4．3一维DCT的基一q递归分解算法

当DCT长度N=qp时，将DCT改写成
丝一1

删=萎北肘譬№s x(2n+1)k2(N／q)

+薹2．--L--薹--I x(g胛+m)·c。s三』皇!三兰二!{云掣七朋=0 H=0 厶J’

+萎2萎q x(g，z+g一1一，”)·cos三』皇!苎竺±三笔L掣1 七

m=0一=0 ’

尼=0，1，⋯，Ⅳ一1

为讨论方便，将上式中各项分别记作
丝一．

瓣‰n--0刀+≯cos揣尼· ·～1'7 Y，

这是一个N／g点DCT。
Ⅳ．

c：(|})=m萎-I[z(g，z+m)+x(g以+g—l一，船)】‘cos掣

(4--30)

(4—31a)

(4—3lb)

啪

㈣

鹚

珊

圳

珊

瑚

狮

珊

獬

姗

州

心
㈣

州

艄

螂

删

州

啦

蛹

螂

州

娴

州

喇

晌

邮

蛹

州

呐

峭
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·％(尼)=--薹--I[x(g，z+m)一石(g甩+g—l一聊)】·sin筹(4--31c)
根据三角函数的性质，有

＆(警叫=--酚1)”[x(qn+m)-x(qn+q-1-m)]．c。s驾／-1铲／ (4．32)
吁 H=0 ’

M

因此，(4—316)和(4—31c)实际上包含了g一1个N／q点DCT。禾UN(4-31)

可将(4—30)式表示的N点DCT写成：

删训卅酗帅s丁re(q-l-2m)k+S．(k)sin丁rc(q-l-2m)k|(4-33)
齐'I(4--31b)和l(4--31d仔细观察，发现

⋯ I
7

1、j／2I--IJ G(七)

c(等堋=k---t-尸州，2cm汪卅g I lJ⋯。乙mL一一庀J

＆c和：{t，-慧1)Zc．盟t--七，g
⋯

一庀J

利用这一关系，(4--33)式中COS因子和sin因子可进一步减少。令

R胸：—X(2—jN—／q—+k了)+X—(2—jN一／q-k)

-(-矿卜+酗⋯掣]·oos掣
-『=呱一，量一1；尼=蚺．．，Ⅳ妒1

(4—34)

(4—35)

凡+-∞=—X(2j—N／q—+k)丁+X一(2jN／q-k)
十矿卜+酗～掣]-oos一2曩q-l-2m)koos
／=q1'一j兰一1；尼=q1，一’N／q一1

那么，通过Fj可计算出DCT系数：

47

g

(4--36a)

dq-l-2m)(巧+1)
g

(4--36b)



电子科技火学博士学位论文

x(七)：，。(尼) 七：0，1，2⋯!三一1
g

x(i口N)=孕g Z

x(JN+后)：f(七)一F,(JN一后)
g g

下面分析算法的计算复杂性。

歹：1，2⋯一N一1(4--37)
g

／：1，2⋯型一1
g

1．对每个七[卜等-1)，(4—36a)中方括号内需要字次乘法；(4--36b)
方括号内也需要孚次乘法；而膀。时方括号内无需乘法；因此(4—36)方括号
内共需(g—1)(警一1)次乘法。
2．对每个七(1~警_1j，(4—36)方括号外，(4--36a)需要Tq+l，譬次乘法，(4

—36b)需要-q2-1—q丁-1次乘法；共需Ⅳ·q2-_2次乘法。

3．对每个七(1～詈一1]，(4--36a)需要加法字+q24-____11次，(4--36b)需要加法孚+芈次；k_o时，(4--36a)需要力口法筝次，(4咄b)需要力口法_(q-1)(q-3)次： 共需要型．￡；一(g一1)次加法。
斗 口 Z

4．(4—31)中输入数据的蝶形运算共需要型．(g一1)次加法。

5．(4—37)中需要g一1次移位(除以2)m(N一1)．(g一1)次加法。

根据上面的分析，如果以∥m(N)表示N点DCT的乘法复杂性，以∥。(N)表示

N点DCT的加法复杂性，那么，可得到下面的计算复杂性递归方程：

卢。(∽：g．∥。(翌)+￡塑兰⋯N(曰一1)
g

．

2 g
(4—38)纵川砷从马+掣．坐_2(一) V 一’

解此差分方程，可以得到本算法分解到长度口时的计算复杂性：
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刖Ⅳ)：N似(g)+巫掣业NI。gⅣ一掣Ⅳ+1
纵咖刊qN卅幽曲№渺每舢(4_39)∥。(Ⅳ)：一．∥。(g)+鱼!掣Ⅳl。gⅣ一掣Ⅳ+2 。 ’

口 2 Z口

4．4素长度DCT快速算法

上一节讨论了长度为素数的幂时一维DCT快速算法，在算法中通过递归分解

最终将DCT长度降低到素数长度，本节将讨论素数长度DCT的快速算法。由于

长度为偶素数2的DCT只涉及简单的蝶形运算，所以下面主要讨论奇素数的情况。

4．4．1 DCT系数的分离

设DCT长度N为奇素数，{x(，z)；刀=0，l，⋯，N一1)为待变换数据序列；

{X(p；七=0，l，⋯，N—1)为相应的DCT系数序列。长度为N的DCT定义为：

以的2萎以玎)COS斋(2肼1)；k=0,1,--．N-1(4--40)
其中，为了讨论方便省略掉正交化因子和归一化因子。记Nl=(N一1)／2，下

面将把DCT系数分成三个部分来讨论。

1．DC分量

对应于DCT的DC分量，下标k=0，根据DCT定义(4—1)有

x(o)=∑x∽)=∑【x伽)+x(Ⅳ一1一以)】+z(Ⅳ·) k=o，l，⋯N-1 (4—41)

由(4．41)可知，直流分量只涉及加法运算。

2．偶下标系数

对于除DC分量外的偶下标系数，输出下标为2k，k=l，2，⋯，Nl

X(2k)=E石(，z)cos-吾k(2n+1)脚 ”
(4--42)

=(一1)‘x(N，)+∑IX(理)+工(Ⅳ一1一珂)】·cos争(2理+1)
n----0 J’

定义一个长度为NI的新序列
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掰(刀)=x(ⅣI一终)+x(Ⅳ-+以) ／'1=1，2，⋯N-(4--43)

把公式(4—41)、(4—43)和(4--46)代入公式(4—42)中，可得到偶下标DCT系

数的计算公式

X(2k)=∑x(，2)cos争(2，z+1)
月=0 』V

=(-Dk(M)+J善Il-iM¨(N-l-n)]髑s争(2肼1)

=(一1)2石(M)+i善vl-a(x(NI-／,1)+x(M+刀))。cos万7t"七(2Nl+1-2n)(4--44)

-(．旷∽，+扣№s争甩>=(一1)‘{x(Ⅳ-)+∑“(甩)·cos等胁}
k=1，2，⋯Ⅳ·

定义序列“(胛)的素长度截断余弦傅里叶变换(PCDFT)为

叫)=善m细s等胁， 纠，2，⋯ⅣI(4--45)

则偶下标DCT系数被转化为PCDFT和刑1)之和：

吣)=善NI m)‘cos等胁， ㈧，2，⋯Ⅳ-(4--46)

根据序列“@)的定义，DC分量的计算公式(4—41)可改写为

x(o)=x(Ⅳ-)+∑“(咒) (4—47)

与公式(4—41)相比，上式计算将节省N1次加法运算。

3．奇下标系数

对于DCT的奇下标系数，输出下标为2k--l，k=1，2， ⋯，N1

抓2扯1擘N-I m细s素做．1)(2挖二n 。4堋，
2薹M吖(N-l-n)№豪(2¨)(2川)

将输出序列的顺序反转，E式变为
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彳(N-2kM(2·半一·]
=窆旷工(N-I-n,]叫百2n+lIx( I

(Ⅳ一2k)n=0 万]=∑，z)一工( ·cosI百(Ⅳ一万l
L二J’ J

2萎(一1)”㈨叫Ⅳ斗小in号(2川m
k=1，2，⋯，Ⅳ-

定义另一个长度为Nl的序列y

v(力)=(一1)M川{x(Ⅳ．+珂)一x(N．一，z)) 珂=1州2一N。

序列1，0)的素长度截断正弦傅里叶变换(PSDFT)定义为

瞰)=善咖)．Sill等砌， ㈦'2，⋯Ⅳ一

(4—49)

(4—50)

(4—51)

X(N一2k)=∑(一1)”№)一x(N一1一刀)】．sin吾(2咒+1)·膏

=善NI(．1)Ⅳ11【删·叫叫Ⅳl+小in N(2N,+I-2nM)
_(_矿+1 N萎I-I(吖1叫⋯h(肌叫·sin(等2nyg·七)=(一1)“1∑(一1)M1【石(Ⅳ1一刀)一x(Ⅳ⋯)】·s l百．七l

-(-1)^N萎I-|∽-1)1[州m一(肌n舾i(警·k)=(一1)‘∑(M1[x(Ⅳ·+甩)一z(Ⅳl—九)】咖I等·I
因此，DCT系数的奇下标分量可表示为PSDFT：

x(N-2k)=(一1)‘善NI V(砂sm 2Ⅳn"胁=(一1)‘附) (4_52)

k=1，2，⋯N-

上面分析表明，通过N一1次蝶形预加法(用于生成序列U和D，除了DC分

量，借助公式(4—44)、(4--49)，N点DCT的计算可转化为PCDFT和PSDFT的计

簋。

4．4．2 PCDFT和PSDFT的卷积实现

本节讨论用循环卷积实现PCDFT和PSDFT的方法。

定义4--1．设N为奇素数，Nl=(N—1)／2。对于任意整数咒，如果整数足≤Nl满足

七=【Ⅳk m—o(d七N瑚；dkⅣm)o；d老Nm<N。d1Ⅳ>Ⅳ1
(4—53)

称k为n在N下的绝对值模，记为七=amod(n，N)。其中mod(n，N)为通常意

5l
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义下的模N运算。

显然，如果尼l=amod(nl，N)，恕=amod(n2，H，那么有

amod(七1．k2．Ⅳ)=amod(n-忆．Ⅳ)(4--54)

定理4—1．设N为奇素数，孵={1，2，⋯，N1)为一个整数集合。则在绝对值

模乘法运算下吼构成一个群，并存在一个生成元a，使得对任意，l∈R，在孵中存

在唯一对应的元素k=amo以a一，N)，即amod(a。，N)，n=l，2，⋯，Nl构成91一

吼的一一映射。

贸={口m。d(口8，Ⅳ)，N∈贸； (4—55a)

显然，贸的生成元是不唯一的，事实上，如果Q是一个生成元，则amo政a一，

N)也是贸的生成元：

孵={口m。d(口一，Ⅳ)，N∈倪) (4—55b)

现在利用定理4—1将PCDFT转化为循环卷积，在PCDFT定义中作下标变换：

k=口roodI口’，N) J=l，2，⋯ⅣI

，l=arood《a一，N) i=l，2，⋯Ⅳl (4--56)

由于

万27／"COS{等amod(COS 0S amod n，Ⅳ)>—— ≮—— ，Ⅳl}
Ⅳ IⅣ

。

j

因此，PCDFT变为

arood a-i,N))=善NI“(⋯Ⅳ))．cos{等·口roodU(amod(a：,d(a-i, ∥一，Ⅳ))(4嘲))=∑“(口川D Ⅳ))·cos{等·口 (口产‘，Ⅳ)} r4一气7、

J=1，2，⋯，Ⅳ1

为简单起见，记

u(i)=“lamod(a--!，N))

U(j)=U(amod(a’，N))

Cm=COS{等·a rood矿朋}iⅣ
、

。

J

贝JJ(4--48)式可重写为

疗(歹)：兰五(f)．C(j—j)， 歹：1，2，⋯，Ⅳ， (4—58)

上式说明，经过适当排序(下标变换)，截断余弦傅里叶变换PCDFT可转化为

一个同长度的循环卷积。下面讨论截断正弦傅里叶变换PSDFT。

定义4—2设^r为奇素数，Nl=(Ⅳ一1)／2。对于任意整数胛，如果整数k<弋Nz满足
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后=1(k№moddN；k moN)-N；d篇N>N． (4-59)豇2

1(七mod 七mod >l
竹一)yJ

称k为n在N下的带符号模，记为k=smod(1q。N)。其中mod(n，N)为通常

意义下的模Ⅳ运算。

显然，如果kl=stood(n1，肋，恕=smod(rt2，加，那么有

srood(kl·k2，Ⅳ)=srood(阶舭Ⅳ) (4--60)

对于截断正弦傅里叶变换，注意到

m炉{V(州n 2Ⅳ,r加尼， 拈1’2，⋯ⅣI

假设氓1)=一吠，z)和V(一幼=--V(k)，如果a是孵的一个生成元，令
k=smDd(口’，N) j=l，2，⋯Ⅳ-

拧=s优。d(a-i,N1 i=1，2，⋯Ⅳ-

那么，PSDFT变成

smod(。Ⅳ))=善V(⋯m～，Ⅳ))．sin-等．smod(aj-i,NV(sm aJ, )>(4吲)(。Ⅳ))=∑V(smDd(口～，Ⅳ))·sin ( )} rd一61、

J=1，2，⋯，Ⅳ。

定义4--3设a是贸的一个生成元，定义模符号函数如下：

受={一： mroo。dd((口a'，，,ⅣN))><NⅣ,。

根据定义4一l～3，有

s聊Dd(ai,Ⅳ)=即口优od(口‘，Ⅳ) (4—62)

把这一关系代入公式(4--47)，有

州(amod(∥Ⅳ))=善NI¨·V(⋯m～，Ⅳ))．s／-,sin{-等·a rrlod(aj’。-',N))
J=1，2，⋯，Ⅳ1

对截断傅里叶变换的输入输出序列作下标变换符号校正：

v(i)=S-i．v(amDd(a-i,Ⅳ))
矿(／)=矿(．s!，·amDd(a／,Ⅳ))

并记

s(所)=sin 7"amod(以Ⅳ)}
则有

V(j)--艺-s：『寸蚕(f)．S(j—f)， j=l∥2一，Nt (4—63)
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定理2--2设N为奇素数，Nl=(Ⅳ一1)／2。贸={l，2，⋯，N1}在绝对值模乘法运

算下的群，生成元为a。则在带符号模运算下，下式成立：

册。d(∥l，Ⅳ)={_； 端奇素数 (4_64)

根据定理4--2，公式(2--49)qb的符号函数sj—f具有下面性质

⋯=b：鬓宿奇素数 (4-65)

因此，对于奇素数的Nl，公式(4--63)构成一个循环卷积；而对于非奇素数的

Nl，公式(4--63)构成一个扭循环卷积。

4．5复合长度DCT的快速算法

当DCT长度为任意合数N时，根据定理3．2．2，该合数可以分解成如下形式：

N=27。×q·71×⋯q一“

其中，qi为奇素数，n为正整数。

将DCT作如下分解：

l、如果ro>0，则按照本章第二节的方法进行奇偶分离处理，直至，o=O。

2、对每个奇素数q。，按照本章第三节的方法进行基qi分解，直至ri=l。

通过上述分解，最后得到长度为素数乘积的DCT，采用本节设计素因子算法

对素因子长度DCT进行计算。

不失一般性，下面的讨论中设Ⅳ=NI×N2(Ⅳl、Ⅳ2为互不相等的奇素数)，这时

DCT定义为

x(七)：Ⅳ争～x(，1)．cos—n'(2n—+1)kx(七)5萎槲cos面F
由于Nl和N2互素，因此有

kiN2+ltk2NO：yN-I x(n1．cos—rr(2n+1)(ktN—2+1．tk2NOx(kN+1．tk N =∑)·cos——_而一
=爿(足l，k2)一占(七l，／uk2)

kl=0，1，⋯，Ni-1；k2=0，1，⋯，N2-1

这里定义了两个二维新序列

(4--66)

(4—67)
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彳c尼·，尼z，=篓zc玎，·c。s警c。s警
B(h,Bk2)=篓x(规)·sin掣sin警(4--68)
尼1．0，1，⋯，Nt-1；k2=0，1，⋯，Ⅳ2—1

分析上面两式可知

召(kl,k2)2∥彳(N1-kl,N2-k2)(4--69)
B(O，z)=0

因此，只需计算

设

1：jx(2ny(nl 1Ⅳ2慨) 脏o
)

,1'／2)={x(。-2nlN2-n’2—11 甩l<0(4--70)

那么，将得到：觚蚴=篆薹炯"z细s垫学cos笔≯。4卅，
kl=O，1，⋯，Ⅳ1_l；k2=0，1，⋯，N2—1

上式中对于每个n2，定义一个下标映射n I—J

2J+1：j!14，z-Ⅳ2+2咒：+}I一4Ⅳ·I ]4raN2+2n2+1I．>2Ⅳ1 (4—72)
114niN2+2n2+1I 14raN2+2m+1l<2Nl

这样，将(4--73)转变成

A(kl： s塑型业纠cos——,kO N2-1(Nl-I n'(2n2+1)k2A(k

iv

z-i"／∑-2烈o'y'(1,n2)cos专斧Jc0S百 (4—73)2月=0＼n=0 ⋯‘ ／ ⋯‘ 、’ ’一，

kl=0，1，⋯，Ⅳ1．1；k2=0，1，⋯，Ⅳ2—1

至此，一维DCT已经被转换成二维DCT，括号中为NI点DCT(共需进行N2

次)，而括号外则为N2点DCT(共需进行NI+N2次)。

现在分析算法的计算复杂性。根据上面算法的推导，乘法运算只包含在二维

DCT中，因此，算法的乘法复杂性可表示为

∥m(Ⅳ)=ⅣI．∥m(Ⅳ2)+N2∥m(Ⅳ1) (4--74)

对于加法复杂性，在算法中除了二维DCT外，在(4--73)qb J丕包含有(Nl一1)(N2

—1)次加法。因此，算法的加法复杂性可表示为

∥。(Ⅳ)=NI．／．t。(Ⅳ2)+N2．∥。(Ⅳ1)+(Ⅳl一1)(N2—1) (4—75)
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4．6本章小结

本章研究和归纳了长度为2的幂时一维DCT的递归分解算法，并针对应用中

对DCT长度的多样性要求，研究了各种长度情况下DCT的快速算法。首先讨论

了基一g DCT算法，算法具有简单结构和较低的计算复杂性。在基一g DCT算法

中需要使用素长度DCT的快速算法作为其核心。考虑到循环卷积在实现上的高效

率，叙述了一种素长度DCT算法，在将奇偶下标系数分离后，经过蝶形数据预处

理，DCT转化为截断离散余弦傅里叶变换(PCDFT)．jfIJ截断离散正弦傅里叶变换

(PSDFT)，通过自定义的下标映射，PCDFT被转化循环卷积，而PSDFT则被转化

为循环卷积或扭循环卷积。本章最后对素因子长度DCT的算法进行了研究，将一

维数据映射N-维实现。利用基一2算法、基一g算法、素因子算法和素长度DCT

算法，提出了任意复合长度DCT算法的实现结构。
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第五章基于部分和分解的二维DCT快速算法研究

本章提出了一种直接分解的二维DCT算法一部分和分解算法。利用部分和相

同的原则，设计了一种高效的2”×2”型二维DCT算法和q×q(q为奇素数)型二维

DCT算法，该算法的计算复杂性很低，可作为各种矩形DCT法递归分解的核心模

块。

5．1引言

上一章研究了各种长度的一维DCT(1D--DCT)快速算法，而图像和视频信号处

理研究和应用要求设计高效的二维DCT(2D--DCT)快速算法，本章将研究二维情况

下DCT快速算法的设计和研究。

由前面章节可知，2D--DCT是一种可分离变换，因此，利用1D--DCT快速

算法，各维分别变换即可实现2D--DCT，这种方法称为行列法，由于其简单的结

构而被广泛采用。但是，行列法完全没有考虑二维情况两个维之间的关系，因此所

需要的计算量相对比较大。

通常采用降维的办法使二维DCT转化为一维DCT。利用三角函数的积化和差

变换，能将原有的变换直接转变到一维平面上来实现。在将DCT变换定义式转换

到一维平面后，计算工作量主要转移到了加法的运算次数上来。

5．2节首先提出了部分和的概念，针对2“×2“型二维DCT算法，设计了一种

计算复杂性很低的部分和分解快速算法。将二维DCT变换输出转换为若干个部分

和和余弦因子乘加的形式，根据部分和相同的原则对二维DCT变换输出的二维序

列进行分集。分集内的元素都可以通过若干个部分和的一维DCT--III或DCT一Ⅳ

变换求得。然后出了DCT变换输出的频域分集准则，研究了部分和的计算方法，

部分和中公共加法表达式的合并准则。本节最后给出了部分和分解算法的计算复杂

度并和其他几种高效算法进行了对比。

本章第3节设计了一种素数尺寸2D--DCT的部分和分解快速算法；将2D—

DCT变换转换为若干个交流分量之和。针对其中最主要的一个交流分量，给出了素

数尺寸下的部分和分集准则及分解形式，根据同余方程根理论给出了部分和的求解

方法；最后讨论了该种情况下部分和分解算法的计算复杂度。
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5．2 2露×2露型DCT变换的部分和分解算法

5．2．1部分和定义

二维DCT的定义为：

删，=警萋篓棚徊s＼(2m2+M1)kx，)cos(警)
(七=0，1，．．．，M一1；，=0，1，．．．N一1) (5—1)

c(尼)：{1／42七=o
I 1 k=1，2，．．．Ⅳ一1

设胙Ⅳ=2”，且忽略常数因子“妨。x(州)：yN-I岁x(聊，咒1∞sf，燮2万]∞sf，堕型2万、聊'f)=m∑=0n∑=0x(聊，，z)cosl与笋2万M警2叫＼ ‘tJV ／ ＼ 叶』V ／

令：

Q(x)

x(k，，)

x(i，J)木COS

x(ix(t，，1卑cos，，J+cos

2m+

2m+

、k一(2n+I)1

4N

)k+(2刀+1)l

4N

”=口研。d(x，2Ⅳ)=Ix2Ⅳmo—d【z2mN。；d 2Ⅳ)；

(5-2)

工粤2瞅Ⅳ<(5--3)N Xrood 2N 2N≤ <

合并(5—4)中余弦系数相同的项，(5--2)可以最终转化为

I篁s
x(k，，)：{-

k兰／(mod2)

k暮l(mod2)
(5—5)

在(5—4)中
Ⅳ一lⅣ一I

s(k，，，f)=∑∑a(m，玎，k，z，t)x(m，n)；a(m，，z，k，，，f)=o，1 (5—6)
m=0 n=0

以下称s(k，行，力为部分和。
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5．2．2基于部分和的@，D集合划分

设k=1，由式(5—5)可知：

X

X

∑S

￡s
，=0

∑S

篁’S
，=0

(1’“小。s(焉2万)；
(1'印小。s(警2石)；
(f，U卜。s(若2万]；
∽-'f)‰s(警2石]；

，暑1(m。d
2)(5--7)

，三0(mod 2)

，三1(m。d
2)(5-8)

Z兰0(rood 2)

，+l，(2，．+1)，)：N，-IN，-1x(2 z(肌，刀)·c。。f，垒f!!竺±!!!兰：±!!二!!!±!!!!：±!!12：2石]，+l’(2r+lm 22名惫咖∽～08【坐竺型弓产型竺坐2石J厶用=O月=0 ＼ ．T』’ ，

+主圭毳N-I荟N-I x(m,n)*cos(坐幽掣笋型2刁
=i1毛N-I磊N-I x(m,n)*cos(坐巡等竺业2刁
+主至N-I篆N-I x(m,n)*cos(坐巡等坐业2刁

k兰l(mod2)

k声Z(rood2)

Ⅳ一1Ⅳ一l

s(1，，，f)=∑∑a(m，以，1，，，t)x(m，九)；a(m，甩，I，f’f)=o，1
m--0 n=0
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+．扫+11—1 N)-t N>-|、珂m m木∞sI[2((2m+lX2r+1)l_J2n+lX2r+1)),,2：rlx((2r 1)l+，扫+1)气乙∑顶鸭功木00s＼ 利 J‘m=O,r--O ＼
“’

／

+主．三饔N-1N-I地帕(坠坐掣刁
亏．I娶N-IN-I如帕(塑一刁+淫N-1N-I⋯oos(堑一一陬加)木oos(警·刁川㈣力
一融如舾畔铲·毋圳Ⅲ劲

s(1，，，f)=∑∑口(坞％，，1’f)工(取功；a(m,n,l，1，f)=0'1

(5—10)

由式(5—9)和(5—10)知，X(2r+l，(2，-+1)f)有相同的部分和，X((2r+1)l，(2，+1))

有相同的部分和。堆删p蚋势力oos吲木傩{螋学}刊昙z-鬃n=O地帕獬镪{哨刊去匝地功半oos{竺篇产}镪{竺等}
"#0 L

““ J L
“’ J

fw缸蛳)乖oos(警书树㈣2)lⅢt斟=0蛳Pd学·劢)足≠，㈣2)I ＼ 叫’ ／

(5—11)

由(5—11)可知，坝(2厂+1)，Q((2厂+1)啪可表示为N个部分和的一维DCT—Ill
或DCT--IV变换输出。

令

k=2“(2p+1)，Z=2”(2q+1)

由(5—8)和(5—10)的推导可知X(2“(2p+1)，2Ⅲ(2p+1)(29+1))具有相同的部分

和，如果把具有相同部分和的(宓，；)划分为一个子集，根据k，Z的奇偶性质，可以

得到N×N点DCT的子集划分。
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{x c。，。))，{x(。，譬))，{x(等，。)>，{x(譬，譬)]'
M和(。，耕懈，舻(警，等))
∽砂(割M矧，x(等，譬)>
p(等等)，x(等，等))，p(鲁，等)，x(等等))

陋珊·小舭¨川唧+1)h啦))，⋯x(峭_1)皲1)]心峭州w)}
{x(q∞帕q2(驮+1))也x(q·笤)如q6(放+1))也一Ⅸ(文《一·w)^文《一1)2(放+1)]0}I ＼ ＼二 ／ ＼‘ ／／J

{x(q2口+1))一，q2(勉+1))一)，x(q6(刀+1))一，q6(2J}+1))一)，

一Ⅸ(峭-1)2(2／+1)1h峭艄灿砌
{X(2／+l，q觋)一)，x(Q(3(刀+1))w，D(6k)w)，⋯x(Q((Ⅳ一1)(21+1))一，Q((Ⅳ一1)(2尼))”)}

{x(q2D一，2k+1)，x(960”，n(3(2k+1))”)，⋯x(Q((Ⅳ一1×放))w，Q((Ⅳ一1X2k+1))一)}

{x(笤+1，2k+1)，x(Q(3(刃+1))一，n(3(2k+1))”)，⋯X(FZ((N一1)(2l+1))w，Q((Ⅳ一1X2k+1))”)}
以8x 8点DCT为例，其子集划分为：

Ⅸ(0，0))，Ⅸ(O，4)，Ⅸ(4，0))，Ⅸ(4，4))，Ⅸ(2，O)J(6，O))，Ⅸ(0，2)Z(0，6))，

Ⅸ(2，4)J(6，4))，Ⅸ(4，2)≯(4，6))，Ⅸ(2，2)J(6，6))，Ⅸ(2，6)∥(6，2))，

Ⅸ(1，0)≯(3，O)J(5，O)彳(7，0))，Ⅸ(0，1)≯(0，3)≯(0，5)≯(O，7))，

Ⅸ(1，2)J(3，6)≯(5，6)Z(7，2))，Ⅸ(2，1)J(6，3)J(6，5)2c(2，7))，

Ⅸ(1，4)≯(3，4)J(5，4)Z(7，4))，Ⅸ(4，1)≯(4，3)≯(4，5)J(4，7))，

Ⅸ(1，6)≯(3，2)彳(5，2)J(7，6))，Ⅸ(6，1)≯(2，3)J(2，5)≯(6，7))，

Ⅸ(1，1)≯(3，3)J(5，5)Z(7，7))，Ⅸ(1，3)≯(3，7)≯(5，1)了(7，5))，

Ⅸ(1，5)J(3，1)J(5，7)≯(7，3))，Ⅸ(1，7)≯(3，5)≯(5，3)J(7，1))

5．2．3部分和特性研究

令：
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k=2”(2p+1)，Z=2”(2q+1)，

0<u,v<log2Ⅳ，o≤p<歹N，o≤g<歹N(5--12)
1扫(5--2)，

Ⅻ印+班‘，国+皑，=蒸．妣功·oos(鱼盟学)伽P型学)
=三篓积悃(型坚等笋地业)+
三篓地椰(型堕号笋地业]

(5-13)

f(m,n)=COS(堕等业)coS(一(2n+1)(2q+1)Ux]加)=COS(堕业型等幽)
撕胁s(堕邋业等型幽业】

f(m，以)：丢g(m，咒)+i1办(所，，z)
N-、Nd

x((2p+Oz'，∞+膨)=∑∑积功·舷功
1Ⅳ-1川 1 M心

=去∑∑顶鸭功·訇[鸺功t∑∑缸鸭功·坝碍功

八垠+，．歹N，刀+s．多，：∞s(垦翌学)．。。sr!学]，
∞s(学H(2q+1)．s2．ⅣU+l N．x]
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八聊+，．·拿，s·N∥一-一九，=cos(!兰兰±学]·

=(_旷八鸭力

d学]·
oos一．to0≤，≤2一，O≤s≤∥(5-17)

，p·多一·一坞挖+s·多，=∞sc学]·oos[ (印学]2Ⅳ I

学]2Ⅳoos降H竺I 2Ⅳ J l

=(-0m／．(，坞功 0≤r≤z一，O≤s≤2“(5-1 8)

弛·-l-m,s．争母oos降竽)·oos降剖·
oos烨卜降

他+p蛳尝卅p母尝，=oospm∞母主善竺学)·oosp小㈣·争警
=(-胪·主(炽功一慨训

0≤，≤Z，0≤s≤2v

63
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州勿m考一·一巩c厶m书一-一功=oospm∞m乏-
oos(陋+D·国+D号

=(_胪‘主(觚功一№州晒≤∥，晒∥f5_21)
将(5—16)～(5--21)代入(5—15)得，

N．N．

捌印+1)zt，国+哕)：-∑--4∑．--4∑∑2'忙旷∞斛以t，咒拇2，)+础等一卜玛玎拇z)+

枷却．--N 1一功嘶’争缈歹N．1．却’触功 (5-22)

令：

畎鸭刀)：壹壹r卜1)m[缸小+，．．掣，以+J．2V)+m．N，．-l-m,n+s．2V)+

枷吧s·多+功m多+"多+蝴)

(5--22)可进一步表示为：
坐一1坐一I

从(2p+1)2”，(2q+1)2”)=∑∑y(％功·厂(碍功

笪一l旦一

气1 2善"萎㈨小y(多小磅+桫删+
笪一I上q

昙艺艺o(鸭功～碟_1-鸭尝-1．砌似州
z m=o，间 z 二

(5--23)

由(5—23)可以看出，构成输出坝七，

算，通过合并具有相同余弦因子的元素，

D集的所有部分和有着大量重复的加法运

可以极大地减少加法运算的数量。

表5一la，b，C给出了8×8点DCT中X(21+l，2k)，X(2t，2k+1)，X(21+1，

2斛1)的部分和项，而X(21，2助可以看作～个4x4点DCT求解。附录1为4x4点

PSDA—DCT的C程序。该程序计算一次4x4 DCT总共需要70次加法，14次乘法

和12次移位运算。



第五章基丁．部分和分解的二维DCT快速算法研究

x(k，J『) 余弦因子 余弦因子对应的部分和

x0，O)
l
一万 陟(0，0)+y(0，3)】+陟(0，1)々(0，2)】
16

3
一万 [y(1，0)+y(1，3)]+[y(1，1)+y(1，2)]
16

5
一石 【y(2，0)+y(2，3)]十【)，(2，1)+y(2，2)]
16

7

一万 【y(3，0)+y(3，3)】+【y(3，1)+y(3，2)】
16

X(1，2)
1

一万 {陟(0，0)一y(0，3)】+陟(3，1)一y(3，2)])+
16

{【y(1，0)一y(1，3)】+陟(2，1)一y(2，2)】)
3
一石 {Iy(O，0)一y(0，3)]--[y(3，1)—y(3，2)】)+
16

{以1，1)一y(1，2)】+蚁2，O)—顶2，3)】}
5
一万 {【y(0，1)一y(0，2)】+陟(3，O)一y(3，3)】)+
16

{陟(1，O)一y(1，3)]一【y(2，1)一y(2，2)】}
7

一万 {陟(O，1)一J，(O，2)】一陟(3，0)一y(3，3)】}一
16

{从1，1)一y(1，2)】一Lv(2，0)—少(2，3)】)

X(1，4)
1

一石 {[y(1，O)+)r(1，3)】一【y(1，1)+灭I，2)】)+
16

{【y(2，0)+y(2，3)】--[y(2，1)+y(2，2)])
3
一万 {【y(0，O卜y(0，3)】一[y(o，1)+y(0，2)】}+
16

{【y(3，0)+y(3，3)】-一[y(3，1)+y(3，2)】)

5
一万 {[畎0，0)+畎0，3)】一[y(0，D+y(O，2)】)一
16

{[y(3，O)+y(3，3)】_一【y(3，1)+y(3，2)】)
7

一万 {[畎1，O)+yO，3)卜一【y(2，1)+y(2，2)])一
16

{[y(2，0)+y(2，3)】一[y(2，1)+y(2，2)1)

X0，6)
1

一万 一{【y(0，1)一y(O，2)卜一【y(3，0)一y(3，3)1}．一
16

{[吠I，1)一y(1，2)]--[y(2，O)一y(2，3)】)
3

一万 {【y(O，1)一y(o，2)】+[y(3，O)一y(3，3)】)一
16

{【y(1，O)一y(1，3)】-一【y(2，1)一y(2，2)1)
5

一万 “y(0，0)一y(o，3)】-一[y(3，1)一y(3，2)]}一
16

{【y(1，I)一y(1，2)】+【y(2，0)一y(2，3)】)
7

一万 {【y(O，o)一y(o，3)】+【畎3，1)一y(3，2)】)一
16

{[yO，0)一)，(1，3)]+[y(2，1)一y(2，2)】)
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x(k，D 余弦因子 余弦因子对应的部分和

x(o，1) 1
一万 从0，0)+y(3，O)】+从1，0)抄(2，0)】
16

3
一疗 陟(0，1)+y(3，1)】+陟(1，1)抄(2，1)】
16

5

一万 【y(0，2)+y(3，2)】+[y(1，2)抄(2，2)】
16

7

一刀 陟(o，3)+y(3，3)】+陟(1，3)々(2，3)】
16

X(2，1)
l

一刀 {【y(0，O)一y(3，0)]+[y(1，3)一y(2，3)】)+
16

{陟(O，1)一y(3，1)】+陟(1，2)—歹(2，2)】)
3
一万 {【y(O，O)一y(3，0)】一【y(1，3)一y(2，3)】)+
16

{[y(1，1)—y(2，1)】+【y(O，2)一y(3，2)】)

5
一疗 {陟(1，0)一y(2，0)】+陟(0，3)一y(3，3)】}+
16

{陟(0，1)一y(3，1)卜一陟(1，2)一y(2，2)】)

7
一万 {陟(1，0)一J，(2，0)卜一陟(0，3)一y(3，3)】}一
16

{[yO，1)一)，(2，1)】一【y(0，2)一y(3，2)])

x(4，1) 1
一万 {陟(0，1)々(3，1)】一陟(1，1)．抄(2，1)】)+
16

{陟(O，2)斗y(3，2)]一陟(1，2)_抄(2，2)])

3
一万 {[y(0，0)々(3，O)]一陟(1，0)々(2，O)】)+
16

{陟(O，3)々(3，3)】一[yO，3)_哆(2，3)】)
5
一万 {陟(o，0)斗y(3，3)卜一【y(1，0)斗y(2，O)】)一
16

{陟(3，0)斗y(3，3)】一陟(1，3)．抄(2，3)】}
7
一万 {陟(0，1)斗y(3，1)卜一陟(1，2)々(2，2)】)-一
16

{陟(0，2)斗y(3，2)】一陟(1，2)．可(2，2)】)

x(6，1) 1 一{以1，O)—y(2，O)】一陟(0，3)一灭3，3)】)一一万
16

{[y(1，1)一y(2，1)】一陟(0，2)一y(3，2)]}

3
{【y(1，O)一y(2，O)]+陟(0，3)一页3，3)])一一乃

16
{【y(0，1)一y(3，1)】一LvO，2)一y(2，2)】)

5
——石 {陟(O，0)一y(3，O)】一陟(1，3)—“2，3)】}一
16

{陟(1，1)一)，(2，I)】+陟(O，2)一贝3，2)】)
7

一刀 {【y(0，0)一．y(3，0)】+【吠1，3)一y(2，3)】)一
16

{陟(0，1)—y(3，1)】+陟(1，2)一y(2，2)】)



第五章基丁部分和分解的二维DCT快速算法研究

x(k,0 余弦因子 余弦因子对应的部分和

X(1，1) 0 陟(0，0)+y(3，3)】+[y(1，1)却(2，2)】
l “y(0，O)一y(3，3)】+[y(1，2)+y(2，1)】)+一7r
8

{[y(O，1)+y(3，2)]+[y(1，O)+y(2，3)】)
1

{[y(O，1)一y(3，2)】+[y(1，O)一y(2，3)】}+一石
4

{[y(O，2)+y(3，1)]+【y(1，3)+y(2，0)】)
3

{[y(0，2)一y(3，1)】一[yO，3)一y(2，0)】)+一石
8

【y(O，3)+y(3，O)】+[y(1，1)一y(2，2)])

x(1，3) 0 --[y(0，2)+y(3，1)】+[y(1，O)一y(2，3)]

1 {【y(0，0)一y(3，3)]．一【y(1，2)+畎2，t)1)．一一石
8

{[y(0，2)一y(3，1)】+【y(1，3)一y(2，O)])
1 “y(0，0)+y(3，3)卜一[y(1，2)一y(2，1)】)一一一石
4

{【y(0，3)一y(3，O)]+【y(1，1)+y(2，2)])
3 一{[y(O，1)+y(3，2)卜一[yO，0)+y(2，3)])一一万
8

【y(O，3)+y(3，o)]-[yO，1)一y(2，2)】)

xo，5) 0 一【y(o，1)+y(3，2)]+[y(1，3)+y(2，O)]
1 一{[y(O，1)+y(3，2)】-一【y(1，o)+y(2，3)]}+一石
8

【y(O，3)+y(3，0)】．一【y(1，1)一y(2，2)])
1

{[y(0，0)+y(3，3)】+【y(1，2)一y(2，1)】)+一万
4

{[y(0，3)一y(3，0)】_一[y(1，1)+y(2，2)】)
3 {[y(0，0)一y(3，3)】～[y(1，2)+y(2，1)】)+一石
8

{[y(O，2)一y(3，1)】+[y(1，3)一y(2，O)】)

xo，7) O 一{【y(O，1)一y(O，2)】-一【y(3，O)一y(3，3)】)一

{[yO，1)一y(1，2)卜一[y(2，O)一y(2，3)】)
1 {[y(O，2)一y(3，1)】．一[yO，3)一y(2，0)】)一一万
8

[y(O，3)+y(3，O)】+【y(1，1)一y(2，2)】)
1 一{[y(0，1)一y(3，2)]一[y(1，O)一y(2，3)】}+一石
4

{【y(O，2)+y(3，1)卜一【yO，3)+y(2，O)])
3

{[y(O，0)一y(3，3)】+[y(1，2)+y(2，1)])-一一万
8

{[y(0，1)+y(3，2)】+[y(1，0)+y(2，3)]}

5．2．4部分和分解算法的软件实现

以8x8点DCT为例：先对x(m，刀)进行以下预处理。

67



电子科技大学博士学位论文

对每列数据进行图5—1的预处理。

图5一l列数据预处理

Step2：对每行数据进行图5—2的预处理

图5—2行数据预处理

Step3：计算部分和

计算x0，妨的部分和等价于求解某一特定余弦因子cos(kn'／N)所对应的x(m，

胛)。也就是求解同余方程：

12m+l±(2n+1)kI三t(mod 2N) (5—24)

由定理3．3．1．2，求得(5—10)的解满足：聊兰I型丑掣I(toodⅣ)(5--25)
I 2 I

。
。

1扫(5--20)，可以求解出满足要求的咖，刀)。将这些具有相同余弦因子的x(m，

，1)累加，即可求得对应的x0， 妨的部分和。

step4：将输出部分和按5．2．3的划分准则分组。计算输出部分和的DCT--IV

或DCT--III变换输出。

附录2为8×8点PSDA DCT的C程序。
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邮肼◆—————●—————●—————◆————_．一————_．卜—————◆—————-．卜—————● )(f6．嘲

q1丑L7．16

q1．a札5-16

刚丑1．3-16

蜊札1．16

·眺1)-7-'6

tq2it．1L5．16

雌UL”6

·眺1L116

s(1．21t*l L6．16

l(12k+lL2-16

州2州LU6

q12h1L"6

◆—————◆—————◆————_．卜————◆————1卜—————◆—————◆—————●料q

◆—————1卜_————'—————◆————-1卜————1r一—————◆—————一．—————' )(c6．伽

图5—3二维DCT变换输出

5．2．5 2一×2一型DCT部分和分解算法复杂度

令N=2“，记2”×2月型DCT的乘法复杂度为∥。(2”，2“)，加法复杂度为

肛(2”，2”)，2一型DCT—II的乘法复杂度为胁(2“)盯．口，加法复杂度为肚(2”)盯一口，

2”型DCT--IV的乘法复杂度为∥。(2”)盯．∥，加法复杂度为肚(2”)盯一∥，

由前面的推导可得：
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=∥。(2“，2”)+羔半+量半
：“。(2n，2—1+三理．4一+三4—2，zm(2“，2”)+言理’4”+吉4“

；

=吉鼢邶∥
肛(2”，2”)=肛(2”1，2”1)+2·2”1肛(2”1)盯一∥

+2川·肚(2川)肼．口+8·4川+3n·4”1

=肛(2．-1,2,,-1，+3·2”一·(·等·e3行一5，+·]
+3n．4”一1+8．4“一1

i

=胛，4)+1咋5,岁-，,k．4k。1。"§4‰‘砉2¨
∥。(2，2)=0，故：

M2“∥)专砉(3M)．4‘
=吾砉c七+·，·4‘一丢耄4‘

=詈砉c尼+·，‘x‘l，：。一‘专砉4‘

雄(4，4)=70，故：

3
=——

8

：n．22”一一2

70

一!争4—
4留

(5--26)

(5--27)

(5--28)
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屺耻肛@Q+萼黔乓挚+。‘蓼。1
=加+萼挚州钙‘蓼一‘挚

一3∥母孑竽哼
．。7 4"一64 15=58+3．Z一二．二二+二二．
4 3 8

：58+3．z⋯7—4"+t—-64 ．．．．5．．—(3n+2)4—''a-512
4 3 {

5一^。．，1-l
2·中+34

=一．珂．47+3．Z一=—二二二_二
2 3

表5—2 2“x2”型DCT计算复杂性比较

(5--29)

运算复杂度 加法 乘法

行列法 PSDA算法 行列法 PSDA算法

刀×4” 兰．4一一2 (3n一2)x4"+r+1 皇骨矿+3．?
2 2

2．中+34

3

4×4 32 14 72 70

8×8 192 94 464 440

16x16 1024 510 2592 2426

32×32 5120 2558 13376 12202

5．3 qx g(留=奇素数)型DCT的部分和分解算法

设M=N=q，q为奇素数，下面讨论该条件下的二维DCT算法。
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删，=萎q-]驴q-I川⋯<竿H警)
一． {警H警)+m≠—{a-尘月‘蓑一x(m,,O,cos(q-D ‘ 、

》，争cos{警H钟
薹xc孚川cos{警卜㈢一
xc孚，争·cos㈦一㈢

砸棚=毳¨呈x(m,n)．cosm=O n=O {警H警>I 厶吁 J J 二q J

Ⅲ乒鱼尘”—(q-—D
、 、

删，=呈咖，争cos㈦cos(2m+1)kzt"m=O ·)‘ I二J l

c@驴。1n=O㈡cos㈢cos{警)- I二J I 二q J

则

x(k，，)_彳(后，，)+B(k，卅c(k，，)_x(qF-1，孚)c。s等c。s了l,z／-

(5—31)

(5—32)

(5—33)

(5--34)

由式(5—34)可知，X(k，J『)可分为四个子项之和， 又因为

一z(q2-1·，·q21)c。s等c。s·丝2为常量，因此只需要计算分别A@，力，B@，f)，c@，
n即可。

5．3．1交流分量A(k，D

由
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砸棚=薹曩棚叫学H警)
。；盟坐。；塑坐2遣》∽，H半万]+ 。5嘣，(
m≠蛐n≠一q-D

。 r一7

若k=O，则

若f-0，则

A(O，，)=

A(O，，)=

刮∑q-1咖川lI．costn=O m=O [学)∑l∑z(，，z，甩) 半}
I I 厶Y J

n出坐I m≠一(q-D I
、

2 L 2 J

如x(mm=O n=O∽]．cos{学t／(q-I) >∑I∑ ，咒)|．cos{半}
I I I

二
J

。；竺尘I。；一 l
。

式(5--36)和式(5—37)为一个一维素长度DCT，

若尼≠0，Z≠0，设

口mDd((2聊+1)尼+(2，z+1)，，29)=f；

amod((2m+1)k一(2n+1)l，2q)=f；

因

(m，n，印)=1

(5--36)

(5—37)

可以用4．4中的方法来计算。

0≤t<q

0≤t<q

(5—38)

(5—39)

由定理3．3．1．2，司知，若

mod(t一(k±耽2)=0

又m≠(留一1)／2，甩≠(g一1)／2，同余方程(5—38)有(q-1)个解；同余方程(5--34)

有(q-1)个解。故同余方程共有(2q--2)个解。设这(2q--2)个解为：

设这q—1个解为

{(所o，no,f)，(ml，n-，f)，⋯(历譬，，z字，f)，(聊孚，¨n q2+l，f)，mq-2)nq-2)f)，mq-i,nq-I)f)}
令：

J(m一，刀r，f)={一j ro，，l。odd((((22mm，i++11))七k++((22，ln，i++11))，1)),，22qg))><弓
余弦因子eos(tx／2q)所对应的部分和为：
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若

则

若

则

口一I

Sum(t，k，，)=∑(s(m喁f)·x(m慨f))
1=0

f≠型
2

mod(k±，，2)=0

ESum(础，／)cot=O s㈢，驴 础， s{等}
l Y J

mod(k±Z，2)=1

砸力：扣q-3亿刈胁{警)
由式(5—41)和(5—42)得

令：

(5--40)

(5--41)

(5--42)

螂v+1)=喜跏(f，1’2州胁阱嘶<盟2 (5叫3a)
f=0 l呵J

q-I ，
、

彳(2“，2V)=备-T勋聊(啦“，2V)coslit7r}，。≤“<孚，。≤V<丁q-1(5--43b)
q-3一

卸m，=喜眦墟小。s{警)，，=O I 厶Y J

q-3

肥¨，=喜毗2蚶叫警)，f之O l ·鼍 J

龇，={∑。

o≤1，<掣(5-43c)，'

O<“<_q--1(5--43d)
2

mod((x，2q)<q
rood(x，2q)≥q

由式(5．2．2)，可得：

A(2u+1，口mDd((2“+1)(2V+1)，29))=Sgn((2u+1)·(2V+1))。
d7一- ，

喜跏∽啦川胁{半f=o I 譬

0≤“<q-__2．0≤v<—q-—1
2。 2
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A(amod((2r+1)·2u，2q)，amod((2，．+1)-2v,2q))=Sgn(2(2r+1)u)·
g～

r 、

Sgn(2∽+1)砂善"7-跏∽2m)cos{竿’(5--44b)
0≤“≤型，o≤1，≤盟，0≤，．≤一q-32 2 2

A(2u+1，amod(2v(2u+1)，291)=Sgn(2v(2u+1))·
!二三 ， 、壹跏(t,1,2v)cos{学}(5--44ct=0 )

I 厶吁 J

0≤“<盟．0≤1，≤盟
2 2

A(amod(2u(2v+1)，29)，2v+1)=Sgn(2u(2v+1))·
盟 ， 、

主瓤m(t,2u,1)cost=0 {芈} (5叫d)
I 厶Y J

o≤M≤型．0≤’，<盟
观察式(5--44a)，(5--44b)，发现它们与式(4--42)M型，使用前一章4．4节中素

长度DCT快速算法中的偶下标系数的计算方法即可，这里不再详细推导。

观察式(5--44c)，(5--44d)，发现它们与式(4--51)同型，使用前一章4．4节中素

长度DCT快速算法中的奇下标系数的计算方法即可，这里不再详细推导。

5．3．2交流分量B(k，D

若l=2u+l，则B(k，2u+1)=0。

若l=2u，则由(5--27)

2 ) (5—45)m=O Lt／
，“)=(一1)“∑石(聊，孚)CoS．，。-} (5一

厶
I J

这是一个一维DCT变换的形式，可以用第四章中的一维DCT快速算法来计算。

5．3．3交流分量C(k，Jf)

若k=-2v+1，则B(2v+l，f)=O。

若k=2v，则1刍(5--26)

c㈨，f)七矿芝n=0 xc孚川cos{学Lt／， c5叫6，
二 I J

75



电子科技大学博士学位论文

这是一个～维DCT变换的形式，可以用第四章中的一维DCT快速算法来计算。

5．3．4基于部分和的频域(后，D集合划分

记二维频域(七，D平面上的点集为A。令B(k，D={(amod(2r+1)k，2q)，

amod(2H1)，，2擘))，O≤K国一1)／2，0<k<q，0<l<q)。下面讨论A与A(r，k，I)

的关系。

设rl：／：r2，0<k勺，0<，<g，因g为奇素数，可知

amod((2rl+1)·k，29)一amod((2r2+1)·k，2q)=amod(2(r,-rO·七，2q)≠0

amod((2rl+1)·z，29)一amod((2r2+1)·z，2q)=amod(2(rl-r2)-，，2q)≠0
故：

{(amod(2一1)七，2q)，amod(2H1)z，2q))，0≤K(g一1)／2，0<k，，<q)={(尼，

乃，0<k，，<q)
型一1型一l
' ’

彳=U U B(J|}，，) (5～47)

B(七l，『1)nB(尼2，z2)=≯， k·≠k2 or zl≠h (5～48)

由式(5--38)NI式(5--39)N知，每个B(k，D中有(q--1)／2个元素，B(k，f)子集的

个数为

RcBc七，，，，=专≥三专秀竽-2cg一·，
以7×7点DCT为例，根据部分和相同的元素放在同一子集的原则，划分出的

子集如下。

{x(o，0))，

弘(O，1)，x(o，3)，x(o，5))，何(O，2)，x(o，4)，x(o，6))

Ⅸ(1，0)，X(3，O)，x(5，0))，Ⅸ(2，O)，X(4，0)，X(6，O))

Ⅸ(1，1)，X(3，3)，x(5，5)1，Ⅸ(1，2)，X(3，6)，x(5，4))，

Ⅸ(1，3)，X(3，5)，x(5，1))，省(1，4)，X(3，2)，x(5，6))，

Ⅸ(1，5)，X(3，1)，x(5，3))，Ⅸ(1，6)，X(3，4)，x(s，2))，

拶(2，1)，x(6，3)，X(4，5)1，Ⅸ(2，2>，X(6，6)，x(4，4)>，

Ⅸ(4，1)，X(2，3)，X(6，5))，Ⅸ(4，2)，x(2，6)，X(6，4))，

F(6，1)，x(4，3)，x(2，5))，Ⅸ(6，2)，X(4，6)，x(2，4))
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5．3．5部分和求解

(5．2．4)中推导了部分和分解算法的频域子集划分方法。本节推导部分和的计算

方法。

若尼≠O，l≠0，设

amod((2m+1)k+(知+1)f，幻)=f；o≤f<g，0≤％，z<g，鸭，z≠雩(5--49)
删((2m+1)k一(知+1)1，幻)：f；o≤f<q，0≤鸭，l<g，碍咒≠皇三!

(5—50)

同余方程(5--38)有g—1个解；同余方程(5--39)有g一1个解。设这g一1个解

为{(聊fJf，n¨)10Sf<g，O<t<q)，以下根据k，f的奇偶情况讨论这29一2个解的推

导：

I：(k，，，2)=0

令

amod((2m+1)k+(2，z+1)f，2q)=l (5—51a)

amod((2m+1)k-(2n+1)l，2q1=l (5—51b)

的解为{(聊f，1，ni．1)IOz．i<q)

令

mi，f-(mod((2ml'l+1)·(2f+1)，2q)-I)／2 (5—52a)

咒f'f=(mod((2ni．1+1)·(2t+1)，2q)-1)／2 (5—52b)

由同余特性可证明

amod(2m r，f+1)·k+(2，zf，，+1)·，)

=amod(mod((2mf'l+1)·(2f+1)，2q)·k+mod((2nf，l+1)·(2t+1)，2q)·，，29)
=2t+1

(5—53口)

amod(2mi，r+1)·k一(2nf，r+1)·，)

=amod(mod((2mI．1+1)·(2f+1)，2q)-k—mod((2n¨+1)·(2f+1)，2q)·l，2q)
=2t+1

若t1≠t2，则

mi，fI—mi．rz=mod((2m,。I+1)·O-一t2)，2q)≠0

nf朋一ni．fz=mod((2n,，l+1)·(t--t：)，2q)≠0

(5--53b)

(5—54a)

(5—54b)
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由式(5--54a)和(5-54b)N看出，如果我们可求得满足(5～51乜)和(5—516)的余

弦因子cos(n'／2q)所对应的时域解(，，z川，m．f)，那么其他余弦因子cos((2t+1)rc／2q)所

对应的时域解为(掰ftf， nf．f)。

II：(七，Z，2)=2

令

amod((2m+1)k+(2力+1)z，2q)=2 (5--55a)

amod((2m+1)尼-(2n+1)，，2q)=2 (5--55b)

的解为{(mf，2，nj．2)lo_<i<q)

令

f’=(mod((2m盹+1)·(2f+1)，2q)-1)／2 (5—56a)

由同余特性可证明

amod((2f。+1)·k+(2f’+1)·z)

=amod(mod((2mn+1)·(2t+1)，2q)·k+mod((2nn+1)·(2t+1)，2q)‘z，2q))
=2f+1 (5--57a)

amod((2f’+1)·k-(2t’+1)·，)

=amod(mod((2mn+1)·(2t+1)，2q)·k—mod((2nil+1)·(2t+1)，29)·，，29))
：2f+l (5—576)

若tl≠t2，则

mi'fl—mi．fz=mod((2mi．1+1)·(f。一tz)，2q)≠0(5-58a)

ni,tl--ni’f2=mod((2ni．1+1)·(t,-t：)，2q)≠0(5--58b)

由式(5-58a)和(5--58b)可看出，如果我们可求得满足(5--55a)和(5--55b)的余

弦因子cos(zr／2q)所对应的时域解(mi，2，ni，2)，那么其他余弦因子cos(2t，r／2q)(t-CO)

所对应的时域解为(珑f，，， 协，f)。

由I，II，我们可得到以下结论：

部分和的时域解集可由集合{(m御o ni，o))，{(mi，1，nbl))，{(mi，2，rli，2))全部求出。

5．3．6部分和分解算法的计算复杂性

如果以／．t珥∽表示N点DCT的乘法复杂性，以∥口(N)表示N点DCT的加法
复杂性；以掣m(A)表示计算A(k，D的乘法复杂性，以Ⅳ。(A)表示计算A(k，D的加

法复杂性；以p m(B)表示计算B(k，0的乘法复杂性，以

掣口(B)表示计算B(k，D的加法复杂性；以p m(C)表示计算c(k，f)的乘法复杂性，以

u o(C)表示计算c(k，D的加法复杂性；以F脚(g×g)表示计算qx q DCT的乘法复杂
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性，以∥。(qxq)表示计算qxq DCT的加法复杂性；那么，可以得到qxq DCT的计

算复杂度为t

／．t。(q x g)=∥，(彳)+∥。(召)+∥。(C)(5--5％)

∥。(qxq)=∥。(彳)+∥。(B)+∥。(c)+掣+292(5--59b)
下面分别求解A(k，D，B(k，D，C(k，f)的计算复杂性。

1)A(k，D的计算复杂性

∥，(彳)=∥m(彳(o，，))+∥，(彳(七，o))+∑∑／．t。(彳(七，，))

=a-(A(0，铆+∥。(4(尼，o))+∑∑∥。(彳(尼，功 (5—60a)

=∥m(g)+∥，(g)+(g一1)u。(g)

=(g+1)∥m(g)

p。(彳)=∥。(彳(o，，))+∥。(彳(七，o))+∑∑／．t。(彳(七，，))

斗(删帅(删))+薯喜／u榔，f))+29．2q孚～2(q 1)(5堋∞=∥。(彳(o，，))+∥。(彳(七，o))+∑∑。(B(尼，，))+ ．兰；三． 一1) ，c．‘nL、
丘=l，=l‘。 、 ，

=∥。(g)+∥。(g)+(口一1)u。(g)+2q．掣．2(q一1)
=(g+1)∥。(g)+2q·(g—1)2

2)B(k，D的计算复杂性

∥m(B)=∥m(g)

／．t。(B)=∥a(g)

3)c(k，O的计算复杂性

度

(5--61a)

(5—616)

∥。(C)=／．t，(g) (5—62口)

∥。(C)=∥。(C)(5--62b)

结合式(5--40)，(5--41)，(5--42)，(5--43)，可求得q×q DCT的计算复杂

∥m(9×q)=(q+1)u。(9)+∥，(9)+∥，(g)=(g+3)∥。(9) (5—63口)
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∥。(qxq)斗(小从即纵c)+华+292
：(g+1)∥。(9)+29．(9—1)2+∥。(9)+∥。(g)+掣+292(5-63b)
=(q+3)∥。(g)+(2q+÷)·(g一1)2+2q2

表5--3为部分和分解算法与行列法的计算复杂性比较，从表中可以看出，相

对于常规的行列法，PSDA算法的乘法次数减少了约一半，而加法次数也基本持平。

DCT 行列法 PSDA算法

长度

q X q 2qua(g) (g+3)肛(g)+(29+≥-(g一酽+2

DCT 行列法 PSDA算法

长度

q×q 2qum(9) 国+3)蜘(9)

5．4本章小结

本章第二节首先提出了部分和的概念，根据部分和相同的原则对X似D进行

子集划分，同一子集内的所有元素由这些部分和所组成的DCT—IU或DCT—IV变

换对构成。然后针对一种特殊尺寸fNXN，N=2")2D--DCT，设计了一种基于部分

和分解的快速算法，通过适当的下标映射将N×N 2D--DCT直接转化为2N个长度

从2到N／2的1D--DCT。相对N，I．Cho等人的高效算法【301，该算法实现了更少的

乘法次数和加法次数。

本章第三节提出了素数尺寸(g×q， g=奇素数)型DCT的部分和分解算法，这

是一种算法复杂性低而且结构规则的算法：根据同余方程理论，提出了求解部分和

的算法；按照相同部分和的分集准则，将一个二维DCT变换分解为(q--1)个尺寸为

国一1)的一维素长度偶下标系数变换和奇下标系数变换。相对于行列法，本章提出

的部分和分解算法乘法次数减少了约一半，而加法次数维持同等规模。
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本章工作己写成阶段论文，分别发表在((the Chinese Journal ofElectronics))2007

年第2期l-t831，录用在IEEE International Workshop on VLSI Design and Video

Technology 2005国际会议晔1和第六届国际智能交通会议上【s5】，并已被电子与信息

学报录用。
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第六章部分和分解算法的VLS I实现及验证

本章研究部分和分解算法的VLSI结构，给出了2”×2“型DCT和素数型二维

DCT的VLSI结构。

6．1引言

第五章研究了部分和的计算方法和部分和分解算法的运算复杂度，相对于别

的算法，该算法虽然实现了更少的加法次数和乘法次数，但是VLSI实现更关心的

是乘法器个数和数据传递复杂性。本章讨论部分和分解算法的VLSI实现和。

在DCT的硬件实现算法中，直接实现的计算量太大，加上乘法器在IC实

现中要占用较大的面积，因此，许多实现DCT的方案都强调减少乘法器的数量。

为了减少乘法数量，N×N DCT可以通过采用能够降低乘法数量的各种各样的蝶

型结构来实现。但是，为了能达到要求的数据吞吐量，许多乘法器仍然是必不可

少的，此外，蝶型结构的方案经常产生不规则的结构和复杂的布线，由此会增大

硅晶片面积，延长设计时间。而且，由于在有限精度的算法中，乘法的多个步骤

都有四舍五入的操作，从而导致结果的准确度严重下降。

根据前述对当前DCT算法的研究现状的分析来看，不难发现当前DCT算

法还是以基于DA算法的行列分离的结构来计算2D--DCT的方法居多。因为这

样的结构易于设计，比较规则，没有很复杂的蝶型网络。虽然可能乘法的次数和

加法的次数不是最少的，但是硬件实现最重要的是算法算术单元之间的数据传递

的复杂性。采用行列分离(RCM)结构的硬件实现，模块比较清晰，适合自顶向下的

设计方法。当然，这种结构对于高吞吐量系统来说，为了快速安排行列转换模块

之间的数据流，需要复杂的中间数据转换电路(TRAM)。一般快速转换电路都需要

很大的芯片面积。所以，近年已经有很多无中间转换电路的RCM系统，其中很

多是用脉动阵列实现的。但是，采用这种算法往往要求整个N×N的输入数据同

时参与计算，因此I／O处理及数据传递电路复杂，使得它们的VLSI实现在性能

上反而不如RCM系统。

在第二节中，根据前一章提出的部分和分解算法，设计了2“×2万型DCT结

构和q×q(g=奇素数)型DCT的VLSI结构。这种结构具有规则性，相对其他常
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用2D--DCT算法，使用了更少的乘法器和加法器。本节最后给出了与其他常用

2D--DCT算法的资源开销对比。

第三节详细叙述了PSDA算法的VLSI结构的设计和验证过程，给出了综合结

果。

第四节给出了PSDA算法IP核的性能参数，并与其他几家公司的口核进行了

对比。验证结果证明了算法的正确性和高效性。

6．2部分和分解算法的IP核实现

6．2．1 2以×2矗型DCT部分和分解算法的VLSI结构

图6—1是8x8 DCT算法的VLSI实现原理框图。2”×2”型DCT实现方法类

似于8x8 DCT。图1中， 数据按时钟节拍输入；Stepl一3实现5．2．4中stepl的功

能。Step 4为部分和计算单元；Step 5储存部分和输出；Step 6为乘加运算单元。

I(O，i)

I(1．i)

x(2，i)

I(3。i)

x(4。i)

x(j．i)

I(6。i)

x(7，i)

2＼+／二＼．／二×二 ：
：心+∥二米二 二： 部分和计
：心．∥二／．＼二 二 ：

算单元2 秉
数

加

添三 三三；
据 ●‘‘

选
]巨

：∥．N二 二 二 ：
部分和计

择
算

算单元1

：／ ． ＼二 二 二 ：

Stepl Step2 Step3 sty4 Step5 Step6

图6—1 8x8 DCT算法的VLSI实现原理框图

图6—2是部分和计算单元原理框图。由r5—13)可知，对于每-YU输入数据，

某一特定余弦因子对应的元素不会超过两个。在图6—2中，这两个元素可以通过

两个数据选择器选出，再根据预先存储好的表格决定这两个元素的运算关系，将

运算结果累加即可得到部分和输出。
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数据0
数担l

数据2
数据3

O

图6—2部分和计算单元原理框图

图6—3是数据选择单元原理框图。由于每8拍时钟输出8个部分和，正好可

通过乘加运算计算出8个DCT输出。数据选择单元所起的功能为在step4中部分

和计算单元l和部分和计算单元2的输出进行选择切换。再根据预先存储好的表

格决定余弦因子，部分和输出到乘加单元。

蠡据0

部分和计算单元1输出 数据1
数据2

数据3

数据0

部分和计算单元2输出 蠢袭；
数据3

——————-——◆par(i)o

————-—--◆par(i)J
——---—--◆par(i)2
——-———-—◆par(i)3

图6—3数据选择单元原理框图
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图6—4是乘加单元原理框图，考虑到蝶型单元的不规则性，可直接采用乘积

叠加的形式，每时钟输出一个有效数据。

陌皇坐L——_●■—■■■●●■■●■■■●●■■■■■■●■o■●

’Sum(1)

’Sum(2)

rSum(3)

_-◆

星星嚣星

MAC U11it

+

DctOut

+

+

图6—4乘加单元原理框图

表6一l显示了PSDA算法和其他2维DCT算法的比较。Cho的结构【37】达到

了最高的吞吐率但是对于实时系统计算复杂性太高。Yang的结构【401计算复杂性

很低，但是内部的连线逻辑随DCT的尺寸复杂呈非线性增加。该VLSI结构规则

吞吐率高，而且乘法器和加法器的数目也很少。因此该算法具有较高的推广价值。
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表6—1不同2D--DCT算法的性能比较

ChO Lee Uramoto Yang Gong PSDA算法

[30】 [79] [80】 [81】 f82】 【83]

Algorithmic Direct 2一D Direct 2一D R—C Direct 2一D R—C Direct 2一D

’Approach algorithm algorithm decompose algorithm Decompose algorithm

No．of

Multipliers
Ⅳh log 2 N Ⅳ ． N N

——+l N N
2 2 2 2

No．of Adders }(s JⅣ：· rⅣ、2 2Ⅳ N：+f，旦1
2

2 JⅣ 4Ⅳ+l

10 g!N
l丁j L 2／l

一2 N、+2

Transposition No No Yes N0 N0 N0

Total cycles

perN×N 1 —N-x l。g 2N N1+N log2N Ⅳ2 Ⅳ+lOg 2N
2
u

2～DDCT

I／O Ports Parallel In Serial In Serial In Serial In Parallel In Parallel In

Parallel Otit Parallel Otit Serial Out Parallel 0tit Parallel Out Parallel／

Serial Out

6．2．2窖×g(g=奇素数)型DCT部分和分解算法的VLSI结构

图6—5为素数型二维DCT的部分和分解算法原理框图。图6—6给出了采用

部分和分解算法计算A(k，D的原理框图。由式(5--22)可知，X(k，J『)由A(k，f)，

B(k，0，C(k，n和常量之和组成。

在图6--5中，第(g一1)／2行和第(g一1)／2列数据分别经过两个素长度一维DCT
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计算单元得到B(k，D和c(k，D；其余的时域数据通过图6—6中A(k，D计算单元

得到A(k，0。A(k，D，B(k，D，C(k，，)和常量颤(g—I)12，(g一1)／2)或0之和即为

相应的DCT变换输出X(k，0。
i≠(g-I)12

x(0．i)

x(1．i)

x((口一3)／2。j)

x((q+I)／2，i)

x(q一2，i)

x(q-I．i)

图6--5素数型二维DCT部分和分解算法原理框图

图6--6为A(k，D计算单元原理框图。A(k， I『)计算单元由两个部分和计算单

元，一维一个素长度DCT偶系数计算单元和奇系数计算单元组成。部分和计算单

元结构与图6—2相同，也是从每列输入数据中选出两个进行部分和累加计算。

x(O．i)O—————————◆

x(1．i)(■———————-◆

⋯⋯·C}_———————————◆

x((q一3)12，i)(卜——————_
x((q+1)／2，i)

x(q一2，i)

x(q—1．i)

部分和计 偶下标系

算单元2 数计算

奇下标系
数计算

图6—6 A(k，1)计算原理框图
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6．3部分和分解算法IP核实现及验证

6．3．1 IP核设计

对于IP硬核的设计来说，整个设计一定要流片并且进行demo板测试才能

交付。由于本文以研究为主，只开发了DCT的口软核，所以只需要映射到工艺

库上，进行门级仿真即可。下面为将设计综合到SMIC的0．18urn工艺库上的全过

程。

1)建立设计环境

建立设计环境的工作就是编写Design Compile的名称为．synopsys__dc．setup的

设置文件。该文件的内容如下：

search_path=search__path+{fI．””f：／Synopsys／libraries／syn／smic_35”)

link_library={}I桕’，”smic 1 8ajt-3}3-25．db”)

target_library 2{”smicl 8a—tt一33—25．db”)

symbol一．1ibrary={IlSNl 8a．sdb”)

company=”UESTC 11 1 lab”

designer=”Tian Mao’’

view_background=”'black'”

define_design_lib work—pam work

21读入HDL描述

按照设计的层次，从底到上，使用analyze和elaborate命令读入设计。读入

设计可以用DC的图形界面design_analyzer或者它的文字界面dc—shell。用

design_analyzer读入所有设计后的fdct—da顶图如图6—7a，b所示。
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dat64bit_mux

图6—7a部分和分解算法项图(1)

bit_extend

图6—7b部分和分解算法项图(2)

3)设置约束

◆设置导线负载模型和模式：

set wire lcIad”100K”一library”SN35A TT 33 25”

set wire load mode enclosed
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◆设置时钟和复位信号

create—clock--period 1 5--waveform{0 5)clk

set'clock—skew--delay 1．0--minus_uncertainty 1。0--plus__uncertaimy 0．5 clk

set—dont—touch—network{clk rst)

◆设置驱动，由于时钟和复位网络一般在布局时候才加入，所以这里设置的

驱动能力为理想驱动，也就是驱动能力无穷大。对于其他的输入信号，驱动强度

设置为单元库内一个缓冲单元的输出端口驱动强度，原因是IP核最后要集成到

SOC片上系统中去，与它连接的其他IP模块一般都是寄存器输出，或者通过一

级缓冲后再联接到输入端口，距离很近，不需要非常强的驱动强度。

setdriving_cell--cell RS—BUF—B—pill O all_inputs0

set—drive 0{clk，rst)

◆设置输出负载，同样道理，下一级IP核也不需要DCT IP核有非常大的

驱动强度，所以负载设成O．5pf足够了。

set—load 0．5 all_outputs()

◆设置输入输出延时，这是为了保持良好的独立性，预估了前后级电路的延

时，也增强了本设计的鲁棒性。

setinput_delay 5．0--clock elk all_inputs()

set_output_delay 5．0--clock clk all_outputs0

4)编译并写出门级网表和时延文件

使用compile命令进行编译，然后使用write命令将综合的结果以db的格

式保存起来，同时还要输出Vhdl格式的网表和．sdf文件为门级仿真做准备。命

令使用如下：

write--hierarchy—output fdct—da．db

write—fonnat verilog--hierarchy--output fdct—da．vhd

write_timing—fo肌at sd卜V2．1--output activedesign+"．sdf’
5)给出报告

使用report系列命令可以产生设计的详细报告，包括面积与时序信息，当然

也可以使用PrimeTime进行更为详细的时序分析。

6)进行门级仿真

在ModelSim中编译输出网表．vhd文件，工艺库对应的．vhd文件，testbench

文件和反标门级延时就可以进行门级仿真，实验显示结果正确。图6—8显示了

由于加入了门级延时以后信号相对于时钟的延时。
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图6—8加入了门级延时以后信号相对于时钟的延时

7)综合和仿真结果

表6—2给出了PSDA算法的综合和仿真结果。附录3为PSDA算法IP核的

交付件；附录4为PSDA算法D核的面积测试结果；附录5为PSDA算法口核的

时序测试结果；附录6为PSDA算法口核的功耗测试结果。附录7为输入数据和

DCT变换输出仿真波形。

表6—2Ⅲ核综合和仿真结果

名称 速度 面积 功耗

PSDADCTIP l 50．83MHz 997363平方微米 94mW

以上综合和仿真结果表明，PSDA算法有着良好的性能和推广价值。

6．3．2 FPGA原型验证

图6—9为FPGA原型验证原理测试原理图。通过对比软件和硬件变换的输出

数据及生成的JPEG图像，我们可以测试算法IP核的功能正确性和处理性能参数。

9l



电子科技大学博+学位论文

图6—9 FPGA原型验证系统测试原理图

图6—10为FPGA原型验证系统原理框图。由图6—10我们可以看到，DCT

验证系统可以分为以下4个模块，UART，控制模块，存储器，用户算法验证模块。

各模块的功能如下：

UART：实现异步串行通信功能，完成PC与原型验证系统间的数据通信。在

PC端，通过软件对硬件的DCT变换输出进行Huffman编码，生成JPEG文件来验

证PSDADCT算法IP核的正确性。

存储器：存储用户算法的输入／输出数据

PSDADCT：PSDADCT算法口核，完成DCT变换

控制单元：控制其他模块的启动／停止：数据读取／写入

图6—10 FPGA原型验证系统原理框图

图6—1l为FPGA原型验证系统所使用的Altera开发板。

摹



第六章部分和分解算法的VLS!实现及验证

图6—11 FPGA原型验证系统板

6．4本设计与业界销售产品的性能比较

与Amphion公司和Barco Silex公司的DCT硬榜比较如表6 3所示

表6—3本设计与业界销售产品的性能比较

公司 】_艺 逻辑门数 性能 所需额外资源

Amphion TSMC 217MHz lkbitram

018um

【Barc。 UMC 165MHz 2个Ⅲn

Sile。 018urn

本设计 SMIC 16k 150MHz

01 8urn (门级)

由表6--3可知，在这几个产品中，本设计所用的面积是最小的。系统的瓶颈

主要在乘法器的运算速度上。由于使用了组合乘法器，导致了系统的性能上要稍

低于以上两家公司的产品。如果采用DA算法来实现乘法器的话，系统的性能还

会有更大的提升。该DCT软核的性能可以达到JPEG，H 263，MPEG等图像视频

编码标准的要求。

6．5本章小结

本章讲述了二维DCT部分和分解算法的VLSI实现。本章主要研究各种长度

情况下二维DCT的VLS[实现算法。主要讨论了2“×，类型和qog(q为奇素数)
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类型的2D--DCT算法的VLSI实现。该硬件实现算法具有结构简单，计算复杂性

低，加法器和乘法器开销小等优点。

本章还叙述了ASIC的基本开发流程，在基于Synopsys公司的Design Compiler

软件上进行了部分和分解算法的ASIC实现和验证。

部分和分解算法通过了ASIC验证。8×8 DCT／IDCT核的综合结果证明了算法

的正确性。系统的处理延时为12个时钟，吞吐率能达到时钟频率倍符号／秒。系统

的主要瓶颈在于最后一级乘加器的运算速度上。最后一级的乘加累积运算也可以

采用1D--DCT的IP核来替代，系统的吞吐率会增加到原来的N／2倍，但是系统

的结构也会变得不规则，且面积开销将会大大增加。



第七章结论与展望

第七章结论与展望

本文主要研究二维DCT快速算法及其VLSI实现结构。本文首先介绍了离散

余弦变换(DCT)的概念；介绍了应用背景，实现原理和未来发展趋势；指明了DCT

快速算法发展中面临的主要问题，重点说明了DCT快速算法所要解决的关键技术

问题，综述了各种一维和二维的DCT快速算法的发展概况。然后叙述了一维离

散余弦变换(DCT)的快速变换算法设计。一维DCT快速变换算法是所有DCT快速

变换算法的基础。本文详细介绍了2月，矿，素长度以及任意长度DCT变换算法。

在研究了一维DCT快速变换算法后，本文研究了二维离散余弦变换的快速算法。

利用数论理论，本文提出了二维DCT变换的部分和分解算法快速算法--PSDA。

PSDA算法是一种直接分解算法，其核心思想为将二维DCT变换直接转换为若干

个一维DCT变换实现。根据同余理论，将频域输出划为若干个子集，每一子集内

的所有元素构成一个一维DCT变换的输出。本文提出了变换输出的子集划分准则，

部分和的计算方法，公共加法项的合并原则并把部分和算法从2”×2“扩展到qxq(q

为奇素数1型二维DCT。

在研究了PSDA算法后，本文研究了该算法的VLSI实现。SOC开发的主

要工作就是建立具有自主知识产权的疋核库。鉴于DCT变换在图像和视频信号压

缩的变换编码中，被广泛认为是最高效的一种方法。所以，研究和开发具有自主

知识产权的DCT模块，对于未来图像处理系统的SOC开发具有非常重大的意义，

同时也拥有一定的商业价值。基于以上的思路，本文在第二章概述了国内外各种

离散余弦变化(DCT)的快速算法及其VLSI实现的硬件结构。在此基础上，提出了

基于部分和分解算法的全流水线DCT硬件结构。该结构的核心是部分和的计算。

最终的变换输出既可以通过乘加运算求和输出，也可以使用其他一维DCT变换模

块输出。由PSDA算法可知，对于二维DCT的每一列输入数据，某一特定余弦因

子对应的时域元素不会超过两个。这两个元素可以通过两个数据选择器选出，再

根据预先存储好的表格决定这两个元素的运算关系，将运算结果累加得到部分和

输出。DCT变换输出既可以通过部分和的乘加运算求和输出，也可以使用其他一

维DCT变换模块输出。本文分别给出了2”×2一型和q×q型DCT的VLSI结构并

将验证后的m核与其他公司的产品进行了比较分析。比较结果证明PSDA算法有

着良好的性能，可作为图像处理器芯片的核心算法在视频信号处理中得到广泛的
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应用。

本文在这些方面的研究和主要贡献总结如下：

1提出了部分和相等的分集准则，通过该准则实现了对频域输出数据的分集，

并证明了每一个分集内的元素为时域输入数据部分和的一维DCT变换输出。

2．通过频域数据的分集，将一个二维DCT变换转换为若干个一维DCT变换，

使完成DCT变换的乘法运算次数减少了一半。

3．提出了部分和的计算方法和公共加法项的合并原则，通过合并公共加法项

得到了更少的加法运算量。

4．传统的DCT算法是针对输入数据长度为20进行计算的，但是在很多应用

领域中都要用到长度非2n的DCT算法，而素长度的DCT算法是非2玎长度DCT

的核心。因此本文在2n长度PSDA算法的基础上提出了改进的二维素长度PSDA

DCT算法，该算法是基于频域输出数据与部分和的转换和映射关系，将二维素长

度DCT变换分解为多个一维素长度DCT变换。同已有的素长度DCT算法相比，

减少了一半的乘法计算量。

5．提出了基于2n长度PSDA算法的VLSI结构，同间接算法的VLSI结构相

比，该结构具有不需要转置变换，处理延时低的优点；同其他直接算法的VLSI结

构相比，该结构具有更规则的结构，和更少的乘法器和加法器开销。

6．目前的DCT IP核都是针对2n长度的，并不能满足完全实际应用中的需要。

因此，本文在PSDA算法的基础上，分别基于FPGA和ASIC工艺进行了素数长度

DCT的IP核设计。仿真和综合结果表明，该设计结构简单、层次清晰，具有高度

的规则性和模块性。

7．比较分析了基于PSDA算法的DCT IP核与业界同类产品的优劣，为以后

进一步开发IP核库打下坚实的基础。

本文所做的研究工作还可以在以下方面深入进行：

1．部分和分解算法还可以在任意尺寸二维DCT快速变换算法设计中得到应

用。

2．部分和分解算法还可以在高维DCT快速变换算法设计中得到使用。

3．随着CMOS工艺特征尺寸的不断缩小，和对功耗提出的新要求，PSDA算

法的IP核可以利用门控时钟等低功耗技术进一步加强性能，使之能适应更广阔的

应用场合。

4．当条件成熟时，本设计可以从软核转化成硬核，直接作为图像处理核心模

块集成到SOC片上系统中去。
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附录

附录

附录1：4x4点PSDA DCT C语言代码

#define SQRT2 1．4142

#define PI 3．14159

void f2dct_4x4(int奉in_dat，double木outdat)

{

l|埝tal cost

／／add operation times：

／／pre-processing 32

／／processing 3 8

／／multiply times：14

／／shift times： 12

int pre_dat[1 6]；

hat sum_ab，sub_ab，sum cd，sub_cd；

double adder out1，adder out2；

double mul_outl，mul_out2；

／／pre-processing

pre__processing(in_dat，predat，4)；

sum_ab=predat[O]+pre_dat[1]；

sub_ab=pre_dat[O]·predat[1]；

sum cd=pre_dat[4]+pre_dat[5]；

sub_cd=pre_dat[4]·pre__dat[5]；

／／compute x(o，O)，x(0，2)，x(2，0)，X(2，2)

幸outdat=(sum_ab+sum_cd)／2．0：

卑(out_dat+2)=(sub_ab+sub—cd)／4．0；

幸(out dat+8)2(sum—ab—sum cd)／4．0；
宰(out_dat+1 0)=(sub_ab·sub—cd)／8．0；

／／compute xo，1)，xo，3)，x(3，1)，x(3，3)
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sum_ab=pre dat[1 5]+pre_dat[1 0]；

sub～ab=pre_．dat[1 5]-pre_dat[1 0]；

sum_cd=pre_dat[1 4]+pre_dat[1 l】；

sub cd=pre__dat[1 4]一predat[1 1】；

mul_outl=(sub_ab+sum_cd)木SQRT2／1 6．0；

mul_out2=(sub_ab—sum_cd)宰SQRT2／1 6．0；

木(out_dat+5)=sum_ab／8．0+mul—outl；

幸(out_dat+l 5)=sum_ab／8．0-mul__outl；

幸(out_dat+7)--mul_out2一sub_cd／8．0；

奉(out_dat+1 3)=mul_out2+sub_cd／8．0；

／／compute x(o，1)，X(2，1)，x(0，3)，x(2，3)

sum_ab=pre_dat[3]+pre_dat[7]；

sub_ab=pre_dat[3]一predat[7]；

sum_cd=predat[2]+predat[6]；

sub cd=pre dat[2]．pre dat[6]；
一 一 一 一一一 一 一一

mul__outl=sum_ab木cos(PI／8)；

mul out2=sum_cd幸cos(3木PI／8)；

adder_out1=mul_out1+mul_out2；

adder_out2=mul_out1一mul_out2；

宰(out_dat+1)=(adderout 1／2．0)唪SQRT2／2；

宰(out_dat+3)=adder_out2／2．0-*(out_dat+1)；

mul—outl 2sub_ab奉cos(PI／8)；

mul out2=sub cd*cos(3木PI／8)；

adder_outI=mul_outl+mul_out2；

adder out2--mul_outl一mul_out2；

宰(out_dat+9)=(adder_outl／2．0)奉SQRT2／4．O；

事(out_dat+l 1)=adder_out2／4．0-*(out_dat+9)；

／／compute x(1，0)，X(1，2)，X(3，0)，X(3，2)

sum_ab=pre_dat[1 2]+pre_dat[1 3】；

sub_ab=predat[12]-pre_dat[13]；

sum_cd=pre_dat[8]+pre_dat[9]；

sub cd=pre_dat[8]·predat[9]；
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mul_out 1=sum_ab宰cos(PI／8)；

mul_out2=sum_cd木cos(3水PI／8)；

adderoutl--mul__outl+mul_out2；

adder_out2---mul_out 1一mul_out2；

难(out_dat+4)=(adder_outl／2．01木SQRT2／2；

}(out_dat+1 2)=adder_out2／2．0-*(out_dat+4)；

mul_outl=sub_ab}cos(PI／8)；

mul_out22sub_cd木cos(3木PI／8)；

adder_outl=mul_out 1+mul__out2；

adder_out2--rnul_out 1一mul_out2；

木(out_dat+6)=(adder_outl／2．01木SQRT2／4；

宰(out__dat+14)=(adder_out2宰cos(PI／4)-adder_outl／2．0)木SQRT2／4；

)

void pre_processing(int木in_dat，int宰out_dat，UINT size)

{

int ij；

int sum_ab，sum_cd，sub_ab，sub_M；

f0“i-O；i<size／2；i++)

for0=0；j<size／2；j++)

{

sum_ab=宰(in_dat+i半size+j)+木(in_dat+i宰size+size-l-j)；

sub_ab=术(in_dat+i木size+j)-*(in_dat+i术size+size—l-j)；

sum_cd=术(in_dat+(size-1-i)宰size+j)+宰(in_dat+(size-1一i)车size+size—l-j)；

sub_cd=宰(in__dat+(size一1一i)木size+j)一·(in_dat+(size一1一i)牛size+size—i-j)；

毒(out_dat+i木size+j)=sum_ab+sum_cd；

枣(out_dat+(size一1-i)车size+size-l-j)=sub_ab—sub_cd；

木(outdat+i木size+size一1-j)=sub．_．ab+sub—cA；

幸(outdat+(size·1-i)幸size+j)=sum_ab-sum_cd；

)

)
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附录2：8x8点PSDA DCT C语言代码

附2．1：头文件定义

享≠include”stdio．h”

#include”math．h”

#define PI 3．14159

typedef unsigned char uchar；

void pre_processing(short+in_dat，short·out_dat，uchar size)；
void direct_dct8x8(short test_data[8][8]，shon gold—refl8】[8】)；
void direct_dct8x8一float(short testdata[8][8]，double gold ref—float[8][8])；
void par dct8x8(short data[8][8]，short dct out[8][8])；
void par_dct4x4(short data[4][4]，short dct_out[4][4])；
void partial—sum_cal(short optdat[4][4]，short par_sumO[4][4]，

short par_suml【4】【4】，short par sum2[4][4]，
short par_sum3[4][4]，uchar dat—sel)；

void partial—sum cal case_odd_even(short opt_data[4][4]，short par_sum[4][4])；
void partial—sum cal case_odd_odd(short opt_data[4][4]，short par_sum[4][4])；
void display(short中dat，uchar row，uchar column)；
void display_float(double木parsum，uchar row，uchar column)；
void dct8_odd_part(short宰p_par sum．short+dct_out)；
void dct8_even_part(short宰p_par_sum．short木dct_out)；
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附2．2：8x8点PSDA DCT实现代码

#inelude”det—def．h”

void directdct8x8(short testdata[8][8]，short goldref[8][8])
{
double temp；
uchar ij，k，1；
for(k=O；k<8；k++)
{
f0“l=O；l<8；l++)

{
temp=O；

fo“i_O；i<8；i++)

{
fotO=0；j<8；j++)
{
temp--temp+cos((2幸i+l、事k宰PI／16)幸cos((2*j+1)宰1幸PI／16)}
(double)(test_data[i】【j】)；

)
)
gold__retlk][1]=(short)temp；

)
}

>

void direct__dct8x8一float(short test_data[8][8]，double goldretf[8][8])

{
double temp；

uchar ij，k，l；

for(k=O；k<8；k++)
{
for(1=O；l<8；l++)
{
temp=O；

fo“i=O；i<8；i++)

{
forO=O；j<8；j++)
{

temp---temp+cos((2·i+1、木k}PI／16)牛cos((2*j+1)木1幸PI／16)}
(double)(test_data[i][j])；

)
)

gold_ref[k][1]=temp；
)

)
)

void par_dct8x8(short data[8][8]，short dot_out[8][8])
{
short par_sumO[4][4]，par_sumI[4][4]，par_sum2[4][4]，par_sum3[4][4]；
short dot out partO[4][4]，det．_out__partl[4]【4]，
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dct_out__part2[4]14】，det_out__part3[4][4]；
short temp—datal[8】[8】，temp_data2[8][8]，opt_data[4][4]；
short sum_ternp，sub_temp；
uchar ij；
uchark：

uchar dat_sel；

}n 28 add operations

pre__processing(&data[O][0]，&temp data2[O][O]，8)；
printf(”＼rI”)；
display(&temp_data2[O][0]，8，8)；
for(k=O；k<4；k．H1
{
dat_sel=k：

for(i=O；i<4；i++)
{
for(j=O；j<4；j++)
{
switch(dat_sel)
{
case 0：opt_data[i][j]=temp_data2[i][j]；

break；

／／rotate data

case 1：opt_data[j][i]=temp_data2[i][j+4]；
break；

case 2：opt_data[i][j]=temp_data2[i+4][j]；
break；

case 3：opt_data[i][j]=temp_data2[i+4][j+4]；
break；

default：opt_data[i][j]=0：
break；

>
)

)
if(k=O)
{
par dct4x4(opt_data，dct_out_partO)；

)
else

{
printf(”Ⅶ”)；
display(&opt_data[0][0]，4，4)；

)
partial_sum_cal(opt_data，par_sumO，par_sum1，par_sum2，par_sum3，dat_sd)；

)

觚i-0；i<4；i++)
{
dct8_odd__part(&par_sum 1[i】[0]，&dct_out__part I[i】[0】)；

dct8一odd_part(&par_sum2[i][0]，&dct out__part2[i][0])；
dct8__even_part(&par_sum3[i][0]，&dctout_part3[i][0])；

)
printfi【”kn”)；

display(&dct__out_．part2[0][0]，4，4)；
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for(i=O；l<4；1++)
for(j=O；j<4；j++)
{
dct_out[2木i][2*j]=dct_out__partO[i][j]；
dct_out[2}i][2*j+1]=dct out patti[i】[j]；

dct_out[2堆i+11[2*j]=dct_out__part2[j][i]；
dct_out[2木i+1][2々+l】=dctout_part3[i][j]；

)
)

void partial—sum_cal(short opt_data[4][4]，short par_sumO[4][4]，
short par_suml[4】[4]，short par_sum2[4][4]，
short par sum3[4l[4]，
uchar datsel)

{
switch(dat_sel)
{
case O：break；

case 1：partial—sum—cal case_odd—even(opt_data，par_sum 1)；break；

case 2：partial—sum—cal—case_odd_even(opt_data，par_sum2)；break；
case 3．partial_sum cal case_odd_odd(optdata，par_sum3)；break；
default：break；

)
)

void partial_sum cal case_odd_even(short opt_data[4][4]，short par sum[4][4])

{
844 add operations
short temp_datal[4][2]；
short temp_data2[4][2]；
short temp_data3[4]；
short temp——data4[4]；
short temp——data5[4]；
short temp_data6[4]；
uchar i，j；
HI 6 add operations

fb“i-0；i<4；i++)
flor0=00<2j++)

{
temp_datal[i][j]=opt_data[il[Jl+opt data[i][3-j]；

temp_data2[i][j]=optdata[i][j]一opt_data[i][3-j]；
)

printf【”m”)；
display(&temp datal[O][O]，4，2)；

prinff(”＼Il”)；
display(&temp_data2[O][O]，4，2)；
／／8 add operations

f0“i-0；i<4；i++)

f0哟=0；j<l ij++)
{
temp data3[i]--temp datal[i][j]+ternp datal[i][1-j]；
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temp_data4[i]=temp_data 1[i][j]-temp_data 1[i】【l-j]；

)
／／4 add operations

／／F(I，0)rotate factor pi／1 6

par sum[0][0]=temp_data3[0]；
／／F(1，0)rotate factor 3*pi／l 6

par_sum[0][1]=temp_data3[1]；
／／FO，0)rotate factor 5*pi／l 6

par_sum[O][2]=temp_data3[2]；
／／F(1，01 rotate factor 7宰pi／1 6

par_sum[0][3]=temp_data3[3]；
／／F(1，4)rotate factor pi／l 6

par_sum[2][0]=(temp_data4[1]+temp_data4[2])／2；
／／F(1．4)rotate factor 3*pUl 6

parsum[2][1]=(temp_data4[0]+temp_data4[3])／2；
／／F(1，4)rotate factor 5*pi／16

par_sum[2][2]=(temp_data4[0]-temp_data4[3])／2；
／／F(1，4)rotate factor 7*pi／l 6

par_sum[2][3]=(temp_data4[1]·temp_data4[2])／2；

／／8 add opemttons

for(i-0；i<4；i++)
for0=Oj<l；j++)
{
temp_dataS[i]=temp_data2[i][j]+temp—data2[3·i】【l-j】；
temp_data6[i]=temp_data2[i][j]一temp_data2[3-i】【1-j】；

}
／／8 add operations

／／F(1，2)rotate factor pi／l 6

par_sum[1][0]=(temp_dataS[0]+temp_data5[1])／2；
l／F(1，2)rotate factor 3*pi／16

par_sum[1][1]=(temp_data6[0]+temp_data5[2])／2；
／／F(1．2)rotate factor 5*pi／1 6

par_sum[1][2]=(temp_data6[1]+temp_data5[3])／2；
／／F【1，2)rotate factor 7*pUl6

par_sum[1][3l=(temp_data5[2]一temp_data5[3])／2；
／／F(1，6)rotate factor pi／1 6

par_sum[3][O]=(temp_data6[2]+temp_data6[3])／2；
{压t1，6●rotate factor 3*pi／l 6

par sum[3][1]=(temp—data6[1]一temp_data5[3])／2；
／／F(1，6)rotate factor 5"pi／16
par sum[3][2]=(temp_data6[O]-temp_data5[2])／2；
肝(1，6)rotate factor 7"pi／16
par sum[3][3]=(temp_data5[0]-temp_data5[1])／2；

void partial_sum cat case_odd_odd(short opLdata[4][4]，short par_sum[4][4])
{
short temp_data 1【4]【2】；
short temp_data2[4][2]；
uchar ij；
NI 6 add operations

fo“i-0；i<4；i++)
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forO=O；j<2；j++)
{
ta-op—datal[i】[j]一opt data[i][j]+optdata[3一i][3．j】；
temp_data2[i][j]=opt__data[i][j]一opt—data[3-i】[3-j】；

)
printf(”Ⅶ”)；
display(&temp_datal【0】[0】，4，2)；
printf(”b”)；
display(&temp—data2[O][O]，4，2)；
／／1 0 add operations

／／F(I，1)rotate factorO*pi／16

par sum[O][O]2(temp_datal[0][O]+temp_datal[1】[1】)；
／／F(1，1)rotate factor2*pi／16

par_sum[O][1]2(ternp_data2[O][O]+ternp_datal[1][O]+temp_datal[O][1]+temp_datal[2][1】)；
HF(1，1)rotate factor4"pi／16

par sum[O][2]2(temp—data2[1][O]+temp_datal[2][O]+temp_data2[O][1]+temp_datal[3】[1】)；
HF(1，1)rotate factor 6*pi／16

par_sum[O][3]2(ternp_data2[2][O]+temp_datal[3][O]+temp_data2[1][1]一temp_data2[3][1])；

／／F(I，3)rotate factor O*pi／1 6

par_sum[1]【0】-(temp_data2【I】【0卜temp_datal[3】[1】)；
／,IF(1，3)rotate factor 2*pi／1 6

par sum[I][1]2(temp_data2[O][O]+temp_data2[2][0]·temp_datal【2][1]+temp_data2[3][1])；
I／Ff 1，3)rotate factor 4*pi／1 6

par_sum[I][2]=(temp_dataI[O][O]+temp_data2[3][O]-temp_datal[1][1]+temp_data2[2][11)；
／／F(1，3)rotate factor 6*pi／1 6

par_sum[I][3]2(temp_datal[1][O]-temp datal[3][0】-temp_datal[0][1]+temp_data2[1][1])；

／／F(1，5)rotate factor O*pi／1 6

par_sum[2][O]2(temp_dataI[2][0】-temp_data2[O][1】)；
7纾t 1,5、rotate factor 2*pi／16

par_sum[2][1]2(temp—datal[1][O]+temp_datal[3][O]一temp_datal【0]【1】一ternp data2[1][1])；
／／F(1．5)rotate factor 4木pi／1 6

par_sum[2][2]2(temp_datal[0][01一temp_data2[3][O]-temp_datal[1]【1]一temp_data2[2][1])；
7愿k1÷51 rotate factor 64pi／1 6

par_sum[2][3]=(temp_data2[O][0]-temp_data2[2][O]一temp_datal【2】[1】·temp_data2[3][1])；

／／F(1．7)rotate factor 0宰pi／1 6

par_sum[3][O]2(temp_data2[3][O]-temp_data2[2][1])；
／／F(1，7)rotate factor 2*pi／1 6

par_sum[3][1]5(temp_data2[2][O]-temp_datal[3][O】-temp_data2[1][1]一temp_data2E3][1])；
／／F(1．7)rotate factor4"pi／16

par_sum[3][2]5(temp—data2[1][O]一temp_datal【2]10]一ternp_data2[O][1]+temp_datal【3】[1】)；
HF(1，7)rotate factor 6"pi／1 6

par_sum[3][3]2(temp_data2[O][O]·temp_datal[1]10]-temp_datal【O][1]+temp_datal【2】【1】)；

void dct8_even_part(short}p_par_sum，short幸dot_out)
{
double temp_datl[4]，ternp_dat2[4]，temp_dat3[4]；
double dct_float_out[4]；
H9 add operations，4 multiply operations

temp_dat I[O】-(double)(*p__par_sum)；
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temp_datl f1】-(double)(幸(p_parsum+1))}2士cos(PI／8)；
temp_datl[212(double)(丰(p_par_sum+2))木cos(Pl／4)；
temp_datl[3]=(double)(丰(p__par_sum+3))木2水cos(Pl宰3／8)；

temp_dat2[O]=temp_dat I【O]+temp_dat l(2]；
temp_dat2[2]=ternp—datl[01一temp—datl[21；
temp_dat2[1]2temp—datl[1]+temp_datI【3】；
temp—dat2[3]2(temp_datl[11-temp_datl[3】)幸cos(PI／4)；

temp_dat3[O]2ternp_dat2[O]；
ternp_dat3[2]2temp_dat2[2]；
temp_dat3[1]2temp_dat2[1]／2；
temp_dat3[3]2temp_dat2[3]·temp_dat2[1]／2；

dct float_out[O]=(temp_dat3[O]+temp—．dat3[1 1)／2；
dct__floaLout[1 l=(temp_dat3[2]+temp_dat3[3])／2；
dct float_out[2]=(temp_dat3[2]一temp_dat3[31)／2；
dot float_out[3]=(temp_dat3[0]一temp_dat3[1])／2；

奉dct_out=short(dcLfloaL_out[O])；
宰(dot_out+1)=short(dot_float_out[1])；
牛(dot_out+2)2short(dct_float_out[2])；
宰(dcLout+3)=short(dct_float_out[3])；

void dct8_odd_part(short卑p_par_sum．short幸dot_out)
{

／／1 2 add operations and 8 multiply operations

uchari；

double temp—datl[4】，temp_dat2[4]，temp_dat3[4]，temp_dat4[4]，temp_dat5[4]；
double temp_datfloat[4]；
double dct_float_out[4]；
／／4 multiply operations

for(i=O；i<4；i++)
{
temp_dat float[i]2(double)(牛(pJ)ar．s啪+i))；
temp_datl[i]--temp_datfloat[i]幸2·cos((2宰i+1)+PI／16)；

)
／／4 add operations

temp_dat2[O]--temp_datl[O]+temp_datl【3】；
temp_dat2[1]2temp_dat l[1]+temp—dat l【2】；
temp_dat2[2]2temp_datI【1】-temp_datl[2】；
temp_dat2[3]2temp_datl【0】-ternp_datl(3】；
／／2 multiply operations

temp_dat3[O]=temp_dat2[O]；
temp_dat3[1]2temp_dat2[1]；
temp_dat3[2]=ternp_dat2[2]幸2·cos(3·PUS)；
temp_dat3[3]--temp_dat2[3]·2牛cos(PI／8)；
／／4 add operations

temp_dat4[O]---temp_dat3[O]+temp_dat3[1]；
temp_dat4[1]---ternp_dat3[0]一ternp_dat3[1]；
temp_dat4[2]--ternp_dat3[3]+temp_dat3[2]；
temp_dat4[3]---temp_dat3[3]·temp_dat3[2]；
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／t2 mul。2 shiff．1 add

t伽p—dat5[O]=temp_dat4[O]／2；
temp—dat5[I]=temp dat4[1]唪cos(PI／4)；
temp_dat5[2]=temp_dat4[2]／2；
temp_dat5[3]=temp_dat4[3]幸cos(PI／4)一temp_dat5[2]；
|l 3 add

dct_float_out[O]--temp_dat5[0]；
dct_float out[1]----temp_dat5[2]一dct_float_out[O]；
dctfloat_out[2]--temp—dat5[1】-dctfloatout【l】；

dct_float_out[3]=temp_dat5[3]·dctfloat_out[2]；
}dct_out=(short)(dct_foat_out[O])；
牛(dct_out+1)=(short)(dct_float_out[1】)；
宰(dct_out+2)=(short)(dct_float_out[2])；
率(dot_out+3)=(short)(dct_float_out[3])；

void display(short幸par_sum，uchar row，uchar column)

{
uchar ij；
for(i=O；i<row；i++)
{
for(i=O；j<colurnn；j++)
{
prinff(“％8dt．，宰(parsum+i幸column+j))；

printf(”％c”，ox20)；
}
printf(”u”)；

}
)

void display_float(double幸par_sum，uchar rOW，uchar column)

{
uchar ij；

printf(”＼Il”)；
printf(”Xn”)；

for(i=O；i<row；i++)
{
for(ji=O；j<colurrm；j++)
{
print-f(”％8．4f’',*(par_sum+i幸column+j))；
r'rintf(”％c”，Ox20)；

)
printf(”＼n”)；

，
}

void pre__processing(short幸in_dat，short·out_dat，uchar size)

{
砸t讶；
int sum_ab，sum_cd，sub_ab，sub_cd；

for(i=O；i<size／2；i++)

for(j=O；j<size／2；j++)
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sum ab：章(in dat+i*siz,叶j卜}(in dat+i*size+size．．1．j)；
sub ab=幸(in da．t+i*siz,寸j)．木(in dat+i*size+size．1-j)；

sum—cd=}(in—dat+(size一1一i)木size+j)十+伽_dat+(size-1一i)木size+size-l-j)；
subcd=奉(in—dat+(size·1一i)宰size+j}-4‘(in_dat+(size-1-i)+：size+size-l-j)；
*(out dat+i*sizI巴+i)=sum ab+sum cd；
*(out dat+(i+size／2)幸size+i+size／2)=sub如sub cd；
*(out dwLt+i*sizI时i+size／2)=sub甜sub cd；
*(out dat+(i+size／2)*siz,}}i)=sum ab-sum cd；

void par_dct4x4(short data[4][4]，short dct out[4][4D
{
short temp_datal[4】【4]，par_sumO[2][2]．,par_suml[2][2]．,par sum2[2][2]，par_sum3[2][2]，

dct out part0[2][2]，dct_out__partI[2】【2】，det_out_part2[2][2]，dct_out_part3[2][2]；
double dot——out——float[4]；
uchar ij；
double temp_dat2[4]，temp_dat3[4]，temp_dat4[4]；
display(，&data[O][O]，4，4)；
／／32 add operations

pre__processing(&data[0][0]，,&temp_datal[0]【0]，4)；
fo“i-0；j<2；i++)
f．o哟=0ij<2ij++)
{
par_sumO[i][j]----temp—datal[i】D】；
par suml[j][i]=temp_datalfi】[j+2】；
parsum2[i][j]=：temp_dataI[i+2】U】；
par sum3[i][j]=temp_datal[i+2]【j+2]；

)

display(&par_sum0[0][0]，2，2)；
display(i&par suml[0】[0】，2，2)；
display(',&par sum2[0][0]，2，2)；
display(&parsum3[0][0]，2，2)；
ii8 add operations

pre_processing(&par_sum0[0][0]，&dct_out_part0[0][0]，2)；

／／calculate F(O，1)．F(2．1)，F(0，3)，F(2，3)
／／1 0 add operations

temp_dat2[O]=par_sum 1【0][0】+par sum l【O][1】；
temp—dat2[1]=par_sumI[1]【0】+par_sumI[1儿1]；
temp_dat2[2]=par_suml【l】【O】-par suml[1][1]；
temp_dat2[3]=par_suml[O][O]-par suml【0】【l】；

temp_dat3[0}=temp_dat2[0]·2·cos(PI／8)；
temp_dat3[1]：=temp_dat2[1]·21'cos(3’,Pt／8)；
temp_dat3[2]：=：tcmp_dat2[2]宰2+cos(PU4)’‘cos(3幸PUS)；
temp_dat3[3]：=：temp dat2[3]幸2+cos(PI／4)。'eos(PI／8)；

temp_dat4[0]=temp_dat3[0]+temp_dat3[1]；
temp_dat4[1]=temp_dat3[0]·-temp_dat3[1]；
temp_dat4[2]=temp_dat3[3]+temp_dat3[2]；
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temp_dat4[3]=temp—dat3[3l—temp_dat3[2]；
dct—out foat[O]=temp—dat4[O]／2；
dct—out—float【1]=temp_dat4[1]木cos(PI／4)一temp_dat4[O]／2；
dct——out—．float[2]=temp_dat4[2]／2；
dct out float[3]=temp_dat4[3]木cos(PI／4)-temp_dat4[2]／2；

dct_out_partl【0】【0]-(short)dct—out—float[O]；
dct_out_part I【0】[1】_(short)dct—out—float[1]；
dct_out part l【1】[0】_(short)dct out—float[2]；
dct_out_partl[1][1]=(short)dct—out—float[3]；

H1 0 add operations

temp_dat2[O]=par_sum2[O][O]+par_sum2[O][1]；
temp_dat2[1]=par_sum2[1][O]+par_sum2[1][1]；
temp_dat2[2]=par_sum2[1】[01-par_sum2[1](1】；
temp dat2[3]=par_sum2[O][O]一parsum2[O][1]；

temp_dat3[O]--temp_dat2[O]·2·cos(Pl／8)；
temp_dat3[1]=ternp_dat2【1】幸2宰cos(3木PI／8)；
temp_dat3[2]=temp_dat2[2]木2}cos(PI／4)}cos(3+PI／8)；
temp_dat3[3]=temp_dat2[3]}2木cos(PU4)·cos(PF8)；

ternp_dat4[O]=temp_dat3[O]+temp_dat3[1]；
temp_dat4【1】--temp_dat3[O]一temp_dat3[1】；

ternp_dat4[2]--temp_dat3[3]+temp_dat3[2]；
temp_dat4[3]--temp_dat3[3]-temp—dat3[2]；
dct—out—float[O]=temp_dat4[O]／2；
dct—out—float【1】-temp_dat4[1]木cos(PI／4)一temp_dat4[O]／2；
dct——out—．float[2]--temp_dat4[2]／2；
dct—out—float[3]=temp_dat4[3]幸cos(PI／4)·temp_dat4[2]／2；

dct_out_part2[O][O]=(short)dct out——float[O]；
dct_out_part2[O][1]=(short)dct out—float[1]；
dct_out_part2[1][0]=(short)det out float[2]；

dot_out_part2[1][1]=(short)dct—out—float[3]；

／／calculate F(1，1)，F(3，3)，F(1，3)，F(3，1)
t／1 0 add operations

temp_dat2[O]=par_surn3[O][O]+par_sum3[1][1]；
temp_dat2[1]=par sum3[1][O]+par_sum3[O][1]；
temp_dat2[2]=par_sum3[1】[O】．par_sum3[O]【1】；
temp_dat2[3l=par_sum3[O][O]·par sum3[1][1]；

dct—out—float[O]--temp_dat2[O]+(temp_dat2[1]+temp dat2[3])宰cos(PI／4)；
dct—out float[1]=temp—dat2[2]一(temp_dat2[1]一temp_dat2[3])·cos(PI／4)；
dot out float[2]=-temp_dat2[2]-(ternp_dat2[1]一temp_dat2[3])木cos(PI／4)；
dct out float[3]=temp_dat2[O]-(temp_dat2[1]+temp_dat2[3])丰cos(PI／4)；

dot—out part3[O][O]=(short)dot—out float[O]；
dot_out_part3[0][1]2(short)dct out—float[1]；
dct_out_part3[1][O]2(short)dct out—float[2]；
dct out part3[1][1]2(short)dct—out—float[3]；
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dct out．_part 1 fol[o]=short(dct—out—float[O])；
dct out patt i【0】[1卜short(dct—out—float[I])；

for(i20；i<2；1++)
for(j=O；j<2；j++)

{
dct_out[2幸i][2*j]=dct_out．．_partO[i][j]；
dct__out[2·i][2*j+1]=dot_out_partl【i】D】；
dct_out[2幸i+l】[2勺】-dct out part2[j][i]；
dct_out[2牛i+1】【2々+1】-dctout__part3[i][j]；
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附2．3：8x8点PSDA DCT测试代码

#include”dot—def．h’’

void mainO
{
short test data[8][8]；
short gold dct—out[8】[8]；
double gold dct—。out float[8][8]；
short par dot out[8][8]；
uchar ij；
double t[4】；
fo“i-O；i<8；i++)
f．or(j=0j<80H)
{
par dct——out[i][j]=O；
if(i<4)
if(j<4)
test_data[i][j]=8幸i+j；

else

test_data[i][j]=8}i+7-j；
else

test_data[i][j]=8幸(7-i)+j；
)

display(&test_data[O][O]，8，8)；
printf(”direct dct out”)；
direct dct8x8(test_data，gold—dct—out)；
printf【”h”)；
display(&gold dct—out[O]【0】，8，8)；
directdct8x8_float(test_data，gold dct out float)；
printf(”u”)；

display_float(&gold dct out float[O][O]，8，8)；

par_dct8x8(test_data,par dct——out)；
printf(”＼Il”)；

display(&par det out[O][O]，8，8)；
i=0：
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附录3：PSDA算法IP核交付件(环境设置文件和综合脚本)

Design Compile的．synopsys_dc．setup文件

search_path={D：／Synopsys／libraries／syn／smic_18)+search_path

link_library={”幸”，”smicl8a—R一33—25．db”)；

target_library={f．smicl8ajL33—25．db”}；

symbol_library={"SNsmic．sdb”)；

company=”UESTC 111 lab”：

designer=”Tian Mao”；

view_background=”black’’：

define_design_lib work-path work；

fdct_partial sum—implementation的综合脚本

／掌·乖幸+宰·····幸幸}t唪幸··牛十幸·宰事····母●幸}卑·····木·}宰幸·★·／

／*Design entry^|

analyze—format vhdl dct top_connection．vhd

elaborate dct_top_connection

analyze—format vhdl add_adjust．vhd

elaborate addadjust

analyze—format vhdl butterfly_trans．vhd

elaborate butterfly trans

analyze—format vhdl control—unit．vhd

elaborate control——unit

analyze-format vhm dat64bit—mux．vhd

elaborate dat64bit——mux

analyze·format vhdl mul—add—module。vhd

elaborate mul—．add．—module

analyze-format vhdl par cal unit．vhd

elaborate vhdl par——cal——unit

analyze—format vhdl mul—add—module．vhd

elaborate mul—．add——module

analyze—format vhdl par cal unit．vhd
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elaborate vhdl par————cal unit

analyze—format vhdl coef—rom．vhd

elaborate vhdl coef tom

analyze—format vhdl dat—sel—rom．vhd

elaborate vhdl dat sel tom

current_design dct_top_connecfion

uniquify

check__design

附录

／事幸幸}}幸宰幸宰木宰·}幸+·······幸·幸}幸幸·木幸奉幸木幸幸幸··事木}木木车··／

／*Setup operating conditions，wire_load，clock，reset幸／

set—wire—load”1 00K”-library”SN35A TT 33—25”

set——wire——load—．mode enclosed

create—clock-period 20一waveform{0 20)elk

set_clock_skew·-delay 2．0·-minus_uncertainty 1．0-plus_uncertainty 0．5 elk

set—dont—touch—network{clk rst)

／}幸幸}幸}·牛宰·宰·}}·····宰······幸木}··幸宰木++}事宰幸}·奉幸搴·／

／*Input drives·／

set_driving_cell-cell RS—BUF—B·pin 0 all_inputsO

set—drive 0{clk,rst)

／·····枣木掌··掌·宰木}木奉宰+·}}t}幸宰幸奎幸牛+木宰事事···禾···宰}奉幸／

／*Output loads+／

／}··宰·}幸·}幸奉++幸+幸}奉奉}}幸}···幸宰幸·事·幸·幸···宰宰·掌幸幸幸幸／
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附录4：PSDA算法IP核面积测试结果

Information：Updating design information．．．ⅣID-85)

Warning：The trip points for the library named USERLIB differ from those in the library named slow．

(TIM-164)

Warning：The trip points for the library named USERLIB differ from those in the library named slow．

(TIM·164)

Warning：The trip points for the library named USERLIB differ from those in the library named slow．

(TIM-164)

●●●串}●枣幸宰士●●●●●●●丰●+●●,IW●●to●●}●●●●●●●●●●●

Report：al'ea

Design：dct_top_cormection

Version：W．2004．1 2

Date ：Tue Mill"27 17：41：43 2007

●●●●●●●幸{}●●●●●●●幸}幸●++●●●●●●●事●宰●●}●●●●

slow(File：／home／careful／tin／lib／slow．db)

USERLIB(File：／home／careful／tm／lib／parsum ram slow．db)

USERLIB(File：／home／careful／tm／lib／dat—sel rom slow．db)

USERLIB(File：／home／careful／tm／lib／coefrom_slow．db)

Number of ports：

Number ofnetS：

Number of cells：

Number of references：

146

85l

44

12

Combinational a／'ea： l 1 7222．828 1 25
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Noncombinational area：880 140．1 87500

Net Interconnect area．" 1742868．125000

Total cell area： 997363．500000

Total area 274023 1．250000

Information：This design contains black box(unknown)components．(RPT一8)

l
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附录5：PSDA算法IP核时序测试结果

Warning：Design’top_connection’has’3’unresolved references．For 11lore detailed information，use the

”link”command．ⅣID一34 1)

●●●幸●●●●●●}奉●●●●幸●幸●●●宰幸+●●●●●●●}●●●●●●●

Report：timing

-path full

-delay max

—max_paths 1

Design：dct_top_connection

Version：W．2004．12

Date ：Tue Mar 27 17：41：44 2007

●宰奉+●●●}幸●●●●●●幸●幸|L●●●●幸牛宰事幸十●●●}奉●●●●●●

Operating Conditions：slow Library：slow

Wire Load Model Mode：top

Startpomt：uutl 2／mux——out——reg—．36—．

(rising edge—triggered flip—flop clocked by g_ck)

Endpoint：uutl3／mull．．reg_25．．

(rising edge—triggered flip—flop clocked by g_ck)

Path Group：g_ck

Path Type：max

Wire Load Model Library

dct__top_connection smicl 8——w130

Point

clock g_ck(rise edge)

uutl2／mux_out_reg_36_／CK(DFFHQXl)

uutl2／mux out reg 36_／Q(DFFHQXl)

slow

Incr Path

0．OO O．00

O．30 O．30

O．OO O．30 r

0．68 0．98 r

O．00 0．98 r
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堕茎 一————_——————————_—————————————————————————————_———————————————一一一

uutl3／al[4](mul_add_module)0．00 0．98 r

uutl3～254Ⅳ(INVX8)0．46 1．44 f

uutl3／U1 147：Y(NOR2Xl、 O．53 1．97 r

uutl3／U1 149／ICO(CMPR42X1) 0．60 2．57 r

uutl3舢1 160／ICO(CMPR42X1) O．52 3．08 r

uutl3舢1 120／S(CMPR42X1) 0．72 3．81 r

uutl3AJl204／CO(CMPR42XI) 0．96 4．76 r

uutl3／U1224／S(CMPR42X1) 1．26 5．03 r

uutl 3／U3 59／Y(OR2X2) O．56 6．59 r

uutl3／U346／Y(CLKINVX3)0．25 5．84 f

uutl3／U1585／3((NOR2X4、0．27 6．11 r

uutl 3／U 1324／Y(NAND2X2)0．37 6．48 f

uutl3／U1 325／Y(CLKINVX3) 0．59 6．07 r

uutl3AJ317／Y(NAND2X1)0．35 6．42 f

uutl3／U307：Y(OAl21XL)0．68 6．10 r

uutl3／U1292／Y(XNOR2X1)0．54 6．63 f

uutl3／mull—．reg_25_／D(DFFHQX2)0．00
6．63 f

data arrival time 6．63

clock g_ck(rise edge) 7．00 7．00

clock network delay(ideal) 0．30 7．30

clock uncertainty 一0．30 7．00

uutl3／mullreg_25__／CK(DFFHQX2)0．00 7．00 r

library setup time ·0．36 6．64

data required time 6．64

一一⋯●一一一⋯一⋯一⋯⋯⋯⋯●-
data required time

data arrival time

一一⋯⋯一～一⋯⋯⋯～⋯⋯一⋯-
slack(MET)
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附录6：PSDA算法lP核功耗测试结果

●●宰●●●●●●幸●●●●●●●●●●●●●●奉●t●●●●●●●●●●+●●

Report：power

—cell

·analysis_effort low

—sort—mode cell internal_power

Design：dcttop_cotmection

Version：W．2004．12

Date ：Tue Mair 27 17：41：51 2007

●●to●宰●●●●●●●●●●●●●●●●木●●●●●●●●●●●●●●●●●●

Library(s)Used：

slow(File：／home／careful／tin／lib／slow．db)

USERLIB(File：／home／careful／tm／lib／parsum_ram slow．db)

USERLIB(File：／home／careful／tm／lib／dat set rom_slow．db)

USERLIB(File：／home／careful／tm／lib／coefrom_slow．db)

Operating Conditions：slow Library：slow

Wire Load Model Mode：top

Design W沁Load Model Library

dct_top_eonnection smic l 8—．w130 slow

Global Operating Voltage=1．62

Power-specific unit information：

Voltage Units=lV

Capacitance Units=1．000000pf

TimeUnits=Ins

功舳血c Power Units=l mW(derived from V，C，T units)

l eakage Power Units=lpW

Attributes ⋯⋯h Hierarchical cell

Cell Driven Net Tot Dynamic Cell

126



Cell

uut5

uut6

uutl3

uutl

uutl2

uut2

uut7

uut8

uuO

U39

U41

U43

U45

U48

U52

U56

U60

U47

U5l

U55

Power Power (％CelI／Tor)

～一⋯⋯一⋯⋯～⋯一一一⋯一一⋯一●

Leakage

Power

37．2282 O．1438 37．372(100％)14000000．0000

37．2282 0．1438 37．372(100％)14000000．0000

1 1．8907 N／A N／A(N／A) 5 189301．0000

6．4254 N／A N／A(N／A) 2780534．0000

O．6534 N／A N／A(N，A) 30I 113．7188

0．3106 N／A N／A(N／A) 167174．8281

0．2085 0．0630 0．27 1(77％) 6000000．0000

0．2085 O．0630

0．1181 0．1260 0．244(48％)8000000．5000

1．644e．03 4．633e．03 6．28e-03(26％) 540．9948

1．644e．03 4．633e．03 6．28e．03(26％) 540．9948

1．644e-03 4．633e-03 6．28e．03(26％) 540．9948

1．644e-03 4．633e．03 6．28e．03(26％) 540．9948

1．OAegl3 4．647e一03 6．29e-03(26％) 540．9948

1．644e-03 4．647e．03 6．29e-03(26％) 540．9948

1．644e-03 4．647e-03 6．29e-03(26％) 540．9948

1．644e．03 4．647e一03 6．29e．03(26％) 540．9948

1．643e-03 4．843e一03 6．49e-03(25％) 540．9948

1．643e-03 4．843e-03 6．49e,-03(25％) 540．9948

1．643e．03 4．843e．03 6．49e-03(25％) 540．9948
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U59

U49

U53

U57

U6l

U46

U50

U54

U58

U38

U40

U42

U44

U62

U64

U66

U68

U63

U65

U67

U69

uut3

uut4

uutll

1．643e一03 4．843e一03

1．643e—03 4．894e．03

1．643e-03 4．894e-03

1．643e一03 4．894e．03

1．643e一03 4。894e一03

1．641e-03 5．125e．03

1．64le．03 5．125e·03

1．641e一03 5．125e，03

1．64le．03 5．125e．03

1．641e．03 5．149e一03

1．641e．03 5．149e一03

1．641e-03 5．149e．03

1．641e-03 5．149e一03

5．686e-04 4．647e．03

5．686e．04 4．647e．03

5．686e．04 4．647e一03

5．686e．04 4．647e一03

5．662e．04 4．894e．03

5．662e一04 4．894e-03

5．662e．04 4．894e一03

5．662e．04 4．894e-03

0．0000 N／A

0．0000 N／A

0．0000 0．2760

6．49e-03(25％)

6．54e一03(25％)

6．54e-03(25。／0)

6．54e-03(25％)

6。54e一03(25％)

6．77e-03(24呦

6．77e-03(24％)

6．77e一03(24％)

6．77e-03(24％)

6．79e-03(24％)

6．79e-03(24％)

6．79e-03(24％)

6．79e一03(24％)

5．22e-03(11％)

5．22e·03(1 1'／0)

5．22e-03(1 1％)

5．22e-03(1 1％)

5．46e-03(10％)

5．46e-03(10％)

5．46e·03(100／0)

5．46e一03(10％)

N／A(N／A)

N／A0q／A)

540．9948

540．9948

540．9948

540．9948

540．9948

540．9948

540．9948

540．9948

540．9948

540．9948

540．9948

540．9948

540．9948

490．0853

490．0853

490．0853

490．0853

490．0853

490．0853

490．0853

490，0853

0．0000 h

0．0000 h

0．276(0％)0．0000

一⋯一⋯一～⋯⋯一⋯一⋯～⋯-一⋯⋯一⋯一●
Totals(44 cells) 94．3 1 6roW N／A N／A(N／A) 56．455uW
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附录

附录7：DCT变换仿真波形

亘巫三至堕至二二

靡

附图1：DCT变换输入数据



一／～一⋯∞～⋯⋯⋯⋯dH}⋯，h‘1m
附图2：DCl"变换输出数据
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