
Ladder Metamodeling and PLC Program Validation
through Time Petri Nets�

Darlam Fabio Bender1,2, Benoît Combemale1, Xavier Crégut1, Jean Marie Farines2,
Bernard Berthomieu3, and François Vernadat3

1 Institut de Recherche en Informatique de Toulouse (CNRS UMR 5505)
Université de Toulouse. France

first_name.last_name@enseeiht.fr
2 Departamento de Automação e Sistemas

Federal University of Santa Catarina. Florianopolis, Brazil
last_name@das.ufsc.br

3 Laboratoire d’Analyse et d’Archicteture des Systemes (CNRS)
Université de Toulouse. France

last_name@laas.fr

Abstract. Ladder Diagram (LD) is the most used programming language for
Programmable Logical Controllers (PLCs). A PLC is a special purpose industrial
computer used to automate industrial processes. Bugs in LD programs are very
costly and sometimes are even a threat to human safety. We propose a model
driven approach for formal verification of LD programs through model-checking.
We provide a metamodel for a subset of the LD language. We define a time Petri
net (TPN) semantics for LD programs through an ATL model transformation.
Finally, we automatically generate behavioral properties over the LD models as
LTL formulae which are then checked over the generated TPN using the model-
checkers available in the Tina toolkit. We focus on race condition detection.

1 Introduction

Actually, verifications of Programmable Logical Controllers (PLCs) programs are made
through exhaustive testing. This method takes a long time to be executed and some
errors may pass unnoticed in complex systems.

Ladder Diagram (LD) programs are difficult to debug and modify because its graph-
ical representation of switching logic obscures the sequential, state-dependent logic
inherent in the program design [1]. Not found bugs in PLC programs are often very
costly and sometimes are even a threat to human safety. This work aims to provide
a framework for automatic formal verification of PLC programs written in LD
language.

To perform the formal verification of LD programs we introduce a model driven
approach. LD models are designed according to an LD metamodel. These LD models
are then translated into a formal language. The generic LTL properties to be verified are

� This work is supported by the TOPCASED project, part of the french cluster Aerospace Valley
(granted by the french DGE), cf. http://www.topcased.org

I. Schieferdecker and A. Hartman (Eds.): ECMDA-FA 2008, LNCS 5095, pp. 121–136, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

http://www.topcased.org

122 D.F. Bender et al.

generated automatically, and finally we rely on model-checking to verify the temporal
properties. For this work we have chosen the time Petri nets (TPN) as formal language,
and the Tina1 toolkit for simulation and model-checking. We focus on the verification
of generic, i.e. model independent, properties, especially the absence of race conditions
in LD programs.

This paper is organized as follows. Section 2 introduces the PLCs, the LD language
and the validation issue. Section 3 presents the approach used to formally verify LD
programs. Section 4 presents the related work and Section 5 concludes and presents
some perspectives and future work.

2 PLCs, Ladder Diagrams and Validation Issue

2.1 Programmable Logical Controllers (PLCs)

A PLC is a special purpose industrial computer used to automate industrial processes.
It can be connected to several inputs and outputs, and can be programmed to control the
state of the outputs depending on the configuration of the inputs and its internal state.

The PLC execution follows a cycle. The state of all inputs is copied into memory.
Then, the internal program runs and creates in memory a temporary table of all outputs.
When this program completes, the table is written to the outputs and a new cycle starts.
It repeats as long as the PLC is running.

A PLC can be programmed using any of the five languages [2] which are: Instruction
List (IL), Structured Text (ST), Function Blocks Diagrams (FBD), Sequential Function
Chart (SFC) and Ladder Diagram (LD). The semantics of these languages is not strictly
defined, certain definitions are missing or contain ambiguities. Some research work has
been made to solve these ambiguities, e.g. [3]. This article focuses on the LD language,
but the same approach could be used for the other languages.

2.2 Ladder Diagram (LD)

Ladder Diagram is the most used language for programming PLCs. It is a graphical
language where the basic elements are based on an analogy to physical relay diagrams
[4], so it does not represent a big paradigm shift for technicians that are not used to
the new computer techniques and programming languages. In Figure 1 is represented a
simple LD program in the textual concrete syntax (ASCII art) normally used. We can
look at it as a relay diagram where the power flows from the left to the right, passing
through the inputs to activate the outputs. The program is delimited by a vertical line on
the left representing the hot wire, and another one on the right representing the neutral
wire. These vertical lines are called the left and right rails.

The horizontal lines (rungs) and the associated elements represent boolean equations.
The dependent element of the equation (coil) is represented by the symbol "()", while
the independent elements (contacts) are represented by "| |". A diagonal line is placed
in the middle of symbols as in "|/|" to indicate that the negated value of the variable
is used. Variables placed in series represent the AND boolean function while variables

1 http://www.laas.fr/tina/

http://www.laas.fr/tina/

Ladder Metamodeling and PLC Program Validation through Time Petri Nets 123

| A B C |
+--------| |----+---|/|-------()-----+
| | |
| C | |
+--------| |----+ |
| |
| C D |
+--------| |------------------()-----+

Fig. 1. Simple Ladder Diagram example

placed in parallel represent the OR boolean function. The rungs are executed in order
from the top to the bottom. So the program in Figure 1 represents the boolean equations
C = (A ∨C)∧¬B and D = C. A variable can be used as a coil and as a contact in the
same rung, that is the case of variable C in the first equation.

The elements presented so far are the basic elements of LD. A program may also
contain more complex elements, the functions and function blocks (FB). Functions al-
ways produce the same outputs when provided with the same inputs while FBs keep
an internal state that also influences the outputs. They are represented by a rectangular
box with their names inside, their inputs on the left side, and their outputs on the right
side. These boxes are connected in the diagram’s rungs through its inputs and outputs.
The LD language also provides other imperative elements (procedures, goto) that are
not treated in the scope of this work.

It can be noted that LD programs are hard to visualize and become unreadable even
for small to medium size programs. The validation of these programs through exhaus-
tive testing are very expensive and unsure. A method for their formal verification is then
of great help for system engineers.

2.3 Ladder Diagram Validation

In this work we intend to create a framework for automatic verification of temporal
properties in LD programs. The properties to be verified over an LD program could
be generic (and apply to every model) or specific to one model. Model related proper-
ties must be formulated by the programmer, while generic properties only rely on the
metamodel concepts and can be automatically generated from the model.

One of the important generic properties to be verified on an LD program is the ab-
sence of race conditions [5]. A race condition is an undesirable situation that occurs
when a device or system attempts to perform two or more operations at the same time
but, because of the nature of the device or system, the operations must be done in the
proper sequence in order to be done correctly. A race condition occurs in an LD program
when under fixed inputs and function block states, one or more outputs keep changing
their values. In the LD example of Figure 2, the variable A is an input, C and D are
memory, B and E are outputs. It can be seen that even if A is kept stable, the variables
C, D and E will not stabilize thus it is an example of race condition. This kind of prob-
lem is sometimes difficult to detect with traditional techniques, and bugs not detected
during the test period can be very costly to correct later. In section 3.4 we present how to

124 D.F. Bender et al.

express this property as a LTL formulae and how to automatically generate and validate
the formulae from the model.

3 MDE-Based Approach for Formal LD Program Validation

The approach we chose to verify properties in LD programs consists in translating the
semantics of LD programs to a language formally (mathematically) defined. The chosen
formal language is the Time Petri Net (TPN) [6].

To define and execute the translation we used a model driven engineering (MDE) ap-
proach. LD Programs are models that must conform to the LD metamodel. These mod-
els are then translated to a TPN model that conforms to a TPN metamodel. This TPN
model is then translated to the input format of the Tina tool. General properties over
the Ladder model are also automatically generated as LTL formulae. Finally, we use
model-checking to verify the properties represented in LTL formulae over the generated
TPN. A general schema of the process can be seen in Figure 3. All translations between
models cited above were written in ATL (ATLAS Transformation Language) [7]. This
language can be used to write translations of type model-to-model (M2M) and model-
to-text (M2T). In this case study we have developed one M2M (Ladder2PetriNet) and
two M2T (PetriNet2Tina and Properties) transformations.

3.1 Ladder Diagram Metamodel

The first contribution of this study is the definition of a metamodel for a subset of the LD
language. An incremental approach has been chosen to build the metamodel. As a first
step it was built a metamodel able to represent a significant subset of the LD language.
This metamodel can be seen in Figure 4. An LD program (Program) is composed of
variables (Variable) and rungs (Rung). A variable may represent an input, output or
memory location (InOutKind). A rung is composed of elements (Element) that denote
basic (BasicElement) and complex (ComplexElement) elements.

A basic element can be "normal_open" or "normal_closed" (PlacementKind). It de-
notes either a coil (Coil) or a contact (Contact) and always references a Variable. Com-
plex elements represent functions and FBs. The attribute kind contains the name of
the represented function or FB (Functions). Complex elements are composed of inputs

| A B |
+--------| |------------------()-----+
| C D |
+--------|/|------------------()-----+
| D C |
+--------| |------------------()-----+
| C E |
+--------| |------------------()-----+

Fig. 2. Simple example of races in LD

Ladder Metamodeling and PLC Program Validation through Time Petri Nets 125

(Input), outputs (Output) and internal variables (InternalVariable). The enumeration
Functions can be easily extended to contain all the standard functions and FBs.

We introduce in this work the concept of path (Path). A rung is composed of paths.
A path is a closed circuit by which the power can flow through the contacts to activate
a coil. In the example of Figure 1 we have two paths in the first rung, one representing
the boolean equation C = A ∧¬B and the other representing the equation C = C ∧¬B.
Note that this is a simple decomposition of the original equation. We have a single path
in the second rung representing the equation D = C.

A path may have any number of contacts or outputs of complex elements as opera-
tors (Operator) but only one coil or input of complex elements as result (Result). The
restriction of only one result per path was introduced to facilitate the translation later,
but it does not introduce loose of generality because a path with n results can always
be decomposed into n paths with one result. Note that Result is a generalization of
the elements that may have their state changed by the power flow, while Operator is a
generalization of the elements that are conditions for the power flow.

The data type of an internal variable of complex elements are restricted in this work
to Boolean and Integer (VariableType) and the global variables of the program (Vari-
able) are restricted to Boolean.

3.2 Time Petri Nets, SE-LTL and Tina Toolbox

In this study, we have chosen the technical space of time Petri nets as the target rep-
resentation for formally expressing our LD semantics. We also have chosen to express
our temporal properties as LTL formulae (Linear Temporal Logic) over the Petri net
associated to a LD model. Then we manipulate Petri nets and LTL formulae within the
Tina toolkit.

Time Petri Nets. Time Petri net (or TPN) [6] is one of the most widely used model for
the specification and verification of real-time systems. TPNs are Petri nets in which a
nonnegative real interval Is(t), with rational end-points, is associated with each transi-
tion t of the net [6].

Tina

Ladder
.ecore

PetriNet
.ecore

myProgram
.Ladder

myProgram
.PetriNet

Ladder
2PetriNet

.atl

myProgram
.net

<<conformsTo>>
<<conformsTo>>

ATL

PetriNet
2Tina
.atl

ATL

properties
.ltl

Fig. 3. General overview of the LD validation approach

126 D.F. Bender et al.

Fig. 4. A simplified LD Metamodel

Fig. 5. A Time Petri net

Definition 1. A TPN is a tuple 〈P,T,Pre,Post,m0, Is〉, in which 〈P, T, Pre, Post, m0〉 is
a Petri net, and Is : T → I+ is the Static Interval function.

P is the set of places, T is the set of transitions, Pre, Post : T → P → N+ are the
precondition and postcondition functions, m0 : P → N+ is the initial marking. I+ is the
set of nonempty real intervals with nonnegative rational end-points.
A Time Petri net is shown in Figure 5.

Let R+ be the set of nonnegative reals. For i ∈ I+, ↓ i denotes its left end-point, and
↑ i its right end-point (if i bounded) or ∞. For any θ ∈ R+, i −. θ denotes the interval
{x − θ|x ∈ i∧ x ≥ θ}.

Ladder Metamodeling and PLC Program Validation through Time Petri Nets 127

States and the temporal state transition relation
t@θ−→ are defined as follow:

Definition 2. A state of a TPN is a pair s = (m, I) in which m is a marking and I is a
function called the interval function. Function I : T → I+ associates a temporal interval
with every transition enabled at m.

We write (m, I) t@θ−→ (m′, I′) if θ ∈ R+ and:

1. m ≥ Pre(t) ∧ θ ≥ ↓ I(t) ∧ (∀k ∈ T)(m ≥ Pre(k) ⇒ θ ≤ ↑ I(k))
2. m′ = m− Pre(t)+ Post(t)
3. (∀k∈T)(m′ ≥ Pre(k) ⇒

I′(k) = if k �= qt ∧ m−Pre(t) ≥ Pre(k)
then I(k) −. θ
else Is(k))

States evolve as follows: assume the current state is s = (m, I), t is enabled at m, and
became last enabled at time τ. Then t cannot fire before time τ + Min(I(t)), and must
fire no later than τ + Max(I(t)), except if firing another transition before t made t not
enabled anymore. Firing transitions takes no time.

TPN Metamodel. The time Petri nets metamodel is given in Figure 6. A Petri net (Petri-
Net) is composed of nodes (Node) that denote places (Place) or transitions (Transition).
Nodes are linked together by arcs (Arc). Arcs can be normal ones or read-arcs (ArcKind).
The attribute weight specifies the number of tokens consumed in the source place or pro-
duced in the target one (in case of a read-arc, it is only used to check whether the source
place contains at least the specified number of tokens). Petri nets marking is defined by
the tokens attribute of Place. Finally, a time interval can be expressed on transitions.

Model-Checking. For this study, we use State/Event−LTL [8], a linear time temporal
logic supporting both state and transition properties. The modeling framework consists of
labeled Kripke structures (the state class graph in our case), which are directed graphs in
which states are labeled with atomic propositions and transitions are labeled with actions.

Formulae Φ of State/Event −LTL are defined according to the following grammar:

Φ ::= p | a | ¬Φ | Φ∨Φ | © Φ | � Φ | ♦ Φ | Φ U Φ

Example of State/Event − LTL formulae :

Fig. 6. Time Petri net Metamodel

128 D.F. Bender et al.

(For all paths)
P P holds at the beginning of the path,
© P P holds at the next step,
� P P globally holds,
♦ P P holds in a future step,
P U Q P holds until a step is reached where Q holds

Tina Toolbox for Time Petri Nets Verification

Tina (TIme Petri Net Analyzer) is a software environment to edit and analyze Petri
nets and time Petri nets [9]. The different tools constituting the environment can be
used alone or together. Some of these tools will be used in this study:

– nd (Net Draw) : nd is an editing tool for automata and TPN, under a textual or
graphical form. It integrates a “step by step” simulator (graphical or textual) for the
TPN and allows to call other tools without leaving the editor.

– tina : this tool builds the state space of a Petri net, timed or not. It can perform
classical constructs (marking graphs, covering trees) and also allows abstract state
space construction, based on partial order techniques. It proposes, for TPN, all quo-
tient graph constructions discussed in [10].

– selt: usually, it is necessary to check more specific properties than the ones dedi-
cated to general accessibility alone, such as boundedness, deadlocks, pseudo live-
ness and liveness already checked by tina. The selt tool is a model-checker for an
enriched version of State/Event − LTL. In case of non satisfiability, selt is able to
build a readable counter-example sequence or in a more compressed form usable
by the Tina simulator, in order to execute it step by step.
The selt logic is rich enough to encode marking invariants like � (p1 + p3 >= 3).
Example of selt formulae :

t1 ∧ p2 ≥ 2 for every path t1 and m0(p2) ≥ 2,
� (p2 + p4 + p5 = 2) a linear invariant marking,
� (p2 ∗ p4 ∗ p5 = 0) a non linear invariant marking,

selt also allows to define new operators :

in f ix q R p = � (p ⇒ ♦ q) definition of a “Responds to” operator, (denoted R),
t1 R t5 t1 “Responds to” t5.

3.3 Translational Semantics of LD Programs through Time Petri Nets

In order to apply the model-checking techniques to verify an LD program using the
available tools, it is necessary to represent the semantics of the program in a formal
language. In this section we describe the translational semantics of an LD program in
the form of a TPN.

The semantic transformation is based on the metamodel of the LD language
(Figure 4) and the metamodel of the TPN (Figure 6). It was coded using ATL [7]. In this
first work we do not translate the complex elements of the LD language, note that the

Ladder Metamodeling and PLC Program Validation through Time Petri Nets 129

complex elements represent the functions and FB of the LD language, these elements
have a unique semantics so a complete translation would have to take into account the
specific semantics of each function or FB.

The ATL code is composed of eight matched rules. A matched rule enables to match
some of the model elements of a source model, and to generate a number of distinct
target model elements. Figure 7 shows what target elements are created for each rules.
We use rule inheritance to filter different elements that are represented by a unique class
in the metamodel. This inheritance could had been done at the metamodel level but our
approach allows to keep the metamodel at a higher abstraction level and also allows to
factorize the ATL code.

Each LD Program will be translated to a TPN. This TPN can be divided in three differ-
ent groups of elements (Figure 8), each one with a different purpose during the simulation.

The first group is responsible for controlling the execution according to the PLC
operation, a place is introduced for each execution step, that is, read the inputs, execute
all the ordered rungs one by one, then update the outputs. The transitions are timed
"[1, 1]" so as to guarantee that all the actions depending on one execution step (these
actions are timed "[0, 0]") are executed before the state is changed. This mechanism is
used to give a higher priority to transitions associated with the second and third group.
We could have achieved the same effect by using prioritized Petri nets (PrTPNs) [11].

The second group represents the value of the variables. Each variable contained in
the program will be translated into two places, one representing the False (Variable-
Name_0) and the other the True (VariableName_1) state of the variable. Transitions are
also created to set and reset these variables. Note that transitions of this group – de-
scribing the behavior of the environment – evolve in parallel and remain active between
the capture of the environment (transition input_reading) and its update (transition re-
set_variables). This simplified modeling of the environment will result in a very strong
combinatorial explosion.

The third group represents the execution semantics. This group is composed of two
places for each variable as in the second group, but in this case the variables do not
represent the real value of the variable, but are used to calculate the new values. This
group represents the simulation variables. Input variables will have their simulation
value copied from the real value - on the second group - during the input reading state.
Output variables are calculated during the execution of the rungs and at the end, during
the output update state, the real value - on the second group - will be updated according
to the result of computation. At the end of each cycle all simulation variables are reset.

Figure 7 represents the elements generated for each of the eight rules. In some cases,
elements generated by one rule are used by another rule. For example, the place in-
put_reading is created by the rule Program2PetriNet and then is used by the rule In-
put2PetriNet.

The translation of paths generates the elements that calculate the value of the outputs
according to the inputs. In Figure 7 (Path2PetriNet) one can see the elements generated
by applying this rule to the first path of Figure 1. This path represents the boolean
equation C = A ∧¬B.

The translation method generates a safe (1-bounded) TPN. This is guaranteed by the
transformation. A structural analysis of the TPNs generated by the translation gives one

130 D.F. Bender et al.

Fig. 7. Schema of the ATL transformation Ladder2PetriNet

invariant for all places in the first group, and one invariant for each couple of places
representing the state True or False of variables.

3.4 Formal Verification of Race Conditions in LD Programs

In this section we demonstrate how to express the properties we wish to verify as LTL
formulae, how to automatically generate these properties from the LD model and finally
how to perform the model-checking with the selt tool.

Formalizing Race Conditions as LTL Formulae. To verify the absence of race con-
ditions in an LD program we need to formally describe this property. We first describe
the concept of stability of inputs and outputs. A boolean variable is said to be stable if it

Ladder Metamodeling and PLC Program Validation through Time Petri Nets 131

Fig. 8. TPN generated from the LD model on Figure 1

does not change its state, that is, it is always True or always False. When we translate an
LD program, every boolean variable is represented by two complementary TPN places,
(VariableName)_0 representing the false state and (VariableName)_1 representing the
true state. Based on that we can formulate the Definition 3.

Definition 3. An LD variable called x is stable if ((� x_0)∨ (� x_1)).

An LD program is free of race conditions if when the inputs are kept stable, all outputs
and memory variables will stabilize. This property is represented in Definition 4.

Definition 4. An LD program is free of race condition if
� (stable_inputs ⇒ ♦ stable_out puts) where stable_inputs represents a logical AND
between the stability condition for every input variable, while stable_outputs represents
a logical AND between the stability condition for every output and memory variable.

To reduce the model-checking effort we can decompose the LTL formula into more
simple ones. The decomposition is based on the following properties:

♦((� P)∧ (� Q)) ≡ ♦� P∧♦� Q
P ⇒ (Q∧R) ≡ (P ⇒ Q)∧ (P ⇒ R)

Our general property can be decomposed in several different properties, one for each
output or memory variable. Then we can check separately if every output will stabilize
when the inputs are kept stable. When this property does not hold for a variable x, the
LD program has a race on x.

The LTL formula can be simplified even more by applying the cone of influence
(COI) reduction. The COI reduction is a technique that reduces the size of a model if

132 D.F. Bender et al.

Table 1. Size of the TPN and state space generated

Program TPN Generated State Space
Figure 1 23 places, 24 transitions 462 places, 1432 transitions
Figure 2 31 places, 31 transitions 486 places, 1094 transitions

the propositional formula in the specification does not depend on all state variables in
the structure [12]. The COI of a variable x is all the variables that influence the value of
x. On the LD program represented in Figure 2 the COI of the variable B is {A}, while
the COI of variable C is {C, D}. So we can redefine the Definition 4 as:

Definition 5. An LD program is free of race condition if for every output or memory
variable V the following property holds: � (COI(V)_stable ⇒ ♦ V_stable), where
COI(V)_stable represents the stability condition for every variable in the COI of V .

Automatic Generation of LTL Properties. An ATL query was developed to automat-
ically generate the LTL properties in a text format. This query is a M2T transformation
that was built over the LD metamodel. It takes as input the LD model and generates the
file properties.ltl. The COI of a variable is calculated through iterative searching in the
model. We can use the genererated file to verify temporal properties with the selt tool.

Model-checking. To perform the model-checking we first use the tina tool to build the
state space of the TPN generated by the translation. The selt tool is then used to verify
the LTL properties over this state space.

3.5 Results

This method was applied to the LD program in Figure 1 and as expected the property was
evaluated to TRUE. The program is indeed free of race conditions. When applied to the
program in Figure 2 the property was evaluated to TRUE for variable B, and to FALSE
for variables C, D and E, proving that this program has a race on these three variables.
In Table 1 is presented the size of the TPN and state space generated for both programs.

The results obtained for the two examples prove that the MDE approach can be used
for verification of LD programs, transformation may be run on middle to complex LD
diagrams. However, this first approach for translation of LD diagrams to Petri Nets can
be largely optimised. The use of temporal constraints to simulate the priorities (instead
of inhibitor arcs or directly of priorities2) results in an important extra cost. Likewise,
the modeling of the environment is very simple (the environment continues to evolve
in parallel between two captures) inducing a useless combinatorial explosion. With this
translation, the Petri net associated with a LD program able to control a system con-
taining 6 actuators (outputs) and 7 sensors (inputs) generates a state space of 7 million
states. The “covering step graph” [13] construction of Tina, exploiting “partial order
techniques” [14], allows to reduce drastically this explosion and leads to a state space
of 40 states. However, a finer modeling of the environment will have to be carried out
to take into account significant LD programs.

2 Since March 2008, Tina 2.9.0 supports the priorities.

Ladder Metamodeling and PLC Program Validation through Time Petri Nets 133

4 Related Works

Numerous authors have been working in formal verification of PLC programs. These
works are normally based in two different approaches.

The first approach consists in implementing PLC programs directly in a formal lan-
guage, and then automatically generate the PLC code. [15] introduces a program based
on a set of rules to translate TIPN (Time Interpreted Petri Nets) control specifications
into Ladder Diagrams. In [16], [17] and [18] a set of tools was presented for im-
plementation of PLC programs using SIPN (Signal Interpreted Petri Nets), symbolic
model-checking was used for validation and verification and the control specification
was finally implemented through IL. [19] introduces a formalism based on timed state
machines called PLC-automata and a translation of this formalism into ST code.

The second approach consists in translating the existing PLC programs into a for-
mal language and automatically perform the verification. This approach permits the
use of formal languages for the verification of PLC programs without changing the pro-
gramming paradigm. Our work is based in this second approach. Some works using this
approach have been developed. [20] and [21] provide a Petri Nets semantics for a subset
of the IL language. [22] provides a framework for automatic verification of programs
written in IL, a formal semantics (transition system) is presented for a subset of the IL
language, which is directly coded into a model-checking tool (Cadence SMV3). It is
then possible to automatically verify behavioral properties written in LTL. In [23] LD
programs are formally represented through a transition system. In [5] a combination
of probabilistic testing and program analysis has been used to detect race conditions
in relay ladder programs. [24] generally discusses the transformations between NCES
(Net Condition Event Systems) State Charts and PLC languages. In [25] is presented a
method for formal verification of LD programs through a translation to timed automata.
They check model related properties, while we focus on generic properties. The original
program is abstracted according to these properties before the generation of the timed
automata, in this way, for each property to be verified it may be generated a differ-
ent timed automata. In [26] is discussed semantic issues and a verification approach for
SFC and IL programs. It uses a model-checking framework to verify SFC programs and
it suggests static analysis techniques, a combination of data flow analysis and abstract
interpretation to verify IL programs.

Our work is based on this second approach and is the first to present an MDE ap-
proach for PLCs program validation.

5 Conclusion and Future Work

We have introduced in this article a model driven approach for formal verification of LD
programs. We have defined a metamodel for a subset of the LD language. LD models
are designed according to this metamodel. An LD model is then translated into a formal
language (TPN) in the input format of Tina toolkit by means of two ATL transforma-
tions. The LTL properties to be verified are generated automatically from the model.

3 http://www.kenmcmil.com/smv.html

http://www.kenmcmil.com/smv.html

134 D.F. Bender et al.

Finally we utilize model-checking to verify the temporal properties over the generated
TPN.

Some things still remain to be done, the metamodel must be completed to represent
the complete LD language. The modelling of LD program s must be refined (specially
the modeling of the environment) to reduce the combinatorial explosion.

In order to implement a complete translation of the LD concepts, we need a lan-
guage directly supporting data processing like Fiacre [27]. Fiacre was designed in the
framework of the TOPCASED project [28] dealing with model-driven engineering and
gathering numerous partners, from both industry and academics. Therefore, Fiacre is
designed both as the target language of model transformation engines from various
models such as SDL, UML, AADL, and as the source language of compilers into the
targeted verification toolboxes, namely CADP and Tina.

Model related properties must be formulated by the programmer, as LD programmers
are not specialists in formal verification, a mechanism must be used to generate the
LTL properties from the user specification. One of these mechanisms is presented in
[29] where is presented an approach for generating LTL properties from TOCL ones,
a temporal extension of OCL. In [30] is presented a framework for generating formal
correctness properties from natural language requirements. The return of the model-
checking counter-examples to the user must be implemented in order to hide to the user
the complexities of the target language.

We are currently working on the recognition of the textual concrete syntax (ASCII
art) specified in the IEC 61131-3 standard. We want to be able to generate LD models
from its textual syntax. The metamodel presented in this article tries to represent the LD
language in a format closer to its semantics. For the recognition of the textual syntax
we should create an intermediate metamodel that is closer to this syntax and then ap-
ply a model transformation to obtain our original model. We are studying the possible
solutions, one is the use of TCS [31], that relates metamodel concepts with the textual
concrete syntax and allows to build a model from the textual syntax (injector) and also
to generate concrete syntax fromo a model (extractor).

Our work demonstrates that it is possible to apply a model driven approach in formal
verification of PLC programs. The combinatorial state explosion is a recurrent prob-
lem in the formal verification community and several works have been developed to
overcome this problem.

References

1. Guasch, A., Quevedo, J., Milne, R.: Fault diagnosis for gas turbines based on the control
system. Engineering Applications of Artificial Intelligence 13(4), 477–484 (2000)

2. International Electrotechnical Comission: IEC 61131-3 International Standard, Pro-
grammable Controllers, Part 3: Programming Languages (2003)

3. Tourlas, K.: An assessment of the IEC 1131 -3 standard on languages for programmable
controllers. In: Daniel, P. (ed.) SAFECOMP 1997: the 16th International Conference on
Computer Safety, Reliability and Security York, UK, September 7-10, 1997, pp. 210–219.
Springer, Heidelberg (1997)

4. Schum, J.L.: Locksmithing and Electronic Security Wiring Diagrams. McGraw-Hill Profes-
sional, New York (2002)

Ladder Metamodeling and PLC Program Validation through Time Petri Nets 135

5. Aiken, A., Fähndrich, M., Su, Z.: Detecting races in relay ladder logic programs. In: Steffen,
B. (ed.) ETAPS 1998 and TACAS 1998. LNCS, vol. 1384, pp. 184–200. Springer, Heidelberg
(1998)

6. Merlin, P., Farber, D.: Recoverability of communication protocols–implications of a theoret-
ical study. Communications, IEEE Transactions on [legacy, pre - 1988] 24(9), 1036–1043
(1976)

7. Jouault, F., Kurtev, I.: Transforming Models with ATL. In: Bruel, J.-M. (ed.) MoDELS 2005.
LNCS, vol. 3844, pp. 128–138. Springer, Heidelberg (2006)

8. Chaki, S., Clarke, E.M., Ouaknine, J., Sharygina, N., Sinha, N.: State/event-based software
model checking. In: Boiten, E.A., Derrick, J., Smith, G.P. (eds.) IFM 2004. LNCS, vol. 2999,
pp. 128–147. Springer, Heidelberg (2004)

9. Berthomieu, B., Ribet, P.O., Vernadat, F.: The tool TINA – construction of abstract state
spaces for Petri nets and time Petri nets. International Journal of Production Research 42(14),
2741–2756 (2004)

10. Berthomieu, B., Vernadat, F.: Time petri nets analysis with tina. In: Third International Con-
ference on Quantitative Evaluation of Systems, 2006. QEST 2006, pp. 123–124 (2006)

11. Berthomieu, B., Peres, F., Vernadat, F.: Model-checking bounded prioritrized time petri nets.
In: Namjoshi, K.S., Yoneda, T., Higashino, T., Okamura, Y. (eds.) ATVA 2007. LNCS,
vol. 4762, pp. 516–535. Springer, Heidelberg (2007)

12. Clarke, E.M., Biere, A., Raimi, R., Zhu, Y.: Bounded model checking using satisfiability
solving. Formal Methods in System Design 19(1), 7–34 (2001)

13. Vernadat, F., Azéma, P., Michel, F.: Covering step graph. In: Billington, J., Reisig, W. (eds.)
ICATPN 1996. LNCS, vol. 1091, pp. 516–535. Springer, Heidelberg (1996)

14. Godefroid, P.: Partial-Order Methods for the Verification of Concurrent Systems. LNCS,
vol. 1032. Springer, Heidelberg (1996)

15. Jimenez, I., Lopez, E., Ramirez, A.: Synthesis of ladder diagrams from petri nets controller
models. In: Proceedings of the 2001 IEEE International Symposium on Intelligent Control,
2001 (ISIC 2001), pp. 225–230 (2001)

16. Minas, M., Frey, G.: Visual plc-programming using signal interpreted petri nets. In: Ameri-
can Control Conference, 2002. Proceedings of the 2002, vol. 6, pp. 5019–5024 (2002)

17. Klein, S., Frey, G., Litz, L.: A petri net based approach to the development of correct logic
controllers. In: Proceedings of the 2nd International Workshop on Integration of Specification
Techniques for Applications in Engineering (INT 2002), Grenoble (France), pp. 116–129
(2002)

18. Frey, G.: Design and formal Analysis of Petri Net based Logic Control Algorithms (Disser-
tation, University of Kaiserslautern). Shaker Verlag, Aachen (2002)

19. Dierks, H.: PLC-automata: a new class of implementable real-time automata. Theoretical
Computer Science 253(1), 61–93 (2001)

20. Heiner, M., Menzel, T.: Instruction list verification using a petri net semantics (1998)
21. Heiner, M., Menzel, T.: A petri net semantics for the plc language instruction list. In: IEE

workshop on discrete event systems (1998)
22. Canet, G., Couffin, S., Lesage, J.J., Petit, A., Schnoebelen, P.: Towards the automatic verifi-

cation of plc programs written in instruction list. In: 2000 IEEE International Conference on
Systems, Man, and Cybernetics, vol. 4, pp. 2449–2454 (2000)

23. Moon, I.: Modeling programmable logic controllers for logic verification. Control Systems
Magazine, IEEE 14(2), 53–59 (1994)

24. Rausch, M., Krogh, B.: Transformations between different model forms in discrete event sys-
tems. In: Computational Cybernetics and Simulation, 1997 IEEE International Conference
on Systems, Man, and Cybernetics, 1997, October 12-15, 1997, vol. 3, pp. 2841–2846 (1997)

136 D.F. Bender et al.

25. Bohumir Zoubek, J.M.R., Kwiatkowska, M.: Towards automatic verification of ladder logic
programs. In: Proc. IMACS Multiconference on Computational Engineering in Systems Ap-
plications (CESA) (2003)

26. Huuck, R.: Software Verification for Programmable Logic Controllers. PhD thesis, Institute
of Computer Science and Applied Mathematics, University of Kiel (2003)

27. Berthomieu, B., Farail, P., Gaufillet, P., Peres, F., Bodeveix, J.P., Filali, M., Saad, R., Ver-
nadat, F., Garavel, H., Lang, F.: FIACRE: an intermediate language for model verification
in the TOPCASED environment. In: European Congress on Embedded Real-Time Software
(ERTS), Toulouse SEE (electronic medium) (2008), http://www.see.asso.fr

28. Vernadat, F., Percebois, C., Farail, P., Vingerhoeds, R., Rossignol, A., Talpin, J.P., Chemouil,
D.: The TOPCASED Project - A Toolkit in OPen-source for Critical Applications and Sys-
tEm Development. In: Data Systems In Aerospace (DASIA), Berlin, Germany, 22/05/2006-
25/05/2006, European Space Agency (ESA Publications) (2006),
http://www.esa.int/publications (electronic medium)

29. Combemale, B., Crégut, X., Garoche, P.L., Thirioux, X., Vernadat, F.: A Property-Driven
Approach to Formal Verification of Process Models. In: Cardoso, J., Cordeiro, J., Filipe, J.,
Pedrosa, V. (eds.) Enterprise Information System IX. Springer, Heidelberg (2008)

30. Nikora, A.P.: Developing formal correctness properties from natural language requirements.
NASA: Jet Propulsion Laboratory (2006)

31. Jouault, F., Bézivin, J., Kurtev, I.: TCS: a DSL for the Specification of Textual Concrete
Syntaxes in Model Engineering. In: 5th international conference on Generative Programming
and Component Engineering (GPCE 2006) (October 2006)

http://www.see.asso.fr
http://www.esa.int/publications

	Ladder Metamodeling and PLC Program Validation through Time Petri Nets
	Introduction
	PLCs, Ladder Diagrams and Validation Issue
	Programmable Logical Controllers ($PLCs$)
	Ladder Diagram (LD)
	Ladder Diagram Validation

	MDE-Based Approach for Formal LD Program Validation
	Ladder Diagram Metamodel
	Time Petri Nets, SE-LTL and Tina Toolbox
	Translational Semantics of LD Programs through Time Petri Nets
	Formal Verification of Race Conditions in LD Programs
	Results

	Related Works
	Conclusion and Future Work

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

