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ran rTLr! ksf ksr
’Csf Csr ktf ktr
faf far
MS&GCS(&_&)-FGKS(ZU_ZS)-FG‘:&I
M, &=C(&-%&)+K,(z-2)+K(z-7)-f,
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G, (n)

9

G, (n)=G, (n)(n/ny) (2-2)
n:
m' n, n,=0.1m™ G, ()
m/m?* w
[40]
8 [40]
4 G, ()
w=2
2-1
G, (ny)x10° m?/m™ o, x10° m?/m™
n,=0.1m* 0.011m* < n<2.83m*
A 8 16 32 2.69 3.81 5.38
B 32 64 128 5.38 7.61 10.77
C 128 256 512 10.77 15.23 21.53
D 512 1024 2048 21.53 30.45 43.06
G, (n)=(27zn)’G, (n) (2.3)
Gg (n)=(27n)"G, (n) (2.4)
w=2 (2.2) (2.3)
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Gy (n)=(27m,)°G, (ny)

G, (ny)
G, (n)
(L=w)
\
G, (n
Gzr(f): Z'V()

G, (1)=(221)°G, (1)=47°G, (n,)riv

Gg (f)=(27f)'G, (f)=167"G, (n,)mf*v

Z, (2.9)
&)+ 27 f,z (t) = 27, /G V W(t)
V w

f

0

(2.5)

2,(L)

(2.6)

2.7
(2.8)

(2.9)



0.1 ‘

2-4
m A B C D
f,=0
2-2
2-2
G, (m?/m™) V (m/s) (m)
A 1.6x 107 20 0~ 200
B 6.4x 10" 20 200 ~ 400
C 2.56x 10° 20 400 ~ 600
D 1.024x 107 20 600 ~ 800
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x=[(z-2) & (z-2) £]ei®

& =AX +B,f +Fw (2.10)
0 1 0 -1 0 0
-M_ K, -M_C 0 M_C M 0
A = G s G s G s B, = G F,=—27./GV
0 0 0 1 0 I
M,')K, MC, -M]K, -M;'C, M, * 0
&
#
& |-M.'GK, -M;'GC, 0 M.'GC, |x +M'Gf,
q=[z. 4]
ki(zi—2) < fy (1=12) ki (i —7;)

fie=(l:mg+0, +1)m,9)/0, +1,)
fio =(Irmg+ (¢ +1)m, ) /0, +1)

z,=[& z,-z, F(z;-1z)]
F(zi-z)=[0 0 F 0] F =dag{k;/f},(i=12)

& -M_'GK, -M'GC, 0 M 'GC, M 'G
z,=| z-z |= | 0 0 o |x+ o |f, (2.11)
Fk(zui_zri) 0 0 Fe 0 0
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Ms
+10% :

+30% l,
m, = m, + 0.3m, (2.12)
l,=1,+0.1I, (2.13)
ms
Linear Fractional Transformation
LFT
o2 1 05 14036, =R (M WeS)  (2-14)
m = m@+035,) m m
00| <1 W, =0.3
-1 1
M=) 1 1
m m
=220 (1005) =R (M, W,.5,)  (2.15)
s 1,@+035) 1, 1,
6,[<1 w =01
-1 1
M,=_1 1
1,
1/(rrLl+L2mS/(L1+ L)) =F (Mwl, 5%) (2.16)
|04,| <1
03 ZnL
W, = _L1+ L,
( L,m,

Lo, ™



(2.17)
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/4

A(S)

A(S):{diag(ﬁl,ﬁz,L 8., A,(S), A, ()L ,AF(S)):|5i|<l;HAj(S)HOO<1} 2.19)
i=12L ,r:j=12L ,F

A(s),j=12L ,F U
2.1%9- 2-7 sup s, (M (jw)) <1
2.19 ’
2-7 w Z RMS
y>0
[F.(M(9),A(9)], <7 (2.20)
w  z RMS 4
F,(M(s),A(9)) Wz A(s)
1.18 % H., 4 2-7
M(s)
[ My(s) My, (s)
M(s){Mm(s) Mzz(s)}
F,(M(8),A(8)) = M, (8) + M, (S)A(S)(1 =M, (S)A(S)) "My, (s)  (2.21)
2.19 [F.(M(9),A(9))], <1
10
l\/Im(S){O E}P(s)
4
A(s) 4
2-7 2-8 A,

A (s)l.<1 A, =diag{A, A}
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2.289: 2-7 A(9) 2.19

y>0 supu,, (M, (jo)) <1
v 2.19 2-7
A(s) IA(s) [l <1 A(s)
A(s)
2.3 2-5 A(S)
IA(s) Il <1 sups (M, (jw)) <1
2.1 2.3
A(s) H,
1

a= -
sup 4, (M (jo))

1
o= :
supG (M, (jw))

aA(S) lleA(s) ||, <1
2.2

supu, (M (jw)) <1 4 %
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251

1502632/1,3

05/f , 1.0<f<40
Ho(f)=410 , 40<f<80 (2.22)
80/f , 80< f<80.0

1: 8Hz 4: 8Hz
1Hz
0.05: 0.5Hz “
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99.7% 30 0.2m

RMS(X, — X, ) = % =0.0333m (2.23)

99.7%
99.7%

[26]

P =k(z,-2) Ry, RMS
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3-1

m, 600 kg +30%
l, 800 kg -m’ +10%
My 59 kg

Mg 50 kg

L, 1.02 m

L, 1.37 m

Ky 20000 kN /m

k. 20000 kN /m

Cy 1400 kKN-s/m

Cy 1400 kKN-s/m

K, 175000 kN /m +20%
K, 175000 kN /m +20%




3.1:

3.2

321

2(s) = [W,(s)& Wy(s)(z—2,) Wi(S)F(z,—27) W,(s)ul' G.1)
a=[z. 41", z,=[z, z,0'. z=[z, Z,]". z=[z, z,I
Fk =diag{kti / fkti}!(i ::LZ)

fia=(l:mg+0, +1)m,9)/0, +1,)
fio =(Irmg+ (¢ +1)m, ) /0, +1)

W, = w, 0 W, = W, 0 W, = w; 0 W, = w, O
0wy, 0w, 0w 0w,
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Wi(S), Wi (s), Wa(s), W, (s)
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1502631
4: 8Hz 4: 8Hz
15026315

as’ +bs+c
(8)="F———

F(s)= 3.2
' s’ +es+d G-2)
a,b,cd,e
a=0,b=48,¢c=1200, d = 3000, e= 60
k* 48* (s+ 25)
S =
W (S) s? + 60s+ 3000
k k=03
10 1o:HZ) 10°
3-2
987

W, =—
? $2419s+987
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3

Wz(s) = {
Zyg— 2y Z;,
& &

1

-3

0.825
0

Ay

0
0.825

we=|t O wy-
01

Ly~ 2y Ly~ 4y,

271GV 0
i

0 2z/GV
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0

0001 O
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0.00

& &

G, (f)=47°Gy
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W,(9) = (3.4)

3-4

®= Ax+ Bw+B,u
z=Cx+D,w+D,u (3.5)
y=C,x+D,w+ D,,u
AE ER14><14, Bl c 9{14><6, B2 c 9{14X2,C1 c m8><14’ Dll c ERBXG’ D12 c 9{8><2 , C2 c 9{4><l4
D, eR*® D,e®*™®  D,=0 D,=0

3-5
’ 6(s) ;
f y
K(s)
3-5
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G(s)  3-4 K(s)
3.5

3.5 3.6
G,=C(d —~A'B,+D,, i,j=12

W z F (G,K)
z
T(8) =Gy, + GK(I - GzzK)_lezl =R (G,K)
H, H,
IF@KI. H, H,
IFGKIE
3224,
H, LQG
w(t)
EflzIE} = E{ [, I1201F dt| I F (G K IE
FG.K) H, H,
H, ADOF
31
3.2 H,

IR G.K)IE

(3-6)

@-7

(3-8)

(3-9)
Z(t)



4DOF H, Riccati

3.1™
1 (AB) (C. A
2 D, D,,
3 w A-jwl B, |
L Cl D12_
. L, [A-iwoB ]
L CZ D21_
H2
K,(s)=—F,(sl - A)'L, (3-10)
A =A+B,F,+LC,
F,:=—(B, X,+D.C)
L, :=—(Y,C, +BD,,
X, Y, Riccati

(A_ BleTzcl)T + Xz(A_ BleTzcl) - XszB; x2 +C1T (l - D12D11-2)C1 =0
(A_ BlD-ZFICl) +Y2(A_ BlD;lcl)T _YzczTCzYz + Bl(l - D12D1T2)BlT =0
IR (G K) I

min||F (G, K) [5=IG.B, Iz +IIF.G; Ie=lIG.L, Iz +ICG; I
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GC(S) = (C1 + Dlez)(SI -A- Bze)il

Gf = (SI -A- chz)il(Bl + L2D21)

Log Magnitude

I
10" 10° 10°
Frequency (radians/sec)

H2

3-6 H,

Z
sup 12 ik G,k
i<t || Wl

00

(3.11)



H

0

(1) (AB) (AB)
@) D,
A-jol B
(€)) { o 2}:n+mz, VoweR AeR™ D, eR"™
Cl D12
(4) (C.A) (C.. A)
®) D,
A-jol B
(6){ Jo l}:n+ p,, YVoeR AeR™ D, e R®”
C2 D21
1 ~ 3 H, 1
H, H_
1 4 (AB) (C,,A)
K G H,
3 5 6 H, K
H. H,
2 3 5 6 (3.11)
3.1
3.3 H, : 3-4
zZ(t) K(s)
IF (G, K)IL

3.3 H
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3.4 H, 3-4
Z(t) K(s)
IF (G, K)IL y 4 H.,
3.4 Riccati
3.2% y>0 G(9)
K(s) 15 (G K)Il.<¥

(i) Riccati

(A-B,R'DLC,) X, +X, (A-B,R'DLC,)

(3.12)
+X,(r?BB -BR'B; )X, +C/ (I -D,R'D})C, =0
X, Ri = DlTZD12
(i1) Riccati
Tp-1 To1~ \'
(A-BD,R'C,)Y, +Y, (A-BD,R'C,) (3.13)
+Y, (7°CIC,~CIRC, )Y, +B(I - D}R,'D,)B] =0 '
Y, Rz = D21D2T1
Gii) X, v, | -y 2X_Y, >0
Hoo
K.(8)=-F. (s -A) ZL, (3.14)

A, @A+y BB/ X, +B,F,+Z,L,(C,+7°D,B X, )
F, @R*(D,C,+B)X,)



z, @l -7.X,)"

(3.14)
®= AX+BW +Bu+Z,L,(C,X+D,W —Y) (3.15)
u=FX
W =y ’B X, X W =y *Bl X, X zZL,
F. H, 3.2 3
y>0 Riccati (3.12) (3.13)
3 (3.14) H_
IR (G K)L.<y
Y H.,
1 y>0
2 G(s) H,
3 y y 2

€ ® H,

H,

10°
810 o
2 — S
= —
g — _
g -
8 10°

107 L

10 10 10 10 10
Frequency (radians/sec)
Hinf

200
—~ oF
7 —
g
]
2
< 200
°
H
8
g
& 400

-600 o

10 10 10 10 10

3-7 H
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40m/s

+30% +10%

+20%

08 . ;
— - Passive
. H2
o7l . — Hinf
06t 7
05| B

(Hz)

0.7 T

06f
05} ! !

04r

031

— - Passive
. H2
— Hinf

(Hz)

3-10
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0.05
1

0.05

0 10° 10° 10°
(Hz)

3-11

— - Passive

— Hinf

ot 10° 10' 10°
(Hz)

3-12

3-9  3-12 )

H2

kg kg-m?  420/720 600/800

4: 8Hz

780/880



- Passive
- H2

Hinf

(Hz)

* Passive
- H2

(Hz)

* Passive
- H2

(Hz)
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(Hz)

H 2 H ©
RMS
H 2
1 3-2
20 A B C D RMS
2 3-2
— 2 —1
1.28x10°m*/m 10 20 30
RMS
3-2 20 / RMS
RMS
1.6x107 6.4x107
HW H2 H 0 H2
0.2546 0.2335 0.2907 0.5092 0.4669 0.5819
0.1561 0.1570 0.1909 0.3122 0.3139 0.3817
0.0040 0.0042 0.0049 0.0079 0.0084 0.0099
0.0039 0.0040 0.0046 0.0077 0.0080 0.0092
0.0636 0.0667 0.0657 0.1272 0.1333 0.1315
0.0623 0.0637 0.0632 0.01246 0.1275 0.1263
2.56x10° 1.204x10°
He H, He H,
0.10184 0.9338 1.1630 2.0368 1.8676 2.3259




0.6245 0.6278 0.7635 1.2490 1.2556 1.5269
0.0159 0.0168 0.0184 0.0310 0.0332 0.0368
0.0155 0.0161 0.0184 0.0310 0.0332 0.0368
0.2543 0.2666 0.2630 0.5086 0.5333 0.5259
0.2492 0.2549 0.2527 0.4984 0.5098 0.5054
—6 -2 —1
33 1.28x107°m"/m RMS
RMS
10 20 30
He H, He H; He H;
0.5092 0.4669 0.5815 0.7201 0.6603 0.8223 0.8820 0.8087 1.0071
0.3122 0.3139 0.3817 0.4416 0.4439 0.5398 0.5408 0.537 0.6612
0.0079 0.0084 0.0099 0.0112 0.0119 0.0140 0.0137 0.0145 0.0171
0.0077 0.0080 0.0092 0.0109 0.0114 0.0130 0.0134 0.0139 0.0159
0.1272 0.1333 0.1315 0.1798 0.1885 0.1859 0.2202 0.2309 0.2277
0.1246 0.1275 0.1263 0.1762 0.1803 0.1787 0.2158 0.2208 0.2188
3-2 3-3 RMS H,
H o0
H, H,
D 30
H © H 2
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3.5.2

4DOF

420/720 600/800 780/880

road — new

H H,

kg kg-m
30

3-20

W-—new

acceleration of z,, [m/s?]
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05 1 15 2 25 3 35 4 05 1 15 2 25 3 35
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4.1

1 LMI

xe R"

F(X)

LMI

LMI
LM
LMI
LMI LMI

LMI

F(x)iFOJer:xFi >0

i=1

FizFiTERnxn i=0,|_ ,m

ueR" u#0, UuFXu>0,

F.(X)>0,A ,F.(X)>0

LMI

LMI

LMI

>0
F(X)



FFX) 0 A 0
0 FMX A 0
F(x) = >0
0) M
0 0 A F(X
F.(X) >0,A ,F.(X)>0
3 Schur complements
Q) =Q(X)" RM=RX" S(x) x LM
[Q(x) S(x)} 0
S(x)" R(X)
LMI
R(X)>0 Q(X)—S(X)R(X)™'S(X)" >0
4.2 LMI
LMI
xe R" we R™ z=RP
{)&z Ax+B,w+ B,u
(4.1)
z=Cx+D,w+Dyu
G(s)=C(sl —A)'B+D
4.2.1H, LMI
A D,=0 G H,
N . :
IG HZ'ZZ LO Tr(G (iw)G(iw))dw (4.2)
w H, z
4.1 (4.1)

1. D,=0 |G|, <
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LMI

2.
1|6l <7
2 P=P">0 S
A'P+PA PB,
. <0
BIP -l
T
P C -0
C S
trace(S) < y
4.2.2 H, LMI
H2
z
H,
.
|G lly= sup{ |l z||: x(0) =0, T > G, IO lw(t) I dt <33 (4.3)
H, w z
4.2 D,=0 LMI
P=P">0 H, 2
A"P+PA" PB,
<0
B,P ~|
P C'
>0
C 7,l
4.3 H, H, LMIs

LMI



{m) = Ax(t) + Byw(t) + B, (t)u() @.5)

z(t) = C,x(t) + D, w(t) + D u(t)
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Abstract

Suspension is the main part of the vehicle, it is lie between body and
wheels. Usually, the suspension is composed of the spring and damper
elements. It connects flexibly body with axle, affords force between wheel
and body, retards impulsion load from uneven road to body, and attenuates
vehicle vibration arisen by all kinds of shift load. Suspension suppresses
vibration of the wheels so as to maintain firm and uninterrupted contact
between the wheels and the road, improve the handling stability. The
suspension has influence of much performance such as ride comfort and
handling stability. So, to provide a trade off approach between these
performances is the purpose for suspension design.

Suspension is divided into three types as its work principle, such as
passive suspension, half-active suspension and active suspension. The
passive and half-active suspension have been developed for long time and
applied in the actual vehicle. For condition the passive suspension can
obtain optimization. For some condition the half-active suspension can
obtain optimization. Studies have shown the limitations of passive
suspensions that it can work well only in some special conditions.
Semi-active suspensions offer a limited improvement in performance over
conventional passive suspensions, but they can not ensure global
optimization over the whole range of road conditions. In order to realize the
full potential of active suspensions the controller should have the capability
of adapting to all changing road environments. So the study of active
suspension supplies an extensive research area for choosing the control

rule, we can use control theory and technology. This paper is having some



studies based on this background.

Ride comfort and handling stability are two important elements in the
vehicle dynamic research and suspension is the important part of
harmonizing these important elements. In general, the suspension has three
main performance requirements, that is to be as possible as be able to
isolate passenger from vibrations arising from road roughness (ride comfort),
to suppress vibration of the wheels so as to maintain firm, uninterrupted
contact between the wheels and (good handling) and to keep suspension
strokes within an allowable maximum. During the vehicle suspension
designation, there are many models, among these models, one is 7 DOF
simple whole vehicle system mathematic model. For existing all kinds of
subtle dynamic factors affluence and relations within parts each other, the
basic factor in the leading suspension design can embody using a 2DOF
single wheel vehicle. Considering the coupling multi-input and the pitching
vibration of the vehicle as well, this paper is having some studies based on
single wheel vehicle model and above mentioned those three main
performance requirements.

Actually during the vehicle design, above the three main performance
requirement is conflicted, for example, one low angular rigidity soft
suspension can achieve good ride comfort, but in the both time, it need
great suspension space to bring about worse vehicle-body pose control (that
is handling stability). In reverse, in order to guarantee good handling, it is
necessary to guarantee that suspension has higher angular rigidity, but this
suspension is bad to ride comfort. In addition, the actual vehicle moves
forward a variable environment including different road surface input,
different vehicle velocity and the parameter of the vehicle maybe varies. For

above these factors, this paper designs control rules to form related active

\Y,



suspensions using robust control theory (H_theoretic, x analysis , LMI
theory) .

Firstly, build the half-vehicle’s state equation and output equation using
the dynamic model. Considering the variable conditions, we give the
changing rang of parameter, including: the body mass alters in a bounded
range when the carload quantity or the number of passengers varies, so
does the tire stiffness when air pressure changes. So it is essential to
analyses robustness of a vehicle suspension. In other words, we need know
whether the vehicle suspension is stability and whether can remain stable
performance expected for uncertainties. In this paper, we give the related
described approaches by using the structured uncertain systems. For the
analysis of the suspension, we discussed approaches of analysis to the
robust suspension system by using the structured singular value u, to the
suspension performances by using RMS value and frequency response.
The structure singular value u is the sufficient and essential condition of
robustness, and this method can discuss the suspension system robust
performance of concerned frequency range. By using RMS value and
frequency response , we analyse the performances of suspension, such as
ride comfort, good handling.

Secondly, begin to have some work to design robust active suspension.
First of all, we give the problem of active suspension 4DOF 1/2 vehicle
system control and description of performance requirements. In order to
harmonize conflict performance requirement and emphasize sensitivity of
vertical vibrations between 4 and 8 Hz for human being, we adopt weighted
output as system control output, and form the suspension augmented
system. Based on this system, we discussed emphatically theory problem of

H, and H_ active suspension designation, and present of output



feedback H, and H_ controller form methods. We give an example of
H, and H_ active suspension design. We compare the robustness of
these two system when the vehicle’s moving forward on different roads and
with different velocity and existing different uncertainty, Because H,
performance objective is limited system highest value from input to output,
from the compared results, it indicated that the H_ active suspension
system has advantages of improving performance robustness in the
presence of various uncertainties. Considering the random road input(white
noise), we analyse the RMS value of these suspensions, the H, active
suspension have the best ride comfort.

Finally, concerning the design problems of suspension, which are
multi-object and robust performance for uncertainty, we use the LMI(linear
matrix inequation) theory to design the multi-object active suspension
controller. First, we formulate the performances with LMI, such as the ride
comfort is formulated by H, performance, wheel vibration and suspension
stroke are formulated by generalized H, performance. Then, we formulate
the controller with LMI. Based on such consideration, for all uncertain
factors taken into account, parameter affine dependent model is adopted to
describing the vehicle system. A multi-objective state-feedback approach is
then promoted for the conflicting requirements. A controller is given via the
LMI solver and simulations for both normal random road input and pulse
road input is discussed in the time domain, respectively. Comparisons
between the active and passive suspensions show that ride comfort
performances are optimized as well as stable and other performance

guaranteed in the active vehicle system.
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