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ABSTRACT

The bearing is one of essentially important components for the revolving machinery, whose
mechanical characteristics analysis of the roller bearing is closely related to the bearings design and
application. Several main technical factors used to evaluate the practical working performance of the
bearing, such as loading capacity, fatigue life, deformation and stiffness should be involved in the
contact problem. Contact problem of roller bearing could be solved to analyze stress distribution and
elastic deformation on the base of finite element method, which is the key for optimization design of
increasing the life span and loading capability of bearings.

Firstly, contact pressure and elastic deformation of NU311 cylindrical roller bearing with straight
line profile is calculated based on hertz contact theory. ANSYS is used to simulate nonlinear contact
problem of the roller bearing. The numerical simulation result of finite element method is compared
with solution of hertz contact theory, which verity the finite element contact model.

Secondly, a method of section-cutting is used to get the load distribution of roller with different
profile, such as straight line, straight line and circle arc, circle arc. The best crown and the relation
between load and crown of NU311 roller bearing with circle arc profile of roller is determined; APDL
is used to create a parametric model of bearing and solution process. ANSYS is developed with VB to
create special software of contact analysis of cylindrical roller bearings of NU series with friendly
interface. Taking NU311 with crowned roller, crowned inner and crowned outer for example, the best
crown under the design load is determined by comparing with the results of finite element method,
which could increase the loading capacity and life of roller bearing.

Then, taking the length and diameter of roller as design variable, the mass as object function,
structure of roller is optimized with ANSYS by optimum design in the assurance of loading capacity
and stiffness of roller bearing, which could decreasing the centrifugal force and increasing the life
span of high speed bearings.

Last, radial stiffness of crowned cylindrical roller bearing is deduced based on section-cutting
method. The regularity of radial stiffness as loading is compared, with three different profiles of roller.
The influence of magnitude of crown to radial stiffness is found. Taking the gyroscopic couple in
consideration, the critical speed of rotor is calculated based on ANSY'S under rigid and elastic bearing

support respectively.

Keywords: Roller bearing, contact, ANSYS, crown, characteristics, optimum
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