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�!XØ�! XØ
(�)! ÎÒÄåÆ�ïÄ�µ
1!ÎÒÄåÆu��{�£�ÎÒÄåÆ´ïÄÎÒÄåXÚ�Æ�.ù«XÚ�G�þ�L«Ǒk��ÎÒ��¡S�,
d?�G�:ÚÑ�$Ä;��dL«TG���¡S�ÏL{ü�£ 5K5(½.NõE,Ä�XÚþ�²LC��duù«XÚ,l
�ÏLé'�{ü�ÎÒÄåXÚ�©Û5ïÄ��ÄåXÚ�1Ǒ.ù«�{3O�Å�Æ!ÔnÆ!�èÆ!ÏÕ�+�kX2�A^,AO3·b�E,1ǑïÄ¥Ók­�/ .ÎÒÄåÆå
uÄåXÚ�Ä�ÿÀnØ�ïÄ.�31898
, HadamardÒòÎÒÄåÆE|^uK­Ç­¡þ�ý/��ïÄ[1]. 1921
, MorseÄk5¿�ÎÒÄåÆ3ÄåXÚïÄ¥�­�5[2]. 1927-1935
, Birkhoffm©A^ÎÒÄåÆ�{ïÄÄåXÚ[3]. 1938
, MorseÚHedlunduL
ïÄÄåXÚÿÀnØ�Ø©,K8Ò¡Ǒ5ÎÒÄåÆ6[4],ù�L
ÎÒÄåÆ�Ǒ��ÕáÆ���). 
�, Levinson̂ ÎÒÄåÆ�{Úg�ïÄ
É½VanderPol�Ä�§,±��5r�Smale¼�
�EêLN��(a[5]. 1960
��1970
�, Smale, Bowen, Rulle, Sinai�<3�©ÄåXÚÚH{nØ�¡u�
ÎÒÄåÆnØ.Ó�, Metroplic, M.SteinÚP.Stein�<m©òÎÒÄåÆ¢^z[6].,
,3�
¢S�.(X[�gÄÅÚ[� ²�ä)��\ïÄ¥uyd���¡S��¤�ÎÒ�mkXÛ�5[7]. u´,ÎÒÄåXÚ�ïÄ?�Ú�p�ò��u�.dm, Berger, KastelynÚR.M. Robinson�<&?
k'p�ÎÒÄåXÚ�A�¯K,
Ù´k�.f£ ÿÀ���O�5[8−10]. ��,

MilnorÚThurstonu1977
�¤
?Ø��N�ÎÒÄåÆ���ý<�5QlnØ6,�L
�õ
â�ªuL[11]. ,	, Guckenheimer, Collet, Eckmann�ǑX­lêÆ�¡��/?Ø
��N��ÎÒÄåÆ.31980
�,du·bnØ9��,å,�ÎÒÄåÆ��
^É�/,Ó�Ǒ�Ù��
×�u�. 1981
, J.FordǑ��'uÎÒÄåÆ�XêÆnã©Ù�
Só[12],rN
ÎÒÄåÆ�{éÔnÆÄ:ïÄ�­�¿Â.��,

Silnikov�<^ÎÒÄåÆ�{?Ø
Í¶�Lorenz�§[13]. Ó�,IS	¯õêÆ!Ôn�ó�ö3ÎÒÄåXÚ�nØ!A^ÚL«�õ�+��
Lk¤��ïÄÚ&¢,��
�X�­��¤J[14−17]. ~X,éuk�Äê���Î
– 1 –



�!XØÒ�mþ�k�.f£ �ïÄ®ké�?�,k�Æörk�Äê*���¡Äê,¿?Ø
�¡Äê���ÎÒ�mþ�k�.f£ �·b5G.�dÓ�,�X�5�õ5g)Ô!zÆ!ó§ÚÔn�+��êÆ�.�Ñy,<�uy3©Û§��ÄåÆ1Ǒ�  ��9p�ÎÒÄåXÚ�nØ��{,ù4�/r�Xp�ÎÒÄåÆg�nØ�Øäu���õ[18−21]. o�,duÎÒÄåXÚ3·bnØïÄÚ�«êÆ�.E,5©Û¥�­��^ÚAÏ/ ,3�ǑïÄóä�Ó�,ÎÒÄåÆg��nØÚ�{Ǒ3Øä�´LÚu�.

2!��ÎÒÄåÆ�ïÄyG��ÎÒÄåÆ��'Vg�±�~g,/ÿ��p�ÎÒÄåÆ,�,Äk´���. 3��ÎÒÄåXÚ¥,ÎÒ�m¥���ǑV>�¡�Ý
,
�V>�¡�S�,ù«XÚ��CuÁ<ª©¡XÚ(tiling systems)ÚÚOÔnÆ(statistical mechanics)[22].C

5,3ïÄ¯õêÆ�.¥,<�uy3?ØÙE,5�²~�/ÏuÎÒÄåXÚ�k�.f£ �g���{. 3��ÎÒÄåXÚ¥,k�.f£ ��
�XÚ�ïÄ,kX���(JÚ2��A^[15, 23−25]. ~X:rÚfÿÀ·Ü5´���;ÿÀ��uÙ=£Ý
�Ì�»; ÿÀ·Ü5%ºX�ÿÀ�Ú·b��. ,
,þã¯K3p���¹eC�É~(J,�'��ÎÒÄåXÚ��¹�E,�qJ.~X,3��ÎÒÄåXÚ¥,dü�=£Ý
û½�k�.f£ ´ÄǑ�8�¯KÑ´Ø�(½�(undecidable)[21].l1990
�±5,¯õÆö3��ÎÒÄåXÚ�nØÚA^�õ�+��
Lk¤��ïÄÚ&¢,��
�X�­��¤J[26−29]. 3�þ�ïÄ¥,��Ä��¯K´XÛO�½�Ok�.f£ �ÿÀ�. Äk,©[10]ÿ�
ÿÀ��Vg,ò��k�.f£ �ÿÀ�½ÂǑ ent(X) = lim
n→∞

log |Bn(X)|
n2 ,Ù¥|B(X)|Ǒf£ X�n��
�Äê,¿y²
dÿÀ�ǑǑÿÀ�ÝØCþ. ,
é?¿��k�.f£ ,�O�ÙÿÀ��~(J.3¯õd¢S�.�)���k�.f£ ¥,©[30]��
°(�X�.(ice model)�ÿÀ�. 2005
,©[27]3��k�.f£ þÚ?
XÚ(�(systematic scheme),=ü�1ng=£Ý
AnÚBn,ù��ÿÀ��O�=zǑO�An½Bn��AÆ��O�Ç.Ó��kNõ'uÿÀ�O�Ú�O�ïÄ[18−20, 31−33]. �+Xd,�,kNõk�.f£ �ÿÀ�vk��)û. ~X�ü�=£Ý
ÑǑA =

(

1 1

1 0

)�,Ùk�.f£ �ÿÀ��8
�v)û.,	,©[34]y²
��k�.f£ ���ÿÀ��ÿÝØ��.dd,<�Ú\
�«ÚOÿ
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�!XØÝ^±£ãk�.f£ �Ä�E,5.ù«ÚOÿÝ�)r!f��üØXÚ�(½O�Ç)[35]!A����[26]!Ý��(projectional entropy)[36]��.Ø
ÿÀ�	, ·Ü5Ǒ´��^5ïÄXÚE,5�óä. ·���3���¹e, ·Ü5%ºX�ÿÀ�, �´ù�(Ø3p��¹eÒØ2¤á[26]. 3p�¥, ÿÀ·Ü5´��'�f�5�. ~X, 3��¥, �3ÿÀ·Ü�k�.f£ ��ÙÿÀ�Ǒ"[37]. �ÿÀ�  �ÏL\�r�·Ü5
��. 'u·Ü5�ïÄ,®k�
(=�(Ø[38]. ~X, ·Ü5�duü�1ng=£Ý
AnÚBn(n ≥ 2)´�©�(primitive). �3¢S¯K¥, �A^d(Ø%(J­­. Ǒd, ©[39]Jø
�«��y�Y(checkable

scheme),��éAnÚBn(n ≥ 2)´ÄǑ�©�(primitive)��y=zǑ���yAkÚBk(k ≤ 3)´ÄǑ�©�(primitive),dd5����k�.f£ ´Ääk·Ü5. ,	,©[26]ïÄ
f·Ü5�A�����m�'X.Ó�,3þãïÄ¥,<�  �/ÏH{Ø�nØ!g���{?Øf£ �ÄåÆ5�.��5¿�´,�8
Ǒ�,<�é3��ÎÒÄåXÚ¥k�.f£ �ïÄ��Ø¿©,¤¼(JǑw�"(.�,,3��ÎÒÄåXÚ¥,8
ǑE¡��þ�k�)û�¯K[40],
Ù´��5f£ �ÄåÆ5G�©Û.

(�)! [�gÄÅ�½Â9ÙÄ�nØ
1![�gÄÅ�ïÄ�u�[�gÄÅ(Cellular Automata,{¡CA)´�«AÏ�k�G�Å,´�ëYCantorN�ÄåÆXÚ�éA�lÑÄåÆXÚ,äk�m!�mÚG��lÑ5. [�gÄÅ´dJohn von Neumannu1951
�ªJÑ�,�´Ùg�å
uStanislaw Ulam. 1948
, Neumann3ïÄ“�oÜ6|�(��gÄÅäkã(Å���g·E�A5[41]”�¯K�,3Stanislaw Ulam�ïÆe,�æ^äk29�G����[��mïá
��äkg·E�A5ÚÏ^O�Uå�[�gÄÅ.UNeumann��, A.W.Burksm©
[�gÄÅ�nØïÄ[42],��JÑ�[�gÄÅ�(�LuE,,ù4�/��
[�gÄÅ�A^. Ïd,l�±�'u[�gÄÅ�ïÄ�\
��é��>�Ï.�31970
�,�XO�Å�Ê9,±Conway�“)·iZ” [43](game of life,�«U
?1Ê·O���~{ü�2�G�8��Ø�[�gÄÅ)Ǒ�L,[�gÄÅ�ïÄ2Ý,å. [�gÄÅ�ÿÀÄåÆïÄ©uHedlund[44]. 1969
, HedlundlÎÒÄåÆ�ÆÝr��[�gÄÅw�´ÎÒ�mþ£ N��gÓ�,¿Ǒx
¤k÷�Úm�[�gÄÅ�ÄåÆ1Ǒ. 1980
�, Stephen WolframÒð
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�!XØé[�gÄÅ?1{z,ïÆ[�gÄÅAäk{ü5K5!ÛÜë�59pÝ¿15,¿�JÑ
G�êǑ2���»Ǒ1���[�gÄÅ(Elementary

Cellular AutomataµECA)[45]. {z��[�gÄÅØ=äk·Ü��5�8¤>´(VLSI)�g�{ü5K(�Ú&E¿1?n�ÛÜpë(�,
�äkE,�ÄåÆA5[46−53]. Stephen Wolframé���[�gÄÅ�5�?1
�\�ïÄ,JÑ
��[�gÄÅ�5K9$^^�;¿3�þ�O�Å¢��Ä:þ,ÏL*	A½5K�)�1Ǒò��[�gÄÅU1Ǒ�ª©ǑXeoa[54, 55]:

(I)�ªªu���m²­�G�,ùp�m²­´�z��[�?u�Ó�G�(Xã1-1¤«);

(II)G��ª=£?\{ü�±ÏG�(Xã1-2¤«);

(III)äkE,�ÄåÆ1Ǒ,G�=£?\·bG��ª(Xã1-3¤«);

(IV)G�üzǑ�\E,��ª,ÑyE,�ÛÜ(�,½ö`´ÛÜ5�·b,Ù¥k
¬Ø5K�DÂ(Xã1-4¤«).

ã1-1: ECA5K136�üzã. ã1-2µECA5K56�üzã.

ã1-3µECA5K90�üzã. ã1-4µECA5K110�üzã.

– 4 –



�!XØ
Wolframé[�gÄÅ�{z4�/íÄ
[�gÄÅnØ9A^�u�.�é[�gÄÅ�{z±9��[�gÄÅ�JÑ,Úå
êÆ[é[�gÄÅ�'5. �[�gÄÅ3>Mþ�[��ÿ,A��±E�Ñaqug,.�¥¢Su)�ÄåXÚ$�,ù��[�gÄÅ¤Ǒ
ïÄE,XÚ1Ǒ���nØµe,Ï
Christopher LangtonJÑ
“<ó)·”(Artificial Life)ù�¶
,[�gÄÅB´<ó)·�1��Ö/[56],¿�C¤E,5�Æ,½ö`´E,·A5XÚ�Ù¥�|. Ó�, Norman PackardÚChristopher Langton3é[�gÄÅ�\ïÄ�Ä:þJÑ
“·b�>Æ”(the edge of chaos)ù�Vg[57]. ù´�
E,5�ÆïÄ���­�¤JÚI�5�Ò,Ǒ´�©�(Santa Fee)Æ��á�.,��¡,[�gÄÅ�êÆnØïÄ3��¡��
u�,¤J'�´L.~X,\5[�gÄÅ!�ÝëY�[�gÄÅ±9�*Ü�[�gÄÅ�ÎÒÄåÆ5�kX'��õ�ïÄ[46, 50, 53, 58−60]. AO���J�´, 2002
3�þ�O�Å�[Ú²�*	�Ä:þ, WolframME5/¡��[�gÄÅǑ�«#�Æ(A New Kind of Science)[61]. 
�, L.O.Chua�<(Ü���[� ²�ä�ïÄ¤J^��5ÄåÆ�g�éWolfram�O�Å�[(J��
�X�êÆþ�Ǒx[62−67],4�/íÄ
<�3nØþ?�Úé��[�gÄÅ�ïÄ. [�gÄÅg�)±5,�2�/A^u�¬Æ!)ÔÆ!)�Æ!&E�Æ!O�Å�Æ!êÆ!ÔnÆ!zÆ!/nÆ!�¯Æ���+�.~X:3ÔnÆ¥,Ø
�fí[�gÄÅ36NåÆþ�¤õA^	,[�gÄÅ�A^u^|!>|�|��[,±99*Ñ!9D�ÚÅ�Å��[±9^5�[Ès�(¬�/¤. 3O�Å�Æ¥,[�gÄÅ�±�w�´¿1O�Å
^u¿1O��ïÄ.,	,§�A^uO�Åã/Æ�ïÄ¥. 
Ù3êÆ¥,[�gÄÅǑÄåÆXÚnØ¥k'�S(ordering)!6Ä(turbulence)!·b(chaos)! ©/(fractality)�XÚ�N1Ǒ�E,y��ïÄJø
��k���.óä.Ïd,��¡[�gÄÅ�u���u�'nØ�ïÄ,XÜ6êÆ!lÑêÆ!O�Å¥�gÄÅnØ,ã(Åg��;,��¡,[�gÄÅ�u�Ǒr?
�
�'Æ�ÚnØ(X<ó�U!��5�Æ!E,5�Æ)�u�,$������
<ó)·�Æ��).,	,3Lyþ,[�gÄÅ�.���
nØ�{�3X����q5½�é5.

2![�gÄÅ�Ä�Vg[�gÄ´�«�mÚ�mÑlÑ�êÆ�.,=Ù�m!�mCþD�£ã|¤XÚ�ü�—[��G�CþÑ´©á�. ÑÚ35K��¥�z�
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�!XØ[��k��lÑG�,�ÌÓ���^5K,�â(½�ÛÜ5K�ÓÚ�#. Ïd,�¤[�gÄÅko�Ä���,©O´: [�(cell)!��(lattice)!+�(neighborhood)95K(rule)[68]. �{ü�¹e[��±�0Ú1ü�G�. ��´�[�¹Ä��m.dd,[�gÄÅ�±´���,���,n��,½�p�Ý.+����,�[�g�9Ù�����[�,~��+�kNeumann+�ÚMoore+�(�ã1-5)[61].5KK5½
[��m±Û«�ª�p�^.

Neumann+� Moore+�ã1-5µ��[�gÄÅ~��ü«+�.�©ÀJ
äkNeumann+��±9�kü�G�ê���[�gÄÅ�ǑïÄé�.XJ^çÚ���LG�“1”, xÚ���LG�“0”, KNeumann+�¥5�[��¤kG�|Ü�k32«. b��
�Ä�[�ǑCij, 3,��Ǒ�G�Ǒxij, ÙNeumann+�¥o��Ø�G�©OǑx(i+1)j, xi(j−1),

xi(j+1)Úx(i−1)j .K3e��ǑT[��G�yij�^¼êL«Ǒ
yij = N(x(i+1)j , xi(j−1), xij , xi(j+1), x(i−1)j),Ù¥xij ∈ {0, 1}, ∀(i, j) ∈ Z2. ´�, þãL§�d��Ù�¼êý�LL«, �L1-1. dd, ÛÜ5K?ÒN�½ÂǑN =

∑31
i=0 βi · 2i, Ù¥βi ∈ S,

i = 0, 1, · · · , 31. w,,ù��ÛÜ5K�k225
= 4294967296�.Ó�,duz�Ù�¼êý�L�=zǑÙ�L�ª,ÏdÛÜ5KǑ�dÙ�L�ª¤L«.

(n)! Ø©�Ì�SN�(�·���[� ²�ä(CNN)E,5�©Û  I/ÏuÎÒÄåÆ�g�Ú�{. ©[7]$^��ÎÒÄåXÚ�g���{ïÄ
�¡õ�Cþ
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�!XØ�CNNXÚ,lÎÒÄåÆ�ÆÝǑx
CNNXÚ���Ñ\–ÑÑN��ÄåÆ5�,AO´?Ø
,
£ N�3��mþ�ÄåÆ5�. dd,�©Äk?�Ú?Ø��ÎÒ�mþ£ N��5�,�[/ïÄ
ÙÄåÆ5�,
Ù´y²
ÙÿÀ�Ǒ∞.dd,�©òäkNeumann+�ÚG�8{0, 1}���[�gÄÅ�ǑïÄé�.·�ò��[�gÄÅ���ÎÒ�mïáéX,½Â
225
= 4294967296��ÛN�.��,·��âNeumann+��²¡(�Ú[�gÄÅ�A:,�E
o�Ó�N�T , T

UD

, T
LRÚT

D

,ÏL§�¢y
¤k�ÛN��ÿÀ�Ý©a.?�Ú,·��Ǒþãa¤���Ýaê8´���.du�©?Ø��ÛN��ê�õ,^<ó/?1©aÙ¤I�O�þ����.Ïd,·�rþã�Ý©a?1
§Sz�O,l
���Jp
©a��Ç.L1-1:��[�gÄÅ5K�Ù�¼êý�L.

x(i+1)j xi(j−1) xij xi(j+1) x(i−1)j yij x(i+1)j xi(j−1) xij xi(j+1) x(i−1)j yij

0 0 0 0 0 β0 1 0 0 0 0 β16

0 0 0 0 1 β1 1 0 0 0 1 β17

0 0 0 1 0 β2 1 0 0 1 0 β18

0 0 0 1 1 β3 1 0 0 1 1 β19

0 0 1 0 0 β4 1 0 1 0 0 β20

0 0 1 0 1 β5 1 0 1 0 1 β21

0 0 1 1 0 β6 1 0 1 1 0 β22

0 0 1 1 1 β7 1 0 1 1 1 β23

0 1 0 0 0 β8 1 1 0 0 0 β24

0 1 0 0 1 β9 1 1 0 0 1 β25

0 1 0 1 0 β10 1 1 0 1 0 β26

0 1 0 1 1 β11 1 1 0 1 1 β27

0 1 1 0 0 β12 1 1 1 0 0 β28

0 1 1 0 1 β13 1 1 1 0 1 β29

0 1 1 1 0 β14 1 1 1 1 0 β30

0 1 1 1 1 β15 1 1 1 1 1 β31,��¡,�©ïá
��[�gÄÅ�ÛN����[�gÄÅ�ÛN��m�ÿÀ��Ý'X,lÎÒÄåÆÆÝy²
��[�gÄÅ5K18Ú56�Pk·b�ÄåÆ5G.Ǒ,ÿÀ��Ý�ü�;�XÚ,ÙÄåÆ1Ǒ�±��»Ì,�3ÿÀ��Ý�^�eǑÓ��±�±XÚ�,
ÿÀØC5,
Ù´*¿�ÿÀ�Ø�uÏf�.ÏLÿÀ��Ý'XÚ®����[�gÄÅ�ÛN��ÄåÆ5�,�©oÑ/�O
��[�gÄÅ�ÛN��ÄåÆ5�,AO´ÿÀ���O.Ó�,©[69]y²
��[�gÄÅ5K110́ äkÊ·5�./ÏþãÿÀ��ÝN�,·�¼�
24���Ê·[�gÄ5K.·���)·iZ^
A^{ü�5K,%�)
aqu)·üzL§¥�'E,�y�.Ù¥,�Í¶�´“ð1�”(blinker)y�Ú“w�Å”(glider)y�,
ö´�«[�+3±ÏÙG�(5G)�(�,
�ö´�«Ø
¬±ÏÌ�ÙG�(/G)�	,�¬­½/£Ä�(�. ù
´Conwayy²)·iZäkÊ·5�'�y�,Ǒ´[�gÄÅäkÕÒ;��ÕÒD4�õU�­�AÆ.�´,3é
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�!XØ�©���Ê·[�gÄÅ5K?1êi�[�,·�uy§�A�Øäkw�ÅÚð1�y�.�©�(�Xe: 1�Ùïá
��ÎÒ�mþ½Â�8«£ N��m�ÿÀ�Ý'X±9��ÎÒÄåXÚ���ÎÒÄåXÚ�m�ÿÀ��Ý'X,¿y²
��£ N��ÿÀ�Ǒ∞. /Ïþãg���{,1nÙÏL�E4«Ó�N�¢y
��[�gÄÅ�ÛN��ÿÀ�Ý©a,¿rd©aL§?1
§Sz�O.1oÙlÎÒÄåÆ�ÆÝ©Û
��[�gÄÅ5K18Ú56�E,ÄåÆ1Ǒ,?
ÏL�E2���ÝN�ïá
��[�gÄÅ�ÛN����[�gÄÅ�m�ÿÀ��Ý'X.ÏLù2���ÝN�,�Ù��
24���Ê·[�gÄÅ5K,¿éù
Ê·5K?1
êi�[.���ÙKé�©����o(Ú?�ÚïÄ���".

– 8 –



�!��ÎÒÄåÆ�! ��ÎÒÄåÆ
(�)! ��ÎÒÄåÆ�eZSN?�k(k ≥ 2)�ØÓ�ÎÒ,Ø��Ǒ0, 1, · · · , k− 1,PS = {0, 1, · · · , k− 1}.·��Ä¤kZ�S�N�|¤�8Ü,PǑ

SZ = {x = (xi) | xi ∈ S, i ∈ Z},Ù¥ZǑ�N�ê�8Ü.éuz�x = (xi) ∈ SZ ,±PÒ∗L«10�ÎÒ¤3� �.3SZ¥½ÂålǑ
ρ(x, y) = max

i∈Z

{ 1

max{|i|} + 1

∣
∣ xi 6= yi

}

. (2.1)w,þã½Â´Ün�. l
,Ýþ�m(SZ , ρ)´;��!���!��ØëÏ�Hausdorff�m,¿¡SZǑ��k-ÎÒS��m, {¡��ÎÒ�m. �a =

(a0, · · · , ap−1)´Sþ���ÝǑp > 1�k�S�,{¡�ÝǑp�i. �x ∈ SZ ,

I = [i, j]´���ê«m, KPx[i,j] = (xi, · · · , xj)Úx[i,j) = (xi, · · · , xj−1), XJ�3m ∈ Z, ��x[m,m+p−1] = a, K`“k�S�aÑy3xS”½“x¹ka”,P�a ≺ x; ÄK`“k�S�avkÑy3xS”, P�a ⊀ x. éuΛ ⊆ SZ ,e�3x ∈ Λ, ��a ≺ x, K`“aÑy3ΛS”, PǑa ≺ Λ. �m ∈ Z, K8Üm[a0, · · · , ap−1] = {x ∈ SZ | x[m,m+p−1] = a}��SZþ�Î8. ´�,Î8Q´mq4�. SZþkd�NÎ8�¤��êÿÀÄ,�oSZ�z��m8þ��¤�ê�Î8�¿.3SZþ½Â£ N�:

σ : SZ −→ SZ

(xi) 7−→ (xi+1),
(2.2)K¡ÿÀÄåXÚ(SZ, σ)ǑSþ���ÎÒÄåXÚ.'u(SZ , σ)�ÄåÆ5�,k[15]:

(1) σk?Û±Ï�±Ï:;

(2) σ�±Ï:3SZ¥È�;

(3) σÿÀ·Ü =⇒ σÿÀD4Úé��¯a�6�;

(4) σ�ÿÀ�Ǒlog k,Ù¥kǑÎÒ8S�Äê;
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�!��ÎÒÄåÆ
(5) σäkLi-Yorke·b!Devaney·bÚ=7¢¿Âe�·b.¯¤±�,3��ÎÒÄåXÚ¥,k�.f£ �ÄåÆ1Ǒ®��
�XÚ�ïÄ,kX��
´L�(Ø.�Ã´Sþk�S����8Ü,PÙ��i��ÝǑN ,K·��rÃ¥z�i��ÝÑ*¿¤ǑN ,��k�S��8ÜA .-ΛA = {x ∈ SZ | x[i,i+n−1] ∈ A , ∀A ∈ Z},´�(ΛA , σ)Ǒ(SZ , σ)�fXÚ.K¡(ΛA , σ)½ΛAǑN�k�.f£ ,Ù¥AǑÙû½XÚ.···KKK 2.1[15] ?Ûk�.f£ Ñ���2�k�.f£ ÿÀ�Ý.,��¡,^uǑx2�k�.f£ ÄåÆ1Ǒ�Ì�óäK´=£�
,Ù½ÂXe:½½½ÂÂÂ 2.1[15] XJ

aij =

{

1, (i, j) ≺ Λ

0, (i, j) ⊀ Λ,Kk × k�0, 1-�
A = (aij)��f£ Λ�=£�
, Ù¥(i, j)´Sþ��ÝǑ2�i.Ó�,·�P2�f£ ΛǑΛA½σA : ΛA −→ ΛA.5¿,e=£�
�z�1Úz��Ñ��k��1,K=£�
Ú2�k�.f£ ´��éA�,=üö�m��pû½´���. ù�,'u2�f£ ΛA�ÄåÆ5�k:···KKK 2.2[15]

(1) σA�ÿÀ�Ǒ=£�
A�Ì�»;

(2) σA´ÿÀ·Ü���=��3��êN ,�n ≥ N�, An¥�z���Ñ�u0.

(�)! ��ÎÒ�m�£ N�EPS = {0, 1, · · · , k−1}Ǒk�ÎÒ|¤�8Ü.y�Ä¤kZ2 = {(i, j) | i, j ∈
Z}�S�N�|¤�8Ü,PǑ

SZ2

= {x = (xij) | xij ∈ S, (i, j) ∈ Z2}.éuz�x = (xij) ∈ SZ2
,±PÒ∗L«1(0, 0)�ÎÒ¤3� �.Ǒ
3SZ2¥?Ø4��¹,·�3SZ2¥½ÂålǑ

d(x, y) = max
(i,j)∈Z2

{ 1

max{|i|, |j|}+ 1

∣
∣ xij 6= yij

}

. (2.3)w,þã½Â´Ün�.

– 10 –



�!��ÎÒÄåÆ�aij ∈ S, |i| ≤ N, |j| ≤ N, N > 0.q�(m, n) ∈ Z2,P
[a]N = [aij ]|i|≤N,|j|≤N = {x ∈ SZ2| x(i+m)(j+n) = aij, |i| ≤ N, |j| ≤ N}��Sþ��k�Ý
(aij)|i|≤N,|j|≤N�Î/.w,Î/´Qmq4�8Ü,��NÎ/�¤
SZ2��|�êÿÀÄ,=SZ2�z�m8�±�¤Î/�¿. Ïd,

SZ2÷v1��ê5ú�.©[7]y²
Ýþ�m(SZ2
, d)´;��!���!��ØëÏ�Hausdorff�m,¿¡SZ2Ǒ��k-ÎÒS��m,{¡��ÎÒ�m.3SZ2þ½Â£ N�:

σkl : SZ2 −→ SZ2

(xij) 7−→ (x(i+k)(j+l))
(2.4)Ù¥(k, l) ∈ Z2,¡Ǒ£ �Ú.XJ|k| ≤ 1, |l| ≤ 1,Kd(2.4)�½Â32 = 9«£ N�:

σ00, σ01, σ0(−1), σ10, σ−10, σ11, σ1(−1), σ−11, σ−1(−1)Ù¥σ00Ǒð�N�.5¿,e©J��£ N�òØ�)σ00.w,z�σklÑ�±dσk0�σ0lEÜ
¤,Ù¥(k, l) 6= (0, 0).=
σ11 = σ10 ◦ σ01, σ−11 = σ−10 ◦ σ10,

σ1(−1) = σ10 ◦ σ0(−1), σ−1(−1) = σ−10 ◦ σ0(−1).ÏdǑ
?Øz�£ N��ÄåÆ5�,·�k7�kïÄσk0�σ0l�ÄåÆ5�. ¯¢þ,�!y²
8�£ N�σkl*d´ÿÀ�Ý�.ÿÀ�Ý�±XÚ�;�(�,ÏdÿÀ�Ý�XÚ�±w�Ó��XÚ.�ÙÀ�(SZ2
, σ01)�ǑïÄé�.½½½ÂÂÂ 2.2

σ01 : SZ2 −→ SZ2

(xij) 7−→ (xi(j+1))
(2.5)=[σ01(x)]ij = xi(j+1), ∀(i, j) ∈ Z2Ǒ��Y²£ N�,{¡£ N�.ÚÚÚnnn 2.1[7] éux, y ∈ SZ2

,±9��êN ,k
d(x, y) <

1

N + 1
��=�max{|i|, |j|} ≤ N k xij = yij .dÚn2.1,N´��···KKK 2.3 σ01, σ0(−1), σ10, σ−10, σ11, σ1(−1), σ−11, σ−1(−1)þǑÓ�N�.Ïd, (SZ2

, σkl)Ñ´;�XÚ,Ù¥(k, l) 6= (0, 0).
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�!��ÎÒÄåÆ½½½ÂÂÂ 2.3[15] �(X, f)Ú(Y, g)´;�XÚ,Xk�3Ó�N�h : X → Y ,��h ◦ f = g ◦ h.K¡fÚg´ÿÀ�Ý.···KKK 2.4 σ11�σ01ÿÀ�Ý.yyy²²²µ�y²σ11�σ01 ÿÀ�Ý,·�I�é��Ó�N�h,��eã���
SZ2 σ11−−−→ SZ2

h



y



yh

SZ2 σ01−−−→ SZ2
.y½Â

h : SZ2 −→ SZ2

(xij) 7−→ (x(i−j)j).
(2.6)

(1)hǑ÷�.é?¿y = (yij) ∈ SZ2
,K�x = (y(i+j)j) ∈ SZ2

,k
[h(x)](i+j)j = yij, ∀(i, j) ∈ Z2.

(2)hǑü�.eh(x) = h(y),=[h(x)]ij = [h(y)]ij, ∀(i, j) ∈ Z2,l
kx(i−j)j =

y(i−j)j, ∀(i, j) ∈ Z2.Ïdxkl = ykl, ∀(k, l) ∈ Z2.

(3)hǑëY�. ∀ε > 0,�3��êN ,�� 1

N + 1
< ε,�δ =

1

2N + 1
.KdÚn2.1��, d(x, y) < δ =

1

2N + 1
%º�max{|i|, |j|} ≤ 2N�,kxij = yij.qdu

{(i, j) ∈ Z2 | max{|i − j|, |j|} ≤ N}
⊂ {(i, j) ∈ Z2 | max{|i|, |j|} ≤ 2N},2dÚn2.1��,�max{|i − j|, |j|} ≤ N�, x(i−j)j = y(i−j)j%º

d(h(x), h(y)) = max
((i−j),j)∈Z2

{ 1

max{|i − j|, |j|}+ 1

∣
∣ x(i−j)j 6= y(i−j)j

}

≤ 1

N + 1
< ε.duSZ2Ǒ;��Hausdorff�m,Ïdh−1Ǒ´ëY�. ù�·�y²
h´��Ó�N�.�Ly²h ◦ σ11 = σ01 ◦ h. ¯¢þ, ∀x ∈ SZ2

, k[σ11(x)]ij = x(i+1)(j+1),

[h(x)]ij = x(i−j)j , [σ01(x)]ij = xi(j+1).Ké∀(i, j) ∈ Z2,k
[h(σ11(x))]ij = x(i−j)(j+1),

[σ01(h(x))]ij = x(i−j)(j+1).
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�!��ÎÒÄåÆù�·�y²
σ11�σ01ÿÀ�Ý.y..···KKK 2.5 σ01�σ10ÿÀ�Ý.yyy²²²µ�y²σ01�σ10 ÿÀ�Ý,·�I�é��Ó�N�h,��eã���
SZ2 σ01−−−→ SZ2

h



y



yh

SZ2 σ10−−−→ SZ2
.y½Â

h : SZ2 −→ SZ2

(xij) 7−→ (xji)
(2.7)aqu·K2.4�y²,��h´��Ó�N�.,	, ∀x ∈ SZ2

,k[σ10(x)]ij =

x(i+1)j , [h(x)]ij = xji, [σ01(x)]ij = xi(j+1).Ké∀(i, j) ∈ Z2,k
[h(σ01(x))]ij = x(j+1)i,

[σ10(h(x))]ij = x(j+1)i.ù�·�y²
σ10�σ01ÿÀ�Ý.y..du8�£ N�σ01, σ0(−1), σ10, σ−10, σ11, σ1(−1), σ−11, σ−1(−1)äké¡5,¿(Ü·K2.4Ú·K2.5,k½½½nnn 2.1 σ01, σ0(−1), σ10, σ−10, σ11, σ1(−1), σ−11, σ−1(−1) *dÿÀ�Ý.

(n)! σ01�ÿÀ��ÄåÆ5�d·K2.3,(SZ2
, σ01)´��;�XÚ.é;�XÚ
ó,ÿÀ��mCX½Â�Bowen½Â´���,�!À�
ö.'u��k�ÎÒ�m�£ N�,®�ÙÿÀ�Ǒlogk,Ù¥kǑS�ÎÒÄê. éu��ÎÒ�mþ�£ N�σ01,©[7]�Ñ
ÙÿÀ��e.�O�logk,�!òy²ÙÿÀ�Ǒ∞.Ǒd,·�k�Ñ�'½Â[15].

A´;��Ýþ�mX���mCX,P
diam(A) = sup{d(A) | A ∈ A}��A��», Ù¥d(A) = sup{d(x, y) | x, y ∈ A}. -H(A) = logN (A),Ù¥N (A)ǑA�fCX�Äê�e(.. éX�ü�mCXA, B, -f−1(A) =

{f−1(Ai), Ai ∈ A}ÚA∨B = {A⋂B|A ∈ A, B ∈ B}. w,f−1(A)Ú A∨B Ñ
– 13 –



�!��ÎÒÄåÆ´X�mCX.ÏL©Û��±e4�
ent(f,A) = lim

n→∞

1

n
H(A

∨

f−1(A)
∨

· · ·
∨

f−(n−1)(A))�3,��K.ù�,;�XÚ(X, f)�ÿÀ�½ÂǑ:½½½ÂÂÂ 2.4

ent(f) = sup
A

ent(f,A) (2.8)Ù¥sup´é¤kX�mCX�þ(..ÚÚÚnnn 2.2[15] �{αn}∞n=1´X���mCXS�,�� lim
n→∞

diam{αn} = 0,Kk lim
n→∞

ent{f, αn} = ent(f),Ù¥0 ≤ ent(f) ≤ ∞.½½½nnn 2.2 ��Y²£ N�σ01�ÿÀ�Ǒ∞.yyy²²²µdSZ2þ½Â�Î/��,��k�Ý

(a)N = (aij)|i|≤N,|j|≤N =







aN(−N) · · · aNN

...
...

...

a(−N)(−N) · · · a(−N)N





þ��NÎ/�¤SZ2���mCX,PǑαN ,=

αN = {[a]N | aij ∈ S, |i| ≤ N, |j| ≤ N}.Ïd{αN}∞N=1´SZ2���mCXS�,�dSZ2þ½Â�ålúª(2.3)��,

lim
N→∞

diam{αN} = 0.KdÚn2.2�,

ent(σ01) = lim
N→∞

lim
n→∞

1

n
H
(

αN

∨

σ−1
01 (αN)

∨

· · ·
∨

σ
−(n−1)
01 (αN)

)

. (2.9)e¡O�n−1∨

i=0

σ−i
01 (αN)�Äê.XJxáun−1∨

i=0

σ−i
01 (αN)¥�,���, �ox, σ01(x), · · · , σn−1

01 (x)3��k�Ý
(a)Nþ�ÎÒ´��(½�,
�áun−1∨

i=0

σ−i
01 (αN)¥Ó������,3(a)Nþ(½�ÎÒ´�����. Ïdn−1∨

i=0

σ−i
01 (αN )�ÄêÒ´σ013S�n −

1g�/¤�þ.Ǒ��k�Ý
(a)N,pÝǑn�ØÓ���N�ê8.,��
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�!��ÎÒÄåÆ¡,duσ01´SZ2þ�Ó�gN�,¤±z���k�Ý












aN(−N) · · · aNN · · · aN(N+n−1)

...
...

...
...

...

a0(−N) · · · a0N · · · a0(N+n−1)

...
...

...
...

...

a(−N)(−N) · · · a(−N)N · · · a(−N)(N+n−1)










3σ01S�n − 1g�Ñ/¤ØÓ�þã��N,Ù¥aij ∈ S, −N ≤ i ≤ N,−N ≤

j ≤ N + n − 1.ù�n−1∨

i=0

σ−i
01 (αN)�ÄêǑk(2N+1)[2N+1+(n−1)],Ïd

ent(σ01) = lim
N→∞

lim
n→∞

1

n
log k(2N+1)[2N+1+(n−1)] = ∞.y..ÿÀ���Ǒ´ǑyÄåXÚE,§Ý��«Ýþ,Ǒ´ÄåXÚÿÀ�ÝØCþ,Ïd·�k···KKK 2.6 ��ÎÒÄåXÚ(SZ, σ)���ÎÒÄåXÚ(SZ2

, σ01)ØÿÀ�Ý. ���Ñ�´, 3?Ø��ÎÒ�mþ£ N��ÿÀ��, ¯õ©z[18−20, 31−33]ÑòÙ½ÂǑ
ent(σ01) = lim

N→∞
lim

n→∞

1

n2
H
(

αN

∨

σ−1
01 (αN)

∨

· · ·
∨

σ
−(n−1)
01 (αN)

)

, (2.10)¿y²
dÿÀ�Ǒ´ÿÀ�ÝØCþ. d(2.10)·��O�Ñσ01�ÿÀ�EǑlog k.,	,©[7]�[�y²
σ11�ÄåÆ5�,duSZ2þ8�£ N�*dÿÀ�Ý,Ïd·��Þσ01�Ä�ÄåÆ5��·b5GXe:½½½nnn 2.3

(1) σ01k?Û±Ï�±Ï:;

(2) σ01�±Ï:3SZ2¥È�;

(3) σ01ÿÀ·Ü =⇒ σ01ÿÀD4Úé��¯a�6�;

(4) σ01ÿÀ�Ǒ∞;

(5) σ01äkLi-Yorke·b!Devaney·bÚ=7¢¿Âe�·b.�d,�!�[/Ǒx
��ÎÒ�mSZ2þ£ N��ÄåÆ5��·
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�!��ÎÒÄåÆb5G,¿�ÑlÄåXÚÆÝw,3SZ2þ�±½Â8�£ N�,���þ�k��.,	, �!î�y²
²;�ÎÒÄåXÚ(SZ, σ)���ÎÒÄåXÚ(SZ2
, σ01)ØÿÀ�Ý,Ï
(SZ , σ)�(SZ2

, σ01)´üa��ØÓ�ÎÒÄåXÚ.

(o)! σ01�σ�'X·K2.6�Ñσ01�σØÿÀ�Ý,�!ò�Ñ§��m���ÿÀ��Ý'X.ǑdkÚ\ÄåXÚ�mÿÀ��Ý�½Â.½½½ÂÂÂ 2.5[15] �(X, f)Ú(Y, g)´;�XÚ,Xk�3ëY÷�h : X → Y ,��h ◦ f = g ◦ h.K¡fÚg´ÿÀ��Ý.½½½nnn 2.4 (SZ2
, σ01)�(SZ , σ)ÿÀ��Ý.yyy²²²µ�y²σ01�σ ÿÀ��Ý,·�I�é��÷�ëYN�h,��eã���

SZ2 σ01−−−→ SZ2

h



y



yh

SZ σ−−−→ SZ .·�ïáSZ2�SZ�N�Xe:

h : SZ2 −→ SZ

(xij) 7−→ (x0j)
(2.11)w,hǑ÷�. eyhëY.éu?¿ε > 0,�3N ∈ Z+,�� 1

N + 1
< ε,K·��δ =

1

N + 1
. l
éux = (xij), y = (yij) ∈ SZ2

,�d(x, y) < δ =
1

N + 1
�,dÚn2.1,�max{|i|, |j|} ≤ N�,k xij = yij,AO/ x0j = y0j , ∀|j| ≤ N . Ïd�max{|i|, |j|} ≤ N�,k[h(x)]ij = [h(y)]ij.�k

ρ(h(x), h(y)) = max
j

{ 1

|j| + 1
| x0j 6= y0j} = max

|j|>N
{ 1

|j| + 1
| x0j 6= y0j} ≤ 1

N + 1
< ε,Ù¥ρǑ(2.1)ª½Â3SZþ�ål.�yhǑÿÀ��Ý,�Lyσ01 ◦ h = h ◦ σ.¯¢þ,é∀u = (uij) ∈ SZ2

,k
h(σ01(uij)) = h(ui(j+1)) = u0(j+1) ∀(i, j) ∈ Z2,

σ(h(uij)) = σ(u0j) = u0(j+1) ∀(i, j) ∈ Z2.
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�!��ÎÒÄåÆy..dd,·��Ñσ01´σ�*¿,
σ´σ01�Ïf.ÿÀ��Ý�ü�;�XÚ,ÙÄåÆ5��±´��»Ì.3ÿÀ��Ý��¹e,*¿(Ïf)�=
ÄåÆ5��±3Ïf(*¿)¥��±,ù´��­��¯K.�Xd¯K�Øä�\&?,ÿÀ��Ý®¤Ǒd®�;�XÚ5&Ä��;�XÚ���rkå�óä.ªþ¤ã, ·�®ïá
��ÎÒ�mþ8«£ N��ÿÀ�Ý'XÚ(SZ2
, σ01)�(SZ , σ)�ÿÀ��Ý'X.LrN�´,31�!¥ïá��ÝN�(2.6)�(2.7)ò31nÙ¥é��[�gÄÅ�ÛN�ÿÀ�Ý©aå�'��^. 31n!¥ïá���ÝN�(2.11)ò31oÙ¥Ǒé���Ê·[�[�gÄÅJø
(a.
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n!��[�gÄÅ�©an! ��[�gÄÅ�©a
(�)! ��[�gÄÅ�ÛN��Ädü�ÎÒ|¤�8ÜS = {0, 1}, 9Ù)¤�ÎÒ�mSZ2

. du�©æ^Neumann+�ÚS = {0, 1}, K2�[�gÄÅÛÜ5K�k225
=

4294967296�. ?�Ú, z�5K�d���Ù�¼êý�LL«(�L1-1),ÛÜ5½?ÒN½ÂǑN =
∑31

i=0 βi · 2i,Ù¥βi ∈ S, i = 0, 1, · · · , 31.Ǒ�Bå�,·�òþãÙ�¼êý�L{�Ǒ[β0, · · · , β31]. éz�ÛÜ5K
ó,·��âÙý�L�Ñ§�Ù�L�ª,?
�3SZ2þp�Ñ5KN��ÛN�TN.¢¢¢~~~ �ÄÛÜ5KN = 4210689285,Ùý�LǑ
[1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 1, 1, 1, 1, 1, 0, 1, 0, 1, 1, 1, 1, 1],Ké∀xij ∈ S, (i, j) ∈ Z2,�AÙ�L�ªǑ

N(xij , x(i−1)j , x(i+1)j , xi(j−1), xi(j+1)) = x̄(i+1)j ⊕ xij · x(i−1)j ,Ù¥“ · ”, “ ⊕ ”Ú“−”©O�LÜ6$�ÎÒ“�” , “É½”Ú“�”. Ǒ?Ø�B,PN0 = 4210689285,KÛÜ5KN0p���ÛN�TN0½ÂǑ
TN0 : SZ2 −→ SZ2

x = (xij) 7−→ (x̄(i+1)j ⊕ xij · x(i−1)j)=
[TN0(x)]ij = x̄(i+1)j ⊕ xij · x(i−1)j , ∀ (i, j) ∈ Z2,Ù¥[TN0(x)]ijǑTN0(x)�1(i, j)� ��ÎÒ.�âål(2.3),´�TN0´ëY�,K(SZ2

, TN0)Ǒ;�XÚ.�d,·�®½Â
¤kÛÜ5Kp���ÛN�,�z�(SZ2
, TN )Ñ´;�XÚ.3[�gÄÅÄåÆ1Ǒ�ïÄ¥,\5[�gÄÅ5KÏÙÙ�L�ª´�5�
��
`k'5.½½½ÂÂÂ 3.1 [�gÄÅ�d+�S�[�ÏL“É½”½ö“�É½”$�5¢y�¡Ǒ\5[�gÄÅ.ù��©�Ä���[�gÄÅ�k64�\5[�gÄÅ.Ǒ
�Ù��ã,ùp�Þ
¤k\5[�gÄÅÛÜ5K�Ù�L�ª(�L3-1).duÜ©
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n!��[�gÄÅ�©aÛÜ5K�?Ò��,�L3-1¥æ^PÒfi5�O�ÛN�TN.L3-1: 64�\5[�gÄÅ�Ù�L�ª.�ÛN� Ù�L�ª �ÛN� Ù�L�ª
f0 0 f63 1
f1 xij f62 xij

f2 x(i+1)j f61 x(i+1)j

f3 x(i−1)j f60 x(i−1)j

f4 xi(j−1) f59 xi(j−1)

f5 xi(j+1) f58 xi(j+1)

f6 x(i+1)j ⊕ xij f57 x(i+1)j ⊕ xij

f7 xi(j−1) ⊕ xij f56 xi(j−1) ⊕ xij

f8 xij ⊕ x(i−1)j f55 xij ⊕ x(i−1)j

f9 xij ⊕ xi(j+1) f54 xij ⊕ xi(j+1)

f10 x(i+1)j ⊕ xi(j−1) f53 x(i+1)j ⊕ xi(j−1)

f11 x(i+1)j ⊕ x(i−1)j f52 x(i+1)j ⊕ x(i−1)j

f12 x(i+1)j ⊕ xi(j+1) f51 x(i+1)j ⊕ xi(j+1)

f13 xi(j−1) ⊕ x(i−1)j f50 xi(j−1) ⊕ x(i−1)j

f14 xi(j−1) ⊕ xi(j+1) f49 xi(j−1) ⊕ xi(j+1)

f15 x(i−1)j ⊕ xi(j+1) f48 x(i−1)j ⊕ xi(j+1)

f16 x(i+1)j ⊕ xi(j−1) ⊕ xij f47 x(i+1)j ⊕ xi(j−1) ⊕ xij

f17 x(i+1)j ⊕ xi(j−1) ⊕ x(i−1)j f46 x(i+1)j ⊕ xi(j−1) ⊕ x(i−1)j

f18 x(i+1)j ⊕ xi(j−1) ⊕ xi(j+1) f45 x(i+1)j ⊕ xi(j−1) ⊕ xi(j+1)

f19 xi(j−1) ⊕ xij ⊕ x(i−1)j f44 xi(j−1) ⊕ xij ⊕ x(i−1)j

f20 xi(j−1) ⊕ xij ⊕ xi(j+1) f43 xi(j−1) ⊕ xij ⊕ xi(j+1)

f21 xij ⊕ x(i−1)j ⊕ xi(j+1) f42 xij ⊕ x(i−1)j ⊕ xi(j+1)

f22 xi(j−1) ⊕ x(i−1)j ⊕ xi(j+1) f41 xi(j−1) ⊕ x(i−1)j ⊕ xi(j+1)

f23 x(i+1)j ⊕ x(i−1)j ⊕ xi(j+1) f40 x(i+1)j ⊕ x(i−1)j ⊕ xi(j+1)

f24 x(i+1)j ⊕ xij ⊕ xi(j+1) f39 x(i+1)j ⊕ xij ⊕ xi(j+1)

f25 x(i+1)j ⊕ xij ⊕ x(i−1)j f38 x(i+1)j ⊕ xij ⊕ x(i−1)j

f26 x(i+1)j ⊕ xi(j−1) ⊕ xij ⊕ x(i−1)j f37 x(i+1)j ⊕ xi(j−1) ⊕ xij ⊕ x(i−1)j

f27 x(i+1)j ⊕ xi(j−1) ⊕ xij ⊕ xi(j+1) f36 x(i+1)j ⊕ xi(j−1) ⊕ xij ⊕ xi(j+1)

f28 x(i+1)j ⊕ xi(j−1) ⊕ x(i−1)j ⊕ xi(j+1) f35 x(i+1)j ⊕ xi(j−1) ⊕ x(i−1)j ⊕ xi(j+1)

f29 xi(j−1) ⊕ xij ⊕ x(i−1)j ⊕ xi(j+1) f34 xi(j−1) ⊕ xij ⊕ x(i−1)j ⊕ xi(j+1)

f30 x(i+1)j ⊕ xij ⊕ x(i−1)j ⊕ xi(j+1) f33 x(i+1)j ⊕ xij ⊕ x(i−1)j ⊕ xi(j+1)

f31 x(i+1)j ⊕ xi(j−1) ⊕ xij ⊕ x(i−1)j ⊕ xi(j+1) f32 x(i+1)j ⊕ xi(j−1) ⊕ xij ⊕ x(i−1)j ⊕ xi(j+1)

(�)! �ÛN��ÿÀ�Ý©a�!·�ò?Ø��[�gÄÅ�ÛN��ÿÀ�Ý©a.Ǒd,�E4�N�Xe:
T : SZ2 −→ SZ2

x = (xij) 7−→ (x̄ij),
(3.1)=

[T (x)]ij = x̄ij , ∀ (i, j) ∈ Z2.

T
UD

: SZ2 −→ SZ2

x = (xij) 7−→ (x(−i)j),
(3.2)
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n!��[�gÄÅ�©a=
[T

UD

(x)]ij = x(−i)j , ∀ (i, j) ∈ Z2.

T
LR

: SZ2 −→ SZ2

x = (xij) 7−→ (xi(−j)),
(3.3)=

[T
LR

(x)]ij = xi(−j), ∀ (i, j) ∈ Z2.

T
D

: SZ2 −→ SZ2

x = (xij) 7−→ (xji),
(3.4)=

[T
D

(x)]ij = xji, ∀ (i, j) ∈ Z2.d�E´�N�T , T
UD

, T
LRÚT

D´ëY���N�,KÙ_N�Ǒ´ëY�.Ïdk···KKK 3.1 N�T , T
UD

, T
LRÚT

DǑÓ�N�.du\5[�gÄÅ�ÛN��ÿÀ�Ý©aäkµ45,ǑBu?Ø,ùpEòÀJ\5[�gÄÅ?1�Ý©a.½½½nnn 3.1 d��[�gÄÅÛÜ5K½Â3ÎÒ�mSZ2þ�64�\5[�gÄÅ�ÛN�,�dÓ�N�T , T
UD

, T
LRÚT

D©¤18�ÿÀ�Ý�da(�L3-2).z�a¥��ÛN�äk�Ó�ÄåÆ5�.yyy²²²µ duz�ÿÀ�Ý�da�y²aq,�ùp�L5/ÀJáuÓ��dae��ÛN�f6, f7, f8, f9, f54, f55, f56Úf57 �Ǒ?Øé�.é∀x =

(xij) ∈ SZ2
,þã�ÛN��L«Ǒ

[f6(x)]ij = xij ⊕ x(i+1)j , ∀(i, j) ∈ Z2;

[f7(x)]ij = xij ⊕ xi(j−1), ∀(i, j) ∈ Z2;

[f8(x)]ij = xij ⊕ x(i−1)j , ∀(i, j) ∈ Z2;

[f9(x)]ij = xij ⊕ xi(j+1), ∀(i, j) ∈ Z2;

[f54(x)]ij = xij ⊕ xi(j+1), ∀(i, j) ∈ Z2;

[f55(x)]ij = xij ⊕ x(i−1)j , ∀(i, j) ∈ Z2;
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n!��[�gÄÅ�©a
[f56(x)]ij = xij ⊕ xi(j−1), ∀(i, j) ∈ Z2;

[f57(x)]ij = xij ⊕ x(i+1)j , ∀(i, j) ∈ Z2.Kk
(a)N�f8Úf6´ÿÀ�Ý�.|^Ó�N�T

UD

,é∀(i, j) ∈ Z2,

[T
UD ◦ f6(x)]ij = x(−i)j ⊕ x(−i−1)j ,

[f8 ◦ T
UD

(x)]ij = x(−i)j ⊕ x(−i−1)j .dx�?¿5kT
UD ◦ f6 = f8 ◦ T

UD

.Ïd�ÛN�f8Úf6´ÿÀ�Ý�.

(b)N�f6Úf57´ÿÀ�Ý�.|^Ó�N�T ,é∀(i, j) ∈ Z2,

[T ◦ f57(x)]ij = x(i+1)j ⊕ xij ,

[f6 ◦ T (x)]ij = x(i+1)j ⊕ xij .dux(i+1)j ⊕ xij = x(i+1)j ⊕ xij ,KT ◦ f57 = f6 ◦ T . Ïd�ÛN�f57Úf6´ÿÀ�Ý�.

(c)N�f7Úf9´ÿÀ�Ý�.|^Ó�N�T
LR

,é∀(i, j) ∈ Z2,

[T
LR ◦ f7(x)]ij = xi(−j) ⊕ xi(−j+1),

[f9 ◦ T
LR

(x)]ij = xi(−j) ⊕ xi(−j+1).dx�?¿5kT
LR ◦ f7 = f9 ◦ T

LR

.Ïd�ÛN�f7Úf9´ÿÀ�Ý�.

(d)N�f57Úf54´ÿÀ�Ý�.|^Ó�N�T
D

,é∀(i, j) ∈ Z2,

[f57 ◦ T
D

(x)]ij = xji ⊕ x(j+1)i,

[T
D ◦ f54(x)]ij = xji ⊕ x(j+1)i.dx�?¿5kT

D ◦ f54 = f57 ◦ T
D

.Ïd�ÛN�f54Úf57´ÿÀ�Ý�.aq/,|^T�f7Úf56, f9Úf54, f8Úf55©O´ÿÀ�Ý�. nþ¤ãk±e��ã¤á.

SZ2 T−−−→ SZ2 T
LR

−−−→ SZ2 T−−−→ SZ2 T
D

−−−→ SZ2 T−−−→ SZ2 T
UD

−−−→ SZ2 T−−−→ SZ2

f56



y f7



y f9



y f54



y f57



y f6



y f8



y f55



y

SZ2 T−−−→ SZ2 T
LR

−−−→ SZ2 T−−−→ SZ2 T
D

−−−→ SZ2 T−−−→ SZ2 T
UD

−−−→ SZ2 T−−−→ SZ2
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n!��[�gÄÅ�©aÏdf6, f7, f8, f9, f54, f55, f56Úf57áuÓ�ÿÀ�Ý�da.y..L3-2: 64�\5�ÛN��18�ÿÀ�Ý�da.?Ò �dae��ÛN� �dae��ÛN� ?Ò
1 f0 f63 f1 2
3 f62 f2 f3 f4 f5 4
5 f58 f59 f60 f61 f6 f7 f8 f9 f54 f55 f56 f57 6
7 f10 f12 f13 f15 f48 f50 f51 f53 f11 f14 f49 f52 8
9 f16 f19 f21 f24 f47 f44 f42 f39 10
11 f20 f25 f38 f43 12
13 f17 f18 f22 f23 f40 f41 f45 f46 14
15 f26 f27 f29 f30 f33 f34 f36 f37 f28 f35 16
17 f31 f32 18þão�Ó�N�T , T

UD

, T
LRÚT

D Ø=�é\5[�gÄÅ�ÛN�?1ÿÀ�Ý©a,
�é�\5��[�gÄÅ�ÛN�Ǒ´·^�.é��[�gÄÅ
ó,©[70]®ÏLü�Ó�N�ò256��ÛN�©Ǒ88�ÿÀ�Ý�da,�d�daê8Ǒ���.¯¢þ,·�uy3k��ÝÚ±Ï>.^�e,����ÝǑ4,Ò�r256�5K©Ǒ88a
.Ó�,·��Ñ�!����Ý�da�ê8Ǒ´���.�,,·��ÏLÙ��ÝN�5�¤Ó��©a�J,�dNeumann+��²¡(�±9T , T
UD

, T
LRÚT

D�AÛ¿Â���!�E�o�N�´���.

(n)! §S�O®�ÏLÓ�N�T, T
UD

, T
LRÚT

D�ò¤k��[�gÄÅ�ÛN�?1ÿÀ�Ý©a.,
,�©?Ø�[�gÄÅ5Kê8k4294967296�,ù´�����ê,^½n3.1��{<ó/?1©a,Ù¤I�O�þ����.AO/,é�½���ÛÜ5K,·�XÛU¯��é��Ù�d�5KQ?Ǒd,�!òéÿÀ�Ý©a?1§S�O,��¯$
k��©a.é?¿�½�5KN ,ÙÙ�¼êý�LǑ[β0, · · · , β30, β31]. K�35KN ′,��ÛN�TNÚTN ′�ÏL�ÝN�(Ø��ǑT) ïáåÿÀ�Ý'X. KkT ◦ TN ′ = TN ◦ T , l
TN ′ = (T )−1 ◦ TN ◦ T . ù�, ·��dN�ý�L��N ′�ý�LǑ [β31, β30, · · · , β0],Ù¥N ′ =
∑31

i=0 β31−i · 2i.=
[β0, · · · , β30, β31]

T−−−→ [β31, β30, · · · , β0]. (3.5)Ón
[β0, · · · , β30, β31]

T
UD

−−−→ [βi0 , βi1 , · · · , βi31 ],
(3.6)
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n!��[�gÄÅ�©aÙ¥ [i0, i1, · · · , i31] = [0, 16, 2, 18, 4, 20, 6, 22, 8, 24, 10, 26, 12, 28, 14, 30, 1, 17, 3, 19,

5, 21, 7, 23, 9, 25, 11, 27, 13, 29, 15, 31].

[β0, · · · , β30, β31]
T

LR

−−−→ [βi0 , βi1, · · · , βi31 ],
(3.7)Ù¥ [i0, i1, · · · , i31] = [0, 1, 8, 9, 4, 5, 12, 13, 2, 3, 10, 11, 6, 7, 14, 15, 16, 17, 24, 25, 20,

21, 28, 29, 18, 19, 26, 27, 22, 23, 30, 31].

[β0, · · · , β30, β31]
T

D

−−−→ [βi0 , βi1, · · · , βi31 ],
(3.8)Ù¥[i0, i1, · · · , i31] = [0, 8, 16, 24, 4, 12, 20, 28, 1, 9, 17, 25, 5, 13, 21, 29, 2, 10,

18, 26, 6, 14, 22, 30, 3, 11, 19, 27, 7, 15, 23, 31].'uo�Ó�N��m�'X�5�,·�k···KKK 3.2

(1)é?ÛT ∈ {T , T
UD

, T
LR

, T
D},kT 2 = Id, T−1 = T ,±9T ◦ T = T ◦ T ,Ù¥IdǑð�N�;

(2) T
UD ◦ T

LR

= T
LR ◦ T

UD

, T
UD ◦ T

D

= T
D ◦ T

LR

, T
LR ◦ T

D

= T
D ◦ T

UD

.yyy²²²µdo�Ó�N��½Â��(1)�(2)Ñ¤á.y..·�5¿�o�Ó�N��m�kT
UD

(T
LR

)�T
DØ���. Ó�, duT

UD ◦ T
D

= T
D ◦ T

LR� T
LR ◦ T

D

= T
D ◦ T

UD¤á, ¤±¿©A^ù
'Xª,N´�y···KKK 3.3 Id, T , T
UD

, T
LRÚT

D�ÏL¼êÎÜ$�)¤��+,Ù���êǑ16.3d, ·��Ñù�+�¤k��,©OǑ: g0 = Id, g1 = T , g2 = T
UD

,

g3 = T
LR

, g4 = T
D

, g5 = T ◦ T
UD

, g6 = T ◦ T
LR

, g7 = T ◦ T
D

, g8 = T
UD ◦ T

LR

,

g9 = T
UD ◦ T

D

, g10 = T
LR ◦ T

D

, g11 = T ◦ T
UD ◦ T

LR

, g12 = T ◦ T
UD ◦ T

D

,

g13 = T ◦ T
LR ◦ T

D

, g14 = T
UD ◦ T

LR ◦ T
D

, g15 = T ◦ T
UD ◦ T

LR ◦ T
D

.u´�da¥���ê�AÆXe:½½½nnn 3.2 dÓ�N�T , T
UD

, T
LRÚT

Dé��[�gÄÅÛÜ5K½Â3ÎÒ�mSZ2þ��ÛN�ÿÀ�Ý©a,z��da¥����êǑ16,8,4,2½1.yyy²²²µ é?¿��[�gÄÅÛÜ5KN , ÙÙ�¼êý�LǑy =

[β0, · · · , β30, β31], PN Ǒ5KN��Ý�da, |N |ǑN ¥����ê. w,,

g0(y) = y.eé∀i ∈ {0, 1, · · · , 15}, gi(y)pØ��,K|N | = 16.Ø,,K�3i, j ∈
{0, 1, · · · , 15}��gi(y) = gj(y).ù�·�I��ÄC2

16��ª,/Ï(3.5)—(3.8)·
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n!��[�gÄÅ�©a���O§S�¤dy²L§.e¡·�ÀJo��L5��ª�Ñy².

(a) eg1(y) = y,Kd·K3.2�g2(y) = g5(y), g3(y) = g6(y), g4(y) = g7(y),

g8(y) = g11(y), g9(y) = g12(y), g10(y) = g13(y), g14(y) = g15(y). ù¿�XN ¥���ò~�8�.aq/�±y²,ei ∈ {1, 2, 3, 4}��gi(y) = y,KN Ñò~�8�.

(b)eg5(y) = y,Kg1(y) = g2(y). l
¿©|^·K3.2¥��ª,kg6(y) =

g8(y), g7(y) = g10(y), g9(y) = g15(y), g3(y) = g11(y), g12(y) = g14(y), g4(y) =

g13(y). ù�N ¥���Ǒò~�8�.aq/�±y²,ei ∈ {5, 6, 7, 8, 9, 10}��gi(y) = y,KN Ñò~�8�.

(c) eg11(y) = y,Kg1(y) = g8(y). d·K3.2�g5(y) = g3(y), g6(y) = g2(y),

g7(y) = g14(y), g12(y) = g10(y), g13(y) = g9(y), g15(y) = g4(y).KN ¥���ò~�8�.aq/�±y²,ei ∈ {11, 12, 13, 14}��gi(y) = y,KN Ñò~�8�.

(d) eg15(y) = y, Kg14(y) = g1(y). l
kg13(y) = g2(y), g12(y) = g3(y),

g11(y) = g4(y), g7(y) = g8(y), g6(y) = g9(y), g5(y) = g10(y). KN ¥���ò~�8�.ù�,XJk�éi, j ∈ {0, 1, · · · , 15}��gi(y) = gj(y),KN ¥���ò~�8�.?
,e��3,�éi′, j′��gi′(y) = gj′(y),KN ¥���ò?�Ú~�4�,±daí.ªþ¤ã,·���|N |Ǒ16, 8 ,4, 2,½1.y..¢¢¢~~~ y�Ä�Ù1�!�ÛÜ5KN0 = 4210689285,ÙÙ�¼êý�LǑ
y = [1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 1, 1, 1, 1, 1, 0, 1, 0, 1, 1, 1, 1, 1].Kk
g3(y) = y, l
�g6(y) = g1(y), g8(y) = g2(y), g10(y) = g14(y), g5(y) = g11(y),

g7(y) = g12(y), g9(y) = g4(y), g13(y) = g15(y). ù�,�N0ÿÀ�Ý�d�5Kk8�,ÙÙ�¼êý�L©OǑ:

g1(y) = [0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 1, 1, 1, 1, 1, 0, 1, 0, 1, 1, 1, 1, 1, 0, 1, 0];

g2(y) = [1, 0, 1, 0, 0, 1, 0, 1, 1, 0, 1, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1];

g3(y) = [1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 1, 1, 1, 1, 1, 0, 1, 0, 1, 1, 1, 1, 1];

g4(y) = [1, 1, 0, 0, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1];

g5(y) = [0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 1, 0, 1, 0, 0, 1, 0, 1, 1, 0, 1, 0];

g7(y) = [0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 1, 1, 0, 0];

g10(y) = [1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1];
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n!��[�gÄÅ�©a
g13(y) = [0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0].
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o![�gÄÅ�ÄåÆ1Ǒo! [�gÄÅ�ÄåÆ1Ǒ
(�)! ��[�gÄÅ�ÄåÆ5�é��[�gÄÅ
ó,�·��G�8ǑS = {0, 1},Ù���»r = 1�,K¡Ǒ��[�gÄÅ.Ïd, z�5K�Ù�¼êý�L�L«ǑL4-1. l
½Â��[�gÄÅ�ÛÜ5K?ÒǑ N =

7∑

j=0

αj · 2j, αj ∈ {0, 1}, j =

0, 1, · · · , 7. w,,�k223
= 256�ÛÜ5K.ù�dý�L4-1�½Â256��ÛN�.ǑBu?Ø,PHNǑ��[�gÄÅ5KN��ÛN�.~X,5K56½Â��ÛN�H56Ǒ[70]: é∀x ∈ SZ ,

[H56(x)]i = xi−1 · x̄i ⊕ x̄i−1 · xi · xi+1, ∀ i ∈ Z. (4.1)L4-1.��[�gÄÅ5K�Ù�¼êý�L.

xi−1 xi xi+1 yi

0 0 0 α0

0 0 1 α1

0 1 0 α2

0 1 1 α3

1 0 0 α4

1 0 1 α5

1 1 0 α6

1 1 1 α7��[�gÄÅ�ÛN��ÎÒÄåÆ1Ǒ�ïÄ3��¡��
u�,¤J'�´L.~X, 'u\5�!÷�!�ÝëY�!�*Ü�±9���(permutive)[�gÄÅ�ÄåÆ1Ǒ©Û�é'���[46, 50, 53, 58−60]. �´,E,kNõ�ÛN��ÎÒÄåÆ1Ǒ���$�,
Ù´�
äkÊ·5�[�gÄÅ.AO���J�´,g2002
±5, L.O. Chua�Ç�<(Ü���[� ²�ä�ïÄ¤J^��5ÄåÆ�g�éWolfram�O�Å�[(J��
�X�êÆþ�Ǒx[62−67], 4�/íÄ
<�3nØþ?�Úé��[�gÄÅ�ïÄ.3dÄ:þ,©[71-75]lÎÒÄåÆ�ÆÝ�[/Ǒx
Bernoulli5K�ÄåÆ5�Ú·b5G.e¡�Ñ
Ü©®��(Ø,Ǒ�Bå�,±eò�ÀJáuÓ��da¥�,��ÛN�?1�ã.···KKK 4.1[70] 256���[�gÄÅ�ÛN��©Ǒ88�ÿÀ�Ý�da.
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o![�gÄÅ�ÄåÆ1Ǒ···KKK 4.2[51−53] éu��[�gÄÅ5K15, 30, 45, 60, 90, 105, 106, 150,

154Ú170,Ù½Â��ÛN�3SZþÿÀ·Ü,�ÿÀ��u0.···KKK 4.3[71−75] Bernoulli5K2, 3, 11, 37, 42Ú56Ù½Â��ÛN�3SZþPk·b�fXÚ.e¡,·��[/ǑxBernoulli5K56ÚE,Bernoulli5K (Complex Bernoulli

rule[65])183ÎÒ�mSZþ�ÄåÆ1Ǒ.

1!H56�ÄåÆ5�3k��ÝÚ±Ï>.^�e,©[63]Ú\
[�gÄÅAÆ¼ê(characteristic

function)�Vgé256�5K?1
êi�[,l�þ�O�Å�[(J��5K56äkü�°�5Bernoulli-shiftáÚf. Ǒ
/�/`²5K56�Bernoulli-

shiftAÆ,·��Ñ
Ù��üzã(�ã4-1!ã4-2!ã4-3Úã4-4).�!ò3V>�¡�^�ey²d(Ø,¿ǑxH56�ÄåÆ5�.

ã4-1: 5K56�^�g[�S���£Ä� .
ã4-2: 5K56�^�g[�S��m£Ä� .

ã4-3: 35K56�^e,�m£ �p-E¿��i(1, 1)���.

ã4-4: 5K56�^�ÅÀJ�[�S��üzã.···KKK 4.4 éu�ÛN�H56, �3��f8ÜΛ ⊂ SZ, ���∀x ∈ Λ,
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o![�gÄÅ�ÄåÆ1Ǒ
T56(x) = σ(x)��=�∀x ∈ Λ, ∀i ∈ Z k

x[i−1,i+1] ∈ {(0, 0, 0), (0, 1, 0), (0, 1, 1), (1, 0, 1), (1, 1, 0)}.yyy²²²µ (777���555) b��3Λ ⊂ SZ��x ∈ ΛkH56(x) = σ(x),=[H56(x)]i =

[σ(x)]i = xi+1, ∀i ∈ Z. Kd(4.1)��xi−1 · x̄i ⊕ x̄i−1 · xi · xi+1 = xi+1, ∀i ∈ Z.XJxi = 0, Kxi−1 = xi+1; XJxi = 1, Kxi−1 · xi+1 = 0. Ïd, x[i−1,i+1] ∈
{(0, 0, 0), (0, 1, 0), (0, 1, 1), (1, 0, 1), (1, 1, 0)},∀i ∈ Z.

(¿¿¿©©©555) b��3Λ ⊂ SZ��∀x ∈ Λ,∀i ∈ Z,k x[i−1,i+1] ∈ {(0, 0, 0), (0, 1, 0),

(0, 1, 1), (1, 0, 1), (1, 1, 0)}. l
, d5K56�Ù�¼êý�L��[H56(x)]i =

xi+1, ∀i ∈ Z. Ïd, [H56(x)]i = [σ(x)]i = xi+1, ∀i ∈ Z. =H56(x) = σ(x), ∀x ∈ Λ.y..aq?Ø��:···KKK 4.5 éu�ÛN�H56, �3��f8ÜΛ̃ ⊂ SZ , ���∀x ∈ Λ̃,

H56(x) = σ̃(x)��=�∀x ∈ Λ̃, ∀i ∈ Z k
x[i−1,i+1] ∈ {(0, 0, 0), (0, 0, 1), (0, 1, 0), (1, 0, 0), (1, 0, 1)},Ù¥[σ̃(x)]i = xi−1Ǒm£ N�.d·K4.4Ú·K4.5��½½½nnn 4.1 Λ = ΛAÚ Λ̃ = ΛBÑ´k�.f£ ,Ù¥

A = {(0, 0, 0), (1, 0, 1), (1, 1, 0)}Ú
B = {(0, 0, 0), (0, 1, 0), (1, 0, 0), (1, 0, 1)}©O´§��û½XÚ.·�PC = {(0, 0, 0), (0, 0, 1), (0, 1, 0), (0, 1, 1), (1, 0, 0), (1, 0, 1), (1, 1, 0)},Kd5K56�Ù�¼êý�L��ÚÚÚnnn 4.1

(1) ΛA

⋃
ΛB ⊆ ΛC ;

(2)é?Ûx ∈ SZ , H56(x) ∈ ΛC ;

(3)é?Ûx ∈ ΛC ,e(0, 0) ⊀ x,Kx ∈ ΛA ;e(1, 1) ⊀ x,Kx ∈ ΛB.d5K56���üzã4-3Úã4-4��
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o![�gÄÅ�ÄåÆ1Ǒ½½½nnn 4.2 ΛA

⋃
ΛB´H56��ÛáÚf,=⋂

n≥0

Hn
56(S

Z) = ΛA

⋃
ΛB.yyy²²²µ dÚn4.1��,�yΛA

⋃
ΛB´H56��ÛáÚf,·��Lyé?Ûx ∈ ΛC ,e(0, 0)Ú(1, 1)Ñ´x�i,Kx3H56��^eòª�uΛA

⋃
ΛB.y©ü«�¹�Ä:

(a) (0, 0)´1��Ñy3(1, 1)�>�i.Ø���5,b�
x[1,2n+4] = (0, 0, 1, 0, · · · , 1, 0

︸ ︷︷ ︸

2n

, 1, 1).â·K4.4Ú·K4.5,N´�y
[H56(x)][k,k+1] =







(0, 0), e k = 2;

(1, 0), e k = 3, · · · , 2n + 1;

(1, 1), e k = 2n + 2.Ïd,·�k(1, 1) ⊀ [Hn
56(x)][1,2n+4].

(b) (0, 0)´1��Ñy3(1, 1)m>�i.Ó���
x[1,2m+4] = (1, 1, 0, 1, · · · , 0, 1

︸ ︷︷ ︸

2m

, 0, 0),Kk[H56(x)][k,k+1] = (0, 1), k = 2, · · · , 2m+3.l
k(1, 1) ⊀ [Hn
56(x)][3−n,2m+2+n].ù¿�X lim

n→∞
Hn

56(x) ∈ ΛA

⋃
ΛB.Ó�(ÜÚn4.1(2),·�ké?Ûx ∈ SZ , lim

n→∞
Hn

56(x) ∈ ΛA

⋃
ΛB.y..duH563ΛÚ Λ̃þÄåÆ1Ǒ©O�duk�.f£  Λ = ΛAÚ Λ̃ =

ΛB�ÄåÆ1Ǒ,¤±e¡·�ÏLùü�k�.f£ �ÄåÆ5�5ǑxH563ΛÚ Λ̃þÄåÆ5�.···KKK 4.6

(1)�ΛAÿÀ�Ý�2�f£ �=£�
Ǒ
A =











1 0 0 0 0

0 0 0 1 0

0 0 0 0 1

0 1 1 0 0

0 0 0 1 0











;

(2) H563ΛAþØÿÀ·Ü;
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o![�gÄÅ�ÄåÆ1Ǒ
(3) H563ΛAþ�ÿÀ�Ǒlog

1

2
(1 +

√
5) ≈ 0.4812.yyy²²²µ (1)d=£Ý
�½Â2.1ØJ���ΛAÿÀ�Ý�2�f£ �=£�
Ǒ

A =











1 0 0 0 0

0 0 0 1 0

0 0 0 0 1

0 1 1 0 0

0 0 0 1 0











.

(2)´�,é?¿��ênkAn�1�1©ª´ (1, 0, 0, 0, 0),Kâ·K2.2(2)�
H563ΛAþØÿÀ·Ü.

(3)duü�ÿÀ�Ý�;�XÚäk�Ó�ÿÀ�,Ó�Ý
A�����AÆ�Ǒ1

2
(1 +

√
5),â·K2.2(1)�k�.f£ ΛA�ÿÀ�Ǒlog

1

2
(1 +

√
5).l
,d·K4.4Ú½n4.1�H563ΛAþ�ÿÀ�Ǒlog

1

2
(1 +

√
5) ≈ 0.4812.y..�â·K4.6,H563ΛAþØÿÀ·Ü.�e38ÜΛA¥�K:(0)�,KH56´ÿÀ·Ü�,Ù¥(0) = (· · · , 0,

∗

0, 0, · · · ). ¯¢þ, ΛA ′ = ΛA \ {(0)},Ù¥A ′ =

{(0, 1, 0), (0, 1, 1), (1, 0, 1), (1, 1, 0)}.
�f£ ΛA ′ÿÀ�Ý�2�f£ �=£Ý
Ǒ A′ =









0 0 1 0

0 0 0 1

1 1 0 0

0 0 1 0









.´�,�n ≥ 6�, (A′)n¥�z���Ñ�K.Ó�,f£ ΛA ′�ÿÀ��Î�ulog
1

2
(1 +

√
5).Ónk···KKK 4.7

(1)�ΛBÿÀ�Ý�2�f£ �=£�
Ǒ
B =











1 1 0 0 0

0 0 1 0 0

0 0 0 1 1

1 1 0 0 0

0 0 1 0 0











;

(2) H563ΛBþÿÀ·Ü;

(3) H563ΛBþ�ÿÀ�Ǒlog
1

2
(1 +

√
5) ≈ 0.4812.
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o![�gÄÅ�ÄåÆ1Ǒ(Ü·K4.6�·K4.7,·���½½½nnn 4.3

(1) H563Ù�ÛáÚfþØÿÀ·Ü;

(2) H563Ù�ÛáÚfþ�ÿÀ��u0.du�ÿÀ�%ºXLi-Yorke¿Âe�·b,
ÿÀ·Ü5%ºXõ«¿Âe�·b,XDevaney¿Âe�·b,=7¢¿Âe�·b��.ªþ¤ã,·�k½½½nnn 4.4 H563fXÚΛA ′ÚΛBþQäkLi-Yorke¿Âe�·b, qäk
Devaney¿Âe�·b.Ó�, H563Ù�ÛáÚfþäkLi-Yorke¿Âe�·b.

2!H18�ÄåÆ5���[�gÄÅ5K18½Â��ÛN�H18Xe[70]: é∀x ∈ SZ ,

[H18(x)]i = x̄i · (xi+1 ⊕ xi−1), ∀ i ∈ Z. (4.2)···KKK 4.8

(1)é∀y ∈ SZ,e(1, 1, 1) ≺ y,K3H18eyvk��;

(2)é∀y ∈ SZ ,e�3�ê«mI = [i, j]��y[i,j] = (0, 1, 1, 0, · · · , 0, 1, 1, 0),K3H18eyvk��,Ù¥ j−4∑

k=i+4

yk(mod 2) = 1.yyy²²²µ d5K18�Ù�¼êý�L�(1)¤á. e¡·�ò^�y{��(2)Ǒ¤á.b�x ∈ SZÒ´y���. Ø���5, �I = [0, n], Ky[0,3] = y[n−3,n] =

(0, 1, 1, 0)Ú n−4∑

k=4

yk(mod 2) = 1. d5K18�ý�L� x[0,3] = x[n−3,n] = (1, 0, 0, 1).Ó�,d(4.2)�






y2 = x̄2 · x1 ⊕ x̄2 · x3

y3 = x̄3 · x2 ⊕ x̄3 · x4

· · · · · · · · ·
yn−3 = x̄n−3 · xn−2 ⊕ x̄n−3 · xn−4

yn−2 = x̄n−2 · xn−3 ⊕ x̄n−2 · xn−1.

(4.3)

Ïd,·�kn−2∑

k=2

yk(mod 2) =
n−4∑

k=4

yk(mod 2) = 1. 5¿�x̄i · xj ⊕ x̄j · xi = xi ⊕
xjÚxi⊕xi = 0,r�§|(4.3)�m>�Ü�\� x̄2·x1⊕x2⊕xn−2⊕x̄n−2·xn−1 = 0,ù��
gñ.y..
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o![�gÄÅ�ÄåÆ1Ǒ···KKK 4.9 é∀y ∈ SZ , e(1, 1) ⊀ y, K3H18ey�3����x ∈ SZ��(1, 1, 1) ⊀ x.yyy²²²µdu(1, 1) ⊀ y,¤±yi = 1¿�Xyi−1 = yi+1 = 0.l
,kx[i−1,i+1] =

(1, 0, 0)½(0, 0, 1). Ø���5, ·�b�y[0,n+1] = (1, 0, · · · , 0
︸ ︷︷ ︸

n

, 1), n ≥ 1. w,,

x[−1,1] = (1, 0, 0)��=�x[n,n+2] = (0, 0, 1).y©O�Ä:

(a)ex[−1,1] = (1, 0, 0).´�,�3���x[−1,n+2] = (1, 0, · · · , 0, 1)��
[H18(x)][0,n+1] = y[0,n+1].

(b) ex[−1,1] = (0, 0, 1). -x[2,n−1]��i(1, 1) Ú(0, 0)ÑØÑy, K��y[H18(x)][0,n+1] = y[0,n+1]. ?
, 3þãü«�¹¥, (1, 1, 1) ⊀ x[−1,n+2]. y.. Ǒ?Ø�B, P∆Ǒ·K4.8���¤kvk���:|¤�8Ü. â·K4.9��, e(1, 1) ⊀ y, K3H18ey���kéõ, 
Ù´�±����di(1, 0)Ú(0, 1)�¤���x,��x ∈ ∆. 3�!e¡�?Ø¥,PΛ = SZ − ∆.du∆´��m8,KΛ´4�.l
k½½½nnn 4.5 H18(S
Z) = Λ,=Λ´H18��ÛáÚf.,	,©[76]�Ñeé[�S��C�

{

0 −→ (0, 0)

1 −→ (1, 0),
(4.4)K5K18�^dS�üg���(JT��u\55K90�^�g. Ǒd,·�k�E#�ÎÒ�mS̃Z, ¿3d�mþ½ÂålǑ(2.1),Ù¥S̃ = {00, 10}.-Λ′Ǒ÷ve�^��¤kV>S�z ∈ SZ|¤�8Ü: ∀i ∈ Z,

{

zi = 1 =⇒ zi+1 = 0

zi = 0 =⇒ zi+1 = 0.Kd·K4.9�···KKK 4.10 (Λ′, H18)Ǒ(SZ , H18)�fXÚ.·�½Â¬N�BÚº�N�RXe:

B : SZ −→ S̃Z

x 7−→ y
(4.5)
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o![�gÄÅ�ÄåÆ1ǑÙ¥yi = [B(x)]i =

{

00,e xi = 0

10,e xi = 1.

R : S̃Z −→ Λ′

y 7−→ z
(4.6)Ù¥zi = [R(y)]i =

{

1,eiǑóê�y i
2

= 10

0, Ù� ,�Λ′ = R(S̃Z) ⊆ SZ.´�N�BÚRÑ´Ó�N�.Ó�,dC�(4.3)��···KKK 4.11 eã���
SZ B //

H90

��

S̃Z
R // Λ′

H2
18

��
SZ B // S̃Z

R // Λ′.l
k½½½nnn 4.6 (Λ′, H2
18)�(SZ , H90)ÿÀ�Ý.duH90�ÄåÆ1Ǒ®���\�ïÄ,®�
Nõ¤��(Ø,l
(Ü·K(4.2)��½½½nnn 4.7

(1) H183Λ′þÿÀ·Ü;

(2) H183Λ′þ�ÿÀ��ulog 2;

(3) H183�ÛáÚfΛþ�ÿÀ�Ø�ulog2.

(�)! ��[�gÄÅ�ÄåÆ5�d½n2.4����ÎÒÄåXÚ(SZ2
, σ01)���ÎÒÄåXÚ(SZ, σ)�m´ÿÀ��Ý�,Äudg���{,�!òïá��[�gÄÅ�ÛN����[�gÄÅ�ÛN��m�ÿÀ��Ý�'X.Ǒd,·�½ÂN�Xe:

h1 : SZ2 −→ SZ

(xij) 7−→ (x0j).
(4.7)Ú

h2 : SZ2 −→ SZ

(xij) 7−→ (x0(j−i)).
(4.8)
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o![�gÄÅ�ÄåÆ1Ǒ½½½nnn 4.8 ��[�gÄÅ�ÛN����[�gÄÅ�ÛN��ÏLh1½h2ïáÿÀ��Ý'X.yyy²²²µ Äk, ÏLaqu½n2.4¥�y²�{��h1Úh2Ñ´ëY�÷�. ey: é?Û��[�gÄÅ�ÛN�Ti,�ÏLh1Úh2©O½Â����[�gÄÅ�ÛN�. ¯¢þ, é∀y ∈ SZ, duh1Ǒ÷�, K�3x ∈ SZ2
, ��y = h1(x).K½Â�ÛN�HǑ:

H : SZ −→ SZ

y 7−→ h1 ◦ Ti(x)
(4.9)Ù¥yj = [h1 ◦ Ti(x)]j , ∀j ∈ Z.du�©æ^Neumann+�,¤±d(4.9)½Â�N�H=Ǒ,���[�gÄÅÛÜ5Kp���ÛN�.l
,eã���.

SZ2 Ti−−−→ SZ2

h



y



yh

SZ H−−−→ SZ .y..ù���[�gÄÅǑ��[�gÄÅ�*¿,
��[�gÄÅK´��[�gÄÅ�Ïf.¯¤±�,ÄåXÚ�Ø%¯K´;��ìC5�½ÿÀ(�,
;�ìC5�dω-4�8£ã.��:3)¤§�ω-4�8�Ó�,Ǒ)¤§4�áÚ¥%ÚXÚ�ØCÿÝ.Ǒ,ÿÀ��Ý�ü�;�XÚ,ÙÄåÆ1Ǒ�±�Ø��,�3ÿÀ��Ý�^�eǑÓ��±�±XÚ�,
ÿÀØC5. ~X,*¿�ÿÀ�Ø�uÏf�;©[77]Ú?
4�CX�Vg,���±3*¿¥é�,�fXÚ,§�Ïf35�þ��C;©[78]Ǒ�[/?Ø
ÿÀ��Ý�ÄåXÚ�ØÄ:8,±Ï:8,A�±Ï:8, ω-4�8,�i�:8��m�'X.ù�,â½n4.8,þã(ØÑ�A^�é��[�gÄÅ�ÛN��ïÄ¥.AO/,du�Ü©��[�gÄÅ�ÛN��ÿÀ�®��O�½�O,ù��O��[�gÄÅ�ÛN��ÿÀ��5
4���B.e·�òÿÀ��ÝN�h1Úh2��3,�8Üþ,K��h1Úh2ǑÿÀ�ÝN�.Ǒd,½ÂSZ2�f8Xe:

Λ1 = {x = (xij) ∈ SZ2 | xij = x0j , ∀(i, j) ∈ Z2}; (4.10)
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Λ2 = {x = (xij) ∈ SZ2 | xij = x0(j−i), ∀(i, j) ∈ Z2}. (4.11)�ok···KKK 4.12 h1|Λ1Úh2|Λ2Ñ´Ó�N�.�d,·�Ò�ÏL��[�gÄÅ�ÛN��ÄåÆ5�oÑ�����[�gÄÅ�ÛN��ÄåÆ5�.¢¢¢~~~ �Ä��[�gÄÅ5K18,d½n4.8���ÛN�

T1 : SZ2 −→ SZ2

(xij) 7−→ (x̄ij · (x(i+1)j ⊕ x(i−1)j))
(4.12)Ú

T2 : SZ2 −→ SZ2

(xij) 7−→ (x̄ij · (xi(j+1) ⊕ x(i+1)j))
(4.13)Ñ´�H18ÿÀ��Ý�. â·K4.12�(Λ1, T1)Ú(Λ2, T2)©O�(SZ, H18)´ÿÀ�Ý�. ù�½n4.7¥�(Ø3(Λ1, T1)Ú(Λ2, T2)¥Ǒ��¤á. AO/,

(SZ2
, T1)�(SZ2

, T2)�ÿÀ�Ø�ulog 2.

(n)! Ê·[�gÄÅ5K�3þ�­V30
���ÿ,<�Òuy
�«O�XÚ�mdu�±�p�[¤�5��d5. u´,<�ß�,ǑNg,¥���O�ÑØ¬�L<�u²��«O��.¤U9���.ù�ß��¡Ǒ£Û!ã(ØK(Church-

Turing Thesis)[79, 80],=: ?Û�«�k�O�L§Ò´ã(Å�O��L§. �L5`,ã(Å�O�5Ò´k�O��½Â.ÏǑ?Û��O�L§Ñ�±^ã(Å5O�,¤±<�q¡ã(Å´�aäkÊ·O�5,{¡Ê·5�XÚ.�o,?Û�a��[¤kã(Å�O�XÚǑ´�aäkÊ·5�XÚ(universal computation).Ê·5´���~­��Vg,§¿�X��ØÓXÚ�m�,«��þ��d'X.3[�gÄÅù��ap¡, Ǒ�3XÊ·[�gÄÅ,§äkÊ·ã(Å�O�Uå,�ã(Å�d,ǑÒ´`�½·���©^�,§U
�[?Û�«O�Å.Ù¥,�Í¶�Ê·[�gÄÅǑConwayu1970
JÑ�)·iZ[43](game of life),§´����[�gÄÅ.)·iZ´äk�)Ä�ãYÚÄ�(�Uå���gÄÅ�.,§U�)´L�!k��ãY.ù
ãY�¹X3aÄ�(�:
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o![�gÄÅ�ÄåÆ1Ǒ111���aaa: 3S�L§¥,[�+Ø¬UCÙG�(/G);111���aaa: 3S�L§¥,[�+¬3k��S�gêS±ÏÌ�ÙG�(/G),�Í¶��LÒ´¤¢�“ð1�”(blinker);(�ã4-5)111nnnaaa: ´1�a�ò�,Ø
¬±ÏÌ�ÙG�(/G)�	,�¬­½/£Ä,�k¶��LÒ´¤¢�“w�Å”(glider).(�ã4-6)�w�Åù«¬£Ä¿�±/��(�,q�U
3)·iZ¥�üD4ÕÒ�ÆÚ.U
�)w�Å�)·iZ,�LX§äkÕÒ;��ÕÒD4�õU,
ÕÒ�;��D4´)ÔüzÅ��­�AÆ,Ǒ´ï���>M�7�^�.Ó�/, ConwayǑ�Ñ,�1�w�Å�±��¤A6ØE� �,w�ÅeU�Ù�w�Å�|©�(Ü,B�±�ÎÒ$�.~Xw�Å�-E��uÜ6¹,\�Å+ǑÑ\,
-E���¡ǑÑÑ, Conwaŷ êÆ�y²)·iZ3Ü6þ,v±ºXõ^åê >M��ÜõU.

oo //

ã4-5:)·iZüz¥�«ð1�,=Ǒ±Ï2�Ì�/G.,	,3��[�gÄÅ¥, Wolfram�Ï�Mathew Cooky²
5K110́äkÊ·5�,ù´8
Ǒ��{ü�|±Ê·O��XÚ.��5¿�´: y²5K110́ Ê·��{�~ÛA.§¿Ø�Ù§y²Ê·5��{��l.�5K�å,
´ÏL*	110[�gÄÅZyÑ�s«þ�5ÆÑu�.Ïd,ù´�«É~qJ�,lã/Ñu�y²�{. e¡�«
5K1103���Å��©^�e�üz�¹,�ã4-7.lÙüzã¥�±wÑ§Pk�þ�aq“w�Å”(glider-like)�(�,lÎÒÄåÆÆÝùÒ´�«£ .ù
w�Å3Ó��“±�”(ether)þ?1£Ä,Ù¥�Ü©��£Ä.du§�£Ä���Ú�ÝØ��Ó,¤±¬Ñyéõ-E(collision).ù
-Ek���#w�Å�)¤,k�K��u±�¥
. ,	,ÛÜ�[�+¬�p�^
�)w�Å½ö#�(�—“w�l”(glider gun).ù�,5K110�üzØ�ECA5K90��·Ï�¡,ǑØ�ECA5K56���k�mü«£ .
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ã4-7: ECA5K110�^3�ÅÀJ�[�S��üzã.

// //

wwoooooooooooooooooooooooooooooooo

// //

wwoooooooooooooooooooooooooooooooo

// //

ã4-6:)·iZüz¥�«w�Å,=Ǒ±Ï20�Ì�/G,Ó�����meÆ?1w�.···KKK4.13[69] ��[�gÄÅ5K110äkÊ·5.®�5K110��ÛN�Ǒ[H110(x)]i = xi ⊕ xi+1 ⊕ xi · xi+1 ⊕ xi−1 · xi · xi+1,

∀x ∈ SZ, ∀i ∈ Z. d½n4.8��,3��[�gÄÅ¥·��±é�5KN ,�
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o![�gÄÅ�ÄåÆ1Ǒ�TN�H110ÿÀ��Ý.?�Ú,·��E��[�gÄÅ�ÛN�Xe:

T : SZ2 −→ SZ2

x 7−→ T (x)
(4.14)Ù¥[T (x)]ij = xij ⊕ xi(j+1) ⊕ xij · xi(j+1) ⊕ xi(j−1) · xij · xi(j+1), ∀ (i, j) ∈ Z2.

T ′ : SZ2 −→ SZ2

x 7−→ T ′(x)
(4.15)Ù¥[T ′(x)]ij = xij ⊕ xi(j+1) ⊕ xij · xi(j+1) ⊕ x(i+1)j · xij · xi(j+1), ∀ (i, j) ∈ Z2.d(4.14)Ú(4.15)��,�ÛN�TÚT ′�Ù�¼êý�L©OǑ:

bT = [0, 0, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 0, 0]Ú
bT ′ = [0, 0, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0],K�A�5K?ÒǑNT = 1023163644ÚNT ′ = 1010629884.½½½nnn 4.9 ��[�gÄÅNT = 1023163644ÚNT ′ = 1010629884Ñ´Ê·[�gÄÅ.yyy²²²µ d·K4.11Ú·K4.12��, (Λ1, hi)�(SZ , H110)´ÿÀ�Ý�, Ù¥i = 1, 2. duÿÀ�Ý�ü�XÚ�±w�Ó��XÚ,Ïd��[�gÄÅ5KNT = 1023163644ÚNT ′ = 1010629884ÑäkÊ·5.y..aqu1nÙ1n!¥¢~��{,ÏLÓ�N�T , T

UD

, T
LRÚT

D·��±é��þãÊ·[�[�gÄÅ5KÿÀ�Ý�5K.äN/,ù2�ÿÀ�Ý�daǑ
S1 = {1023163644, 1072709616, 1515911930, 1600123120,

2694882725, 3234054339, 4026789891, 4042261765}�
S2 = {267452400, 268431600, 1010629884, 1061155056,

1526356730, 1609588720, 2054847098, 2088533116,

2695209125, 2711724449, 3233858499, 3250700737,
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4026593295, 4026920965, 4042260495, 4042261251}½½½nnn 4.10 �daS1�S2¥�5KÑ´��Ê·[�gÄÅ5K,�24�.

(o)! �[�!òÀ�Ê·[�gÄÅ5KNT = 1023163644,éÙüz?1êi�[, À^�êÆ^�ǑMathematica 6.0. Ǒ?Ø�B, ·�k�Ñ±ePÒ.��[�gÄÅ÷v±Ï>.^�,km × n�[�|¤, z�[�PǑCij

(i = 1, · · · , m, j = 1, · · · , n). ¤±,3/ªþd[�gÄÅzÚ�üzG�Ñ´��m × n�Ý
,PǑC = [α1, · · · , αn]
T ,Ù¥αi´m�1�þ, i = 1, · · · , n. ·�^çÚ���LG�“1”, xÚ���LG�“0” (�ã4-8).z�ã¥�Þþ�

“τ = k”¿�Xl�©G���Þ¤�G�¤IS��gê,Ù¥kǑ��ê.

ã4-8:��[�gÄÅ���üzG�.
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9ã4-9: α1, α2, · · · , α9�mp�Õá?1üz,pØZ6.***			1 5Küz3R���þÕá.d(4.14)��,[�Cij3e��Ǒ�����ûuÙ�!mü��ØCi(j−1)�
Ci(j+1)3dǑ���,
�Ùþ!eü��Ø�'.ù¿�Xα1, · · · , αn´�pÕá�.XJ·�rz�αiw�´ÕÒ,Kd5K�U�Y²��D4ÕÒ,
R�
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o![�gÄÅ�ÄåÆ1Ǒ��þ�ØZ6(�ã4-9).ù�,duECA5K110́ Ê·�,=�duÊ·ã(Å,K����[�gÄÅ5KNT�½Âm�Õá�Ê·ã(Å.ù½NǑ¿1&E?nÚ¿1O��Jø

N�Ï.***			2 A�vk�½(��[�+.3��[�gÄÅ¥, 5K110�ØÄ:Ǒz�[�Ñ�G�“0”. d*	1�,35KNT�S�L§¥,�kz�[�Ñ´xÚâU��Ù/�Øu)UC.Ó�,�·��	�©G�C¥,�[�+�,Ùüz¬aqUÄ�ffÁ,Øä�Y²��ò�(�ã4-10).l
,�/¤aq�)·iZ�ð1�Úw�Å�U�Ä��Y²��þ�[�,
Ø�U´ÛÜ�,�[�+.
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ã4-10:5KNT�^u,��©G�,ÙüzãaquUÄ�ffÁ,Øä�Y²��ò�;¢�þdL§Ǒ±Ï144�Ì�(�.***			3 ��y�.
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o![�gÄÅ�ÄåÆ1Ǒdã4-11��,�©G�¥z�αiÑáuù�áÚä(basin tree).Ïd,3S���½�Ǒ,üzãòÑy��y�(�ã4-12).
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ã4-11: ECA5K1103[��ÝǑ10�áÚä.
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10ã4-12:�©G�¥α1, α3, α5Úα7, α93S�5g�©OÑ��ÓÚ, =��y�.***			4 ±ÏÑl�Æ.
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o![�gÄÅ�ÄåÆ1Ǒ3�©G�C¥,eαi�αjáuü�ØÓ�áÚä,KC�±Ïòk�U��ùü�áÚä±Ï���ú�ê(�ã4-13).,	, ECA5K110�±Ï´Ñl�Æ�,K5KNT�±ÏǑòÑl�Æ.
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�©G�C35KNT�^e±ÏǑ21.
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ã4-14:5KNT3�Å�©^�e�üzã.ùp,·��ò�Ñ)·iZÚ5KNT3�Å�©^�e�üzã(�ã4-

14Úã4-15).éu)·iZ,XJ^%5À,>M¶4þ¹�Í�«Ä�,Ò��^w�º*	�%³*Y¤����)Ô��.m©��ÿ,�±4¶4þ�¿ÑÙX¹[�(çÚ��),,�Ò¬w�§�g·|�¤�ª��ë05�(�.
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o![�gÄÅ�ÄåÆ1Ǒk�¬EÄ,k����Ë�á��5£��,k,�+¹[�±�½��ÝwL¶4,�k,
[�+¬­½�u�Ñ#�w�Å,±9Ù�(�ØÄ(Ú�rw�Å¯K.�´35KNT^�e,·��¬w���¶4ØÊ�ð
X,,Ï�A�vk?Û±Ï�üzy�.l�Û5w,3S�L§¥,��[�gÄÅÑY²� �£Ä.
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ã4-15:)·iZ3�Å�©^�e�üzã.
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Ê! o(��"Ê! o(��"
(�)! o(�©/Ï��ÎÒÄåXÚ�g�Ú�{ïÄ
��[�gÄÅ�ÿÀ�Ý©a�Ê·[�gÄÅ��E.31�ÙXØ¥,·�{�£�
ÎÒÄåÆÚ[�gÄÅ�Ä�nØÚïÄyG.��,31�Ù¥,·�ïá
��ÎÒÄåXÚ¥8«£ N��m�ÿÀ�Ý'X,�[/ïÄ
ÙÄåÆ5�,
Ù´y²
ÙÿÀ�Ǒ∞. ddy²��ÎÒÄåXÚ���ÎÒÄåXÚ´üa��ØÓ�ÎÒÄåXÚ.Ó�,·�Ǒy²
ùüaXÚ�m���Ý'X.Äu±þg�Ú(Ø,·�òäkNeumann+�ÚG�8{0, 1}���[�gÄÅÀ�ïÄé�.31nÙ¥,·�Äkò��[�gÄÅ���ÎÒ�mïáéX,½Â
225

= 4294967296��ÛN�. ��,·��âNeumann+��²¡(�Ú[�gÄÅ�A:,�E
o�Ó�N�T , T
UD

, T
LRÚT

D

,ÏL§�¢y
¤k�ÛN��ÿÀ�Ý©a.?�Ú,·��Ǒþãa¤���Ýaê8´���. du�©?Ø��ÛN��ê�õ,^<ó/?1©aÙ¤I�O�þ����.Ïd,31n!·�rþã�Ý©a?1
§Sz�O,l
���Jp
©a��Ç.AO/,·��±�©¯$�é���½5KáuÓ��Ýa��Ü��.31oÙ¥,·��Ä
�ÛN��ÄåÆ5�.�ÙÄk�Þ
'u��[�gÄÅ�Ü©(Ø,¿lÎÒÄåÆ�ÆÝ©Û
��[�gÄÅ5K56Ú18�ÄåÆ5�. ?
,·�ïá
��[�gÄÅ���[�gÄÅ�m�ÿÀ��Ý'X.Ǒ,ÿÀ��Ý�ü�;�XÚ,ÙÄåÆ1Ǒ�±��»Ì,�3ÿÀ��Ý�^�eǑÓ��±�±XÚ�,
ÿÀØC5,
Ù´*¿�ÿÀ�Ø�uÏf�.,��¡,du�Ü©��[�gÄÅ�ÛN��ÿÀ�®��O�½�O,ù�Ò��O��[�gÄÅ�ÛN��ÿÀ��5
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