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Abstract. We present the software mordansysthat allows engineers to employ
modern model reduction techniques to finite element models developed in ANSYS.
We focus on how one extracts the required information from ANSYS and performs
model reduction in a C++ implementation that is not dependent on a particular
sparse solver. We discuss the computational cost with examples related to
structural mechanics and thermal finite element models.
1.Introduction
The model order reduction of linear large-scale dynamic systems is already quite an established
area [1]. In many papers (see references in [2]), advantages of model reduction have been
demonstrated for a variety of scientific and engineering applications. In the present work, we
focus on how engineers can combine this technique with existing commercial finite element
software in order to
— Speed up a transient or harmonic analysis,
— Generate automatically compact models for system-level simulation,
— Incorporate finite element packages during the design phase.
Model reduction is conventionally applied to a large-scale dynamic system of the first order as
follows
Ex=Ax+Bu  (1.1)
y=Cx
where Aand E are system matrices, Bis the input matrix, Cis the output matrix. The aim of
model reduction is to generate a low-dimensional approximation to (1.1) in a similar form
Erz=Arz.+Bru (1.2)
Y=Crz.
that describes well the dependence of the output vector y on the input vector u and so that, at
the same time, the dimension of the reduced state vector z is much less than the dimension of
the original state vector x
After discretization in space of the partial differential equations describing a user model, a
finite element package generally produces a system of ordinary differential equations. At this
stage, it is possible to directly apply modern model reduction methods [1]. However, the
extraction of the system matrices from a commercial package happens not to be straightforward
and here we share our experience on how it can be done with ANSYS [3].
We have chosen the Matrix Market format [4] to represent the reduced model (1.2). We
suppose that its simulation will be done in another package, such as Matlab or Mathematica.



Functions to work with the reduced model in Mathematica are available at the IMTEK .

The system matrices are high-dimensional and sparse. As a result, the implementation of a
model reduction algorithm usually depends on a particular sparse solver and a storage scheme
for sparse matrices. We discuss a C++ interface that allows us to isolate the model reduction and
sparse solvers completely for negligible overhead.

Finally, we analyse the computation cost and give the performance results for a few ANSYS
models. The comparison of the accuracy of reduced models in respect to the original ANSYS
models is given elsewhere [5].

2 mor4ansys
The developed software [6] comprises two almost independent modules (see Fig. 1). The first
reads a binary ANSYS file and assembles a dynamic system in the form of Eq (1.1) for first order
systems or
Mx"+Ex +Kx=Bu. (2.3)
y=Cx.
for second order systems, where M, E.and K.are the three system matrices. The second module
applies the model reduction algorithm to Eq (1.1) or (2.3), that is, it finds a low-dimensional basis
V.so that the approximation
x=Vz.+& (2.4)
allows us to reproduce the transient behaviour of the original state vector within the error
margin & .

After that, the original equations are projected to the subspace found, for example for Eq (1.2)

we have

Er=]/ EV, A=}/ AV,Br=]/" B, Cr=CV .

We support three methods to treat second-order systems. When the damping matrix is
modeled as Rayleigh damping E=aM+BK, the method from Ref [7] allows us to preserve the
coefficients a.and B.as parameters in the reduced model. In the general case, one can choose
between the transformation to a first-order system, and second order Arnoldi algorithm (SOAR)
[8].

The software can also read, as well as write, the matrices for the original system in the Matrix
Market format [4]. A number of model reduction benchmarks has been obtained from ANSYS by
means of mordansys[9].
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Fig. 1. mordansysblock-scheme

2.1 Interfacing with ANSYS

The development of the first module happen to be rather difficult because most users of a
commercial finite element package do not need the capability to extract the dynamics system in
the form of Eq (1.1) or (2.3) and, as a result, this is not a trivial operation.

ANSYS is a huge package and its behavior is not completely consistent. For example, the
information described below is not applicable for the fluid dynamics module FLOTRAN.

Our software reads the binary EMATfile with element matrices in order to assemble global
system matrices. The file format is documented and ANSYS supplies a library of Fortran
subroutines to work with it [10]. An example of how one can use them can be found in the
mor4ansyscode [6]. ANSYS has a special command, called a partial solve PSOLVE, with which one
can evaluate element matrices for a given state vector without going through the real solution
stage. This allows us to generate an EMAT file efficiently for a given model. However, it was
necessary to overcome the following
problems:

— The EMAT file does not contain the information about either Dirichlet boundary conditions or
equation constraints. They should be extracted separately.

— The EMATfile has a contribution to the load vector from element matrices only. If nodal
forces or accelerations are used to apply the load, this information should also be extracted
individually.

— It is necessary to assemble the global matrices from the element matrices.

During the solution phase, ANSYS can write a binary FULLfile with the assembled system
matrices. When we started the development with ANSYS 5.7, this file did not contain the load
vector (input matrix). Since then there have been many changes. Since ANSYS 6.0 the FULLfile
maintains all the original matrices, the load vector, the Dirichlet and equation constraints in the
file. ANSYS 8.0 allows us to make the assembly only and write the FULL file without a real
solution phase (equivalent to a partial solution with EMAT). One can now also dump the
information from the FULLfile in the Harwell Boeing matrix format. Hence, since ANSYS 8.0, it is



possible to use the FULL file efficiently. However, depending on the analysis type the FULLfile may
contain not the original stiffness matrix, but rather, a linear combination of system matrices
instead.

In the current version of mor4ansys,the EMATfile is employed as the main source to build Eq
(1.1) or (2.3). Additional information on the Dirichlet and equation constraints and nodal forces is
written in the form of text files by means of ANSYS macros we have developed. The FULLfile can
be used to extract the load vector when otherwise this is difficult, for example, as in the case
when the acceleration load is used.

ANSYS cannot write several load vectors into the FULL and EMAT files. When multiple-input is
to be preserved in Eq (1.1) or (2.3), a user should for each input:

— Delete the previously applied load,

— Apply a new load,

— Generate matrices.

In order to ease this process, the second strategy is also allowed when a user does not have to
delete the previous load. In this case, each new load vector contains all the previous vectors and
mordansyscorrects them at the end of the first phase.

2.2 Running the Model Reduction Algorithm

The Krylov subspaces allow us to obtain a low-dimensional subspace basis for (2.4) with excellent
approximating properties by means of a very efficient computation [11,8]. The current version of
mor4ansysimplements the block Arnoldi algorithm [11] in order to support multiple inputs, the
block size being equal to the number of inputs.

Each step of an iterative Krylov subspace algorithm requires us to compute a matrix-
vector product, for example, for the first-order system

A 'Eh (2.5)

where h.is some vector. The system matrices are high-dimensional and sparse and one does not

-1
compute A explicitly. The only feasible solution is to solve a linear system of equations for

each step as follows

Ag=Eh(2.6)
This constitutes the main computational cost up to the order of the reduced system 30. Later on,
the additional cost associated with the orthogonolization process can be also added.

There are many sparse solvers as well as many storage schemes for sparse matrices. Our goal
was to implement a model reduction algorithm in a way that does not depend on a particular
solver. In addition, we wanted to change solvers at run-time, that is, to allow for run-time
polymorphism. As a result, we have chosen the virtual function
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Fig. 2. Use of model reduction during design and system-level simulation
mechanism, as its overhead is negligible in our case when the operations by themselves are
computationally intensive.

Our approach is similar to that in the PETs [12] and Trinilos [13] libraries. The abstract interface
is written in terms of relatively low-level functions, as the goal was to cover many different
scenarios. The vectors are represented by continuous memory, as they are dense in the case of
the Krylov subspaces.

At present, the direct solvers from the TAUCS [14] and UMFPACK [15,16] libraries are
supported. The ATLAS library [17] has been used to generate the optimized BLAS. We have found
that for many ANSYS models up to 500 000 degrees of freedom the modern direct solvers are
quite competitive as the matrix factor fits within 4 Gb of RAM. This allows us to reuse the
factorization and achieve good performance.

3 Computational Cost of Model Reduction

We have experimentally observed that for many ANSYS models a reduced model of order 30 is
enough to accurately represent the original high-dimensional system [5]. Hence, for simplicity we
limit the analysis of the computational cost to this case.

The simulation time of the reduced system comprising 30 equations is very small and we can
neglect it. Therefore, for the case when several simulations with different input functions are
necessary (the system-level simulation case), the advantage of model reduction is out of the
question.

Yet, during the design phase, a reduced model should be generated each time when a user
changes the geometry or material properties of the original model. In this case, a reduced model
might be used just once. Nevertheless, the model reduction time can be smaller than the
simulation time of the original system even in this case. These two different situations are shown
in Fig. 2. Below we consider the second case.

Table 1. Computational times on Sun Ultra-80 with 4 Gb of RAM in seconds

dimension nnz

Stationary Stationary
Solution in ANSYS | solution in ANSYS

Factoring in generation of the




7.0 8.0 TAUCS first 30 vectors

4267 20861 0.87 0.63 0.31 0.59
11445 93781 2.1 2.2 1.3 2.7
20360 265113 16 15 12 14
79171 2215638 304 230 190 120
152943 5887290 130 95 91 120
180957 7004750 180 150 120 160
375801 15039875 590 490 410 420

Let us assume that a direct solver is applicable and the dimension of 30 for the reduced system
is sufficient. Then the model reduction time is equal to the time of factoring A in Eq (2.5) and the
time required for 30 back substitution steps in Eq (2.6). Table 1 presents computational times for
seven ANSYS models where the system matrices are symmetric and positive definite. The first
four rows correspond to thermal simulations [18] and the last three to structural mechanics of a
bond wire [7].

Each case is specified by its dimension and the number of non zero elements in the stiffness
matrix. The time of a stationary solution in ANSYS is given as a reference point. Note that the real
simulation time in ANSYS required for the stationary solution is larger than in Table 1 as it
includes reading/writing files as well as some other operations. After that is listed the time to
factor a matrix by means of a multifrontal solver from the TAUCS library [14] and the time to
generate the first 30 vectors. The latter is dominated by the solution of Eq (2.6) by means of back
substitution. As the difference to generate the first and thirtieth vectors was less than 10-20%,
we can say that the orthogonalization cost was relatively small.

Note that the TAUCS multifrontal solver is even faster than the ANSYS solver. The total time to
generate a reduced model is about twice more than that for the stationary solution. At the same
time, the reduced model can accurately reproduce any transient and harmonic simulation of the
original models within a reasonable frequency range.

The simulation time of a harmonic analysis is the product of solution time for a complex linear
system by the number of frequencies needed. The matrix factor cannot be re-used as the linear
system to solve depends on frequency. The solution time for a complex linear system is about
twice more expensive. Hence model reduction allows us to save simulation time by a factor close
to the number of frequencies at which the harmonic response is required. For example, if it is
necessary to estimate the transfer function at ten frequencies, then the model reduction plus the
simulation of the reduced system is roughly ten times faster than the simulation of the original
system.

For the transient simulation, the situation is more difficult to analyse as this depends on the
integration strategy. In principle, it is possible to say that the model reduction time above is
equivalent to 30 equally spaced timesteps as in this case the same strategy with the re-use of the
matrix factor can be applied. However, in our experience, in order to achieve accurate integration
results for the examples in Table 1, one either needs at least 600 equally-spaced timesteps or one
needs to use adaptive integration schemes where the factor re-use is not possible. In both cases,
model reduction plus simulation of the reduced system was more than ten times faster. This
shows that model reduction can also be viewed as a fast solver and can be employed even during
the optimization phase.



4 Conclusions

We have shown that in the case of the linear dynamics systems (1.1) and (2.3) modern model
reduction techniques can speed up finite element transient and harmonic simulation significantly.
For nonlinear systems, there are promising theoretical results in the case of polynomial type
nonlinearity [19]. Yet, in the nonlinear case in addition to many theoretical problems, it happens
that extracting a nonlinear system (1.1) or (2.3) from a commercial finite element tool is a
challenge by itself.
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