
摘要

摘 要

本文面向嵌入式实时应用需求，在深入研究嵌入式实时系统和内存管理技术，

国内外的研究现状和研究方向，系统的内存模式和内存管理的特点的基础上，提

出了本文的研究目标和研究内容，提出并实现了一系列有助于提高系统安全性和

可靠性的内存管理技术解决方法，包括：动态内存分配，内存保护等，在静态配置

UB的基础上引入了“交换块(s Block)”的概念，并对其实现技术展开较为深入

的研究。

文中提出要解决的问题并给出涉及到的技术理论，进行系统的需求分析给出了

系统中内存数据的组织方式，描述了系统实现，并进行了测试分析。为保证嵌入

式实时系统数据存储的安全性和可靠性，对内存管理技术的研究具有重要意义。

关键词： 嵌入式系统内存管理叩

Abstrac：f

Abstract

With the requirement of real-time embedded application,a systematic survey of

research in the domain of embedded real·time and memory management is given，

including the concept of real—time embedded system，the research status and tendency f

real-time embedded system，the characteristic of memory model and memory

management in reai-time embedded system．Then the study objectives and cotents of

the thesis are presented．A series ofmemory mamagement Technology to improve safety

and reliability for embedded system are proposed and implemented in the thesis．

including memory redundancy allocation，memory redlllldancy encoding and memry
protection．Then thekey technology ofthese is researched and implemented．
Here puts forward the problem，carries through requirement analysis and buildup

data in the main memory,describes the design of the architecture，records the testing

and debugging data and proving the running environment．In order to improve the safety

and reliability of data storage in real-time embedded system,research on memory

management forembedded system is particularly sigrtficant．

Keyword： embedded聆abfime memory management UB

创新性声明

本人声明所呈交的论文是我个人在导师指导下进行的研究工作及取得的研

究成果。尽我所知，除了文中特别加以标注和致谢中所罗列的内容以外，论文中

不包含其他人已经发表或撰写过的研究成果；也不包含为获得西安电予科技大学

或其它教育机构的学位或证书而使用过的材料。与我一同工作的同志对本研究所

做的任何贡献均已在文中作了明确的说明并表示了谢意。

申请学位论文与资料若有不实之处，本人承担一切相关责任。

本人签名：蘧盘霪 日期：五翌生：』：!』

关于论文使用授权的说明

本人完全了解西安电子科技大学有关保留和使用学位论文的规定，即：研究

生在校攻读学位期间论文工作的知识产权单位属西安电子科技大学。本人保证毕

业离校后，发表论文或使用论文工作成果时署名单位仍然为西安电子科技大学。

学校有权保留送交论文的复印件，允许查阅和借阅论文；学校可以公布论文的全

部或部分内容，可以允许采用影印、缩印或其它复制手段保存论文。(保密的论

文在解密后遵守此规定)

本学位论文属于保密，在 年解密后适用本授权书。

本人签名：缢童篷导师签名：牛 日期：

第一章绪论

第一章绪论

本章首先简妻介绍了内存管理模块在30统一平台支撑层的位置，传统内存管

理方法的的应用、现状及前景，由此引出在内存管理中存在的问题，指出了内存

管理的重要性。最后给出了本文的主要工作以及内容安排。

内存管理模块在OSS系统中的位置如图1．I所示：

图1．1内存管理在0SS中的位置

内存管理完成两个主要功能。一是内存分配管理，二是内存保护。对于长期运

行、实时性要求高的系统，必须自己对内存进行管理。

VxWorks自身提供的内存管理函数采用first-m算法。该算法在搜索可用的内

存块时，从空闲队列头开始进行搜索，当找到第一个空间足够的空闲内存块时，

即将该空闲块分配给其使用，剩余部分重新加入空闲队列。这种算法不适用于我

们的系统。采用first-fit算法，一是内存分配的实时性得不到保证，具体的搜索时

问和已分配的内存块个数成O(N)的关系，二是会产生内存碎片。

现存的内存管理模块具有设计简单、实时性强、效率高等优点，但使用静态配

置UB的方法很难避免配置上不合理所带来问题(UB缺失或浪费)。内存管理的

辅助功能(向上申请及系统对内存扩展)在一定程度上缓解了UB配置问题，但又会

带其它一些问题。比如向上申请会引起实时性变弱；系统堆内存扩展将VxWorks

本身内存管理的碎片问题暴露出来。

为解决上述问题，在保证现有UB管理优点的基础上，并考虑尽量合理有效的

利用内存资源，将“交换块(S Block)”的概念引入到UB管理中来。引入“交换

块”的概念后，实际上是在目前UB管理的基础上增加了一个层次，向内存池申请

3G统一平台的内存管理研究

UB时，先要获取一个可用的交换块，进而获取己可用UB。交换块可以被多个内

存池交替使用，根据UB尺寸的大小，一个交换块被分解成若干UB。交换块LIB

动态管理机制可以解决UB池间内存不能共享等问题。

对于UB保护，考虑到原来设计方案在打开LIB保护功能时会浪费很多内存，

甚至导致系统由于内存不够而不能正常启动，在设计时考虑支持动态打开UB保护

功能，并支持对个别内存池进行保护，当然在内存资源够用时可以对全部UB池进

行保护。

本模块引用VOS标准模块，提供的三套接口作为标准模块为上层应用模块和

支撑层内部使用，其中，一套只给支撑层内部通信使用。

第二章内存管理模块

第二章内存管理模块

2．1概述

内存管理模块主要由内存分配和内存保护两个相互独立的子模块组成。内存分

配子模块由三个部分组成。按用途分，可以分为如下三种：

1．支撑内部使用，比如，进程间通信(消息构造时由通信模块为消息分配内存

空间，消息处理完毕，由调度模块释放占用的内存空间)。

2．上层应用使用内存。

3．全局内存分配。(只在初始化的时候使用，一般的应用场合不使用。)

内存分配基于队列操作(由VOS模块提供)。

内存保护包括三个部分，一个是UB的保护，一个是进程栈和私有数据区的保

护，全局变量的保护需要应用配合完成，保护流程同进程栈和私有数据区相同。

内存管理模块功能组成框图如图2．1所示：

图2．1内存管理框架

2．2核心数据区初始化

支撑内部的核心数据统一排布，所谓的核心数据，是指支撑内部使用的全局变

4
3G统一平台的内存管理研究

量。所有的核心数据都放在一个大的数据结构里面，先定义T CoreData

+pTCoreData。对于大块数据，在T．-CoreData内部加一结构指针，然后在内存初始

化的时候动态分配。这样，通过pTCoreData，就可以定位所有的核心数据。

2．3．1概述

2．3内存分配子模块

内存分配子模块主要实现对堆的动态申请和释放。VxWorks也提供堆的动态管

理，但其不适用于我们的系统。内存分配子模块只给上层应用提供两类接口，一

个用于申请内存，一个用于释放内存。

内存分配子模块的设计目标是保证动态申请内存和释放内存的实时性，将内存

碎片限制在可控的范围之内。内存分配子模块基于内存池集机制，对不同的应用

场合，使用不同的内存池集。3G统一平台使用两套完全独立的内存池集，即内部

内存池集和应用内存池集。内部内存池集为支撑内部提供内存申请支持，这是支

撑内部自己使用的内存池集，不对外开放。应用内存池集为上层应用提供高效的

动态内存申请机制。

每个内存池集被分成若干个内存池，每个内存池包含相等数目的内存块和内存

头，同一内存池中的内存块尺寸相同。内存池由循环队列进行管理，以达到实时

性。内存块的尺寸的最小单位为MEM UB SPAN(目前定为64)，其余内存块的

大小为MEM—UB SPAN日整数倍，其大小没有上限。内存块个数可以根据应用需

要在文件中自行配置。

每个内存池由一个循环队列来管理。引入循环队列可以加快内存块的申请和释

放。除去信号量等待的情况，每次申请内存块的时间是一样的。

上层应用如果需要使用到内存的动态申请，仍然采用内存池集管理机制。内部

内存池集和应用内存池集完全独立，互不干扰，这样做的优点是一套内存池集的

耗竭不会影响另一套内存池集的正常工作。这样，3G平台提供两套内存池集，一

套只给支撑内部使用，一套给上层应用使用，目前包括协议栈和信令。

另外，支撑层还提供对malloe函数的封装。作一层封装的目的只是为了加入

统计功能。通过自封装的函数，支撑层就可以完全掌握应用对内存的使用情况。

此函数只在支撑内部和初始化的时候预分配内存使用。

下图是队列、内存头和内存体之间的关系图。

第二章内存管理模块

操作队列 固定内存 固定内存

图2．1队列、内存头和内存块之间的关系

从图2．2中可以看出，内存头和内存块的排列关系是有规律可循的，这种对应

关系在运行过程中不会改变。第一个内存头永远被用来控制第一个内存块，而不

可能去控制别的内存块。但是内存头指针在队列中的位置是会不断改变的。从队

列中取出的一个内存头指针，可以指向任何一个内存头。

2．3．2队列操作

对每个内存池，初始化的时候先创建一块连续内存，用以存放内存头指针。并

用头、尾两个索引来分别代表当前可用第一个内存头和当前可用的最后一个内存

头。取可用内存时，从内存池控制块中取得头索引，而后取得内存头指针。释放

内存时，取得尾索引，而后将内存头指针归还。

由于UB的申请和释放在系统中会频繁使用，为了提高效率，在申请UB的时

候，将申请者申请的内存大小增加8字节，增加的部分用以存放释放信息，包括

队列头和内存头指针。当释放内存时，可以得到指针值，将指针前移8个字节，

就可以得到内存头指针和队列头。从而避免了释放信息的搜索过程。

2．3．3内存子模块初始化流程

该初始化流程负责整个内存子模块的初始化工作，并向其它子模块提供一个函

数接口Mem_SysInit。

传入参数：无。

内存初始化流程如下：

6 3G统一平台的内存管理研究

r 开始 、
＼ ／

l
◆

为核心数据区

数据结构分配内存空间

上
获得页尺寸

上
I 初始化内
I 存池集控制块

上
初始化

l 内存池集

上
I 设置标志位
I

上
r 结束 、
＼ ／

图2．2内存子模块初始化流程

流程描述：

1、为核心数据区数据结构分配内存空间，并清零。

2、获得页尺寸大小。

3、初始化内存池集控制块，标记所有的内存池集控制块没有被使用。

4、初始化内部内存池集。

5、初始化用户内存池集。

6、标记初始化已经完成。

其中，第4、5步的流程完全相同。

2．3．4初始化内存池集流程

传入参数：

第二章内存管理模块 7

T UbInfo+ptUbInf卜指向内存池集的配置信息。
WORD32 dwcf奢TblLen一配置表的长度，其值由如下两个宏决定。
内部内存池集由宏MEM INNERUB POOL NUM决定，用户内存池集的长度

由宏MEM UB POOL NUM决定。

概况来讲，初始化流程主要完成下面三部分的工作：

≯根据内存配置表进行内存预分配，内存配置表有两套。

≯创建控制队列，引用VOS标准模块的队列操作。

≯对内存头和内存体加页保护。

下面描述对内部内存池集的初始化过程，应用内存池集的初始化过程与之相

同。

8 3G统一平台的内存管理研究

图2．4内存分配子模块初始化

流程描述：

1、进行合法性检查(按内存池号循环)，主要是检查用户的数据是否配置正确。

包括，内存块大小是否为MEM UB SPAN的倍数，内存池中内存块大小

是否按序增长。

2、获得页尺寸dwPageSize，如果页保护开关打开，则返回的是4096个字节，

否则，返回64个字节。

第二章内存管理模块 9

3、创建互斥信号量，一个内存池集有一个互斥信号量。

4、计算虚拟内存总空间，总空间的计算根据LIB头尺寸和UB块大小来确定。

同一个内存队列的 UB 头放在一起， 间隔

MEM PROTECT PAGE COUNT个保护页。在内存头之后，排放内存块。

内存块之间同样插入MEM PROTECT PAGE COUNT个保护页。

5、调用VOS提供的虚拟页申请函数，保留一段虚拟内存(已经包括保护页)，

这段内存初始状态为不可访问，由ptVirtualMemory(临时变量)指定。

6、ptVirtualMemory加一个页，为第一个内存池的内存头前面加虚拟保护页。

7、从ptVirtualMemory处提交内存头内存，这段内存可以读写。

8、调用VOS提供的队列创建接口，创建一个无信号量、不可扩展的队列，将

队列句柄存入对应的队列控制块。

9、提交内存块(按内存块号循环)。保护的格局见内存池集的保护(图)。

10、如果内存保护开关没打开，则将该内存块全部置为0x5A，以便以后检测

使用。

ll、将内存块指针存入内存头。

12、将内存头指针入队。

保护页

内存头I(池1)

内存头2(池I)

内存头n(池1)

保护页

内存块I(池I)

保护页

内存块2(池I)

l
保护页

内存块n(池I)

图2．5内存池集的保护

10 3G统一平台的内存管理研究

图2．5只画了一个内存池的保护格局，其它内存池的保护格局与此完全相同。

2．3．5申请内存流程

传入参数：

T_PoolOroupCtrl+pOrpCtl——指定对哪个内存池集进行操作。
WORD32 dwSi蠲-_一申请UB大小。
WORD32 dwlfUseResen，e一是否使用保留内存。
USE RESEVER MEM--使用
NO USE RESEVER MEM一不使用
WORD32 dwTlmeOut一一超时值(目前定为500ms)。
下图是内存申请的分配流程：

图2．6内存申请流程

流程描述：

l、 参数的合法性检查，尺寸必须介于0和最大尺寸之间。

2、 根据尺寸从内存池集中寻找合适的内存池。

3、 进入信号量保护。

第二章内存管理模块

4、 如果该内存池没有可用内存，则向更大的内存池申请可用内存。

5、 从队列头中取得内存块头指针。

6、 记录申请点在源文件中的位置。存申请函数在源文件的位置，包括文

件名和行号。

7、 统计内存池占用情况，包括内存池中当前占用的内存块的个数，内存

池中最多占用的内存块的个数。

8、 返回申请的内存块。一般来说，分配给应用的内存比实际需要的要多。

返回指针的方式有两种，一种是将低端地址返回，另外一种是将高端地址

减去实际所需要的内存大小，而后返回。由于内存越界最多的情况是向后

越界引起，因此，采用第二种方法，只要越界，就可以触发异常。

9、 释放信号量。

2．3．6释放内存流程

传入的参数：

1’-PoolGroupCtrl+pGrpCtl——指定对哪个内存池集进行操作。

BYTE+pucBuf一指向待释放内存块。
图2．7是内存释放的流程：

12
3G统一平台的内存管理研究

图2．7内存释放流程

l、合法性检查，指针必须在内存池集的范围之内。

2、获得内存体偏移，根据pucBuf获得其离内存体头部的偏移位置。(由pueBuf

同各内存池控制头中记录的内存范围进行比较，如果落入该内存池范围，

则认为找到对应的内存池。)

3、获得对应的内存头指针，根据偏移位置得到内存头指针。

4、进入信号量保护。

5、根据使用标识，判别是否重复释放。

6、根据内存头，判别返回指针是否落在内存块限定的范围内。

7、置使用标识位为可以使用，然后将内存头指针加入队列。

第二章内存管理模块

8、如果没有内存保护，则将内存块中相应的内容重置为0X5A。

9、记录跟踪信息。

10、 释放信号量保护。

2．3．7统计功能

统计功能包括如下部分：

1、支撑占用的内存总量，包括两套内存池集，所有使用OSS Malloe分配内

存的情况。对于VxWorks内核自身使用的内存空间可以使用内核自身提

供的memShow命令来显示。

2、UB的使用情况。包括当前UB池的使用情况，UB池最大的使用个数。

2．3．8可测试性设计

2．3．8．1测试范围

测试重点包括下面几个方面：

≯初始化

>申请内存

>释放内存

另外，由于UB块保护在内存分配子模块中实现，因此，测试设计也考虑了

UB块的保护。

2．3．8．2测试方法

创建两个进程，假设进程名分别为Sender和Receiver，分属不同的调度任务，

任务优先级不同(可以测试内存池集的信号量保护是否正确)。Sender进程以时间

间隔dwSendInterval申请大小为dwMemSize的内存，并且内存内容全部置为0x22，

而后将内存指针、内存大小发送给Receiver进程。接收进程收到之后，同步延时

dwRecInterval秒。而后根据收到的消息，对内存内容进行校验，如果内容不全为

0x22，则证明有问题，此时，应该停止发消息(方法是将dwSendlmerval和

dwReclmerval置为Ox蝴)。如果全为0x22，则将内存释放。dwSendInterval、
dwMemSize和dwRecInterval作为全局变量，可以在shell中直接修改。

内存分配模块的测试模型如下所求：

14

任f嬲差逆睫
务＼＼ 么A＼r菌

3G统一平台的内存管理研究

将内存全部置
为0x22

二级调度

内存分配测试模型

对于UB保护的测试，只要在置内存值为0x22的时候，将写操作的长度超出

申请的内存大小，从而触发异常处理流程。

2．4内存保护子模块

内存保护包括两个部分，UB的保护和页表切换保护。

内存保护子模块的主要作用是在于河题定位。内存保护引入虚拟内存机制，通

过页表属性的设置来决定内存的访问权限。引入内存保护的会引起程序运行效率

下降，特别是在页表频繁切换的时候，因此，内存保护实现的完备程度受运行效

率的限制。

2．4．1概述

对所有静态配置的UB，按插入虚拟页的方式进行保护。UB在内存中的排布

如图内在迪塞堡塑揸旦所示。加入对UB的保护之后，对PPC体系，如果页数增

加过多，理论上有可能会降低效率。对于X86体系，由于每次查找页表所需要的

一震任务B

第二章内存管理模块

步骤相同，因此，不可能降低效率。另外，因为页的最小尺寸目前定为4096字节，

因此，加入UB保护，对于不是页整数位的内存块，会浪费内存。

在3G统一平台中，为了实现尽可能完全的保护，内存被划分成两个空间，一

是系统空间，一是进程空间。这两个空间的唯一区别就在于对内存的访问权限上，

而不在指令权限上。每个空间由一套页表来维护。OSS初始化完成后，对于内存

的访问只需要一套页表完成。

系统空间拥有对内存资源最大的控制权，除了对代码段不可写之外，对进程栈

和私有数据区不可写之外，对所有的内存区都可读写。进程空间只可以对本进程

的栈和私有数据区可读写，对其它进程的栈和私有数据区不可写。

进程运行前，将系统空间切换到进程空间，让系统在受MMU保护的模式下运

行。

划分两块空问的目的是为了提高运行效率，但会增加内存，增加的内存被用来

存放页表。如果CPU采用PPC，当实际物理内存为256M时，页表占用的内存空

间推荐为2M。因此，以多出2M的内存来换取运行效率，代价不大。如果想追求

更高的效率，可以考虑采用更多套页表。目前的设计只采用两套页表，并且在页

表切换完成后删除原先的系统页表。

对于全局变量的保护，采用下列方法。

将全局变量组织成一个结构(由各个进程自己完成)。在进程上电的时候调用

支撑层提供的全局变量注册函数。全局交量注册函数的入口参数是结构指针的指

针和结构的长度。注册时，根据长度分配页尺寸整数倍的内存，并在PCB表中登

记本进程有使用这一全局变量的权限。其它使用这些全局变量的进程也调用该注

册函数，如果已经注册过，则不需要再次为其分配内存。

2．4．2内存保护范围

对不同的CPU，VxWorks的内存排布图不尽相同，但大致的结构一样。目前

3G统一平台采用的CPU主要有三种，～种是PowerPC，一种是Intel x86，还有一

种是Ann。

PowerPC的内存排布如图2．8所示：

16
3G统一平台的内存管理研究

图2．8 YxWorks的内存排布图(PowerPC)

内存保护以页为单位，因此，所有需要保护的内存大小必须都是页的倍数。另

外，分配的内存的起始地址必须按页对齐。统一平台不支持小于页尺寸大小的内

存保护。

从图中可以看出，中断向量表从页边界开始，并且大小是页的倍数，可以进行

保护。接下来的内存直到初始化栈结束，没有必要作保护，而且也不可能作保护。

VxWorks开始的text段必须做保护，这样做的前提是text段必须从页边界开始，

而且大小也必须是页的倍数。

WDB内存池不作保护。

中断栈作保护。

自由内存区作可选择的保护。实际上，内存保护的主要工作是在自由内存部分。

因为，进程的栈和私有数据区都在自由内存区中分配。保护的策略和方法主要采

用页表切换的方法实现。

2．4．3全局变量保护

全局变量保护需要应用来配合完成，主要目的是为应用提供一种定位问题的手

段。全局变量注册函数只能在进程上电的时候调用。

第二章内存管理模块

图2．9全局内存保护注册流程

为了支持全局内存保护，在PCB中加入两个字段：

BYTE+pucProtectGloablData；严指向全局保护内存+／

WORD32 dwProtectGloablDataLen；，．保护区长度+／

2。4．4可测试性设计

2．4．4．1测试范围

保护的测试重点在于进程私有数据区被非法访问时，能不能触发异常。

2．4．4．2测试方法

1．创建两个进程，分别为进程A和进程B。打开内存保护开关，在进程A中

18
3G统一平台的内存管理研究

直接访问进程B中的私有数据区，则会触发异常。

2．递归调用同一函数，通过不断加大嵌套次数，在可预测的次数内，可以触

发异常。

3．动态保护进程栈和私有数据区，在进程运行中只允许操作本进程的资源。

出现非法访问栈或私有数据区时，触发异常。

4．在进程栈和私有数据区之间插入保护页，并将保护页属性设为只读，出现

访问越界时触发异常。在设置内存访问属性后，注意回避一种情况，X86和ARM

上栈越界到只读内存，会死机。这与vxWorks在不同CPU的异常实现有关，而目

前采用的vxWorks操作系统不支持这种异常的处理。

第三章系统UB动态管理模块设计 19

第三章系统UB动态管理模块设计

3．1模块描述

系统UB动态管理模块是做为原内存管理模块的补充设计而存在的，在OSS

系统中的位置如图3．1所示：

图3．1内存管理在0SS中的位置

现存的内存管理模块具有设计简单、实时性强、效率高等优点，但使用静态配

置UB的方法很难避免配置上不合理所带来问题(uB缺失或浪费)。内存管理的

辅助功能(向上申请及系统对内存扩展)在一定程度上缓解了UB配置问题，但又会

带其它一些问题。比如向上申请会引起实时性变弱；系统堆内存扩展将VxWorks

本身内存管理的碎片问题暴露出来。

为解决上述问题，在保证现有UB管理优点的基础上，并考虑尽量合理有效的

利用内存资源，将“交换块(s Block)”的概念引入到UB管理中来。引入“交换

块”的概念后，实际上是在目前UB管理的基础上增加了一个层次，向内存池申请

UB时，先要获取一个可用的交换块，进而获取己可用UB。交换块可以被多个内

存池交替使用，根据UB尺寸的大小，～个交换块被分解成若干UB。交换块UB

动态管理机制可以解决UB池间内存不能共享等问题。

对于UB保护，考虑到原来设计方案在打开UB保护功能时会浪费很多内存，

甚至导致系统由于内存不够而不能正常启动，在设计时考虑支持动态打开UB保护

功能，并支持对个别内存池进行保护，当然在内存资源够用时可以对全部UB池进

行保护。

3G统一平台的内存管理研究

3．2模块设计

系统UB动态管理模块包括3个子模块。空闲S Block管理子模块、系统UB

使用管理子模块、系统UB保护子模块。

3．2．1空闲S Block管理子模块

3．2．1．1交换块的相关概念

交换块(s Block)是为多个内存池所共享的一大块内存，每个交换块由1个交换

块控制块和若干同等数量的UB头和UB体组成。在某一时刻一个交换块或者为一

个UB池所有，或者在空闲交换块管理器中等待一个UB池使用。在同一时刻，任

意两个UB池不可能同时拥有对同一个交换块的使用权。一个交换块如果不再被一

个UB池使用，需要归还到空闲交换块管理器中，等待被其它UB池使用。

根据目前系统UB使用的实际情况，并考虑到系统中页尺寸的大小为4K，便

于做UB保护和避免内存浪费，可采用大小分别为4K和32K两种尺寸的S Block。

各内存池根据其管理UB的大小选择使用何种尺寸的S Block。

虽然当前UB尺寸、个数的配置不太合理，但也存在一定意义上的可参考性。

可以根据目前系统UB的配置情况折算出所需相应大小S Block的初始个数，初始

化时这些S Block不归任何UB池所有，而是统一放在空闲交换块管理器中。当空

闲交换块中的初始配置的SBloek都被用完时，空闲块管理器负责向系统堆内存申

请内存并生成新的可用S Block。考虑到当前UB配置中提供了保留UB的功能，

需要提供一定数目的保留SBlock供定时器模块申请UB时使用。按照上述所说，S

Block可以分为静态配置的，动态申请的和保留的三种类型。

SBlock类型：

SBLOCK TYPE DYNAM工C

SBLOCK TYPE CONF工G

SBLOCK TYPE RESERVE

3．2．1．2空闲S Block管理

／t动态申请+／

／+静态配置+／

／+保留类型+／

空闲S Block是由空闲S Block管理器管理的，空闲S Block管理器通过两个队

列分别管理为大小4K和32K的S Block。初始化时，根据当前系统UB的配置情

第三章系统LIB动态管理模块设计 2l

况折算出所需SBlock的尺寸及数量，并从系统堆内存中申请相应尺寸及数量的内

存用做交换块(S Block)，然后初始化这些S Block为静态配置类型并将其添加到

相应的队列中。初始化过程如图312所示：

流程描述如下：

图3．2空闲S Block初始化过程

3G统一平台的内存管理研究

进行合法性检查，主要检查空间交换块配置表数据是否正确。

获得页尺寸大小。

计算虚拟内存总空间，总空间的计算是根据交换块的尺寸和数目来确定

的，每个交换块之间间隔一段保护页。

调用VOS提供的虚拟内存申请函数，保留一段虚拟内存(包括交换块及

交换块间的保护页)，这段内存初始状态为不可访问。

创建并初始化一个链表用来维护空闲交换块。

按交换块的个数进行循环。

提交一个交换块内存，并使这段内存可读写。

初始化空闲交换块，主要初始化块中用来维护LIB使用的链表结构以及用

来指向当前可用的UB头的指针，同时标记交换块的类型为

SBLOCK—TYPE—CONFIG．

9．将空闲交换块加入队列中。

10．在交换块的后面保留一段虚拟内存作为保护页，对于4K和32K的交换块

保护页的大小分别为4K和32K。

当UB池向空闲S Block管理器申请一个可用的S Block时，空闲交换块管理

器从相应队列获取S Block给申请者使用；当LIB池向空闲S Block管理其归还一

个S Block时，交换块管理器将该S Block添加到相应队列中。

当UB池向空闲S Block管理器申请S Block时，如果对应的队列已经为空，

空闲S Block管理器向系统堆内存申请一定尺寸的内存生成新的S Block，并做相

关的初始化同时标记次S Block为动态申请类型。

对于动态申请类型的S Block，当UB池将其向空闲S Block管理归还时，需要

根据事先选择的策略决定是否向系统堆内存归还，这里所讲的策略可能有以下两

种，可以通过变量控制究竟使用何种策略：

1．对于4K的S Block，静态配置不够时向堆内存申请，S Block归还时不释

放内存而是加入空闲S Block队列；对于32K的S Block，静态配置不够时

不向堆内存申请扩展S Block。

2．对于4K的S Block，策略同上；对于32K的S Block，静态配置不够时向

堆内存申请扩展S Block，当此S Block归还时释放其所在的内存。

3．对于4K的S Block和32K的S Block一样处理，即空闲块用完时向堆内存

申请扩展S Block，归还时不释放。

图3．3，3．4分别描述了向S Block管理器申请和归还的流程：

1

2

3

4

5

6

7

8

第三章系统UB动态管理模块设计

图3．3申请空闲S Block流程

3G统一平台的内存管理研究

图3．4归还空闲S Block流程

3．2．2系统UB使用管理子模块

系统LIB使用管理子模块主要基于交换块动态管理技术，描述了动态管理的层

次结构、模块初始化流程、UB申请／释放流程以及UB使用管理的辅助功能UB使

用告警和UB使用统计。

3．2．2．1交换块动态管理的层次结构

(1)UB池的分层结构

基于交换块的UB动态管理方法从大的层次结构上来看，可分为UB池层、交

换块(S Block)层和UB头／体层三个层次，层次结构示意如图3-5所示。对每一

个层的具体描述如下：

1．UB池

相同尺寸的UB属于同一个UB池，每个UB池有一个UB池控制块和若

干交换块(S Block)组成。UB池控制块用于管理LIB池中的交换块，其中交

换块的个数不固定可以根据需要增加或减少，即UB池中的UB的总数是动态

第三章系统LIB动态管理模块设计

变化的。

为了合理利用交换块，避免浪费过多的内存空间，按照管理的UB尺寸大

小将UB池分成10个，每个UB池管理的UB尺寸分别为64、128、256、512、

960、1984、3968、8128、16320、32640字节。

2．交换块(SBlock)

向前面所描述的，将交换块分成4K和32K两种固定尺寸，每个交换块由

一个交换块控制块和若干同等数量的UB头和UB体组成，交换块控制块用于

管理交换块内部的UB头和UB体。由于交换块的尺寸固定，当根据不同尺寸

的LIB划分交换块时，所得到的UB个数不同。各UB池根据其管理UB尺寸

大小的不同选择使用4K还是32K的交换块。

3．LIB头(UBhead)

UB头与UB体一一对应，作为UB体的控制块，保存UB体的使用信息。

4．UB体(UB)

UB体为提供给申请者实际使用的连续内存单元。

图3．5交换块动态管理的分层结构

(2)UB池控制块结构

前面已经说过UB池控制块是用来管理交换块的，UB池控制块通过其维护的

数据结构知道哪些交换块是可用的(交换块内有可使用的UB)，哪些交换块是不

可用的(交换块内无可用UB)，哪些交换块是保留交换块。如图3．6所示，UB池

控制块维护了四个链表：可用交换块链表、用满交换块链表、保留交换块链表和

未保护交换块链表。下面对UB池控制块数据结构各项做一下说明：

1．可用交换块链表：用来管理UB池中可用S Block的双向链表，当链表中

的某～个S Block的UB都用尽时，该S Block将被转移到用满交换块链表

中：当链表中的某个S Block的所有UB都不再被使用时，该S Block将被

3G统一平台的内存管理研究

归还到空闲交换块管理器中。考虑到UB申请的效率以及防止发生在申请

空闲块和归还空闲块间震荡，归还交换块时可不将空闲交换块从可用交换

块链表中摘除。

2．用满交换块链表：用来管理UB池中不可用S Block的双向链表，当链表

中的某一个S Block的某个UB被归还时，该S Block变为可用，并根据S

Block的类型将被转移到可用交换块链表或保留交换块链表中。

3．保留交换块链表：用来管理UB池中保留S Block的双向链表，由于目前

只有定时器模块用到了大小为“字节的保留UB，可以在UB池初始化时，

为管理64字节的UB池分配两个S Block添加到保留交换块链表中。与可

用交换块管理不同的是保留S Block不用归还到空闲交换块管理器中。

4．未保护交换块链表：用来管理UB池中不被保护的s Block的双向链表，

该链表只有在支持UB保护的情况下才有用，在后面UB保护子模块中将

进一步介绍。

5．LIB大小：表示一个UB池所支持申请的UB尺寸大小。

6．交换块的UB个数：该UB池管理的S Block中的UB个数，由于每个S Block

中能够划分的UB个数在同一UB池中相同，因此该个数可存放在控制块

中。

。拍bb 竺竺
8 bloat忸dlm———丽
忆¨ 竺苎竺
S“ock tml

list———；而

reseM 型
8 block ta¨

‘Ⅺ————i：百

unpr。t日竺型
S block 乜¨

‘ist———石而
ub size

nlJmln OneSNoek

ka∞kc州

／

图3．6 1JB池控制块结构示意图

(3)交换块控制结构

正如前面所描述过的，交换块控制块时用来管理交换块内部的UB头和UB

体的，其结构如图3．7所示，结构组成描述如下：

1．节点：交换块在UB池中是以节点的形式存在于相关的链表中的，交

第三章系统UB动态管理模块设计 27

换块是通过节点一个个的连接被管理起来的。

2．空闲UB控制链表；用来管理交换块中空闲UB的一个双向链表，实

际链表中记录了空闲UB头的位置，即UB头作为链表中的一个节点。

当有申请者向交换块申请UB时，从空闲UB控制链表的头部取出对

应的UB，并转移到已用UB控制链表的尾部。

3． 己用UB控制链表：用来管理正在被使用UB的一个双向链表，当链

表中的UB被申请者归还时，将UB节点从该链表中摘除并添加到空

闲UB控制链表的尾部。

4．UB个数

5．UB池控制块指针：用来保存该交换块所在位置(在哪个UB池中)的

地址指针。

6．下一个可用LIB头指针：当空闲UB控制链表为空若且交换块中还有

可用UB时，该指针指向了当前可用的UB头。

r●口●一
next

Orev

‰ 竺!
ubⅢtaI。

list———丽
u5ed 型
ubd了I tail

list———赢
ub O∞I靠pb"

n嘲ub etd D”

图3．7交换块控制块结构示意图

(4)UB头／体数据结构

UB头和UB体都存在于某个交换块的内部，根据UB体大小的不同交换块

被分割的UB头／体的个数也会不同。在物理位置上可以采用“头体合一、尾部

提交的”的方法，如图3．8所示，UB头和UB体在物理上是连续存放的。考

虑到UB保护，采用尾部提交方式，即UB申请者实际使用的内存为UB体后

面的一段，这样UB体的头部需要占用4个字节用于存放UB头指针。

图3．8头体合一、尾部提交的存储方式

UB头作为记录UB体使用情况的结构，由以下几部分组成：

1．节点：UB头作为交换块控制块某个链表的一个节点被管理前来的。

2．实际使用尺寸：用来记录申请者实际使用了多大的内存空间。

3G统一平台的内存管理研究

3．用户使用信息：用来记录UB申请者相关信息。

(5)UB池中各实体问关系

UB池控制块、交换块、UB头和UB体的基本数据结构和相互关系如图3．9

所示。图中黄色部分的表示UB池控制块，蓝色的块结构表示一个可用的交换

块，红色的结构块表示用满的交换块，绿色的结构块表示可用UB头．／体，褐

色的结构块表示被占用UB头／体。从图3．9中可看出UB池交换块是分别通过

一个链表管理可用的交换块和用满交换块的；两个曲线所包围的部分均表示一

个完整的交换块，每个交换块通过两个链表分别管理空闲UB和被占用UB。

第三章系统LIB动态管理模块设计

ub pool conlarol

图3．9 UB池各实体关系图

3G统一平台的内存管理研究

3．2．3模块初始化流程

该初始化流程负责整个UB动态管理模块的初始化工作，并向内存模块提供接

口函数R_DynaUBInit，即UB动态管理模块的初始化是做为整个内存模块初始化

的一部分。该初始化流程主要包括空闲交换块初始化和系统内存池集初始化两部

分，空闲交换块初始化在空闲交换块管理子模块已经介绍，这里针对内存池集的

初始化过程进行一下描述，初始化流程如图3．10所示。

流程描述：

1．合法性检查，主要对UB池配置表进行有效性检查，包括UB的大小是否

为64的倍数等。

2．为UB池创建在申请和释放UB时使用的互斥信号量。

3．初始化UB池控制块中的各交换块控制链表。

4．根据IAB池配置表需要的初始交换块的个数向空闲交换块管理器申请空闲

交换块。

5．初始化空闲交换块并添加到可用交换块链表中。

6．根据UB池配置表中保留交换块的个数向空闲交换块管理器申请空闲交换

块。

7．初始化空闲交换块并标记为SBLOCK TYPE RESERVE类型，同时添加到

保留交换块链表中。

上述LIB池集初始化是根据UB池配置表进行的，配置表的格式如图3．1l所示，

表中UB池的初始UB个数和保留LIB个数可以为零，即所谓的零配置；若UB池

的UB个数不为零，则有个初始化交换块并添加到相应交换块控制块链表中的过

程。交换块初始化主要是初始化交换块控制块中各控制链表和当前可用UB控制头

地址等；为了减小耗时(uB申请流程可能也需要初始化交换块)，这里不能一步

将全部空闲UB加入到空闲UB链表中，而是将空闲链表的组织操作分摊到每次

UB申请／释放中去。交换块初始化只包括如下过程：

1-初始化交换块控制块中已使用LIB链表(used ub ctrl list)。

2．初始化交换块控制块中空闲UB链表(free ub ctrl list)。

3．初始化nextubheadp仃字段，指向当前可用UB头。

第三章系统UB动态管理模块设计

图3．10 UB池集初始化流程

3G统一平台的内存管理研究

Size Conflg S Block S BIrick

64 0 2

64t2 0 O

64’4 0 0

64’8 0 0

64+16 0 0

64。32 0 0

64。64 O 0

64+128 O 0

64+256 0 0

3．2．4 UB申请流程

图3．11UB池配置表格式

系统UB的申请是根据申请UB的大小找到相应的UB池控制块，进而寻找一

个可用的S Block，最后找到一空闲LIB体返回给申请者，UB申请流程如图3．12

所示。

流程描述如下：

1．根据申请尺寸从内存池集中寻找合适的UB池。

2．在LiB池中找到一个可用的S Block(若UB池中没有向空闲交换块管理器

申请并添加到UB池可用S Block链表中)。

3．进入信号量保护。

4．从SBlock中申请空闲UB。

5．记录UB使用者相关信息。

6．若S Block中的UB被用完，将被转移到用满S Block链表中。

7．释放信号量。

8．返回UB指针给使用者。

第三章系统UB动态管理模块设计

3．2。5 UB释放流程

图3．12 UB申请流程

系统UB的释放是根据传入的UB体指针找到相应的UB控制头，并把UB头

从其所在S Block的己使用链表中转移到空闲链表中，在整个流程中需要考虑到资

源互斥问题，UB释放流程如图3．13所示。

3G统一平台的内存管理研究

图3．13 UB释放流程

流程描述如下：

1．根据传入的UB体指针进行偏移，获取其对应UB头的地址。

2．进一步获取UB头／体所在S Block的控制块。

3．进入信号量保护。

4，若UB头／体所在S Block处于UB池控制块的用满链表中，将其转移到可

第三章系统UB动态管理模块设计

用链表中。

5．将UB头从使用UB控制链表中转移到空闲UB控制链表中。

6．若此时S Block变为空闲将其归还到空闲S Block管理器中。

7．释放信号量保护。

3．2．6系统UB使用告警功能

3．2．6．1 UB告警分类

告警主要指告警上报和告警恢复，UB使用告警按S Block的使用情况分为

以下3种：

1．S Block使用过多告警：为S Block的使用设定一个告警门限(例如

60％)，当S Block的使用率超过告警门限时，发送S Block使用过多的

告警；当S Block使用率降到门限以下，发送告警恢复。

2．S Block用完告警通知：当向空闲交换块管理器申请空闲S Block失败

时，发送告警通知到后台。

3．UB池占用S Block过多告警：为UB池使用S Block设置一个告警门限

(例如50％)，当某一UB池使用的S Block占全部S Block的比例超过

门限值，发送UB池占用S Block过多告警；当此UB池使用S Block

小于门限值，发送告警恢复。

3．2．6．2 UB告警码定义

1．S Block使用过多告警

事件号：EV_ALARM_REPORT_EX(告警)，EV ALARM_RESTORE EX(恢

复)

项目 内容

告警码中文名 内存交换块使用过多

告警上报者

格式(模块．进程) oSS

如：OSS-进程名

告警上报单板(可能产生该告警

的单板)
所有单板

3G统一平台的内存管理研究

ALARM SBLOCK-．USE—OVER—THRESH
告警码标识符

0LD

中文 内存交换块使用过多 ．

告警码详细描述
英文 Too many swap memory blocks are used

告警原因详细描述 中文 内存交换块使用数超过门限

(触发原因，是 The number of used swap memory blocks is

否频繁发生)
英文

over threshold

该告警是否被其他

告警屏蔽(比如

E1滑码告警在
中文 否

E1电缆没有接

入信号时，是没

有意义的)

告警级别。四个告警级别：

致 命 (一 级) ：

ALARM_LEVEL_FATAL

严 重 (二 级) ：

ALARM LEVEL SEIUOUS ALARM—LEVEL-sLIGHT

一 般 (三 级) ：

ALARM LEVEL COMMOM

轻 微 (四 级) ：

ALARM LEVEL SLIGHT

附加信息记录详解 T—SBlockOverThreshold tSBlockRate；

告警建议采取的措 中文 无

施(消除方法) 英文 NULL

网元类型(Mse、Vlr、Sgsn、Ggsn、
所有网元

Hit、BSC、所有网元)

该告警可能会引起 中文 无

的其它问题(对系

统的影响)
英文 no

其中；

typedefstruct tagSBloekOverThreshold

{

WORD32 dwMaxSBlockNum； ／+最大可用交换块数+／

第三章系统UB动态管理模块设计

WORD32 dwCurSBlockNum；

BYTE ucSBlockThreshold；

}x sBlockOverThreshold；

2，S Block用完告警通知

事件号：EV ALARM INFORM EX

／．当前使用交换块数·／

严SBtcok使用告警门限吖

项目 内容

告警码中文名 内存交换块缺失

告警上报者

格式(模块．进程) OSS

如：OSS．进程名

告警上报单板(可能产生该告警
所有单板

的单板)

告警码标识符 INFORM——OSS——SBLOCK——LACK

中文 空闲内存交换块缺失
告警码详细描述

英文 Free swap memory block is lacking

告警原因详细描述 中文 空闲内存交换块申请失败

(触发原因，是 The application of free swap memory blocks

否频繁发生)
英文

盘iIs

该告警是否被其他

告警屏蔽(比如

E1滑码告警在
中文 否

E1电缆没有接

入信号时，是没

有意义的)

告警级别，四个告警级别：

致 命 (一 级) ：

ALARM_LEVEL_FATAL

严 重 (二 级) ：

ALARM_LEVEL_SERIOUS

一 般 (三 级) ：

ALARM_LEVEL_COMMOM

轻 微 (四 级) ：

ALARM LEVEL SLIGHT

38
3G统一平台的内存管理研究

附加信息记录详解 T—SBlockLackErr tSBlockLackErr：

告警建议采取的措 中文 无

施(消除方法) 英文 NULL

网元类型(Msc、Vlr、Sgsn、Ggsn、
所有网元

Hlr、BSC、所有网元)

该告警可能会引起 中文 无

的其它问题(对系

统的影响)
英文 110

其中：

typedef struct tagSBIockLaekErr

{

WORD32

WORD32

WORD32

WORD32

WORD32

)T-SBlockLaekErr；

dwSize

dwCurSBlockNum；

dwTid,

dwPno；

dwMsgld；

p申请内存大小·／

／．当前使用交换块数·／

，．申请者任务D+／

严申请者进程号·，

产当前消息号·，

3．UB池占用SBlock过多告警

事件号：EV—ALARM—REPORT—EX(告警)，EV ALARM_RESTORE_EX(恢

复)

项目 内容

告警码中文名 UB池占用内存交换过多

告警上报者

格式(模块．进程) OSS

如；OSS-进程名

告警上报单板(可能产生该告
所有单板

警的单板)

ALARM_UBPOOL．ⅣSE_SBLOCK_
告警码标识符

THRESHOLD

中文 某UB池占用内存交换块过多

告警码详细描述 Too many swap memory blocks are used by one
英文
UB pool

告警原因详细描述 中文 某一liB池占用内存交换块数超过门限

第三章系统UB动态管理模块设计

(触发原因，是
英文

The number of swap memory blocks those used

否频繁发生) by one UB pool is over threshold

该告警是否被其他

告警屏蔽(比如

El滑码告警在
中文 否

E1电缆没有接

入信号时，是没

有意义的)

告警级别。四个告警级别：

致命 (一级) ：

ALARM_LEVEL_FATAL

严重 (二级)：

ALAItM LEVEL SERJoUS ALARM_LEVEL_SLIGHT

一般 (三级) ：

ALAItM LEVEL COMMOM

轻微 (四级) ：

ALARM LEVEL SLIGHT

T— UBPoolUseSBloekThreshold
附加信息记录详解

tUBPootUseRate；

告警建议采取的措 中文 无

施(消除方法) 英文 NULL

网元类型(Mse、Vlr、Sgsn、
所有网元

Ggsn、Hlr、BSC、所有网元)

该告警可能会引起 中文 无

的其它问题(对系

统的影响)
英文 no

其中：

typedefstruct tagUBPoolUseSBlockThreshold

{

WORD32 dwMaxSBlockNum； ／事该类交换块最大可用数’／

WORD32 dwCurSBlockNum； ／幸UB池当前使用交换块数+／

WORD32 dwSize 产UB池中UB大小+／

BYTE ucSBlockThreshold； 严UB池使用S Blcok告警门限’／

，T UBPoolUseSBlockThreshold

3G统一平台的内存管理研究

3．2．6．3 UB告警的实现

在实际进行LIB使用告警时需要考虑到以下几点：

1．为防止相同告警突发性，对连续的相同告警至上报一个。

2． 为防止连续跳变告警的突发性，设定一个合理的告警时长，在这个告警

时长内只上报一次告警和告警恢复。

3．考虑到UB告警和告警恢复同样使用UB，存在UB恢复时同时存在UB

告警，要避免互相嵌套(虽然这种可能性比较小)。

第一种和第三种UB使用告警类型都属于告警，因此有告警和相应的告警恢复，

UB使用告警和告警恢复分别是在UB申请和释放的过程中实现的；第二种UB使

用告警属于通知，因此没有告警恢复。3种UB使用告警或通知在流程上比较相似，

以S Block使用过多告警为例，其告警和恢复流程分别如图3．14和图3．15所示：

图3．14 s Block使用过多告警流程

第三章系统UB动态管理模块设计 4I

图3．15 S Block使用过多告警恢复流程

3．2．7 UB使用统计功能

在S block中有占用1513链表，可用于方便的进行遍历获取LIB使用信息。遍

历各1313池可用S block链表、用满S block链表、可用保留S block链表、不支持

UB保护S block链表，再遍历各S block中占用LIB链表，可提取其中各种信息，

并进行统计。

由于系统UB体中有足够的使用信息，因此对于系统UB其UB头中“user info'’

字段可为空。

LIB使用情况统可以按UB的位置(被哪个任务或进程占用)和用途(被占用

的UB是用来做什么的)，进行横向及纵向的的统计，可对一类大小的UB进行统

计也可对所有占用的UB迸行统计。具体分布若采用动态变化设计上过于复杂，且

需要占用大量统计信息内存空间，考虑只在需要这些信息时进行遍历获取。可以

在通过后台定时查询、调试函数查询、发送告警时进行统计UB使用情况。

3．3系统UB保护子模块

UB保护的目的和方法参见第二章内存保护子模块，这里主要介绍基于交换块

方式的系统UB动态管理是如何实现UB保护的。

3．3．1 UB保护下的内存排布

目前系统虚拟页的尺寸为4096字节，利用虚拟内存页表属性的设置来实现UB

3G统一平台的内存管理研究

保护时，至少对一页大小的内存进行保护。

对于4K大小的交换块，刚好占用一页的虚拟空间，为支持UB保护，一个交

换块内只能有一个UB，交换块之间加入一页大小的空洞(未映射物理内存的虚拟

内存)，通过UB申请尾部提交的方式能够有效的防止UB向后越界访问。

对于32K大小的交换块，为充分利用内存资源，可以实现在一个交换块支持

多个UB，每个UB的后面保留4K的不可访问内存作为保护页，但是由于交换块

内的UB尺寸是不固定的，在空闲交换块的申请／释放过程中需要动态的设置内存

的访问属性，这样会导致性能下降，实时性的不到满足。为此采用另一种方式，

一个32K的交换块只支持一个UB，交换块之间增加32K的内存空洞来实现对UB

向后越界访问的保护。

内存保护模式下内存的排布如图3．16所示：

■■_ ／ 工互盘
7／z互工!!置
／1
|}

口 囡 圜
来占用内存P-,占用内存 内存头

图3．16 LIB保护下的内存排布图

3．3．2动态UB保护的支持

由于交换块之间的空洞是在初始化过程中组织好的，因此可以支持系统运行过

程中动态开启UB保护功能，由于系统内存资源有限，并且打开UB保护功能时内

第三章系统LIB动态管理模块设计

存浪费太多，需要支持对单个UB池的UB保护功能的动态开启和关闭，当然也可

同时对多个甚至全部UB池的UB进行保护。

考虑到保留UB全部为定时器模块使用，为简化UB动态保护功能的设计，对

保留UB不做保护。

UB保护子模块需要提供两个接口函数分别实现动态打开UB保护和关闭UB

保护功能。打开UB保护功能需要执行的操作如下：

1． 对相应UB池进行信号量保护；

2． 将相应UB池控制块设置为“保护中”标志；

3． 将UB池中可用交换块链表和用满交换块链表中的全部交换块转移到

“unprotect S Block list”链表中，如果UB池中的交换块只能支持一个UB，则不

需要做以上操作，因为这种情况下事实上已经支持LIB保护了；

4． 释放相应UB池的信号量保护。

打开UB保护状态下申请和释放UB是需要注意以下两点：

1． 申请LIB时，若可用交换块链表为空，需要从空闲交换块管理器申请新的

交换块时，要根据UB池控制块的“是否支持UB保护”字段设置交换块中能够支

持的UB数。如果UB池支持UB保护，设置交换块能支持的UB数为l，并直接

将交换块加入到用满交换块链表；否则设置成实际能够支持的LIB数，并将交换块

加入到可用交换块链表中。

2． 释放UB时，若LIB所在的交换块变为空闲状态，归还空闲交换块到空闲

交换块管理器；如果该交换块处于保护状态下(支持的UB数为1)，可同时将交

换块添加到可用交换块链表中，以免空闲交换块管理器频繁申请空闲交换块，否

则不需要上述操作。若UB所在的交换块变为可用状态，说明此交换块之不支持

UB保护的，继续保存在未保护交换块链表中。

撤销UB保护需要执行以下操作：

1． 对相应UB池进行信号量保护；

2． 将相应UB池控制块设置为“非保护”标志；

3． 将LIB池未保护交换块链表中的交换块根据其实UB的使用情况，分别追

加到可用和用满交换块链表中；

4． 释放相应UB池的信号量保护。

第四章测试描述

4．1．1初始化

4．1．1．1测试内容

第四章测试描述

4．1测试项目描述

内存初始化的入121函数为Mem Syslrtit，依次完成如下操作：

l、分配核心数据区。

2、获取页长。

3、获取页长位移。

4、初始化内存池集控制块。

5、初始化系统内存池集。

6、初始化用户内存池集。

上述6步均要测试，主要手段是通过打印命令来检测初始化结果。另外，对于

合法性检查，制造各种不合法情况(通过修改UB的配置表)，初始化过程必须检

测出这种情况。合法性检查包括：

>第一个UB尺寸必须大于MEM UB SPAN。

> 内存池内存尺寸必须是MEM UB SPAN的倍数，目前MEM UB SPAN
为64。

>UB尺寸必须按序增长，即数组下标越大，对应的尺寸越大。

>UB的保留个数必须小于总的UB个数。

页长受操作系统、CPU类型、内存保护开关的影响。如果内存保护开关不打

开，保护页大小为64字节，如果打开，则为4096字节。

页位移是根据页长获得的，主要的目的是为了提高效率。

内存划分了两套UB池集，两者的初始化流程完全相同。一套UB池集有一个

数据结构对其进行描述，包括互斥信号量、内存池个数、最大的有效UB尺寸、内

存池控制块首指针。

内存初始化包括合法性检查、最大有效UB尺寸的获取、创建互斥信号量，创

建队列、本内存池集需要的总的页数(包括虚拟页)、UB头指针入队。

如果加入内存保护，其初始化流程略有不同。如果UB保护开关不打开，则采

用的是加物理页保护的方式，如果UB保护开关打开，则采用虚拟页的保护方式。

3G统一平台的内存管理研究

这两种方式要分别测试。

另外，对于进程栈和数据区的分配，采用了先保留，再提交的方式，这一部分

也要测试。测试的目的主要在于能否为所有进程分配进程栈和数据区。

4．I．1．2测试方法

后面的整合测试可以测试出总的结果。但对于初始化部分，主要的测试手段是

打印信息。下面逐项列出：

分配核心数据区：打印出分配前的可用物理内存，分配完毕之后，打印出成功

与否的信息、分配了多少内存，还剩余多少内存。

获取页长：系统启动之后，打印出页长值。并根据内存保护是否打开、操作系

统种类(N1wxworks)、CPU种类，来验证页长值是否同期望的一样。

合法性检查：主要是通过修改UB配置表，制造各种不合法情况，以验证合法

性检查的有效性。

4．I．2申请、释放内存

4．1．2．1自测内容

这一部分的测试包括三个方面：

≯基本功能测试。

》特殊情况测试。

>性能测试。

基本功能测试在于测试在正常情况下，申请者能否申请到可用内存，并且，获

得的内存靠后分配。靠后分配的测试可以借助于内存保护。假设申请一段长度为

100个字节的内存，如果内存保护打开，那么，当写的长度超过100个字节的时候，

会触发异常。如果没有触发异常，证明靠后分配错误。

特殊情况测试。我们界定如下情况为特殊情况：

>内存池满。

≯多个不同优先级的任务同时申请内存。

>删下返回的内存地址必须按照四字节对齐。
前两种情况都要通过编写测试代码来验证。后面一种情况通过打印返回值来验

证。

性能测试。性能测试在于测试内存申请所耗费的时间，从而给出性能优化的参

第四章测试描述 47

考值。性能测试也必须通过编写测试代码。

4．1．2．2测试方法

基本功能测试：创建两个进程，假设进程名分别为Sender和Receiver，分属不

同的调度任务，任务优先级不同(可以测试内存池集的信号量保护是否正确)。

Sender进程以时间间隔dwSendInterval申请大小为dwMemSize的内存，并且内存

内容全部置为0x22，而后将内存指针、内存大小发送给Receiver进程。接收进程

收到之后，同步延时dwRecInterval秒。而后根据收到的消息，对内存内容进行校

验，如果内容不全为0x22，则证明有问题，此时，应该停止发消息(方法是将

dwSendInterval和dwRecInterval置为o)【脚)。如果全为0x22，则将内存释放。
dwSendInterval、dwMemSize和dwRecInterval作为全局变量，可以在shell中直接

修改。

内存分配模块的测试模型如图4．1所示：

任f发送进程
务、 ．÷

A、—《

将内存全部置
为0x22

习l萼掣i
接收进程

二级调度

内存分配测试模型

图4．I基本功能测试

特殊情况测试参见整合测试的测试方法。对于内存池满，将发送任务的优先级

调高，等待一段时间后，会造成UB池满的情况。在这样的状态下，通过打印命令，

可以观测UB申请是否正常。

任务B

3G统一平台的内存管理研究

4．1．3整合测试

4．1．3．1测试方法

创建多个不同优先级的发送任务和接收，每个接收任务各有一个信箱。每个发

送任务以随机的时间间隔，随机的申请个数和尺寸申请UB。每次申请完一个UB

之后，随机选取一个任务信箱，将UB头指针发送出去，发送完毕，按UB尺寸进

行计数。接收任务收到消息之后，释放UB，并按UB尺寸进行计数。每个任务都

有一张表，用以计量发送和接收情况。通过调整发送任务和接收任务的优先级，

可以模拟出各种情况。并创建一个最高优先级的任务，将发送情况和接收情况打

印出来，用以验证UB申请流程的正确性。

4．1．4 LIB池保护

4．1．4．1测试内容

图4．2内存整合测试模型

对于每一个UB，都加入了保护页。保护的方式如图4．3所示：

第四章测试描述

保护页

内存头1(池1)

内存头2(池1)

内存头n(池1)

保护页

内存块1(池1)

保护页

内存块2(池1)

|
保护页

内存块n(池1)

图4．3内存池集的保护

如果内存保护功能打开，当用户申请一块内存时，如果写出界，则会触发异常。

自测的内容就是对这一部分功能进行测试。申请大小不同的内存，对每一块内存

都进行写出界一个字节的操作。如果内存保护正确，则会按预期的设计报告异常。

4．1．4．2测试方法

主要是通过编写测试代码。向测试者提供一个测试函数。输入的参数包括：

>申请内存大小

>使用哪一套内存池集

该测试函数实现如下功能：

1、根据入参，从合合适的地方申请内存。

2、写内存，并按内存大小+l的长度进行写内存操作。

3G统一平台的内存管理研究

4．1-5页表切换保护

4．1．5．1自测内容

页表切换主要是对进程的私有栈和数据区进行保护。在进入进程空间的时候，

可以对本进程数据和私有栈进行读写操作。如果离开进程空间，则所有的进程数

据区和私有栈都不能进行写操作。

正常情况下，进程切换的原因由以下几种：

1、消息驱动进程调度。

2、同步调用返回。

3、同步延时返回。

4、远程过程调用返回。

上述几种情况都可以归结成如下两种情况：

对于普通消息，引发进程调度时，会由系统空间进入进程空间。调度完成之后，

则由进程空间进入系统空间。

对于同步消息，引发进程调度时，也会由系统空间进入进程空间。在同步消息

处理完毕之后，会将被阻塞的进程加入就绪队列，而后即出进程空间。当下一次

处理刚刚解除阻塞态的进程时，会从任务空间同步返回到进程空间，而后恢复曾

经被同步阻塞的进程继续执行。

4．1．5．2测试方法

在空间切换处，加入测试代码。

1、进入进程空间前，将程序断住，而后写进程数据区或和栈区。

2、进入进程空间后，将程序断住，而后写进程数据区或和栈区。

3、退出进程空间后，将程序断住，而后写进程数据区或和栈区。

4．2测试环境描述

内存测试不需要机架环境，但需要不同类型的单板。

4．2．1硬件环境

>UIM单板

第四章测试描述 51

>MPX86

>MNIC

这三种硬件单板，分别代表PPC、X86和ARM。

4．2．2软件环境

>Windows NT／2000操作系统。

>Tornado集成开发环境——PPc、X86和Arm

>VC集成开发环境

》

实验结果：经验证，文中所述功能均实现，其中内存申请方案所需时间比较如下：

原申请方案

申请块 测试l 测试2 测试3 测试4 测试5

64 686us 685us 677us 678us 677us

128 70211s 699us 688lls 688lls 688us

256 732lls 730us 723us 706us 706us

512 758us 764us 719us 726us 719us

960 800us 800us 733l】s 732llS 731as

1984 989us 1000us 862us 862us 862us

3968 1074us 1072us 81lus 811US 812us

8128 1143us 1107us 841us 834us 860us

采用静态交换块

UB 测试1 测试2 测试3 测试4 测试5

64 712us 705lls 707us 704us 704us

128 722us 715us 714us 713us 712us

256 749us 743us 773us 756us 743us

512 788us 78IUS 779us 780us 780us

960 840us 846us 837us 837us 836us

1984 917us 906us 905us 906us 904us

3968 1084us 1066us 1067I】s 1069us 1068us

8128 929us 915us 914us 914us 915us

3G统一平台的内存管理研究

采用动态交换块

申请块 测试1 测试2 测试3 测试4 测试5

64 632us 636us 630us 629us 631us

128 685us 66lus 66lus 663us 660us

256 740us 717us 711us 716us 717us

512 847lIs 817us 815us 815us 816us

960 988us 945us 961us 948us 944us

1984 1319us 1227us 1225us 1243us 1225us

3968 1773us 1651us 1651us 1655us 1650us

8128 1210us 1048us 1049us 1046us 1049us

采用动态交换块时，需要调用Malloc申请内存，因此比较耗时。实际应用

中，动态交换块使用的几率比较小，因此对系统影响很小。

信号量操作，新老方案都只有一级。

采用静态交换块和共享交换块，UB的申请效率和老方案相当

新方案的UB池概念与老方案存在区别；现在实际上中间增加了一级交换

块池，每个交换块中包含小UB池。

结束语

结束语

论文工作总结

本论文是作者攻读硕士研究生期间主要研究工作的总结。论文描述了基于3G

软件开发平台的内存管理方法的设计与实现，该方法的实现现在已经成功应用于

3G基站的支撑软件底层模块内。

本文首先简要介绍了内存管理的应用及现状，由此引出了在应用中存在的瓶

颈问题——如何保证动态申请内存和释放内存的实时性，将内存碎片限制在可控

的范围之内，指出了内存管理的重要性。

在分析内存分配和保护基本原理的基础上，对国内外主要的内存管理的方法

进行了对比，引入了动态管理，交换块的概念。

内存管理完成两个主要功能。一是内存分配管理，二是内存保护。对于长期

运行、实时性要求高的系统，必须自己对内存进行管理。

静态配置UB的方法相比有一定优势，具有设计简单、实时性强、效率高等优

点，在一定程度上缓解了UB配置问题。但又会带其它一些问题，比如向上申请会

引起实时性变弱；系统堆内存扩展将VxWorks本身内存管理的碎片问题暴露出来。

为解决上述问题，在保证现有uB管理优点的基础上，并考虑尽量合理有效的利用

内存资源，将“交换块(s Block)”的概念引入到uB管理中来。引入“交换块”

的概念后，实际上是在目前uB管理的基础上增加了一个层次，向内存池申请UB

时，先要获取一个可用的交换块，进而获取已可用UB。交换块可以被多个内存池

交替使用，根据UB尺寸的大小，一个交换块被分解成若干UB。交换块UB动态管

理机制可以解决UB池间内存不能共享等问题。

对于uB保护，考虑到原来设计方案在打开UB保护功能时会浪费很多内存，

甚至导致系统由于内存不够而不能正常启动，在设计时考虑支持动态打开uB保护

功能，并支持对个别内存池进行保护，当然在内存资源够用时可以对全部uB池进

行保护。

最后将所设计的下载到板子上验证，全面的测试项验证了其功能。

今后工作展望

本文所论述的内存管理方法，虽然在各个方面都表现出了其优良的性能，但

还有许多待解决的技术难题。就本文来说，主要是研究如何保证动态申请内存和

释放内存的实时性，将内存碎片限制在可控的范围之内，所考虑的都不是很复杂

的条件。在本文的基础上还有许多事情要做。

(1)内存管理技术要应用到下一代移动通信系统中，要考虑许多实际应用中

的问题，因此下一步研究可以综合考虑多种因素来进一步合理设计系统参数。

(2)内存保护方面，对所有静态配置的LIB，按插入虚拟页的方式进行保护。

3G统一平台的内存管理研究

加入对UB的保护之后，对PPC体系，如果页数增加过多，理论上有可能会降低

效率。另外，因为页的最小尺寸目前定为4096字节，因此，加入UB保护，对于

不是页整数位的内存块，会浪费内存。

内存保护子模块的主要作用是在于问题定位。内存保护引入虚拟内存机制，

通过页表属性的设置来决定内存的访问权限。引入内存保护的会引起程序运行效

率下降，特别是打开页表切换保护下，页表频繁切换的时候。因此，内存保护实

现的完备程度受运行效率的限制。

致谢

致谢

通过两年多的研究生生活学习，我学到了很多东西，不仅仅是学术上的，更

多的是对待困难的态度上。王伟老师不断的教诲和鞭策使我终身受益。我非常感

谢王老师这几年来孜孜不倦的教诲，正是他教会了我看待事物的方法。更重要的

是他让我明白，一颗不断进取的心，对于生活和工作是多么的重要。王老师渊博

的知识、严谨的治学态度和孜孜不倦的科研精神也将是我一生学习的榜样。

感谢硕士期间教导和帮助过我的各位老师，他们传授给我的知识和做人的道

理，我一辈子都受用不尽。感谢实习期间教导和帮助我的各位同事，感谢他们永

不厌倦的帮助，严于律己热心助人的态度将在以后的工作生活中永远激励我前进。

感谢师兄师姐们，感谢你们在我读研期间对我指导和帮助。感谢曾一起学习、

生活、实习和工作过的各位同学，我们之间建立起了深厚的友情。他们有李伟硕

士、齐伟硕士、许远昂硕士、王欣硕士、邹继业硕士、李海涛硕士、许楠硕士。

感谢我的家人，感谢他们深深无私的爱，他们的爱是我永恒的依靠!没有他

们的无私奉献和牺牲，就没有我的现在和将来。焉得谖草，言树之背，养育之恩，

无以回报，你们永远健康快乐是我最大的心愿。

最后，衷心感谢参加论文评审和答辩的各位专家教授!

参考文献

参考文献

【1】王立柱．C／C++与数据结构．北京清华大学出版社，2002

【2】Bruce Eckel．Thinking in C++，AlanApt，2000

【3】Michael Barr．C／C++嵌入式系统编程．于志宏译．北京中国电力出版社，2001

【4】4吕京建．面向21世纪的嵌入式系统综述．http：／／www．bol—system．tom．2002

[5】沈连丰，宋铁成，叶芝惠．嵌入式系统级开发应用．．北京电子工业出版社，

2005

【6】田泽．嵌入式系统开发与应用教程．北京：北京航空航天大学出版社，2005

【7】罗蕾，嵌入式实时操作系统及应用开发．北京：北京航空航天大学出版社，

2005

【8】中兴通讯深圳研究所产品开发部ZXH01系列产品开发资料，2005，2006，

2007，内部资料。

【9】Molina H G Ullman J D，Widom J．Database system inplementation[M]

EngleWood CIif琢：Prentice·Hall，2000

【10】张素琴，吕映芝，蒋维杜，戴桂兰编译原理清华大学出版社2005，2

【11】Deeamtech，王勇等译，Programming for Embedded Systems。电子工业出

版社。2002

[12】Molina H G Salem K，Main memory dambase system An overview们。JEEE
TransKnow ledeg and Data Engineering，1992

【13】许海燕，付炎。嵌入式系统技术与应用。机械工业出版社。2004

【14】刘尉悦，张万生等，VxWorks操作系统及实时多任务程序设计。2001

【15】孔祥营柏桂枝。嵌入式实时操作系统VxWorks及其开发环境Tornado。

中国电力出版社，2002

f16】Kirk Zurell。嵌入式系统的C程序设计。艾克武等译。机械工业出版社，

2001

【17】Y．Kim and S．H．Son。Supporting Predictability in Real—Time Database

Systems．IEEE Real-Time Technology and Application Symposium，Boston,MA，June

1996：38,48

[18】陈鑫。嵌入式软件技术的现状与发展动向。2001

【19】梁华。嵌入式系统：数字化产品的核心。2001

【20】Kaushik Ghosh。A Survey ofReal-time Operating System，2002

【21】Jean J．Labrosse著。邵贝贝译。源代码公开的实时嵌入式操作系统。北京

中国电力出版社。2002．6

【22]Jean J．Labrosse。Embedded System Building Blocks，Second Edition Published

3G统一平台的内存管理研究

by R&D Books，CMP Media，Ine．1999．12

【23】Khawar M．Zuberi．Real-Time Operating System Services For Networked

Embedded System：Ph．D．Thesis．1998

[24】汤子赢哲风屏汤小丹。计算机操作系统。西安电子科技大学出版社。

[25】赫伯特．希尔特。c语言大全。电子工业出版社。

【26】舒良才，刘云生实时内存数据库的数据管理计算机世界1999年第40

期

[27】刘云生，吴绍春，李国徽等一种实时内存数据库组织与管理方法。

【28】杨波，张效义，面向嵌入式应用的通用型操作系统，微型机与应用，V01．23

2004

[29】Tornado 2．0 Online Manuals-->VxWorks programmer's guide

[30】Tornado 2．0 Online Manuals-->VxWorks Reference Manua

【31】http：／／www．windriver．com

研究成果

研究成果

参与项目：

2006年12月～2007年03月：

3G统一平台CPTool抓包工具研发，CPTOOL是用于3GBTS侧的调试工具，

用于版本运行过程中研发故障定位。主要实现对Rdup，Clp，485，HirsHdlc，媒

体流，DSMAB上E1检测流，DSMAB／DSMC上转发代理Agent包，BPM aAP

上Disco包，DSMC上Arp报文，Bfd报文的截获，可抓包的单板有CCM，

DSMAB／DSMC，CHM(HDR5500，1X5000，CHM2_6800，CHM3)，RMM，TRX

等，通过设定过滤条件抓包可以诊断前台BTS单板的通信状况。

2007年03月～2007年12月：

3G技术时间模块维护级升级。时间技术是CDMA关键技术之一。在系统中主

要体现在16c11ip中断，pp2sqb断，时区，夏令时，闰秒，16chip时间，系统软时钟，

单板时间，精确时钟，TOD，自制TOD，辅助时钟等等。

2007年05月～2007年12月：

高温工装项目部分测试项编码及协助测试。

附录 61

附录

术语，缩略语：

UB UserBuffer 分配给内存申请者的内存块

S Block Swap Block 交换块

OSS Operating System Subsystem操作系统子系统

VOS Virtual Operating System 虚拟操作系统

PCB Process Control Block 进程控制块

UB体： 实际使用的一块内存单元。

UB头： 描述UB体使用情况的数据结构。

UB池： 相同尺寸的UB块属于同一个uB池，每个内存池由1个内存

池控制块和若干交换块组成。

UB池控制块： 一个UB池用来管理交换块使用的数据结构，一个UB池控制

块管理若干个交换块，其中的交换块个数不固定。

交换块(SBlock)：为多个uB池所共享的一大块内存，每个交换块由1个交换

块控制块和若干同等数量的uB头和uB体组成。

交换块控制块： 一个交换块用来管理UB申请及释放的数据结构，一个交换

块管理若干个UB头及uB体。

	封面
	文摘
	英文文摘
	声明
	第一章绪论
	第二章内存管理模块
	2.1概述
	2.2核心数据区初始化
	2.3内存分配子模块
	2.3.1概述
	2.3.2队列操作
	2.3.3内存子模块初始化流程
	2.3.4初始化内存池集流程
	2.3.5申请内存流程
	2.3.6释放内存流程
	2.3.7统计功能
	2.3.8可测试性设计

	2.4内存保护子模块
	2.4.1概述
	2.4.2内存保护范围
	2.4.3全局变量保护
	2.4.4可测试性设计

	第三章系统UB动态管理模块设计
	3.1模块描述
	3.2模块设计
	3.2.1空闲S Block管理子模块
	3.2.2系统UB使用管理子模块
	3.2.3模块初始化流程
	3.2.4 UB申请流程
	3.2.5 UB释放流程
	3.2.6系统UB使用告警功能
	3.2.7 UB使用统计功能

	3.3系统UB保护子模块
	3.3.1 UB保护下的内存排布
	3.3.2动态UB保护的支持

	第四章测试描述
	4.1测试项目描述
	4.1.1初始化
	4.1.2申请、释放内存
	4.1.3整合测试
	4.1.4 UB池保护
	4.1.5页表切换保护

	4.2测试环境描述
	4.2.1硬件环境
	4.2.2软件环境

	结束语
	致谢
	参考文献
	研究成果
	附录

