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Bk ) MEHREB IO KFEFVMNEKR. FXL L, RNTUET
HRI HEBRS B RREBL(r)s ma(r)s exla, ) nk(a, t)FIN(a, K
o RERE Bk, )MANFRELENFEE KRBT B, (r)E XK &
Blua(r)s ma(r)SEEMEFERBASHKMNER. B, BAHRT XHERS
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R, K5, CAE-ENERRESok(e,r)S5E B a(r)s ma(r)EHRKR,
BT Bk (o, r)FI— LS RS KRR

EENED, FERRHFKSB T XRamanujant® 77 12 K ok (a,7), T~
N AgardfiZ & $ink (o, ) FI XEHERZE R B (e, K)FI— L4 HHER.

X8 CaussB/LITHRY, REMEAMRS, | XHERS, GrotzschHh &
¥, Hibner A%, | XHersch-PllugerfRZE#, |~ X Ramanujanti 712

1I




WL TRFEW A AR X

Abstract

It is well known that the Gaussian hypergeomctric function F(a, b;c; z), com-
plete clliptic integrals K(r) and £(r), generalized elliptic integrals K, (r) and &,(r),
generalized Hersch-Pfluger distortion function ¢k(a,r) and other related special
functions play an extensive and important role in number thcory, quasiconformal
theory, geometry and many other areas of mathematics and other disciplines.

As one kind of the most important special functions, the generalized clliptic
integrals are important special cases of hypergeometric functions. On the other
hand, they are the generalization of the complete elliptic integrals. Moreover, the
generalized Grotzsch ring function y1,(r), generalized Hiibner upper bound function
mq(r), generalized Hersch-Pfluger distortion Function wx(a,r), Agard 7-distortion
function 7k (a, t) and linear distortion function A(a, K'), which appear in the gener-
alized modular equation, are defined in terms of the generalized elliptic integrals. In
fact, one can obtain the properties of 1,(r), ma(r), ¢x(a,7), nx(a,t) and A(a, K)
by studying the properties of the generalized elliptic integrals. In particular, the
estimates of the function x(a,r) given by elcmentary functions often depend on
the analytic properties of certain combinations of the functions ,(r), m4(r) and
some clementary functions. Thus, the researches on the properties and applications
of the generalized elliptic integrals are significant.

In this thesis, we extend some important properties of the complete elliptic
integrals K(r) and £(r) to the functions Ko(r) and &;(r), reveal some ncw analytic
properties of K,(r) and &,(r) by studying the properties of the combination of the
generalized clliptic integrals K, (r), £,(r) and some elementary functions, from which
some functional inequalities and better estimate for K,(r) and &,(r) follow. we
shall also derive some inequalities of the functions y,(r) and m,(r) by studying the
monotonicity,convexity and cbncavity of certain combinations of the functions y,(r),
ma(r) and elementary functions, by which we strengthen the upper and lower bounds
of the generalized Hersch-Pfluger distortion ¢k (a, r), quasiconformal Schwarz lemma
and the solution of generalized Ramanujan’s modular equation.

This paper is divided into four chapters as follows:

In the first chapter,we introduce the research background of this thesis and
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some concepts, notation and some known results used afterwards.

In the second chapter, we present some analytic properties of certain combina-
tions of functions KC;(r), £,(r) and clementary functions, and obtain some functional
inequalities. Then, we study the monotonicity, convexity and concavity of some
functions defined in terms of the functions K,(r) and &,(r), get some functional
inequalities for them, and improve some known bounds of Ks(r) and & (r). We
shall also obtain some new analytic propertics of the generalized clliptic integrals
by studying the dependence on parameter a of the generalized clliptic intcgrals.

In the third chapter, we study some analytic properties of the generalized
Grétzsch ring function p,(r), the function m,(r) and the related generalized elliptic
integrals, and obtain some inequalities of the functions y1,(r) and my(r). Then, we
apply some results in the second chapter and the relation between ¢k(a,r) and
114(r) and m,(r), to get some better estimates of the function wx (a,r), which are
given in terms of certain elementary functions.

In the fourth chapter, we show some analytic properties of the solution ¢x(a,r)
to the gencralized Ramanujan’s modular equation, the generalized Agard 7-distortion
function 7 (a,t) and generalized linear distortion function A(a, K).

Key words: Gaussian hypergeometric function, complete elliptic intcgrals, gen-
eralized elliptic integrals, Grotzsch ring function, Hiibner’s inequality, generalized

Hersch-Pfluger distortion function, generalized Ramanujan’s modular equations
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AN I RE SRR EHIHL2 ~ 144 H.

16564F, Wallist@it T “#/LAS %" X—AREN., 18HLF 4, Eulerttis
JUAREGRAT THRARIR, RATBLAREME SR RS, 18126, GaussH
REBLAMBHEARBEH TR 25, ERE—BEER, BLTRE
K% #3Jacobi. Kiimmer. Fuchs. Riemann. Schwarz#1Klein!!|% 245 ] £ Z 4% K
fTRF . 18734, Schwarsiik T LA R M S HE W EY, £58
LSS FRABERALE S, FRATIEMNA. 20thL2 4], BEHF
%S.Ramanujan¥} Gauss#B /LA R B TR R EBOEREFEB T ZHRAR
WR, BITREER, XE/BLARKONAEM Z. 8LTREAR
EERHE S, I LARN-8 S8 A F B RN, EEYEEMY, T
BRERZEHvENIEPEE ZHNEENNA.

17184, #6[F 84> 22 16 B % FagnanoXd W 41 £k ) 31 ) BF 921516077 38 /£,
2 J5 h18tt L ¥ % KEuler. LagrangeflLanden® B2 K. 194, Gauss. Abel
FJacobi X Xt # B # 2 FI M (B o6 $(F 7 E KK, Legendre. Ricmann. Klein
FlWeierstrasstil 4 B 5t 52 2 ¥ H AR 2 s T E K STERI718, 20t 2N\ + AR
JE LAk, G.D.Anderson. M.K.VamanamurthyFIM.Vuorinen#{#Z W\ 7 #L 3L
MANEERER, FTRTHEE2MERIO—RIFR, GHT —EXT
S AR AR R LA R B FHE R(BEAE )2, 19944, B.C.Carlson
F1J.L.Gustafsonfs i T e WA RS H #EHE R, 20t L+, G.D.An-
derson. M.K.Vamanamurthy. M.VuorinenfI B/ R BB N AR RABAAT T
AR SOR, HER T HESEER R -2,

EJLARE S, T XHEERNKC(nRE(r) 5% L FEE R FTN%
J¥ fiSchwarz-Christoffel &8 5 X124, |~ A HE A58 M ER > KH
Yo =1/2 B, Ko(r)FIE,(r)RIKBILAK(r)RE(r);, B—HE, I XHER> b
R Gauss#B /LT R BB R IE L. Rk, X7 CURHEB KRATAE B Te
WER. LTE. LARER. BARBEREHENE. TREANKRESN
REGEHERE. B, SEHEEHEARICOREC)HN—LERLRHE
B R BRI, (r)RE,(r)? X—HEE LML+ ERPHFIRTER
SMREFERRE. BRBEREHEEZRATRTK(r)ME(r)MLanden??
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TR, FAINHHET BT I, (r)- &,(r) LA R GaussitB /LI & $F (a, b; c; 7)), 3K
1871 XLanden RER A XLegendrek RIB-2, i BXFK, (r) & (r) 5 HEH
SRHMASRE B MAREE. MOESSERET TEANRR, KB
T Ko (r)FIE,(r)2Er — IR BIBHEYE R, KB T —RIEHATEEER-,
B4, 20HE2=TFEHER, Ahforstt BB R TREHAR, BIT
T Grotzsch¥F f B u(r) B — B0 R, AZEMBERSRRT u(r), NTHE
) T 0 & B (r) I, 19524, HerschMIPflugerdt & 24144 # i Schwarz3 |
BHEBBIEHEL, BT EL NI HSchwarz5 | EM, 4 TRARA
BB 5 BREEARS) MK -BE T B F (A X L8 B A R IRQCK(B)
t [0, 1JZI[0, 1) £ ™% B iR LI B Bon ()RR HIKEHE ST . B, WERRS €
QCk(B)Mze B4
eyk(l2) < 1£(2)] < ek (|2]). (1.1)

WG, RIS K IEE EEME R K& Bk (r) R FEGrotzschI K u(r) B
SRR TR BRI K. 196048, EEFIER T

ok(r) < 40-VK 1K (1.2)

HPK >1,0<r< 1. 1970, O.Hibner X3 & Hox(r)MEXEHETE
Kk, ¥ EIBT Hox(r)% & Em(r) + logrf K BIK AR, Bl 3K > 1,
0 S T S ].B-‘T1

ok (r) < V¥ exp{(1 - 1/K)[m(r) +logr]} < 4O-VK) L 1/K (1.3)

19994F, B/# B . M.K Vamanamurthy 5M.Vuorinen?t 40.HiibnerZ. & X H
THHEM, EHTE.

e (r) < /¥ exp{(1-1/K)a(r)} (L4)

ZH BN Em(r) +logr < a(r);
oy (r) < ¥ exp{(1 - K)b(r)} (L5)

BHNEm(r) +logr > b(r);
poyk(r) > exp{(1 - K)c(r)} (1.6)
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B B A Gp(r) +logr < c(r), HFa(r)s b(r)Fle(r)A(0,1) LHIKEEL, r € (0,1),
Ke(1,00). BRTEBox(r)EHpu(r) +logrIKBKR, HHRETAER

px(r) < ™K exp((1 - 1/K)a(r)} < 4 O-VEIIK, (L7)

pyx(r) < rexp{(1 - K)b(r)} < 4eNA-K) K o gA-n)A-K) K (1.8)

oy (r) > exp{(1 - K)[u(r) +logr]}, (1.9)
K, aofr) = ﬂnrJhr—)log& b(r) = H&\I}f—%ﬂlogti, c(r) = Mﬁ%h—(@. M,
stELL A A B3 B 8 BR R ARMKIUL MBS f &Y 2 € B2, &

1£(2)] < 40— FRPPA-1K)| /K. (1.10)

20044F, B R EFMDBHH LR (1.4)-(1.6)&E REET 2 AR

ex(a,r) < /% exp{(1 - 1/K)a(r)}, (1.11)
BHNHEm(r) +logr < a(r).
o1k (a,7) < ¥ exp{(1- K)b(r)}, (112)

Y BN ZEm,(r) +logr > b(r).
o1x(a,7) > ¥ exp{(1 = K)c(r)}, (1.13)
Y BN Bpe(r) + logr < c(r). HHFa(r)s b(r)Fe(r) A0, )L LERE, r €
(0,1), K € (1,00),a € (0,1/2]. 33KB T E¥loyk(a, r) BT
o1k (a,T) g‘ [tanh (—é—mh(ﬁ))]‘l. (1.14)

2008, TG, HEH. ¥ EWHMEN R B T Hersch-Plugerfi £ &
ok (r) L ZKFZLMABDE(ZHMXERS, BAT

ek (r) < r¥ exp{c(1 - 1/K)[E(r) - 1]}, (1.15)

HA, re(0,1),K € (1,00),¢ = (log4)/(r - 2).

19594, Lehto. VirtanenMIVaisala5 | A\t 8 Bk (r) RILHI KM 22 A (K)
BRATMNKEMSEER S HEZEEAN, NREMNKEET Koo
AW EXFHMKRIIER BRI LRENWE. 19685, Agardil &

3
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BNKET A0 Z & Bk (t), ERIET & Hnk ()T R AKIUIETE B FIHEH
LA, 19974, G.MartinSi AL AEZ) R, BRTn-hERHEMET R
$16 PSchottky | F B EZI BRI, BEE, BN RBERABRAM S ESH
T Schottky - 7 E 4 B HEH R Mg,

19885 AR, ZEENIFRRE—RIKTFox(r)U X HERIEN RN RE
B, ox(r)s p(r)fim(r)ZRHOERBET RENHR, ANRETREHNS
B, RHEB RHIMEYEEG.D.Andersons M.K.Vamanamurthy. M.Vuorinen
— &Ik (r)s plr)Fim(r)ERBE MU RANA BT REIE, AREHIRE
& T ERpRe-2w0-24-16 A HERGH, BRRERANELSEEN BB RT
BIEEME . B R S5RamanujantE MR, NI TR ERER
HEREFHRUTEXHR. 25, XEmr)s ur)s ox(r)s ME)Hnk@)#FE
BT B Tma(r)s pa(r)s wxla,r)s Ma, K)Fing(a,t), QLT HF XK
FRERF T

AEHSIAN—ERZS, HEENHGaussiB AR, WA, Ramanujan
BAEAREREN—EEARSHIER. THEEMEFHERABRIM
AtEFIHE,

51 #19,  (BiE ¥ HopitaliE U)) #a,b € (—o0,00), BHf, g : [a,b] » R
Telo, b LB, #(a,b) ETTTH, B7E(a,b) by #0. WHES/gT(a,b) L(FEHE)iE
WOER), BrRE

1(2) - fla) 1(a) - 1)
Fe)= @) =gty )=

FE(a, b) L0 R (4R ) id 38 (G 9) M«
51gE20d, % Ms, (n=1,2,--- JALE, BEE

[o1]

R(z) = Zrnx" M S(z) = Zs,,x"

n=1 n=1
fE|z| < 108, WREMERMn =1,2,---, Fsn > 0, Hro/s, (0, 1) L/ iE
W(ER), BARER/SERAE,1) L™ HKiBRH(EM).
A3, WEEMr € (0,1), Bigr =v1-72

1.2 Gauss# LI BRE .
2 N1.2.1%, AEHEHae, bWe, ¢ #0,-1,-2,---, GaussBJLIATHH R TR
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& R BERYEFEC \ [1, 00) LKA

=, (a,n)(b,n) "
F(a,b;c;z) = 2Fi(a,b;c2) = E ( (c)(n) );'-, |z| < 1. (1.16)
n=0 ! :

iZE.! %(l # Oﬁy ((1, O) =1; %n eEN= {’C : kz%ff.%ﬁ}ﬂﬂ':

(a,n) =a(a+1)(a+2)---(a+n-1)=T(a+n)/T(a). (1.17)

T)ATHEXMEATERY. BER, BILARESZANT-RE. v B
M Beta- R FE TR R
5E X1.2.2%8, %fRe(r) > 0,Re(y) > 0,

I(z) = / " e tar, y(z) = M(z)/T(z), B(x,y) = r(m)r(z)_ (1.18)
0
AVIEZREESHET BB THEAMER:

I(z +1) = 2T(z), (1.19)
[(z)T(1 - z) = n/sin(an) = B(z,1 — z). (1.20)
(L16) X PRI REHE W T RKFAR:
dizF(a,b; cz) = %bF(a+l,b+1;c+1;z). (1.21)
— b, AnbirkF AR
%:;F(a, bic;z) = (a’(z?g)’ n) Fla+n,b+n;c+n;2). (1.22)

BIVTRBRFEFTEEN —RBRBE, A 5keR BT % Y14
%K, Bit0: Legendrel#. JacobiZ WA\ HMHELMA. T RZHAFH
BT AA=AF U S FuchsB MM, #7T LU Gaussi /LT B HURIA.
D RS R E T LU U R Bk &R, il

(142)*=F(~-a,8;6;—2) , In(1+42z)=2F(1,1;2;-2),

. _ 1 1_3_ 2 _ ]- .3_ 2
arcs1nz—zF(2,2,2,z) , arcta.nz-zF(z,l,z, Z>~

BILMESAE: = LAKHERER e +b< ca+b=ca+b> ERFELS
Hj[26,46]’ Ha, b,C >0,

F(a,b;c;1) = %‘:—:g,c> a+b,

B(a,b)F(a,b;a +b; 2) + log(1 — 2) = R(a,b) + O((1 — 2)log(1 — 2)),  (1.23)

F(a,b;c;z) = (1 - 2)**F(c—a,c — b;c;2),c < a+b.
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XE, R(a,b) = —2y—1(a)— (), HP, v=057721566--- HEuler¥$. Zb=
1—-aff, R(a) = R(a,1-a)(R(1/2) = log 16) 2T iHRamanvjan ¥ . LRKF
FHERIR T (Ba+b = c)ffi WRamanujan¥fii A, BHH T REF(a,b;a+b;2)%E
S M2 = 1T

1.3 ZEMERINT XHERS

ST EAHERSMHACLLBRR, ERBHEZHIANER. RN, X
Fr UERBA OHRMAEREEN . F T EBEA X TRAMERI AT
RESHILS R —EEFNEEER. 8% B X MHERR2EFWT
& X

2 X1.3.1%461 Sfr € (0,1), 7 = V1 -12 Fla € (0,1),

Ka(r), (1.24)

&L =El(r) = E,(r), (1.25)
£(0) =3, £,(1) = 221,

BRlth, Mo =1/28, I SUBEIRK, (r)RIE(r) 4 BB A E—HKME =K%

LHERS

K =K(r) = Kipolr) M € = E(r) = & pa(r).

WAEXTFRYE, TFXFEika € (0,1/2).

" XHEBAE TRRFAR:

K. _ 2(1 - a)(€ = °K)

e = , (1.26)
€, 2a—1)(Ks—Ea)

Lo : , (1.27)
d 21 -a)ré&,

(Ko = £a) = =—3—=, (1.28)
d%(ga - r2K,) = 2arK,. (1.29)

Ho=1/28, ERARBUAZLEMEARL HFRFLARA,

6
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" XLegendreX R Xfa,r € (0,1),

_ wsin(an)

= —a (1.30)

Ka(r)Ea(r) + Ko (r)a(r) — Ka(r)Ka(r)

Yo = 1/20F, FRFKREXBUATELMERS) KILegendreX R
K@) ¥ %iEM  HRamanvjan¥E A XM, EFHKr = IHIE, &
BK(r) BANEKE. BT, FTEMEC()H—EARER:
19924, Anderson®$ A & IUAC(r) AT LA Bt R XU i IE ) 6 $Harth 3R B IEW: XHE
Blre(,1), &

2 T 2 r
1995%E, Sédor & NHA ML H TK(r) 5150 B AR E KX HHEH R
R, SA(L7)=(1+r)/2, L(L,r")=(1-7")/(logl —logr"), a1 =2/m, c2 =
12/(57), ¥V r € (0,1), WA

T a 1-¢ Vs Ca 1-c
2 (L(l, At A(l,r’)) <K(r) < 5(L(1,7~') + A(l,r’))' (1.32)
19984, RMBBWEALHETE()HMTHFL: Sez=n/2-1log2,c1=
3log2—1/2, cs = exp(n/2) — 4, XV r € (0,1), WEH

T (a:[th(r))l/z <K < n arth(T). (1.31)

c3+log(1+1/r') < K(r) < ez +ca(1 — ') + log(1 + 1/r") (1.33)

log(4/7" + ¢s7') < K(r) < log(4/r" + c5). (1.34)
2004%F, BB HIZ KK A EEHorst AlzerBHL# — Uk TK(r) L&
R, RBTHNT1.31)-(1L3)FEROK()RE(HERAS.: Hvre(0,1),H

T 3/4 T r
%(m};( )) <K(r) < amﬁ( ). (1.35)

SAL ™ = Q+7r)/2, LA,7)=(1-7)/(logl —logr'), a1 =2/m, ap =
3/4, %V r € (0,1), ME

T « l1-a 7 o 1-ap )
P (L(l,l 7t A(l,r'l)) <K<z (L(l,r') + A(l,r'))’ (1.36)

Sa=n/2-log2,as=7/4—1/2, 04=3log2—7/2, XV r € (0,1), WH

o+ az(1-7")+log(l+1/7") < K(r) < a+ as(1 =) +log(1 + 1/7');  (1.37)

7
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20 =exp(n/2) — 4, a5 = [4 — (n/4) exp(n/2)]/[exp(n/2) — 4] , ¥V r € (0, 1),
k=] y
log(4/r' + Br') < K(r) < log(4/7' + Br'®s). (1.38)

19854, CarlsonfGustafson# #2745 3CY:
K(r) < 4
log(4/r") ~ 3+7r%
19934, B REAFHEH T 6
9 < K(r)
8412  log(4/r")
19964, FE# K MVamanamurthy H3% B 5] 753

0<r<l (1.39)

,0<r <1 (1.40)

K(r) 1,
Tog(4/") <1+4r O0<r<L. (1.41)
19984, Alzer#4ZiER] T 54
T \on K(r)
1+(410g2 1>r <-———10g(4/r,),0<r<1. (1.42)

(L4)R B T(1.39)2, B ARZR(1.41)5 5% $1/400 R % R (1.42) 5 1 % K
[r/(41og 2)] - 1RBEER.

E(r)MAIFIE AL

18834, Murif§ tH LAy - A0 B (R PG A (1, r) PT LA 2 ((140%/2) /2) 35K
EAAL T, 19974F, M.Vuorinen##4 tH Tt FRE M5,

T (14182
2 2

BN RERERENEANENS T TR, /5720005, Barnard¥ A5
M T E(r) I EFET, R4 T 5(1.50) AN EFH —MRERHAFK:

7 /1472
ﬂﬂsi( s
20044, BF)EMHorst Alzer#H#Z it 7T LR AE R, R THEATHE

B, B, 4og = (log2)/[log(r/2)], WAV r € (0, 1)F:

7 (1+7r32\23 7 (14 rias) /os
— < < — . 4
L ot

I XHEBS R TSR RR: XHEEMr € (0,1), WF
(OB S () = E1—a(r)N0, 1/2BIE(r), /2| LA T .
(2)Eig(a) = Ka(r)M[0, 1/2]B[7/2, K(r)) LRI LTt
(3)EREA(r) = £, (r)AN0, 1/2)[mr?/2, £(r)] L LTt

2/3 ’
) <E(r), (0<r<1). (1.43)

)1/2 L (0<r<1). (1.44)

8
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:

1.4 |~ XRamanujanif &

245 18 2 4t #BRamanujanti TR 2. B X GrotaschF & Hp, (r)H1~
X Hiibner I 51 & ¥im, (r) 3}~ X Ramanujant® 5 R BT FEBIEERERN
%R, TERERINELERNMBENHIEX. .

EX1.4.124%) %o € (0,1/2),r € (0,1), I~ X GrotzschFF ik $UE XA

r  Fla,1-4a;1;1-1%) _ K. (r)
2sin(ar) F(a,1-a;1;72) 2sin(ar) Ko(r)
Mg = 1/28F, pa(r)iBAL K F T Grotzsch¥F & $u(r), t 5 & F HGrotzsch¥ B? \
[0, r)#9KE, XH PR E Tl bR A IR,

HLandenZE /A R AT 5 0 FAEZ 16

fia(7) (1.46)

W) = = (i - :) =T ) =2 (f‘[) S
% X1.4.22%9 Fa e (0,1/2),r € (0,1), EX
ma(r) = “if(m) r2K, (r)CL () (1.48)

R Bima(r)h ) XHibner E R E . B4R, Ha = 1/28, & Hm,(r)B4L
JiHiibner | 57 B 4:

m(r) = myy(r) = %r'%C(r)lC'(r).

B B 1 (r) R () EF AR B 1S KR R T BB T R LA DH,
BN REENESSESEE —ERu(r)FIme) R T XETE, FHHPHSE
HE HES Bl g (r) i (), ELAFS HL[19-20,23-32,43-46). |
®K >0,a€(0,1/2], r €(0,1), ] XHersch-PAlugerf Z & £ XA
§= SOK(aa ’I‘) = ll’;l(ﬂa("')/K)a QOK(G,O) = QDK(G': 1) -1=0. (149)
Lo = 1/20F, B ¥k (a, r)BN A Hersch-Plluger i Z2 B £

ek (r) = ™ (ulr)/K).

TR, FFSEHNalIpRI™ XEFHE

F(e,1-a;1;1-8%)  F(a,1-0;1;1-177)
F(a,1-a;1;s?) =P F(a,1-a;1;7?) » P

>0 (1.50)



WHLE TAEB 208X

pa(S) = ppa(r),
fip1/p(a, r)REZ(L50) IR, Lo = 1/28f, H(1.50)BAZ BT TE:

K'(s) _ K'(r) _
X6~ K0 Blu(s) = pu(r).

I X Agard n—{k 28 i (a, )R XEHERZE B (o, K) 2B 1L
_ (pK(aa T') 2 _ t
nx(a,t) = [W} 7= \/t—ﬁ (1.51)

[ ox(a,V3/2) ]
2o PR

Me, K) = nk(a,1) = >§01/K(a \/5/2

(1.52)

FIEE, Ya=1/20, nx(a, t)FIN(a, K)BP Fn—1h % i Hink () MM R Z R H(K):

) = [:,2(8): - \/FE ’

AK) = (1) = L—“";—((‘/—}%} .

X B B B B T B0 S5 0 A £ ) R O TE U R DA R A AR R B SR i
B REEEENER-0-G, flm, &Enkt) NIRRT 7
MMK)ERTEEESEAMEEFEBA E S HK-RIE B RS KL E K R
%. GMartin i £ 4ZF) BN, BILT ngRRE 6 HT BR 200 4% 18 ie) L A K
R, SA(r)={f: B~ R*\{0,1} | /#&HT, H|f(0)|=r}, W,

axtr) =sw {121 1 € A1 = T |
é%#ﬁJ)ﬂSchottky’siﬂ, <]
11(2) < K(r,|2l) = nx(r), K = (1+]2])/(1 - |2]),
H, feA(r),|2] <1 50, 4f e AR,
[F()] S MK), K = (1+]2])/(1 - |z]).

ETHERANANE FEEm () palr)s oxla,r)s Mo, K)Fnk(a, t)HIHE
BT Rt LR

10
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BIE T XHEBRMOTER

21 FlF

WERMEYEE (S REHREERITR., RENLERTHH
R RENFH—LAES) ULLARHREFEHTHEEEEERERY.
fltn, LA LR, SAQ RaK. EEMKK AR € (0,1)HHEKHE
K, WE, A1) =4E(r"), BE_XZLHARDE() HEHTHENAK. &
R, HTFEAMERIOHAXEFORAN. MLZT, W XHERI KT
FROHRELNOZ . EFTURRRSNA K ZERE X R, XTF
e MR RS A MBB SR B XRERS X -IATHEZETH
¥ THENERE. RHENHENFRES LN LT REWT, EAUER
I XHERA BN R AN, EEBREETMKK XHersch-Pllugerfii 2 B
ok (o, r) SRR RBOFEIES. B, X7 SURRRSERERANTRAEE
TAEENEX.

2.2 T XHBRERIOREREAFA

AR T XA, (r)FIE, (r) 53 7 5 L8] 5 R B S TSR,
KB T, (r)RE (r) M — LR BAFXMERAT XHARP EEF L HER
i — LB R I R

2.2.1 K, (r)fifER

Mo = 1/2 B, TEMEE2L(1). EH22(1)(2). &H23(1)(2)7 #E 4
H7[46,E#3.21(3)]. [46,E H3.21(10)]F1[47, € E3.2(3)] .

EH2.1. ReeR, BXEES(r) = Kalr) + clog(r'), WH:

(1) B0, 1) L i EAH (TR ER R T (M, BIREEMSHE:
L% < a(1 — a)n(c > sin(am)); FHIH, HEL.(r) + sin(ar) log(r')A(0,1) 2
([R(a)sin(ar)]/2,7/2) L i B E T BEEEME . BEK(r) + o(1 — a)mlog(r’)
M(0,1)B)(n/2, co) b R K B LT BR[0T Ay,

(2) Ha(l - a)7 < ¢ < sin(am)B, FFLEME—HIry € (0, 1)ERRE S0, o] L
TR BT IE, fE[r, 1) LR LA BE T 4.

11



B (1) kFAR

H1[24,51385.2(1)] 7 %1

fl(r)>0 & c<21- a) inf {M

0<r<1

b=ati-apm

r2

fir)<0 & ¢>2(1-a) sup {wﬂ} = sin(ar).

0<r<1
HLHIAXT f RN SR,
(2) Ba(l - o) < c < sin(ar)fF, E1[24,5]25.2(1)| AT EHE2(1 - a)[Eu(r) -
2IC,(r))/r? - eh(0,1)B(a(l - a)r — ¢, sin(am) — c) £ IR EFt. BriAFEAEmE
—Hiro € (0,1) B0, ro) LH fi(r) < 0,7E(ro, 1) LF f1(r) > 0, Bf{BHEF.
B fy (r)TE(0, mo) LM AR T M, 78 (ro, 1) L& 9 EF HR MR iEEE.
THEIEAM MY, FAZBEFTR

Ka(r) — 7/2 + clog(r’ —i

ja—y

(ndn—o)r

:IH

M

He, A, =(a,n)(1-a,n)r/(n)2

(n+1D)Apn _ (n+a)n+1-a) n’+n+a(l-a)
n4, n2+n n?2+n

F1[46,31 21.50) 81 (1.20) R 7T K17 5l {nA.} Rk Tn/=48 8 £Ft, HH HRsin(ar)
(n — o0); XFn>1, nA,—c> 06 c<min{nd,} =a(l-a)m; nd,—c< 06
¢ > sup{nd,} = sin(ar). WHEFXT HHMNHERLER. EE.

EH2.2. %ceR,He> 1 EXERE fo(r) = Ko(r)/ log(c/r'), W

1) BELHLEO,)E™ERE EA L BN Ee > exp{1/[22(1 - a)]}; TTH
e > exp{1/[2a(1 - a)]}BF, fRFETFME. Fehlth, HAXEZRr € (0,1), K
A

> 1,

T Ka(r) T . T
- . 2.1
2logc < log(c/r") < 2logc + [sm(mr) 210gc]r 21)

(2) BHfHLFE(0,1) LR R TR HXE1 < ¢ < exp(R(a)/2).
(3) Yexp(R(a)/2) < ¢ < exp{1/[2a(1 — a)]}Bf, FIEME—HIrg € (0,1), 78
B8 fHE (0, mo) LR BIA TR, E[ro, 1) LB EF
il k3%
1

4 E(r) — 12K, (r)
liog(c/ )P {a-a

filr) = 10g§ - rICa(r)} )

12
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T,

A(r) > ()06 ¢ 2 (<) sup ( inf ){T"”‘p {20 - a)(z’(i'}(?rm(r))] }

o<re1 0<r<1

H1[59, £ 723.8(9)] W AN E Bl exp{r2Ka(r)/[2(1-a)(&a(r) —rKa(r))]}A(0, 1) 2
(cxp(R(a)/2), exp(1/[2a(1 — a)])) L4 A T FE. BTEL, #E(0,1) L, f3(r) > 03
BAR e > exp{1/[2a(1 o)} fi(r) < 0% EL{U41 < c < exp(R(a)/2). HaLLEN
R (1)MQ2)F X T RIBHERILH

B4 g1 (r) = ' log(c/r'), WHc > exp{1/[2a(1 - a)]}, 7 € (0, 1)R,
Wi 7E(0, 1) L7 4% B T R

N Hi[59,E#E3.8(9)| 7T 41, BR¥

1
+log —

T’

_ ’ sza(r)
gu(r) =loge ~log { =P [2(1 ) - r%(r))]} (22
f£(0,1) EREME™HHE EFA B HENS

e> g {e0 [y )| = oP/att ol

Bl e > exp{l/[2a(1 - )]},

i) =201 - )20

O, 1) E™REE LA, HRELIE T MR, #2457 E5.28)], £(01) =

/(2logc),fo(17) = sin(ar). FER(2.1) BRBL. Fbh, ()FHKERMIL.
BJ5, Yexp(R(a)/2) < c < exp{l/[2a(1 - )]}, &

R(a)/2 < logc < 1/[2a(1 - a)),

17T 5 g2 M (0, 1)l (log ¢ — 1/[2a(1 — a)], logc — R(a)/2) L= #eHH £+, Bk,
HH (2.2) AN FEAEME—HIro € (0, 1) BLE(0, ro) LH f3(r) < 0, E(ro, 1) L f35(r) > 0. H
BEIB 4R (3). .

EH2.3. HeeR, EXEHSf(r) = r2,(r) +clogr’, W

(1) BEf7E(0, 1) L4 A L7 (F B#) 2 HAX He < sin(ar)(c > 7); #H,
e > alif, f,7E(0,1) ERA EMAK. FERH, SHERMr € (0,1), BALAFR

13
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(2) Ysin(ar) < ¢ < 7, FFEEME—Hry € (0, )EBEREf (0, ro] LM HL
WEF, fEr, 1) L RRE TR,
WEH: (1) d1[24,51EB5. 40 FIE, (r) M IAYE, MR H

9(r) = arKy(r) + (1 — )&, (7)
M(0,1)El(sin(ar)/2,n/2) LHE L H TR, kFH
7i(r) = 5[29(r) - d = = le — 29(0)] (24)

TRE:
fi{r)>0&8c¢< 202151{9(1')} = sin(ar),

f3(r) <0&c>2 sup {g(r)} =
0<r<1

HE)FH—4SiL.
B A BB o r/r?4E(0, 1) LR B BT, H¥e - 29(r) > 0HBA LA S
B > 2osup1{g(r)} = B, Hc>nbf, B

~f3(r) = Zle—29(r)]

£E(0,1) LRl EF. BRI P REASIR,

(2) Hsin(ar) < ¢ < 7, EE2g(r) — ch(0,1)F(sin(ar) — ¢, 7 — ) L4
BT, BTl RTTa, FEM—Hn € (0, 1)fFEBE,n) L fi(r) > 0,
TE(ro, 1) Lf3(r) < 0. iR ()8, IEEE.

T ERITIE RN 24,51 E5.40)FQ2) A RA T E.

5|#2.4.%ce R, WE:

(1) EEESu(r) = r°Ku(r), WHO0 < ¢ < 2a(1 - o), FEME—HKr, €
(0, ) {EBRELfLHE(0, ro) MG R LT, o, 1) LR BRE T . H20(1-0) <
c < o8F, HREfRF LM, ERIAER

(1- r)7r/2 <1'Ke(r) < m/2. (2.5) |

(2) BEHS5(r) = rE,(r), WH-2(1 - a)? < ¢ < OB, FEME—H K, €
(0, 1)1 753 BR B f7E(0, o] L ™= LA T B%, ZE[ro, ) LM HF EF. HEe <
—2(1 - a)?®f, R fRMETMAE.

(3) B fo(r) = rH{Kal(r) —m/2}/r* I(0,1)F1(0,a(1 — a)r/2) LH& HIH T &
HAEm B,

14
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(4) ©c € REc > 0, MRS fr(r) = rr?Ka(r)FE(0, 1) L4 59 T I 5 HAX
Y < 0, BN € RIEBE S f2(r)EE0, 1) LHRE LFt

(5) BB fro(r) = {€a(r) — ?Ko(r)}/[L ~ rarthr/r] (0, 1)3(sin(ar)/[2(1 ~
a)), 3o /4) L& B T .

iE8: (1) k3B

Eu(r) = 12Ky (r) .

fa(r) = —r‘r'°'2ICa(r) c—2(1-a) (2.6)

2K ()
H1[24,5]F85.2(4)) %0, 240 < ¢ < 2a(1 — o), HH
E,(r) — 2K, (r)

hl(’l") = 2(1 - a)a—ﬂ_}(j—m— —C

M(0,1)El(~c,20(1 — a) — ) LR B AT, HHE6)RTMEEM—Kr €
(0,1) FEALE(0, ro) LH fi(r) > 0, E(ro, 1) L f3(r) < 0.

M2l —a) > ¢ < 20, r o UG (r)ZE(0, 1) LR A £, T H-hy
FE(0,1) LR EM™R AR LA R, MHQ26)RXEH20(1-a) <c <28, fi ™
BEATR. A% (2.5)24. :

(2)k 217

fé(’r) — rr/c—2ga(,r) {2(0 _ 1)7"2[’(:“(1‘) — £a(r)] _ C} )

72€4(r)
HR¥E[24,5155.2(6)), %L

har) =20 - )Ll

M0, 1)EI(—c - 2(1 — a)?, ~c) L™k A LA BREL, 2-2(1 - a)? < ¢ < O,
TFEME— B € (0, 1) B R HS7E(0, ro) LM BIE T RS, #Efro, 1) LK IR L
Tt

H1[24,5/35.4(2) M 51 E5.2(6)| AT &1:  BRHr — /o726, (r)7E(0, 1) LRG3 L
T4 EAY B < 2 - 2(1 — a)? = 20(2 — a), RH R TE(0, 1) LR IEM H =i 8 £ 7t
E1EEE

¢ < inf {2(a-1)”'2[’ca('”)‘5a(r)]}

0<r<1 'r2£a(r)

= 2a—1) sup {rﬂm“(r) — 5“(r)]} = —2(1-a)?.

0<r<1 1r2E,(r)

Rk, %< —2(1-a)28t, fI7E(0,1) LS BT, SRS R R T M.

15
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3) MA%HRHFTA
(a n) 1 a, n oz T (g,n)(1—a,n) 5,
fﬁ(r) = 22 —EZ_—(TET—T

n=1

a(l —a)m 7r°°a(l a)— (n+1)(a,n)(1-a,n) ,,
2 +§§ (m+ 1) T

EHHFHER =12, 0, = L0 <0, FTUARS 67 (0, 1) L i 18
_Flgéﬁ.%lﬁ]_t&ﬂ{]o #Ev f6(0+) = a(l - a)ﬂ'/z, fﬁ(l) =0

(4) kBH
Rt = S SR L

(24,51 E5.2(4)] T &1, E &M (0,1)3(0,00) LRSI EFF. BTEL, d1(2.7)RK
], fiiry<0&c< 0i1r1£1{2g(r)} = 0, BEAFfEc € RIEBS(r) > ONEE
#r € (0,1)#AL.

(5) FIF(1.16)(1.24)(1.25)HH R IF A :

flO awzanr /zbn s

n=0
e

. =(a,n)(l-—a,n) b= 1
" (n+1)@N2 " " 4n+1)2-1

H%c, = an /by, WE
Cnil  _ (n+a)(n+1-a)d(n+2)%-1
Cn (n+1)(n+2)[4(n+1)7 -1
& 4l-a(l-a))(n+1)*+2[1-4a(1-a))(n+1)—3a(l-a)>0.

<1

i

On

HTFRRELEFo=KEEEFA . Bk, EXTF32 - 501 - a) > 3/4
B, ok TomlaE TR, H5 A EO0 ) ETRBERATHR. &
B, f10(0%) = 3am/4,f10(17) = sin(ar)/[2(1 - a)]. HEE.

EH2.5. AceR. EXERE fuu(r) = [Ka(r) — 7/2)/re, WA

(1) B fTE(0, 1) LR A EA B EN Se < 2.

(2) Yc > 28, FAEME—Hr, € (0, )EBBREfuTE0, ro] LR BEIA TR,
E[ro, 1) L% 5 Tt

(3) Hc < 18, RE fuu(r)RHT S,

WEB: (1) Hi[24,51885.2(1)) 15| 22.4(3) AT A0 B 4K

hr) = Ea(r) = 2Ka(r) _ Ea(r) = r°Ka(r) r2
r2(Ka(r) - 7/2) r? r2(Ka(r) — m/2)

16
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M0, 1)EI(1/(1 - a),00) L4 B LT, KPR

filr) = ’C“(TT)C; /2 [2(1 —a)h(r) — c]. (2.8)
TR, . -
fu(r)>0ec<2(1- a)oirrlil {T;—([Qa——(—;g:—ﬁ%%} =2,
flr)<0&ec>2(1-a) sup. {%} = 00.
W41 (1) AL

(2) BA[Ka(r)-n/2]/rett > 0, B e > 28, B#2(1-a)h(r)—cM(0, 1)2](2-
c,00) EPEREBIA L, B (2.8) RAFEME—RI Rirg € (0, 1)FRBE(0, ro) L 111 (r) <
0, #(ro, 1) £ f1,(r) > 0.
(3) BB %, BEK,(r) — m/2)/ret17E(0,1) ERIEFH™ R HIE L
FrH AN He < 1. B2 - a)h(r) — cfE(0,1) L2 IFM B B8 B2 AR
e <2 FiLAti(2.8)R%, He< 18, f1,76(0,1) LRF L. iEHE.
EH2.6. SceR, EXEE f1o(r) = Ko(r) — 7/2 — ¢ arthr, W
(1) BH frE(0,1) L™= A LA BR M T M2 BN e <0.
(2) BE f127E(0, 1) LM B T B2 B X Zic > sin(ar).
(3) %0 < ¢ < sin(ar)’f, FEME—HI iy € (0, 1)F B RE f127E(0, ro) L4
BT, 7E[ro, 1) LBIALEF.
W kFE
E.(r) — %K, 1 E(r) — 2K, (r |
=1L e 1o 800 ] i
F&, h]24,5155.2(1)])°T%0:
£alr) > 05 ¢ < inf (21— a)fEu(r) ~ 12Kelr)]fr} =0,
Her, f,7(0,1) L8R Lt

fla(r) < 0 ¢ > sup {2(1 - a)[Ea(r) — r*Ky(r)]/r} = sin(ar).

0<r<l1
BSLEIRER(1)(2).
0 < ¢ < sin(an)if, FH2(1-a)[E(r)—12K(r)]/r—c(0,1)E](—c,sin(an)-
o) LRI LT, FREEM—H S € (0,1) R0, ) LHREf,(r) <0,
fE (ro, 1) LH flo(r) > 0. MER(3)MIL. IEE,

17
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EH2.7. 4ceRHc> 0, EXHEH
fia(r) = Ko(r) — 7/2 = c[(arthr) /r - 1],

WA: (1) B fie7E(0, 1) L& 58 B A2 B Sc < sin(an).
(2) BHf1afE(0, 1) L= AT 24 B Se > 3a(l - o)r/2; FFAlM, MER
Hr € (0,1), BALAEFR

T arthr T 3 arthr
3 +sm(a7r)< . 3 + 5(1(1 - a)w( — = 1). (2.9)

(3) Usin(ar) < ¢ < 3a(1—a)w/20, FEAEME—HKiry € (0, )EB R f127E (0, o] L
PR EF, T, 1) ERE TR,
iEf: kFB

- l) < K,(r) <

rr fi5(r)
1 - r?(arthr)/r

K fio(r)0RF 1 E2.4(5)FFTE X H(2.10)RF5|E2.4(5) 715

= 2(1 - a)fm(T) —C, (210)

flsr)>0 & ¢<2(1-a) Oirrle{fm(r)} = gin(ar),

flar)<0 & ¢>2(1-a) oiligl{fm(r)} = 3a(l — a)r/2.

B BN AR (1)F(2).

Ysin(ar) < ¢ < 3a(l — a)r/26F, 151 E24(5)WT & : RH2L - a)fio -
eM(0,1)F(sin(an) — ¢, 3a(l — a)7/2 — ) =R BT B B LA (2.10) AT A1,
FAEME—re € (0, )EBLE0, ro) LA fia(r) > 0, FE(ro, 1) L fi5(r) < 0. TRE
W)L, iEHE. '

EH2.8. 4ceRHe> 0, EXHH

f1a(r) = 2K,4(r) /7 — c(arthr)/r.

JUEP

(1) PR B f14 75O, l)iﬂzﬁﬁiﬁliﬂﬁﬂaf—'lc < 2sin(an)/7.

(2) B f1. (O, l)k?%%ﬁ?%i—ﬁﬂﬁéc > 3a(1 —a).

(3) M2sin(ar)/m < ¢ < 3a(l - o)ff, FEME—Hxn € O,)ERE
B fLafE (0, mo) L/ B EFt, 7E[ro, 1) EHIA T B,

W kFE

rr’f 14(7)

m}m = [4(1 = a)/7] fro(r) — c.

18
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i, 5EM2THRER R, AE%R1)-@3). iEE.
EH2.9. B

fis(r) = [Ka(r) — =/2)/[(arthr) /r — 1]

M(0,1)Fl(sin(ar), 3a(1 — a)n/2) LM R TR, Rk, NTEERr € (0,1),
BALAE A

- 1) <KJr)< =+ f;’-a(l - a)ﬂ(arzhr - 1). (2.11)

T . ) arthr
3 + sin(am . 5

i 4
hy(r) = Ka(r) — /2, ho(r) = (arthr)/r -1,

WA fis(r) = ha(r) /ho(r). FIFEERITAIRE:

Z(an l_a’n . - 22‘1’1;2"}’/2 2n+1 ____27‘7,211'

T2,
_ 0, _ (2n+1)(a,n)(1—a,n)
b (nl)? '
S
a1 _ (2n+3)(a+n)(l—a+n) . (n+1)[1 - 2a(1-a)] —a(l-a) <1
e (2n +1)(n +1)? (2n +1)(n + 1)?

e, i B AT M. #hs @8 REAEO0NEmREATRE. FH
A f15(0%) = mer/2 = 3a(1 — a)7/2, fs(17) =sin(ar), AHEX(2.11) 0 BR. EE.

2.2.2 & (r)M¥ER

EH2.10. 4ceR, EXLEEf(r) = E(r) - clogr’, M:

(1) BH A, ) LA LA ERA T AR AN Ze > (1 - o).

(2) B fATE0, 1) LR ETRARR LML AN ECLO.

(3) 340 < ¢ < (1 - a)’nit, FEAEME—RISn € (0,1), MBELS 70, n) k
TR IR TR, TE[ro, 1) EHA LR

iF#: (1) kBB

filr) = =201 - o= 4 2

(2.12)
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f1[38, % #2.7(5)] 5+
Qnm-&m}_ 2
= 2 =(1-a)’n,

filr)>0&¢>2(1-a) sup {r o~

0<r<1
WH, BB, #2128 fI7E(0,1) LSRR LA, hIEBER().
(2) H(2.12)7R

/ _ : ”
filr) <0 & c<21 a)ogrlil{r

Mo, s,

N

7E(0,1) ™ RIA T, MBLR(12).
(3) H0 < c < (1-a)’nif, HH

¢ —2(1 - a)r?[Ky(r) - Ea(r))/r?

(0, 1)E](c—(1—a)?nm, c) L i £, ti(2.12) X AT AP EME— I Ko € (0,1)
FEBLE, ro) LA f1(r) < 0,E(ro, 1) Lf{(r) > 0. iEH.

BlE2.11. (1) B¥Sfa(r) = r[Ka(r) — Ea(r))/r*A(0,1)EI(0, (1 — a)m/2) L4
BT,

(2) BEA(E) = [Kalr) £/ [7/2 - £ IO, DEI(L/(1 - ), 00) L .
LT

(3) BES(r) = raorsiayy A DEN(1 - )*n/[(1 - a)r —sin(ar)]
1/(1 - a)) LB LS.

rfa(r) = (/) (r), (213)

H,
f(r) = E(r) = r?Ka(r) + (1 - 20)r2E,(r) — [Ka(r) — Eu(r)).

HTf(0)=0, TH
2 f(r)/(2r) = -—{a[&,(r)—ralCa(r)]+(1—2a)r25a(r)—(1~a)(1~2a)r’2[lCa(r)—£,,(r)]} <0,

Bk, f7E(0,1) B BA TR B A M. Bk, NQ13)XBELKMLIRNE. &
R, £,(17) =0, HHopitaliENAIKA: fo(0%) = (1~ a)/2.
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(2) 201(r) = Ka(r)—Ea(r), ga(r) = 7/2-E4(r). WA f3(r) = 01(r)/92(r), 9:(0) =
g2(0) = 0, fﬁjﬁ.

g{(r) T2£a(7')

gy(r) — r2Ka(r) =~ Ea(r)]
AR (24,31 785.2(6)), g1(r)/gn(r)FE0, 1) LR i EF, S 3IE1A 70, 1) £
PR RE LT, BEfH(0Y) =1/(1-a), f5(17) =00

(3) %
g3(r) = 1?[Ka(r)—Ea(r)], ga(r) = r*{Eu(r)—sin(am)/[2(1-a)]}, g5(r) = Ka(r)—(2—a)&s(r),

96(r) = (1= a)Ko(r) — (2 - a)&,(r) +sin(am)/[2(1 — a)] = gs(r) +sin(a7)/[2(1 ~ a)].

N g5(0) = 94(0) = 0, &

_ () gi(r) _gs(r) _[grlr) , _ sinem) 17
WO =00 gl sl [gs,(r)*z(l—a)gs(r)} - e

FIF(1.16). (1.24)F1(L.25)RLHRTFAI R

n+(1- nlanzn
gs(r) = 2Z+ aa)(( ) Zanr

n+a-1 24
(1-a)(n+1)(a,n)(1 - a, _ 2
95(r) = Z n+a-1 (n!) _Zob n
n-() n=

AT EM = 1,2,--+, ap > 0 Abpfa, = 1 -a){1+[1-(1-0af)/[n+
(1-a)2)} ¥Fn™Hk e f TR, A&7 1) L™ REHE . d5EH
S ¥g,(r)/gs(r)EEQ0, 1) L= A& B T % . W gs(r)/gs(r)7E(0, 1) L =4 B3R £
Fr. f(2.14)3 0 # A HEV Hopitalik W o7 &0, B8, 7E(0,1) B BIH L. B
& f(07) = (1 - a)?n/[(1 — a)7 ~ sin(an)], fu(17) = 1/(1 - a). UEE.

EH2.12. 4ceR, He>0, WA: |

(1) EXELS5(r) = Ea(r)? — (1 +7'), W () BRBSTE(, 1) L4 iR L 7t
BRATMESEMN Y > (1 - o) Fhllh, MEEHr € (0,1), BALAFER

[1/4—2(1 - a)?® + (1 — @)*7%(1 + 1) < &u(r)? < {[sin(am)/(2 — 2a)?

—n2/4+ (1 - a)?nr + (1 - a)? 2 (1 +7') + 7% /4 - 2(1 — a)’7®.  (2.15)

(ii) 2340 < ¢ < (1—a)?n%6f, FEAEME—HIRr € (0,1), MEBRESs 7E(0, ro] L4
WO T, 7E[ro, 1) LBRA LA
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(2) BBSfs(r) = E,(r) — c(1+72) 7E(0, 1) L4 A F M B2 R b5 A X
e < (1-a)n/2, AR € REBRESAQ,1) LB LT Fhlih, Xt
E& M € (0,1),c = (1 - a)?n1/2, A= {r — (1 — a)? — [sin(an)]/(1 - a)}/2, FRAL
AR

72r g(l a)lr? — Ar < &,(r) < g - g(l —a)’r (2.16)
(3) EXEEfr(r) = Ealr) —c(1+7), WE: (1) BESHEQ, 1) LRAREL

P4 AN Ge > (1 - a)?r, THUH, fFRETOK. ¥, MHMEENr € (0,1),
e=n(1—a)!, A =55 + (1 - f'n - 5, A%

% —m(1-a)*(A-7) < &(r) < z —m(1—a)*(L— 1) + Ar. (2.17)

T
2
(ii) 340 < ¢ < (1—a)?nbf, FELEME—HIro € (0,1)EBBAESFE(0, ro) LRI T
g%’ E[rﬂa l)tﬁ‘ﬁtﬂo

iEM: (1) () kIFHE

i) =ta- Ve =80, &

Tle-a(1- oK) = &lr) g o] (2.18)

r2

i3 FE2.11(1) FEKE, (r) BRI &: h(r) = 7/ [Ko(r)-Ea(r))Ea(r) /r* #£(0,1) L
PR TR, 3, h(0T) = (1-a)r?/4,h(17) = 0. Bk, H(218)HXE

fi(r)>0&c>4(1-a) supl{h,(r)} = (1 - a)’r?,

mH, WHEAEQDLE™HBEA LA, BAR, Hc = (1- o2, £(0) =
(1%/4) — 2¢,f5(1) = [sin(am)/(2 — 20)]? — c. HHSLENFR(1).

(ii) 40 < ¢ < (1- a)?n®f, HA(r) KR IEHER H1c — 4(1 - a)h(r) (0, 1)E(c-
(1 — a)?n?, )J:inrﬁﬁﬁj:ﬂ' BT LA 2 7E ME— B g € (0,1) R TE(0,ro) £
 f3(r) < 0, % (ro, ) LH f5(r) > 0.

(2) k=8

fir) = =2r{(1 = 0)[Ka(r) = &u(r)]/r? = c}. (2.19)
H1[24,5125.2(3))%1(2.19) 7] 13

) <0 e < (1-a) inf {IKa(r) ~ E)/r%) = (L= )'n/2
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3 ARF e € RIEBEQ, 1) EEHf(r) > 0. He < (1-a)n/28, B1(2.19)5
5. fi7E(0,1) EERBET I, #fTE(0, 1) LR R LA, AFEKX(2.16)BRM
L.

3) (i) k2%
fr) = (r/r'){c - 201 — a)r'[Ka(r) = Ea(r)}/r?}. (2.20)
H1I5]#2.11(1)F(2.20)F1F: XV re (0,1),

fi(r)>0 & ¢>2(1-a) sup {f’[ICa(r) - &)/ =01~ a)’m,

0<r<1
3 H, Ye> (1-a)rht, ELTHERAL, KA THK. AEX(217)H
(ii) 240 < ¢ < (1—a)?rBt, HEIE2.11(1)AHc—2(1-a)r'[Ko(r) —&(r)]/r* M
(0,1)Bl(c — (1 — a)?m,c) LM A EF. Fibldi(2.20)X7T50: FFAEME—Mn €
(0,1), HEBTE0, ro) L f3(r) <0, E(ro, 1) L fo(r) > 0. AR (i0) AL S
EF2.13. (1) B Se(r) = r2n/2 - Ei(r)])/r* A0, 1) B0, (1 - a)?m/2) L4
FiETRERM EMAK. M, MHEERre (0,1), BALAFER

 (1-a)r r?
—_—— 2.21
balr) < 3 2 1+t (221)

(2) BB fo(r) = [Ealr) — (n/2)]/ log ' (0, 1) 2U(0, (1 - a) 27) AR AT R
HEXEERr € (0,1), MALAER

E,(r) > 7/2+ (1 —a)’rlogr’. (2.22)

iFH: (1) B, f5(07) = (1-a)%1/2, fo(17) = 0. FIF(1.16). (1.24)%1(1.25)%
KRTTAIB:

_(1—a)r (1 L [1+1 a)? +2n] (a,n)(1 — a,n) ,,
i) =" Z @in-1)  [@+DP

HEULER L (1).
(2) #fo(r) = g(r)/h(r), HF,

g(r) = &E(r) — 7/2, h(r) = log(r').

nKa(r) - ga(r).
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i1[38, 7 F82.7(5) | F B iR ¢k Hopital?k NI FT ANR 8L fo 7E(0, 1) L™ 4 BIA TR, HA
BB fo(0%) = (1 — o)1 RIfy(17) = 0. A%ER(2.22) BAR. IEH.
EH2.14. 4ceR, EXEE

) = TLAEC)

UE=P

(1) B fofE(0, 1) LM il EA L HN Se < 2, B € RERR
B f107E(0, 1) LA T .

(2) % > 28f, HFIEME—I) fMrg € (0,1)1E 7 B 8 f107E(0, ro) LIS LA T
B&, fE[ro,1) L™ EF.

(3) e < 18, BHfpRMTAK, EXEEHNr € (0,1)Kka = 7/2 -
[sin(am)]/[2(1 - a)]s BLALAER

E(r) > 1_2r —ar?. (2.23)

() BHS () = [(7/2) = L))/ A0, 1)B)((1 - a)?n/2,0) LR HF EFHH
RETFAl. $5l, SHEEMr € (0,1), BAIAFK

gu —(1-a)? - [a- 2(1 — )t < £,(r) < %[1 “(1-a)¥?.  (224)
EH: (1) kFHE

oy 2= &lr) [ Kal) =&l
fl()(r) - TC'H [2(1 )(7(/2) _ ga(T') ] . (225)

WIESIE2.11(2)(2.25)5 T 4n: XMEERIr € (0, 1),

folr) > 0 c<2(1-a) inf, {%} %

K.(r) - &
flolr) <0&c>2(1- a)0s<1:;<)1 {(—77/(;;_——6%3} = 00.
HILERLE Q).
(2) He > 28, H51E2.11(2)7 &R

Ka(r) - &a(r) .

(1/2) = &a(r)

M0, 1)E)(2—c, 00) LR HIE LT, BAFEME—Iro € (0, 1) 1575 5K L f107E (0, ro) £
TR IR TR, 7E[r, 1) L& HRE Tt

2(1-a)
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(3) BN E S - [(n/2) — E(r)]/rTFE(0, 1) ERIE M B8 BH L F+ Z E X
Be < 1 T 2e < 1, BHr - 2(1-a)[Ka(r) - &a(r)}/[(7/2) — £a(r)] - ££(0, 1) £
RIFME KA EF. Bk, B4R T4 He < 1K, fl () ARMER SR
A EFRBHRR, HEEfRAT AN FEFX(2.23)FER,

(4) MR HETTH

7r 1-a)(l-a+n)(a,n)(1—-a,n) 5,
S SLEL L O TETY
B AR A, B, (1) = o f0Y) = (1 - a)r/2. T
X (2.24) ERAOL. .
EH2.15. 4B =2(1-a)r/[(1 - a)7 —sin(ar)], B = [sin(an)]/[2(1 - a)], &
&L
£0)-8

T-IC

fulr) =

W

(1) ¥ f 7E(0, 1) £ il EFA B EN Se > 2.

(2) ¥ fE(0, ) LR THE L BN S < B.

(3) 4B < ¢ < 20, FEEM—K Hry € (0, 1) futE(0,ro] L™ 4 B L
T, 7E[ro, 1) LR HIAT B

(4) 340 < c < BH, E¥fi b, BEXHMEEMNr € (0,1), BRAIREX

&(r) > B+ /2 - )1 - r)r". (2.26) 1
(5) B¥
Ti(r) = 8“(72,_ s
M(0,1)1(0, (r/2) ~ B) L™t BIR T B, TIERE
1) = 022

M(0,1)E]((r/2) - B,00) LM L. $55ith, WHEEMr € (0,1), BALAF
G
(/2 = B)r? < Eu(r)~ B < (n/2 - B)'. (2.27)
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B A EEgRTIE2113)F K fo(r). KTFH

$a) = ot {2la - pr 2B e - 1)

B0 e, )

rlet? r2[&a(r) - 6]
=2l =Bl a1 - a0 (228)

FRAE: Mvre(0,1),

fia(r) > 0 c2 2(1~a) sup {g(r)} =2,
0<r<1

fu(r) <0 c<2(1-a) inf {g(r)}=B.

FEULBI B LR (1)M(2).

¥B < c< 28, H5IE2.11(3)A4NEEr — 2(a—1)g(r)+cM(0,1)E(c—2,c—
B) L Es AT M. # e (2.28) 2 AT MAFAE M — 0 dirg € (0, 1)BEATE(0, 7o) |
H fiy(r) > 02E(ro, ) LA £1,(r) < 0. TREL ()KL

HA

1) =022 o1 - ) - o,

()34 MBI B211(3) T8/ BE(E(r) - B/ret? > 0EFE(0,1) L™ 4% B 1
EF B EAN S > 0; BH2(1 - a)g(r) — ¢ > 0HTE(0,1) L™ & HiH EF = HAX
Mo < B. il, %0<c< BW, E¥—fi()h=AERBEQ,1) L HEHE L
FHEBTM . HERE ML HMOYE, A% (2.26)BREAL

85, HiEB > L#tgR()RMQ)BETATLAREE. TATLARSEK
AERQ2MEERM. .

2.2.3 WK, (r)RE,(r)E XM — LR B

FEHE 2. 1625124, 51 E5.4(5) | A RRIEE .
EF2.16. ®ce RHe>0. 7£(0,1) k& Xik%K

A(r) = [Ea(r) = 2 Ka(n)]/(1 = %), folr) = [Ka(r) = &a(r)]/ (1 = 7).

N

(1) Yc > 2R, WEAFEO,1) L HEIE EH; H2(1-a+a?) <c< 20,
TEME—Hry € (0,1), HHRRHATEQ, ro) EEEBE LT, &, 1) L™RBAT
B,
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(2) % > 2(1-a)?FHe < OFF, BELAE(0, 1) L3I LT H2(1-a+4%) <
c < 2B, FEEEME—Hire € (0, ){EBRH Sy (0, ro) LAEE TR, 7E[r, 1) L™
&R BT

iE#: (1) 4

o(r) = &a(r) = 17Kalr), h(r) = 11",

T4 g(0) = h(0) =0, B fi(r) = g(r)/h(r). XF7ITR

%,% = 2k, ().
47 (24,51 F5 4(1)) A0 5 FE2.4(1) A0 £ ¥ ¥V Hopitalik BT 40 B > 28, BRi¥f,
720, 1) LR B EFts e < 2(1 — o+ )R, fi7E(0,1) LR BT R
“9(1—a+a?) < c< 28, FEFEME—IsEr, € (0, 1)fEBREBATE(D, ro) L 4G 1A
EF, B, 1) LEBRETRE.

2) 4
g(r) = Ku(r) = &u(r), h(r)=1-7r".

M g(0) = h(0) = 0K fo(r) = g(r)/h(r). KZF 7

o))
H1[24,51 #5.4(2)], 5132.4(2) & A ¥k Hopitali: M AT 40: Ze > 2(1 — a)?Ble <
off, BELHLEODLE™HREEEF: 20 < c < 21 — o), HFHEME—
firo € (0, 1) B ERE fL7E(0, ro) LPAEBIR TR, 7E(ro, 1) L™ B LT

Yo = 1/28, FHEKEHE217. 2.18, 219, EE2.21, 2.22. 2.23(He=1#}).
2.24. 2.25(1)(2)7 FEAL K [29, B HE3-8, B H 14-15]; AEI(2.30)BAFR(1.37)H
7RI IR RS

EH2.17. BH
1 41-a)r'{[1+(a— )Z]IC() £a(r)}

(1+r)? sin(an) rt

MO0, EI(L — 0=aln 4y Fgerni BF BRI T M.

sm(a‘lr) ’

falr) =
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TH: BRE, fi(07)=1-20a7 £0-)=1 X&R

sin(a)

- 2 _ 4_ (9.2 _ 2
2 4(1 a)[(2a 5a + 3)r* ~ (2a* - 6a + 7)r +4IC,,(T)

fir) =5 {(1+r) * Sa(en) 6
4 (20— 204 3)° Ea(r)]}

6
= g[gl(r) + ha(r), (2.29)
o (1-0P(a+1)(2-a)
2 ad(1—-apla+1)(2-a)r ,
9r) = Ty - 6sin(ar) ™
-a a® - ba 4 _ (20% - 6a + T)r?
h(r) = 485111(“)) { (2a® — 5a + 3)r r(62 6a+ 7)r* + 4 K.(r)
4 - (20% — 20 + 3)r? ad(1-a)(e+1)2-a)r ,
B 76 &alr) + 24 sin(ar) r }

AR : F 8 M(0,1)8(1/4,2 — [63(1 - a)*(a + 1)(2 — a)7]/[6sin(ar)]) L4
BiE L. FASERITTAR ‘

h(r) = _a2(1 —a)’[1+2a(1 - a)]7 N (1-a)r .

6 sin(an) sin(ar)
i 2a(n+1)+4a(@®-a-1)(a+n)1-a+n)(a,n)(l-a, n)rzn
(n+3)(n+2) n+1 (n!)? '

n=2
WEM, B Eh R (0, ) EI({—a?(1 — a)?[1 + 2a(1 — a)}r}/[6sin(ar)], 00) b = 4% H
AR, Filt, B(220)RTBf() > 0870, 1) LR B LA, #EiR
AIERAL. TEEE
EH2.18. b= 7/[2sin(ar)] — log2, NEH

fa(r) = [K4(r)/ sin(am) — b—log(L+1/7)}/(1 = 1)

M(0,1)E(a(1 — a)n/sin(ar) — 1/2, R(a)/2 — b) LR AT B Hhlith, MER
#ir € (0,1), BALAFER

(S -o-noono o

< [ (%“—) - ) (1—r') +b+log (1 + }ﬂ sin(a). (2.30)
e 4

ga(r) = K.(r)/sin(am) — b—log(1 +1/7), hy(r)=1—7
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_21-9)&(r) - rK(r) 1 _
9(r) = sin(a7) 2 i+ ha(r) =T

Wgy(1) = ha(1) =0, g3(0*) = h3(0) = 0. FHA

_g2(r) g5(r) _ ga(r) ‘
fa(r) = b)) Bor)  ha(r) (2.31)

g(r) _ 1 4(1-a)r{ll+(a - Dr?IKi(r) - &(r)} — 5,
By(r) (1+7r)?* sin(am) 4 3\

Heb, fy(r)HEELTHRE N . BE 2177 Klgy(r)/hy(r) TE(0,1) L/ RIFT

M. p(2.31)30 8 9 I Hopitalik I B 15 R 40 f, MOBAIAYE, BARMMA(0Y) =

R(a)/2 — b, f4(17) = a(1 — a)7/sin(ar) — 1/2. FEK(2.30) BARMIL. L.
EH2.19. BH ,

Lt @=DrK() - &) [ 201-0) Ea(r)—r'lea(r)]_l

4 sin(a) T2

fs(r) =

M(0,1)Z(a?(1 - a)nsin(ar)]/{4[sin(ar) — a(1 — a)7]}, [sin(an)]/[2(1 — a))) L=
HI[ L

PEHE: fh[24,3185.2(1)]), EEr o [Eu(r)—r2Ka(r)]/r A, 1)§J( ar, ;‘g‘“j})t
IR LT BTUA, BREfR A0, 1) L. 4

o [1+ (a - D)r¥Ka(r) -

2(1 - a) &a(r) — r%Ka(r)

sin(an) 12

o) = &) pry=1-

KEHFA(1.16). (1.24)F(1.25) KK RIFFI 13-
gr) = a1 - a)r?Ea(r) = r?Ko(r)] — @ - )1+ (@ = VrP)Ka(r) = E(r)]}/r°

T =, anfa(l — a) — n(a,n)(1 — a, n)rz"
; (n+ 1)(n +2)(n!)?

T

ma 2n

, _ 4l-a)[14(a— DrAKo(r) — E4(r)
ha(r) = - sin(ar) 73

2a1 a) Zb ,2n
sin(a

e
_nn—a(l- a)](a,n)(1 - a,n) - n(a,n)(1 - a,n)

b T A+ 2@ " (n+ D)2
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EAMFERn =1,2,--, an/by = [2+a(1 - a)]/(n+2) ~sin(ar)/[2(1 — a)K T n
FERR TR, 1B ER2AT 4Ng)(r) /by (r)EEQO, 1) E PR B BT, B Rg(17) =
hs(17) = 0 Hhj(r) # 0, i MR HopitaliE MBS £ M SR, B8, f5(0%) =
a*(1 - a)nfsin(ar)]/{4[sin(a7) — a(l — a)n]}. FAVHopitalEM T RB: f5(17) =
[sin(a7)]/[2(1 - a)]. IEHE.
EH2.20. 4b=n/sin(ar), c = exp(R(a)/2), MEKH

)= {rep (S0) o[- 20 A =060

(0, 1)2(c/2 [exp(b/2) - /1 - a1 — a))) LFERE R T R
iEH: 4 |

t1(r) = ' exp[Ka(r)/ sin(ar)] — ¢, ta(r) = 1-[2(1~a)/sin(an)][E.(r)— 2 Kq(r))/r2.

Hi[24,5 [ 285.2(1) F1 2 25.5(1)) AT 40 B %t (0, 1)21(0, exp(b/2) — C) L™ B
TBE, t,M(0,1)FI(0,1 - a(l - a)b) LB TR, FElE%fs X0, 1)L,
fo(r) = ta(r) /t2(r), Bts(17) = 1(17) = 0. RFAR

-5 [1- L= 90 Sucul -l

sin(ar) sin(ar) )’

41~ ) [L+ (o~ DIKr) = £alr)

talr) == sin(a) 3
TS
ti(r) _ sin(am) o K.(r) _2(1 - a) &alr) — 7%Ka(r)
B 41-a) © (sin(mr)) [1 sin(ar) r2 }
{ nll+ (@ = DriKa(r) —fa(r)}_1
_ sin(am) ti(r )+c

(2.32)

C4l-a) fi(r)
Hoh i e 2,195 N 18 H2.1971(2.32) W 78 Mﬁt'( )/th(r) 7E(0,1) &
EREETE, TE, RIERENEIHopitalik N, REf7EO,1)L™BAET
B, HH, f£5(01) = [exp(b/2) - d/[1 - a(l - a)b], fs(17) = c/2. iEHE.

EEHS : (a,0) - RFR(L) f € C((a,)), (2) MHEMz € (a,b)Fk =
0,1,---, Bf®(z) > 0 WL, WFREESfRHAX BN,
EH2.21. B

(2-[2-a(l - a))r?}&u(r) — 2~ (1 - a)(2 — a)r?)rK,(r)

fa(r) =
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AL T RFI #4083

(0, 1)F(a*(1 - a?)
ﬁEHB: _\Eﬁ’ f7

2 — a)/12,asin(ar)/2) LR PR AR B
1-) = asin(ar)/2. FIF(1.16). (1.24)F(1.25)HERITAF

—~

ala+1)(2-a)n(a,n)(1 - aq, n),r2(n—-1)
(n+1)(n+2) (n!)?
ala+1)(2-a)(a+n)(1-a+n)(an)(l- a,n)r2ﬂ
(n+1)(n+2)(n+3) (n!)?

flr) =

IS

I
NN
F M ile

a DEZ-a)T e~
_ o )2( )chr

n=0

K,
_ (an+1)(1-a,n+1)

c'f T+ D+ 2)(n+3)n)?
FRAEF0Y) = a(1 - 0?)(2 - o)/12, AXHEEMr € (O, )k =0,1,---, F
®(r) > 0L, EE.
EH2.22. BH

folr) = r{[L+ (a = DriJKa(r) - £a(r)}
{2-[2-a(l-a)r2},(r) - [2— (1 - a)(2 — a)r¥r?Ka(r)

(0, 1)E)(3/[(1 + a)(2 — a)], 00) L=H& B Lo
M. Bk, BRESRIL) =00 2

95(r) = {[1+ (a — DrJia(r) — Ea(r)}/r,
hs(r) = {2-[2—a(l —a)}r?}(r) - 2—- (1 —0a)(2 - a)r?|r% K, (r).
lEs)

fa(r) = %% (2.33)

HEBRIFAB: _
g5(r) = % Y anr®t, (2.34)

n=0

T f-(r) A HERIFR(2.32). BE&E,

. = (a,n+1)(1-a,n+1)
" (n+D)(n+2)(n)?

BAAXMFAERR = 1,2,---,an/cn = (n+ )T HE LA, H(2.33)5 M5 #2n]
5 £, 760, 1) £ iR £ A, BA f(01) = 3/[(1+a)(2 - a)). IEH.
EH2.23. 4ceR, EXEH

Fo(r) = {14 (a — V)r?)Ku(r) - Ealr)}/r*.
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WL L ER A R 3L

WA -

(1) RBRLE(0,1) Lk 538 L7 25 AU e < 0, B (0, ) FI(EET o) b
TR BT AR T .

(2) BRHFAE(0,1) L& S F R 2 AN Ze > 2(a + 1)(2 - a)/3.

(3) 30 < ¢ < 2(a+1)(2~a)/38f, FFEME—Hro € (0, 1)EBRBFA, 7o) L
FERE IR ETE, (o, 1) LB TR, H42e+1)(2-0a)/3<c <2, K&
HFRr M. Rk, BB A, 1)F(0, SU-n) kg i T R H L
LT 08

i HiE, HRM)TRRTRMER. HK, kT45:

r3r2=<F!(r) B
14 (@-1)rKu(r) - Elr)
_ 2{2 —[2-a(1 - a))r’}u(r) - 2= (1 = 0)(2 — )r®[r®Ka(r)
rz{[l +(a~- I)TQ]K,,(T) - Ea(r)}

=2[fs()] ™ -c (2.35)

Hob fo e 2,220 & o BEH2.2250: [f3(r)]7*A(0,1) E(0,(1+a)(2—-0a)/3) L
BT R, B, XHEERr € (0,1),

c

Fir)>0 & c< 205121[1‘8(1')]-1 =0,
Fl(r)<0 & c¢>2 sup [fs(r)]" =2(1+a)(2—a)/3.
0<r<1

LB A 46 (1)F(2).

20 < ¢ < 2(1+a)(2—a)/30F, HEE2.220: EE[fs(r)] " ~c M(0,1)E(—c,2(1+

a)(2—a)/3—c) LB TR, BEilt, FFEMRE—Kr € 0,1)ERREFAQ,r] L
FERG IR LT, 7E[r, 1) LA i T R :
Sy

—F'(r) = pr'c 2 [1 + (a’ _ 1)T2]K:a(r) - 8a(r) o 2
F(r)=r " { fs(r)} .

ML) T4, REre {1+ (a - VriKa(r) - &(r)}/r* > OBLR 4% Bif LT
H%4 B AN Ye < 2; B¥lc—2/fs > 0 BB EA B BN Ece > 2(1+0)(2-a)/3.
BB, %2(a+1)(2—0a)/3 < c< 20, EE-FA=ATEH ™8 LT R
FBl, WERBFLEALMK. HQ234)TB: F0)=d(1-a)r/4, K1) =0. iF
B,

EF2.24. BH

_ (- ar?)E.(r) — r’KL(r)
AT DRG]
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WHLER N0

M(0,1)F1(0,a(2 - a)/2) LR ERE EFH; BE
f= f9(7”)/’"2

M(0,1)E)(a(2 — a)/2, 00) LHE AT .
EH: BR, fo(0F) = 0.2 fo(r') = gs(r)/he(r), e

96(r) = (1= ar?)E(r) — 2o (r), he(r) = r2[Ka(r) ~ Ea(r)].
FIF(1.16) (1.24)FI(L.25) K BRI eI 8

a(2 - a1 o
ar(r) = D2 g on,

n=0

he(r) = g—rz Z bar®.

n=0

He,
an = n(a,n)(1-a,n)/[(n+1)(n+a—1)(n))%, b, = n(a,n)(1-a,n)/[(n+a—1)(n!)’]

WaxtFHE N =1,2,---, Hb, >0, Ban/b, = 1/(n + D)X Fn™HHE TR,
B EonHE fo(r)7E(0, 1) LR AR LT, BE, £(17) =a(2-a)/2.
FIA MRS

ut) =2 = az-0) Y- e / (1 S d)

n=0

'ﬁq:’

(1-a+n)(en)(l-an) = _ [n+ (1 - a)?(a,n)(1 —a,n)
(h+D(n+2)@)2 " (n+ 1)(a+n-1)(n!)?

EA B =1,2,---, Hdy > 0, &r2hg(r) > 0, ¥ fro(r')7E(0,1) LF=H
WL, HTAERE Lol A, BH R0 = 0o, fu(l) = fo(l) = i
(2 - a)/2. iEE.

EH2.25. XceR, EXEHG.(r) = r[K,(r) - &(r)l/r?. WF:

(1) B¥GAE(0,1) L™ EF EA K AN Ec <0.

(2) BEGAE0,1) LR ETRL NS > a2 - o).

(3) 0 < ¢ < a(2 - o), FEME—HIr € (0,1), FEBREG AL, ro] L™ H
$EEF, o, 1) LR EETHE. Ha(2-a) < c <28, RHG LR LK.
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WHLIE T RE LR

W kSR
s T (r) = Ea(P)] |, (1= ar?)Ea(r) = r?Kal(r) .
Gifr) = ; TR ) - &)
- T’c—z[Ka(:) — gﬂ(r)] [ng(r') - C], (236)

K, BEfHhEE224PHE L. H(236)R . & H224K & Hre-?Ka(r) -
E,(r)]/r > OFTAI:

G(r)>0 & ¢< 20i13£1{fg(7'1)} =0,
Gir)<0 & c>2 sup {fo(r')} =a(2—a).
1

0<r<
HkBIR 4R (1)5(2).

%0 < ¢ < o2 - a)F, HTFRE2fH0) - cM0,1)Fl(—c,a(2 — a) — ) £/
BAYRAT M, FTUUEEME— i, € (0,1), B0, r) LHGL(r) > 0, (r, 1) £
£G.(r) <0.

eS|

~ur) = K 2B g,
H(1). (2)BATE: EBHr2Ka(r) — Ei(r)]/r? > 0BTE(0, 1) ER- ™ R EF
(124 BAY Ye < 2; B¥lc - 2f5(r') > 0B BN ZHe > 2OS<1:I<)1{f9(TI)} =a(2-a), H
0, 1) ER™HRBE L. i, %a@-a) <c <28, -G AZMENA
76(0,1) L/ i E AR SRR, BERHG 2 L. EE,
EH2.26. EH

_ aKa(r) = [&lr) - 2 Ka(r))/r?
fll(r) = ga(T) _ T'ZICQ(T)

M(0,1)E(a(1 — a) /2, 00) L& LT BE
fua(r) = 1" fu(r)
M(0,1)3(0,a(1 — a)/2) k7= B T R
FH: B, fu(l7) = 0o. Rg(r) = aka(r) — [Ea(r) — 72Ka(r)]/r? Bha(r) =
Ea(r) - rQICa(r), Dlljfu(r) = 97(T)/h7(7”)- FIA R R TI15:
am = n(a,n)(1-a,n) ,,

g7(7‘) = 2 Z (n+1)(n!)2 T

n=1

aT yv= (a+n)(1 —a+n)(a,n)(1-a,n) o,
77 ) (n+ D)(n +2)(n!)2 r

n=(

ar o0

2 2n

= —r E AnT",
2

n=(0

34



WHTLHE TR

&
ha(r) = %rzzbnrz",
ﬁ*’
"= (a+n)(1-a+n)(e,n)(l—a,n) b= (a,n)(1 - a, n).
" (n+1)(n+2)(n!)? R (n+1)(n!)?

BAAMFERR =1,2,---, by, > 0, Hap/b, = (e +n)(1 —a+n)/(n+2) X
T LA, fi5IE2M: RE L EO0, ) EPERE R, BE M0 =
a(l-a)/2.

AR UL ERBRTFAI B fra(r) = gs(r)/ha(r), 35

- el . o and-an) .,
T2 (n+ 1)(n!)? 2 £ (n+1)(nl)?

n=1 =0
am 5x (@ — a2 —n)(a,n)(1 —a,n) ,,
—r

2 &~ (n+l)n+ 2)(n!)?
= 92 Z e,
n=0

HF, ¢, = (a—a®—n)(a,n)(1 - a,n)/[(n+1)(n+2)(n!)%, &An > 18, ¢, < 0.
BT bLgs P R T M. ER R A B, MR f7E(0, 1) L T E. A
HIIR f12(01) = a(1 — )/2, fi2(1) = 0. iEHE.

EF2.27. SeeR. EXEBH(r) = r°[€u(r) — r2K,(r)]/r2. WIF:

(1) BEHAE@,1) g AH EAZHN S <.

(2) BEHF0,1) L& RE TS HZHe > o(1 - a).

(3) 30 < ¢ < a(1 - o), FFEME—HIr € (0,1), EBREHAE(, ro] L™
WAL, fE[r, 1) LR AR TR, HHe(l—a) <c <28, E¥H REL
ko

Ed: KFAR/

H(r) = r {—c[s.,(r) — 12Ky ()] + 2 |aKy(r) - M] }

'I"2
— rlc—Z Ea('r‘) "' rﬂ’Ca(r)

= ofia(r) - o}

e &a(r) —r:’zlca(r) {C _ 2f12("")}, (2,37)

T
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WHLE T REW 2083

Heh, ¥ fLhEE2.260E L. H(2.3NRE

Hi(r)>0 & c< 202121{)‘12(1")} =0,

H(r)<0 & c> 2osupl{f12(r)} =a(l - a).

RSB 418 (1) (2).

B0 < c<a(l-a)i, HEHE22607KEH2f12 — c M(0,1)E)(—c,a(l-a) -
oL ERBATR. FHit, FEME—r € (0,1), FHBEWO,n)LFEH >0,
(o, 1) LH! < 0.

X B K R E,(r) — 72K, (r)])/r? #E(0,1) LR IEM B4 A LA BAX
%<2 B¥c—2f1, #£(0,1) LRIEFHZ AN Zc > ZOSUPI{flz(T)} =a(l-a),

<r<

B, Ma(l-a)<c< 20, BEHBETFE. EL.

2.3 T XHEBSKBT 2 Bt R

AFHATT XHRABMEBTSH o B— 2SR, HRBTT XHE
Ba 5 e aWRARSH—EKER.

5|#2.28. #tn e NU{0},ce R,z € (0,1/2],

(1) % fu(z) = [z, n4+1) (12, n41)]/z¢, WF—YIn € NU{0}, B . 7E(0,1/2) £
PR LA M AN HFc < 0, RESf, 7£(0,1/2) LB EETRIHENZc > 1.

(2) E¥ga(2) = —2(-2,n+ 1)(z,n + 1)/(1 — 2)&(0,1/2) L= B LTS
BiX#Hc> -2

(3) & X EHhn(z) = —(~2,n+1)(z, n+1)/z¢, WX—In € N, RHh,7E(0,1/2)
PR AIA TR Y AN Se > 2, h,7E(0,1/2) LB EA L HN e < 1.

W ()BT

fule) = T(n+ 2+ )0 +2 - 2)/[F@T(1 - 2)a),

WA

n-1

Yn+z) =) +) EIL—I (2.38)

k=0
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WHLE L RFR AR

XK FH:

zfa(z)
fu(2)

=zlp(n+z+1)-9Yn+2—-z)-9P(z)+yp(1l—-z)]-c

1 - 1
=1l-c— y) —
1-e z<n+1—z+ z;kz—:ﬁ)

R, F,N0,1/2)8)(=c, 1 - o LB T . EHEBEERQ).
(2) BF

gn(z) = 2°T(n+1~2)[(n+ 1+ 2)/[T(z)C(1 - z)(1 - 2)9],
K3 HFH(2.38)

(1_*22&"2=Gn(z)Ec-2+§+(1-x){w(n+1+x)—¢(x)+w(1—x)]

gn(z)
2 1 & =z
_C—2+;+(1—I) (;—Qkilm).

HEH, G0, 1/282+ c+ 315, 00) LR EE T M. BT, ¥—lneN
Kz €(0,1/2)#EG.(z) > 05 EMN e > -2.
(3) B, ha(z) T B

ho(z) = T(n+1 - z)[(n+ 1 +2)/[[(z)T(1 — z)z°7Y]
(1= PP - ) - )2 > 0

HHCR TR

zhy(z) _
hn ()

Hyz)=z[p(n+1+z)—dp(n+1-2)—¢(z)+¢(1-2)+1-c
n z2
=2—-c—-2) ——.

Ho(0,1/2)3I[1 - c+ 515, 2 — o) LB T I8, iUt BIAIB4538(3). EH.
EH2.29. HEEMr € (0,1),ce R, RO <a<b<1/2 HENXSf(a) =
Ka(r)/a, 9(a) = (1 - a)Eul(r)/a%, h(a) = £a(r)/(1 - a)f. U
(1) Fc <0, WfR) ~ fF@QRTFrRRGABIMEIEN: Fe>1, M) -
HOESRaliE 3 E ¢ P iliiB

(2) H-2<c<0, Wg(d) - gla) RFr2 MR RBELIEMN.
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WL TRFR AR

(3) Fec > 2, Mh(b)—h(a) K FrrMR I RFEMR SN FHe < LUAD)—h(a)k
TrRRHRYI RN,

B (1) MASEBRETTE:
T = [(b,n)(1=b,n) (a,n)(1—a,n)] r*
72| ] I

be a* nl)?’

f(0) ~ f(a) =

n=0

R E2.28(1)/ERER(L).

(2) FRAZHRETE:

Te=[(1=0)(b-1,n)(1-bmn) (1-a)(a—1,n)1—a,n)] r*
st)-o) =52 | L - L | &
E I K 51 2. 28(2) E R 418 (2).

(3) FALHRFAE:
Te=[(b-1n)1-bn) (a-1,n)1-a,n)] r**
0w = 53 [t - el o

mk R 5| 32.28 3)EHL1R(2). .
EH2.30. 4ceR, EXEH

F(a) = M

. ac
Wi < 16, MEFEQ,1/2 LA He> 28, REFEQ,1/2L"
WA TR

T kSH

dF(a) _, Kalr)

dr a1’
B E H2.29(1)8: Hbfe < 1, BEK(r)/a! XK Ta™HREFLEH: He >
28, a - al"Ky(r) (0, 1/2) LB HTE. U, H0<a<b< 1/2

He<1,
[ { 00, [
<[ %

/ Fuygwxﬂdt

E(t) — 12K, (1) Es(t) — 12KCh(t)
< ;
a¢ be

Kall)
ac




AL TR # R #AR3

F0<a<b<1/2Hc>2, W
/’ d [E,,(t) - t’ZIC,,(t)] e / o Ef@dt
0 ac—l

dt at 0
TOK(t) [ d [&() — t°K(2)
[0 [ 4800,
TRE
E(t) — 12K ,(t) S E(t) — t2K(t)
ac be '
‘LIEE?O

EF2.31. 4ceR, EXRH

(1-a)
WH—2 < ¢ < OFF, B&EGM(0,1/2)F1(0,2¢(K(r) — E(r))) L & B EF
e > o, EEHM(O,1/2)B[2°[K(r) — £(r)], 00) LG IR TR He < 28,
R HH (0, 1/2)8)(nr?/2, 2°[K(r) — £(r)]) L4 B 3H LT

EH: kFH
dG(a) 2_1:_(1 —-a)é,(r) dH(a) _ i Ea(r)
a2 ac Codr T2 (1-a)et

HEEE2.29(2). (3)A%3, H0<a<b<1/20, H-2<c<0, WF
i [Ka(t) ; ga“(t)] = [ 200y,
0 a 0

dt 12 ac
Tt (=D&, [T d [K(t) - &)
</0 2;,3—3;—”—&_/0 E[—bc———} dt.
A,
Ka(t) = &alt)  Ki(t) = &(t)
ac be !
Fc>2, WE
A [Kat) - EB)] . [t &)
[ &= [ 2o
T L&) [ d[K) - &)
>/025’5(1—a)°dt_/o a-t[ (1-b)e ]dt’
TR

Kalt) = £a(t) _ Kalt) = &)
(1~a) (1-b)e
#e <2, MBEWEHKRENE. BRRATLUN241ERT.I)RE. L.




WHLE TR EB 2R3

BEE RBIme (r) e (r) B8R BRI N H

A E ¥ B L Grotzsch FEE po(r) A~ X Hitbner b FEH ma(r) K
— AR, RBRY pa(r) 5 ma(r) H—ERHEAER, HFHENHR
X Ramanujan # 7R ANMET L.

3.1 FEZHR

THENERS, Ha=1/20, TE3LEKA(37,5]E7),
EW3.1. B | 2
logr
7(r) = 1elr) + g o

M(0,1)21(0, R(a)/2) L™ i TR B2 17 EMB. FFE, MEEMr € (0,1), K
MAER

log(rll/r) +(1—T2)R(a) < 7:,1202(2{;3 + (l—g)R(a) < 1alr)
72log(1/r) R(a) log(l/r) R(a)
4r2K,(r)? Ty < Ta T (3.1)

ERE3.2. EH
fo(r) = {R(a) /2 — [pa(r) + logr]}/[Ka(r) — 7/2)]

A0, 1)E(0, (1-2a+2a2)/[a(1 - a)7]) L =R T . FFH, MEERr € (0,1),
BRLAER

R(a)/2 — (1 = 20+ 2a)[K,(r) — m/2)/[a(1 — a)n] < pa(r) + logr < R(a)/2. (3.2)
EH3.3. B
f3(r) = [pa(r) +logr]/{€4(r) — sin(ar)/[2(1 - a)]}

M(0, DZI([(1 - a)R(a))/[(1 - a)7 — sin(ar)], 00) L4 B L7+ $¢hlth, MR
®r € (0,1), BALAER

pa(r) +logr > {&,(r) —sin(ar)/[2(1 - a)]}[(1 - @) R(a)}/[(1 - a)7 — sin(ax)]. (3.3)
EH34. BH

fa(r) = {R(a)/2 = [pa(r) + logr]}/[7/2 = &u(r)]
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WILE TAFER LR

M(0, DE([1 - 2a(1 - a))/[(1 ~ a)7], (L — @) R(a)/[(1 — @) — sin(ax)]) LM AR £
Ft. #H, SHEERr € (0,1), BALAFER

R—(Zal B {22{ B g“(r)] (1 —(1a)—7ra-)—}:i(zza7r) < palr) + logr
. R_gﬂ - [Z-e) l;(lzf(__i%‘ﬂ 6
EH3.5. K

_ me(r) +logr
B0 = G-

M(0,1)EI((1 - a)R(a)/[(1 — a)7 — sin(ar)], 00) L& i LTt FeAl, IR
#r € (0,1), BAIAZER

mq(r) +logr > [(1 - a)7 — sin(am)][(7/2) — £,(r)]- (3.5)

EH3.6. BE
5(21) - [ma(r)' + log 7]
AR =
(0, 1)EI([(1 - a)* + a?)/[(1 - a) sin(an)}, (1 -~ a)R(a)/[(1 ~ a)m — sin(an)]) L7=H%
BT $50, SHEEMr € (0,1), BAIAER
R@) (e sin(an) (1 —a)R(a)

2 [ o) 2(1- a)} (1 — a)m — sin(an)

fo(r) =

< my(r) +logr

R(a) sin(ar) ] (1 - a)*+ a?

<7 - [53(’) T3a- a)} (1= a)sin(ar)’ (36)

3.2 FEFRHUEY
EH31ME: K55B

2 2 ” 2
N T %Ko (r)
) = 4rr2KC,(r)? + 4r’4ICa(r)4{ T

—4(1- a)ICa(r)——————-——g"(T) _:’QK"(T) log r}

4 2rK,(r)*logr

_ 2 [1Ke(r)* logr Ko(r)[Ealr) — r2Kq(r)] logr
- "5{ TG TR ﬂm}fﬂ‘f)} (r) }
__mrlog(1/r) PR E.(r) — 12 Ka(r
T2 {rﬂlCa(r)L’ 21-a) r2r2kC,(r)3 }

_ mrlog(lfr) 1 B Ea(r) = °Ka(7)
=52 rﬂlc.,(r)Z{l"z(l a)—————r%(r) } 3.7
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WHLE TAFER A AR

i1 (24,51 285.4(1) M3 B5.2(4) | T B Br — /Ko (r) (0, 1)F(0, m/2) L™= B F
B, B¥r o 1-2(1 - a)[&(r) - r2Ka(r)]/[FPKa(r)] M0, 1)E](a® + (1 ~a)’, 1)L
FERE L . AR 8 38 $Er HopitaliZ: U BT 4168 5 log(1/r) /rHE(0, 1) L A% £
BEF. Blbh@NRTB-f(r) A =N ERBTEQ, 1) L™ 58 L7 R &
"R, WRHAEODLTREATRAZE LK. BR, A1) =0 N
FiTHospitalik: N v] 15

lim 5 [ﬂz - r“/ca(r)Z] 2o

Fr A

24_ rz,ca 2 21 R
e

GURAMEZ. BZRBENMEXBAML. H[24,51E5.4(1)] 7T 5 (3.1)FHH
—ARERHIL. .
EHI.2M0EH: 4
t1(r) = R(a)/2 — [pa(r) +logr], t2(r) = Ko(r) — 7/2,
ta(r) = 72 /[4Ka(r)?] — 7%, ta(r) = 2(1 — a)[Ea(r) — 2K (7))-
WA (01) = t5(0%) = t3(0F) = ¢,(0%) =0, &
ta(r) ti(r) _ ta(r) (3.8)

far) = B B0 - L)
ZKkFH
) 1 w1 _&W)-rtK) o
() 20(1— a)le(r)  dar?K,(r)t 2 =t5(r).  (3.9)

[1(24,31385.2(1)s 515 40K, (r) I BAMERT A0 BBt 750, 1) LA

. H1(3.8)-(3.9)3\ &t Hopitalii M FT AN:  foE(0, 1) L/ 48 R T F&. H

Hf(17) =0, £(07) = (1~ 2a + 20%)/[a(1 - a)r]. AEREB 2N ER. EE.
.ﬁﬂi&l’:ﬁ{]ﬁfiﬂﬂ: 4

hi(r) = pa(r) +logr, ha(r) = £a(r) — sin(en)/[2(1 - a)],

7r2

ha(r) = WK, ()
WHhy(17) = ha(1) = 0, h3(0) = ha(0) = 0,

_ hi(r) hi(r) _ hs(r)
ha(r)’ Ry(r)  ha(r)’
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—1, h4(r) =201 = a)[Ka(r) = Ea(r)],

fa(r) (3.10)



WL E TR R R X

kBB

hy(r) _ 1

hi(r) — 8(1—a)2r2K,(r)2E.(r)
H[24, 31 E5.2(4), 51 BE54()|KE ()M L RET R hy(r)/hy(r) A B A IEH
FERR R LT R AR, BT LA BR B (r)/hy(r)7E(0, 1) AR R B .
H1(3.10)-(3.11) 3 F1 8 98 Pk v Hopital?: W o & R B fHE(0, 1) LR EF .
BB f3(0%) = [(1 - a)R(a))/[(1 - a)7 — sin(am)}Fl f3(17) = colA RA%ER(33) N B
R, iEE.

EHEIAMIRA: 2hs(r)s ha(r)IFEE33TEN.

E(r) — 12K, (r) -

1-2(1-a) ()

(3.11)

hs(r) = R(a)/2 — [pa(r) +logr], he(r) =7/2 - E(r),

MF hs(0) = hg(0) = 0, h3(0) = hy(0) = 0K

_ Bs(r)  hs(r) _ hs(r)

el B halr) a.12)

fa(r)

K58

Ry(r) o« 1 o E,(r) — rKq(r)

no = s aEreree | 0T e
MRS < F.3.3R01E B A1(3.12)-(3.13) 3R BA K 51 PV Hopitalvi U wT 45 i 44 £, 9 524
. B8, fi(1) = (1-a)R(a)/[(1-a)r —sin(ar)], ' Hopitali XN AT f,(0%) =
[1 - 2a(1 - a))/[(1 - a)n]. FER(B4)HER. iEE.

EH3.5MUEH: 4

(3.13)

gi(r) =ma(r) +logr, g(r) = (r/2) - £(r),

Mgy (1) = go(1°) = 0, ELAs(r) = 0a(r)/oulr). HUHR[24,EA 1) B24,(111)], %
* S8
gr)_ 2 2K (r)

Ka(r) = &4(r)
%)~ 70— ey RE - &)

12K, (r)

2(1 - a) +(2a-1)|.

(3.14)
AR 24,51 E5.203) (3.1, ¢(r)/g5(r)FE0, 1) L ™= 4% 89 £ 7. #oeki 39
¥ Hopitali®: W B 2 R L2 A, BA, f5(07) = (1 - o)R(a)/[(1 - a)7 -

sin(arr)), B1(3.14)%8: f5(17) = oo. AEHX(3.5) W BR. WEE.

3 6MEYH: 4
o) = 5 — ) g7, ) = €40 §§T(f72),
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M g3(0) = ga(0) = 0, ELfs(r) = ga(r)/ga(r). WIE[24,EE41(9)] K [24,(1.11)], &K
18 '

B Mal) KU [y Kl =E) o ] )
a0) ~ Tl =a)sman) KL - &) |0 ek e &

Hep, ¢(r)/gy(r)FI(3.14)F & L. #HH(3.14)-(3.15) K H it HopitaliE N1
FRB S REE. B, f(1) = 1 - a)R(@)/[(1 - a)r — sin(ar)], H(3.15)K
MIHopitaliEzMB: f5(01) = [(1 - a)® +a?)/[(1 - a) sin(an)]. FEK(3.6) 4 BR.
iEE,

| 3.3 7E) X Ramanujanti #2755 A
EH3.7. SHEREMa € (0,1/2), r € (0,1), K € (1,00), B

ek(a,r) > ¥ exp{(1 - K)[R(a)/2 + (r/r') log(1/r)]}.

HER: (38, EH3.7T| M EH3.1IBBRER. i,
EH3.8. Ha € (0,1/2), t = [L - 2a(1 - a)]/[(1 - a)n], HAEEHKIr € (0,1),
Ke(l,o), &

putan)> e {0110 [ (3 - 010}

iEM: Hi[38,EH3.77(3)| e 3 AN BE R k.

. FHE38HWR T X Ramanujantd 5 I B0y K (o, r) K TR XTE Z
KI- B RBE, (KB, BEESE-EPHRRENEN ERHTH
KA I~ X Ramanujanks 5 12 () ok (a,7) IR, BEHARKHE KBRS
(o1 ke (a, r) HIRERA 5 o

EH3.9. #ae(0,1/2), HERMr € (0,1), K € (1,00), H

¢y (ar) < r* exp{(1 - K)[(1 - a)r - sin(ar)][(r/2) — £,(r)]}-

iERE: (38, EH3.77| R EHISABLER. iEE.

e EE3ON A EEISE K XHibner b 7 & Him,(r) 58 2% X
BB DE(r)M KRR, 4T XHersch-pflugerii % & $oy/x(a, )9 T 1 £l 3t
MEMMPKBXR, FRELE -FEPRBOE ()M LT HRMEhE R
oy (a, )T, REBARERT Moy (a,r)FIREHET.
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HHLEE T AW AR 3

EH3.10. Ha € (0,1/2], b = [(1 — a)® + a?/[(1 — a)sin(an)], ¢ = [(1 -
a)R(a))/[(1 — a)r — sin(ar)], WHEEMr € (0,1),K € (1,00), H

oo <1110 [ 22 - 2]

pyx(a,r) <r¥exp {(1 - K) [%(—L—)- ~-c <£;(7‘) - ;8—(27%)] }
HERA: (38, E3.77(3)| R e 3 6Bl B &k . EEE,
H: ®HE3L08 T XRamanujants 75 2 #I o1 k (a, 1) Sk (o, r) B
TR 88 RS SURBIR A, (r) KR R, BILTESE —H AP FTRBE, (r)M L
TR ATARA T X Ramanujant® 751 B0y k (e, 7) Bk (a,r) 15, REA
AT IR .
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LB LR R L2083

$BUE X RamanujanBi i BRI TR
AEFEH R XRamanujanté 7 18 H ff ok (a,r) R HHE & X H X Agard
n-ZE R Eing (o, )R]~ XEMEREREO (o, K) I — L2 Hr 5

41 FELZR

THEHHERD, Yo =1/28, THE4LELR[7,51H6); EH4.2. 44, 4.6,
4.7, 48FIHER4.3. 454 FIBMLN[60,EHE3.1. 111, 3.21, 4.5, 4.18 HIHER3.7,
3.17. '

4.1, SHEERr € (0,1), X T KRR

o= o(K) = ¢&(r™),

M1, 00)Bl[r, u;(log(1/r))) LM B EFt

EH4.2. (1) b= 4K,(1/v2)?/[nsin(an)]. BEf(K) = (K — 1)2log A(a, K)
M(1, 00)E(r/ sin(ar), b) L =& S T R ER R T L.

(2) ¢ =b/2, MEHg(K) = log{\(a, K) explc(-K +1/K)|}/(K —1)A\(1,00)
F)(0, 7/ sin(an) — c) LB LR

#iLa.3. /K>, WE

max{exp|(K — 1)n/sin(ar)], exp[c(K + 1/K)]} < A(a, K)

< min{explb(K — 1)}, exp|(K — 1)(/sin(am) + ¢/K)]}, (41)

Jim Ma, K)/% = exp(b), lim Mo, K)/** = exp(n/ sin(ar)).

4.4, Bb= 4/Ca(i/\/§)2/[7r sin(ar)),c = b{3(b — 1)2 — [1 — a(1 — a) b} /12.
8

F(K)= (K —1)"3 | Mo, K) = 1~ b(K 1) — %b(b ~1)(K - 1)
M (1, 00)E(c, o) LR BUA LT, FeRlM, EHK > 1, NF

A, K) > 1+b(K 1)+ -;-b(b C1)(K = 12 4 (K — 1)? (42)
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K e(1,2), N
L b(K = 1) + (b~ (K ~ 1 + (K ~ 1) < Xa, K)
CLAHK 1)+ 206~ D(K - +alK -1 (43)

Hep, ¢ =Ma,2)—1-b—(1/2)b(b - 1).
Hw4.5. (1) ®K — 1,b = 4K,(1/v2)*/[r sin(an)), W&
Ma,K)=14+bK-1)+ %b(b ~1)(K -1 +o((K - 1)%)
(2) 46 >0 HEBLH, ol B4R EN, d = 1b0b-1), WHER
Ml< K<Ko=14 (V& —4cd-d)/(2c1), B

Ma,K) <1+ (b+0)(K - 1). (4.4)
B, M<K <1+ (VE-4abd-d)/2a), F
Ma, K) < 14 5(K - 1). (4.5)
EH4.6. SHERMK > 1, KL

exp[rK/sin(ar)] 1 + c1(K) exp{R(a) — [K/sin(am)]} < Aa, K)

exp(R(a)) 2
< llﬁexp[——ﬂ( / sin(ar)] — 1 + c3(K) exp[—n K/ sin(ar)). (4.6)
He,
a(K) = 614 Top{2[R(@) = 7;{/ sin(em)]} + 16’
c(K) = ! (1+ Sexp (‘—s;’i:(rg’)) +1dexp (_*ﬁ%) 5 ) < 2.1.
16 oxp (— K5} + Toxp (- 5K5) + Tep (- 285 ) +1) 16

EHEA.7. IHEREEHL € (0, 00), BBF(K) = nk(a,t) + IR TKTE(0,00) £
BAMBA TR, Bk, ) R3S ER EMERK. Fil, MEEMLK, L€
(0, 00) M1 2p + g = 1HIp,g € (0,1), A

nK(a” t)pm,(a, t)q < ")PK-HIL(a’ t) < [T)K(a'a t) + l]p[nL(a7 t) + l]q -1 (4'7)
EF4.8. (1) MEREML € (0,00), B
f(K) = exp[R(a)/Knk (a,8)/[t/% (1 + 8)* VK]
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M1, 00)El[exp[R(a)], 00) L& B LA HRF T M#. #hlH, MEEML €
(0,00)%kK >1, &

nk(a,t) > exp[(1 — 1/K)R(a)}t"/* (1 + )/, (4-8)

SHERRIt € (0,00) KK € (1,2), B

(1~ VKR < st
<@ = 10 ~1)+ Ufer(1 ~ 1K) R, 19

K, o = exp[-R( )/z]ﬁga—’;gf
(2) ®t € (0,00), ¥r = /t/(1+1),A = A(r) = 7’ exp(pa(r')) KB = B(r) =
rexp{2K, (r)K.(r)/[r sin{am)] — pa(r)}, WKL |

g(K)= A¥BVK [ nk(a,t) }1/2

117K (1 4 ¢)K-1/K
ML, 00)ZI(1/4, B/AL LR i F 6. #5504, SHERR € (0, 00)FIK € (1, 00),
RALFER

- TIK(G, t) - -
exp[-R(a)| A B~¥ < oo L+ O < AXE1) pHI-1K), (4.10)

42 FELREMEH

AR : Fhpa(s) = pa(r¥)/K, XK IFHE:

2 ds 7K' (r¥) n2rKlogr
45s2K,(s)2dK ~ 2sin(am)K2K,(rK) * 4KTK(1 — r2K)KC,(rK)2’
ds 552K, (s)?

K
dK (l—r”‘)K"’IC(rK {ma “)+logr -

HARHE([24, Th5.5(3)) 8 51 iR & (K ) i L A
B3R, s(1) =r. FFU'HopitalZE N oK%

lim s(K) = lim pg*(ka(s)) = pg" (lim Ha(r™)/K) = p5" (log(1/)).

Ko
k.
EHA20UEH: 47 = p (/2K sin(ar)]). MIARHE(1.53)30 K [38,5€ #24.7),
Ma, K) = (r/m')2. kF1H:

dr _2rr” (’Ca(r))2= 2 K (r)?, (4.11)

dK nsin(em) \ K 7 sin(a)
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d)\fial,('K) dA(:iIrK) :Ir{ - wsi:(aw))‘(a’ K)Ka(r)* (4.12)

#(a11). 412)X, kB8R
) _ 4K — l)K:;(r)2/[7r sin(ar)] — log A(a, K) _ fi(K)
f(K)= K1) = HE)

B, fi(K) = 4(K - 1)K,(r)*/[nsin(an)] - log Ma, K), fo(K) = (K = 1)?,

(4.13)

f{(K)=—2(1—a)( h )<f<—1)/<::.(r)3[£.:(r)—r21c;(r)]<o

wsin(am)

NI
H(K) - )(wsin((m)) Ka(r)’[65(r) = r*Kg(r)] = f3(K). (4.14)

M (4.14) K f1(1) = 0%0: BRELFFE(L, 00) LTA& S0 T .

Bh BB o FrrE(0, 1) LR BB E Tt BTLLS(K)/ £U(K) % FKTE(1, 00) £
P& B T . MRAE 8 fEUHopitaliE Y, B EFTE(L, 00) b RS B Bt
MR T M.

FAV'HopitaliNIa[ 13

Jim £(K) = 4K,(1/V2)/[rsin(ar)], Jim_f(K) =/ sin(ar).

(2) 2gi(K) = log{Aa, K) exple(—K + 1/K)]}, g2(K) = (K = 1), Wgy(1) =
g0(1) = 0. H(4.11)s (4120 KK = K,(r)/KL(r), 2K FHE

91(K)/g5(K) = 4K, (r)*/Ir sin(am)] — (1 + 1/K*) = gs(K) ~ (415)

&
’ 32(1 a) 311 7_2 ! (p _z[‘_
g3(K) - [7rsm(a7r)]2 a( ) [8( ) Ka( )]+ K31
K ) = %ﬁﬁ; /ca(r)sfeﬂ‘r—,Z—’c—“(i)=94(K) (4.16)

ti[24,5] #5.2(1)| M [24,5| E5.4(1)) 7T & & $gufE(1, 00) L= B8 8 L
Xr € (1/v2,1), ™ XLcgendre X RAIH: g4(1/v2) =0

H(4.16) AT 51: B %gsTE(1, 00) LEAE B EF. #hi(4.15) 7T B Hopitalik
UERE R fl:afeayt e '

B Hopitali% U 5 7 :

Jim g(K) = Jim g5(K) =0, Jim g(K) = Jim gs(K) = /sin{a) - c.
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=R
EEAAMER: 4r = u;'(r/2K sin(ar)]). W(4.11)M(4.12)m3L. k38
dL(r) _ _A(1=0) o ey o
) 200 ) - K (417
Y0 K) = 2B e -20- e - Kl @)
00, K) = 28 B ) - 20 - i) - ) ‘
- [—:%E%)P[l — 4a(1 — a)r’ )KL (r)%. (4.19)

#17 X Legendresk R 1A 4

7 sin(ar)

Ka(1/V2)[Ea(1/V2) - (1/2)Ka(1/2)] = o) (4.20)
Hi(4.11). (4.12). (417)-(4.20)R%
N(a,1) = b, \"(a, 1) = b(b — 1), \"(a, 1) = bc. (4.21)

B4 g(K) = Ma, K) — 1 —b(K - 1) — 3b(b — 1)(K — 1)* Rh(K) = (K - 1).

g(1) = h(1) = ¢'(1) = K'(1) = g"(1) = K"(1) = 0, f(K) = g(K)/h(K),

mH,
g(K) _ N(a,K)—b-bb-1)(K-1)
- T (4.22)
( ) A”( )_b(b_ 1) gm(K) - 1 "
TR T it B ) (4.23)

H1(4.17)-(4.19)R K\ (a, K) = (r/r')* 0] 157

32(7‘/sz(r)2 2

X"(a, K) = [ sin(am)]?

F(K).
He,
F(K) = 2 (’CITE )) +4a(1 - a)(rK,(r))* - 12(1 - a)é’,@_—éi@
{KGa(r) = (1 = a)[Eq(r) = K (r)]}-
¥ F (4.20) 7] 75
F(1) = [4+22(1-a))Ko(1/v2)2+24(1-a)?[€,(1/v2)— (1/2)Ka(1/V2)]*~37 sin(ar) > 0
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BEhr € (1/v2,1), H[24,51585.2(1),5185.4(1)| "I B HL, (r) /7', K (r) R
EFt. FE, BEE(r) - r2K(rn)]/r2 R (r) - (1 - a)[E(r) - KL (r)E(0, 1) L
RIEM AR BEA TR, HTHEREF(K) X FKE(L, o0) L8R £,
M, N(a, K) KT KA1, oo) L4 5 EF

S F 1 Hopitalik M f (4.21)-(4.23) AT B: f(11) = ¢, BAK = K, (r)/K,(r),
Ma,K) = (r/r')?, &

2 = r2{1 + b[KCo(r)/KL(r) — 1] + d[Ko(r) /KL (r) = 12}

JUH0 =6t)= e

ﬁEF’ d= % (b 1): Eﬁﬁna(r) —0asr— I,EIU\@@J

i )= -
BE, (42)BRML. XERA
f2)=Ma,2)-1—-b—(1/2)b(b—1) =¢;

Rf(k)RFKHEE LR, S(43)TUERIL. .
45N BEA)TMLER()RL. BT
Ma,K) < 14+b(K-1)+ %b(b— (K -1>24+ca(K-1P<1+(b+0)(K-1)
b+ %b(b— 1)K -1 +c(K-12<b+6
dK -1)+c(K~1)72<
dK-1)+ca(K-1)>*-6<0
1< K <1+ (V& —4erd - d)/(201) = Ko,

dltB(4.4). XHFc > 0. 46 =5-b, EMN(44)B2(4.5). IEE,
EHA6MER: RIR[38 HE162.15)F1[60, € H2(1)|FT &, MHEEMr € (0,1),

log (U—:‘/j) < ta(r) < log { oplRa)] 1+ ‘/P} . (4.24)

F ¢ ¢ 3

T 8 1-r
TR, 7= opl2ua(r)] > 2,4 = exp[R(a)], MR K € (0, 15" (log(v2))
-1\8 - A\*
() era-(F) e

BAr = pl(Kn/2sin(an))]), WA < r < 1/v2 < p7'(log(v2)), z =
exp[K/sin(an)], &A(a, K) = (r'/7)%.
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R 2T o 2 A7

H(4.24) "M B M FAM(4.25) KT 7

1 z(1+z71)®
Ma, K) = A T (T P v ) B
1 1 5y + 142 + 5
= — 1+4 ~
16exp7rK/s1na7r))+ 6[8-!— ( + P Tt

Hh, y=1/z = exp|-7K/sin(ar)], BT LL(4.6) P I AN AR BAL,
T, Hd24)RNPHEANAELTH

1 (z + A)*
N K) = 51> oiap - ap !
z (14 Az™1)

8A 1+ A2z-2
S L PP
T w4 '2'+8( iﬁ)
Hep, t= Azl fiBIB@A.6)ZE - NMAEK, EE.
EHA TR HHF(24, € #4.1(10)) A

angﬁ? 2 K Wsﬁl(aw)nk(a EKa(s)Kals) = 2:11;2(@ ))I/S;Ej; '

ﬂ:%,
1 Onkla,t)  2K(s)?
nk(a,t) 0K  sin®(am)pe(r)
RFTFKTE(0, 00) L H TREMIEE, FTLARHink(a, t)ﬁ':ﬁﬁl["]l:rﬂxﬁ‘]
)=

&s = gk(a,r), B¥r = /t/(L+1t). WE: nk(a,t) = (s/5)?,

F(K)=nk(a,t)+1=(s/s')> +1=1/s2.

FI(K) _ 2sds _ 85Ka(s)’pa(s)
F(K)  $?dK K72
28K (s)? _
~ sin?(am)pa(r) f(K)

FR, h[24,5185.4(0)]8T50, BEf KRFKEQO,00) LA LT, WRBFA
SEE T oM. AERGBRBAL. EE.
EEASKER: (1) 2r =t/ +1), s = px(a,r). MEBS(K)TER

1) = {entr@/en)5 )
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MERTH:

fI(K) _ 2Ka(s)Ki(s) _ Ra) 1

2f(K) ~ Krsinfar) 2K2 T 187 T gz 18T

= FR(K)= ﬁi,(ca—%(rﬁz—(r—) + log{r/ cxp[R(a)/2]} + log '
-\J-BK%Y
RQ) = ————2’7?8(;2(’2 ;”r()r) + log(rr') — —I%-Q
= mg(r) + ma(r') +log(rr’) — R(a)/2,
1[}1_{1‘1)01‘7’1(}() = e +logr' = pg(r') +logr'.
K
ey = AL = a)K(s) £(s) — s°K4 (s) 2557 Ka(s)Ky(s) _ 2loglr/ exp(R(a)/2)]

k)= sin?(am)pq(r) ss" K sin(ar) K3
1 oapiiie — 10e SP(R@)/2)  8(1—0) K(r) o 3Eals) — $°K(s)
§K Fi(K) = Fy(K) =1log r ~ w2sind(an) K, (r) Kals)’ s '

(24,51 E5.2(1) M5 B5.4(1) T &:  BRELF, 7E[1, 00) M BIA LT, B

onli/) ;1600 __ il o8l =KL
}{1  sin(ar) ogepR@ ) }

k)

Fy(1) = {log

lim F(K) =1 geXP[R( )/2]

K—oo

H[24,51885.2(1) F1E5.4(0)FEHES5.5(6)| T &1: B F>(1)/ loglexp(R(a)/2)/r]%
FrMh©0,1)2)(0,1) LR E LR, MRER(K) >0, ATIREFE(L 0o) L7
i LT

EANFEEN € (0,1), BARQ) > 0; HEEMK > 1kr € (0,1),
BHR(K) > 0, 8f'(K)/2 = f(K)F(K) AEANIEK BT[], 00) k™8 87 £
FrRfi . b ERREMEREMMN O, BA: f(1) = exp[R(a)).
H[61,5E E4. 18HE | o] 18

,,.K

/
A f(K) = Jim == oo

AER(4.8) M ER. MEEML € (0,00) KK €(1,2), BT

#(2) = emplR(a) /22287

7.14
1 - pq(a,r)? r

HMAER (4.9) BARRAL
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(2) BB g(K)TTER

KU _ 1) = S0, (7)1 (2)

w2 r

() = () = Wf(s:nza‘;))? ’EEZ; sty (o =T | (1) .

A
Hi[24,51#5.2(1)F15 | #5.4(1))80:  Ei%g7E(1, oo) L& iR EF. Bk, Xt
FiEMK>1,% ' '

0(K) < Jim g3(K) = po(r') + log(r'/A) = 0.

ﬁ@ﬁglﬁ:[l,oo)_tfzﬁﬁlﬁ"l:ﬁ%e NI, XK > 1, 5]

a(K) < qu(1) = % +log (%) -0

B, ®¥gXk TKELoo) L REFTE. B8R, 9(1) = B/A. H3LE
H1.4(3)8

: s (r\0 1 3 1
o g(K) = fim = (Z) = el eplR@)2

AEX (41008 BR. TEE.
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