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Abstract

The theory of digital signal processing, based on Shannon uniform
sampling theorem, is perfect and has been applied widely in various fields.
But, in the practical engineering, the disadvantages of Shannon sampling
theorem result in some problems. This paper illuminates the theory and
application of non-uniform sampling, and develops a hardware system to
implement non-uniform sampling based on FPGA.

Recently, digital front-end is one of the most important parts in mobile
terminal devices. Decreasing power consumption and sampling frequency in
Digital front-end have considerably theoretical and practical significances. In
this article, we propose to using FPGA to design a circuit which can generate
the random clock simply and efficiently. Then we use this random clock as the
working clock of ADC, and the random clock can sample the signal randomly
and decrease the power consumption of the ADC or Digital front-end
efficiently. By the simulation and experiment results, we validate that the
design of circuit in this article can generate highly randomly clock signal, and
we also proved that greater randomness of clock is, the lower power
consumption of ADC has.

The article is an introduction first.Simple theory and sample method for
introducing a sample;Combined to outline the theory of nonuniform sample
and it deveolps present condition at home and abroad, then introduces the
foundation theory of not- even sample in detail in the second fraction.Use in
the third fraction MATLAB carried on to imitate vs even sample and non-
blance sample really with frequency chart analytical, carried on a verification
to the reliability of not- even sample.Number the four-part deci is a textual
point fraction.In detail introduced whole immediately the hardware design and
realize of the clock occurrence mold mass, software design and realize.Is the
design frame of the whole hardware system first chart;Then introduced the
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Abstract

hardware design of FPGA and ADC connecting orifice;Finally carry on
software compilation and the realize of function to FPGA, and vs ADC the
power dissipation progress while adopting random clock and even clock
contrast.The end is a textual end language.Tallied up the related contents of

this topic, and aftertime's search direction.

Key words: random clock; FPGA; Digital front-end; ADC
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F=F FHHRAGLH

ﬂﬂ%ﬁ&ﬁr 72’ 73---- TNﬁEU\_Fﬁ/I\%ﬁ:t
a) RARA g(1), BAMEMT,
b) 5ty tys Ly e , B ST SR RE B 4 B B Tt 3 A S A1 L o AR

FEm, THTEHR M EREARR: E{Xo(co)}=%X,(w)-G(w)

= TE - X, (m)XC(w)_‘_Ex_

war{ux, (o)) - X0 fe) TE

hme]
|G(“’)‘2 (2-16)
##, 5= [[r()e™]dr Glo)R g(r) WM Er k.

EACTESEREYIRHEENRERM, KERGHRERMH
HRNMEHIEERRENOH, TARRINHUREERAA:

B, (@) = Y E{x(n)e )

(2-17)

2.2 E KRR ZI AR F

RENZWEFLEREFRERZN, ERETRKHEEESHMER. T
T X 9 i 3 3 53 R A I % 69 3 B 07 iR AT A A0

2.2.1 B $h# B B9 5] R A (JRS)

HHENIRFELIRLETREBHFEN, FARATREN,
Bltn ADC WM BEFE—EREZF BRI IRERZ {1} HE*F
RERXAN

t,=kT+1,,T>0

Kb, T RAHORBEOREAY, L) ARARS R —EHNER,

13



FRILXFHRLFEAX

KR 0o B (v} MR E R0 p(c,) AL BT %0 1, B0 M35 4 5 00 M
5 p(e-(t-1,)) BB, BEEEEIR 1 A QR AN A m A 2-1 i,

 AAAAAAAL,

[ 4

B2 1A HMEIREABES A
| Fig.2-1 Jitter random sampling probability distribution

MR MBOXREABFERKMRE. WREXRB[ kT -0.5T,
kT+0.5T 1L AREH 4%, MER, £ kT AHERERERE, HER
FRESARD, MB L EXBKT-0.5T, kT+0.5T) EHE B L%, WLK
EXEHEREARERPIIBER. E—HER, EAHIRERER
A, TEFAAEYSXENRA: XB_#ER, ELXFTATLEER
B, UBTEZLR, BARERELIY ADCHERBH. ER, XF
HERBRARRMNFSEN.

2.2.2 TNt dE 5 E# (ARS)

EMEEBIRET, SUXERHARREN - RENZREEN,
HBERERXA: =+, HEF, v ARNAI B —ABEHNRE, HE
H A E.

oW

=

DL ”iﬁ“?ﬁm‘——-—-’
2. vk v g 3 i i iy

B2t R ORERAHBE DA
Fig.2-2 Additive random sampling probability distribution
BRUuMBMEEREREAp, (n)HWEI v, BF f=t+7,+1,+.. 41, 8
p(O)=p ()P ()RBEFOBRBEE, T HAHEIBIMENEE, 4
NEEMARKI —cBENREK, EMNOARANESSIH, BHY i~
off, p()BBERATFESSf. LrmE, MEEYIREINBERSH

14



Fo%F HHHARMGIN

1 p(1)=3 p()VBEETFEE, HEERDN UpWE 2-2 Fiw.

23IFEHYRERMHERER

BTFRERZAMSAARATHIRE, FHIXERF-IMEEEE
MRARETUNBRAEEEAZ. RNATEME FHETHEALNER.
BRAH —AREHE, ERRT-IPEZFSNHNBEB)NHIXE
H, wHE 2-3 PR,

Bl2-3 BB~ 4&
Fig.2-3 aliasing generation

MERE 23, REBRERARMBHAENEXFSHRRESR -1
XA RBEEMHSFWALTAL). Bit, IREARARFERTE
BEREKGES, ERABINGESARE M. R, APMTRENER
RMRHERERITESE, BANRXFERTERREHERRFS, X5
Shannon RH¥EHEEM—BM. XHAZRBRIHAR ERERLXRE. A
ZRBUZBRLFNEFSHIHE. ERAXLEAERMAKERT, WM
HRAEEBAZRGESLEERN N EENARE - HIXEERD,
ERITESREN, FIEEL—MEBEKEUFEIERFSHOIERSEE
—AMEEMNEEA, REARTESERMERGHOXRFERRHITRSE,
MNAHBRTHAERE. BRAXHBRREBAENTERBHIER, BL
BHFEERATESHAREATELE—AENMERS, RESHEK

15



FAEIEXFAEFERL
RE, ANBTREAXERTHRERAMENFME, BXRHTHFERF
SREBREHNER. URRRBEEINMRE, BALFFSHEERH
RERZONASE. T EERMNE /a5 RERERER
EHHERT, HROAXEEBETWMR? FHIXBLRTECHEE. H
TEMERBRAESIRFUAMATHERERMMER, RNAENEE
2-4,

B2-4 HRESR
Fig.2-4 avoid aliasing
B2-4P X BB BRMEZLGFESHITTEREN, XFEARMNERERER
B, FARMBTRERFANEARABRAENT . RESNEFEL, &
TRXEAABREOON, RERAMEMEZKTUETRESTUHAS
K, NTthsERTHERS.

24 FBING

MU EE RS, RITUBEHIFEHIRERERUNESHTRE,
HERHFBRARRBOTH, FEEN—&K, FHIREBRE T REM
EZHRE, HEHARFSHEERE. RNEIFAHXFBIMNERES
A, RERBTEFSERKRERES, T—EYW, RIEE MATLAB L
AT KR



=% HARAREHYRBGREIN

F=E HAXEMEHHRENHIES N

W—EEERERETAHIRENTTH, KEHHX ARS. JRS
AMYARBE=FAABKENEFS, ETRHEFSLE, #ITAEGIXE;
Rt £ SVD A MEERRFES, FANERAZHAARETAERNR
ERFEFSHTHE, WFHERULENR)MRERETI L.

3. EFSVDEEMEZMTESER

BERSMHERET x=x(t) KWHAFEEN B, A ARS TAXHE, THRH
EEB,-, ERESxOAN:
x'(6) =) ¢, x e (3-1)
HEP(fL)BTHRE BYME—FAEFENNANKREMNRE, o dR
N TR ERTEE,

E}HAC-x (4, = e**/) (3-2)
Btk g AR (3-3)5 3.
AT x AxC = A" x X (3-3)
4" % A B hermit e,
SHAEEEE, BRIEBE: C=(4"x4)"x4"xX, (3-4)

(A'x4) RAREE, FURNLARI - NEENTEREL C.
SVD (singular value decomposition) E—H AR EERKBHERFE..
SVD BB HEHEIBRE=ANERE.
AxSxVH (3-5)
UMYV BAMEEEREHN Nand M, FHF:
UxU? =U%xU=1 , VxV¥ =V* xV =1 (Identity matrix) (3-6)
S AxtfAMEF: S=diag(g,00,), B p=min(M, N), 6,20,-20,20.
BZ=V*xC , Y=8"xU"xX;, AREG-3) TUENTF:
SHxSxZ=Y 3-7

RIE RN LLAR S zk=:g’-’;—,ke[1,...p]. (3-8)
kk

17



FEIRRFREFLEHL

BERMNTUBIMAXESc,: C=VxZ (3-9)
3.2 MATLAB LESMiE{FEM S

RERZEBRMNFESAH S B QPSK AHIREFES, WA 3-1 firn. FE
A R=4(sym/s), FRZEHEBEBEREN 0.5, BHRBEHF RN 8Hz. &
HBHBN S PH SR B ERISH XN ES R EFENE 3-2 FiR,
FLSE R 175Hz.

RNXAAMTERIAXERGES, WOXRBEANFYORE, HHAFK
MAEBINKXRERRKFESREER. HOXHFEPRATA 100Hz 4 4%
HHE, AYGXEFRIN P REMERE D 100Hz. £ MATLAB
HMN2H BB K, JRS 1 ARS X QPSK E B # T X#, R/FEE SVD
BEMRBEGESHTER, HHEHHARE. B 3-5,8 3-6,H 3-7 44
A JRS, ARS, MAXH=ZHHTEXHEEET SVDHELKERESNHE
A.

original signal
T

:

Bl3-1 QPSKES ik &

Fig.3-1 QPSK frequency spectrum
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=¥ BHRMREHHREGTEIN

signal PSD

1 R S T S H SR S
0o B 10 1B 200 J0 30 B0 00 40 50

B3-2 QPSKIE SR EE R

Fig.3-2 QPSK power spectral density

signal reconstruction use method SVD

E3-3IRSKHERFSHIEHE

Fig.3-3 Using JRS reconstruct the signal

19



JEIERFREFHERI

signal recanstruction use method SVD
20 : 4 H T T

B3-4 ARSXHER(FSHE
Fig.3-4 Using ARS reconstruct the signal

signal reconstruction niform use method svd

B3-5s AR ERFESHYE

Fig.3-5 Using Uniform sampling reconstruct the signal

20



2% HAHARMSEHHRMGTEN

3.3 KENG

EE3-3, B34, B35%, FEAREQPSKES, THAEERFS.
&t MATLAB it BRI =# X FHFERL SNRHIFHREMBR:
SNR(ARS)= 58.657809(dB), E(ARS)=0.0109.
SNR(JRS)= 59.662221(dB), E(JRS)=0.0076.
SNR(unif)= 67.479956 (dB) , E(unif)=0.0066.
MUALERERMNTUBLLER: EHIXFEEHIRFNFERIELMEE
ETEZNEEAZA, BESAYORBERNGSSRESHREESE
BN, BRAYOXBETUNAESHAFESLEL, FANXEREN
REHEZTNFHIRE. BTEBRFLMZRI)

21



JEIEXFREFHEAL

FOE HFAmDFHEEN SN

HTRAERRNGESHERETRAR, BATNNERS, WEUEN
EARI RS, CEXEXRIHTHARHFESHLE, HIARRBLZE
R DB FHRELERTNENE, AR ENASHFESRE
oen, I 4-1 iR, JFHH B ADC R%F 15 S 4 B DSP(Digital signal
processing) iR A . DSP PEERFMEL L, HRATERANEFH
HlEELE=AH,

TUMNE4-1PES, HFARTUREZNSAEESETEL, 688
SEEEERFELELENEEMRZAMNGES, MHEHRMESEL
ADCRENLRBHTHEE SR, REATHEFLESAE. SRTUEXNROE
SKEBETH, MEBEERBENENE. 55 B TADCH, BT IRET
DR ERENE, £EEFESH, TUEBERABNESELRYS
RBEEREEHITHESKE. FIUXMADCHRBENTANTRSENRTE
BRERAEHTIERE, BERBEDEHEAERIEAMNEN.

e ‘s apce DSPY |..... . SN
¢
¢
TRk
Fahw 5
E— " > E. ‘ RFERRSHH —>
Hlkv b
DSPe
B4-1 HFHliR

Fig.4-1 Digital-front-end
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FwE MARATE FPCA Le4 T

4.1 {(AREHLFHFERIZIT

7E 3R o — R D 5 K 3 T v 28 0 0 4 A X R 7= AR O BB HL T B e,
WM CESFAUEM rand RBF~EMEN S . BEE FPGA R TR & WK
MEHEENR, EREZEERTAEENRANAF, FEEZEED FPGA
REEBHIFS, MLEFPEENRREXBENSE, TRMEMENK, &
JthEENE, A -—ERAYPTHRAHNE. A0 RBETESTEAE
EERRENHEES, HGSH FPGA KEZBHA T, HUAT=ER
ZHMEHNSES, TEHBAA FPGA ANZSBRBENLUBUTFH
(LFSR) it — /M 8. BRI BN KR S E S k. AXFit
BN = EWE 42 Fin, EEQBE=ZARS: FHEE. SRR
BUTERNEHEERAR.

o &
p FED % Clk_out
H
(N bit) =
c
RUERRBUFES

B4-2 HREMKREBEBEH
Fig.4-2 Architecture of pseudorandom clock generator
AXFRITMENRSO=E0E 42 fin, TEAE=/185:
(1) HHHF: ARFEH1HE 0.

1+ ..¢f 1o 0« vee? Q| Oe | O¢

Pt 1

N-1 N-M  NM-L 0~

K43 HEREGH

Fig.4-3 Architecture of register

FHREANE 43FR, EX—NMFERENLA, ERHFTULEER

23



FALIEKFEEFEAR

BEIHOEFFHRONABLERE. SIWA 4335, WN-13 N-MA, §
BE1, K YHE 0. MRFENHEIAESTFFRENBIKRER,
BE ML %0 B T A R B, TR T DA SCIX AN BRE LB B R SR

ﬁ:%&ﬂ,MerweT, (4-1)

R AE R TR ERE.

Q) GHRBEBLFHFR (LFSR): ARFTEHENFIB(Z#GF
F).

LFSR e AN MBI EREFGFY, EE - EHNTEHEHN
BKFFIREREFMBEINIFE. BRERF L, ELRAFTHNLEA
BHMFS, BREXHFENAT, TUBBEEMEBILK.

B4-4 LFSREHHE
Fig.4-4 Architecture of LFSR
WEA4 R, SREAAMNENDMABNES 0 RNE 1 H(AELH O,
FN—HBRE0), BEdFRNEH, FREAMNRB T, W m &K LFSR
RREEFFRAPEIBKRE -1, XINMHEILFIIRRBEKFY . XANE
KEFRAPMMERELEX, RERBRIXEX. FHHRBEER, AU
THRIEZHA:

p(x)= f:f,x’ =x, + fo X"+t fx+] (4-2)
1=0

HBIBRAmE LFSRALBKFIIMRB/EN, LAHE LG
(i) px)=x,+f,_x"" +..+ fx+1 RATHLE;
(i) FEEL<2"-1 8 (" +) B p(x) B R (4-3)
(3) THAMB: EHFEHE LFSR 74 8 HhEE L B (+ = 5 HOX B i &
FHRMMAKE, NTTHREEIANSES. @ LFSR =LK hEENF5,
EIXHEABRCENNMTFERNMMIL. GlnEHEEN N AL, B4

24



Fo¥ M AP A FPOA Le4E A

LFSR BT 3 4 (og, M K. FEMBRKEIFII &N NE ML, E84
BKFFMABA, FHOREHARHARNEG-DEX.

4.2 FEH B ShZE Modelsim EBIFE 447
4.2.1 (FEIRE B

FPGA M F REFF %M Xilinx W ISE6.1, R BSHABEMHHERES
Verilog HDL, 1 X ¥f 3% {# A Modelsim5.71%,

ISERERGEEHEHEAK, £ Xilinx REMN—FETRE, TLUEK
¥/ FPGA/CPLD H) FF K if B9,

ISERIXEHANT: ER—NMERFRAE, ERTRAETEELN
FPGA/CPLD ®#+ T A, TUBERE TRIMM TEME. ISE #17 @X#
BERS, HEHH. ISERAT Xilinx B KH4EHBR KR A,
EREREHN, TUFEHAGERNIFERXHELIMERIER, BTLUERE
EEREBRERE. EERHBAN, T UEH ECS BT F B kit R
B & . W4, ISE 8 Generator M LogiBLOX T K w] EAJ7 {& 3 4 X IP Core
5EXERIAFHH, XKRBOPTEAENIEER, BRETRIRES
RE. ISEFFENELHENER.

Verilog HDL R HAT A B ZME4HRES, T 1995 £H8A IEEE
trdE, TURBTFAEZEE. NEEAXENEHBEERBFRE R,
Verilog HDL ES AEfiE. B B¥5H. UHESHA, ECES
EUSRUZR, HFEANELT CESHEMNBERNBELESGH. BT
Verilog HDL B Xy tE#tE, R RE ASIC RF S ERL T EH AL,
#H#EE. BAZEXK, VerilogHDLEE—HRFEAR A ZHE4HRE
E, HFAASAKRBEIHEESHFEAAL, £EMN, VerilogHDL & F
RO R B ZE N H K. Verilog HDL EHH R ESHFERALT:

(1) BEREAUBRTSEEMNEHRITA.

Q) EBHREESHNEHRE, Hluis4E. REEINENRE
%, REHLTHEBEMER XFETRUARKEINE.

Q) BEZANEREMFRITORE MU HR, RITHAETLUR
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S EIERFREFERL

FEEH, BT AN R H R R A R & .

(4) Verilog HDL EF RS EE/R N, ME—N R, SAMAERT U
EXRRABRAER L2EMER.

(5) £EAXZ8], HlW0 and. or Ml nand EHEAFTLEEED; FXRE
HER, Bl pmos Ml nmos FHE RN ELEESP, APTUEZREA.

(6) AP EXEREUDP)RERAMREN., AFPEXHEEERT UL
AEEBBEE, CTURNFEBEE,

7 FPGA/CPLD KR F R T B, REMRHHTEREXEEMH ™,
BE, " TRANGTERSENFRORNESNE. RITTEERIT PR
ASANEGEANFHERRSY: DRTEARERITAAZEREEEZ
A#IT: MR EEGEANRAEAZEHET, B BIAKEHNERAN
B 15 B - Modelsim £ Modelsim Technology 7 8 £ fit ) HDL 7 {4 # ik i&
EWEKYS, TLLLH VHDL. Verilog HDL Ll & VHDL— Verilog HDL &
AWM E, B2, Modelsim THEH 5 C EE — &% HDL ® it
XHEERBFEGE. R, H3FXEHK HDL 05 KKK, Modelsim
EVEEELAFHEMRA . X L4 5 Modelsim #k # 5 3] EDA # it
#F. LHRE FPGA/CPLD Rt HEMHF K. FBEMH &I+ FPGA MK
B A4 B 4 1 4-5 BTow .

422 hEENI R HEMHEEMBENERE

& 5%+ {fF A Xilinx Spartan-3 XC3S200FT256 FPGA B B % 7= 4 B #l
I &b, %SRBG AR T 4E B SR 4 S0MHz, X #10 LFSR & & 7 %00 128 bit,
ER AT 5000 F, XELHFENAFITLERZBEILRFHHEIF
P, REEXFHERFTSH N=32, M=7, LFSR P4 5 A — 3§ i 05 BE HL
75, % Xilinx ISE R P AL RWE 4-5 Fiw.
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Fw¥ A4 FPCA LA ER

Canrent Semistion

[ty g ] - 1208 108 20|
H | H L i | ) | L 1

[ [ e Ll T

. @ N SR i R R ) . Wi T K

o e : 8

s ¢ g = T - TSI NI PP PRI II SIS EIBITXS -
) e T Ry

ottty T
i o
’ d

e oy
[ Cay

L S o o B S e
B 4-5 0 BE ML K B B B 05 H(N=32, M=7)
Fig.4-5 Simulation of random sampling(N=32, M=7)

4-5 & count[4:0]% LFSR =4 S @ HIhBEHLFES, clk AT
YR S 3R %, clk_out AR MBEN N EXHFB R TN LB HE 1, 8I[31:25]
Rr¥g K 1. 2 LFSR A KM K 31 B 25 Z B KI5, clk _out K& HH 1.
EBNBKFEAS, SRABMEBEFITUERR ARS RHEFF, {7}
RM[0321 LM . MEEMME B HEREHYE, TLEIEM
LFSR A MBKFFIMKECEM N KE), AEMAENG MAOE, W

Pl AR R E AR TR, (BFRLKX2)

43 BEA R SR EHSIMANBFEI m NI R EF LR
4.3.1 AD9225 E O S

FPGA B M ADC WER T X WA 4-6 fin. FFHET%m+F ADC A
AD92250%, AD9225 & ADI AFAEFMER . BEFEHRE, 12 FE.
25Msps BIEMEHRBAAEREHBROXFERFARBNSELE
JE.AD9225 RAHH REREEBE M NEE S RKSH,LURIEE 25Msps
FRETEARHHN 2UEE. RTERE 4.8 48BF —MEIHE
HINE A/D E—ABREBAKBMDAC)HE, B KBHAXRRKER
DACHIBMHAMF—HNEAD WBAES—ZNBRE—MIERTRAE,U
BREFREALLEHWE 47 Fir.
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Input signal

L p
@ . 3 %
e \ 21 Expangion Connedas A2 Expansion Connector
= 12 bits - UL NI O ,mmm.nmmm -
P 1 ° - L Bans £ g
.-‘; A ‘He 5 Pt Ej
Clock =4
=4
n— =)
ADC 5
1 5
o | 2 '
AD9225 || .
(fabricated ... ... IJ _____________________
by Mark) ¢ Analog cwrent Digital current  — Power measurement

..........................................

Kl 4-6 FPGARADCE # &
Fig.4-6 The platform of FPGA and ADC

CLK AVDD DRVDD

| OTR

(BT
QBITH

4718
Bl 4-7 AD9225% 3
Fig.4-7 Architecture of AD9225

AD9225 B % N\ %

(BTSN AD9225 R B — (BT 0 {5 5 SR 32 I A 5B BT A B # 2,
AD REFRERME EFAETR. 7E 25Msps H 55 #E 2T, RN 4 10 o
2 H N AR B TE 45 % ~55% 2 18] ;B F B I AR, o 3 B th AT AR 2 R
K. 7EMKFFHRE, M A SHA & F RFERA & B F H R % N\ SHA & F{#
FRE. B4-7 hHFECD, B 4-8 .
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#w¥ HAEAPE FPOA B ER

N\ rwssl*
X K X

K 4-8 AD92250 5 &

Fig.4-8 Time sequence of AD9225
tch——& P FF 4L i 8], B ME A 18 ns;

tel — K B PR nf [8), & /ME A 18 ns;

tod—X( 5 B w [, & /NMEA 13 ns.

MNEFETTUEY: FRESINHARCEABHR-AREFEL=
MEBUEATTUBHERER. X&HT ADI22S RAMNERKEH,
BOARTT L3R B 8 0 1 2 3% 38 (B 0 R DU 4 K 3B R A g el

Q)ERIMA: AD9225 FIE B ASIH 2 VINA, VINB, L4t A
EHEERFEEERE: XF,AVSSEXEBEMRLTHOV,AVDD EEBEMRT
AH+5V. AD22S ARmERENBALEH TUSTEMMBRRESTMAR
BE#ITEE. RARGAANVINA TELERRRRATREAAGS B
4 VINBEREINEGENHRERXRBEZSMARN VINA f1 VINBEHBAR
5 FRK R,

(3) HFiih: AD9225 KA HEE _#HBEE 12 L WEREEHE
— % I RAL(OTR), ERERmAE XML TN ARBEHE LT EL B 4-9
i A IE B R A BB 8 A i R e,

MSB————————_}__[-_}_ e 1
>

:;-{::}—

B4-9 BHMEFRRENEZEH N E

Fig.4-9 The logic criterion of the overflow and normal status
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JFRIVXFHAEFEHL

432 BN RBHSHIXRBFENNERERESN

EARERF, ADI225 BAfESHME A S00KHz, BE N 2.6V HIE
RS, BIOhRENRAE BB, AL 4E—R5A F SR ) B BB o
MR, RLAEHRFENBHIRE, FHRA-—ARXHFARREFR,
W ADC B FHRAMERRBEOBE. FRMK 4-1 FE 4-10 FiF.

0 —
'3 — |
— Y5
0} E
la#id
k13 E
m e ——— -
% xF la
p.il3
5
10f
51 "‘
0 e P
1 15 2 25 45 5 55 B

3 35 4
¥ S MHz)

Bl 4-10 ADC ¥ F 3 1 B 0 35 2 9 K /v
Fig.4-10 The current in digital and analog of ADC
F4-1 N B804 E T ADCE F I 3148 U5 5 3 (mA)

Table.4-1 The current with different frequencies between digital and analog of ADC

353 il 1, $+¥®Ip Li-Ip
fi=6MHz,N=512,M=61, 54 #1 It & 27.95 3.88 31.83
fi=6MHz,N=512,M=61,3 5] i & 29.23 3.98 33.21
fr=SMHz,N=512,M=51, Bt ¥l Bt & 27.69 3.67 31.36
fr=SMHz,N=512,M=51,3) 5] it &b 28.72 3.78 32.50
fi=4MHz,N=512,M=41,Bfi §1 it & 27.18 3.47 30.65
fi=4MHz,N=512,M=41,33 5] it & 28.46 3.57 32.03
f=3MHz,N=512,M=31,B8 ¥ B & 26.93 3.265 30.195
f=3MHz,N=512,M=31,39 4] it} & 28.21 3.47 31.68
fs=2MHz,N=512,M=20, 5 ¥l ot & 26.67 3.16 29.83
f5=2MHz,N=512,M=20,33 5 it & 27.69 3.37 31.06
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fe=1MHz,N=512,M=10, 58 ¥l & # 26.15 3.11 29.26
fs=1MHz,N=512,M=10,39 5 B} ¥ 27.18 3.265 30.445
f=500kHz,N=512,N=5 B #l &} & 25.64 3.07 28.71

f,=500kHz,N=512,N=5,34 ] B} 4

MNE 4-1 RATLLEH, EXRFHAEMAN, BHILRFNRRERRT
HAXENBRE: HEBERFRENRE, RAEHRERRK. SXE
BEEFESHE—HN, BIXFFRAE MHIXEAERRETHE
M, RARIKESRERAENRBBEIIREKX. B4-8F, lak
Bl R, dARFRABRE. NEPTUHEE LEERFAED
RE{%, ADCHFHMAEARMERBEERK. £R—KXFREH, ADC
hAERREILN SR AR KT OINENE.

432ADCHERERESHHMENEN X R

% T WAE BEHLHE 6K At BE B 52 ADC Zh 2R (91 #E , 760 Bl HLR #F L 2%
BRE, 2HRERANAMEBME. £ —4, N=8, M=1; £_4, N=512,
M=64, MIAGGSR L. WBKEWR 42 5.

#4-2 BEHLHE T B S ADCH B i (mA)

Table.4-2 The current of ADC between different randomized clock

i) Bl 1, BFumIp L.Ip
N=8,M=1 28.980 4.01 32.990
N=512,M=64 28.031 3.92 31.951

W& 42T LA H, FAAKG-1), TUHHEHRERE.

A =M xfy =-!x50MLk=ﬁ xSOME =625ME
N 8 512

ER—FHHE6.25MHz T, BN RKE—-H N A M, Bl N=512,
M=64 i, BIBRBEHEENTFE—HAKNE.
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FARIYXFHEEFEAL

433 SHEA MR

ORI YE T B —FREELE M AR SR, ARRTEMAKE G
HEFEBANAEMABHAMARNEHES, RGET LFSR FEBH
BE HL P 51 3 8 %0 th 3f DY AR AL B9 B B4 5 5 o SURR[36] Al I8 B 5 7 238 7 £ 8
PMRAFRARAMENEHFES, RERX S BHHRE, Bl LFSRAZ
BEABOBENERERBEANSHRES, HENARHERER

fw=%x50MHz=6.25MHzo WEFEET ADC Bl F % 5 5% 00 d i,

Mm% 4-3 Fix.
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library IEEE;

use IEEE.STD_LOGIC_1164.ALL;

use IEEE.STD_LOGIC_ARITH.ALL,;

use IEEE.STD_LOGIC_UNSIGNED.ALL;

entity counter_combination is
Generic(
num : integer range 0 to 1022 := 10; -- numerateur du rapport de decimation
den : integer range 0 to 2048 := 1024 -- denominateur du rapport de decimation
)
port(
clkreset : instd _logic;
data in : instd_logic_vector(11 downto 0);
clk_out : outstd_logic;
data_out: outstd_logic vector(11 downto 0);
time out: outinteger
)
end counter_combination;
architecture Behavioral of counter_combination is
signal count :std_logic_vector (9 downto 0);
signal linear_feedback :std_logic;

signal var_clk_out :std_logic :='0,

signal data_var :std_logic_vector(11 downto 0);
signal time_var : integer:='0;
--constant enable :std_logic="1";
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begin
--linear_feedback <= not(count(7) xor count(5)xor count(4)xor count(3));
linear_feedback <= not(count(9) xor count(6));
process(clk,reset) is
VARIABLE urne : std_logic_vector(den-1 DOWNTO 0) := (others => '0");
VARIABLE num_case : integer range 0 TO den-1;
VARIABLE urne 0 : std_logic :='0";
VARIABLE T : integer :=='0";
begin
if (reset ='1") then
data_var <="000000000000";
urne(den-1 DOWNTO den-1-20*num) := (others =>'0");
urne(den-1-num*20-1 DOWNTO den-1-num*20-1-num) := (others =>'1");
urne(den-1-num*20-1-num-1 DOWNTO 0) := (others =>'0');
count <= (0=>'1",others=>'0");
elsif (clk'event and clk="1") then
count <= (count(count’high - 1 downto 0)&linear_feedback);
num_case := conv_integer(unsigned(count)) ;
urne_0 := urne(num_case);
T=T+1;
ifurne_0="1'THEN
var_clk_out <='1"
data_var <=data_in;
time_var <=T;
else
var_clk_out <="0";
end if;
end if;

clk_out <=var_clk_out;
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data_out<=data_var;

time_out<=time_var;
end process;

end Behavioral;
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---Pseudorandom signal sampler .vhd
---pss_top
---4th,June

library ieee;
use ieee.std_logic_1164.all;

Entity PSS _circuit IS

port(
clk reset :in std_logic;
Pss_out :out std_logic);

END pss_circuit;

ARCHITECTURE struct OF PSS_circuit IS

COMPONENT counter_combination
port(clk:  instd logic;
reset: in std_logic;
PhO:  outstd_logic;
Phl:  outstd_logic;
Ph2: outstd_logic;
Ph3:  outstd_logic;
Ph4:  outstd logic;
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Ph5:  outstd_logic;

Ph6: outstd logic;

Ph7: outstd_logic;

clk_8: out std_logic);
end COMPONENT;

COMPONENT  Ifsr
port( clk: instd_logic;
reset: in std_logic;
enable: in std_logic;
count_lfsr: out std_logic_vector( 2 downto 0));

end COMPONENT;

COMPONENT selector
port( clkreset : in std_logic;
select_num : std_logic_vector( 2 downto 0 ),
input_ph0 :in std_logic;
input phl  :instd logic;
input_ph2  :instd_logic;
input_ph3  :instd_logic;
input_ph4  :instd_logic;
input phS  :instd_logic;
input ph6 :instd_logic;
input_ ph7  :in std_logic;
output_ph :out std_logic);
end COMPONENT,;

signal clk_8 output : std_logic;
signal ph_0,ph_1,ph 2,ph 3,ph 4,ph 5,ph 6,ph 7:std logic;

signal count_Ifsr_int : std_logic_vector( 2 downto 0 );
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signal reset_not : std_logic;
constant enable: std_logic :='1";

Begin

reset_not <= not reset;
counter_combination_inst:  counter_combination
port MAP (

clk =>clk,

reset => reset_not,

PhO =>ph_0,

Phl=>ph 1,

Ph2 =>ph 2,

Ph3 =>ph_3,

Ph4 =>ph 4,

Ph5 =>ph_5,

Ph6 =>ph_6,

Ph7=>ph_7,

clk_8=>clk_8_output);

LFSR_inst :Ifsr
port MAP (
enable => enable,
clk =>clk_8_output,
reset => reset_not,

count_Ifsr => count_Ifsr_int);

selector_inst :  selector

port MAP (
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clk=>clk, --clk 8 output,
reset => reset_not,
input_phO =>ph 0,
input_phl => ph_I,
input ph2 =>ph 2,
input_ph3 =>ph 3,
input_ph4 =>ph 4,
input phS => ph 5,
input phé =>ph 6,
input ph7 =>ph 7,
select_num => count_lfsr_int,

output_ph =>Pss_out);

END struct;

---—-counter and combining function

-----generate 8 different phases clock with same frequency

library ieee;
use ieee.std_logic_1164.all;
entity counter_combination is

----generic(nb_bit : integer:=3

------------ state  :integer range Oto 7 );
port(
clk,reset : instd_logic;
clk 8 : outstd_logic;
PhO : outstd_logic;
Phl : outstd_logic;
Ph2 : outstd_logic;
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Ph3 :  outstd logic;

Ph4 :  outstd logic;
Ph5 :  outstd_logic;
Phé6 :  outstd logic;
Ph7 . outstd_logic);
end counter_combination;
architecture Behavioral of counter_combination is
signal ph0_int: std_logic;
signal phl_int: std_logic;
signal ph2_int: std_logic;
signal ph3_int: std_logic;
signal ph4_int: std_logic;
signal phS_int: std_logic;
signal ph6_int: std_logic;
signal ph7_int: std_logic;
signal counter_state: integer :=0;
signal clk_8_int: std_logic;
begin
process(clk,reset) is
begin
if clk'event and clk="1' then
if reset="1" then counter_state<=0;
else
if (counter_state<7) then
counter_state<=counter_state+1;
else counter_state<=0;
end if;
case counter_state is

when 0=>ph0_int<='1';phl_int <='0';ph2_int <='0";ph3_int<="0";ph4_int <='0";ph5_int

<='0';ph6_int<='0";ph7_int<='0";
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when 1 =>ph0_int<='1';phl_int <='1";ph2_int <='0';ph3_int<='0";ph4_int <='0';ph5_int

<='0";ph6_int<='0";ph7_int<="0";
when 2 =>phQ_int<="1";phl_int
<='0';ph6é_int<='0";ph7_int<="0";
when 3 =>ph0_int<='1;phl _int
<='0';ph6_int<="0';ph7_int<="0";
when 4 =>ph0_int<='0";phl_int
<='0";ph6_int<='0";ph7 _int<="0";
when 5 =>ph0_int<='0";phl_int
<="1";ph6_int<='"0";ph7 int<="0";
when 6 =>ph0_int<='0";phl_int
<='1";ph6_int<="1";ph7_int<='0";
when 7 =>phQ_int<='0";phl_int
<='1";ph6_int<='1';ph7 _int<='1",

when  others

=>ph0_int<='0";ph1_int

<='1";ph2_int

<='1";ph2_int

<='1";ph2_int

<='(";ph2_int

<='0';ph2_int

<='0';ph2_int

<='0';phS_int<="0';ph6_int<="0';ph7 int<='0";

end case;

<='0';ph2_int

<="1";,ph3_int<='0';ph4_int

<='1";ph3_int<='1";ph4_int

<="1";ph3_int<='1";ph4_int

<='1";ph3_int<='1";ph4_int

<='0';ph3_int<='1";ph4_int

<='0";ph3_int<='0";ph4 _int

if (counter_state<4) then clk_8 int <='1";

else clk_8 int <='0;

end if;

end if;
end if;

end process;

Ph0 <= ph0_int;
Phl <=phl int;
Ph2 <= ph2_int;
Ph3 <=ph3_int;
Ph4 <= ph4_int;
Ph5 <= phS_int;
Ph6 <= ph6_int;

<='0";ph5_int

<='0';ph5_int

<='1";phS_int

<='1";ph5_int

<='1";ph5_int

<='1";ph5_int

<='0";ph3_int<="0";ph4_int
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Ph7 <=ph7_int;

clk_8 <=clk_8_int;
end Behavioral;

-— Design Name : Ifsr

-—Function  : Linear feedback shift register

library ieee;
use ieee.std_logic_1164.all;
entity Ifsr is
port (

count_Ifsr  :outstd logic_vector (2 downto 0);

enable :in std_logic; -- Enable counting
clk  :in std_logic; -- Input rlock
reset :in std_logic -- Input reset
)
end entity;
architecture rtl of Ifsr is
signal count :std_logic_vector (2 downto 0);

signal linear_feedback :std_logic;
begin
linear feedback <= not(count(2) xor count(1));
process (clk, reset) begin
if (reset = '1") then
count <= (0=>'1",others=>'0");
elsif (clk'event and clk="1") then
if (enable ="'1") then
count <= (count(1)&count(0)&linear_feedback);
end if;

end if;
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end process;
count_lfsr <= count;

end rtl;

---Name: selective Combiner

---function: select the phase among eight different phases

library ieee;
use ieee.std_logic_1164.all;

entity selector is

port (

clk,reset :in std_logic;
select num  :instd_logic_vector(2 downto 0);
input_ph0 :in std_logic;
input_phl ;in std_logic;
input_ph2 ;in std_logic;
input_ph3 iin std_logic;
input_ph4 in std_logic;
input_ph5 :in std_logic;
input_ph6 ;in std_logic;
input_ph7 :in std_logic;
output_ph :out std_logic);

end selector;

architecture Behavioral of selector is
signal  output_ph_int : std_logic;
begin
process (clk,reset)
begin
if (clk'event and clk="1") then

if reset="1" then output_ph_int <=input_ph0;--_int;
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elsif
input_phl;—_int;

elsif
input_ph2;--_int;

elsif
input_ph3;--_int;

elsif
input_ph4;--_int;

elsif
input_ph5;--_int;

elsif
input_ph6;--_int;

elsif
input_ph7;--_int;

else

end if;

end if}
end process;
output_ph <= output_ph_int;

end Behavioral;

select_num

select_num

select_num

select_num

select_num

select num

select_num

.____"00 1 "

="010"

="011"

="100"

="101"

="110"

="111"

then

then

then

then

then

then

then

output_ph_int

output_ph_int

output_ph_int

output_ph_int

output_ph_int

output_ph_int

output_ph_int

output_ph_int <= input_ph0;--_int;

<=
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