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FHERR AU HERAMREEZIERBEHXE, BAT AL,
EEMBFATEANATEERBTERNSERE. BRETRBEME. B
BEHE. MTHSMEHERNXEZEATHETFEMRE W B MHHHFR.
AXHAERADULORAEARERFTNBEERHAHTT —LEMER
R, MALEHRWMT:

1. L N-FmH A b Bk 83 (6CPO A &E 6, PFO (poss) A EH, BA
HTEHEME PBD, SI&E TEAMNEBETREFTES6XMAABELR N E
%

2: Wi PL i, EL Xi%. PLEE R ELEE2M T PBD ZEH# R
B miER, RRFZEANPBDERTHRERBEHAETFHERN, T
BEABENEABEANER.

3. REWMRTHAEFE —_ M - o B b wBSEEMARE
B, BET ZAXREYPHMEFRE _BHRELHA. 13 8HHR
MEREMNRE, B TARNHBENPENRR, #5857 HM48 1T/
ME, FHEMRT TERKE.

4. SIMT=Z=n{EDN _cHREDHROADESEREABR RN
ERHER, NdHERHBE="aEPBRE_THEUMHRBRAETRARRE Y
REEAB=024M3IANERT R YHEBERT TN EFE M
85: I5HMHBXER.

5. 2 HFERTHLBNFEN U= EY P38 W E M E B4
fttee, RBTHBERLEFTR: £ PEDOT T 200 CHLE, RET
180" C %t Polymer BEfT b2, BRERE T ERE N EMHT 100 C
ITHEHE., BHAHUNEHEERHNO0II%ESST 2.11% .,

6. = oL Y P38 WM, Wi T P38 MK AHM B PFO fi ik
BER, SIZLSRNECHSEAARTHEMH. 5 P38 5 Kl PFO I
SN 1 198, BHMERMK, ERHEEN 171.8cd/m* i, H4EA
SHETHESEIL 5.48%.
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Abstract

The Polymer Light-emitting diode is gaining more and more scientists’

interesting for it’s excellent character. Until now many progresses have

been made in both basic research and applied research. But there are still

many problems about device efficiency, energy transfer, the relation of

material structure and device performance and so on. Some preliminary

work has been done from these views. Here are the main achievements:

I

.- High-efficiency red polymer phosphorescent light-emitting diodes

(PLEDs) have been fabricated based on czrbazole substituted porphyrin
platinum (6CPt) complex and PBD doped into PFO (poss) . The best
external quantum efficiency of 5.68% has been achieved.

. The effect of PBD on the device performance was analyzed through PL

spectra, EL spectra, PL efficiency and EL efficiency. We found out that
PBD improves energy transfer of excitons from host PFO to guest triplet
complex 6CPt.

Photophyscics and electroluminencent characteristics of binary
copolymer based on fluorene and benzethiadiazole were studied
systemactically., By choosing different cathode and anode, significant
improvement in EL efficiency was achieved, the operating voltage was

lowered too.

. The different performance of binary copolymer and triple-copolymer was

studied. The proportion of fluorine and benzothiadiazole was broken by
introduceing the third comonomer, this may lead to no obvious

improvement in performance of triple-copolymer.

. The effect of different anneal way was studied. By annealing the PEDOT

at 200" C, annealing the polymer at 180" C and annealing the device at
100" C after the cathode was evaporated, the best device performance was
achieved. The maximal EL quantum efficiency was improved from 0.97%
to 2.11%.

. In view of the character of P38, an effective blends series of P38 and

PFO was designed. When the ration of P38 and PFO was 1:19, the
maximal EL quantum efficiency reaches 5.48% with the brightness was
171.8cd/m?.

Keywords: 6CPt PBD fluorine benzothiadiazole
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B F B8 (Electronic Display Device) £ A FHL2§ 2 [ 14 S+ 47,
REMNERLE (BEBE) LEEMNAHEREEELEMNEEFRLEANBR
FERME, TEARAHNS (BEB) 2HHAEHFRERN. E44E8HHE
RS, BETEABNEELNESENREE. F—RAKSLE
(CRT) i ZBABEFH (LCD) BERSEERTH KWL S, H
RCRITETREESABR K. DEX. FEAFHFTEHRE, LCD B7 4
ECRTEFRBMHL, RRENREARANFEMMERER. KK,
R A AEHRE. GHETHEYS (OLED) BARG I RkA. RE
LR, XERT, EAEKREYE, R, KRI/fFRE, WNEE
MEFELEHR, 22XV RANESXE, FEXAI T —KRETHE
W—MEENE.

L1 BENMEREXAHAZRBOR

1963 4F, Pope T A E A RHETHIRBEAREY., OR-HT
BEEBEAKE, X% 10— 20un, KB HEEFHIE 400V 6 F B MBS H K
¥, FLULEBESIETIEMXE. BEBRAHAFEER. EEH. NFELEX
EHEARSEE, RAAFEMARHME MBI, £ 100800 VIEKmIH
ETHBTETFTHEGSEASSUYNY FTRAEESBER L. BEHTEIBEKX
B, THEXA K. 1982 4 Vincett DA "R HEFRE LK ZEH % 0.6un
BUrfE, BIT/ABEREIOVURN, BEEHTHRARESREF., L
BAWMETHERE 0.03% —0.06%, BEAFHEIBAMPEM. ¥IA
HREBHNIERFAET wBEBEZEENEN AR, FERFSHHR
EARBEERTEAINENSRGPEEGTRE, ARANENTEE
e, A, FHBRAREAVHA-—BELTERATARS.

1987 1E, 2 M A& 2 & B C.W.Tang 55— /K B 24 9 Al B 7Ll & tH — Fb
BB AN RN - (Organic Light-Emitting Diode, OLED), fii fi *
B -TPD M= AWM B MHTL), B5 A \BEEEWME &Y AIG)BEEE
(EML), BEMBMHFTEBREDT 10V, BXZHFEiT 1000cd/m®* (— &
MM RBR®HEEN 80cd/m?), EEMEXE 1.5 Im/WHELRERY. &
—ARRATUERENEHB XA ANERM, HARKRET Applied Physics
Letters (1987, 51, 913) F I X FEE A H L3 @ & iF 3000 K. X — R
HHERIETSEZERNRRANXE, FHUBRBEAMHRIFET -1
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FHMER. BB ATAT—BREHADMSTTHRAERESN, HF
BRERANE S-BREBMIEB(Alg), Al 2 — BB M2 FREHEE, &2
EQHE Al EAMAN DG THHRABETFRAERMK, ZREELE R,
M BHRELETH. A TRREAEE, AMNEHFELIEIER
HERRMIMG®R., REHEANREEHNRNERXS>TESY, LLBR
BBt Eet.

1990 F, FIEATFHRARELTERBTRE. LT, LEHMHFX
2R XM FEREN JHBurroughes TA B XMV ETRHER LK #E
(PPVI)HIZH R EYEREREARH, B THEHRBREEDIDNT 14V
MR e EEH, EABRTFREL0.05%Y, SAABWH 02 EEILYE
P RERZ —, HERE Nawwre LB X ERIGFSHOER. B
G, XEMMALEEZC BN DKM Heeger M FHE R FAETAW
EXFZHE (MEH-PPV) £EAPBATO LEBRAE, KB TET
MEH 1B LARE-_BEY . BETHEMFTES> THEESAH
ROKE. REFEFANED BEHFELENET. CEZATHHRAER
WA HNHTR. PLED BMAE THENT 0.1%, HE®XHILL
BRBESREREREXYN, MECENBTKA#HRE. B RERMNE
THREMET 10%, ITHEEFaHEAIN. BTHAROEEE D TAERE
K, IR, ZER, FTHIEANXSEFAFIEETFAHAEESERERES.
BEPMUBREMARENACKEATH. BAiSHTLAANEFES
FRZHE&2EErsR840 TR, HEXAEFRAABNERRF. AR ES
HMAZ, BYBRENERE BT REME, PLED 2 EERmYL. B
&b, A AT H 88 B8 4T BN (Ink Jet Printing)¥ R % “E1Jl ” PLED S bR B T
o .

1998 %4 OBrien HF AW XA A 2,3,7,8,12,13,17,18-/\ Z F-21H-23H-
nrkEF(IL)POEP), KB THETHED 4. W B THER 23%M B E
MABH FAZESBETFTRARARE . HFUATHEINEIBHAFIAN
HRE 2001 4F Adachi B = (2-FXEMI) 2B KK K[ (Pppy) 2Ir
Cacac) BRI TAZ F, AINFMATRESHZEHERL, #&MHEM4,
HBETFHEZIE 9% NS R4 . B o138 4% % 4 ¥ [(Btp)alracac)
BHEPVK P, BENETHE 7THHAXBAT. A BLBRESY
A EE s NEED TS MNE, BOAZREBTEX, ONBEHREE
MHEAUNENITFREAFRBERE. FERPTEHEETIIGTHS
FFRMAE, ANTURAI=Z24ABFHAER, METUXARRLE,
ERT /S TREEFHEEWGAS . EEENFMEE,H B3
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MABATHREEARER ZHXESBELEASY InPPy); I K ERBEAY
(Btp):Iracac,FirPic F R BE M H L G &t & M.

1.2 A BRERAHFALA

A BEBAEE, LR AN DM THREAATRENLG S THEA
N, BHEHMBEECWTTang MEXNRLEHNEM LT EMEY. &
A BRHELEHWOE 1-a i, HMAEK (Anode). KK E (Emissive Layer)
FIEA#% (Cathode) AR . % F R A S AL 9 % B (Indivm tin oxide, ITO),
HiRM e hBERESE Al. Mg: Ag. Ba, Ca, RAXBREI NG FTH
. BHESRESY. XEFFTHE. A TEHNTFERATHEA.
HH. HESCHNENANE, BERSEEXBERNERES AT
E (HTL); X XERMPERASNIANEBEFEHE (ETL). EHERAE L E

WA

Anod Cathode
Trspaont _ ) o

Glaiss substrate

Single Jayer
’ Emissive layer
Double layer
DRl Cmissive layer

\ FRRT VR IR
AT T P T

1-1 FHABEERELGH
Figure 1. Structure of organic/polymer LEDS

1.3 AHABEBELFE

FEHBRBEABHEORCETEAR R, EEMBREK T, A
WMEHERBEAZR, ARAEXXBEART. FARNERARTEER
RETHESOGREMT, BRTESHAERELBSAAHME, Eodad
EHmBEIREmER L. M TREYWHELNE, AMIDRKREAXLIFE

[Aotive Tayer}
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- REXBEBEEESDAERE. M THESFFHE, cREns
THMESHEREESE S THE(HOMOO N B {E X & 4 FHiE(LUMQ),
FHHANTRITHEMIFESENT. TEMBEBE-—CTEBEHT, &
RTITETEEFRSBBHEAEIEBEAN, BFE5FTRAMNEIHSHE
M, HEMBESLBEFEENRL, BRAEHEFRE (AKX
BK) FHHEMNSHF 2R Eg IH KR E.

Fuy
Rwcregems Ca 2. 96V
In 4. 2eV
LUMO Al 4. 3eV
saFapE [ 24 48V
Cu 4. TeV

- Au 5. 2eV
ITO 4. Te¥ .
HER I merimem HOMO

B2 FH/ RSB RASFERE
Figure 2. Energy Level of Organic/Polymer LEDS

Hi12 A% E&o T LED #FKNBRAEE. B 12Hhis, 22 TS5
FRE-HESTTEAHREEANTE S, EMTERLENES B H#
ZAERBMAES 2 AEL MAE. HTHIE/HAH. ANE/MHEEHR
HHEL2HBEHAEAR, cBERBTERIEADSFH, ZHERSBEERZ
MELBEAREFRE. ENAGTEH, ANBELAALESHELHAED
MEBMILE, BEBLT, HHE S5 MBS KLY R A &KL HFD
F, UMFEEEMNZAENE-—BEATEREXRRR LR, T
FARETE I-bFATRHNEESRN.

BHEBRTHE -BXEALBEHESEEE (ITO), WKL XKH Ba.
Ca. Mg ZERER. ESREEER, ARBHES, BEMN TR THITA.
EEREEFGRNL, PEABRANREHRER, YMEREATLRER L
m—ERAFERERBRERY .

F1-1 AR MR A Th el
Table 1-1 Work Funcation of Anode and Cathode
ITO Ca Li Mg In Zn Al Ag Au
I o 4.7 2.9 2.9 3.7 4.1 4.2 4.3 4.6 5.1

1.3.1 #HFEFRIFEA
BRFEAELERATEIERBR/REVFRANEHREATNRSY
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B, ZlENEFEREEZWARHFRNEREAE. RENSFW.
EXEEWRE-_BED, TRGYNBAEH > THIIERSL
(HOMO)HI B E S FHERSKZ ( LUMO) HEBKMWIHIRBALE, &
FREMREZHMERAESR 2, WEHL-2 i BTFTHSRNEATR
ENMARATE L2 AELR ABe, A 88FEANEKHE. Campbell LH.ZE A
WHh, BFREHLAE<04evV B, BR/ESWEZ MU KEEZA (Ohmic
contact) , B2 % ¥ Tl (Schottky contact) . 7E K ¥ B2 b 4 0
F, BATHREFEANIREYE,: MEHSEZEMBER T, HRTHIE

N
EARFHEAFTATLBISBSHAOR LS HELRBRER. BT,
4 Fowler-Nordheimi¥ & #i £ f1 25 [8] . 77 B ) 40 W - O 53 o0 0 b T 30 SR
RE W T B EALE .
1) Fowler-NordheimP¥ &F &% # !
Fowler-NordheimB FHL A AN B R FHEAFTFEL B SN B A
FURBRATH 2, HEFEANEZETHERE ., Fowler-Nordheim#R
Bl LR M R R TR AR
Jo< F2exp( -k/F) (1-1
Hd, FEEHBRE, KESHHEHBLPAERIMDARIEFXRNSH. — K
LAHHRLERULAFTBREBR AN (10%m/iv) , BHHARAIXHE
Ko
2) MEMHER
Matsumura® A ¥ 4067 5T T Alq/Mgfl Alq/ALS 1 4b /Y HF E AL
%, RITEAlg/MgHI Alg/ALSE T 4b 09 HL 7 ¥ A 78 34 & g g Ay 12100400
J=Jo{exp(qv/nKT)-1} (1-2)
Jo=A"T?exp(-qxp/KT) (1-3)
He: JTAMABR, AHEEERFH. TARE, GAREHRZ.

L3.2 R FRtER
BRTEMEEIEANNREYENBER FeRm s Ea A ANz &L
2, AR FREASENEFRRATRESADMBHERTIER R,
EHZERAYY, PTARENES, AL FHNMHELIERERS
MRELRE-CHh, 2 FRAESHRBSCREBERNFTERBREREY
FFA, FBEREFA T FRAA IO TFTHRERBELUTIINEZES
RAEFESBEHOBKES", BEAAERECYMBPORAETIESEM
WM, —METE10-4~10-5cm-2/Ves BE™, RUK FITIBENNE —K
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K HR % 47 BY (8 7 ¥ (time of flight, TOF), TOF B % 8, 4 X5 K E N
YEATRANEESS R ERSS, RETHERR. BERKEE,
HRTFHEBERTETZR AR TR
445 (E) o= exp(— Kir)exp[( KZT - KjTO WE] (1-4>
ARBIERE, Y90804-06eV, Kp AWRERER. TR, £R#EY
BET, TBESLBBEJE £, ARERRET, TBXE5JE [
FUERNER, YEBEEFE—HETE. TBEXME KRB LAEE
%M.
O RAMERXCRETANAENHEATHEMNRRFE, W TH
458 P EK ( recombination and charge neutralization) . 2 & W
BRFIBENHEANTHEERE, ATSBERRATFHIBEMEH
th, MUAGEEETRENEFARNMEKT. BREATFIBENEHH
KB URBRRTFHNESCERA P HLEEE. CREHRMFARRT
WIEBESRB A APBABERT, BEMERH TREH"
o[ [ttt i) "
F 3 £, B L
KB HESCER, BHNUWPALBHEHRERE, BHHBH
[r) P, B 1K .
% 5 W7 Wl A 4% M Burrows# Forrest® A BF % T #8 ITO/TPD/Alg/MgAg
(O T-VEF#E o AR 7 IA b 3 B B2 1R 00 I- VIR 0 B R VT N B Alq P i s 0 B B
Battkmknren!' B8R KB ETF, £ FFermif £ F M £ 55 Bt & W &
FHHEiE, BFSTPDEYV B IAGEFTHIERESRNL.
[oc yM*sg?mHl (1-6)
HYMGFEEE, VISEMBEHEE, mk— 85,
EHHHETRRATHIBIRREE R, TAR——MEM, 44
ARERGHERBEEENREBRHAMI- VS, AN —HR4% K
FILAE, MTARARMEER, FRASGHBE4, ToBERBAR
R,

1.3.3 A FHES

ANMEFHIRITRERAGARTENFSATRES. BiXAEM
HERHETMEAKAIRENEAZNEI LS AP R T RE G M
FREFET L, KEFLTHEPOKABMK, BAFAFERRMBSE
EHARBHREASE, HUBHHEAMNTE CBERREIIEN
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BHEMEEP L.
TUHERAAIREL R FREAREHEESM —EME FUEH
EEAEHESY (RRRFSLENTRENTR) EMNEELFT
B. REZERNBFNERTLELIREEBHABBEERTHRKE
BRABHE, REEAIESBAFAFENEENERTHE L.

1.3.4 HBFH~E. ERSEX

OLED B, WM FENBEHAT, EFAREEX, E5
RAEHHARS, CRERT. BFRE—MaoTHES, TLE
FFREIKISIERTY B NTTEABRFRAMEFM4T
MIEREE.

HTFRTHMERNAEETRS S 12, REBTHERE FHYU
AH1EO0, BEBTFEI IFNBFRA=ZKART, BEETHA 0WE
THABRKREERT. HTZEREFEENHEBHE, Z&FBRTFATRE
HEAFEREIREE, TRAFRASHTHESHER, KT EE, &
fere e m ¥

WIEERLETFEL, PREBTHA =258 TR AMELE 1 3,
Bt R AT RMRMELESRTFHU IS EFHEN 25% . BB 30RO &
HRHBAXETFTHEN 25%, NBTRUHEFREFLEHMSHEMRAERNT
HEMBRS, BRREBENNETRELRE 5%-6% """

BHE, HESANWRERD, BHARABANBENAETRARE R
EARBIRERE 12, 2B IR RALEEEZN =BT rITTNEIR
H, MiIAAh, BTHRESYEHENRETESH, ARMAER T-ZRNE
BAGANBRAZERATZRE0RET ™. BII0E M KGR S5
5T RF Ak 5L .

HESABTENER, KTEEZFH L4 KL, HEET PLED F,
HAERBRNFARAARTH-ELEHERN IR KIHES. B
KABTFTUTUETARNERMERR KSR T, IHFERE FRET
A F 100% . % [H Princeton K22 H) Forrest iF S B B R B (FF E S
BREFHEBENIAY BLIATHITHEAENERY, EARH
M, MEMENBHERY, FEHEBHAERFIRARER.

1.4 BN B R LR

FoOYHEBM AR R EHETUNRLTGE. BEE. EREH
E, 2, BESERATESES =ZFEIEM.
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1.4.1 Ak eafaaE

L EAEYHEHIRAMEOI A ENEBILET R FHEHEER
HEHEE, REUTERNY A
1. LA ER T ERBAELEEE, BH, HEEAYEH
EABHBRRERABECHEZSENDN LB BE,
2. HTHRERSGY S THRIBEEEHTFTREAMA LS M, HMERKE
EAYHMEHEE —KTAREFLLE, FRERETAH 100nm,
EaiFEE. B, AEHIREIBEDT, RELERBEESSY,
MEZEYNEATREEANESGYNERERFML, RERHE K
I o i B B
3. MW MAAHLTEN, BEATHEEKARAHITKREERGES
KREENMKEKXKRKEAH, SHFLBEHKERLE. TNMIHRTHEK
BEEAOENAREXBERR, AREVRAESBH S TR
RB|THEE, BABHIHETRTRANREE.
AEBRBESHIE, 193 FEFBHEELEAS (CIE) X THHER
BERY, UREHEFTHRERN RS, EXMTBEAMN L ERESI A, &R
FHEMBEECENREWMNY MEMBNERBRS, RO KRG =ZHBHE
(X,Y,Z) MEFERIR (x, vy, z). HT x+y+z=1, Hk, BEH (x, y
AABEALRRT IR EEA,
1.4.2 EXFZEMUE
ENXEERTFAAMNEABRAFEEE - FHEMENXED, EXRTEHR
BAL R cd/m® (RERFBFEFR). HREN (cd) BEABEERELR
L, HTABRMNATAXLEEEANFTAEREEN, +E8MHELAHEARE
miEZaE, Hih, EZARERNREE, PTRAEKNERNFTFTEMNEEDS
M. 3 FERENSHEE, ABEB8BEE6EKT, RKXEE. X, BIE
MEa6. ¥EHAEERBNEREERN 300cd/m?

RANEREE—MNEABHENEESE, BRE=ZNRRAFTIE:
BETHE. B2 RERDEHRE.

ETHEXTRNETHENNAERETHE, ABEFRERREA—D
HFREAMAETH, A TEALERSR T BRNRE, AL
EARH:

QE (int) =y *n*n; (1-7)

Hr, 3 BHRFEARYE, WERBEFHERAFI 2R EARRTRH
#l, RAREEFERTFHEABRE, ErRL58TFTHEHERBE,

8
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MMM FRARE.IINETFTHREREERERHMOE TR SEANETRZ T,
ZEEFMAENBREANEASBNEEHEFR, BRELWEHNRBREH
HMMAEAZ —. SFETHE QE (ext) 5SHETHE QE(n)yF W T XA :
QE(ext)=n+*QE (int) n+ AN ETFHREEAETHBENXRZREAT, €
BRI HERE X, XBEN: n.=1/20" MEERESWTWS, —H&n
= 1.6 ,

ER, NETHEITERMELRTRMG THREZE, TTHRTEE
KFH, ETHREHHIBHNIBTUEXEE, GHEMNHELEHFREL
EX. TR HATHESERNHHOTES, F—8oXTHEMH
Hdr, HAAESAMECEHRRH, HEABRTHEESTHE FUE,
APMNEBUERNEXREZTHEAEFEYXR. TL AR SR E T
BHEMHBABHAHNLALEE, B3 HERTUSHBHFNIRETH
#

BEEMNE (ng=Eg/IV, EzRAEFRIE) 24 B4 m o355 0%
MESHAMMBHEZLE, EERNETHENXER:

ng=QEC(int)* gy/lev (1-8)
HP, e e VSHAARFKAETFRE, B FHMTMMEMNHE.

MERE (ng) ERHEEMNEHRIMBEBELEEM S8R AR

ZJjv 2z t, H

n g(ext)=M/JV (1-9)
X, TRV S FFBEREENEAAE. hE S RBHRMBHE,
B RRBE/L ( Im/W) .

WA, EERRB|EFHREABENNTNERZ LR BER
ME, BAAMBER/RE ( cd/A) .

DEZEMBRBAESABEARENFTE ERE, RENLAA
EXRERAAFRZRTTE, TCMNBREEE~NAFRZEEANERHST R

1.4.3 BH4METHNREEN

mEHEMNEXEWEXAREREREBTHERE 100 cd/m2) K —F
Fim EH R e, EEPTHAER, TEBMAESEILMHE10000 HMELLE.
e HB A LSRN, BE. EgM TR CALMGE, B
B, BREFRESGYHBRASHNFaBETI T ARHMHMRE, BAE4%
AKZHBERT, SAKNEFTERE, 5XHEKFNE -—EMEE. 2
MR TR EtNMEEEERUTAA M@

. EHAR. BRAZERGYRABH P ERELA, FLHERI
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HRE T KFE LAl

SALEETmMABEEE, XRMFEFaEEER, BAXEHEFL
T.-ARARCERBFINRAR. REZIHAZWEEREFITO
ERAT. B4HEIEPHEFANKE., ReWERA I IHE
%, RETRTRESYENMUEREERNE R,

2. BAMER. EEAYVEABATLETUERARANEN.
EeYEBEANRARERE. BRESYMRNLERARER. &BRH
B ARENE. ERBERSREVEFENUEREEHTUR
HEANER, SBHENEFaEESEMABE., O

3. RFRIEMN. RFREBRER TR TEREER ( %8 B
T, XWIEAMEHMRMEE, GEREETH, BB
HEAMBENEERRN. EEYWARELHB BI04 L —
HE— P,

1.5 BHEBELMH

RN, REYHEE EL BT RDP, EHEEWHHEE T4
EEN, AEERREANENMERA & T,
(1) BV RARBABRBFBRANRAEE T E:
(2) BEBREHHSE, WREFIESHRFRER,
(3) F R0 RR B
(4) RHE RBIFA 2 A BB b T % gE .
RESTEHNRIATHENELMES AP FHEATSFMHEH
K¥; REDEVWAIRXTRS AT fEwmM . EFHERME R
R H.

1.5.1 B XM
HEELAEDHMEBEETERTLT 3 K%

(D REFRELAHSHNIEESY. EEPH X RETH
ATHILE: O BFEHEEREMAEY, mEXHE (PPP) " REKE
A, Bwy (PT) PUREATEY, Bt (PAP) RHMAY,
Bikm (PAF) RE#MEY, BH (PP REMAEYE. @ BEFE
BZBEEHMEY. WEREZHR (PPY) PR HEAEY, BE
M ZoH (PTV) RHRFMEY, BEZR (PN EHTAYE. @ H
CUEBRRE, BEFEBNYE.

(2) MEBHEAHNEIHEIHESY.
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(3) HESTEMNEHAREMBOIBE RS TFTHEFRR
RXBEME. MABREROIBETFEARRTER TS,

TFEH 3 KEMBEF, BHHABEEHNERTERTED R LM
B, HE1AEME, THEERFTERRANTEDERSBH LR
REWMEY. BRREREYE —F4E0, HEaETRETELEREE
H, n-nBEREAE 1~4 eV (1240-310 nm) Z . ANESWREEHE
g, BMIRE, FEE&, 7RG 0 8EE%®E MRS LB kR
EBr. BAEj, BHFEZH (PPV), EHEWY (PT), EXHE (PPP), X
MM (PCz) YIRS (PF) READEEMETIRMMK A,

1.5.2 Bk H

FUHBRARARPEIEZRTEHERENER, SR AFTH,
ERVNBRBEAATR Y, ZRFHTHELERTRERAMERK, &
FREZARTHNZELEHTHERLFE N 1. 3. Hik, EN/BE
MEFEABHRE, RAUERAUBETNIRAREETFAEAIR AR
KEBTHERL, YN SHTRAHEAA, IHEBHENE AN
BTHERE L%, BARARNERLESUYESL.

REBLHERGEH, SINSELRNBAR LB LEM, B4
RAREALUBENE. BEXXAUFRNRANES, TETEMNHE
ES. CESRTRILH,

1998 4 OBrien F AW KMA 2,3,7,8,12,13,17,18- )\ 2. &
—2IH-23H-0F WK 54 (11 ) (PtOEP) , KB TH B THE R 4% A ETH
BH M EBEMARF. . CHAEABTEEEAIRNE, FFUTH
MR AT RAOHERE ™. 2001 F Adachi ZH = (2-FEHWmni) 2
B A B [ (Pppy) oIr Cacac) 1823 TAZ T, BEFH T 84
SHERE, MEMBANETHERE 9% KERES4T . ANt
i1 ¥ kB & W [ (Btp).lracacl#B K& PVK ', BEHHIEFHE 7%
40 o g8 1
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Figure 1-3 Molecular structure of some electrophosphorescent material
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_ Figure 1-4. Molecular structure of some host matrixes
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Figurel-5. Energy transfer mechanism between host and guest
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1.5.3 ZTR&EH

AHZREEMEMNAEERMFTREIBEE. BRIMAEE. BAW
AFXEMAE, ATFEREA REMNEESE, SETHHEHBAER, BR
M#ARE, WIEBTHRESZE, FREFNARBREESRIT.

FEREBMMENANABRCRFOLERRERET. BREELE
THRENEGSHERALZ2A X, NS5ZFERFHNOEEEM ITO K
R zZEREX. AN, SENARERLSETREARHA BN RALE
EEDMX. P25 FREMNLEMERES AERME, WHE 1-8
i, HENAREEHERTRELEYEARGYNMEL. A4 RER
LR-ARMEHTRLRHE, HIBER, CHHRELHS,

Hﬁj:;;LN g[:;J\m, e,
OQO >

1-6 = /X f% % #4 &1 TPD # PVK
Fig.1-6 Structures of hole-transport materials TPD and PVK

1.5.4 HBFEHAR

VA TFEBRMBRTEERLS R FORBEMSNRHKREE ML
o, ENEFRSHETRAG. RANETIBERNEKEE. B W
MAEME -~ KBANKENRTERAE, TERTENNES T LED &
A, B4, —mirEY, @ TAZ, BT HBBTFEREME, WHE
19FiA. -REEMEBESYMEREMN AT FREME, BERY
METFEHENMR. EEHUHNE, SIATRENERARTERE, &
HERBHRABENRY, TREEBERSTRAFHNESIRE,

14



B—E &

+Bu-PBD

om
Y
N7 % O
):TM; (%El\ tBu ‘D
N
tBu +Bu
OXD-Star TAZ

B 1-7 BriEme e

_ Fig.1-7 Examples of some electron-transport materials
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FPEMNBEAETHIEETHETE 100%, HEHI T EMHX
. HAWHAHRAREFEEPEETEASABAMBEOE T . PROKE., #F
BEMKREXLAFE. HPB B AN BRAFT CMSHTEN
MESE (Pt, IrE) BB&5%. 1998 £ M.A.Baldo ¥ PtOEP 8 2 7 Alq3
b, BRLATENAS TERNEAR RN . HEAE 1999 % D. F.
O’Brien ¥ T4 R A CBP, i PtOEP fE %4k, #IBBREAXXN
5. 6% WA DD TFRNGBMAHE", 2000 4 Tzung-Fang Guo ¥ PtOX ¥ 2
7f Boc-PFH, HIBBAMER 2I3%MNESD=84584", KE., A
1% X A PVK X £ 4, 3 Pt & & ¥ (PtOEP)# AT BT 3 . 2004 ¥ M. Cocchi
LEAY PC R TPD BN X4, EEXE LZE ¥ PBD, ¥ H PIOEP
FBRBRBENSIUHEEGD =K ABMG,

REPMMBEYHNOEBH THREANHR, BERHMNHET Pt
BEVHBHNEEATREREN D TE, CRERSBUBEBITOSE
FAHERE, NMTARARSETFTHRESYRLBEFAHNRND . BLEH,
EMXASTHRRETHRBEEZTAEG R N-MME AR B 5 (6CPOAE
&, LI PFO (poss) AN EH, BABRTHHME PBD, EEFTEE Y
TFTEHBRT, fI&TRANBTHREFES6KMEHF. AN, 24 &
KR, BRNMKIAFTBANE FEHME PBD, BT R EIfkEH®E
FHIER, T AES {2 66 B tH guest [ host M1 ¥ .

BHLEGAEYHRTEAE - TRIHENFEABERET, FibHHA

15



SERGHE T RS i3

BREMRUEREE SRS, U0 GRS FREKBMRRMN, o
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2.2 BEHEH &
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2.2.1 ITOBFKMBE®

FiA S A ELL ITO B N MMk, ITO MMM FHm @4 200 /0. %
B G % 1500 15un A, B — 5 A S BRI HE L Son @ ITO, & 1T
ITO WA 4 10mm*15mm.

KRETE . MEBERELHESEN. £BFK. BRHBPHITO
BREEEEEI0 48, BASKTEARNEREHEFEH. BTEW
ITO BHFERSE FHRME, LB W K10 45, %48 FETLER
RAMEITO £ARTENENY, CABITO RANRTEMAET A,
BT 5 R E R M.

2.2.2 PHIRLE in B R P&

FI 53 BB BE 3% PEDOT, SIRATH XM MU M EFEHUREE . X
BERRTEEENGN SR ERE. PEDOT MR G HFEEST MBS UL
B0-85CHBEMBMM 12 hat, UEERHEPMERN A REMHH.

WA RERAR, F W E PEDOT L JE i PVK, PEDOT FI PVK 3% [
HEHABREME.

2.2,3 AXBHRE

¥ RHRBRFERAARR, LSHERTFEF N FAR UK
BEREREERS, FTEHARSEL T 5Sppn, X 8 EE T lopn. B
RISt R B E, UBEFRTEREKEEEE.
2.2.4 TAREO R E

CEERETEETHENASEEE, EFEBRNXETCES AR
BRFEHAN, HENLARIELSERTFI3*10°Pa. BB EHE HA XL
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WIEE MWW A (Sycon2 d, STM-100% ) S l, A R HBaBmBNE
FENA40A, AL B i £ 1500AL 5 .

XX, ER—ITOEREF EEHHF LM EN, SR4EKNER
T A2 4 0.15cm?

2.3 2% 1% 8 89 it
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WRIFE, RREERAREE, PEXE—BUET, tELBIER
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BEMEE/MEESABECXNRE/IRBRNOENREK Lo
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Kee=2%QE,/ (QE,+QE;) (2-2)

WA 8 DKM (B8 FE) #LHH RHBK. (HKoe) RUTBLERRE
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H, REELXPIEEBREHR, BREBRNEISE LY P (Electro-Lite
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2.4.2 £ WMk BH 5 5 W R KK M i

BEFEORLOEE, EREENREREK. 325 nmM442nmiE £ b
He-CdS{ A B X 23R4, 456nm. 488nmA512 nmif L A G & 7 8L H R
ft; 405nmi BB OL WL,

J6 B R 6% R id & HINSTASPEC IV e i i i 4% 44 (CCD) A i
M, BRBRERBRRLELENR K.
MABEARENBERRAFAELRRTESNE, BERAEER, BEER
1000-1500 nm>% B , W & 4 ¥ F Greenham K #i& . WX 2 ER 4 B (UDT
labsphere) F #fTH), BUDT Instruments (B 5S370) @ FHAB R AR
B, ABERARREEL FTAHE:
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PL(%) = sphere (2-3)
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[5IR ARSI MAESEN R R, THTXHERTERE: 2750 HH
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ARG AAEFEENE, WEAWRAATEENERFNER AR K
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3.1 5]

MNERBREAVNZEARABUTEREAKERET, RIEARAEBT
PERHGHESN TS A= RAEB T LR ERTRANAER. PEBZHTH
BEAALMHBTFTHEFBRMK (S=0) TELF (28+1) 31, AS EF.
CREBTFABRRSLEHMETFARTANREK (S=1) FEA (25+1) X 3,
ATR-R. XKERSTHEABRBKEIEMNKE (5=0), HAEFAY
HEABTMAR, T4 Panling AMHEBRHE. U, RERAZSBTHE
HER (S—So) AHBRFEHETE, Ens ERAAFTFREEETENE, ™
SHREHTHEFER (T\—Se) AEREME, SREFEME, 2L ER
THEMEAXTRRERTHNFA, EZRELEE, EmsUHRN,
K e mgg, 4

RSB THAA, T EREEBE S FHEHBR AR R EET L
ERGIARXESDT. EdE—ZKXBIFRMNEEREE, THBEBEL.
ZERTENSERENESY,. EALBES T RAICHCHEANEEET
W P(Il). Os(Il). Ir(lll). Nd(I). Er(Ill), 3 Pt BB & 4 PtOEP ¥ 4&
MATOERESRE TENESYDER=&E508E, H3ENA",
1998 4 M.A.Baldo ¥ PtOEP (I 3-1) B4 Alg3 &, BEXRETWM T H
A TEBEEBERH ™. B 1999 4 D. F. O'Brien ¥ ¥ i # 2
M CBP, #iH PIOEPfE LK1k, BB UEN S 6B DT E
BRAY . BTRELCYRABHEHEAIEFHAEMANES, T4
AKERAEF. ik, BREY=84% (OF=ZLS5 M FBLESDTHRE)
MEAMBOEFARAESZEN, SFAEREREIS K.

il

B 3-1 PtOEP %M K 3-2 POX&EHER
Fig 3-1 Structure of PtOEP Fig 3-2 Structure of PtOX
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2000 £ Guo % A3 PtOX (B 3-2) B 47 Boc-PF ¥, BB HE XK
EH2I%NESY=RERH™, KE, AMNSFEHPVK Xk, %
Pt 4% & 4 (PtOEP) 3t 47 B 51 ®°'. 2004 4£ M. Cocchi LL B &% PC A TPD 3t
BENFEH, £XNKE LEY PBD, XA PIOEPHIB R AHEN 5.7% M
BAY=gAB04".

BEEARAREZTIHRASESET —MHE N-H 8 HAL b 8 (6CP)
SO, A& &, HMFAEESY PFO(poss)E X X4k, LL 6CPt AKX 4B
FRERMENTESY R LB,

32 AERHHMHBNEREK
FABMNGERNAWT:
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O- LG
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Fig 3-3 Structure of materials used in this chapter
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3.3 A5 Host B9 & &t

RSB THOMNA, FEREBMAS FEB AR BB k2
REGIANEEEEAS., EdE—FETTRANEKEEES, LHEAH K.
BENREEEBRER: BFEEIEFREM MBS IEL Foster %
MHBREERT. B Dexter BEEERBREHE-KEWMTFAHABXED T,
B FREEEB(EAEHE). Foster BEEHBNECHEBNE" . 2
BE=RGEESENER, AFERMUNESER, FHEEEK.
R4 MFESTZE, BRSBRZABE, v EEHEN. B
, TEXLRETIHREREREEXS FTAEAINBASH LR EETERN,
FUERBEITARE LN BEEXN BRI ETANAES, ARSI EARES
HHRERES. T Dexter B BUTHEBIAE Y REAL LTS Y
BEEEA, ZE—AEMROREAER, FHEEEE. 5 Foster i EH#
BAR, A REORBEENREESE, HFEFX—ZFHhEIN—1T8HK
BERTES, UTUFEA=Z&L52ZHNABEET.

Bk, SHHEBEMETHEAIEGR: 1. E4&N (B, Z&5)
REAERTHNENES (BBELE) %, 2. T XA MBREHEIL
AR EHRMEN N ENEANBREASET -THNESE. XHAIEHER
BESEBA LM mEE,

K 3-4 Ca) iR A 6CPt W % i 1 PVK A1 PFO (poss) B PL X%
. MNBEIFERNTLELE B, 6CPt 5% i % i F PVK & PFO (poss) f§ PL
KEFEFEE KAHNWES, B 6CPt WU LR PVK RS A E
BREEEM T 6CPt fil PFO (poss) MWES. #IE Forrest fE EFiF H®,
B 8w LI F M M PVK/PFO (poss) i 3] 6CPt P .
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Fig 3-4 Absorbance spectra of 6CPt and PL spectra of PVK and PFO(poss)
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Fig 3-5 EL spectra of 6CPt+PVK and 6CP1+PFQO(poss)

3-5 4 6CPt+PVK H1 6CPt+PFO (poss) ) EL i, #{F&#H
¥4 ITO/PEDOT/PVK/POLYMER/Ba/Al. B i iERMNAT UL ER WA
FMEL X ELHBEN, AW N0 P, AT LN IR 32/ 6CPt
&8, R =M E PFO (poss) /PVK AR R A LB KE.
BEMEIITUEINBHFAREDHZEEZ K. RE 6CPt R I
FEIEM PVK I PL R EHESMR T 6CPt MBI X i F1 PFO (poss) [
PL i, {H 6CPt+PFO (poss) RSB XA EHN® T 6CPt+PVK W& 1F
ME., FFTUAL, EAMESEAMB LR LENIFARZEMF RS
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0B R R
# 31 BAFHEGER I

Table 3-1 Device Performances

Voltage Current Luminence Effiency
(V) {mA) (cd/m*2) (%)
9.80 1.06 27.63 1.32
6CPt+PFO(poss)
10.40 5.00 107.27 1.67
13.80 1.41 11.21 0.40
6CPt+PVK
15.00 5.00 36.82 0.36
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B 3-6 LA PVK # PEDOT A X #WE T 6CPt+PFO (poss) i EL Ji¥
Fig 3-6 EL spectra of 6CPt+PFO(poss) by using PVK/PEDOT as the hole transport
layer
B 3-6 4L PEDOT M PVK AF RNAEWMETH EL X, B4EMA
ITO/HTE/6CPt+PFO (poss) /Ba/Al, T LLE B AR K = R &£ H EXN FH
ELAEHEBFHAREWE.
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Fig 3-7 I-V curve with using PEDOT/PVK as hole transport layer
® 32 SR

Table 3-2 Device Performances

MHE 3-7 7] LE B,
K, BERRBHERAB[THTHERE,
2. E28FN THEBEHHZE K. FIBF PFO (poss) 1 HOMO
& 5.8, PEDOT 24 5.2, 11 PVK 1 HOMO 2§ 5.9, "] Ik, PFO (poss)
HOMO fi! PVK 04 HOMO ILE B IEH &, MmAR 2w A, #m

Voltage Current Luminence Effiency
HTE
(V) (mA) (cd/m*2) (%)
9.80 1.06 27.63 1.32
PVK
10.40 5.00 107.27 1.07
7.50 0.22 3.78 0.86
PEDOT
9.30 5.02 44.85 0.45

Be T EFMRE.
3.5 AEIECEE T A4 1488
3.5.1 A[E Guest iR E T 09 28 1 &

F 1L M PFO (poss) tEAEHMHE, BAL T ME PBD, H&T

MM A ITO/PEDOT/PVK/Polymer/Ba/Al &) 2 1.
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Fig3-8: UV absorption spectrum of 6CPt film and PL spectrum of PFO (poss} film.
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Fig 3-9 Device performances in different guest density
(a)EL spectra in different guest density
(b)Current density—EL efficiency in different guest density
B E 3-9@FMNTLLES, 3 Guest ik 2%, PFO
(poss) MRS MBEREERKAEKXK, € 430nm &R EF /D&, FF Guest
WRER AT, 7 430nm LA EH B AM B, KRIEMW, X PBDPt-
BEVHWEN 10% 8, PFO(poss ) I RSB 5 &£ % K, 7F 430nm
A FFFE PFO (poss) WIRS . WiTHE 3-9 (b)Y BAITLILFF, 3 Guest
WEBME 6%, REFRBNODELFEBFEXEETNTRH.

3.5.2 A [E) PBDiRE F 8k

AR ER PFO (poss) fEN Tk, 6CPt EN Bk, BAH T4
Wtk PBD, & T #4445 # 4 ITO/PEDOT/PVK/Polymer/Ba/Al #9384,
HMFERE3-9(a) PRIAVEFRY 6CPt T BN 4% N, BHEE 4300m 25
MAREBERERT 6CPtER AN 4B ES, BN S4AREEEFT
6CPt BN 6% IR, TUEXREBF, RINEH 6CPLERN 4% .
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Fig 3-10 Device performance in diffcrent PBD density
(a) EL spectra in different PBD density
(b) Current density—EL efficiency in different PBD density
Wit 3-10 (a) BAIWAE LS PBDIRENAR, EL EEBHRE
B A4k, {B R 440nm 4 PFO (poss) REIEMIE S E PBDKER
ARt EHNPEL. W PBDRE N 0%, BHIETHEREIEKX,
R 5.67% .
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3.6 PBD R HHPMENEEXZEBIER

7EHE 3-10 Ca) FHRMATUEER, & 6CPt &y 4%, AR PBD & &
F, ELAE 675 nm M EH BN EDNERBAENEKETFHEST &,
B 440nm &MEHF AR . £ 3-10 (a) FRIFHET A/ BN 440nm
M iEm B KB, aTW, BE PBDESEMN 0% INE 30%, 7 440nm
Bt 35 B PFO(poss)FI R ST W 9 XM PBD & BRI N M {&, PBD 4 E X%
30% 0, BEBRER D, T PBD S BN 40%H, 440nm LM EFREFW K.

BATPBDZ /G, ELAEBRREFHEETL. BWE 3-10 (b) B
~: PBDEEAM, BHUERERKER. KA PBD ARAMRKM A T 1%
Bk, BAPBDRMBRERFERAETNf£H, FRATHTFMNER
MPrE, AmBAEINELTR2FNES. 2% PBD 2 AEBRH 10
%, BHBRKIETFRENEREXSB A PBD M 1.32% R & F 3.74% .
G, BEPBD S EMMKKHEM, BRENETHEOKKFTHIMEM. 4
PBDEE N 40%H, BN BFREFTHFEFNTHR. BARE PBDHB
ASBRAEFRHETFEREZATHNARE, FEGCERATEEFNETRN
MTPHEANERRS, BRFRETZANEALSEN, ROSEMBH
BEX, FTLYPBDSEN 40%N, BHESETHEEATHHHS.

ATH—FPHAPBDAEELERETHMEME, RMNWETARFE PBD &
ETHRANXESBEA PL XERN PLAE (6CPtHEEHN 4% ), WH 3-11.

—— PFO(poss)
—e— 0%PBD
—a— 10%PBD
PL —o— 20%PBD
—%— 30%PBD
—+— 40%PBD

—
N
1

—_
I

<@
e =)
T

Normalized intensity
o O
X o
T |

<
o
T

0

300 400 500 600 700 800 900
Wavelength (nm)

B 3-11: 6CPLERBN 4% K, AR PBD & ENB M ER PFO (poss) PL % if
Fig3-11 PL spectra of PFO(poss) film and 6 CP1{4%)— PFO(poss) films with

different doping concentrations of PBD
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ME 3-11 " PLAKEATUESR, RE CPtIREREE 4%,
& PBD S BHEH WM, PFO(poss)MIE N AWM. 3 PBD & &
H 30% B, PFO(poss)fI K HF >, 4 PBD & BiX % 40% K, PFO(poss)
MR XEaE, aTLIEN, X4 PBD & BT 30% K, PFO(poss)ln 6CPt
BHRIUERK, BEEAXERA.

#3—2: PLHE (He—-CdBABEREK 3250m)
Tablel PL efficiencies of PFO(poss) and 6CPt(4%)— PFO with different doping

concentrations of PBD (excitation wavelength: 325nm by He-Cd laser)

PFO(poss}) PFO(poss) PFO(poss) PFO(poss) PFO(poss)
PFO(poss) +0%PBD +10%PBD +20%PBD +30%PBD +40%PBD
+4%6CPt +4%6CPt +4%6CPt +4%6CPt +4%6CP1

PL fficiency 67.6% 19.98% 10.42% 8.58% 13.29% 11.82%

#3— 2 H8KH 325nm (HeCd #M38) BOLB R WBM PL A XE
BiE. TLEF, BAPBD ERAXEHEN PLEEZEHEME. &6
S PLEENERRMNITUBHELER: PBD BRI TRt EDH PFO R
M 6CPt Bt BEBIEN. B4, PBDEEB N 30%., PLEEE&EH 13.29
%o Xit— W PBDESRMAT, BRTEIBTEMWIMEHN, o RF
RHEWEBER Y PFO(poss)iE B B 6CPt M1 £ H .

A~ HERPBD W BHEREERBRHNER, BIISHTRAEFRRF
REHETHIVE

0%PBD
-6~ —&-— 30%PBD

0 0.1 02__ 03 04 05
1w

B 3-12 & PBD & % 8 Fowler-Nordheim #ff £
Fig 3-12 Fowler-Nordheim of devices in different PBD density
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E L
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c

210 Vna.84

3
10 0%PBD

—o— 30%PBD
10-7 €L | |
0.1 1 10 100
Voltage(v)

Bl 3-13 WX EAL R T S48 -V i £
Fig 3-13 Logl-LogV characteristics for devices in different PBD density

B 3-12 EE® T 814 ITO/PEDOT:POSS/PVK/4%6CPt+0% PBD+PFO
( poss) /Ba/Al #l 2 14 ITO/PEDOT:POSS/PVK/4%6CPt+30% PBD+PFO
(poss) /Ba/Al B In(I/VH)---1/V #igk, MEFTLUER, Z4MEEX
T 2% % Turn-on Voltage B, ¥ A PBD M 4K In(UVHA 1/V 2
B FERERLERR, IS4G B %M A Fowler-Nordheim B2, & H
M REMERZIERETEARNRE . HE PBDBAEN 30% M8 4 4
WEEAEXREBIZT.

B 3-13 ki 7 84 ITO/PEDOT:POSS/PVK//4%6CPt+0% PBD+PFO
(poss) /Ba/Al 21 ITO/PEDOT:POSS/PVK//4%6CPt+30% PBD+PFO
(poss) /Ba/Al TEX X B edr TREMAM I-v . AESTUFER, &
A5-13VHIEEWN.PBDB AR N 30% M HM 1< VIS BB EEN
WMMUBREARED, ZUHALEFNERIEZRAIBEBHRBH SR
Wi (TCL trap charge limited) A& ¥ PBD 3| A= 4 T KE®HH ",
WABR THEANBHFBAMNERRAER. RINHBTLLEZR, BPD
BNEN 0% B FI2 % E R 9 B 0 B B R A

%3 PBD EEMRMBRIMNE THRE, BAPBD BHEF TH Fix A
RAE, NTBEMENEPBDBAERN OXMBH LHRR TEAZH
MMNAE PBDBAEN 30X W B4 ELRFXRNAER. AN, BN PBD &
R&EBNFHBE FERE), Q&4 EMME, PBDBAEN 30% 3
HRHEREEBFEAXSRZE N, U PBDBAERN O MEBAFMERENE
HRE.
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#®3-3: ARAAST EL 4 AL
Table2: The contrast of capability of devices of 6CPt(4%)— PFQO with

different doping concentrations of PBD

Maximum QE JF=100mA/cm? EL

Bias(v) J{mAfem?)L{cd/m?) QE(%) Bias(v) L{cd/m?) QE(%) Max(nm)

6CPt(4%):PFO-PBD(0%) 9.70 4.87 5.4 1.32 11.50 58.2 0.69 682.8
6CP;(4%):PFO-PBD(10%) 9.47 0.60 1.9 3.77 14.40 77.5 I.0l 676.3
6CPt{4%):PFO-PBD(20%) 9.47 0.87 2.8 3.85 14.00 86.3 1.03 673.8
6CPL(4%):PFO-PBD(30%) 7.68 0.03 0.1 5.68 16.00 92.1 1.02 675.0
6CPt(4%):PFO-PBD(40%) 14.82 0.60 1.9 3.83 19.00 76.2 1.02 675.7

*PL bR BE AL PR-705 L B it B
(Bias: HJE;J: B EE, L: BE; QE: # EFHE, Max: B K

K o R R RS KD

HWHARPBD S BB, WU — S F W PBD B A X 8B4
eI M. R4 6CPt 5 &% 4%, AE PBD & B EL 28 4 # g8
. TULEHLPBDAEN 30%E, BHERENF, BXHBTHEE
AEF 5.68%. X5A4AH PBDEETH PL RiEFELUNE A, 4 PBD
SRA 0%, PLARKIB K. BFPBD S EMHE S ¥m, £4H
MEEH L0OmA/ecm” BT By L FE i i by, X ETEE A B % PBD S B/ 8 I,
RO TR BARENEAER. BAPBD G, R PBD A &M 10
UET40%, HEEBRAEE D 100mA/cm® 1, FIERBGNARETHE
Blam—2, XEWHERBDRBEAET, 84K 6EFSA 8 PBD T BT RE,
MARREF=&&BTHER. H—HE, NE3-10FTLLEHBH
NETHEMERMOBMTREER, XTHEEEAPIHNEZKRSHTES
BK, JRZASBTHEERRER",
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EENGE.

ERES, BAWNRTERSSERPLABEE, BHTEENK
FAESEHANBRUALEEZEESEHHEREFLTEERXRE. XA N-K
Mg EY A% Rb WK BT (6CPt) A & 4E, LA PFO (poss) A E&, BABHTEH/MH
PBDHIETHEBES TN EAMLCHEBSF . ANESHTT PBD &
HEBEABEHRER, FXTPBDRURHEHENETEAMBRELHM
B,
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ERE T REM LAY

EME HEFFESWABYBH AR LT R

4.1 31 E

EHLAEMAEYHTFESE —RENTEABRRE T, AR HAEENH
MR EEALES, ERANEARESHRALE F=E(0.6~0.8).
BHECIMMPES THIAR, —HBE CO AR KEKRECS6 B CB)
HRMBITWEMSEENIEREEANARE XIERS, TEC ALK
HARANETENENREISSCYRER. RTBEDEAFREAMFR,
AEBNRKFE, FEBH ERPIIAMERAOELEMNTESE AT R
EHARAYETMELEALS . B ETEIHE. SLEM S ENFE
BIAARMELHEGE, DEEHTAMBEMEFALANBRBENFTRER
T, B LA RBREBEENETNEFE A REHNETH
HE, HEALBEEKE S OmmHE. BERFLXXAMEBH4EHENARD
HARDXBMB|E™, BEFTUHETHZ2ONEEFEAN: %E, FaR
raEENE - LPRE, PURRATFTHEANTFTEMNEEREHANES.
BINRAALCREERTAEF E - wIERBY FHHEFTFTTELEEANH
H. HTABERYOAE BEHLEK, UEAHRT AEKEREI
SO MM EEMRAT A EF E LRy, LHIRFEREEANES
HEHPER. ERERLE, BAER—4T&EKA, AdIEHEH LE
AFRHBETFTEENE =804, REXEBHAERAENERA/SBTFEAR
feftt, MBHTH. Ed—-FATR, RMONERMEHEENEER
BT —EREINR.

4.2 HEYIMEEH

XEFPHRABNMKEEYMENHASIREM R THE 4.1 b, F £F
9.9- "R BRFE4,7-ZR-2,1,3-FXFE_m, TPARE _R=XK,
CzfRE 3,6-Z-N-2-ZR-CHEHMW, CNBRE22-ZHELCHK-REE
25-"“HHEBE, DB LE 1,4-"R-25-“EKEE, OBRE 1,4- R
2,5- " EEXK, HB RE 14- "R 25- "8 EFE, MOB & 1.4-
THR2-FEHES-FEREFR, MBREI14-ZM-2-FRES-TEEX,

BZEHBY PTG (F)FMKIFE (B FFE 4-1.
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P41:

P42:

P31:

P33:

P32:

Table 4-1 Abreviation and comonomer

#F4—1 FHLEHHT

ratio of the copolymers

copolymer F B
P41 PFB2 98 2
P42 PFB8 92 8
P31 PFB15 85 15
P33 PFBS50 50 50
P32 PFB-TPA2 85 13
P36 PFB-Cz5 85 10
P37 PFB-CNBS5 85 10
P35 PFB-DBS5 85 10
P38 PFB-OBS5 85 10
P34 PFB-HB3 85 10
P39 PFB-MOBS5 85 10
P40 PFB-MBS35 85 10
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¥ Q- OO0

175 CgHyy x N\S,N Hi;Cz  CgHpp , ri HCl NGy |
P36:
1 OMCN _
H-ONOIA OO O\
\
P37 | Hy;;Cg  CgHyy, N NiS,N Hi;Cy  CgHyy 5 Hy7Ch “CgHyy o
[ OCgHy7 -
HCSONOIAL OO O\
P38, L Hi7Cg  CgHyp x N{S,\N Hj7Cs  CgHyq YOCSH” H;,Cy  CgH7 w
OCeH|3
S SO
P34, 11Cs  CgHjqy x NiS)N H;7Cy CyHyy y0C6H13 H;,Cg  CgHyy A
CsHiz
OSSN
P40, Hi7Cs  CgHyp x N{S}N Hi7Cs  CyHyy y CH, Hoch el | |

4-1 ZEFHME &R

Fig.4-1 Chemical structures of the organic materials used

43 ZnHARYHBOAYESH

Ma2 AR RYHKREEEMPLAEE. ANE4-2hFLUES,
“AHEY P4LPA2PI BAEERNMRBE RO AR E, R E
380 F1 450 nm Bt ¥T . 380 nm W& 2 Xf BY ) 2 PFO BB B R W I, T 450 nm
SEREFI N A MR L R R, SR MRS ES 2%, X
NFEFBE _MAOKETRBRKEERNAHE, BEEIFBE - BRHF
BAEKEM, EKEFRXNNTRIFBE - BARK (4500m) 12 80 #
My, BRATAELEY P33 (FO:B=1:1), 7 380nm % W F PFO
BRHFERKEEMR, ME3 22461l mmHIAFAITRBREESZHRK
W, XRPHRELHERE—MABEW, ATEATIFRTE, B
T —Fh B B BE A A5 .
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Fig.4-2 UV-visible absorption spectra for the copolymers

1.2 -

2 1+

- P41
S —e— P42
€081 —&— P31
5 —o— P33
@ 06

T

£04r-

=3

]

<02}

o W g I

300 400 500 600 700 800
wavelength(nm)

M 4-3 o EYE PL L L
Fig.4-3 PL spectra of binarycopolymers
R4-2 ZNHEYH PL HOE
Tabled4-2 PL efficiency of two unit copolymers
P41 P42 P31 P33
PL#Z%E 88.9% 82.1% 80.6% 59.1%

A 4-3 43X EYHM PL KL, WMUEH, “THEHH EL X%
BHBAEHN. MEXFBE _MBTHMTREEF 2% 8, 26BN R H T
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EEER, PLEHATHEFRBE_BTHRME, TREEHE_BAT
EHRBEHELARIJIBBR FHOMEB. EEXRFE BTN, PL X E
a8, XHB _MBT)SO%XBRYEREFE BT IE K
BB THEIE 13nm (M 538nm B 55inm), L F F 85 8 69 K BE 5 o6
THRHERTHAKR, Hf Stokes TBEAEE, MR KAMOTEE
H—8. WEA20F, BEXRHFE _MBTMHEM, PLXEZREMN
R
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-
T |
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B 4-4 G EY M EL L&
Fig.4-4 EL spectra of two unit copolymers

B 44 TR A3 - T EEHH BL L, FHEMHA
ITO/PEDT/Polymer/Ba/Al, MILEYMBEMK PL NEMAEL, EL &P
HIBMRHESTAEHBE _RABRKT 202 EEL, BT HE
PLEH.ELASHGNEAEXFBE _MBATHEH, ERFEMEKREEX
KRR : 2

RAIA A HEDHW ELERMEER, MHEBARE, BMNITUE
Bl YEFE RN I5%E, BFELYEES, KF 1.92%. 3 BT
FEMN2%EMB 15%E, BAKE—BHEKN, WY BT S 245
N, BFZBXTFHEELK.
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# 4-3 BN HE

Table 4-3 Device performances of the copolymers

Device performances

NO
Bias (V) Current (mA) Light (¢d/m*2)Effiency ( %)

5 4.87 975.6 1.92

P31
5.7 12.77 2702.3 2.03
5.3 4.9 121.4 0.31

P33
6.6 22.42 729.4 0.41
10 4.54 434.1 0.72

P41
8.3 0.69 80.5 0.88
6.88 4.85 798.51 1.37

P42
6.56 3.22 533.89 1.38

4.4 = HEBEUHBBEDESN

FEZmLEREYE, BRAERN LY (PF) §EAH 85X I, BB ERIEEF
BEK. BETH, RNEEH (PF) £REWTHER, BAE=%4,
MR Hm% (PF), FHBE_M (BT) RE=8FFRARB=ZTHE
# -

P31
—o—P34
—=—P36
—e—P37
—s— P38
—+—P40

Normalized intensity

300 400 500 6?0 700 800
wavelength(nm)

B a5 Zoi&EPOBREAE
Fig.4-5 UV-visible absorption spectra for the triplecopolymers

Bas h=mitEHHBE X E. BAEZRBEREDTHETER
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AH5%, HURMEXEYHEBEMNBRKLEFEREEIS 24N BRK.
MU EFTFTERR NG EBRMEIFE M (BT FIRI. BAMATES
ZHg, ZaHEYPHEFE_—MN (BT WSEBE-_THEY P31 $
FAHBE_R(BTOMEFED, UM RKEF =B RIFE W (BT)
W Wm0 S A R Z o E A P33,

12
[ P31
—e—P34
% 't —a—pas
c —e— P37
8 08~ ——p3s
£ —+— P40
B 06
N
«
04
£
7]
Z o2
0 1 _‘_ 1 | L
300 400 500 600 . 700 8OO
wavelength(nm)

B 4-6 CIEHM PLOLIE
Fig.4-6 PL spectra of two unit copolymers
K44 ZHAERYH PLRE
Table 4-4 PL efficiency of two unit copolymers
P31 P34 P36 P37 P38 P40
PL % % 80.63 80.36 88.98 83.88 83.05 81.08

Kl 4-6 AFEEYH PL A, X ERYHER PL L% H HeCd B X & 405
nmBWENEB. TLLEHNHHEHPLSWBE MG, &5 &L ME L REE
A, BELTF 540nm MiF. XRY, REHK (L) PHETRER
HEHBE-_MRE., B44 HEEHMHPLRE, WUEIE=Z£4AM M
AN, SHHEMPLBEREWA K, “OoHRYM=Z 0B PL B R E
MAXK. AR =7TLEY (FXIFE -mb 10%) T EW P31 X
FE_MWEREEN %) PLARYHFEHR LA, XM o REYF PL A
ERHAFE M PORBATE.
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47 Z L RPN EL ik
Fig.4-7 EL spectira of copolymers

B 4-7 Br 7 EL *%if £ bl ITO/PEDT/Polymer/Ba/Al X 88 1 45 ¥ U 18
M, 5 PL AE—F, EL RHEBNEFRE _WB TR, FIMAS
ZHOUH AR, EL %A Tl

#A-5 BT ENER

Table 4-5 Device performances of the copolymers

NO Device performances EL
Bias (V) Current (mA) Light ( cd/m»2)Effiency ( % > Max(nm)

5.00 4.87 975.6 1.92

P31 557.9
5.70 12.77 2702.3 2.03
6.70 4.98 803.6 1.54

P34 567.6
7.10 7.73 1248.0 1.55
7.80 4.91 1124.8 1.61

P36 538.5
7.00 2.29 558.7 1.71
6.00 4.56 856.7 1.25

P37 539.0
5.40 1.93 375.5 1.30
5.10 2.01 430.1 1.24

P38 536.4
5.70 5.23 1084.0 1.20
5.90 4.64 1219.4 1.75

P40 541.0
6.20 6.95 1837.6 1.76

K A4SHHMBEENRMLSL#IYN ITO/PEDOT/Polymer/Ba/Al, W UF
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MECRANSIIATR AN ERSHFEGE, HBanR8 KW ey 15%8
P31 EATH, ExTEFBE _M S 8% (P42) M- A BV B4 H
BEXNHFHER.

0 0.1 0.2 0.3 0.4 05
w

B 4-8 B {1 Fowler-Nordheim i £&

Fig4-8 Fowler-Nordheim curve of devices

Current{mA)

10 12

4Vo|ta%e(‘\l)8
Pl 4-9 25 FF a9 B R B ih &R
Fig4-9 I-V curve of devices
B 4-8 Xt By 24 K Fowler-Nordheim #122, MEF & 2 E &
EHMENZ AR BEYWERBEET In (I/VA2) #HESHR 1/V AEFRHRR
HXR. ZHA o BN -k EY P31l —HHEZHRFEAHRE
B, M4-9ARBEYRMAO VL AEPTUEE, FHRBET =
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BNE B S MILRY B BRI AET R

TRROYMWERTRE _cHEYRDN. RUB=RGFRIAFERERE
HWTFHEEAN

FSH—FHEHEAE=ZBRENSIABSTEAE SR, AT
CRAEYRBGURBRFN TS EIE W BRELLLEN 85: 15 fHLHIX
R, XU RESFE=ZHRYBAEEA N - X RYERFNIRA
Z

an
[&]

|

—o— Ba-P34
¢ LiF-P34
—+— Ba-P36
+ LiF-P36
—— Ba-P37
A LiF-P37

5

(]
<

Current(mA)
3
I

6 10
Bias(\?)

B 410 ARARTHRANEESRBL
Fig4-10 -V curve of devices with different cathodes

45 B EETEER

Table 4-5 Device performances of the copolymers

Device Performance

Voltage Current Light Efficiency
Cathodes

(V) (mA) (cd/m2) (%)
LiF 6.9 4.91 1151.6 1.55

P37
Ba 6.1 5.20 962.0 1.22
LiF 9.2 4,93 808.6 1.14

P36
Ba 7.8 4,90 1124. 8 1. 60
LiF 9.3 5.19 530.9 0.98

P34
Ba 6.7 4.98 803. 6 1. 54

R 43 P RAATUFERNSFSHRZERTHENRS, R T HEANR
THREEDAGHNREREARSATERUAEEENNRE. Bar057T
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LL LiF §1 Ba 4 FE 4R () 8% fF I—V HH £8 , 88 1 45 #4 4 ITO/PEDOT/Polymer/Ba

(LiF) /Al. W 4-10 sTLIEH, MARBBET, LI LiF A & & (84
MAEREHRENTL Ba YRBMBHMER, BWME4-5HFR, B4
EHHEHREMN,

iy
Mo
]
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H4-11 ARMHERNZETH EL K
Fig 4-11 EL spectra of devices with different anodes
F 4-6 g aEx H K

Table 4-6 Device performances of the copolymers

Device Performance

Voltage Current Light Efficiency
Anodes
(V) (mA) (cd/m2) (%)
P37 PEDOT 6.1 5.20 962. 03 1.22
PYK 12. 8 4. 70 500. 28 2. 34
P38 PEDOT 5.7 5.22 1084.9 1.20
PVK 11.7 4,80 564. 21 2.59

#+ 4-6 B FLL PVK #l PEDOT AMHBEMER S HE X, nr X
BRI ELPVK N RS B 0oy it ZE 4 & Ll PEDOT Jh FH R 4 b
BR&EH. T—E£REWEERHERNBRZ B2 REAFE— D HEN
M HL2, XBLRFREFHLEYE HOMO B4 (5.7-5.8eV) fIZ A
¥ PVK RIThg ¥ (PVK, 5.8eV; PEDT-PSS, 4.8-5.0eV) MHILE. B
RAUEE 411 R, XA PVKEMHBEMERE, S4B ERET
BHEMEL, SE&MErFRERFTEREX, XATREH T PVKHKIIAR
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BHTREFEY (exciple) FIHIM.
4.5 HRABIHRGEEONE

MTFEFRAEMSTEREY P 03 0 5 il ERE— 4
B, MEXRERBERNENERES, FHFE_REREFHE&, B
AME="HEBEERTRAL, KEARITRBELEHMEANSR FH.
EERAPTUEHNERET A EYY, AHRAHBET P38 M H K&K,
APHBEEERBEHE=TTEXEYR . ZIHEWPTRERMAL =H&
B P38 WA FHEASIHNER, DEAXEHNTRE, XTRSHILZN
SREMMEMATY X,

FIESSERERNEMATMMENERHEHREBRAXE, AL
BEAHMARFIEMROAEL—, EHERIMEHK P8 HHZE
TR,

Not annsaled
—— PEDOT annealedd
~——— PEDOT and Polymer annealed

[ ] —_
o] - N
1

Normalized intensity
(=]
(]

300 400 500 600 700 800 900
Wavelength(nm)

B 4-12 PEDOT # Polymer # 4 B 80 5 A EL 1%

Fig 4-12 EL spectra of devices before and after PEDOT/Polymer annealed

200 PEDOT annealed £ 78 PEDOT {£ 200" C i #,200 PEDOT and 130
Polymer annealed ¥ < PEDOT # 200" C JN# J5, Polymer ! PEDQT {E
1300 C A AMNALHEYEERRAEN TR LB 4-12 oL E
Fl, s SN AR EH PEDOT L 464 % Polymer 37 #4 4 B, & LU
KB LR SF4F0 EL RiEERMRE, XWaEEMH T Polymer 3+ 130" C
A ERNERTERNERMELAER, NTHENTHEXAESE.
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