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Abstract

NUMERICAL SIMULATION ON SOLIDIFICATION
MICROSTRUCTURES USING CELLULAR AUTOMATON

METHOD

by CHEN Jin
Supervised by Prof. SUN Guo-xiong
Southeast University

Abstract

Solidification process and microstructures formation during solidification have attracted
researchers from different fields for a long time because they have not only profound
background of engineering application, but also significant theoretical value. With the
development of computer technology, numerical simulation on solidification has made great
progress. In the last decade, based on the success of macro simulation on temperature field,
microstructure simulation has become the major focus.

On the basis of previous researches, a solute diffusion controlled model for dendritic
growth is developed and relative numerical method is provided. Cellular automaton method
is applied to transform the sharp change at the solid-liquid interface to gradual change of
solid fraction in interfacial cells, which avoids direct front tracking while sharp interface
hypothesis is still kept. The effects of constitutional undercooling, curvature undercooling,
anisotropy of interfacial energy and interface perturbation are considered in this model.

The model is applied to simulate stable growth behavior in undercooled melt and the
simulated results are in agreement with the prediction of theoretical model for tip growth.
Branching mechanism and competition growth of side branches are simulated by imposing
perturbation at the interface and the effects of perturbation wavelength and amplitude on the
degree of side branch are studied. The results are in agreement with marginal stability theory.

The model is extended to simulate constrained growth in the directional solidification. By
imposing different combinations of temperature gradient and solidification rate, the typical
interface morphology including planar, cellular and dendritic are successfully simulated as
well as the branching and adjustment of primary arm. The variation of primary arm spacing
with the temperature gradient and solidification rate are simulated respectively and agree with

the prediction of theoretical model.
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Abstract

Combined with the nucleation model -based on normal distribution, the dendritic growth
model is directly applied to simulate grain structures, which avoids the artificial geometry
hypothesis in traditional grain structures simulation. In this way, simulation of grain
structures and dendritic growth is integrated with cellular automaton method, which greatly
improves the capability and the modeling scale of this method.

Equiaxed grain structure normally solidified in metal mold is simulated with coupling of
heat transfer calculation. By imposing different cooling rates, temperature gradients and
nucleation parameters, the columnar-to-equiaxed transition is simulated and the effects of
processing parameters on the competition growth between columnar and equiaxed grains are

analyzed. The results are in agreement with practical process and theoretical analysis.

Keywords: Solidification, Microstructure, Numerical Simulation, Cellular Automaton,
Dendritic Growth, Grain Structure



=
i

-

AY

il

BREEM B TH &S AR EERNE, LPIANERE (548) ARELRE
RS FIARIE, BTG PR MAE R R EM YRS, JFATERKREE L
BT MR RELHR SR, A, BEWEBRA S W 0 ZEERT i —3%
MATRE, {ERRER TR E PR —FMAAED, RRMNARE BRR P —
MRS, AR, FEik, TR E R EA LN AL A FREN TREMNA
T, MRS EEMERHRNE.

SR, BEELE PR R B — RPN E MR . MR B, B AR AL
&/, WAl MR L&, BENEIAEE . SRS HFERE, nERRZ RXH
ER MR ZEERESTANEERITES TR AM. mE, T RER
B A EBEEATRSMRET, @BASNAEH, H&TRahE, XEFE
RUIA BB Z BENFE XML,

T E BRI R B AE AR ALA 9 F 8, 15 RSB 00K i ok TT e s ik [ ot
R TT, AdERE R I R 7RISR, Bar, TR RN SEERMT A
BRI LAY o S AR AR O UL 5 A 75 T

ZEMERLLGEE . R, shE % TE AR ARG AR TR ET S, BREEES.
i NG . AT DU S5 A e e ar . ek msh R, 4L,
AERL AT LA BN AN LSS HEAT TR B i T SR v X AR BT
TR E AR R, HalEEa N T TR LEMTEZ M ProCAST. MAGMASoft.
FLOW-3D. FT-Star %%,

ORI AR S ST AT VR 2 S, L 122 80 EARTR 90 4 ARHI T 4R A

MERZ AT RIS R, EREALAMN SRR & 540 MR GH R, R
SUTTEHAM T . AT LA AR 8 (R D S AT T B R A . R4 HLRT U R LT 9 A
RIEEBHRCNET AR SR UL A G A A BRI i — VR IR B A B 70
Hrstfel..

T+ LSRR S R T AR SR, (B i T SEhr g M B 4
7%, MRWEEE AN T B MDA R RS BREREER, R &RERmTy
EEBIIEA LM RS, SRS 0 A ZE . P, M O UE AL
H A sf LAREA S IR B

FEAFIRORAL SRR ST 7R JoT B Sy T A AR T BB, (T E& 7
FUE S0t RS R LSBT & & . R R RSN T &R RUBE (il
RO RS0 AR OB, 7ot dh RBE b 7%t — s oL |

IX



FRRIRF L FAE

ASCHAERT AT SR £, DA @ IR I AR, B R R
R, JERMNLIC BRI BT R, X AR W R Ko R AT I 3
FEUREERD b, P A S AR B AR AL I S, SRR L AR o Ao 2B 2 A e
AR UATHN . AT RO A LR P Z BT 01, AR TR LN o e A B TR
Te AAHLTERHES T AT R A, X — ik IR ELRE ) A YRR g e Aot



TR

BeHBE

s T EHWFIER PR X
A — L REi L
C mass% BB
Cr mass% AR H RS
Co mass% Rl
c mass% FRH -4 LA B2
Cs mass% FEFHEEAANS
D m’ s BT A
G Kem' IRERE
G, mass% * m’ [ BRI
I m? gl iz RS

Iv( ) — Invanstov pf %Y
K — e
L Jekg! R VR A
P, VRI(2D) ¥ Péclet H
P, VRK2a) M Peclet %
R m B R v 1
Ry m e o S
R m Ry
T K s
T K T
T, K EA AR
T K WABSIRE
Ts K [t #2535 B
T: K e L
Tw K A TN R
Ty K IRIR AL




%%

e BRSERAR PR X

To K VIR I S 5 R B

T Kes' AR

v m=s" A

14 T1G BRI T

v mes’ T T

cp J-kg!K! EL

CEq Jekg' e ¢! S LA

i féc%$>ﬁ;;<%$ﬁ> EAKS

% vol% B A4

B wem? K’ PR

Fin wem? K &R — BT R ARHK
B wem?e K SRR

kg 1.38X10%) « K Boltzmann %

ko — P4 RS

e %(ﬂ%%%)ﬂ%?(%ﬁﬁ@) o BT K s

Iy DIV A O EAC

my K * (mass%)’ AR =

P m’ JEREIETR BB

9 Je s AR

r m P g

t s it ()

” s R0 [ 1)

i mes! HERE, EAENu v w
X m RERE, EAEH x v 2
r meK Gibbs-Tompson Z%L

A Gy J IR AR

A



A

55 BHRFIEN YR X
AG, J Il 9+ 4% B e g

AT K NREdis

8Ty K FiZ3utc gl

AT, K A

ATy K eSS

AT, K HaL#e

AT, K R[] 35 2 X )

AT, K Rzt Jr 2
AT" K P 45 Bk 5 2 5 X )

Afe — A8 5> Hid &

Ase Jem?eK! AR R b

Ax m BILIE R AN, RS e 2 K
AX m HILRR N, ETEER D
Ay s it il A4

o — i bR

o — TR L A

Q — T B R R

a Mpep) n

£ — VR R R

£ — FHm A8 7 R

9 vol% (LR E

A wem'-K! FHAH

A m P K

Ac m s SR

A m B & — IR 1] BE

42 m Bid — v g ) ta

P kg « m? e

o J HfE

VII



FRFUEEA0EL

#EE
5 BH KL WHEX
o wem”K* Stefan-Boltzmann 7 #1
o e
bz # — #m
st ) — WA EE
THr S — fis 48
R L AR
E M — R
THE P — ENE
FER nb — Ak
FHE. W, N. 8 — k. B, @, bBEs
Fhie. w. nos - 54 #. . AEARAS MR

VIII



AE A2 EEE XM S W

A A E T 2R A R R ATE B IR § T AT (00T AL TAE REE A
R, R, BT SO RN SR B e S A, WU R R A SRR
FRESLNFRRE, WAEEVRBREAF R EEE AR A BOE TR
et B 53— TAER R R X AT RO S A e TR AR IR SO R T WABE I B
HERTHE.

ST T Eg%' 0o 2004

AEASFUA L ERBRE S

RERE. THEEESAERARN. ERESEAERRE A FOETFAR I
SEM A 3ORS, SRR AISEEL . grenal e R F B RTFR 3. RART CHNA
FMEURIR N AAR B RIERENORERISS, RFRSCRERMMER, W
Pl (BRTIE) W REsAF. wXHLh (BETE) BEREAREN
AR

msn DRN  wwes @R 0 o 20800



BT B R A SRR

F—EF REWMNERELEE

L1 R R A AR

BEE R BN M A AR RMMELE, TTEEET BRAM LR AR,
MTEBREEME, X—dBEKRNER. SFRE PR LR BT,
M LR R B AR, H=AEdR, SAEESTEFRRERER,
MR B, BEMEIARESE K, B ERRET & SRENHRHEHA, Hit,
T A ARk, SRR PR T EFBUR AT A R, ML IEHITE
FERAMFHMUAAR.

L1.1 =35
ZAEBLE LU — A g — I A eih
%(P@)+div(pﬁ®):div(Fgrad(D)+S (L)
AF
p—

O— AR, FTRMCRFERMANRE T, W4 C sl =N Frs0 7 A s
OB U v w3
I RATHEERE, L= TS ES A v v w;
I— " X iR, SHERITTRBRR TG #E o, W HAREERTHES D,
X&) BRI A RIB A vs
S—— T T
FR BT, R RBERENG AL RS DR &M =Y, B—-%id
FréAF, AR Dirichlet #fF, BICMATRABADFCNME: FKAREM, Bk
Neumann %/, WEHMATRELEBEDFLVEEER: F=BDFRELMN, IR Cauchy 4
i B2 R ERD BT LR RN ENE TSR, X = RDF L&
AAHU T =ZAFRR

O(x,1) = B(F, 1) (1.2)
@-(f,z) = (%, 1) | (1.3)
on

—ag(f,t) = (X, D3, 1) - D, ] . (1.4)
on



H

F—— 12 A B ] A

§ —— 18] BEFR

8/ on——i RAIEE N & 7 B SEL
CL AN R HUE;;

h — PR R B R T

@41 B B BO

WIS E S ISR, Mo LB PEREE R A4 SRR, BT
WE RN AR AR, NRES. RELNRS.

R, BEEHRERMEY T, DR T8 e RIS s AT, Rty
SRR IR S, R FERA R SR AR RT . SRR A B AR 21
A )37 B e i TR A AR B] T AU, B B X S e BT R 2 (8] S R AR E
HHCOTRE, BB KT EARARE S S SR ERME. EEH R BUE KRS
FRFARESEN. HFRAEREN. GBS URTED. BhERAREhRE
HIERE, BTFESHERTENRESFRIETE, FRFEEGHHADEEL, U
AAEHAT RS Y B A R .

N

112 BELEK

MR REERE, B EAFE—ENNTS, DHURIFEMET A e b T R
e, EHEAT, BAHAPRER - LRIE. HRFRTIRAEELRRREA [
A SEREMFTE. MREFH - NETERBMRECK, KE-DTRTHE AR
R R B GTEALTRE X0 AL ) 7E AL ARRIBAR TR i 2, R IRE
R, iR

AG, +AG
I=IDexp(— nkHT "J (1.3)
A
— IR,

5B INAT IR T, T REa R R R, Mk & a] CLR S e G

AG — ISR A% E Hhfgs

A Gy JR T e 18 i A oS

kg—Boltzman ¥ 1

T A,

RIGTEAZFIHLIRAS R AT LA A RIEAZ R 2 e % . YRTesm, A R T &
F R R E CEHH AT AR AR, TR IR . FRIEME, WHT R FEAR

2



BT AFROA AERUER

R TE O FEER R AT, RO e AT P AR A SR B s R BN BE . i T
FESE BB TR, R R RIS BN R 2 B & M A, B RS 4
ER AR IR AL FESCRRI A, RN A B R IR, KT LUK
AR S R e S AL . B 11 R, R TR BT A A O B
PZIRBERTER, MR AN FEARL: TR ER AR MR R de b B Bt v B 1 300k T O i 248
.

i Iy - Y
% B —
= i
B3 iz
o AR

(a) (b)
B 1-1 () S BRI (D)

Fig. 1-1 Continuous nucleation(a) and instantaneous nucleation(b})

ar PR A IR T BRI, RS 5 7R [ 5 1 b A Wit HEAR . KO [ 57
T TR EE M AN ], FT LR R 23 A RURE ST ADE JEiR . 7Rkl B, B ATTRERAE
gAK, ZHENEK. BRAEERSIHERS. B—ATH R KN R R %
O B [ T e T o X AR AR R SIS A, L A SRR R B
Hik. HTHEME, REMEKEZEERT HAEN, FAE. BN SRS
B I S ETHI A B A G RSN, AR AR KO 5 SR REAE TR R Bh ) SN A 5

@y [ [0 /
IFE ] -——
i I
i e . b

C,=0, G<0 Cy=0, G>0 C,0,G>0
5t L
1
i

e | -
i ] i d ROl

K 12 REANHHR A S R I
 Fig. 1-2 Tempreature gradient ahead of the interface and its morphology

(Te—%FFRE; Ty——8&ERAL T—&SBAHEIR -

3



FrAEE LEe T

AR [ 7 00 S RS AR S AT Bl B O AR, TR W e 2 1-2 Praskd)
ANRFEE. AFMEERRERE AN, Fimib itk T v rid b, FmEE
KASENE, BB MR T MR E R A 2R . 2 5T AT i I SE W BE 9 TE R
TSRS, R AR R AT id HORAS TR 6, A S IR R A A8 A~ 5
s B P, FmiE sl FERER T PR RARAT 1 HER)
TR L%, (#4852 AP A AR BIRSR T 7 A R A S i 4140 . A 5P
BRI R, BARHARATE .

1.1.3 fAMAR

BomfBHUR R LR A B E A1, B R A i B AT BIROR B ) —
WECREI B, WHARBET. R EL SRR BB RIEER
ACHAF AT Y i v it B p AR I SR R (] AR R i S5l i B0 7 (DR PR
BRRE A 0. L 98 A ey 5 0 1) JB) R e P s e TOAEAR R 7 ORISR RE A IE,
[ 7 40 R I DA R AR HE . i B ML R T — g |EE (). —
KRR (1) FiRmERE (R), B 13 40 TR&EHNREE AR EERILRT.

%%%

(@ R (b) A
B 13 B EER R T TRHE T 1R R
Fig. 1-3 Schematic representation of dendrite morphology and important length scale
SEEAAA RN LB R G SR BT RO S R, X
B MTEARMN REANRERW. £ 1-1 8 T XSy BrER R .
F -1 MDA oh A I R R A Y R

Table 1-1 Characteristic lengths of phsical processes to control dendrite growth

SR I0N 5 [ i

S B Uy o ATYG
WK b biv

FEAME 4 VAT, CEE). Tl (@)

4



B—F BRI ARRRE

XHER[101F6 s, Mi— BRI E, BN RS S 2 50 1 F R RE 22 1)
R R LSl —NEAER FAD)TALIA], EF atbe=1. MBMALRREFHTH
Z AR AT A R R 2 BSER M4 R, e € BN &4 T R R &4
AEW b=lv. XK, BUEHNIZ28, SCRARYITRER AR, 3T iaEd
R E RS, |

HFHESHNE, AR TZEE T ERIR SR HR AR, B—RiERTLS K=
At R B R E RO, PR AR RO A B S R IX . 1R X
SURHERIEAT N, ZBLRAN R . AR S U H— RS SEATHES AR Rk v 2 B T AU
Jr ) PIEEM . BB S X TR 2 H [, EHENEREARRKAEAN.

AR R R TR B R R, — RSk, 4/ RER TR S
W LR, BIEER A BB NS, ARG MRS E 80 2
Be AR AEIR ST A T 8 47 s i RE [ 15 B 1 fn b R 2R, TS E ST F = A R R RN,
b H R R S 5 X (M T Rl LA B AT R — S 4F (Columnar-to-Equiaxed Transition) #2
HT BFHAR KRR, SEHT T HSRA RS . SCRTFR A S PR

1.2 HRMALSERIH T HE

121 BUAHZER R PR

A 1966 F, W. Oldfield i 5 IR 5 H 75 58 B A28 5 3 B 1 R R A SRl 34
FIER AT R R A JE R E R R M A L, AT 75 R Ik [ 20 27 T Rl A el 5 2
Bl B i T A P A B RS, R aiE AT KR, 5L
20 80 AN S I, R AR SRR A T B9 TR A T E K = L

FEFAZMERIT I, 4k Oldfield BRI T ZELEHHEEET, Hunt #E T2 058
FEIRAR, 70 HE TR P eh (TR B 0 B TV A B AT o/ M B L 35000 T Wt
AL AU, Thevoz Al Rappaz % A2 R B 78 SR R 6] 1 72 A7 A0 B AN R 6 20 o 5
FUERZIERE, IR T M0 AOMER A TR ALY, IR E& 46 R AR R 1% 26 R
TR AR LR,

FKFERKBRNH R BB RAE K BRI &K, E—H 1, Lipton.
Kurz. Glicksman % AUt f/E KO BEHERIBEAT THES, 36 52037 T L&,
BT REAR TS M AR R AR R 00 LGK B ) B K A4 N B KGT BB, B 20
MERESEERERY TR, ¥ TH—PEIIEANE, SFEESRHEREL
HERTE, (HS550 5 M3 S M0 R R IR — A AR, T2 Dustin 1 Kurz 324
TERRZHISRN “AEEM O TS, AR RREHEE f % T RHER
2 f, MANTEEAG B A R, X — SR KNS Ry #E A mE 1-4 Br. Rappaz



FraAXFEELENIRT

FAHE LR E T IR, JHESHT £ SRR Péclet B2 AR X RPH,

[ 14 SR A 0 P A R

Fig. 1-4 Schematic reperesentation of solute diffusion model for equiaxed dendritic growth

MHELER, B—REHAERNOBR GRS IER, B REEN
EARERE R ERE RS, A% RRaREEEK P RFEILEZ, 1989 4F,
Rappaz 75 IMR 78 B R R T —REE, L MREBEANT ZEHE40.

122 BMALRBELKE R

BB R R — SR T R RREITA, SOASERBAT B RE5 R
W ZX—IER, ERAASIER Y R T e e AL 28, B Rt 90
FERTG, ERMATESBERAT —2rEiE. SEFRE, E5—NRE ENHRE
K AR AR FEAT 327 (A0 T R e FF o T %o SR AR AT I L 2 D) 4 o 5 8 i £ 2 B
U AR MR BRI TR R S E R R R R

Monte Carlo (MC) JFIERFIN M TFHEI T & B A LUK IR EE . X —HEER
Bl AR R RFEYEE, FRBEMR GRS TE R, RALRER DR
H, HKAEER SR HEE, Wit A R m R -8 R o AT St I H FE 80 FHE
75 FFIR S O AR IR . MC T2 S R AR DL T 65 o e v 0 1 A ol 4 ),
Spittle 1 Brown Jl B & AR foluk B i 72 b B B AG T4 A K P8P, Zha #0 Smith #— 25 %
FE T XM EARIME T 5@ E SR HA —Sie A R B B AR, mE 15 FoR.
MC 73 B R 55 s v 55 o (6 Y I (8254 3T HE SE B 4 e ) 546, 1 bz 8T Ak
W5 ek e B DRET, JF LERE B RSmE KRS

B 1993 7T, Rappaz i Gandin % AR T B BB XA SR AL, A
TR A ER N Cellular Automaton (CA) AP, cA FiHET EES T
PRI R AR TR RN I A B A E REAE, A KGT B0 5k B ok
AKERE, ARG IEAEERHATROGHAEIR. thAMBATEE CA JTiEFE A #RGHE

6



B—% RERRAAELIE

WA IS GRE, GRT CAFE BVEEACY (nE 1-6 FiaR), ST EHoNE
s JPRHRIER T =4 REIE Y, NITRE LT SRS L
5 MC EML, CAFEAMTESIATEEAIR, JFHA FRMY S s

H e

"'u ha! f v
P . el T T s

] 1-5 MC Jy ikl 455 b g X A AR 0%

=

Fig. 1-5 Simulation on typical grain structure of ingot with MC method

N -

AR A
m«—‘;w__,::..‘— o _5?‘ oo x
S e | FRE AR
; Qt’ IB : &

= i B o a.uﬂ &

7 = g 15E
“/ NG 2025 ‘ﬁ’

0 f- == [
s iR

& LM} vpuwy

i

B 16 EWMMERAG CAFE #REY
Fig.1-6 Coupling calculation of CAFE model



ERAFELFMEL

HEBAE AL R R, doE AR B R SR B T — %€ # S 5 - Wang F Beckermann
B 1993 FIHRIFES AR T —RAUSCER M T £ RE/Z MR Muiti-scale/multi-phase
Model) B, 3B Al-4%Cu 1 NH,CL K RS2 50 45 B At AT T 1AE. gl 127
iR, AR R AR T PUE R A A DAL, KT B A £ S R M AR 705 ik AR
B R AR AN R R AMBAR AR R, AR Mok e B R R R 3. .
MEZNTEAR, FALR MRS AR EEERR, SR T £58 5
FRRM S

CL ! I I lCL
1A
Ket> | | K
N Ycsjics st
1 1 t
> H b i Sa
4 t+Att 0t taat “r

B 1-7 % R/ AR+ = ast ) 1-8 BRIE AR 70 B A 09 5 o
Fig. 1-7 A volume element consist of three phases in -~ Fig. 1-8 A solidifying spherical element and
multi-scale/multi-phase model the associated concentration profile

Stefanescu RIBF FLAL I M E AUR E WAL BB L) % (MT-TK) H#
GHOA A I3 B AN B T O HR A AT B (AR AP R R SRR A 15 S ST AR
PRl RS SRR R FE P B SR U, 1R 1-8 T, X — BT BB A BRI
WA ATEEMGEER, B T ERER SN N FBE M N E4 4
INCONEL 718 AISER AT TR sesbh, ATt SR NIRRT T Xk
SRIFA N RIS 7 s B A B AR A R E 1B

N, AREHPRRAEERE L, MBEERE EFF4E2E. iREEEas
W52 TS 2 SRR 2B AE, 107 BB 5 &R R P I s S TR AR AR A R IT R IRA
HIBST. ZEX—WFR A i LAHY% (Phase Field) JriZBX BT EXEM.

H SR R A, £ R A TR R A AU [ T A T M, Meiron., Kessler
A1 Saito Z g it A E T SRR BT, XA R A KA A R BT T WA
H— M N AR R A REE (Front Tracking Method) P%Y. xfriss
TR FHERERY, BT 75 R EDEAHTE, FH R 4T R S a LR
W FERMNEE. AEXE— P RBEREZAFARE, FEMMN R mA Y,
ULASE 43 i) b 3 1 A0 AN AH T S B o . Thie A Krumbhaar 328 B e 3% 412 ke ok 2 R 24 19
R R 1 B, Jurie #1 Udaykumar 25 APS00)% TR 2) AT I ADIE . S dhe
TS AR T AL — WA B AR B ORE, LB LSRR G AT A B AR R

8



F—%F REHTAAEE

WA FE AT A TP ERERR, ARSI EEN, BT,
ZHERURESS I, REIT ERRE.

R AP o R R B, ISREAINIR TR OB TREIR@m, ©=1 I
ForRI, ©=0 INF R, O<o<l BTFRRAE, XS FROHE T LLEA R
MMES. M FREUSEE-HIEER LM, $REFUERRNFEANEGES
1B, S HE— M AR A T R omi s w2, BEERES T A miR RN
AME, FHBRTLAFNRE . W, MBS EmHITERS. _

HIZERIR N BRE R, B3] 1993 48 Kobayashi FH & &5 S4BTz R
St VR R R A B R R BT B P, R T B T A SR A S R T
WRFTH AR 26, TR Wheeler 28 AU 43777 3 00l S RIERSYEEAT T 52 B A0
f&o 7 Karmal™. Warren™\ Suzukil®% A 1955 N ABIZRIRI B BIHE — IR EAEIE,
X[ Ni-Cu % Fe-C &+ Al-Si RO &R B RALSEHAT TR B 19 2 Warren %
NH S 77 BERMF B Ni-Cu & 4 4 ISR A A H Py SR a2 AT

HFCH

1 4

day

s

= s

= wdld

: iy __; — ]

] - 23uR

- f fl ﬁ I,,.‘L,
i 4] 4 '

i}ﬂ'ﬁ_ﬁh

1 1-9 AU Ni-Cu & &4 & B3 B LS k™)

Fig. 1-9 Phase field simulation of dendrite morphology and concentration profiles for Ni-Cu alloy

FEARSZIARIHIB) T, Mo A AR E1HAD 90 SEAUKEI A FT MR & . Dilthey I
Pavlik 5 i AL W RS RO i F S d A ) AR A, RS SRR R SR, DA RR A
o0 B BT iR G IR A B A, RS T MR i A KA K — R L, i
T RA B R S TRR TSR . Nastac R RIS 7 Sl T XM S 4l o4t
AR QR b, AN BLE#I S 1994 47, Sasikumar ¥ SeF G BRI 2 R4
LT SR AR R SRR, B SR R IO AR R T A SR KRR

9



AR LENRR

FRl0), (B A ARG TR RS A MR R T RS A K — R .
1.2.3 TS BRI BAR

R, HORA PR T RORT AN TESR L, Udaykumar 25 NSt — b TR
HREREH BB 7 TSR BARE RN 0. MprE R FAE . AN LR T
PRI KR,

AT BB T B ProvataslV 5 ABRI T 33 B R SKABHFEA, #1 1-10
Fror . AR BN BRI AT, —on G & R85 R R A0 8 &It & KRN Z 1
P, FNEENAHEFTE T SERESMRIET, fhih, ERER e AIE
ARSI RN R — MRS, Tong A1 Beckmann U8 I T % it a AR 8R!,
B T 32003 S B A KAESR 20 . BRINER, MR RS, HH
it SR, —Rbk, HEaElERAN.

B 1-10 [ R R g R ™
Fig. 1-10  Adaptive grid method

%ot -1 SR A 2R BT AR ok e 18 T R (B AR TN — SRR 4 2 B RS 0 R
FLr 8 JE . ABE R R SR HIE) A, FTEL CA 77k R o B S AR 3 T 7 Rl
JFifi. MH Rappaz & AFERLL AR RN TR E L CA Tkt BBl T -4
B A,

Wang #l Lee 2 AUSZE CA F0 FD WIER T, HETHRT HARTEENERD, &
HkBE AT i BEmAREEER KGT SRR AR B A K. MATRh R T
8 (R A T — R IR, R T S X B K, (thermal history
dependent). Zhu fl Hong B 2001 “FEM4E R R LIEAH CA FIEM T HHScE™Y, 4%
WY AR, GEFIET BT A Rl A e g, o T4 M CA Fikd
B “OR0aiFT7” fgkE R, M ALCu REESNSENER LR ERNBREN -8, 3F



P BEE PO SRR

ALt AL-Si B4 5 AR GULIAT T REFIAHIS, IR Zhu 1 Hong i K F B
CA F kAT T B30 £ AH A S 3Fiﬂﬂl']31:a%?ﬂiﬂuﬁ@ﬁ%fﬁéﬂﬁl[mm]c
HAh, CA AR EAERKGER A IBER B IRARE . Zhu F1 Hong 2111
SR CA A e AL Sk 4128, 1 Fdd A s B B di 2k KRR R 15 51038
LRGBS R . B, Zhu X7 Hong A1 Shin % A AT T/ES SR E, BeT
It 5L, SO CA Jr ks RIZE S AR A T AL S 84 459, 41 1-11 7R . Rappaz
FIRIF 5 4 SR SRS R RLEY 7 VR % T 4 O Bl A AT T A7), 78 Sk o i
BT ERR A “ Py T EREFE (Pseudo-Front Tracking)”. & T b FUKE 3 AR 1 %
o) Fetf, AR T IE/SAFMTE I, JHOAHIES R IeER, Mg 25 5
4T T He# . Dilthey A1 Nastac ¥R B4 0y Stefanescu 1l Lazaro Z A B8k m
HMTE s AR e L B h e BRI R .

- g ey wenem B - v R B o L ———
e o ETRN PN g aemi ARy | P g R g A 5 e e g -
. B R e . A o R i e g
s - v - i

B 1-11 B A AT e

Fig. 1-11 Dendritic growth with melt convection

LR, FE AR RO AL B TR e T — RPFF B RF W KE .
HE R B CA BRI AL RS, 5 ALT%S1 & i SR 4 SUHT T B,
MATERE T H —F R A kR R RS R B R & SRR ER I T, AlS)8
AR RE T RS R, 208, RER. 9ERETPETRED Y, #E%
R MBI AN F 0 A 2 5L T BR R R T S 4H AT R A AR Y, FRR T TR A 2T 4R
s FXLEE AT T . KEH T RE TR, SR8 e EENELK
BT AR, FEENRGSE, & CAMREARM MC ik, T CAMC #
OSSR, I T Al-4.5%0G 20 @A L. T PREEIERT 7T AT 3= B Rl 0-102)
FRTABPUELRINIE o mE #, A CA FEER T HRES & H SN MR L,
HAEEA BT T TE WA, HERFERSRWRMES L. 25 % ca
5N WA SRR T MR A 2 ) SRR D BR — S &R, TR
chA OIS T R B RS R R R, % FeC AL T
BEEE AR P R R A SRR, RERE AR L RATS . AT T

11



RAfRFE SR

a5 A 3 VR AR BIRE R T Al 4R 4R & A 70 1A 4 R i R A e 108

LR R S R AT T V8, 8 Bl 76 B
Rkt K RELE . 5P BIATI R QIR RO BT T TEOREL, BT UATES ST R
AR . RTINS T LS S, ‘

1.3 MBI F

e Bl (Cellular Automaton Method) & 7E 40 50 ER47, diitEHHLE!
AN, FLEER Neumann 2. CHBERBEE—AMRRELMET, KR
SHASKNE TR, KERRENMRNRMRE B SHRE, Al YR
] S ISR A AR S A B AR i A . R BENHLAB AN E . (1) SRR B
B AH R R ST R 8548 8 MmN HER I T e, TR BT, (F A ES T m R &
IR (2 MAAAHEHBHXR, EgTET RSP, RFRAME
Neumann 431 Moore 483, A& ARG IO RIS CHIR, EERAIEX A
R GESRIG: (3) MR TAEEARGRSERTEERITR: (4O SR
B & BARS R TR mTsE 2 R AR R SR A e .

f7c BEMHL T R A AR T A E O, FEBUE VD AR IR 7 (E, HABA SR
B RS ARk, BT RM AL BE KRR P EHBRT I ZNA. £8%
FhocEK e, TRRZChMTT HEML AL, BAERA GBS PSR R TR, I HEpE
LTREEOER . ARUEAE, ACBHA CA Fik. VA CA FiEERLEE R4 4R
AR, B EMITRIR . SRR WEEZ A, EHFELERE. A REUN KN
4 R R SR B ST I oC Y R A R

{ERRRI AR, MeREE AT LR RS AE KA PLR R A . STl
Fid R AT A L AN T I A G B A TeaZ, Z GRS B AR A
FRR—MELITIRER, [FIR M GR T — A PR n /4, n 4TS E AR
AR AW —BFZLER, WEORTGTRERREK T mAER, HMEEME
WM ARG, (EARIRRTIRA R AR, LR (1 T i B Lo IR G I AR A 1] R A4
FHeRT. B—MRIThETE R RTBERERE, ERoE LK.

M A KA, —BRgsad K ERR R e R TR AE,
e Rim A K VR R R AT A T (R R 3

V = kAT + kAT (1.6)

R B e o (BB AN S RHE R =R A& SRR EAMEL
AR, 33 AR 2 B . [R5 T RO T R v B R R R R I T
TERS FF o3 1 H B - A0 WG L A0 AE VR (M AR I, T 5 220 oL M A1 T 42 R AR T 4L,
K, b S PR 3R R A R L JC R A e AR

12



F—5 RERRUSHER

TR, AR T &R ARKSEE. RIS SHR S i fk
414U, Rappza S APMRE GHRAEKINE A —IETT, S0 f2 L AR IF 17 A 0 3%
A, ARGHEBRARTTE, mE 1-12 iR, HROIRT A E 2R, WE
I ZACR SR AN R IE T AR A4 38 A 2000

()= j" VAT (@)} (1.7
MX--AMERLEATIE T B [E
L(t,) = Ax(cos@ + |sin 19|) (1.8)

BRI 4 ANAFIEHIGC B, B2, B3. B4 ¥4 e diabigk, oA iste 578 4 1 48 3
ERE ORI AT makied i, Bolx A WEk4dE, BHXMHAEERTS
SRR E, SR RHERARTRELEME. REFRERITRERIE, Bes—rE
kil T WALE, FFE=/AK TUV AR THIE, X5 TU TV K
JE RS MU IGIRBE M RE . 7ZEBA G ISR SR = i, X—= AR5 IE ik
D IE 5 L BT . Sl IE 4 SEVEPH R B 2 R T 3R 5 ek 80, 4 T 1RiE &
TR ERE, TR RIGZLIZOALR Jy RO, (HIXEES S Bk TS TR
SEFLEHR CA RN, HHEEMRTHE. EHER RO EWE T E
T %O T B — MR IE TS .

F TR G ED, Zhu XTI 12120 TR, XTSI
M i, H 8 A B oH MM, TR 1 7 BRI L R
Al B AR KR B AT A L 1R E

[

L= .
' 0056+|sin6'| (19

AR i RO AR B L BRI, W L KT MRS RN Ax BRI, T 1 A EGE4R
& ERBAT e, W L KT V2Ax BRHE IR

Mgk, WA BRI keAiR Rkt s g, JRRLE TR, £ R
H IS SRS F @R A B A KT W B IR RS K S, B Thmi
73BT Sy 18 B A AR B U IR B, (EMAS R DY T A BRI ok 4
IR A, KA SR Steinbach 2 AU iR BRI BTG A

X 0.859
-4£=aam(§] (1.10)
R R

K 52 RLANE, » 1B 1-12¢ Fin. BN RE 1-12d FrRiodnss sk SR e 5,
R Glicksman % AMSEGRFSLE R, AN W8 LLET 40%M3 S, X4 T4
FFKELRE, BPE-—NTE RS TE



REAFH ¥k

2

X
RTTARE (.1
Pz OSSR T AT 1-12 75 VbR oA SR A0 2 5k 5 BF
L(0) = L[ 4"+ (1- 4") cos 40] (1.12)

, 0 04L @
) [ ,
(c) SCHR[99THIRIARTT i (dCAR[115] M 7T 5 (e) XWAON PRIk

112 ATt
Fig. 1-12 Different capture algorithm

BRI, i AL RS, B AR R ERE T AR A T Rr E (R
FIE S T ARIE s B T m A4, DA RARIEN ALk - 3% 08 CA IR MEE ZHETTAR
A i, TEAFHRTEIITIF S BONA IR, 3 BIXPIF R R R TR 40 HY
Bk, EEEARERERY, HERAE RN,

X AR AR, ERARG TS, Sibr B DCRA CA 84, BT o
TR A SRR S B AT A RERTE . BAKE R B KT F LB
RE, DRltk, 32 SR T 2 B A R DL R AR U o A o AR 7 T A B AR
s J T Y- A LAAS B PR A ) 3

V,,z{as(aTj —ab(a—{J }/L : (1.13)
on jg on},

14



F-wr BB RONALER B EE

oC ocC .
Vn_|:DS[al_DL [E]IJCL(I_ICD) (1.14)

R
ViR AR L
a—HYHE, a=Mpcp):
I—— [
C, — 5 FE e 47
ky— T 3 B F 8L
S, L——4 2 R A AN AH 5
MFFESZHAGEERaeEERE, TRV (1.13) R, ST FEREEY R
Wi a S EEE, AT (1.14) 5. MOk S Ml S A F IR RmE e,
RS LA AR . XAEAME T DU B AR, A AT RUSIX
— A R Y B Rk A RS R 2, T TR R S A (T TR 2R . 2
R FELE TSk R A S TR BT E R BT, X7 AR
P REAT VEAN B3R
B2, REMREER CA FEEMEE AL h AR B 5 SR 1 & A, B
BAE B CA FIELIRTE AL HSUERIE 2 M SR mals e,

14 FEMANBEAHAEENE

MBI LB T R R ABLRE R, REEMITEHEE T —E M), (Hif7F
{EE — ki L.

B0, Tk [ G e R, X TR0 1R R BR S| B v 3 4 I 4 AR AT IR
AR ARV 2 ek ] 2 UL B TG = BR TR R I R Bl B BA T L i —
E BRSO ERG S ENESR, BEE 5k R R IE g E AR E
o FAEERERE S, ROERANERS U TFERL, SFRVENSRETE R
s JasRigE o R (N I A B R RO 2 R

Rk, il RS RO R N BEIRZ L, e - MEERRNE
REVEEPARE, I AKX b 2 (607 & 0978 G300 4 0 10 A b e AR B b 3
EREEE AR, Lk, WA RS, (THERE BN L bR R
XA RFHEI E 8, AROSIRE, o Ed & ESERMYENG, £k
EREHE SRS, EIE SRS R, R R A TR SR R T
7. '

= AT H SIS IR U o BT, B 2 R B N ST Sk YA ]

15



MEFEWRRES, BT F ARG WSS —EiRENTRIFLHIMNEE, e At
RIS ] A0 KBS AR 1 RS, TR 5 R 2 A L Rk
TERRER . BRI T UR G EN ST B A ST, DRaEstihiiE
THELT R N E I & R

ORI RA LSRRI 2 GAER AL, e 8 3 RSERER, R
W LAE:

1. FERTABI RS b, S SR K E R R Tt e, DU I |y
e %) S CRE N i B SURNE ¥ i1 B AV W itk 7ee K AP A X Sk o o e
ERA BE N LA o BRI IR A R B RS A O 2 B v AL

2. M CA JREX RO A BRI AT BUE R AR, SitHERIRF . BB EEA |
CE T o8B e 24, % B0 SO DU AT IR 8 A A e B4k AL 2.

3 P — Sl AR B ST 00 o P 8 1 D B i SR AR R 25 A 2 AL B AT L
A, B S A IR AR A E T A I B BOR B A SO BB A
FIAHER PR AIAE T

4y KX MEREITY R, RE REE 44 T RE R AT, IRl
TS FORIT A T2 B 0 5 11 e R A VR0 7 T AR AN, - o B 00 Fr T 4 SR 2
T HCBURHEE -

5¢ ORISR AR A KRR BN B R AR &, B SRR I E T
FERRAY, STHLERORAIRES - B CA J7iEn dion 41 UBLI AL R ARSI T A,
Frxr B AL AT I



BEFE HRtibEmy

E_% BREKEtLRR

B o T R [ AR, ST EREER N, RN AARNER
B ARTER TR R w i st BT R RE s B A KRR RERF AR A R %
(¥ B 2UE, BT A IREE M) 0 2 M TS & o XA LR 4 2 08 O
SUE IR G A KA T R F MRS, AmEL L HFEREFET KEXTHREKMN
B ML .

W, BIHAALE, R TE&A KHIERTREE T — 3. NASA ¥ 2514 1994
. 1996 FF 1997 FAHAHE LT 5 38 CATERTME N ST ITE TSR M L
K38 (Isothermal Dendritic Growth Eeperiment), IDGE F M T Wi EAE LY
SCN[CN-(CH,),-CN]#1 PVA[(CH;)3-C-COOHE A sE3e b k], ixebsicsd Al K
BAL T2 H R RRIAE A (k8 b HEm i R e,

HSENAER—TES ABREEREERT N, 5 ENEE RS0 He
FIRTRNT =2 FE AL . TR B ST 0 A AR K R S ER S R AT A, FEXTHH R ) i
FERBATHES . TECEER RN R A R B R SRR AR R (0 B v A B i

21 BRmRALK

211 RGHREE KR

MTaEgnE, FBTAEERSTREN, BENERKEEFMERY . BHR
§RUMUR T BE AN = MBS 1 . Hoh 3 RO B RCRH (R A AR R AR, TR AlfE
UM — T RE P ) B S AT, AT S A PO B A A A5 LLOR AR

HUBRAEARSE BT R, WSRMLEE Vsl 277 [ 55,
Fr A A AR B S R T T DLl AR g

oT

@, VT +V—=0 : @1
oz'

qv%4V99=0 2.2)
az'

B (2.1) A (22) AT REIAES, BARTRBIRIEARBMEME,
IR R AR — 82>, R IR0 20— B A8 B 5 TR 5 BT IRAE 2R R AS
. PERBITERIEE R BIEE RS, KA REWECEREZE M iEEMYE.
Invanstov!' "1 SEXFX — RERE SRR RIREAT T T OB ki, 1531



R R A

C,-C
Q. =—~2—2 =P : 2.3
¢ CL(I‘-'}{D) (c) ( )
T -T,
Q = ==MF 2.4
=i, M - 2.4)

A

O—FRALBAE,

Co— A SRR

T I RIRE

I

Iv(Py— Invanstov B %; ()= P-exp(P)- Lﬂexpi—z)

P—¥ 0 Péclet #, P.=RVI(2D. )%
P—# Peclet #L, P=RVIQay):
R— MR um A%
VR R A R

B3 —JC R IFA & LUK AR M AR K v AR 242 R, T L RERBE1M
TR VR, FILEFRELERLABR AN RIFEFAIE . Langer 25 AR R ERE
HEE R G R=d, M0 5 — RS, 0P A RN RIREIE K. B T
PAE R

1 T

mGs~G=—r (2.5)

A

m——H AR R R
Go—FE AL BT 5
E——PHIREL, 7E Pl B £7=1;
G— TR () T R R

F——TRE A, HEIREN V@),
I'——Gibbs-Tompson Z4;

R—AREG MK AR EAE. W IMS (Invanstov solution & Marginal
Stability criterion) 1§ £l )% fase 4t ARG 1 2 (B ) X R 5 S5 HaE g
REFM~—Y, JFHRBEER, ERRAESET, o EREGRNES). X¥HH
TR EE RS, ST EREREEIIEX.

BiE R, @i KRS B MOTA, LI T SO AR 1 8

(Microscopic Solvability Condition) 122151 7135 3 if; (InterFacial Wave theory) '3,
FRAE SCaR[124], MSC #ib #4500 IMS ABUER, HAZ MSC A AN EEE w2



B BERBEEY

BESRSERMUESM, ERATRSNFAEHERT, BAo80RE5M#, HR
EHEE AT, RAEREMBREL. FH MSC B\ EEEH « ERERS M
SRR . MSC M IFW 1) EE2ENAET, MSCIANREFAEZREN. 4Bk
AR, BIFW BIGAAFE MRS RRE, RAXTFE - IRMEN A SaHRER.

X e b B AR R A BB ARH, B IDCE L% BIE k&, BF Lt
¥l PVA Al SCN MR AT AR SE AT FA . A& B R e L & R, s
HHIFEEE S B S ILE A& K 10 . [EFEEHARE, Rii6es matkm
UAUE BB B A KRBT A Z 5. BRTE R, IMS g% T R KiT N
AT {558 2 R HETR

212 RigREEEKER

Ta T A
::- | i
lj i 7 (=)
m/ J N\ TN o
+ T Y ‘\}\ ‘-\ \Tj ,

0
< ¥

xr Cs C
Bl 2-1 A R A ok it A
Fig. 2-1 Undercooling at dendrite tip into undercooled alloy melt
T AL AP AR, HRGRREM S E 2-1 From. @SR a
T=T-T-th=MA . Hp AT, AR, FRITH TR SR ATN S| ¥4
AR T MM . 4% Gibbs-Thompson X F
AT =x-L 2L (2.6
As, R
A
oK M
A s—— R BRI
K——Ftmmhze, g 2-2 s, of T =4E iR gt ds i i 2 o LG SRR H
AFEHIT E LR RASERZ AN (Ur ). B TEHREREEERTT R L RESE N
R, FrLAsHZ 2/R;



FHAFHLEVRY

B 22 =i O 3 oy

Fig. 2-2 Princpal curvature of a surface
AT, A, XEDTRMAENEREE I T FEoBRE <l 548
{45 S TR0 (¥R BRI 0 15 0 (K 9B iR B R 22 BE . v T AT R
AT =m, (C,-C}) .7)

M ] Invanstov fi# (2.3 R ATLAGF]

1
ATL —mLCD l:l—l—_—(l——mil (28)

SFFE A AR R B A, TR LR R R S B i ] PR B A
R ZE R A R S R BB (VB AR Tt HE S B R s ek 2%, Ak
s ibHEE. XEE, FAEANRE RS RIS AR T2 BEfFEERE,
BT A TeT ~To. [N Invanstov i@ (2.4) XATLLAEH)

AT, = - F(P) 2.9)

P

B o(2.6) . (2.8) A (2.9) KEHAT LB RIS L K it s

AT =L wpyeme, 1-— 21 (2.10)
C, 1-(-k)P) | R

W B bl R AR (2.5) BRI G&RRFR

R / _ 2.11)
o (m G —G) .

X RBRNNE TS
-G.D, =V(C, -Cy) (2.12)

FAC; =kC, B (2.3 UM Péclet )T X, FTLIZE]

o 2R G-k)
R [1-Q-k)M(E)

FIFEHIERE, 5% ERRRNATFET

(2.13)

20



PFE HREKIBLEN

~G,a, =VLIC, | (2.14)

RIGHFERRE S G AT LLRR A

2 AsGs +4,G,

2.15
PRy @19

A
ls—EAE T FRERL
AL WAHI FIRAREG
F ARG S AR LR, HEEBIFE Invanstov B @A KA
W (Ge=0) M (2.14) A (2.15) RATLUBEH]

—-PL
G —_ i

"X (2.16)
B (2160 AT (2.13) AN (211 K, FUWAE PEAKIELT .~1 5iEH
R e (2.17)

" PL 2PmCy(1-k)
C, I-(I—k)(E)
TEARMBITAAT F, B (2100 A (217) sUHtny LA — MRk 185 ks
BV HAGREE R XA B B @ E KA s B Lipton 5 AR, B
HAHFR A LGK HA,
Kurz 5 AR F R TE R M4 T 06 KA TORZL, 4t T —4 KGT #A,
BRI (2110 il &, BT E RAEKSE T RIREERE O, ITELR TR (213)
A 21D R, IHE R S 220UV BRETLUEE —PRTF VI~ TR HTE

2
V{—’Z rz)w( m,Coll ~ ) ]+G=o (2.18)
£D; D, [I-(=k)(F)]
TEEE PR ATLURARRE] v, JFH P=VR2D BEIRIE R R. FEEX, 58
AR A, € F A KR b i T SRR O7 BB R I, BT LA SIL Ve
F (200 AP ROHIE Tk 45 17 BUAE B 2 18 A HC AR B B T T 9% A 7%

1 2r
AT—mLCO {l—m}-i'? (2]9)

AT R R R A K IS B AT AR, BICREE AlCu E4RRS
(WL 5-1), FHA Matlab REFETA LGK A KGT BSHEA G H#1T T HE. K 2-3
BRTHEREAEATY, MW AT, fadd AT MBGE AT EBHFTE T2 .
MEL, &REZEHEOERKNEE, TRl ML E T 2R . & 2-4 NEA &4
KARNGEE V AW E AT ZEIM%ER, HPa5%A LOK $iFM G=0 1K KGT &

21



FRIAFH 2R

AR T H . W 2-4 paTllE S, ER—EWET, LOK BEGHMARIERE V
/T KOT B, IR EA LGK AR T Sl R i v, B LR s b
T e FAEMR SIS KT B 77,

100
ZI
%7 BNz
80
£ w
T %
38
§ e
I~
&
204
o ‘mim | ._‘ I—l.—l—l,—l-l—lq.—ul—L— T.——|

f T
o 1 2 a 4 5 8 7 -] k] 10 "

Total Undercooling, AT{K)

Bl 2-3 LGK #ER A [ id v oy ST ¥ T A 4 L
Fig. 2-3 Percentage of different undercooling in LGK model

. _ 0.0
/':,o’a
e
7 2
@ o
E s} 1E3
>
z
3 —~0— LGK Model
¥ ~8—KGT Model (G=0)
a B4 | ERIT]
2

1E5 1 Fl L i n 1£8
A

Undercoaling, AT(K)

] 2-4 LGK #8505 KGT # R LL4E
Fig. 2-4 Comparison between LGK model and KGT model

22 B ELE

MSC Ak o BT S At el 2P, Heikshs, fRRmiE &R
FIEFRIA I A1, 2R HIARBIIN , IR MRS AR, (HIREh RIS b
FRME AN, TR & St sl IR ig e 5 K s . 3+ MK O
) WHLBhE, R BB 2 R — A WL A A T (78 23R T Lo R0
FAC AR B R ORI, BTSSRI 3.

IPW FRR 1IN 25 2 2% FE IR T AR 35 16 B0 )R T R AR R8I GTW(Global
Trapped Wave) Fl LF (Low Frequency) PEBHHLEI, ZR AL N FHX TR/ EAME

22



FoE HmERIDGER

r, LF 8URAER], ATLAS RS MSC RUGREM, AREES R KT &/ M E
I, GTW ECESEER, B4 ER LA AT fewd B B4

AR A NLE B AT B A BRI, ERER R EmREE ST E L1
FEEEEMGR, WX TF Al LA ERN — RAMBIPIR B, FARRTA KR
BREREE, RANsif K TR RENREIA st KRR, mkshah TiEf
HRIPEN =K. EFEKH TSN

2, =27 | PL (2.20)
VAT,

AH A T—— & & MNEEEREER, A To=mColke1)kos
—AREEBRILE, DV RETHICE, mI/ALAREMKE (R 1-D. BT
WY Sle A TEAIRER, o FE eI TR AR EGE, Bk (2200 XEWE
e P Y RS R B B RS2 e ik B4 .
R TEHA LU — R [l 2 A KB IR Ay Skid. A Mg LliEg
AR TR M AR R R A8 3], Kurz 2 AP

174
A= 4.3( b F:T" ) pG (2.21)

Hunt 25 APEE B E RS URSBEN H WG 3 R EHFNLEE, B e
GV, AR AEUER, A S H R B LR B S I B A M
KA TRREE. EFEERNY, Hut AR PRGNSR, 17
BEZH REN—RKBREAE—FFNRE, S8R RSHE< Bl (221) i
X e — R Bl i T A =2 HE AR A TR .

T R B ARG M7 T A6, B E SRR 1, BIRSF s
K A A . Krumbhaar #—2598 AR I EEMAHEE S BRI T, LA~25, 3
WX — R G ERMBEER—FPL (BT i e RS IR 6 e 284y
BimEEAE R, HEIL—AAK L, SRTRER M. ZEIEER, Kuz $M%H

/3

TDI(C, 1C,) '
m, (1 - kO)(CE _Cu) d

A= 5.5[ (2.22)

A
Ce——L Ak gt
tr—ﬁﬁﬁﬂﬁ@,Eiﬁﬁ@%%ﬁ?q=mﬂﬂ:

AT*-#%@%E%%E%@,N?ﬁﬁ%ﬁﬁmﬁ@ﬁﬁ,MWWMQ—QM

[F— i, e AR TS AT =67 -

23



Fim KEW- AR

2.3 ﬁﬁi&ﬁ‘]ﬁ{ﬁﬁﬁ

231 RBRTE ST SAE

T{xy1)
Clxy.h)

Q
B 2-5 B KL R EE
Fig. 2-5 Schematic geometry model of dendritic growth

B ER AT B 2-5 Frzs i) LR B sk HE , X Z 4B IR T 75 PR SR A% X 456
Q, Ha S T (ke B X A EAH S RRAE L, BT T A S HAEEH DR,
TARSEARBEE—FB5r, FhX— 32 AR NB IR .

AR X — R AN F b BT, B A ISR T LR A iR, — 268K
NRBUFIAER], —RBAY RIS, Wk 2-6 fim. REFIEELANAY, FREe
SREAEESN, HEE . BT RS 275 R AN . Y SR maTE A
AFER AR LS — A S B R U R, A — AN — R ok .
ARSI . )2 B AR T — ) e 8 AR A T 3 50—

O & o 4

(a) k&SRR (b) 4 Sl
K 2-6 REFH S A @D
Fig. 2-6 Sharp interface (2) and diffuse interface (b)

MHBEP VR T RS AR R A i BN B, A E B R S

24



FR HREKR SHY

HENARTHRE, TGRSR, e LB #ik i 2R T
REF MR, BIEL Kim"PIFTHE 0, HERE A S ST E 0 S AT RE A I
B S SO R s 422 R AR 4 TER TR AN A EEE S T HRETE
iR, A EEE R RRT & T ARG T2 F iR B se IR 18 A I AL
10, XGRS RO YRR TRYRTA.

FIERERED ST R A AR R ALK AR i X T A SR, RBA
LR ] DLRT LR — S AR f ik

oC

P D, VC (2.23)
or
= VT (224)
V,Ci(1-k) =D, [@) -p, (B—C] | 225)
on Jg on J,
pLV, =4 [a—T] -4, (@] 226)
on )g on ),
T' =T, +mC, -TK 1))

B4 T WA S E I 4, BiExt (2.23) R~ (2.27) A AGE MR MEET ]
AR AR RN NREY . B, RRRRALET. FEIHTEENS. &
PHRMRERE Y 8K 3~4 MESR, FLs$EaiERK T EZRE AT S
il

1B T8 4 4 )57 O PR i TS A G B B S, A SO T T A g g (626088891,
R A A RS B R RIRE B AT T o, B 3 R A G A B vk x i — R AT
TAE VL, CH [0 A o A Py 0 R A A ST ST P I A B AR, AT TR G b b R
TREERLZ FK R,

232 WY B

BB R R AEKAT R, BARGEAEEEMY B WYL e, SR
LR s A K AN 22 0N B T BN SR REMA RS &4 TRIEM, 1
MBATE B~ DR ARR, R E T DA T AR T . B
ARG ERRAE R RRETRIEETER, BEMIHEAT ATMECHE. HEHR
BARREE
(D) BERIBG i RIE LT Sl 3—4 ME Y, 2R RS R Py
0 ATER R KL R h R A 2 R SR

() A EEARNBRT, Brss)hdve, tASESEA K K37 F ¥,

25



ARAFEEFRX

RN AFEE . ARG R U R AR AR EE T

(3) HRFEFABRETHY RAREERBRE 3 MEE, FHZ2ng5 e
pecle sl SE T8

(4) A% I FRRa

(5) WHAMHETFERA, FEHNQERHRSRMC, =4 C,

AN RRT BN, AR RIS A mXn MEF IR R, KA
M5, HycRFA Ax. BANRTRE M REME Sare FbpidIL AEM (SOLID). #
# (LIQUID) ELATE (MUSHY). BtAh, SAMITEFR EAEMR S Csn HWAHKS CLs
EARGEL fo EIAEIEE A L.

B ST R P AR A 0 T8 REMEET E T, BRI ARG
B Afs, XN EBAAE 233 DWHTHA G AT A KRR LA H
TERERIEBIERTEFGEL, EHSAERE 234 MTFHER. BEEEKY
AT, FMMRCEM G A AAEEN. Y4210, BREAERTOS TS LA
ARG, ¥ HARFSAE State Y24 SOLID, [FBTAS £ H 4 540G, &40 RRE S LIQUID,
TR AR e MUSHY o 4%, 8 M0 AR 2 Fe 28 AT CARS B 58 10 4R K R L (L 4T
B HTHEA

233 SFHEREEMEK

EHEE (D, (2 F, BEHELA hihEdA AT RS EE AT, =m, (C,-C))

ke 2.1.2 ADFREE RIS (S ER MR E A, (Hilkah &3 SE
LRAEN S, AETHhZE AN RESEREREE W TR TR,
FLH e & 1B T LA R R

o(@) = o, {1+ccos[4(0 - 0]} (2.28)

e

"2 i) [E IR ) 57 TH

G——JF ¥ 8] 5 ALK IF (0] BT 1 5

eI FE & R R TR

ORI KT 1A 5 AR AR AN IE (| 11 A
EEER MRS RER, fMELATTIER

AT = o(@)+c"(@)

r

K =TKn(®) (2.29)
\) s . ) )

T 7(8) =1 - 15¢ cos[4(0 — 6,)] TR A & [ Fe 4 R 2

26



B R Rig 5y

R B G, FIEFE AR RS T 8 2

C, =C, '—L[AT -TKm(8)] : (2.30)
R R

FH - 5T T~ 18 A Rl 4 R O B T AL T AR G 2 2 TR AR 3 a0 BB R, 1R UL i
AGEX - RER T HE 2 fB R i, EfRik Q) FhRmanE T
& (2.25) KATLIEF)

Vv = ;Q:(ﬁq 2.31)
C l-k)\ én ),

B A R IR [ S B HESE , T 0T R SR I A S 0 P 1 AR B AR
wh. MUERRIRMEHEEE, FEALELLTHEE.

0E 2-7a Bi7R, Sasikumar® 0 Dilthey 25 AT -5 A I x. y FHIHE
Vs Voo ¥ A RE A A BRI S AHIS & 2R

At At
Afy = E(V; ¥, -V, Ej (2.32)

Hi - RFAEFE 7 SRR SR BN, X EG R4 R A R e
Ry, TSR, IR SRR MRS . Lazaro®™V8 AU R 57 10 5 V2 1) 43k
MBS L=V, A B E Moo P LoarsiE 807 W R BT Lo RILLESRAE A f5, (EIXH
THEARA R HER, JF HTLUAE 2-7b shEH, A% BRI EHARS LiL 8L
#ﬁc

\
Ax
n
Fy
2]
= Y
<]
| Y
Y
L
V A 1-» -— dh
* N
(@) BVEMEENTAEM S BITERESE (b) PRk i B v B A

B 2-7 BARG= MvR L
Fig. 2-7 Calculation of increment in solid fraction
AARE T —Fh B S HEAINE, XM IEE S T WA B B FRT AP A 7 B vE B
A8, AR B A PO T o0 A ot oA A M WA B B B AT 4 B AL X eR SR T O )
A BNV [ T DAME — i E SR, SRR A BRI BA W, R ALV T B

27



 FERFEEEEN

FHiaBIFERI AL R SV, A, W 2-7b Fian,  WHH S 43 $0T BA el
Af, =SV, AN Ax? (2.33)

RiFe X HEMATHEAE 3.1 TR R _ ' -

T Af Kt S EREWE B RGP, ROOERE T B E A8 ER T
/G, BMEETRMFEEE, TEEZEET 7 8 R el 98 il
RIRAB L ARG &

HEPIRE NG 4 548+ £ AFFE— M RARML, 7057 0 SR AR SR 18] T AT
E RO, TR 2 A SRR ) VAR AR, AT B S M A 73 I e fk . BT A
Fek A Ay 38 A 5 T 5 VA R M 2 TR B 7 T TRTAR A x SR BV BIE 0 & © M — P
BRRAETRN
D.ar

t .
AC = C -C, 2.34
(Mfg( 5 (2.34)

A

nb—— 5 (A 4 4R AT

Coo—— WA 4RI nb B ER A3
TS R LR A C BRE KBBR8 A s, — &2
AC

G-k

Af, (2.35)

i (2.34) 300 (2.35) SELAT LA E AR 5 im K F AR 2
AT FIREMSNERE, WLAEREH A BRI 1+4(1-2Rand Q) B3] PR 2K
festindizl, Hrh 4 ABEHAASIHITRIE, Rand()J)BEr=4E10,1]2 M REAE B 5.

234 BHHESER

VAR T3 TG (o] R R MR D i B R — N30T, (H X — ) TR AR IR
JUTFERABRREENOE . REERMRAR, TR IERERD A Cs MR £ 6
RS A O BIMUBR(LYR H R, HA C=CystCu(l-fF it HHF S, BEFEFR
HE:

B, SR Cs M CLIHFBAMBLE Csk,CL KR, Hn)idil, RmHM-EY
% SIN s

C=CN-(-k) /5] (2.36)
FEw, RN RGN FRmALAHL
C,=kC, (2.37)

28



HoR BRI TRY

T BT R BLA TR ARG, FREAREN. 236N EwE AR MBLAR
SWHAERE, LRSS TRERDEAMARESRE, JFHATE MR LR,
DA G R AT PR . Sasikumar 25 A CTHEX R A BB RO TR, ARE
. :

Hk, O FARAETFC, . FUeEFG RSN, SREER RS
WA C; , THREE TRBFMRAEARRY, PUOYREWAE R mEE DR A x(1-£).
JF BRI BANTFIOMF G, BA—AIHHE

AC =C,(1- k)AS; (2.38)
1 53— T E AP 2-8 FR, RT LUK 57 T8 T I I 20 6 A AR AL S

AC =C(1— )~ [kCr A + (- f5 = Af)]

: i (2.39)
= (C? _CL)(I_fSO)-'-CL(l_kD)AfS

e
CO—— S fu e — B 2 AR R
Fo—— R R LB AR

XM LR B 4 ¢ MU (2.38) ok T B th v B D R
AW R, ZEama A DR v R A Il S R AT B, A SR T R IR A
he! . 3RS TR A AL A 2 ML R T4 A R, (EX T R f AR,
3oL 5 AR LA o B el P HE R MO TR AR R (T 2 (2.39) &

A r S5 |Afs I-Af -3

ot P

(a} (BB 220 9 o M R e 4 (b 357tk 22 ¢ T W P e
M 2-8 SrmifEr sy '
Fig. 2-8 Concentration of interfacial cell
B, BRIEFAC AT RRHER S E M) AR, o FLETI B 21 8 R A AR
ARRrR . & AE M K AR R E R 2 R R R R AR B e D, e

29



FRERFN LA

AR A A &, R R BN S8 R E-rEsimss C, T2/ LR

FEABENEYARBLBHANEAET O, SE8B1- 7 -A, <0, THEETEPR
et R R AR RS A IE BkEh, T EEWITHE SR, Lazaro fUl Stefanescu 25 A8
H2 S s B A% S R AR T, B A5 S5 448 A R 5 5L . Artemev
Al 52331 2 3 T 3X — 154, {BADAT I AR T8 7 5 AL 55 1 R VAR B2 T 0.5 I
LRWFHEAAR, AT 0.5 W HF—3H4E REFHABIBAASEH. X0k
RAE GRS, T BLAE S M0 A B 3R 3t A 78 A B 8D 2B P 0 [ AR 2R 4
AL UREE R RN B - £, BRI

Z R AR A D BRI i B, RS R R AR, EHRERET
—FiE S S R E AL A, HEARAETENT:

W REMAE N2 E RS A C, BAHGECY £, BAHERS O, WA

Bl-f0, HRTMAET AR A% OFABSAN, o5 2 R A AR TR
SR A S MBS, WAL 21— fO0, HHEEY

Ay =1-f5 (2.40)
EFTROERRES, SHBHES C=0, AL EEFTEHR RN R
AC = CY(1-k)Af, (2.41)

I W R h R LA RO B TR, A EARR N C, 3
0, B FREMRE, € ATAET A RAIRIER I b, RIS 054 09
AR BEA BRI 0 CL IR 2k, R BRI T .

24 b BT ABOE  LATE R A f B E A, BIYBATIE A RIRAT, WIE SE A4 2 R\
SRR AT AT, AEHEB DT & E

_ Cr(1- f) -k, CLAf,
1= £ - Af

FILBAMET FEGAE R R C, . MUBBRAS £ S5 vl LASE S 9 i M 48 A TR

c, (2.42)

W B &S T C W AT B

C, =C ' (2.43)
FEME T L REFHEARISREARS, AR RS &, Ul TRETF

30



BF kKRS

ﬁﬁﬁ&ﬁﬁ%%q,%%ﬂﬁa%ﬁﬂﬁﬁ@%ﬁ%%%ﬁ,@ﬁ%%#ﬁﬁﬁwl
RAAMIHE R A
AC=(C, -C)1- £ - 4F) (2.44)
XX A 28 S £ S THT L 10 YROAE S B TR ML
B (2.41) AL (2.44) HE H 0T EHEB B 4000 P (038 504 xS iR AR 4R i
¥gyo TS YO [T AR RS AL AR 63 BN AT TR

0 0

CS = Céj:S' :-kUCLAf? (245)
S5 + A

fs =15 + A (2.46)

B, BTERERAFARTR/ Y, ATHAEED 2 RAE B ) B 48
e, RUCEH SRR I B . T ORI [, Bk
HrExdfE . RFERMEARHEN IRy iR

BCL:L)£§CL+gZi]
ot Bl

CELVERIBE S, BT AR AL B R R B AR A 7T AR T i
Mo R AR AT 1 TASCER I KR T R TS i e 6 73X — o, W
TERRARR TS 3 AL, 2R PUER R T IR & T, AER 38 T 40 FiC e B 13 21
TR & B AR R

(2.47)

24 AFFENG

(1) XA RS RAERERHT T B, T IMS. MSC 1 IFW BHS e R
B g AR A K U IRRE S K A HUEAHLEIN KR R A . B IMS BitHS T
f%ﬂi&iﬁmﬁﬁﬁi,ﬁﬁ%hﬁﬁ%ﬁ?ﬁﬁﬁﬁZ@M%#,ﬁﬁﬁmi
Kegum I [T T2 EMTHEL, AU HERL K E T DR SEEESE R
ARG ST |
(2) MR E AR B W AT W AR A, B T CUB R B R R RO R S
ERBERR, XA ET hREE, o, RS mn S xR Ess
R LRI TRE, JE R M oo B 20107 Bl B o m A 8 AR B4 00 S T i T
AR AL, RGP AL B TR B A I RN A A A 2 WX R
(3) &) THFIFE A KT EAR G EON B R A . — R T xR A
FERIRAR, I Bt IR ARMEAT J ) e, ANTOVEAR & 78 M0 o TR 7 v e o 7 348
HIEAR G 55— R 7 i Wk o SR A R R 1, o B BEiE L S i P e S AR 4R

31



TRR AT AR

Z BT ROk ARG Fr E A _

(4) X AERBERETEFHEGEX - ELH AT T Mg, a7
SA M ERE X — T HCER AR R, JFR M T A S F AR E i
BEREE. X D7k T AR AR . AR T 2 B A B AR RO B, TS
WARNL o 5 R MEICH /o IR, FHONE 78R AR B BT .

32



PR FRE KRRk

F-E BRERSERHBEKRE

31 BT HE

310 FEMEHITE

7ER (230) A EFEFEBRARKSE, FEMADAME, 7 imREESR,
W T A2 H— R R D, FTLRI R S R R S BT PR S LT LR
B AR RmarthE. BT CAFE, X TREMEMBRIE B LG
P A3 5 £ h 1R 2.

Sasikumar 25 NS T M T LW AT, 7ERMAE =& T FigEEYE,
TG USR] T S RN SE I SR T8 B LA 0 B AR B T A B 2 B SR AT B 5 ot R AT XK
/Iv. Dilthey NI T £ KB R ME, XMkt 2R E L, R
AEAREE , F oy S /N e ] P A 250 I AR L (B e, i e A [T Py
BIARR PO L ar St . tREm F e, R EARE S8Rt E585.
Nastac BT 5} Sasikumar 7752 4 7 HH 4% (Counting) & #Z), JEgR
ZANFKH, BEAANE

S+ 2 f(R)
1-2—2=

k-Lly i
Ax N+l

(3.1

A

N—34HifluR 4R s, InREPEARM, W N=24, G4FT ZEiRTE 2 8 4
SWHLEEE JZE 16 ML '

Ss()y 5% k NSRBI A A1 (73 4L

KA E R AE- 1/ Ax ) 1/ ax Z .

Kevin WA T —FETHURM A%, BHEBRRIT—A 5X5 MERMAEY
ARG R P E AR, SR M BE AR E R, RER GG — R RF R
VHELAE, AR EAR AR £ (R PR A i B AR 2R S B T B T AL, L 2 Tl
FEARLRT LA B 57 R R KR vk R — I M A, SR HARER B
MCRER, MAREIER M v R A AL EE.

CHSEE, B 3-1HTR, AR AR SR G, )FORIE ¢ WA AL

- BRER B R 0 yE xy y TTRAGSEER. HIEEM R0 A 545

33



FRARFER A

C W7 WHE NI T e, MERERRR A

(3.2)

(3.3)

B 3-1 R E A RS
Fig. 3-1 Derivation of curvature calculation
HCHEAMM2 AP Q HHRE uTEP. Q AHEESSH uP). w(HNM
PQ i S ds, MEBEA T BRI Q TRAMILE T P M, M3 u ¥ Lk a7 A
D dwds BT R u B P YL (EHR)D WA NS didl. 4R

_ Fs 1 s
u(x,y) = arctan{ Py / o ) 3.4

M (e, pUCR I LS, WS AFRNE MR MA. S0 5E a] R h
K=dw/ds=duldl. TRAF N FENEXTER
Ou o
K=—cosag+—sina
ax

P x (3.5)

= — +@[— n
ox \/nj+nf, oy JH R
Heba W B SAFRIERMBES. B (3.3) &, 3.4) RN (3.5) X FFd#ir#
BB 21ER

N i]é_f_[iJ
& oy dyax ' \ @y &’ \ éx

(-]

Kothe %[7I7E b BI04 E th RN E B BN, FR RO ER T SR 7%

(3.6)

34



BEE SRRk R

Rl 7, R34 2R R AL ) B
K=V-(n/|n]) 3.7

4=V, WEERERESE (G.6) APER.

. i-1, -1} i-1, 3 [i-1, j+1 3 2 1

1

Lj-b| 4 |15+l 4 P 0

i1, 571 041, |i+l, g+l 5 6 7

B 3-2 Hai Rt 8 g
Fig. 3-2 The current cell and its 8 neibours
FRF A0 R I 8 AR () 7 B A A 3-2 RORRAC, W) (3.6 ARYTHE BB
T HH B Ok ST B
¥ _ LO-f®

x 2Ax ¢P
s _ L= L6 (3.9)
oy 2A% ‘
& fy _ [0+ () -2£(P) (3.10)
o’ Ax* '

Ofs _ D+ £6)-2f(P) (3.11)
& , Ax? '

Ofs _ L M- £B) =D+ £5) (3.12)

Byéx 4AY

M 3.6) LA (3.8) K~ (3.12) At E B h R LA TR e Rnt, 68
I LR MER M R L IR TR 784, 3F AR RS AT AR P = 4 HES, AR SR AT
T 7yt a T th 2t '

thgh, AR —AMA MR E S, BT B iR b L R
Z, HhAAELAIRmMA 8 AETE N F R LT 2 ANAHARM A, MR 2 4R E
Mz (B B B e F HA WK 3-3 7-00 5 Al W52 3 AW E R RIS, FE T ALA ST
RELF 2 AR R 18] 338 28 . 3 = 8 2 TRV 4606 2 25 20 SR AE AU 20 T LKA S S 11 |- 1
T 4T LA B AR — 0 5 B0 . SO e 2R A M ok 2 T LSR8 24 0 b

35



REASFHLEAEN

. FERITH A RERIE I R E IR 3-1 X — K EHR L, T E R
1% 2 SRAAE 8 AR A BACE BN E I

K1=8/Aax K2=2. 8288/ ax K3=0. 7155/ A x

K4=0 K5=2/Ax
Bl 3-3 Fapih s

Fig. 3-3 Local curvature

F®3-1 MFEFHMERE
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8 =grctan {MJ (3.20)
=il
FERR I A, R ) AR BN % e 1 3-7 P B T A R A B S T R A
M AERD, EARATE, AT RTARMEIA A BRE, HERAEHE
4075 T )£ B SRR 58 B IR 5 MG B9 5 BT LLIETH B A T o BiRi B L s )
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V2

Ar =7Axcos(%—9) (3.21)

(i, 1)

AT
(i do)

M 3-7 BTHIMERTRGE
Fig. 3-7 Setting the initial value for cell
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Cs=0, C=Cos
(3) Zr-Ar<Re<r+ar b, ZHOTRRMEFEAT DS, HYWERE N State=MUSHY,
JSs=(Ro-rt ArY(2Ar), Cs=koCo» Cr=Coo
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AR BT AR ) A AC B2 B

HAE HREARAIENT, HREERITER A AP IRELEK, WREAUE
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W BT R R AR B2 R, BTCAEET B 2 /T, BT SR R AR
R AFRIF RN R, BEAMR ) P AOR R B AL CA PN RN, Bl —ada.b
AL i e R et s — AR G A R, OB IR R AR 2 R TR A
XA R B AT T AR R K
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4D’V

BT AN EE AR

(1) Wikl (Initial). HR4E ML AVECHE 45 R B P 45 52 BT B2 384 e L
HEBANAETRE, BRUAPRENSHITESE, OB,
B, ROE A 0 WA

(2) K (Grow). ERKBERXFTEHIRICH MUSHY 95 il ot 4855,
W 233 DMIMAGE, HEIFRFEFERTE - MHEEANEHENE AL FHA
(1)) et 7 P 2= ik AR b 2 K B AR

(3) ¥ Bl (Diffuse). XPTAFRIEA LIQUID HiEiEMTiEs, FM B8R
VEAE—AN B )8 A I SR AR AR P RO I, T AR T S s

(4) AR (Transition). X FTARIC A MUSHY B9 70 09 5 [ s AT 8 2K,
MR B A A EHFEBEARES HAT 1 NER 1, B HREHER IC 4 SOLID,
I ¥ HURAE AR IC 4 MUSHY .

BATRFR EE T AR B B 3-8, B 3-9, [ 3-10 Bk, SEERSEE
BAIRCT TR g SRR RS B AV S5 TR Mo B B b el 75 A B ST R AT 2 AR 2 1
AR, PR LAE A H B R FA R P T8 Matlab., Tecplot Al Origin 5% T it
MAHATIR A . ST T AL B on, BRI T LB H R F
M ER AR B S, A R IR,

ERFEFZH Visual C++6.0 FFRIHE T MFC (Microsoft Foundation Class)
Windows N AFIFMY, ST T HARAN S LI A, (LMNEA R BRERL
Pl i 15 s S BRI E SR KD, MA P B EUE U E R EIA AN, A
BT TS TN MPC 12 HHBEHAIN, FFSHH B AR %S
1 B shih sy B i S T SR B[R], R T S 2. R RE A NS LR
ARFESFIHT Windows XEFE—NMEELRERFENFF . EXEBEPRIET — 48
W CAERFRIAT G AW, T RERWA AN KEA P KIH SR, HAMRELER
RPN S A FOATR G . IR TER LIRS CPU T KA1
[of JUF D25 58 3 S T et R P2 9 0RO N AN R B g [ e 6, L T LR 3 7 1R e
TR, BRI LR, BEnEiTREeE -1 .

Ar < min

) (3.22)
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Fig. 3-8 The flow chart of main program
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< Begin >
L

C, € Eq. (2.30)

‘ A f.€ Eq. (2.33) or Eq.(2.35)

N
@ C €Eq. (2.42)
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Y
A f,€ Eq. (2.40) C<C
N
4
C, €0 C €C,

} ‘l ,

A C€Eq. (2.4‘:\ AC<Eg. (2.44) ACK0
Reject ACto

* - liquid neighbor

A

C €Eq. (2.45)

¥

End

B39 4 KR Fire K
Fig. 3-9 The flow chart of grow module
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Fig. 3-10 The flow chart of transition medule



P BRE RSk

B 3-11 B S A AR A AT R

Fig. 3-11 Program interface for simulation of dendritic growth
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4.1.1 HERREERIESEE
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72 HUAESE AN b X P (2R 2 Gty LURE otk ) RTRE A . 1 A8 B pE R ATy 1) S5 B T [ AT
Ko A B BRI A A AT LU T BB s, TR R A U7 i P AR
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TSR EIE M, WA AR R, BRI, O R2ERIER
BEMSLFEAZ AR/, AT RERM RIS R BLIEWR i P B0 R R BB AR . BYBE B R %
EHAEAN SR AP S, UK SRR i R R AR, XL
A S BRBEE Z 1 b T RE B AR AR IR (R A

BT RE AL GG X RS, AR X S AU RE = A e P, BRULIFRE
FRIT R AR A X AEH A X L F]. A T R3S AR, TERAR
LHTETR, BEHUR, —TERMMELHEE, BFRNEERH . RE5Es)
(A7 AR B AR B IS 5, 55— 07 i A SR Y KR T R AR R . TR
SR A A ROAT R o IO B R B G U 77 WA Th P A N R R BRI S B
MR, LARES (0 BE AL BT A S

412 HR—SuEE

SRR 2R 2P I E R — 5 544 (CET) 31 TR ST T4 1 2 pl1636 146152 | Gandin
5 NS RE R 401 T CET i T aFz UM, (Ad CET KT AR R
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77 B CET (yALmss et i G MR KB 0, X A0/8 Z B RS M7 . Kurz F1 Trivedi
% AR CET B FLiman At it b MRz il SR T 2 2 Bpf S0P, B LR
TEFBETHAXBERERSG L 7RG R RES T ASRSEH &P SR TS
B, EREAREMS R RPN, R —ERES, MMk
BB T CET. #TiX—%8, Humt!'F 1984 18I 7T — MRk ER
iR T IXFhiEAR,

B 4-1 CET M3 # 8T
Fig. 4-1 Mathemetical model for CET
—HRBEFREA R WEEANAEK, FRMNBEEEHA CZE, £k xKE,
)HIJ,@JH%%E C ¥ E M EMBE, BN EREEE, WMEQ—x/L). Xk
S BIEALT A 0, WIEMEE AT &% aRLn A, IXERAZEAE C FRIFGTE

B (1= x/ Y™™ . EAGFER A KK — TS B X 35, WHA R,

F(x)=P(X <x)=(1- )““ 4.1
FREZEREH

f(x)=-nzR*(1- yW”L' 4.2

FEAR g £J&E’J$ﬂjkﬁ—f?ﬂﬂ-ﬂﬂiﬁm§5% X HI3E

— 1

X = E(X) = fxf(x)dx:m (4.3)
__L' L—’OOH-J-X— 2 ] Wﬁtﬁﬂﬂ*}f(%* ﬁ}ﬁ(ﬂc :_"JTR n, :‘Fﬂ:ﬁ

X 4

R (4.4)
é% 2H1E g, > Hﬁﬁsa@&ﬁﬁﬁﬁﬁ’] SR K, R AR S R

w X 4 oS . N
A o ﬁﬁéﬁzloomﬂﬂq)ﬂsﬁﬁ, AEA R AR TRRIR A AR S
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ERIAREIANSRSERN G 4mR3 PAR, MRXREKR, HHEEE
B AN 4 4L o HHT Johnson-Mehl 48 IE" 15 1152 FR 6 B 1 85

@ =1-exp(-¢;) (4.5)

XFE, 2 @p=2/3 F1 4/300 B, 4rHI123) ¢=0.49 F10.01,

PAEEE R, HEEE LR S SR S0 049 EH BRI MSM S A
Z, M UFHREERGEAL 0.01 i, HREASSMERMEL.

RE Hunt A ARANXDRAERAEE LR M), BT
CET a3, D5 TR A0 A 380 S8Rl SR FR S SE i, FR0ME S0k
BEZMRA,

42 EWEEHEBEK R

42.1 EEHR

XHRARER R KR, Ry R DB RGN, X T SRAARE, %
A1 P S RS A 0 A TR R it 41 AT TS e R A8 AR K T, T L i T AR AT
ERERNE A TRET EHIBIEERER. B, h#T RRALER, HATE
LORIEEIRE Y .

TR R p e TR, TE T HEE AR AR T AR AR 5 AR T LU S

O _0[,9T\, 91,8, 1%
oc, o _ax(lax)+ay[ﬂ,ay]+p P {4.6)
K (4.6) PESHILRE TR B AR M. 7E-SNE
W THE R, R R RITE T R R A
pe; a_Tz_é‘_(Ag}+_Q_(/16_T'_J _ @7
o axl x) v\ oy

Aefic,, =c, - pL% BB, HTAE —EREEECENA S, NEEELR

cp B AT ELA cpg BIWT . TG 4E SRR MR R (DT BLEALAT @ HEER Sheil
TR E]

1 7T -T
fS: L (4.8)
-k, T, -T,
T T 1(ky=1)
fo=1-| A— (4.9)
o TM—TL -

BRI S btk . thAh, T LUK A P BE [ ST v AL 3R A ]
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FEUSCA (B R AR A AT S, 3 R B B B ) P R A T LA e T A
FRFERR, WAL EERE (460 R, MLHIEITR A AETE,

422 HB{CREFHB®

A (46> ABBERSETUCRABAREART T E. BRI ERREGE 8
CLOT AR M R I AU R AR P A 8. X Tl 4-2 otk e, %A B0t
=/, W

pepAxdy

" (T, -T))=q,+q,+q,+q. +pL &5 AxAy (4.10)

LBy, __(57&)3_%

@), | (0n)]

s

B 4-2 BRI R HARRE
Fig. 4-2 Control volume and its heat flow balance
(4.10) AR T 211 45 m BIR AR AL NSRRI LA B P 0 s IR T )5 R o
T ATHEELEMP, KA E. W N, SHERE v w. n, s AN ¢
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Tﬂ
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T[)_ ]

s ng-;P—Ay 4.12)
707t

6, =4 @.13)
0 0

go=A e (4.14)
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Fig. 4-3 Typical boundary condition and representative node

4 A NRBID TR, LT

Guw=0 : (4.15)
i B AR MmBR e, g

g, =ho Ty —T;)dy (4.16)
v
hw—— % B SRR
gh o CARE AT IR R, JERH

q. = hy (T, —T7)Ay (4.17)
A

hoie— 25 S AT e 0 R 5
Ty — AN IEIR S ‘
g0 D AR AR S &4, TR

Gy = (T ~ 1) + 60T} — (L)' 1A% = W, - T, YAx (4.18)
v

h — G5 RARE, h=col(T)V +T; NI +7,) s

o —Stefan-Boltzmann F¥, HAGX 5.67%X10°W » m? - K*

&
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BN MR B S RHRE, FH (4100 R~ (4.18) KATLLAEHRET A B

IR B B T REZ AR M, B I ] 2 ) 2 4 2 [A]
R30I I
PC, 1
M= [1/Ax2+1/Ay2J (19

(4.19) AR ERIHE BT [E35 A SrBE 2 [0 K kD Tk . R R
BN S AT SRS RO AR R 42 =, (B [] A sl /N R 45 A 0 I O 388 o 2 s vt
HIFRAG . BRGTE SCBRT B, S22 IR 2 T ERE BN TH R R0 2 W] 04 5% R I BRI 34 1 I [A)
M. :

LFHERHI, (4100 XESHL g B R G4 F R 2480 R 6EE .
HETHE, BEE (4.10) RNEHETHIER

alp=a, T +a,T, +a,T, +a,T, +b (4.20)

AT WL TS (410 R~ (414) R 4200 P& RBRT A

A A
a, =——Ay,aq, =—2—Ay,q, =—"—Ar,a, ~——Ax 421a
TR, e, T e, T e, 2t
ot = PR Lo g (4.21b)
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T T R4 A MAREREEH 421 X, MHEHREE 43 FIREERIT (4200
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BT E R AR T, R X RHRDE B R, (BRI s IR A ST
Rf, UAUR BT RARN R, TS, FRURMEGENY, A,
B 2R R TIR T, MIFHE 2 MRERIET]. [T2BHE. Hks
[TU=[TI S &L S ERA (4200 RAHBITHER T2, FHRTENGR =
DD THEHNEE eps, BI[T2)-[Ti]i<eps, WU AULSE, A [TI=(T2]tLo5 B[ TIRD A Fks
ZIFBEE: ORI A[TH=T2) 48T LR H.
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CP=fps - o (4.22)
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Fig. 4-4 Quasi-instantaneous nucleation model
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LR LUK TR . BTN R
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2
n.v,ma,\: = I [ns,max ]

My = \/%[nlm I (4.28)

AT TFhr s M v AARRBBEMAR, iR =48R E.

(2) P2 Npwo TEENLES, EOBMERARFRITERBHRITHERS], miXLfy

B MiuTs e AT G,

(3) 724 Noue TIRAGS E S ENE A A BIHLE A Toyor EAREVIIERZIIT Y. HHRM

R4y A7 FEHLVEUY = AL SV T B2 SCER[156).
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15— LSRR BT R, Rk, AR - LR D5
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Table 4-1 Accuracy and iteration times of implicit scheme

. Jacobi 754 Gauss-Seidel iEf
FEHRE eps = . - —
AL B IEAL U B R ECHRE
1% ]0'3 923.7389 1848 922.7216 1617
1x10* 922.0127 6083 921.9244 36535
1x10° 921.8569 10148 921.8451 5687
1X ]0'6 921.8380 14213 921.8372 7720
1X107 921.8365 18277 921.8364 97352
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T, R ST R MO RIT RS U TR A K PO T 5, G RE vl DA b 2 0 B 7T
RS R E) BT ES . #5548 ¢ MR RniReEE, N « 2] RCrR
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Fig. 4-5 The relative position of between cell and its neibour elements
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FERZEENIER 3.2.1 Wept A KRR R4, EHFECREE T, BELA A
T, BERAAREN 6. BAE T LA FEHEIHA K
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Table 6-2 The effects of parameters during directional solidification on the primary spacing
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Table 6-3 Parameters used to simulate grain structure during metal mold solidification
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