
武汉理工大学

硕士学位论文

基于Java规则引擎的动态数据清洗研究与设计

姓名：曹永亮

申请学位级别：硕士

专业：计算机应用技术

指导教师：王舜燕

20080501

摘要

在运营管理过程中，企业积累了大量的、极为重要的电子数据。业务决策

者在进行分析决策时对这些数据的依赖性日益增强，错误或冲突的数据很可能

会导致错误的决策，从而给企业造成巨大的损失。因此在这些数据进入决策系

统之前需要对其进行处理，以提高决策系统的可信度和可用性。

为解决上述问题，业界提出了数据清洗的解决方案，即从大量原始数据中

按一定规则(领域知识规则)检测出“脏数据"并按一定的规则(清洗动作规

则)修复或丢弃之。

传统的数据清洗工具存在以下不足：“脏数据’’的检测和修复逻辑被嵌入到

复用性差的硬编码中或依赖于灵活但低效的手工判断。当“脏数据’’的定义发

生变化时需要修改源代码并重新编译生成清洗软件，这在实际使用中是低效的。

Java规则引擎的出现，为基于动态、可配置规则的数据清洗方式提供了可行的

技术基础。

本文介绍了规则引擎的基本原理，分析了Java规则引擎的工作机制及其核

心算法—一Rete算法，并对一种开源的Java规则引擎软件包——-Drools的API
使用方法及其规则配置文件的结构及含义做了系统地研究分析。

本文着重阐述了一种基于Drools规则引擎的动态数据清洗系统的设计方案。

给出了领域知识规则和清洗动作规则的巴科斯范式定义，为规则的持久化存储

提供了基础。

本文设计并实现了使用Drools规则引擎描述并执行清洗逻辑，能处理多种

数据质量问题的动态数据清洗系统，弥补了现有数据清洗工具的不足。这种动

态性主要体现在规则的持久化存储和Drools规则配置文件的动态更新。文中还

详细介绍了系统的规则数据库设计、功能模块划分、架构和工作流程，给出了

主要模块的部分代码，并对系统做出了实验性能分析。

关键词：规则引擎，动态数据清洗，Drools，数据转换

Abstract

In course of operation management，companies have accumulated a mass of vital

electronic data．Decision-makers become increasingly dependent on the

above—mentioned data while carrying through analysis and strategies弱wrong or

conflicting data will likely result in unsuccessful maneuver，which in return can breed

disastrous loss．Hence it is essential that data should be processed before entering int0

decision—making system in view of improving its credibility and availability．

To ravel out the above-mentioned problem，experts have put forward a solution

called data cleansing which refers to inspecting”dirty data”from massive data

according to certain rule(domanial knowledge)and to repairing or discarding it in the

light of some rule(cleansing action rule)．

Traditional tools for data cleansing have the following insufficiency：it is

inefficient in practice in that modification and recompilation arc required for the

generation of cleansing software，the reason of which is that logic for inspecting and

repairing”dirty data”is embedded into code or relies on agile but inefficient manual

judgment．It is no other than the appearance of Java Rule Engine that provide feasible

technological foundation for people to find such a data cleansing mode that based on

dynamic and configurable rules．

The thesis presented the basic principles of Rule Engine and investigated the

working mechanism of Java Rule Engine and its core algorithmmRete algorithm．The

thesis also introduced a kind of open-source Java Rule Engine software

packagemDrools and systematically investigated its API usage，the structure and

meanings of its rule configuration file．

The thesis mainly elaborated on the design scheme of dynamic data cleansing

system based on Drools rule engine and investigated the BNF(Backus—Naur Form)

definition of domanial knowledge and cleansing rules laying a solid foundation for

the persistence of rules．

The thesis presented the design and implementation of a kind of dynamic

cleansing system，which adopts Drools Rule Engine to describe and execute cleansing

Il

Jo毋c卸d c柚deal with many kinds of problems related to data quality．This svstem
reIned踟e the defect that existing data cleansing tools have．The main reasons for
achleVmg thls al e persistent storage of cleansing rules and dynamic update of Dr001s

mle configuration file．The thesis detailedly presented rule database design．divisiDn
of functlonal

module，architecture，working flow of the system，some code segIllents

of main modules·The thesis also presented the result of experimental perfb肋ancc’s
analysis．

Key Words：Rule Engine，Dynamic Data Cleansing，Drools，Data TI．ansfo咖ation

III

独创性声明

本人声明，所呈交的论文是本人在导师指导下进行的研究工作及取得的研

究成果。尽我所知，除了文中特别加以标注和致谢的地方外，论文中不包含其

他人已经发表或撰写过的研究成果，也不包含为获得武汉理工大学或其它教育

机构的学位或证书而使用过的材料。与我一同工作的同志对本研究所做的任何

贡献均已在论文中作了明确的说明并表示了谢意。

关于论文使用授权的说明

本人完全了解武汉理工大学有关保留、使用学位论文的规定，即学校有权

保留、送交论文的复印件，允许论文被查阅和借阅；学校可以公布论文的全部

或部分内容，可以采用影印、缩印或其他复制手段保存论文。

(保密的论文在解密后应遵守此规定)

签名：妞翩签缸垄‰：迦墨：羔：f2

武汉理一r大学硕士论文

1．1业务规则的含义

第1章绪论

业务规贝,lJ(Business Rule)是对业务定义和约束的描述，用于维持业务结构或

控制和影响业务的行为【1I。业务规则技术的基本思想是将系统处理的业务逻辑从

程序代码中抽取出来，将其转变为简单的业务规则，以结构化的业务规则数据

来表示业务行为，采用类自然语言来描述，并集中存储在规则库(以数据库或

结构化的形式)中。业务规则由业务人员创建、实时更新和调试，业务规则之

间的复杂逻辑关系由规则引擎处理【2I。业务规则技术改变了传统的、以过程形式

处理业务逻辑的方式。

业务规则具有以下特性【3l：

1)原子性，每条业务规则不可再分，且只定义一种判断和操作，复杂的业

务逻辑由多条规则协同处理。
。

2)独立性，业务规则彼此之间独立，复杂的逻辑关系由规则引擎来处理。

业务规则存储在规则库中，独立于数据和程序。

3)简单性，业务规则用简单直接的类自然语言来描述，很容易被业务人员

和技术人员所理解。

4)动态性，业务人员可以实时地修改业务规则，快捷地更新系统，低成本

地维护系统。

5)逻辑性，业务规则至少包含条件和执行两个部分，条件是对业务数据作

用的判定，执行是对业务数据的处理。

1．2规则引擎的发展和研究现状

运营管理者对企业级IT系统的开发有如下的要求：尽管现代业务规则异常

复杂，但为提高效率，管理流程必须自动化；市场要求业务规则经常变化，11r

系统必须依据业务规则的变化快速、低成本的更新；为了快速、低成本的更新，

业务人员应能直接管理IT系统中的规则，而不需要程序开发人员的参与。这种

情况下，项目开发人员就会碰到以下问题：有些复杂的商业规则很难推导出算

武汉理工大学硕+论文

法和抽象出数据模型；软件工程要求从需求一设计一编码，然而业务规则常常

在需求阶段可能还没有明确，在设计和编码后还在变化，业务规则往往嵌在系

统各处代码中；对程序员来说，系统维护、更新困难，更不可能让业务人员来

管理【4I。

随着商业以及市场的迅猛发展，业务逻辑的变化频率已经从以前的平均18

个月缩短到平均6个月甚至更短，这意味着企业级应用的更新和升级变得越来

越频繁。同时又由于业务逻辑层没有标准的框架和统一的开发方式，使系统升

级变的既昂贵又麻烦。因此，迫切需要一个框架或统一的方法来开发业务逻辑

层。

规则引擎的出现为开发人员解决上述问题提供了契机。规则引擎是推理引

擎的一种，起源于基于规则的专家系统(详见2．1．1)。规则引擎能够将业务逻辑

从应用程序代码中分离出来，接受数据输入，解释业务规则，并根据规则做出

业务决策。规则引擎的核心内容是其所采用的匹配算法，早期的匹配算法主要

是索引计数匹配法。这种方法的匹配效率并不高，应用并不广泛。在索引计数

匹配算法的基础上，Forge于1979年提出了Rete算法。Rete算法牺牲了一部分

空间来提高算法的时间效率，使该算法有了广泛的应用空间。目前，几乎所有

成熟的规则引擎框架的实现都是基于该算法的。但是，基于这些框架的企业级

应用却并不多，原因是这些框架都有自己的实现方式，有自己的规则定义语言。

并且，绝大多数规则引擎框架都是商业产品，价格非常昂贵。这种情况直到

JSR94t51(Java规范要求，Java Specification Request)规则引擎标准和开源规则引

擎的出现才逐渐好转。

目前，满足JSR94标准并且比较成熟的规则引擎框架主要有JRules、JESS

和Drools等。其中，JRules是ILog公司的一个商业产品，价格很高；JESS是由

美国Sandia国家实验室分布式系统计算组成员Ernest J．Friedman Hill在1995年

以应用广泛的CLIPS专家系统外壳为基础开发出来的，所采用的规则描述语言

是类CLIPS描述语言，比较难懂，而且也是一个商业产品；Drools是一个开源

并且免费的框架，采用XML或Drl格式的规则描述语言描述业务逻辑，是最近

才逐渐成熟起来的一个框架，还需要进一步的完善161。本文就是采用Drools规则

引擎来描述并执行数据清洗逻辑。

2

武汉理工大学硕士论文

1．3数据清洗的应用背景

在构建业务数据库时，用户的录入错误、企业环境随时间推移的改变，都

会影响所存放数据的质量。数据质量问题可以分成：单数据源中的数据质量问

题和多数据源中的数据质量问题。单数据源和多数据源中的数据质量问题都还

可以分成模式层和实例层的数据质量问题【似,91。

单数据源中的数据质量问题的实质是违背了约束(参照性约束，完整性约

束及用户自定义约束)，可以分为有不符合模式约束和记录约束两种，分别对应

于记录质量问题和记录集质量问题。记录质量问题主要有：字段值缺失、字段

值不在值域范围内、单字段中包含多个字段值、字段值不符合业务规则约束、

引用字段值缺失或错误。可以在数据转换中发现和处理记录质量问题。记录集

质量问题主要有：记录集中存在相似重复记录和记录集之间关联不符合关联约

束条件。记录集质量问题无法在转换过程中发现，需要在转换之前进行特殊的

处理。多数据源中的质量问题主要有：模式结构不一致、命名不一致，编码格

式不一致，多数据源中存在冗余重叠记录。多数据源中的质量问题是数据转换

主要解决的问题，而不是数据清洗的目标。

数据清洗指的是在大量原始数据中使用一系列的逻辑规则和领域知识检测

出“脏数据"并修复或丢弃之。数据清洗一般是作为数据抽取、转换和加载(ETL’

Extraction．Transformation．Loading)工具的一个功能来实现。也存在大量数据清

洗专用工具，它们被称为数据质量工具。

1．4数据清洗的研究现状

数据清洗的相关研究最早可追溯到1959年【埘。从那时起，汇总来自不同数

据源的数据一直被认为是一个重要而困难的问题。近年来，随着信息化的进展，

人们开始系统地研究数据清洗问题。主要成果可分类如下：

1)特殊领域的数据清洗

特殊域清洗工具主要解决某些特定领域的数据清洗问题，例如姓名和地址

数据151。这是目前研究得较多的领域，也是应用最成功的。如商用系统：TriUinm

Sowtfare、Pure Integrate(Oracle)、Quick Address(QAS Systems)等。它们用一个匹

配工具抽取被清洗的数据，并把姓名和地址信息转换成单个标准元素、有效的

3

武汉理工大学硕士论文

街道名、城市和邮政编码。它们具体表现为使用一个大的预定义规则库来处理

在清洗过程中发现的问题。

2)与领域无关的数据清洗

与领域无关的数据清洗研究主要集中在清洗重复的记录上【111，其主要工具包

括：Data Blade Module，Choice Maker,Integrity,Megre／Pugre Library(Sagent／QM

Sotfware)，Match IT(Help IT Systems)，Master Megre(Pitney Bowes)，Data

Cleanser(EDD)等。

3)数据抽取、转换和加载但TL’Extraction．Transformation．Loading)-I-具中

的数据清洗

数据抽取、转换和加载是数据仓库系统中数据处理的关键操作。ETL就是

根据数据处理的需要，将源数据对象经过转换后加载到目标数据对象中【12】。很多

商业工具在多方面支持数据仓库的ETL过程，如Ardent的Data Stage、Microsoft

的Data Transformation Service、SAS的Warehouse Administrator和Informatica

的Power Mart等。这些工具在关系数据库系统上建立一个存储器，以统一的方

式管理关于数据源、目标模式、映射、脚本程序等所有元数据。通过文件、关

系数据系统、以及标准接口(如JDBC、ODBC等)，从数据源中抽取模式和数据。

并提供图形化的界面来定义数据转换逻辑规则。这些ETL工具提供了大量数据

的抽取、转换和加载操作，但只对数据清洗提供有限支持。ETL工具并不是完

全针对数据清洗而设计的。

传统的数据清洗软件采用的策略有：1)将检测“脏数据"和进行修复操作

的逻辑嵌入到系统各处的程序代码中；2)让用户进行灵活但低效的手工判断。

前者当“脏数据"的定义发生变化时，需要重新编译数据清洗软件，这在实际

使用中是不可行的；后者则不能保证人工判断的完整性和准确性171。

文献[12]为本文指出了一个可能的方向。该文提出了数据清洗规则的概念，

给出了基于规则的数据清洗思路。

本文的研究课题就是在上述背景下提出的，采取的方法是将一种开源的Java

规则引擎——-Drools应用于数据清洗，以此实现清洗规则的动态配置和及时更

新，从而提高了数据清洗系统的可复用性、准确性和可扩展性。

4

武汉理工大学硕士论文

1．5本文主要研究内容

1)研究分析了规则引擎的基本原理；

2)研究分析了Java规则引擎的工作机制；

3)研究分析了Java规则引擎的核心算法_Rete算法；
4)研究分析了一种开源的Java规则引擎软件包-Dr00ls，并系统地研究
分析了其API的使用方法和规则配置文件的结构和含义；

5)研究分析了数据质量和数据清洗的相关问题；

6)研究分析了领域知识和清洗动作规则的巴科斯范式(BNF,Backus．Naur

Form)定义，阐述了一种基于Drools规则引擎的动态数据清洗系统的设计方案；

7)详细介绍了基于Drools规则引擎的动态数据清洗系统的规则数据库设计、

系统功能模块划分、系统结构和工作流程，并给出了主要模块的部分代码和系

统实验性能分析结果。

1．6本文的组织形式

本文的主要内容有5章，第1章是绪论，主要分析了本课题的研究背景，

同时综述了数据清洗技术的研究现状及本文所做的主要工作。

第2章分析了基于规则的专家系统的原理，Java规则引擎的工作机制和Rete

算法的原理。对一种开源Java规则引擎——Drools的API的使用进行了系统分

析和介绍，并结合实例分析了其规则配置文件的结构及含义。

第3章详细介绍了“脏数据"的概念及数据质量的概念及分类，并详细介

绍了数据清洗的概念、模型和流程。

第4章阐述了基于Drools规则引擎的动态数据清洗系统的设计方案。首先

给出了系统使用的两种规则。接着详细介绍了系统的详细设计。

第5章对全文进行了总结，并对系统需要进一步所做的工作进行了展望。

5

武汉理工大学硕士论文

第2章Java规则引擎的研究

2．1规则引擎的原理

规则引擎是基于规则专家系统(RBES，Rule-Based Expert system)的重要组成

部分。下面先简要地介绍一下RBES，以便深入地了解Java规则引擎。

2．1．1基于规则的专家系统简介

RBES由三部分组成：规则库／知识库(Rule Base／Knowledge Base)、-I-作内存

／事实库(Working Memory／Fact Base)和推理引擎(Inference Engine)。它们之间的关

系如图2-1所示。

图2-1基于规则的专家系统构成

规则(知识)库是中心数据库，存储着各种模拟人类问题求解的产生式规则。

每一条规则分为两部分：前件部分和后件部分。前件(Antecedent)3L称条件部分、

模式部分或左部(Left．Hand．Side，LHS)，是规则触发的条件。单独的一个条件称

为条件元素或一个模式；后件(Consequent)又称右部(Right．Hand．Side，RHS)，是

规则触发时将要执行的一系列动作。

工作内存是应用于规则(知识)库的全局数据库，它保存系统的当前状态。

推理引擎通过决定哪些规则满足工作内存中的事实或目标，而授予规则优

先级，并将满足事实或目标的规则加入议程安排器【131。如图2-1所示，推理引擎

6

武汉理工大学硕+论文

又可分成三部分：模式匹配器、议程安排器和执行引擎。模式匹配器通过比较

事实和规则的模式部分，决定选择执行哪个规则，何时执行规则。它是基于规

则的推理引擎的关键，并决定了推理引擎的推理效率；议程安排器是由推理引

擎创建的一个规则优先级表，这些规则都匹配工作内存中的事实。如果同时有

多个规则和事实匹配，则优先级最高的先被触发。被触发规则的动作可能会产

生新的事实，这些新的事实也会被加入工作内存；执行引擎负责执行议程安排

器中的规则和其他动作。 ．

和人类的思维类似，推理引擎存在两种推理方式：演绎法(Forward．Chaining)

和归纳法(Backward．Chaining)。演绎法从一个初始的事实出发，不断地应用规则

得出结论或执行指定的动作。而归纳法则是根据假设，不断地寻找符合假设的

事实。Rete算法是目前效率最高的一个演绎法推理算法，许多Java规则引擎都

是基于Rete算法来进行推理计算的。

推理引擎的推理步骤如下：

1)将初始事实数据载入工作内存；

2)使用模式匹配器比较规则库中的规则和工作内存中的事实数据；

3)如果执行规则时存在冲突(Conflict)，即同时激活了多个规则，则将冲突

的规则放入冲突集合；

4)解决冲突，将激活的规则按顺序放入议程安排器；

5)使用执行引擎执行议程安排器中的规则；

6)重复步骤2)至5)，直到议程安排器中的所有规则被执行完毕。

Java规则引擎就是从这一规则引擎的原始架构演变而来【14I。

2．1．2 Java规则引擎的工作机制

Java规则引擎检索提交到引擎的数据对象，根据这些对象的当前属性值和

它们之间的关系，从加载到引擎的规则库中发现符合条件的规则，创建这些规

则的执行实例【151。这些实例将在引擎接到执行指令时依照某种优先顺序依次执

行。一般来讲，Java规则引擎内部由如下几部分构成：工作内存(Working Memory)

或工作区，用于存放被引擎引用的数据对象集合；规则执行队列，用于存放被

激活的规则执行实例；静态规则区，用于存放所有被加载的业务规则，这些规

则将按照某种数据结构组织。当工作区中的数据发生改变后，引擎需要迅速根

7

武汉理工大学硕士论文

据工作区中的对象状态，调整规则执行队列中的规则执行实例。Java规则引擎

工作机制的示意图如图2．2所示。

、．。Java)立用程序
规则引擎对象

／==＼ 幻工怄、
¨办／、、．．．．．．．．J ／，U引用对象

／＼Q ，■＼／ ／ ∑
(对象y ／ 1． f＼ ／ ，

规则库
、、．．．．．．．．．J ／ 静态规则区

／

厂＼／ 规则1 规则设定1

㈦ 规则2 规则设定2

规则n 规则设定n

1 |。

上
规则执行队列

＼
／＼

图2-2 Java规则引擎工作机制1141

当引擎执行时，会根据规则执行队列中的优先级顺序逐条执行规则执行实

例，由于规则的执行部分可能会改变工作区的数据对象，从而会使队列中的某

些规则执行实例因为条件改变而失效，必须从队列中撤销，也可能会激活原来

不满足条件的规则，生成新的规则执行实例进入队列。于是就产生了一种动态

的规则执行链，形成规则的推理机制。这种规则的“链式”反应完全是由工作

区中的数据驱动的。

任何一个规则引擎都需要很好地解决规则的推理机制和规则条件匹配的效

率问题。规则条件匹配的效率决定了引擎的性能，引擎需要迅速测试工作区中

的数据对象，从加载的规则集中发现符合条件的规则，生成规则执行实例，最

武汉理：1=大学硕士论文

后输出匹配结果【161。1979年，美国卡耐基·梅隆大学的Charles L．Forgy博士在其

博士论文【17I中首次提出了一种叫做Rete的算法，很好地解决了这方面的问题。

目前世界顶尖的商用规则引擎产品基本上都使用Rete算法。

2．2 Rete算法研究

”Rete”是拉丁语，相当于英语中的”Net”，是网络的意思。Rete算法可以分

为两部分：规则编译(Rule Compilation)和运行时执行(Runtime Execution)。

编译算法描述了产生式内存区或静态规则区(Production Memory)qb的规则

如何产生一个有效的辨别网络(Discrimination Network)。辨别网络通过数据在网

络的传播过程中来过滤数据。在辨别网络的顶端将会有很多匹配的数据。当顺

着网络向下走，匹配的数据将会越来越少。在网络的最底部是终端节点(Terminal

Node)。在Dr．Forgy的论文【17】中，描述了4种基本节点：根节点(Root Node)，单

输入结点(1．Input Node)，双输入结点(2一Input Node)_；}n终端结点(Terminal Node)。

如图2．3所示，在Drools规则引擎的辨别网络中定义了8种节点类型：对象类

型结点(ObjectType Node)，阿尔法结点(Alpha Node)，左输入适配器结点

(LeftlnputAdapter Node)，求值结点(Eval Node)，根节点(Rete Node)，联接结点(Jom

Node)，存在结点(Not Node)和终端结点(Terminal Node)。下面的描述均使用图

2．3中的图例来表示各种结点。

对象类型结点(二) 根结点

阿尔法结点＼二二7 联接结点

左输入适配器结点

求值结点

◇
广—]
’--．．．．．．．．．．．．．．．．．．．．一／

存在结点

终端结点

图2-3 Drools引擎中定义的8种节点类型

根节点是所有的对象进入网络的入口。然后，从根节点立即进入到对象类

型结点，其作用是使引擎只做它需要做的事情。例如，有两个对象集：帐户类

9

口o
o
O

武汉理工大学硕士论文

(Account)和订单类(Order)。如果规则引擎需要对每个对象都进行一个周期的评

估，那会浪费很多的时间。为了提高效率，引擎将只让匹配对象类型的对象到

达节点。通过这种方法，如果某个应用声明一个新的帐户类对象，它不会被传

递到订单类对象类型节点中。很多现代Rete算法实现都有专门的对象类型结点。

其中一些对象类型结点被用散列法进行了优化。图2．4说明了这一过程。

根结点

单

图2．4根结点向对象类型结点的传递

对象类型结点能够传播到阿尔法结点(对应单输入结点)，左输入适配器结

点和双输入结点(对应联接结点和存在结点)。阿尔法结点被用来评估字面条件

(Literal Conditions)。尽管在Dr．Forgy的论文里只提到了相等条件(字面相等)，

很多Rete实现还支持其他的操作。例如， Account．name==”Zhang Shan”是一

个字面条件。当一条规则对于一种对象类型结点有多条字面条件时，这些字面

条件将被链接在一起。就是说，如果一个应用声明一个Account类对象，在它能

到达下一个阿尔法结点之前，它必须先满足上一个字面条件。图2．5说明了

Account类的阿尔法结点组合：name==”Zhang Shan”，Id==”123456789”。

Name=”Zhang Shan”

图2-5阿尔法结点的组合使用

10

～甲定

武汉理工大学硕士论文

Drools通过散列法优化了从对象类型结点到阿尔法结点的传播。当一个阿

尔法结点被加到一个对象类型结点的时候，就以字面值(Literal Value)作为键，

以阿尔法结点作为值加入哈希表(HashMap)。当一个新的类实例进入对象类型结

点的时候，不用传递到每一个阿尔法结点，可以直接从哈希表中获得正确的阿

尔法结点，避免了不必要的字面检查。

双输入节点对应于Drools中的两种结点：联接结点和存在结点(共同被称

为贝塔结点——BetaNodes)。双输入节点被用来比较两个对象及其属性。这两个

对象可以是同种类型，也可以是不同类型。双输入节点的两个输入称为左边输

入(Left)和右边输／X．(Righ0。左边输入通常是一列对象(A list of objects)。在

Drools中，这是一个数组。右边输入是单一对象。两个存在结点可以完成存在性

检查。Drools将索引应用在双输入节点上，从而扩展了Rete算法。图2-6说明

了一个联接结点的使用。

Subject Student

Student．favoriteSubject=
Subject．name

图2-6联接结点的使用

图中的左边输入用到了一个左输入适配器结点，它的作用是将一个单一对

象转化为一个单对象数组(Single ObjectArray)，再传播到联接节点。因为上面提

到过左边输入通常是-YU对象(A list of objects)。

终端结点被用来表明一条规则已经匹配了它的所有条件(Conditions)。在这

点，这条规则有了一个完全匹配(Full Match)。在一些情况下，一条带有“或"

条件的规则可以有超过一个的终端结点。

Drools引擎通过节点的共享来提高规则引擎的性能。因为很多的规则可能

武汉理工大学硕士论文

存在部分相同的模式，节点的共享可以对内存中的节点数量进行压缩，以提供

遍历节点的过程。下面的两个规则就共享了部分节点。

Rulel：

when

Subject($subject：name==”Computer”)

$student：Student(favouriteSubject==Ssubject)

then

System．out．println($person．getName0+”likes”+$subject．getName0)；

end

Rule2：

when

Subject(Ssubject：name==”Computer”)

$student：Student(favouriteSubject!=Ssubject)

then

System．out．println($student．getName0+”doesnot like”+$subject．getName0)；

end

这两条规则的中的左边(LHS，Left-Head·Side)基本是一样的，只是最后的

favouriteSubject，一条规则是等于$subject，而另一条规则是不等于$subject。

图2．7是这两条规则的节点共享示意图。

12

武汉理工大学硕士论文

Subject

bjecl

System．out．println(Student．getNameO+”
does not like”+subject．getNameO)；

图2．7规则节点的共享

从图2．7可以看到，编译后的Rete网络中，阿尔法结点是共享的，而双输

入结点不是共享的。这两条规则都有各自的终端结点。

Rete算法的第二个部分是运行时执行(Runtime Execution)。当某个应用声明

一个对象后，Drools引擎将数据传递到根结点。然后它进入对象类型结点并沿着

网络向下传播。当数据匹配一个节点的条件，节点就将它记录到相应的内存中。

这样做的主要原因是可以带来更快的性能。虽然记住完全或部分匹配的对象需

要大量的内存，但这使它具有速度快和可伸缩的优点。当一条规则的所有条件

都满足，这就是完全匹配。而只有部分条件满足，就是部分匹配。

13

武汉理工大学硕士论文

2．3 Drools规则引擎研究

Drools是一款成功的开源Java规则引擎项目，它采用了高效的模式匹配算

法一—-Rete算法，实现了逻辑与数据的分离，采用的语言是当前流行的面向对

象语言——Javao ．

2．3．1 Drools规则引擎APl分析

Drools分为两个主要部分：构建(Authoring)时组件和运行时(Runtime)组件。

构建的过程涉及到．drl或．xml规则文件的创建，它们被读入一个解析器，

使用ANn尽3(即语言识别的另一个工具，ANother Tool for Language Recognition)

语法进行解析。解析器对语法进行正确性的检查，然后产生一种中问结构

．t·descr”，”descr”用AST来描述规则。AST然后被传到PackageBuilder类，

由PackagBuilder类来产生Package对象。PackageBuilder类还承担着一些代码

产生和编译的工作，这对于产生Package对象都是必需的。Package对象是一个

可以配置的，可序列化的，由一个或多个规则组成的对象。图2-8说明了它们之

间的相互关系。

图2-8 Drools规则引擎的构建时组件

RuleBase是一个运行时组件，它包含了一个或多个Package对象。可以在

任何时刻将一个Package对象加入或移出RuleBase对象。一个RuleBase对

象可以在任意时刻实例化一个或多个WorkingMemory对象，在它的内部保持对

这些Working；Memory的弱引用。WorkingMemory由一系列子组件组成。当应用

程序中的对象被声B)l(assea)进WorkingMemory，可能会导致一个或多个激活

(Activation)的产生，然后由Agenda负责安排这些激活的执行。图2-9说明了它

14

武汉理工大学硕七论文

们的相互关系。

图2-9 Drools规则引擎的运行时组件

主要有三个类用来完成规则的构建过程：DrlParser，XmlParser和

PackageBuilder。前两个解析器类(DrlParser类和XmlParser类)从传入的Reader

类实例产生descrAST模型。

下面将详细分析Drools规则引擎主要类(接口)的使用。

1．PackageBuilder类提供了简便的API，使得可以忽略DrlParser和

XmlParser这两个解析器类的存在。这两个简单的方法是：”addPackageFromDrl0”

和”addPackageFromXml0”，两个方法都只要传入一个Reader类的实例作为参数。

下面的例子说明了如何从类路径(ClassPath)下的xml或drl文件创建一个Package

对象。所有传入同一个PackageBuilder实例的规则源，都必须是在相同的包

(package)命名空间中。下面的代码段演示了如何从指定的类路径下读取规则配置

文件，并生成一个Package对象：

PackageBuilder builder=new PackageBuilder0；

builder．addPackageFromDrl(new lnputStreamReader(getClass0．

getResourceAsStream(”packagel．drl””)；

builder．addPackageFromXml(new InputStreamReader(getClass0．

getResourceAsStream(”package2．drl”)))；

Package pkg=builder．getPackage0；

PackageBuilder类的使用如图2．10所示。

15

武汉理工大学硕士论文

图2-10 PackageBuilder类的类图

PackageBuilder可以通过PackageBuilderConfiguration类进行配置。

可以指定另一个父类加载器(parent ClassLoader)和编译器类型(默认是

JDT)。

PackageBuilderConfiguration类的使用如图2—11所示。

O bject

今
I

PackageBuild erC0nfiguFation

．ECLIPSE：int

．JANIN0：int

+PackageB Uilde rConfigUration0
+getC lassLoader()
+setClassLoader()
+getCom PilerO
+setCOm Piler()

图2—11 PackageBuilderConfiguration类的类图

下面的代码段演示了如何指定JANINO编译器：

通常，

Eclipse

PackageBuilderConfiguration conf=lleW PackageBuilderConfiguration0；

conf．setCompiler(PackageBuilderConfiguration．JANINO)；

PackageBuilder builder=new PackageBuilder(conf)；

16

武汉理工大学硕士论文

下面的代码段演示了如何设置JDK的版本为1．5：

PackageBuilderConfiguration conf=new PackageBuilderConfiguration0；

conf．setJavaLanguageLevel(”1．5”)；

PackageBuilder builder=new PackageBuilder(conf)；

2．一个RuleBase类包含了多个将被使用的规则包(Packages of Rules)的引

用。RuleBase类是可序列化的，所以它可以被配置到JNDI(Java Naming and

Directory Interface)或其他类似的服务中。通常，第一次使用时，一个RuleBase

类被创建并缓存。RuleBase类由工厂类RuleBaseFactory来实例化，默认返回一

个RETE00型的RuleBase。可以传入参数来指定返回的RuleBase类的类型(包

括RETEOO或LEAPS两种)。然后，用addPackage方法加入Package实例。可

以加入有相同命名空fffJ(NameSpace)的多个Package实例。

RuleBase类的使用如图2．12所示。

RuleBase

．I EAPS：int

．RETEOO：int

+addPackage(in Package)
+getPackages0

+getWorkingMemories0
+newWorkingMemory0

+newWorkingMemory(in boolean)

+removeRule(in String)

+removePackage(in String，in String)

图2．12 RuleBase类的类图

下面的代码段演示了如何创建一个RuleBase类的对象：

RuleBase ruleBase=RuleBaseFactory．newRuleBase0；／／默认返回一个RETEOO型

RuleBase ruleBase=RuleBaseFactory．newRuleBase(RuleBase．LEAPS)；／／LEAPS型

RuleBase实例是线程安全的，所以可以让一个RuleBase实例在多个线程中

共享。对于一个RuleBase的最常用的操作是产生一个新的WorkingMemory类。

一个RuleBase实例保持着到它所产生的WorkingMemory类的弱引用，所

以在长时间运行的WorkingMemory类中，如果其中的规则发生改变，这些

WorkingMemory类可以及时地根据最新的规则进行自动更新，而不必重启

17

武汉理工大学硕士论文

WorkingMemory类。也可以指定RuleBase不必保持一个弱引用，但是要保证

RuleBase类不能被更新。

下面的代码段演示了如何由RuleBase对象生成一个WorkingMemory实例：

ruleBase．newWorkingMemorY0；／／保持指向WorkingMemory的弱引用

ruleBase．newWorkingMemory(false)；／／不保持指向WorkingMemory的弱引用

任何时候，Package类实例可以被加入或移除；这些改变都会被反映到现存

的WorkingMemory类中。下面的代码段演示了如何加入和移除一个包实例：

ruleBase．addPackage(pkg)；／／an入一个包实例

ruleBase．removePackage(”tom．de．rules”)；／／移除同一包下的所有规则

ruleBase．removeRule(”tom．de．rules tt9”Hello Rules”)；／／移除某一包下的一条规则

虽然有删除一个单独规则的方法，但是却没有加入一个单独规则的方法，

要达到这个目的只有加入一个只含有一条规则的包。

3．RuleBaseConfiguration类可以指定RuleBase类的附加行为。在加入

RuleBase后，RuleBaseConfiguration就变成不可变对象。下面的代码段演示了

如何设置工作内存声明对象的模式为相等模式(见WorkingMemory类的分析)：

RuleBaseConfiguration conf=nCW RuleBaseConfiguration O；

conLsetProperty(RuleBaseConfiguration．PROPERTY_ASSERT_BEHAVIOR，

RuleBaseConfiguration．WM BEHAVIOR_EQUALrI'Y)；

RuleBase ruleBase=new ReteooRuleBase(conf)；

4．WorkingMemory类是运行时规则引擎的核心类。它保持了所有被声明到

WorkingMemory的数据的引用，直到撤消(Retracted)。WorkingMemory是有状

态对象。它们的生命周期可长可短。如果从一个短生命周期的角度来同一个引

擎进行交互，意味着可以使用RuleBase对象来为每个会话产生一个新的

WorkingMemory，然后在结束会话后释放这个WorkingMemory(产生一个

WorkingMemory是一个廉价的操作)。另一种形式，就是在一个相当长的时间中，

保持一个WorkingMemory，并且对于新的Facts保持持续的更新。当希望释

放一个WorkingMemory的时候，最好的实践是调用它的dispose0方法，此时

RuleBase中对它的引用将会被移除(尽管这是一个弱引用)。不管怎样最后它将

会被当成垃圾收集掉。

图2．13给出了WorkingMemory类的主要方法的使用。

18

武汉理工大学硕士论文

<<接I：1>>Serializable

△
l

<<接口>>

WorkingMemory

+addEventListener(in AgendaEventListener)
+addEventListener(in WorkingMemoryEventListener)
+assertO6，ect(in 0bject)

+assertObject(in 0bjeer,in boolean)

+disposeO
+fireA llRu lesO

+fireAllRules(in AgendaFilter)
+retractObject(in FactHandle)

+setFocus(in AgendaGroup)

+modifyObject(in FactHandle，in 0bjecO

+getAgenda0

+removeEventListener(in AgendaEventListener)
+removeEventListener(in WorkingMemoryEventListener)

+setGlobal(in String,in 0bjecO

+clearAgenda0

+clearAgendaGroup0
．，．

+getRuleBase(in RuleBase)
霉矿

+setAsyncExceptionHandler(in AsyncExceptionHandler)
+getGlobalsO

+getGtobnt《tn String)

图2-13 WorkingMemory类的类图

WorkingMemory类的使用分为如下几方面：

1)Facts

Facts是在某一应用中，被声明到WorkingMemory中的标准JavaBean对象。

Facts是规则可以访问的任意的Java对象。规则引擎中的Facts并不是拷贝应用

中的数据，它只是持有应用中数据的引用。String类和其他没有getter和setter

方法的类不是有效的Fact。这样的类不能使用域约束(Field Constraints)，因为

使用域约束要依靠JavaBean标准的getter和setter方法来同对象交互。

2)Assertion

Assertion是将Facts告诉给WorkingMemory类的动作， 即

WorkingMemory．assertObject(yourObject)。当应用中声明了一个Fact，它将被检

19

武汉理工大学硕士论文

查是否匹配规则。这意味着所有的匹配工作将会在声明的过程中完成。尽管如

此，当声明完Fact之后，还要调用fireAllRules0方法来执行规则。

当一个对象被声明后，会返回一个FactHandle类。这个FactHandle类是一

个代表在WorkingMemory中的己声明对象的令牌(Token)。当希望收回(Retract)

或者修改(Modify)--个对象时，这个令牌用来同WorkingMemory进行交互。

下面的代码片段演示了这一过程：

Student stu=new Student("jason”)；

FactHandle jasonHandle=workingMemory．assertObject(stu)；

WorkingMemory有两种声明对象的模式：同一模式(Identity)和相等模式

(Equality)，默认是同一模式。

在同一模式下， WorkingMemory使用一个IdentityHashMap类来存储所有

已声明的对象(Object)。这个模式下，当被声明的对象(Object)是同一个实例时(即

有相等的hashCode0方法返回值)，它返回同一个FactHandle。

在相等模式下，WorkingMemory使用一个HashMap来存储所有已声明对

象。这个模式下，当被声明的对象相等(即有相同的equals0方法返回值)时，它

也返回同一个FactHandle。

3)Retraction

基本上就是声明(assert)的逆操作。当撤消(Retract)一个Fact时，

WorkingMemory将不再跟踪那个Fact。任何被激活(Activated)并依赖那个Fact

的规则将被取消。完全有可能存在某条规则是依赖于一个不存在的Fact。在这种

情况下，撤消(Retra∞一个Fact可能导致一条规则被激活。要撤消一个已声明的

对象，必须用声明该对象时返回的那个FactHandle类实例做为参数。

下面的代码段演示了如何撤消一个已声明的对象：

yourObject 0bj=new yourObject(”obj_name”)；

FactHandle myHandle=workingMemory．assertObject(obj)；

⋯。／／某些操作

workingMemory．retractObject(myHandle)；

4)Modification

当一个Fact被修改了，必须通知规则引擎进行重新处理。在规则引擎内部

实际上是对旧的Fact进行撤消操作，然后对新的对象再进行声明操作。要使用

modifyObject0方法来通知WorkingMemory，被改变的Object并不会自己通知

武汉理工大学硕士论文

规则引擎。modifyObject0方法总是要把被修改的Object做为第二参数，这就可

以把一个不可变对象替换为另一个新对象。下面的代码段演示了如何修改一个

已声明对象：

yourObject obj=new yourObject(”obj—name”)；

FactHandle myHandle=workingMemory．assertObject(obj)；

⋯⋯。∥某些操作

obj．setName("anothername”)；

workingMemory．modifyObject(myHandle，obj)；

5)Globals

Global是一个能够被传进WorkingMemory但不需要声明的命名对象。大多

数这样的对象被用来作为静态信息或服务。这些服务被用在一条规则的后件

(RHS，Right．Hand．Side)，或者可能是从规则引擎返回对象的一种方法。下面的代

码段声明的一个名为”list”的元素为String型顺序表对象：

List<String>list=new ArrayList<String>O；

workingMemory．setGlobal Clist”，list)；

setGlobal0方法传进去的命名对象必须同RuleBase中的定义具有相同的类

型(即同规则文件中用Global关键字所定义的类型相同)，否则会抛出一个运行

时异常(RuntimeException)。如果在setGlobal方法调用之前就引用了定义的

Global对象，则会抛出一个空指针异常(NullPointerException)。

6)属性改变监听器(Property Change Listener)

如果Fact对象是一个JavaBean(具有getter和setter方法)，可以为它们实

现一个属性改变监听器，然后把它告诉给规则引擎。这意味着，当一个Fact改

变时，规则引擎将会自动知道，并进行相应的动作(这时就不需要调用

modifyObject0方法来通知WorkingMemory)。要让属性改变监听器生效，首先要

将Fact设置为动态(Dynamic)模式，这可以通过将布尔值true做为assertObject0

方法的第二个参数来实现。下面的代码段演示了这一过程：

Studentjason=new Student(”Jason”)；

FactHandle jasonHandle=

workingMemory．assenObjeCt(jason，true)；／／指定以动态模式加载一个对象

然后要在Student类中加入一个PropertyChangeSuppon类的实例变量和两

个方法：addPropertyChangeListener0和removePropertyChangeListener0。最后要

21

武汉理工大学硕士论文

在该对象(Student)的setter方法中通知PropenyChangeSupport所发生的变化。示

例代码如下：

private final PropertyChangeSupport changes=new PropertyChangeSupport(this)；

public void addPropertyChangeListener(final PropertyChangeListener 1){

this．changes．addPropertyChangeListener(1)；

)

public void removePropertyChangeListener(final PropertyChangeListener 1)

{

this．changes．removePropertyChangeListener(1)；

)

public void setName(final String newName)

{

String oldName=this．getName0；

this．name---newName；

this．changes．firePropertyChange(”name”，oldName，newName)；

)

5．Agenda是Rete算法的一个特点。在一个工作内存活动发生时，可能会有

多条规则发生完全匹配。当一条规则完全匹配的时候，一个激活(Activation)类就

被创建(它引用了这条规则和与其匹配的Facts)，然后被放进Agenda中。Agenda

通过使用冲突解决策略(Conflict Resolution Strategy)来安排这些激活的执行。

Drools规则引擎工作在一个“两阶段”(Two．Phase)模式下：

1)工作内存活动阶段：声明进新的Facts，修改现有的Facts和收回现有的

Facts都是工作内存活动。通过在应用程序中调用fireAllRules0方法，会使引擎

转换到议程器评估阶段。

2)议程安排器评估阶段：尝试选择一条规则进行触发(Fire)。如果规则没有

找到就退出，否则它就尝试触发这条规则，然后再次转换到工作内存活动阶段。

这个过程一直重复，直到议程安排器为空，此时控制权就回到应用程序中。

当工作内存活动发生时，没有规则正在被触发。

图2．14说明了这个两阶段工作循环的过程。

武汉理工大学硕士论文

图2．14 Drools规则引擎的两阶段工作过程

议程安排器r(Agenda)的T作任务表现在以下两个方面：

1 1解决冲突(Conflict Resolution)

当有多条规则在议程安排器中，就需要解决冲突。当触发一条规则时，会

对工作内存产生副作用。规则引擎需要知道规则以什么顺序被触发(例如，触

发规则A可能会引起规则B被从议程安排器中移除。)

Drools采取的冲突解决策略有两种，按照使用频度分为： Salience，

LIFO(Last．In．First．Out)。最常用的策略是Salience，即优先级策略，用户可以为

某个规则指定一个高一点的优先级(通过赋给它一个比较大的数字)。具有高

Salience值的规则将被优先激发。

2’)议程安排器组(Agenda Groups)

议程安排器组是划分议程安排器中规则(即处于激活状态的规则)的一种

方法。在任意一个时刻，只有一个议程安排器组拥有焦点(Focus)，这意味着只

有在那个组中的激活才是有效的。

议程安排器组是在规则组之间创建一个流(Flow)的简便的方法。可以在规则

引擎中，或是用API来切换具有焦点的组。如果规则有很明确的多阶段(Phasesl

或多序YlJ(Sequences)的处理，可以考虑用议程安排器组来达到这个目的。

每次调用setFocus0方法的时候，那个议程安排器组就会被压入一个堆栈，

当这个有焦点的组为空时，它就会被弹出，然后下一个组就会被执行。一个议

程安排器组可以出现在堆栈的多个位置。默认的议程安排器组是”MAIN”，所有

没有被指定议程安排器组的激活态规则都被放到那个组中，这个组总是被放在

堆栈的第一个组，并默认给予焦点。

武汉理T大学硕十论文

6．AgendaFilter接口，用来允许或禁止一个激活的规则能够被触发(Fire)。

Drools提供了下面几种方便的默认实现类：RuleNameEndWithAgendaFilter、

RuleNameEqualsAgendaFilter和RuleNameStartsWithAgendaFilter。

要使用一个过滤器就要在调用fireAllRules0方法的时候指定它。下面的代码

段将对所有名字以”Pass”结尾的规则进行过滤，即禁止其被触发：

workingMemory．fireAllRules(new RuleNameEndsWithAgendaFilter CPass”))；

7．Event包里提供了规则引擎的事件机制，包括规则被触发，对象已经被声

明等事件。可以使用事件机制来进行面向切面的编程(AOP,Aspect．Oriented

Programming)编程。

有两种类型的事件监听器：WorkingMemoryEventListener和

AgendaEventListener。

图2．15和图2．16给出了它们的类图。

<<接口>>
WorkingMemoryEventListener

+objectgsserted(in ObjectAssertedEvent)

+objectModified(in ObjectModifiedEvenO
+objectRetracted(in ObjectRetractedEvenO

图2-15 WorkingMemoryEventListener类的类图

<<接I：：1>>AgendaEventListener
+activationCanceltedon ActivationCancelledEven0
+activationCreated(in ActivationCreatedEvenO

+afterActivationFired(in AfierActivationFiredEvenO
+beforeActivationFired(in BeforeActivationFiredEvenO

图2—1 6 AgendaEventListener类的类图

对两个EventListener接口都提供了默认实现，但在方法中并没有做任何事

情。可以继承DefaultAgendaEventListener和DefaultWorkingMemoryEventListener

这两个默认实现类来完成自己的实现。

下面的代码段演示了如何扩展一个DefaultAgendaEventListener并把它加到

WorkingMemory类中，例子中只实现了afterActivationFired0方法。

workingMemory．addEventListener(new DefaultAgendaEventListener 0{

public void aflerActivationFired(AfterActivationFiredEvent event){

24

武汉理工大学硕士论文

super．afterActivationFired(event)；

System．out．println(event)；

)

})；

Drools规则引擎也提供了DebugWorkingMemoryEventListener和

DebugAgendaEventListener两个事件监听实现类，在其方法中实现了调试(Debug)

信息的输出。下面的代码将DebugWorkingMemoryEventListener这个事件监听类

加到工作内存中。

workingMemory．addEventListener(new DebugWorkingMemoryEventListener O)；

2．3．2 Drools规则配置文件(．drl)的结构和含义

因为本文在第四章将要介绍基于Drools规则引擎的动态数据清洗，并采用

XML文件做为其规则配置文件的格式，在此先结合一个完整的配置文件的实例

来分析Drools规则配置文件的结构及含义。

在写此文时，Drools已经被合并到JBoss组织下，改名为JBossRules。为了

实现规则的动态、实时、自动地配置，本文以Drools 2．1为例，因为其规则配置

文件是XML格式的，便于使用JDOM，DOM4J等工具对其进行读写和更新。

Drools 2．1的规则配置文件的结点结构由XSD(XML Schema Definition)格式

文档所定义，详见附录一。

一个完整的Drools 2．1规则配置文件(．drl文件)的实例如下：

<?xml version=”1．0”?>

<rule-set name=”BusinessRulesSample”xmlns=”http：／／drools．org／rules”

xmlns：java=”http：／／drools．org／semantics／java”

xmlns：xs=”http：／／www．w3．org／2001／XMLSchema—instance”

xs：schemaLocation=”http：／／drools．org／rules rules．xsd

http：／／drools．org／semantics／java java．xsd”>

<java：import>java．1ang．Object<／java：import>

<java：import>java．1ang．String<／java：import>

<java：import>drools．Student<／java：import>

<java：import>drools．Recommendation<／java：import>

武汉理工大学硕士论文

<java：functions>

public static void printStudent(student student){

System．out．println(”＼nStudent Name：”+student．getStudentName0

+”＼11 Sudent Age：”+student．getStudentAge0

+”＼Il Student Sex：”+student．getStudentSex0

+”＼n Recommend”+student．getSIudentNameO

+I190 to schoole”

+student．getSchoole0
+”：”

+student．getRecommend0)；

)

<／java：functions>

<rule name--”USSTSchoole”salience="-1”>

<parameter identifier=”student’’>

<class>drools．Student<／class>

<／parameter>

<java：condition>

student．getSchoole0．equals(”USST”)

<／java：condition>

<java：condition>student．getStudentAge0 > 15 &；&；

student．getGender==’F’<／java：condition>

勺ava：consequence>

student．setRecommend(Recommendation．YES)；

printStudent(student)；

<／java：consequence>

<／rule>

<rule name---”FUDANSchoole"salience='·．1”>

<parameter jdentifier=”student”>

<class>drools．Student<／class>

<／parameter>

<java：condition>

武汉理工大学硕士论文

student．getSchoole0．equals(”FUDAN”)

<／java：condition>

<java：condition>student．getStudentAge0>18<／jaVa：condition>

<java：consequence>

student．setRecommend(Recommendation．YES)；printstudent(student)；

<／java：consequence>

<／rule>

<／rule-set>

从以上的规则配置文件例子可以分析得出，Drl文件的结构如图2．17所示。

图2．17 Drools规则配置文件的结构

如图2．17所示，每个配置文件有且仅有一个rule．set结点；每个rule．set结

点一般有三部分组成：java：import结点(可有多个)，java：functions结点，rule

结点(可有多个，以name属性区分)；每个rule结点有三部分组成：parameter

结点，java：condition结点，java：consequence结点。

配置文件必须满足以下要求：必须有一个rule．set结点；每个rule．set结点

至少有一个rule结点；每个rule结点必须在rule．set结点中有唯一的名字(name)；

每个rule结点至少有一个parameter结点，且在rule内必须有唯一的标识符

(identifer)；java：condition结点中不能有分号；java：consequence结点中必须有分

号。

需要注意的是，在Drools规则配置文件中，一些在Java中的运算符号不能

武汉理工大学硕士论文

直接写，比如“>”，“<”，“&&”，例如上面的“&＆”就写成“&；&；”，

如果是“<”，就应该写成“＆lt；”，以此类推。

Drl配置文件中各个结点的含义如下：

每个java：import结点用来导入将要在java：functions结点，java：condition结

点和java：consequence结点中用到的Java类；在java：functions结点中定义了将

要在iava：condition结点和java：consequence结点中用到的函数；java：condition结

点中定义了规则被触发的条件，多个java：condition结点间是逻辑与的关系；

parameter结点声明了将要在java：condition结点和java：consequence结点中用到

的变量名；java：consequence结点定义了规则被触发时将要执行的动作；每个

java：condition结点中的内容是一个逻辑表达式：每个java：consequence结点中的

内容是一条或多条可被JVM(JavaVirtual Machine)执行的Java代码段。

2．4本章小结

本章首先分析了基于规则的专家系统的结构原理和Java规则引擎的工作机

制，然后分析了规则引擎的核心-Rete算法的原理，最后对一种开源Java规
则引擎——．Drools的API的使用进行了系统地分析和介绍，并结合实例分析了

其规则配置文件的结构及含义。这些，都为后面详细阐述基于Drools规则引擎

的动态数据清洗系统提供了理论基础。

武汉理工大学硕士论文

3．1数据质量

第3章数据清洗的概念

3．1．1脏数据的概念

“脏数据”是指数据不在给定的范围内或对于实际业务毫无意义，或是数

据格式非法，以及错误操作发生等。主要表现为：数据格式错误，数据不一致，

数据重复、错误，业务逻辑的不合理，违反业务规则等。例如，未经验证的身

份证号码、日期字段等，年龄超过取值范围，滥用缩写词、数据输入错误、重

复记录、丢失值、拼写变化、不同的计量单位和过时的编码等等。当今用户所

面对的是一个多厂商异种数据库、异种操作系统和异种网络的环境，异种数据

库间互联成为人们越来越迫切的需求。对于实际运行的系统来说，有许多因素

都可能引起数据库系统之间的差异性，因此在异构数据集成中存在大量“脏数

据”Ds]。

3．1．2数据质量的概念

数据质量问题并不仅仅是指数据错误。文献[19】以形式化的方法定义了数据

的一致性(Consistency)、正确性(Correctness)、完整性(Completeness)和最小性

(Minimality)，数据质量被定义为这4个指标在信息系统中得到满足的程度。文

献[201提出了数据工程中数据质量的需求分析和模型，认为存在很多候选的数据

质量衡量指标，用户应根据应用的需求选择其中一部分。数据质量衡量指标分

为两类：数据质量指示器和数据质量参数，前者是客观的信息，比如数据的收

集时间，来源等，。而后者是主观性的，比如数据来源的可信度(Credibility)、数

据的及时性(Timeliness)等。文献f21】提出了一些数据质量的评估指标。在进行数

据质量评估时，要根据具体的数据质量评估需求对数据质量评估指标进行相应

的取舍。数据质量评估至少应该包含以下两方面的评估指标瞄删。

1)可信度。它的具体含义如下：

精确性：描述数据是否与其对应的客观实体的特征相一致。

武汉理j[大学硕士论文

完整脾llt=：兀蜀￡ ：

一致性：

有效性：

唯一性：

2)可用性。

时效性：

稳定性：

描述数据是否存在缺失记录或缺失字段。

描述同一实体的同一属性的值在不同的系统是否一致。

描述数据是否满足用户定义的条件或在一定的域值范围内。

描述数据中是否存在重复记录。

它的具体含义如下：

描述数据是当前数据还是历史数据。

描述数据是否是稳定的，是否在其有效期内。

3．1．3数据质量问题的分类

根据处理的是单数据源还是多数据源以及问题出在模式层还是实例层，文

献【7】将数据质量问题分为四类：单数据源模式层问题、单数据源实例层问题、

多数据源模式层问题和多数据源实例层问题，如表3-1所示。

表3．1数据质量分类
数据源 单数据源 多数据源

层次 模式层 实例层 模式层 实例层

产生原 缺少完整性约束； 数据记录错 异构的数据模 不一致的数据
因 差的模式设计 误 式和模式设计 汇总

表现形 违反实体完整性约 拼写错误 命名冲突； 冗余，矛盾及
式 束和参照完整性约 等；相似重 模式冲突 不一致的数据

束 复记录

’

无论是模式层问题还是实例层问题，都可以分成字段、记录、记录类型和

数据源四种不同的问题范围，分别说明如下：

字段：错误仅局限于单个字段值中。

记录：错误表现在同一条记录中不同字段值之间出现的不一致。

记录类型：错误表现在同一个数据源中不同记录之间的不一致关系。

数据源：错误表现在数据源中的某些字段值和其它数据源中相关值的不一

致关系。

1．单数据源中的数据质量问题

表3．2和表3．3分别给出了单数据源中模式层和实例层中数据质量问题的实

例。

武汉理_T大学硕士论文

表3．2单数据源中模式层的数据质量问题

范围 问题 脏数据 原因

字段 不合法值 Birthday=’1981-13—76’ 超出值域

记录 违反属性依赖 Age=65，birthday=’2007—12一01’ age=sysdate-birthda

y

记录类 违反唯一性 Porviderl：Name='A1’，NO=’P001； 编号不唯一

型 Porvider2：Name=’A2’，No=’P001’

数据源 违反参照完整 Provider：Name=’A1’， 编号为101的城市

性 CityNo=101 不存在

表3．3单数据源中实例层的数据质量问题

范围 问题 脏数据 原因

字段 空值 Phone·No=(0000)O(O)000 值为缺省值，可能数

据未输入或已丢失

拼写错误 City=’汉钟’ 一般为数据录入错

误

含义模糊 Position=’DBPorg’ DBPorg意义不清

的值
、

多值嵌入 Name=’汉中钢铁集团723000汉中’ 一个字段中输入多

个字段的值

字段值错 City=’汉台区’ 某个字段的值输入

位 到另一个字段中

记录 违反属性 City=’汉中’，zip=’710000’ 城市和邮政编辑之

依赖 间不一致

记录 重复记录 供应商1：(’汉中钢铁集团’，’汉中’) 由于输入错误，同一
类型

供应商2：(’汉台区钢铁集团’，’汉中-) 个供应商信息输入

了两次

冲突的值 供应商1：(’汉中汉航集团’，⋯1) 一个供应商用不同

供应商2：(’汉中汉航集团’，’2’) 的值表示

数据 引用错误 供应商：Name=’汉中烟草集团’， 供应商与城市编号
源

CityNo=’1’ 不能一一对应

31

武汉理_[大学硕士论文

2．多数据源数据质量问题

多数据源集成中的数据清洗问题是信息化建设将面临的一个重要问题。当

多个数据源集成时，发生在单数据源中的这些问题会更加严重。由于每个数据

源都是为了特定应用而单独开发、部署和维护的，这在很大程度上导致数据管

理系统、数据模型、模式设计和实际数据的不同。

在模式级，出现的主要问题是命名冲突和结构冲突【嬲】。命名冲突主要表现
为不同的对象可能使用同一个命名，而同一对象可能使用不同的命名；结构冲

突存在很多种不同的情况，一般是指在不同数据源中同一对象有不同表示，如

不同的组成结构、不同的数据类型、不同的完整性约束等。

除了模式级的冲突，很多冲突仅出现在实例级上，即数据冲突。由于不同

数据源中数据的表示可能会不同，单数据源中的所有问题都可能会出现，比如

重复的记录、冲突的记录等。此外，在整个数据源中，尽管有时不同的数据源

中有相同的字段名和类型，仍可能存在不同的数值表示，如对性别的描述，数

据源A中可能用”true／false”来描述，数据源B中可能会用”T，F”来描述，或者对

一些事物的不同度量单位来表示，如数据源A中采用美元作为货币单位，而数

据源B中采用人民币作为货币单位。

3．2数据清洗

3．2．1数据清洗的概念

数据清洗(Data Cleansing)，也被称为数据净化(Data Scrubbing)和数据清理

(Data Cleaning)，是为了改进数据质量而从原始数据中检测并消除错误和冲突的

过程【261。

包含数据清洗过程的主要领域有三个：数据仓库(Dw，Data Warchouse)，数

据库中的知识发现(KDD，Knowledge Discovery in Databases)和综合数据质量管

理(TDQM，To·tal Data Quality Management)t19I。

在数据仓库环境下，数据清洗是抽取转换装载过程(ETL,

Extra甜on．Transformation．Loading)的一个重要部分；在数据库知识发现中的数据

清洗主要是提高数据的可利用性，如去除噪声、无关数据、空白数据域，考虑

时间顺序和数据的变化等；全面数据质量管理中的数据清洗是减少错误和不一

32

武汉理工大学硕士论文

致性、解决对象识别的过程【71。

数据清洗按照实现方式与范围，可分为4种【7l：

1．手工实现

这是数据清洗的最简单、最基本的方法，即将数据的值与其真实值相比较。

例如，要查清客户数据是否正确，可以每年做一次客户调查，确认其正确的姓

名，地址与工作单位等。当然，这样比较的成本最昂贵，并且比较与真实的差

别对避免将来的错误没有任何帮助。

2．应用程序实现

该方法是通过编写程序检测并改正错误，从而避免花时间与实际数据进行

比较。这个方法可推广到多数据库的情形，比较一致的数据就认为是正确的，

否则就是不正确的，需要进一步考查与更正。数据清洗是一个反复进行的过程，

清理程序复杂、系统工作量大。

3．解决特定应用域的问题

如根据概率统计学原理查找数值异常的记录，对姓名、地址、邮政编码等

进行清洗。这种方法要利用专家知识和人工智能的有关知识。

4．与应用领域无关的数据清洗

这一部分的研究主要集中在缺失值处理和重复值处理【18I。

本文主要研究在数据仓库环境下，数据抽取、转换和加载(ETL,

Extraction．Transformation．Loading)过程中基于Drools规则引擎的动态数据清洗。

3．2．2数据清洗的模型和流程

数据清洗的输入数据一般是3．1．1节所述的“脏数据”。数据清洗对输入的

“脏数据"进行修正，消除其中的错误和冲突，输出满足要求的“干净”数据。

图3-1描述了数据清洗的基本概念模型。

图3-1数据清洗概念模型【271

一般的数据清洗的流程如图3．2所示。包括以下步骤：

33

武汉理工大学硕士论文

1)数据分析：为了能自动检测错误和不一致，需要进行详细的数据分析。

除了手工检查数据或数据采样，应尽可能采用程序方式自动获得关于数据质量

的元数据；

2)定义清洗规则：用户根据数据质量元数据，定义相应的清洗规则；

3)执行清洗规则；

4)反复执行2)和3)，直到将检测到的数据质量问题处理完毕：

5)反复执行1)至4)，直到数据的质量满足要求为止。因为有的数据质量

问题是在其它问题处理后才会出现的。

3．3本章小结

图3-2数据清洗过程【刎

本章首先详细介绍了“脏数据"的概念及数据质量的概念和评估指标，接

着结合实例给出了数据质量问题的详细分类：单数据源模式层问题、单数据源

实例层问题、多数据源模式层问题和多数据源实例层问题，最后详细介绍了数

据清洗的概念，模型及过程。这些，都为后面详细阐述基于Drools规则引擎的

动态数据清洗系统提供了理论基础。

武汉理工大学硕士论文

第4章基于Drools规则引擎的动态数据清洗系统

4．1动态数据清洗系统中使用的规则

本系统使用的规则分为两类：检测“脏数据"的逻辑规则(领域知识规则)

和对“脏数据”采取的动作即修复或丢弃(清洗动作规则)的逻辑。可以用这两

类规则来描述数据清洗的整个过程。

4．2规则引擎应用于动态数据清洗的优点

文献【281没有给出基于规则的数据清洗的设计。但数据清洗规则最终表现为

复杂的业务逻辑。如何描述、存储、更新和高效地执行这些逻辑是基于规则引

擎的动态数据清洗技术的重点。

数据质量问题的定义不是一尘不变的，它不仅和具体的业务领域有关而且

还会随着企业业务的变化而变化的。正因为如此，数据清洗规则也会相应地发

生改变。这就要求基于规则引擎的动态数据清洗技术的实现必须能灵活地定义

规则，灵活地更新规则，即实现规则的动态实时配置。

本文使用Drools规则引擎来解决上述问题，将硬编码的程序性判断转化为

软编码的可动态配置的规则集，并且动态地生成规则库，从而能做到灵活地定

义规则和动态调整规则。这种动态性主要体现在规则的持久化存储和Drools规

则配置文件的动态更新。

4．3 DREBDDC系统概述

基于Drools规则引擎的动态数据清洗系统(DREBDDC，Drools Rule Engine

-Based Dynamic Data Cleansing)主要用于对“脏数据"的自动识别和对其进行的

操作，包括以下功能模块：领域知识规则和清洗动作规则的输入及持久化模块、

规则配置文件动态生成模块、表达式扫描转换模块、通用数据存取接口模块、

规则引擎执行模块等。规则引擎执行模块采用开源的Java规则引擎——Drools

武汉理工大学硕士论文

2．1。通用数据存取接口采用基于JDBC的数据库连接池技术进行数据加载和持

久化。

由于在实际应用中，待清洗的多个数据源可能位于不同操作系统平台上的

多种数据库管理系统中，本系统采用面向对象的规则引擎实现Drools和基于

JDBC的数据库连接池访问接E1，便于与不同平台、多种数据库产品的集成。

4．4 DREBDDC系统的设计与实现

4．4．1领域知识规则的巴科斯范式定义

要很好的完成数据清洗工作，一定要结合特定应用领域的知识。因此，需

要将领域知识以规则的形式表示出来，在整个数据清洗过程中加以引用，并允

许添加和修改。

领域知识规则以一组表的形式存储在规则数据库中。由多个规则组组成，

每个规则组都具体反映某一个领域的知识。

结合ETL工具1271中的巴科斯范式(BNF,Backus．Naur Form)语言，领域知识

规则组的定义形式如下：

<Business Rule>：：=

RNO<ID>；

RuleGroup(<Declaration of Rule Group>)；

CondList(<Declaration of Condition>)；{(<Declaration of Condition>；)}

ConcNO(<Declaration of Conclusion)；

定义领域知识规则所属的规则组标识，字符串；

<Declaration of Rule Group>：：=<Group Name>

定义领域知识规则的条件：是由函数、输入记录的字段名称、常量、判断

运算符、算术运算符、字符串运算符、布尔运算符组成。

<Declaration of Condition>：：=

<CondNO><ID>；

<ResField>(<Declaration of Restrict String>；)

<BriefDesc>(<Brief Description>；)

【<DetailDesc>(<Detail Description>；)】

武汉理工大学硕士论文

【<KnowledgeList>(<Declaration of Knowledge>)；{(<Declaration of

Knowledge>；)}】

【<CalDir>(<Declaration of Illustration>；)】

定义限制字段，字符串，条件所限制的字段名，不能为空串：

<Declaration of Restrict String>：：=String

简短描述，字符串，对条件简明扼要的描述，不能为空串；

<Brief Description>：：=String

详细描述，字符串，可以为空，若条件的简明描述不甚明了，可对条件进

行详细描述。

<Detail Description>：：=String

定义条件所使用的领域知识，可以为空，如下所示：

<Declaration of Knowledge>：：=

<KnoNO>(ID)

<KnoType>(<Declaration of Knowledge Type>；)

<Concept>(<Declaration of Concept>)；((<Declaration of Concept>)})

<Element>(<Declaration of Element>)，{(<Declaration of Element>)})

定义领域知识规则知识的数据类型，字符串型，分为isa(是一个)、ispart(是⋯

的一部分)两种：

<Declaration of Knowledge Type>：：=isalispart
定义概念名词，字符串，不能为空：

<Declaration of Concept>：：=String

定义集合元素，字符串，格式为用逗号隔开的知识项，不能为空

<Declaration of Element>：：=String

定义领域知识规则的结论：

<Declaration of Conclusion>：：=<ConcNO><ConcStr>

<concStr>：：={结论本身或结论的计算调用说明，字符串，不能为空)

4．4．2清洗动作规则的巴科斯范式定义

清洗动作规则的范式定义如下【27】：

<DataClean Rule>：=

武汉理工大学硕士论文

RuleNo<ID>,

RuleType(<Declaration of Rule Type>)；

CondList(<Declaration of Condition>)；{(<Declaration of Condition>；)}

【RecordSetList(<Declaration of RecordSet)；((<Declaration of RecordSet；)}】

【FieldList(<Declaration of Field)；((<Declaration of Field；)}】

【KeyList(<Declaration of Key)；{(<Declaration of Key；))】

【DealPolicy<IgnorelThrow Out[Automation>】

【DealScript(Declaration of Deal Script)]．

定义清洗动作规则的类型：

<Declaration of Rule Type>：：=l一输入错误12-字段值缺失13-字段值不在值域范

围内14．单字段中包含多个字段值15一相似重复记录的合并16一引用字段值缺失或错

误17·不符合业务规则约束18-记录集之间不符合关联约束19一异常110一手Illl一自定

义

定义清洗动作规则的条件：是由函数、输入记录的字段名称、常量、判断

运算符、算术运算符、字符串运算符、布尔运算符组成。

<Declaration of Condition>：：=<RecordSet Name><Condition Expression>

<Condition Expression>：：=【NOT]<Condition>[ANDlOR<Condition>】

<Condition>：：=<operand><comparison operator><operand>l<Boolean

Function>

<comparison operator>：：=”>”Ifl>=”IfI<”l’．<=．t1．I=--”IlI<>”

<Boolean Function>：：=<Boolean Function Name>(<Function Parameter>)

<Function Parameter>：：=<operand>[，<operand>】

<operand>：：=<RecodeSet Name>．<Field Name><Key

Name>l<Const>[<Function>

【<operator><operand>】

<operator>：=”+”lft一”P”IIf／．’

<Function>：：=<Function Name>”("<operand>”)”

定义记录集的名称：

<Declaration of RecordSet>：：=<RecordSet Name>

定义字段的名称：

<Declaration of Field>：：=<Field Name>

武汉理工大学硕士论文

定义关键字的名称：

<Declaration of Key>：：=<Key Name>

定义处理脚本：是由输入记录的字段名称、连接符”+”和七种基本操作组成；

连接符”+”表示基本操作的组合。脚本中基本操作的顺序就是执行时的工作流。

七种基本操作将在4．4．3中加以描述。

<Declaration of Script>：：=<Operarion Expression>

<Operarion Expression>：：=<Operator>[<RecodeSet Name>][<Field

Name>][<Key Name>][+<Operater>[<RecodeSet Name>][<Field Name>][<Key

Name>]】

<Operator>：：=FormatlCombinelDividelSelectlFilterlRefModifyIAggregate

与领域知识规则的定义相比较，清洗动作规则没有RuleGroup和ConcNo两

项，即规则组和结论两项。这是因为在清洗动作规则中，选择清洗动作规则的

类型作为分组的标准，清洗动作规则的类型本身就可以看做结论。

4．4．3清洗动作规则执行的基本操作

清洗动作规则执行的基本操作有以下几种：格式化(Format)、合并(Combine)、

分割(Divide)、选择(Select)、过滤(Filter)、关联修正(RefModify)、聚集

(Aggregate)‘2”。

格式化主要针对于数据实例清洗，用于错误数据清除和语义定义不一致数

据的替换，这种方法需要使用替换列表来将整个数据或者其中部分数据映射替

换为正确的数据。替换过程中首先需要发现原值中需要替换的项，然后搜索替

换列表中的替换项。

合并主要针对相似重复记录的消除，检查整个数据是否有相似重复记录存

在，并且消除这些冗余冲突。合并一般需要先使用格式化对数据进行预处理清

除错误数据或语义替换。在合并操作中一般需要包含适用的匹配函数和合并函

数。

分割主要是为消除模式冲突，可以将单个属性分割成多个属性或者将多个

属性的合并成一个属性，也可以和选择结合将一个表中属性分割成几个不同意

义的属性(值不变)或者分割到几个表的属性中。

选择主要针对模式的冲突，选择一个数据对象中的几个属性组成另外一个

武汉理工大学硕士论文

对象，一般与合并、分割一起使用。该种方法可以理解为投影。

过滤主要与分割一起使用，可以通过某些属性的值来获取所需要的数据行。

在统一数据模型的记录集定义中定义了数据过滤条件。

关联修正是专门针对数据值之间的关联错误的，主要检查关联属性的值是

不是错误让用户自己进行选择替换。

聚集主要针对语义定义不一致中的不同层次上的信息冲突，使用聚集将低

一层的数据信息聚集成高一层的数据信息。

4．4．4 DREBDDC系统的规则数据库设计

在DREBDDC系统中使用数据库系统来持久化用户从前端界面输入的规

则，包括领域知识规则和清洗动作规则。表的结构参照了4．4．1和4．4．2中对规

则的BNF范式定义。

1．领域知识规则表结构(Tb_KnowRule)

表4-1领域知识表结构

字段名 类型 备注

KnowRule ID Numeric(1o) 非空，主键

KnowRuleGroup——ID Numeric(10) 外键，非空

Cond_ExpStr Varchar2(1024) 非空

Result_ExpStr Varchar2(1024) 非空

KnowRule ID是标识每条规则的主键；KnowRuleGroup 为外键，引用．ID

Tb KnowRuleGroup表主键；Cond 定义业务规则的条件表达式列表，多．ExpStr

个表达式用特殊字符分割(如”舟”等)，各表达式问是合取关系。每个表达式由函

数、输入记录的字段名称、常量、判断运算符、算术运算符、字符串运算符、

布尔运算符组成。Result ExpStr是结论本身或结论的计算调用说明。

2．领域知识规则组表结构(Tb KnowRuleGroup)

表4．2领域知识组表结构

字段名 类型 备注

KnowRuleGroup——ID Numeric(1 0) 主键，用于标识每一组规则，非空

Group_Name Varchar2(50) 规则组名，用于标识一组规则，非空

Group_Desc Varchar2(255) 规则组描述

武汉理工大学硕十论文

3．清洗动作规则表结构(Tb_CleanRule)

表4．3清洗动作规则表结构

字段名 类型 备注

CleanRule ID Numeric(10) 主键，用于标识一条清洗规则，非空

CleanRule_Type Numeric(4) 定义清洗动作规则的类型：1．输入错误；2．

字段值缺失；3．字段值不在值域范围内；4．

单字段中包含多个字段值；5．相似重复记录

的合并；6．引用字段值缺失或错误；7．不符

合业务规则约束；8．记录集之间不符合关联

约束；9．异常；10．手工；11．自定义。非空

Cond_ExpStr Varchar2(1024) 定义清洗动作规则的条件表达式列表，多个

表达式用特殊字符分割，各表达式间是合取

关系，是由函数、输入记录的字段名称、常

量、判断运算符、算术运算符、字符串运算

符、布尔运算符组成，非空

RecsetNames Varchar2(1024) 定义清洗动作规则所操作记录集的名称列

表，用特殊字符分割，非空

EieldNames Varchar2(1024) 字段名称列表

DealPolicy Numeric(2) 处理策略：1．忽略2．抛出异常3．自动

DealActionExp Varchar2(1024) 是多个操作表达式的组合，操作表达式的顺

序就是执行时的工作流顺序；<处理动作表

达式>：：=<操作表达式>；<操作表达式>：：=<

操作方法>【<记录集名>】【<字St ag>If+操作

表达式】<操作方法>-,--格式化I合并1分割I投

影I过滤引用性修改I聚合

4．4．5 DREBDDC系统功能模块设计与分析

本系统由以下5个系统功能模块构成，其相互关系如4．4．6节的图禾1所示。

1．领域知识规则和清洗动作规则的输入及持久化模块

41

武汉理工大学硕士论文

提供基于B／S结构的Web表单页面，包括领域知识规则输入页面和清洗动

作规则输入页面，让熟悉待清洗数据源结构及相关领域知识的专业人员输入各

种数据清洗规则(领域知识规则，清洗动作规则)，表单的内容与上述的数据库

表结构一致。用户提交表单数据后，在后台服务器上调用通用数据访问接口将

这些规则持久化到数据库中，用于生成规则配置文件。

2．Drools 2．1规则配置文件(．drl文件)动态生成模块

当用户选择执行某些清洗规则时，从数据库中取出对应的规则数据，然后

按照Drools规则配置文件的格式生成．drl文件。因为此文件是XML格式的，此

过程可以采用DOM4J生成配置文件。在规则配置文件的Condition结点和

Consequence结点中是Java语言可执行的语句代码，因此必须先调用表达式扫描

转换模块将这些表达式将它们转换成Java代码。

3．规则引擎执行模块

这是系统的总控模块，负责调用通用数据访问接口模块从待清洗数据源中

读入数据，并根据用户选择的规则从数据库中读取规则数据，然后调用规则配

置文件动态生成模块将其转换为Drools规则配置文件，最后对待清洗数据调用

规则引擎核心执行规则配置文件中定义的领域知识规则和清洗动作规则，调用通

用数据访问接口将清洗后数据持久化到目标数据库中。

4．通用数据存取接口模块

采用基于JDBC的数据库连接池技术取得数据库连接，按照调用者的要求完

成数据读取，主要包括以下几部分：

1)调用者输入数据库名，表名，查询语句，返回对对应于该数据表的对象

化数据，如果出现错误，则抛出相应的异常；

2)调用者输入数据库名，表名，数据更新语句，将要持久化的对象化数据，

将其持久化到指定数据库的相应表中。如果出现错误，返回false，并抛出相应

的异常，否则返回true，表示操作成功。

5．表达式扫描转换模块

本模块主要处理以下的表达式有下面两种：

1)领域知识规则表中的条件表达式(Cond—ExpStr)及结果表达式

(Result_ExpStO：

2)清洗动作规则表中的条件表达式(Result—ExpStr)及处理动作表达式

(DealActionExp)。

42

武汉理工大学硕士论文

本模块的作用是用将上述表达式转换成Java可执行的代码，并嵌入到生成

的规则配置文件中。

转换的过程如下：

1)逻辑表达式，例如对于表student，字段age，用户从前台输入的表达式

为：

”student．age>=25&＆student．age<=30”

则转换后变为：

Student．getAge0>=25&&Student．getAge0<=30

这里，表student被映射为对象Student，映射方法按照标准的对象／关系映射

原则进行，其它算术运算符和逻辑运算符则保持不变。

2)赋值表达式，主要用于清洗动作规则的处理表达式中，例如对表student，

字段addr，用户输入的表达式为：

Student．addr-”陕西省汉中市”

则转换后变为：

Student．setAddr(”陕西省汉中市”)；

这一将准代码字符串转换为Java语言可识别的程序代码的功能由一个词法

分析模块提供，它对输入的表达式字符串进行分析，并输出Java代码串。

43

武汉理工大学硕士论文

4．4．6 DREBDDC的系统架构

DREBDDC的系统架构如图4．1所示。

≤：======多

清洗后数据
＼ 一／厥磊 提交L哭 J l

’。’’。—。

持久化 持久化

◆

通用数据访问接口
‘

L

执行规则

÷，——一 ————、?
≤：=====二乡

清洗动作规则 r Drools规则引擎

≮=F乡域知裁规则
辛格x”

t

载入对象化数据I 表达式扫描转换读取规则数据斗 一

l数鼠爱舟基f生成规则配置文件

＼～一门匕＼＼
对象化数据

t

1 ．

通用数据访问接口

▲ J

读取 读取
。

待清洗源数据 ∈ ≥’一—_一

待清洗源数据＼／弋 ＼、 ，／

图4．1 DREBDDC的系统架构图

武汉理工大学硕士论文

如上图所示，利用通用数据访问接口加载待清洗数据到内存缓冲区中；通

过规则引擎加载生成的规则配置文件；对数据缓冲区中的数据执行规则；将清

洗完成的数据持久化到数据库中。其中，待清洗多数据源包括：ODBC数据源、

非ODBC类关系型数据库数据源、应用数据、电子商务数据、各种文本数据等。

4．4．7 DREBDDC系统的工作流程

DREBDDC系统的工作流程如图4-2所示。

图4．2 DREBDDC系统的工作流程

45

武汉理工大学硕士论文

4．4．8 DREBDDC系统的开发运行环境

系统的开发运行环境如下：

开发语言：Java 0DK 1．4)

开发工具：Eclipse3．2+MyEclipse5．5

操作系统：Window 2000 Advanced Server

数据库服务器：Oracle9i+MSSQLServer 2000+MySQL5．0．22

应用服务器：BEAWebLogic 8．14

4．4．9 DREBDDC系统核心功能实现代码介绍

1．以下是DREBDDC系统的数据清洗转换类的部分代码。它从指定路径读

取Drools规则配置文件(使用loadRules0方法)，以便生成规则库，然后将其应

用到由参数传入的数据对象上，并将转换后的数据持久化到目标数据库中。．

public class Transformer

{

private static String filepath；

private static RuleBase businessRules =null；

private static void loadRules0 throws Exception

{

if(businessRules==null)

{

businessRules=RuleBaseLoader'loadFromUrl(Transformer'class

．getResource(CLEAN_RULE_FILE))；

)

)

public static void transform(Data dataToProcess)

{

try

{

loadRules0；

)

武汉理工大学硕士论文

catch(Exception e1)

一【

e1．printStackTrace0；

)

WorkingMemory workingMemory=businessRules．newWorkingMemory0；

workingMemory．addEventListener(new DebugWorkingMemoryEventListener0)；

try

{

workingMemory．assertObject(dataToProcess)；

workingMemory．fireAllRules0；

)

catch(Exception e2)

{

e2．printStackTraceO；

)

)

public static String getFilepath0

{

retum filepath；

)

public static void setFilepath(String filepath)

{

BusinessLayer．filepath=filepath；

)

)

2．以下是DREBDDC系统的规则配置文件动态生成类的部分代码。这段代

码的功能是从数据库中读取规则元数据，然后调用Dom4J软件包以生成Drools

规则引擎可以识别的规则配置文件一rl文件，并存入到指定目录。
public class RulesUpdater

{

public boolean FormatRules(String filename)

47

武汉理工大学硕士论文

boolean returnValue=false；

try

{

SAXReader saxReader=new SAXReader0；

Document document=saxReader．read(new File(filename))；

XMLWriter writer=null；

OutputFormat format=OutputFormat．createPrettyPrintO；

writer=new XMLWriter(new FileOutputStream((filename))，format)；

writer．write(document)；

writer．closeO；

returnValue=true；

’

catch(Exception ex)

{

ex．printStackTraceO；

>

return returnValue；

)

public boolean ModifyRules(String sfilename，String tfilename，

String[】conditions，String concequence，String rulename，String

VOName)

{

boolean issuccess=false；

try

{

SAXReader saxReader=new SAXReader0；

Document document=saxReader．read(new FileInputStream(s6lename))；

Element rule—set=document．getRootElement0；

Element temp亍null；

Element rule—x=rule_set．addElement("rule”)；

武汉理工大学硕士论文

rule_x．addAttribute(”name”，rulename)；

Element para=rule__x．addElement(”parameter”)；

para．addAttribute(”identifier”，”student”)；

Element clazz 2 para．addElement(”class”)；

clazz．setText(VOName)；

for(int i=O；i<conditions．1ength；i++)

{

temp=rule_x．addElement(’'java：condition”)；

temp．setText(conditions[i])；

)

Element consequence=rule_x．addElement(’'java：consequence”)；

consequence．setText(concequence)；

issuccess=true；

try

{

XMLWriter writer=new XMLWriter(

new FileOutputStream(tfilename))；

writer．write(document)；

writer．closeO；

issuccess=true；

)

catch(Exception ex)

{

ex．printStackTrace0；

)

’

catch(Exception e)

{

e．printStackTrace0；

)

return issuccess；

武汉理工大学硕士论文

)

下面是上述RulesUpdater类的ModifyRules方法生成的一个规则配置文件，

用于执行如下清洗逻辑：判断每条记录的Name字段是否为空，如为空，则置为

缺省值：”张三”。

<?xml version=”1．0”?>

<rule。set name=”Salary”xmlns=”http：／／drools．ore,／rules”

xmlns：java=”http：／／drools．or#semantics／java”

xmlns：xs=”http：／／www．w3．org／2001／XMLSchema—instance”

xs：schemaLocation=”http：／／drools．org／rules rules．xsd

http：／／drools．org／semantics／java java．xsd’’>

<java：import>java．1ang．Object<／java：import>

<java：import>java．1ang．String<／java：import>

<java：import>drebddc．VO．Student<／java：import>

<java：functions>

public static void printstudent(Student student){

System．out．println(”＼nStudent Name：”+student．getStudentName0
+”＼n Sudent Age：”+student．getStudentAge0

+”＼11 Student Sex：”+student．getStudentSex0

+"＼Il Recommend”+student．getStudentName0

}

<／java：functions>

<rule name=”isSalaryNull’’>

<parameter identifier=”data’’>

<class>drebddc．VO．Student<／class>

<／parameter>

<java：condition>data．getName0==null<／java：condition>

<java：consequence>data．setName(‘‘张三’’)；<／java：consequence>

<／rule>

<／rule．set>

该文件中定义了一个规则集(见<rule．set>标记)，其中可以包含多条规则(见

武汉理工大学硕士论文

<rule>标记)。每个规则中又定义了很多逻辑条件(见<java：condition>标记)。这些

逻辑条件间是“与’’的关系。Drools规则引擎将根据这些逻辑条件动态地构建

最优匹配树，高效地检验数据(．见<parameter>标记)是否符合逻辑条件。如是，

则触发<java：consequence>标记中的Java代码，在此处可判断任意逻辑(例如，

根据记录值到另一数据库中查询参照值以决定当前记录是否是脏数据)，执行任

意动作(保留、修复或丢弃)；如否，则不触发。

在实际中用到的规则前件可能是一个非常复杂逻辑表达式，后件可能是上

述的七种基本操作或简单的赋值操作等，而这些前件和后件都是由专业人员定

义的。 ．

3．以下是DREBDDC系统的通用数据访问模块的部分代码：

public class CommUtils

{

private static final Logger logger=Logger．getLogger(CommUtils．class)；

private static final StringLOG4JFILEPATH=”com＼＼drebddc＼＼config＼＼l094j．xml”；

private static final String

DA工ASOURCECONFlGP：f气=rH=”com＼＼drebddc＼＼config＼＼datasource．properties”；

static

{

URL logUrl=Thread．currentThread0．getContextClassLoader0

．getResource(LOG4JFILEPATH)；

DOMConfigurator．configure(109Url)；

)

private static CommUtils instance =null；

private CommUtils0

{

)

public static final CommUtils getlnstance0

{

if(instance==null)

{

instance=new CommUtils0；

51

武汉理工大学硕士论文

)

return instance；

)

private static final String getConfigParaByName(String paraname)

{

Properties props=new Properties0；

String retvalue=null；

InputStream istream=null；

istream=Thread．currentThread0．getContextClassLoader0

．getResourceAsStream(DATASOURCECONFIGPATH)；

try

{

props．10ad(istream)；

retvalue=props．getProperty(1：laraname)；

>

catch(IOException e)

{

e．printStackTrace0；

logger．error(e．toStrin90)；

>

finally

{

try

{

if(istream!=null)

{

istream．close0；

)

istream=null；

)

catch(IOException e)

52

武汉理工大学硕士论文

{

e．printStackTrace0；

logger．error(e．toStrin90)；

】．

)

retum retvalue；

)

public Connection getConnection0

{

DataSource ds=null；

Context ctx=null；

Connection myConn=null；

try

{

ctx=getInitialContextO；

·ds=0avax．sql．DataSource)ctx

．100kup(getConfigParaByName(”datasource．name”))；

)

catch(Exception e)

{

e．printStackTrace0,

logger．error(e．toStrin90)；

)

try

{

myConn=ds．getConnection0；

}

catch(Exception e)

{

e．printStackTraceO；

logger．error(e．toStrin90)；

53

武汉理工大学硕士论文

)

retum myConn；

)

public void cleanup(ResultSet rs，Statement cstmt，Connection corm)

{

try

{

if(rs!=null)

{

rs．closeO；

rs=null；

)

if(cstmt!=null)

{

cstmt．closeO；

cstmt=null；

)

if(corm!=null)

{

cA)nil．closeO；

corm=null；

)

)

catch(Exception e)

{

e．printStackTraceO；

logger．error(e．getMessageO)；

>

)

private static Context getInitialContextO throws Exception

{

武汉理工大学硕士论文

Properties properties=null；

InitialContext context=null；

try

{

properties=new Properties0；

properties．put(Context．INITtaL_CONTEXT_FACTORY,

getConfigParaByName(”context．initialfactory”))；

properties．put(Context．PROVIDEIL-UR乙

getConfigParaByName(”context．provider．url”))；

context=new InitialContext(properties)；

}

catch(Exception e)

{

e．printStackTrace0；

logger．error(e．toStrin90)；

)

retum context；

)

)

下面是datasource．properties文件的一部分内容：

datasource．name=ds／oracle／drebddc

context．provider．url=t3：／／127．0．0．1：7001

context．initialfactory=weblogic．jndi．WLInitialContextFactory

以上代码通过JDBC连接池方式取得数据库连接，连接池配置在应用服务器

WebLogic8．14上，根据datasource．properties文件的内容进行。CommUtils类主

要提供了一个用于取得数据库连接的方法：public Connection getConnection0。

该类还采用了L094J提供了记录日志的功能。

通用数据访问接口能够跨平台、网络访问数据，支持在不同类型数据源间

建立连接。通过连接池方式取得数据库连接是为了提高系统的运行效率。

55

武汉理]二大学硕士论文

4．5 DREBDDC系统实验结果性能分析

4．5．1实验数据

本文对DREBDDC系统的性能进行了实验测试。实验分别记录了使用Drools

规则引擎和硬编码(即将清洗逻辑直接嵌入到程序代码中)条件下，在相同清

洗规则数量及相同记录数量的两种情况下的单数据源数据清洗时间。

实验采用的部分待清洗源数据如表4．4所示。

表4—4测试用待清洗数据(部分)

Student id Name Hometown MajorKey Sex

1001 ’ZZZ’ ’SX’ 001 ’F．

1002 ’BBB’ ’HB’ 005 ’M’

1003 ’CCC’ ’HZ’ 008 ’Ft

1004 ’DDD’ ’HZ’ 004 ’M’

1005 ’EEE’ ’SZ’ 005 ’Ft

1006 ’FFF’ WH。 。

008 ’M’

1007 ’GGG’ TY’ 007 ’Ff

1008 ’HHH’ ’BJ’ 010 ’M’

1009 ’III’ ’SH’ 009 ’F．

1010 'JJJ’ ’WH’ 012 ’M’

1011 ’KKK’ TY’ 013 ’F’

1012 ’LLL． ’XA’ 017 ’M’

1013 ’MMM’ ’WN’ 015 ’Ff

1014 ’NNN’ ’AK' 005 ’M’

1015 ’OOO’ tHT． 001 ’FI

1016 ’PPP’ ’NZ’ 002 ’M’

56

武汉理工大学硕士论文

测试用到的部分清洗规则及相应硬编码如表4．5所示。

表4．5测试用清洗规则及相应硬编码对照表(部分)

清洗规则 硬编码

<parameter identifier=”stu”><class>Student<／class> if

<／parameter> (stu．getName0

<java：condition>stu．getName0==”ZZZ” ==”ZZZ”)

<／java：condition> stu．remove0；

<java：consequence>stu．remove0；<／java：consequence>

<parameter identifier=”stu”><class>Student<／class> if

<／parameter> (stu．getMajorKey0

<java：condition> +1000!=

stu．getMajorKey0+1000 1=stu．getStudent Id0 stu．getStudent_ld0)

<／java：condition> stu．removeO；

<java：consequence>stu．remove0；<／java：consequence>

<parameter identifier=”stu”><class>Student<／class> if

<／parameter> (stu．getSex0

<java：condition>stu．getSex0==”F” ==”F”)

<／jaVa：condition> stu．setSex(”女”)；

<java：consequence>

stu．setSex(”女”)；<／java：consequence>

<parameter identifier=”stu”><class>Student<／class> if

<／parameter> (stu．getSex0

<java：condition>stu．getSex0==”M’’ ==”M”)

<／java：condition> stu．setSex(”男”)；

<java：consequence>

stu．setSex(”男”)；<／java：consequence>

在表4．5中：第一条规则过滤掉学生姓名为”ZZZ”的记录；第二条规则过滤

掉学生专业代码和学号不满足条件的记录：第三条规则对性别的表示进行转换。

第四条规则与第三条规则的作用类似。

57

武汉理工大学硕士论文

部分清洗后数据如表4-6所示。

表4．6清洗后数据

Student id Name Hometown MajorKey Sex

1004 ’DDD’ ’HZ’ 004 ’男’

1005 ’EEE’ ’SZ’ 005 ’女’

1007 ’GGG’ ’TY’ 007 ’女’

1009 ’III’ ’SH’ 009 ’女’

实验测试结果数据如表4．7所示。

表4．7 DREBDDC系统实验测试结果数据

清洗规则 记录数量 使用Drools 使用Drools 使用硬编码 使用硬编

数量(条) (条) 规则引擎的 规则引擎 的清洗时间 码的清洗

清洗时间 的单位清 (ms) 时间／使用

(ms) 洗时间 Drools规

(ms／记录) 则引擎的

清洗时间

(比率)

3 10 13．18 1．32 O．92 O．07

3 100 28．48 O．28 6．63 O．23

3 1000 198．14 O．20 81．57 0．41

3 10000 775．45 0．08 328．56 0．42

12 10 16．25 1．63 0．97 0．06

12 100 38．29 0．38 9．12 0．24

12 1000 209．68 0．21 88．37 0．42

12 10000 951．15 0．10 348．29 0．37

30 10 19．21 1．92 1．43 0．07

30 100 80．09 0．80 10．24 0．13

30 1000 282．26 0．28 90．76 0．32

30 10000 1040．85 0．10 592．38 0．57

58

武汉理工大学硕士论文

4．5．2实验结果分析

1．在记录条数相同的情况下，随着清洗规则数量的增加，使用Drools规则

引擎的清洗时间缓慢上升。这说明Drools规则引擎的性能受规则数量的影响不

是很大。如图4．3如示。

图4-3使用Drools规则引擎的数据清洗时间

2．随着记录数的增加，单条记录清洗时间快速下降。当单表记录数大于

10000时，单条记录清洗时间稳定在0．2ms左右，这说明当记录数很大时，单条

记录的平均清洗时间趋于稳定，这说明系统在处理大量数据时性能比较理想。

如图4-4所示：
．

图4-4使用Drools规则引擎的单条数据记录清洗时间

59

武汉理工大学硕十论文

3．当记录数大于1000时，使用硬编码的数据清洗性能和使用Drools规则

引擎的性能之比稳定在的40％左右。这说明当记录数足够大时，使用Drools规

则引擎和使用硬编码清洗总时间之比趋于稳定。尽管使用Drools规则引擎的清

洗总时间只有使用硬编码清洗总时间的40％，但性能损失换来的是系统的通用

性和规则的动态可配置性。如图4—5所示：

图4．5使用Drools规则引擎和使用硬编码清洗总时间比较

4．6本章小结

本章阐述了基于Drools规则引擎的动态数据清洗系统的设计方案。首先给

出了系统使用的两种规则，并给出了其巴科斯范式定义，从而为持久化规则提

供了基础。接着详细介绍了系统的规则元数据库设计，系统功能模块划分，系

统结构，工作流程，系统的开发运行环境，并给出了一些主要模块的部分代码。

最后给出了系统的实验性能分析结果。测试结果表明：Drools规则引擎的性能

受规则数量的影响不是很大；当记录数很大时，单条记录的平均清洗时间趋于

稳定；当记录数足够大时，使用Drools规则引擎和使用硬编码清洗总时间之比

趋于稳定。尽管使用Drools规则引擎的清总时间只有使用硬编码清洗总时间的

40％，但性能损失换来的是系统的通用性和规则的动态可配置性。

武汉理工大学硕士论文

5．1总结

第5章总结和展望

在运营管理过程中，企业积累了大量的电子数据，这些数据非常重要。为

了更好地发挥企业信息系统的作用，必须提高信息系统的数据质量。因此，研

究企业信息系统的数据清洗问题具有理论和应用价值。

本文主要做了以下几个方面的工作：

1．分析了数据清洗问题产生的原因和提出的背景，给出了数据质量的概念

及评价指标，数据清洗技术在各个应用领域中的定义以及国内外对数据清洗技

术研究和应用的现状。总结了数据清洗技术的原理和方法，数据清洗的评价标

准，并对数据清洗的基本流程进行了详细的描述。

2．分析了规则引擎的原理，产生的背景及其使用方法。

3．研究分析了一种开源的Java规则引擎软件包——D瑚ls，并系统地研究
分析了其API的使用方法和规则配置文件的结构和含义。

4．研究分析了领域知识和清洗动作规则的巴科斯范式(BNF,Backus．Naur

Form)定义。

5．提出了采用Drools规则引擎执行清洗逻辑，能够处理多种数据质量问题

的数据清洗架构-DREBDDC，从而解决了现有数据清洗工具依赖于复用性差
的硬编码或灵活却低效的人工判断来进行数据清洗的问题。

5．2展望

数据清洗技术发展的空间还很大，还有许多的工作要做，随着信息技术的

发展，又给数据清洗技术提出了新的挑战。

1．本文将Java规则引擎Drools就用于数据清洗，但是清洗规则却是依赖于

一些清洗算法的，因而并没有降低数据清洗的算法复杂性。

2．由于Drools规则引擎需要占用较大的内存空间，对系统配置要求很高，

今后可考虑使用分批载入，利用外存等方式来节省内存作用，也可考虑采用性

61

武汉理工大学硕士论文

能较好的数据缓存软件包将规则引擎引用的数据对象进行缓存，如encache，

oscache和swarmcache等开源的软件包。

3．由于待清洗数据源的复杂性，数据清洗具有较大的难度。在某些情况下，

需要业务人员和专业技术人员进行领域知识规则和清洗动作规则的定义和输

入，因此对规则定义者的要求较高。

4．本文对基于Drools规则引擎的数据清洗方法的研究仍处于理论阶段，还

没有把该方法应用到具体的实践中去。以后还需要进一步完善这种数据清洗方

法的实践环节，并把它加入到数据清洗软件平台中去，成为一种实用的工具。

62

武汉理工大学硕士论文

参考文献

【1】1 Kolber,A．，Hay,D．，Healy,K．A．，and Hall，J．et a1．GUIDE Business Rules Project．【OL】Final

Report．Business Rules Group(www．businessrulesgroup．org)，Chicago，1997

【2】Ronald G Ross．Principles of the Business Rule Approach【M】．Addison-Wesley,2003：8

【3】闫丽萍，潘正运，梁冰等．基于业务规则管理技术的系统开发方法分析p】．信息工程大学

学报，2006．7(2)：141—143+171

【4】夏建军．规则引擎：业务逻辑与应用分离的利a[oLl．

http：／／blog．vsharing．corn／Article．aspx?aid=433287．2006．12

【5】Ousay H．Mahmoud．Getting started with the Java Rule Engine API(JSR 94)．Toward

Rule—Based Applications【0L】．

http：／／lava．sun．com／developer／technicalArticles／J2SE／JavaRule．html．2005-7·26

【6】刘际．规则引擎在业务逻辑层中应用的研究：【硕士学位论文】．大连：大连海事大学．2007

【7】7 Erhard Rahm，Hong Hai Do．Data Cleaning：Problems and Current Approaches[J]．IEEE Data

Engineering Bulletin，2000，23(4)：3-13

【8】郭志懋，周傲英．数据质量和数据清洗研究综述【J】，软件学报，2002．13(11)：2076--2081

【9】俞荣华．数据质量和数据清洗关键技术研究：【硕士学位论文】．上海：复旦大学：2002

【10】Newcombe H B．Kennedy J M．Axofid S J．et a1．Automatic linkgae of vital records[J]，

Science，1959，130：954-959

【11】谭亚竹．基于XML数据清洗的应用研究：【硕士学位论文】．重庆：重庆大学：2006

【12】Duncan K Wells D．A Rule Based Data Cleansing【J】．Data Warehousing，1999，4(3)：2

【13】刘伟．Java规则引擎—-Drools的介绍及应用【J】．微计算机应用．2005．26(6)l：717-721

【14】缴明洋，谭庆平．Java规则引擎技术研究【J】．计算机与信息技术．2006(03)：41—43

【15】何仁杰，梁冰等．用规则引擎替换代码【J】．计算机世界报，2004-04-19：B07版

【16】黄翱，潘正运等．业务规则引擎ILog JRules工作引擎的工作机制分析【J】．微计算机信

息．2006．22(24)112—114+48

【17】C．L Forgy．On the Efficient Implementation of Production System【D】．PhD thesis，

Carnegie—Mellon University,Department of Computer Science，1979

【18】刘华．W曲信息集成中数据清洗的研究：【硕士学位论文】．武汉：武汉理工大学．2007

武汉理工大学硕士论文

【19】Aebi，D．，Perrochon，LTowards improving data quality[C]．In：Sarda，N．L，cd．Proceedings

of the International Conference on Information Systems and Management of Data．Delhi，

1993．273～281

【20】Wang，R．Y．，Kon，H．B．，Madnick，S．E．Data quality requirements analysis and modeling[C]．

In：Proceedings of the 9th International Conference on Data Engineering．Vienna：IEEE

Computer Society,1993．670-677

f21】Redman TC．The impact of poor data quality On the typical enterprise【J】．Communications

of the ACM，2001．36(7)：79—82

【22】Khalil O E M，Harcar T D．Relationship marketing and data quality management【J】．

Advanced management Jounal，1999．64(2)：26-33

【23】Zeffane R，Cheek B，Meredith P．Does user involvement during Information System’S

development improve data quality?[J】Human Systems Management，1998．17(2)：31-36

【24】Parent C．Spaccapietra S．Issues and approaches of database integration【J】．Communications

of the ACM，1998，41(5)：166-178

【25】Milo T．Zohar S．Using schema matching to simplify heterogeneous data translation[C]．In：

Gupta A．Shmueli O．Widom J，eds．Proceedings of 24th International Conference on Ve叮

Large Databases．New York：Morgan Kaufmann．1998：122—133

【26】Galbardas H，et a1．An Extansible Framework for Data Cleaning【J】．Institutenational de

Rechercheen Information et en automatique，Technical Report 1999

【27】孟坚．基于规则的交互式数据清洗技术：【硕士学位论文】．南京：东南大学．2005．3

【28】Galhardas H．Florescu D．Shasha D．Declarative data cleaning：language，model，and

algorithms[C]．In：Proceedings of the 27th Very Large DataBase Conference．Roma：Morgan

Kaufinaim．2001：371～380

【29】Ernest J．Friedman·Hill，Jess，the Rule Engine for the Java

Plafform[OL]，http：／／herzberg．ca．sandia．gov／jessd

【30】鲍洪庆，石兵等，一个基于领域知识的数据清洗框架【J】．信息技术与信息化，

2005．17(5)：101—102

【31】孟坚，董逸生等．一种基于规则的交互式数据清洗技术【J】．微机发展，2005．15(4)：142～143

【32】张宁，贾自艳等．数据仓库中ETL技术的研究【J】．计算机工程与应用．2002．38(24)：213—216

【33】查峰．数据仓库化中数据清洗问题的研究：【硕+学位论文】．南京：东南大学：2002

【34】邓莎莎，陈松乔．基于异构数据抽取清洗模型的元数据的研究【J】．计算机工程与应用，

2004．30：175，】77

武汉理工大学硕士论文

【35】俞荣华，田增平，周傲英．一种检测多语言文本相似重复记录的综合方法【J】．计算机科学，

2002，29(1)：118-121

【36】张晓明，乔溪．数据清洗方法与构件的综合技术研究【J】．石油化工高等学校学报，

2005．18(6)：68-69

【37】余春红，许向阳．关系数据库中近似重复记录的识别p】．计算机应用研究，

2003．20(9)：36-37

【38】邱越峰，田增平，季文等一种高效的检测相似重复记录的方法【J】．计算机学报，2001．2似1)：

69-77
．

【39】Steve Demuth，Colleen McClintock．规则引擎及J2EE平台．灵活的企业应用平台

【q．Sun’S 2003 Worldwide Java Developer Conference

【40】张渊，夏清国．基于Rete算法的Java规则引擎【J】．科学技术与工

程．2006．6(11)：1548—1550

【41】Jin L Li C．Mebrotra S．Efficient record linkage in large data seu[c]．Eigllth IntemationM

Conference on Database Systems forAdvanced Applications．Kyoto．2003：137-146

【42】Kaplan D．Krislman R．Assessing data quality in accounting information systems【J】．

Communications of the ACM．1998．41(2)：72-78

【43】Jboss．org／Jboss Rules，Drools 3．0．6 API Documentation[OL]，

http：／／downloads．jboss．com／drools／docs／3．0．6／apidocs／index．html

【44】Mark Proctor,Michael Neale，Peter Lin，Michael Frandsen．Drools Documentation

3．0．610L]．http：／／downloads．jboss．com／drools／docs／3．0．6／htIIll single／index．html

【45】Timothy E．Ohanekwu．A pre and post data warehouse cleaning technique，[Master Paper]．

Canada：Computer Science Department of University of Windsor,2002：27

【46】Raman V Hellerstein J．Potter's wheel：An interactive data cleaning system[C]．Proceedings

of the 27th VLDB conference，Roma，Italy,2001：381--390

武汉理工大学硕士论文

附录一Drools 201规则配置文件的XSD格式定义

<?xml version=”1．0”encoding=”UTF-8”?>

<XS：Schema

xmlns：rules=http：／／drools．org／rules

xmlns：xs=”http：／／www．w3．org／2001／XMLSchema”elementFormDefault=”qualified”

targetNamespace=”http：／／drools．org／rules”>

<xs：element namc=”rule．set”>

<xs：complexType>

<xs：sequence>

<xs：element maxOccurs=”unbounded”

ref=”rules：abstractlmport”／>

<xs：element maxOccurs=”unbounded”

ref=”mles：application-data”／>

<xs：element maxOccurs=”unbounded”

ref=”rules：abstractFunctions”／>

minOtOUrs=”0”

minOccurs=”0”

<xs：element maxOccurs=”unbounded”minOtours=”0”rCf=”rules：rule”／>

<／xs：sequence>

<xs：attribute name=”name”type=”xs：string”use=”required”／>

<xs：attribute name=”description”type=”xs：string”／>

<／xs：complexType>

<／xs：element>

<xs：element name=”rule”>

<xs：complexType>

<xs：sequence>

<xs：element maxOccurs=”unbounded”minOccurs=”0”name=”parameter’’>

<xs：complexType>

<xs：choice>

<xs：element ref三”rules：abstractClass”／>

<xs：element ref=”rules：class—field”／>

<xs：element ref=”rules：semaphore”／>

<／xs：choice>

<xs：attribute name=·’identifier’’type=’’xs：string”use=”required”／>

<／xs：complexType>

<／xs：element>

<xs：element maxOccurs=”unbounded” minOccurs=”0”

ref=-'rules：abstractCondition”／>

<xs：element minOccurs=”0”name=”duration”>

<xs：complexType>

<xs：attribute name=”days”type=”xs：nonNegatweInteger”／>

<xs：attribute name=”hours”type=”xs：nonNegativeInteger”／>

<xs：attribute name=”minutes”type=”xs：nonNegativeInteger”／>

<xs：attribute name=”seconds”type=”xs：nonNegativeInteger”／>

<／xs：complexTypc>

<／xs：element>

<xs：element ref=”rules：abstractConsequence”／>

<／xs：sequence>

<XS：attribute name=”name”type=”xs：string”use=”required”／>
’

<xs：attribute name=”salience”type=”xs：integer”／>

<xs：attribute name=”no．100p”type=”xs：boolean”／>

<xs：attribute name--”xor-group”type=”xs：string”／>

<xs：attribute name=”description”type=”xs：string”／>

<／xs：complexType>

<xs：key name=”ruleName”>

<xs：seleetor xpath=”rules：rule”／>

<xs：field xpath=”@name”／>

<／xs：key>

<／xs：element>

<xs：element． name=-tclaSS” substitutionGroup=”rules：abstractClass”

type=”xs：string”／>

67

武汉理工大学硕士论文

<xs：element name=”class．field”>

<xs：complexType>

<xs：simpleContent>

<xs：extension base=”xs：string”>

<xs：attribute name=”field”type=”xs：string”use=”required”／>

<xs：attribute name=”value”type=”xs：string”use=”required”／>

<／xs：extension>

<／xs：simpleContent>

<／xs：complexType>

<／xs：element>

<xs：element name=”import” substitutionGroup=”rules：abstractlmport"

type=”xs：string”／>

<xs：element name=”semaphore”>

<xs：complexType>

<xs：attribute name=”type”use=”required”>

<xs：simpleType>

<xs：restriction base=”xs：string”>

<xs：enumeration value=”String”／>

<xs：enumeration value=”Integer”／>

<xs：enumeration value=”Long”／>

<xs：enumeration value=”Boolean”／>

<xs：enumeration value=”Char”／>

<xs：enumeration value=”Short”／>

<xs：enumeration valRe=”FIoat”／>

<xs：enumeration value=”Double”／>

<xs：enumeration value="List”／；

<xs：enumeration value=”Map”／>

<xs：enumeration value=”Set”／>

<／xs：restriction>

<／xs：simpleType>

<／xs：attribute>

武汉理工大学硕士论文
—————————————————————————————————————-———-———————-———-———-———一一

<／xs：complexType>

<／xs：element>

<xs：elernent name=”application．data”>

<xs：complexType>

<xs：simpleContent>

<xs：extension base=”xs：string”>

<xs：attribute
name=”identifier”type=”xs：string”use=”required”／>

<／xs：extension>

<／xs：simpleContent>

<／xs：complexType>

<／xs：element>

<xs：element
abstract=”true”name=”abstractlmport”type=’。xs：anyType”／>

<xs：element
abstract=”true”name=”abstractFunctions”type=”xs：anyType”／>

<xs：element
abstract=”true”nanle=”abstractClass”type=”xs：anyType”／>

<xs：element
abstract=”true”name=”abstractClassField”type=”xs：anyType”／>

<xs：element
abstract=”true”name=”abstractCondition”type=”xs：anyType”／>

<xs：element
abstract=”true”name=”abstractConsequence”type=’’xs：anyType”／>

<／xs：schema>

武汉理工大学硕士论文

【1】

【2】

13】3

附录二 攻读硕士学位期间发表的学术论文

Wang Shunyan，Cao Yongliang，Zhong Luo．The Design and Implementation of Drools Rule

Set's Dynamic Configuration[C]．Proceedings of the 2nd International Conference on

Computer Science and Education，2007：934-937．被SCI收录(IDS Number：BGQ59，ISBN：

978．7．5615．2825．9)

Wang Shunyan，Zhong Luo，Cao Yongliang．A Data Synchronization Mechanism for Cache

on Mobile Client-【C】Proceedings of the Wireless Communications，Networking and Mobile

Computing International Conference，2006：1·5．被IEEE收录

王舜燕主编．{Java编程方法学》【M】．北京邮电大学出版社．2008年8月出版

武汉理工大学硕士论文

致谢

首先要感谢的是我的导师王舜燕。王老师为人和蔼，治学严谨，辛勤敬业，

注重开拓创新、锐意进取。研究生三年，得到了王老师的悉心指导，使我的研

究和开发能力得到了很大的提高。王老师对事业的执着和勤勤恳恳的工作态度，

在研究和做人方面都给了我很多的启示，我将终身难忘。

感谢所有教导过我的老师，他们给我的知识是本论文的基础。

感谢所有帮助过我的同学和朋友，他们伴随我度过了愉快和有益的三年。

感谢我的父母，在漫长的求学生涯中，他们一直关心着我，鼓励着我，使我可

以集中精力进行学习和研究。

在这里，我衷心地对关心我，爱护我，帮助我的父母，老师，同学道一声

谢谢!

曹永亮

2007年10月于马房山

基于Java规则引擎的动态数据清洗研究与设计
作者： 曹永亮

学位授予单位： 武汉理工大学

本文链接：http://d.g.wanfangdata.com.cn/Thesis_Y1365082.aspx

http://d.g.wanfangdata.com.cn/Thesis_Y1365082.aspx
http://g.wanfangdata.com.cn/
http://s.g.wanfangdata.com.cn/Paper.aspx?q=Creator%3a%22%e6%9b%b9%e6%b0%b8%e4%ba%ae%22+DBID%3aWF_XW
http://s.g.wanfangdata.com.cn/Paper.aspx?q=School%3a%22%e6%ad%a6%e6%b1%89%e7%90%86%e5%b7%a5%e5%a4%a7%e5%ad%a6%22+DBID%3aWF_XW
http://d.g.wanfangdata.com.cn/Thesis_Y1365082.aspx

	﻿封面
	﻿文摘
	﻿英文文摘
	﻿声明
	﻿第1章绪论
	﻿1.1业务规则的含义
	﻿1.2规则引擎的发展和研究现状
	﻿1.3数据清洗的应用背景
	﻿1.4数据清洗的研究现状
	﻿1.5本文主要研究内容
	﻿1.6本文的组织形式

	﻿第2章Java规则引擎的研究
	﻿2.1规则引擎的原理
	﻿2.1.1基于规则的专家系统简介
	﻿2.1.2 Java规则引擎的工作机制

	﻿2.2 Rete算法研究
	﻿2.3 Drools规则引擎研究
	﻿2.3.1 Drools规则引擎API分析
	﻿2.3.2 Drools规则配置文件(.drl)的结构和含义

	﻿2.4本章小结

	﻿第3章数据清洗的概念
	﻿3.1数据质量
	﻿3.1.1脏数据的概念
	﻿3.1.2数据质量的概念
	﻿3.1.3数据质量问题的分类

	﻿3.2数据清洗
	﻿3.2.1数据清洗的概念
	﻿3.2.2数据清洗的模型和流程

	﻿3.3本章小结

	﻿第4章基于Drools规则引擎的动态数据清洗系统
	﻿4.1动态数据清洗系统中使用的规则
	﻿4.2规则引擎应用于动态数据清洗的优点
	﻿4.3 DREBDDC系统概述
	﻿4.4 DREBDDC系统的设计与实现
	﻿4.4.1领域知识规则的巴科斯范式定义
	﻿4.4.2清洗动作规则的巴科斯范式定义
	﻿4.4.3清洗动作规则执行的基本操作
	﻿4.4.4 DREBDDC系统的规则数据库设计
	﻿4.4.5 DREBDDC系统功能模块设计与分析
	﻿4.4.6 DREBDDC的系统架构
	﻿4.4.7 DREBDDC系统的工作流程
	﻿4.4.8 DREBDDC系统的开发运行环境
	﻿4.4.9 DREBDDC系统核心功能实现代码介绍

	﻿4.5 DREBDDC系统实验结果性能分析
	﻿4.5.1实验数据
	﻿4.5.2实验结果分析

	﻿4.6本章小结

	﻿第5章总结和展望
	﻿5.1总结
	﻿5.2展望

	﻿参考文献
	﻿附录
	﻿致谢

