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Statistical Characters of Effective Properties of Random Composite Materials

Abstract

Properties of Composite material depend on its microstructures. For example, the
mechanical properties of particle reinforced composites mainty depend on the representative
parameters of microstructures: the modulus of particles and matrix, bond strength, and the
volume contents and distribution of particles etc. However, uncertainties of microstructure
induce uncertainties of effective properties. Therefore statistical analysis of -elastic
performance distribution of composite material is necessary, On the other hand,
microstructure mechanical methods, such as homogenization and self-consistent method,
which are all based on the assumption that microstructure size is negligible, are generally
used to determine macro average properties of composites. While on which level of the
relative small size can we get the forecast accuracy of material properties though
homogenization method is 2 problem that worth studying. At present, the effect of the
randomness of composites micro parameters to its macro average properties statistic character,
and that of microstructure size to material properties have seldom been studied.

Homogenization method which is base on FE technology is used of to research the effect
on elastic constant of macrostructure dve to uncertainties of microstructure characters and
analyze their distributing rule with mathematical statistics methods. In addition, the study of
the scale effect of the material microstructure is carried out, the effect of microstructure
scale relative representative volume element (RVE) scale to determined material effective
properties is analyzed, and the least relative scale which describes material effective
properties accurately and represents the relative microstructure scale of volume elements is
the objective of the work. The concrete work is as follows:

1. Base on correlated references, the state of the study of composite material performance
forecast was summarized and remarked, microstructure mechanical method of composite
matetials was mainly introduced, the fundamental idea and implement process of
homogenization by which forecast effective properties of composite materials and the
theory and method of statistic and analysis with which analysis statistical characters of
uncertain problems were introduced in detail.

2. Studied microstructure model of particle reinforced compesite material, shown
establishing process of microstructure model with uncertainties considering particle shape,
size and distribution. Took rounded and oval-shaped particle reinforced composite
materials as exatnples, Established random distributing models in which volume content
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was given and particle position distributed uniformly in the reference domain and created
finite element discrete models.

3. With homogenization method, studied the effect of uncertainties of microstructure
parameters (such as size, shape and distribution style.) of rounded and oval-shaped
particle reinforced composite to equivalent elastic constant, studied statistical characters
of composites equivalent properties.

4. The scale effect of microstructure is discussed in this research. The effect of the ratio of
RVE scale to microstructure scale to certain material effective properties is analyzed with
numerical results. And the least relative scale of REV which describes material properties
correctly is found out.

This research is supported by National Nature Science Foundation of China
(No0.10332010), the Innovative Research Team Program (10421202), National Basic Research
Program (No. 2006CB601205), and by the Program for New Century Excellent Talents in
University of China.
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