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摘  要 

 

本论文来源于国家自然科学基金支持的“未知环境中移动机器人导航控

制的理论与方法研究”(批准号：60234030)。作为该项目研究的一部分，本论

文以移动机器人导航中的定位问题为研究内容，利用自行研制的装配有二维

激光雷达环境感知系统，并通过里程计、陀螺仪等内部传感器来实现航迹推

测的移动机器人“中南移动 1 号 MORCS-1”，重点围绕影响移动机器人系统

定位的四类不确定性处理展开研究：通过移动机器人定位传感器的误差分析

及校准，旨在消除传感器噪声所带来的测量误差；通过建立移动机器人的三

维运动学模型进行航迹推测，以期实现复杂地形下精确的移动机器人本体姿

态感受；通过基于激光雷达的动静态障碍的自主检测等相关研究，尽量消除

环境的不确定因素影响进而实现可靠的移动机器人绝对定位；通过以上研究，

针对未知数据关联下移动机器人增量式环境建图与自定位的研究提出一种鲁

棒的滤波算法，改善未知环境中移动机器人自定位的性能。 

总结全文，在移动机器人定位的不确定性处理研究中，提出了一些具有

一定创新性的方法： 

结合自行研制的移动机器人 MORCS-1 系统的多种内外部定位传感器，针

对内部本体感受传感器光纤陀螺仪的漂移误差，提出采用基于遗传算法优化

的神经网络来对光纤陀螺仪的温漂建模及校准，能够将其温漂变化控制在恒

温条件下标准测试输出附近；针对外部环境感知传感器激光雷达测距数据中

包含的噪声干扰，考虑移动机器人导航中激光雷达测距数据的时空关联性，

提出采用动态自适应滤波技术进行预处理，从而可以有效滤除噪声干扰满足

导航中障碍实时精确检测的要求。 

根据刚体运动学的约束分析了一种轮式结构与悬浮式摇架系统相结合的

移动机器人在复杂地形下的航迹推测，采用里程计、光纤陀螺仪、倾角传感

器等传感器信息推导移动机器人的运动学模型，提出一种运动学模型与车轮-
地面运动角度实现运动轨迹估计的方法。通过对不同地形下的运动进行仿真

以及利用机器人进行的实验，获得的移动机器人航迹推测效果比直接运用倾

角推测的效果更为接近真实值。 

利用二维激光雷达作为环境感知的外部传感器，通过占据栅格地图融合

机器人航迹推测的位姿信息和激光雷达的障碍测距信息，提出一种非静态环
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境中基于二维激光雷达的自主动静态障碍检测方法。对于获得的动态障碍，

利用改进建议分布的粒子滤波实现运动过程跟踪定位。对于获得的静态障碍

地图，将模糊逻辑与最大似然估计相结合，采用基于模糊似然的局部地图匹

配方法改进移动机器人自定位的性能。实验结果表明该方法能够实现动静态

障碍自主检测与分离，进行有效的单目标跟踪定位，并可以校准航迹推测误

差。 

针对未知数据关联下移动机器人的增量式环境建模与自定位，利用改进

的 Rao-Blackwellized 粒子滤波算法实现移动机器人位姿和环境特征位置的联

合评估。为了自主地对二维激光雷达的环境障碍感知信息进行类别划分特征

提取，提出将无监督聚类学习应用于障碍的特征提取，并将模糊逻辑引入到

增量式特征的数据关联进行障碍的分类判决。对于评估机器人路径位姿的粒

子滤波进行了两点改进：考虑将地图匹配和粒子滤波重采样相结合，并基于

有效样本大小 ESS 来实现粒子滤波的重采样自适应；对于环境特征的评估，

利用过程噪声自适应评估技术和 Unscented 卡尔曼滤波相结合的滤波方法。 

关键词 移动机器人定位，不确定性处理，航迹推测，二维激光雷达，基于模

糊似然的局部地图匹配，改进的 Rao-Blackwellized 粒子滤波，增量式环境建

模与自定位 
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ABSTRACT 

 

This dissertation is supported by the key project of the National Natural 
Science Foundation of China under grant no.60234030, Research on Theories 
and Methods of Navigation Control for Mobile Robots under Unknown 
Environments. As one part of the project, the dissertation is developed with the 
localization problem in mobile robot navigation. Combined with “ Mobile 
Robot 1 of Central South university (MORCS-1)”, a mobile robot designed by 
us that equipped with a 2D laser measurement system to sense the environment 
and the proprioceptive sensors such as the odometry, gyroscope to calculate its 
dead reckoning, the approach about the four kind uncertainty factors of mobile 
robot localization is studied. These researches include that the error analysis 
and calibration of position sensors is implemented to reduce the measurement 
noise, the 3D kinematic model of mobile robot is built to gain the accurate 
pose in complex terrain, some work on the automatic detection of static or 
dynamic obstacles based on laser scanner is investigated to eliminate the 
dynamic influence of the environment and to realize the reliably absolute 
position, and lastly a robust algorithm is presented to involve the incremental 
environment mapping and self-localization of mobile robot with unknown data 
association and to improve the self-localization performance of mobile robot 
under unknown environment. 

So, the study in this dissertation focuses on some key points in the 
uncertainty treatment of mobile robot localization as follows: 

Combined with the multiple proprioceptive and exteroceptive sensors of 
mobile robot MORCS-1, aimed at the drift error of fiber optic gyro as the 
proprioceptive sensor, the neural network using genetic algorithm as optimal 
tool is proposed to accomplish the modeling and calibration for temperature 
drift of fiber optic gyro, which can reduce the drift error to the standard output 
at constant temperature; and aimed at the noisy disturbance of ranging data 
from the exteroceptive sensor laser scanner, a dynamic adaptive filter is 
introduced through the analysis of neighboring ranging data in time and spatial 
correlation to realize the real-time and dynamic filter, which can validly filter 
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the noisy disturbance to meet the requirement of the accurately real-time 
obstacle detection in mobile robot navigation. 

Dead reckoning of mobile robot in complex terrain is analyzed by the 
rigid-body kinematic constraints of mobile robot that is on the basis of 
locomotion architecture with the wheeled and rocker-bogie suspension system. 
At the same time, the kinematic model of mobile robot is obtained using the 
multiple sensors’ information from odometry, fiber optic gyro, tilt sensor, et al. 
A method of kinematic model integrated with wheel-ground contact angle is 
suggested to estimate the relative motion trajectory of mobile robot. 
Experimental results obtained in simulation and with real robot on different 
terrains demonstrate that this method is more close to real pose of mobile robot 
than to calculate only with the pitch. 

2D laser scanner is utilized to sense the operating environment of mobile 
robot, and the occupancy grids map is imposed to fuse the information of the 
robot’s pose by dead reckoning and the range to obstacles by laser scanner. An 
automatic detection method of static and dynamic obstacles is investigated 
based on 2D laser scanner in non-static environment. The particle filter with 
the improved proposal distribution is adopted to track the dynamic obstacles so 
as to get the localization performance in motion process, and the local map 
matching combined fuzzy logic with maximum likelihood estimation is 
introduced to deal with the static obstacles so as to improve the 
self-localization capability of mobile robot. These methods is verified by 
experiments, which shows that it can autonomously divide and detect static 
and dynamic obstacles, efficiently track single dynamic obstacle and calibrate 
the error of dead reckoning. 

Aimed at the incremental environment mapping and self-localization of 
mobile robot with unknown data association, the Rao-Blackwellized particle 
filter is improved to get the unite estimation of the pose of mobile robot and 
the position of the environmental features. In order to make the right obstacle 
classification from the 2D laser scanner, an unsupervised clustering algorithm 
is presented to realize the feature extraction of obstacles and fuzzy logic is 
integrated into incremental data association of obstacles features. Moreover, 
particle filter for the pose estimation of mobile robot is mended by executing 
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its resampling strategy after the map matching and adapting the resampling 
process grounded on the effective sample size (ESS). Furthermore, the 
unscented Kalman filter with the adaptation estimation for the process noise is 
introduced into the position evaluation of the environmental features. 

KEY WORDS  mobile robot localization, uncertainty treatment, dead reckoning, 
2D laser scanner, local map matching combined fuzzy logic with maximum 
likelihood estimation, improved Rao-Blackwellized particle fitler, incremental 
environment mapping and self-localization 
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第一章   绪  论 

 

 

作为前沿的高新技术，机器人体现出广泛的学科交叉，包括自动控制、人工智能、

电子技术、机械工程、传感器技术以及计算机科学等；涉及到众多的研究课题，如体

系结构、运动控制、路径规划、环境建图与定位等；适用于各样的工作环境，甚至于

危险、肮脏、乏味和困难场合等。因而，正如宋健院士在国际自动控制联合会第 14

届大会报告中所指出的：“机器人学的进步和应用是本世纪自动控制最有说服力的成

就，是当代最高意义上的自动化”[1]。 

自从 1962 年美国 Unimation 公司生产的机械臂 Unimate 作为第一代机器人在美国

通用汽车公司投入使用以来，机器人技术得到了蓬勃发展。在经历了最初的程序控制

的示教再现型机器人、具有初级感觉的自适应型机器人之后，目前正朝着高级智能的

智能机器人方向进展[2,3]。作为其中的一个重要分支，智能移动机器人强调“移动”的

特性，是一类能够通过传感器感知环境和本身状态，实现在有障碍物环境中面向目标

的自主运动，从而完成一定作业功能的机器人系统[4]。由于智能移动机器人只有准确

地知道其本身的位置、工作环境中障碍的位置以及运动情况，才能有效安全地进行自

主运动，因而，智能移动机器人定位的研究引起众多研究人员的关注，已成为机器人

领域的研究热点问题。 

本文的研究工作是基于自行研制的移动机器人实验平台中南移动 1 号

（MORCS-1）展开[5]。该移动机器人采用悬浮式摇架运动结构，具有一定的越障能力，

能够对复杂环境地形下移动机器人姿态进行推测。同时，系统装配多种内外部传感器，

包括用于内部本体感受的航迹推测传感器里程计、光纤陀螺仪、倾角传感器、精密角

度电位器；用于外部环境感知的障碍检测传感器二维激光雷达、摄像头（本文仅考虑

激光雷达）。多种传感器的相互协作为移动机器人导航定位提供了丰富的信息来源。 

本文以未知环境导航为研究背景，重点围绕移动机器人系统定位的不确定性处理

展开研究：通过移动机器人定位传感器的误差分析及校准，旨在消除传感器噪声所带

来的测量误差；通过建立移动机器人的三维运动学模型进行航迹推测，以期实现复杂

地形下精确的移动机器人本体姿态感受；通过基于激光雷达的动静态障碍的自主检测

等相关研究，尽量减少环境的不确定因素影响进而实现可靠的移动机器人绝对定位；

通过以上研究，针对未知数据关联下移动机器人增量式环境建图与自定位的研究提出

一种鲁棒的滤波算法，改善未知环境中移动机器人自定位的性能。 
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1.1 移动机器人导航和定位 

 

1.1.1 移动机器人导航 

导航，最初是指对于航海的船舶抵达目的地进行的导引过程。这一术语，丝毫未

变地应用到机器人领域，并和自主性相结合成为智能移动机器人研究的核心和热点。

Leonard 和 Durrant-Whyte[6]将移动机器人导航定义为三个子问题，即“Where am I?”，

“Where am I going?”和“How do I get there”，也即定位、目标识别、路径规划。为

了实现导航的基本任务，移动机器人需要依靠本身装配的传感器实现对内部本体姿态

和外部环境信息的感知，对于传感器采集到的数据经过融合处理并以精炼的知识实现

对环境空间的描述，通过这些环境空间信息的存储、识别、搜索等操作寻找最优或近

似最优的无碰撞路径实现安全的运动。 

移动机器人在完成准确的本身定位之后，可采用的具体导航方式包括电磁导航、

光反射导航、视觉导航、味觉导航、声音导航等。其中，视觉导航方式因具有信号探

测范围宽、信息获取内容全等优点而成为移动机器人导航的一个主要发展方向。在视

觉导航系统中，视觉传感器可以是摄像头、激光雷达等环境感知传感器，主要完成运

行环境中障碍和特征检测以及特征辨识的功能。依据环境空间的描述方式，Desouza

等将移动机器人视觉导航方式划分为三类[7]： 

♦ 基于地图的导航（Map-Based Navigation）：具有先验的占据栅格（Occupancy 

Grids）、几何图元（Gemetric Primitives）或拓扑特征（Topological Features）表示的环

境地图，机器人依据这些先验的环境地图进行导航运动。 

♦ 基于地图建立的导航（Map-Building-Based Navigation）：缺乏先验的环境地图，

通过机器人的导航运动，利用本身装配的传感器不断感知环境构建地图，并利用已经

建立的环境地图指导机器人的导航。 

♦ 没有地图的导航（Mapless Navigation）：相对于上述两种导航方法，没有任何

环境地图的明确表达形式，对于导航更多地是通过传感器获得的观测信息识别运行环

境中的物体或者跟踪这些物体来实现。 

针对未知环境中的移动机器人导航，其实质就是基于地图建立的导航。由于缺乏

环境规模和障碍物分布等先验知识，并且没有人为设定路标、灯塔等绝对参照物，使

得移动机器人的定位没有绝对的参考信息，需要自主地依靠装载的传感器提供的信息

构建地图并据此来实现本身定位。但是由于感知信息的不确切，移动机器人很难实现

精确的本身定位。因而，移动机器人定位的不确定处理方法成为亟待研究的课题[4]。 
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1.1.2 移动机器人定位 

定位（Where am I？）作为移动机器人实现自主能力的最基本问题[8]，其目的就

是确定移动机器人在运行环境中相对于世界坐标系的位置及其本身的姿态。现有移动

机器人的定位方法可以分为三类[9]： 

♦ 相对定位（Relative Position Measurements）：又称航迹推测（Dead Reckoning，

DR），主要依靠里程计（Odometry）、陀螺仪（Gyroscopes）等内部本体感受传感器，

给定初始位姿，通过测量机器人相对于初始位姿的距离和方向来确定机器人的当前位

姿。 

♦ 绝对定位（Absolute Position Measurements）：主要采用导航信标（Landmark 

Navigation）、主动或被动标识（Active or Passive Beacons）、地图匹配（Map Matching）

或全球定位系统（Global Positioning System，GPS）进行定位。位置计算方法包括三

边测量法（Trilateration）、三角测量法（Triangulation）、模型匹配算法（Model Matching）

等。 

♦ 组合定位（Combined Position Method）：相对定位方法具有自包含的优点，能

够依据运动学模型自我推测机器人的航迹。但是这种方法不可避免地存在随时间距离

增加而增加的累积航迹误差。绝对定位方法中，信标或标识牌的建设和维护成本较高，

地图匹配技术处理速度较慢，GPS 只能用于室外。由于单一定位方法的不足，移动机

器人定位依旧是基于航迹推测与绝对信息矫正相结合的方法。 

针对移动机器人的定位问题，国内外研究人员结合一些具体的实验平台进行了一

系列的研究并取得了一定成果[10-29]。而针对先验信息匮乏的未知环境，移动机器人在

本身位置不确定的条件下，借助于所装配的传感器不断探测环境来获取有效信息，据

此构建环境地图，并使用此增量式环境地图实现本身定位。这种情形下，移动机器人

自定位与环境建图是紧密相关的。环境地图的准确性依赖于定位精度，而定位的实现

又离不开环境地图，其实质是并发定位与环境建图（Simultaneous Localization and 

Mapping，SLAM）。自 1987 年 Smith 和 Cheesman[30]首次提出了基于特征的 SLAM，

建立了基于 EKF 的随机环境地图，机器人的位姿和环境中特征的位置用一个状态矢量

表示，当地图中的特征重新观测时，机器人的位姿和特征的位置都被更新。自此之后，

移动机器人 SLAM 问题的研究得到了广泛关注，成为移动机器人研究领域的一个研究

热点[31-43]。目前，SLAM 问题的主流研究方法是基于概率的方法[44,45]。在机器人所有

的可能位置保持概率分布，随着机器人的运动，感知到新的环境数据，概率分布被更

新，从而减小机器人位姿的不确定性。 
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1.1.3 定位的不确定性分析 

国内外对于移动机器人定位包括 SLAM 问题进行了广泛和系统的研究[10-45]。这些

研究指出：在定位过程中，由于感知传感器本身存在着性能限制，运行环境中各种不

确定因素干扰等，移动机器人依靠不确切的感知信息很难实现精确的自定位。解决未

知环境中移动机器人的定位问题，在高维的算法复杂度之外还存在诸多困难。 

这些不确定性误差主要在于： 

♦ 传感器噪声干扰：可以分为内部本体感受传感器的测量误差，如里程计和陀螺

仪的累积航迹推测误差；外部环境感知传感器的观测误差，如激光雷达受不同测量距

离、不同物体表面特性，角度分辨率等的影响，摄像头对光照、分辨率、焦距调节、

关注点选择等的设置。 

♦ 复杂地形下的运动学建模：通过内部本体感受传感器的测量感知，移动机器人

可以依据其运动机构的运动学模型推测出自身当前的位姿。现有的运动学模型一般是

建立在平坦地形下对二维环境的移动机器人航迹进行推测，对于复杂三维环境地形下，

估计机器人的位姿就必须考虑三个坐标方向上的运动情况。 

♦ 环境的动态影响：基于地图建立的导航定位中，由于现有的算法大多以静态环

境为假设前提，而真实环境却是动态变化的，如房门的开闭、人员的走动等因素的存

在。动态障碍的存在是环境不确定性的主要来源，会在移动机器人依靠自身装载的传

感器建立的环境地图和真实环境之间造成误差和不一致性。 

♦ 数据关联（Data Association）：如何处理传感数据间的相关性问题，即数据关

联。数据关联指利用当前传感器探测到的 m 个观测值对地图中已经存在的 n 个特征进

行更新时，必须明确指出某个观测值对应于哪个特征或是一个新特征或是一个噪声数

据。实现 m 个观测值与具有 n 个特征的地图之间数据关联的计算复杂度与 m 之间呈指

数关系。环境复杂程度的增加会使 m 增大，而误差的增大会使 n 增大。对于某些算法

来说，数据关联不准确将导致算法发散。 

在未知环境中，由于机器人通过内部航迹推测的本体姿态和外部感知环境中的特

征标志的位置都是未知的，观测信息不能有效校正航迹推测的误差，机器人的位姿误

差随着机器人的运动距离而增大，而机器人的位姿误差的增大将导致错误的数据关联，

从而增大特征标志的位置误差；反过来，特征标志的误差又将增大机器人的位姿误差。

因此，定位不确定性误差主要来源于：传感器噪声干扰误差、内部本体感受航迹推测

误差、外部环境感知观测误差和错误的数据关联带来的误差。尽量减少不确定性误差

是机器人定位算法研究的重点，本文主要针对这些定位不确定性处理进行研究分析。 
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1.2 移动机器人定位的国内外研究现状分析 

 

本文重点针对移动机器人系统定位的不确定性处理进行研究。这里首先分析移动

机器人定位系统的组成、定位传感器（如里程计、陀螺仪以及激光雷达）的误差分析

与校准方法，接着介绍国内外未知环境中移动机器人的定位方法包括基于本体感受的

航迹推测、基于环境感知的地图匹配定位以及基于概率的增量式环境建图与自定位，

最后总结该领域的研究难点与解决途径。 

 

1.2.1 定位系统组成及传感器误差分析与校准方法 

1.2.1.1 系统组成 

Murphy 在文献[46]对移动机器人并发定位与环境建图的系统进行了归总（如图 1-1

所示）。其中，内部位姿传感器可以包括里程计也即角轴编码器（测量机器人车轮的相

对位移增量）；还可以包括陀螺仪（测量机器人航向角的相对角度增量）；倾角传感器

（测量机器人的俯仰角与横滚角的相对角度增量）；精密角度电位器（测量摇架转角的

相对偏移角度）等多种传感器。用于构建环境地图的外部传感器可以采用激光雷达测

量系统，摄像头等，通过测量环境中的障碍物分布，实现环境建图。下面针对一些主

要的定位传感器（不包含摄像头）的误差进行分析。 

 
 

 

 

 

 

 

 

 

 

 

 

图 1-1  并发定位与环境建图系统组成 
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1.2.1.2 定位传感器误差分析与校准方法 

根据定位方法的不同，定位传感器可以分为两类：相对定位传感器（Relative 

Position Sensors），又称本体感受（内部）传感器（Proprioceptive Sensors）或航迹推

测传感器（Dead-Reckoning Sensors），包括里程计（Odometry）、惯导传感器（Inertial 

Navigation Sensors）等；绝对定位传感器（Absolute Position Sensors），又称外部传感

器（Exteroceptive Sensors），包括主动觉传感器（Active Sensors）、被动觉传感器（Passive 

Sensors）等。 

针对自行研制的移动机器人实验平台，本文研究的定位传感器包括内外部传感器。

其中，内部传感器有 360 脉冲/转（Pulses Per Revolution，PPR）增量式光电编码器构

成的里程计，用来测量机器人车轮的相对位移增量；精密角度电位器，用来测量摇架

转角的相对偏移角度；KVH 公司生产的 E-Core RD1100 系列的数字光纤陀螺仪，用来

测量机器人航向角的相对角度增量；Crossbow 公司生产的 CXTILT02E/02EC 倾角传

感器，用来测量机器人的俯仰角与横滚角的相对角度增量；外部传感器采用 SICK 公

司生产的 LMS291 激光雷达测量系统，用来测量环境中的障碍物分布，实现环境建图。 

♦ (1) 里程计(Odometry) 

里程计因其价格低廉，采样速率高，短距离内能够提供精确的定位精度，是移动

机器人最常用的定位方法。里程计的误差包括系统误差和非系统误差。针对系统误差， 

Borenstein 和 Feng[47]开发了 UMBmark 测试（University of Michigan Benchmark Test，

UMBmark）校准技术来校准差分驱动的移动机器人的系统误差。该校准技术被广泛引

用，成为差分驱动移动机器人系统误差校准的典范。针对非系统误差，Chong 和

Kleeman[48]分析了非系统误差，并且计算了某类机器人运行轨迹的里程协方差矩阵。

Martinelli 等[49]则提出了评估移动机器人里程计的系统和非系统误差的方法，系统误差

采用 EKF 的方法，非系统误差采用一种新的观测滤波器（Observable Filter，OF）。 

♦ (2) 陀螺仪（Gyroscope） 

陀螺仪作为航迹推测的关键部件，用于测量移动机器人的航向角。针对影响陀螺

仪性能的漂移误差，Barshan 等[11]针对移动机器人惯导系统中两个不同类型的压电振

动机械陀螺仪建立了误差模型。Ojeda 和 Borenstein 等[50]研究了光纤陀螺仪（Fiber Optic 

Gyros，FOG）由于标度因数（Scale Factor）非线性度以及温度变化导致的测量误差，

并建立相应的误差模型。 

♦ （3） 激光雷达（Laser Scanner） 

激光雷达是移动机器人障碍测距、环境建图的重要传感器之一。激光测距系统包
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括单点的测距传感器、在平面上进行线扫描的二维激光雷达以及能够进行面扫描的三

维激光雷达。研究中所用的二维 LMS291 激光雷达基于飞行时间法测距[51]。文献[52]

对于同类激光雷达的测距性能进行了分析，指出激光雷达的测距数据中包含一定的噪

声干扰。在导航过程中，由于这些干扰的存在，可能导致不精确的障碍检测。为此，

文献[53]中采用了置信度辅助空间滤波（Certainty Assisted Spatial Filter，CAS Filter）

方法，该方法使用运动和空间连续性的物理约束来解决图像模糊和数据丢失的问题。

CAS 方法是一种针对高度图的离线处理方式，并不能对导航过程中出现的干扰进行实

时的滤波处理。 

1.2.2 移动机器人定位的国内外研究现状分析 

1.2.2.1 基于本体感受的航迹推测 

移动机器人内部本体姿态利用相对定位也即航迹推测实现，给定初始位姿之后，

通过内部本体感受传感器如里程计、陀螺仪等进行测量，依据运动学模型计算机器人

相对于初始位姿的距离和方向，以此来确定机器人的当前位姿。尽管这种方法不可避

免地存在随时间距离增加而增加的累积航迹误差，但是由于具有自包含的优点，能够

依据运动学模型自我推测机器人的航迹，在短距离短时间内能获得较好的定位性能，

是移动机器人定位系统不可或缺的组成部分[11,14,16]。相对定位需要依据机器人的运动

学模型进行航迹推测。在移动机器人运动学建模方面，大多数研究者所建立的模型局

限于室内或高速公路等结构化的环境中，一般是基于二维平面的假设[15,54]。这些模型

只能实现机器人三个自由度的运动，即在二维 X-Y 平面中的平移和绕 Z 轴的转动，因

而对于移动机器人的移动结构也一般要求不高。近年来，对于复杂非结构的三维环境

中移动机器人的研究逐渐活跃起来[55-57]。推动复杂三维环境中移动机器人的研究来自

于多个方面的需求，例如：美国 NASA 支持的火星探测计划、美国国防部支持的无人

战车研究计划 UGV(Unmanned Ground Vehicle)、美国能源部的核废料等危险品的自动

搜集、搬运车研究计划，其中以 NASA 的火星漫游者的研究最为引人关注。复杂非结

构的三维环境需要移动机器人具有性能优越、自适应能力强的运动机构，以适应复杂

地形，其运动学建模的复杂性也相对增加[58-62]。 

如何建立复杂三维环境地形下移动机器人的运动学模型，基于运动学模型对移动

机器人航迹进行推测，成为移动机器人相对定位获得本体姿态的重要研究内容。航迹

推测通过测量位置，速度，方向等参数来提供机器人的动态位姿信息。对于轮式移动

机器人而言，最直接的航迹推测方法是基于机器人的运动机构构造系统的运动学模型，

通过测量轮子的角速度来计算车体参考中心的运动速度以及车体的航向，进而对机器

人的运行航迹进行推测。现有的航迹推测方法主要应用于二维环境下移动机器人的导
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航定位中，一般采用编码器来获得机器人的航向与里程信息[63]。但是，依靠编码器进

行航迹推测的误差很大，尤其是用编码器信息来计算移动机器人的航向，难以保障移

动机器人导航的定位精度。近年来，随着光纤技术的发展，光纤陀螺仪（Fiber Optic 

Gyros，FOG）以其潜在的优势和应用前景而备受重视，已经广泛应用于移动机器人导

航控制系统中，用于测量移动机器人的航向角[64]。此外，为了对复杂三维环境地形下

移动机器人的姿态进行推测，还需对机器人的俯仰角与横滚角进行检测 [65]。Barshan

和 Durrant-Whyte[11]的研究显示如果提供精确的传感器误差模型，低价位的惯导系统可

以改进移动机器人的系统性能。Borenstein[66]则提出一种融合光纤陀螺和里程计的方

法 Gyrodometry，该方法不同于一般的传感器统计模型融合方法，是一种基于轮地物

理交互的传感器融合方法。此外，不同于扩展卡尔曼滤波 EKF 的融合方法，Borenstein

等[67]提出了基于运动学模型，采用模糊专家规则（Fuzzy Logic Expert）的方法 FLEXnav

融合内部传感器的信息，对三维环境下移动机器人的航迹进行推测，并应用于移动机

器人 Segway RMP。 

1.2.2.2 基于环境感知的地图匹配定位 

障碍检测是移动机器人环境感知研究的重要内容。目前大部分算法都建立在静态

环境、人工建筑或较小区域的假设下，而真实环境却是动态变化的，如人的走动、门

的开闭、环境的变化等，都会带来无法预测的噪声[68]。在障碍检测中，分辨动态障碍

与静态障碍，并确定动态障碍的运动参数，对于移动机器人的环境建图与动态环境下

的避障具有重要的意义。动态环境下针对运动障碍的检测也是一个研究的难点问题。

在一些移动机器人的研究中，可以通过全局的视觉实现对全局环境的监视，并通过连

续图像的差分分析方法实现运动图像的分析。如 Biswas 等[69]最近提出的动态占据栅

格图算法（Dynamic Occupancy Grid Mapping Algorithm，DOGMA），该算法能够学习

动态物体的形状特征，将其作为运动物体的模型。但 DOGMA 算法仍然存在很多问题，

如假设物体形状不变、容易从背景检测、对快速移动的物体（例如人）无能为力等。

另外一些研究中，采用运动补偿方式来减少由于运动带来的误差，但计算量较大，难

以实时应用而且误差较大[70]。激光雷达传感器是近年来在移动机器人障碍检测与环境

建图研究中得以广泛应用的外部传感器[71,72]，具有测距精度高，实时性能好等优点。

在动态环境中，如何利用激光雷达自主地进行动态障碍检测与分析是值得深入研究的

课题之一。 

目前，未知环境中应用的移动机器人定位方法主要是基于地图的定位，也即前面

提到环境地图是实现未知环境中移动机器人定位的基础。大多数移动机器人定位系统

采用的基本方法[46]是机器人每移动一小段距离，就构建一小幅局部地图，使用小型局

部地图进行定位，不断反复这一过程实现对未知环境的增量式建模与机器人的自定位。
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基于地图匹配的方法可以用“搜索树”将传感器感知到的特征物或路标与环境地图进

行匹配。类似的方法还有平面上提取出来的线段、点匹配，以及通过将机器人附近地

形的三维图与先前产生的地图相匹配来实现定位。近年来，对于如何构建地图，实现

基于地图匹配的自定位方法，国内外已经开展了大量的研究。其中，模糊逻辑和概率

理论（包括最大似然估计（Maximum Likelihood Estimation，MLE）和最大期望化算

法（Expectation Maximization，EM））是具有代表性的两种用于描述和处理环境地图

不确定性信息的方法[73]。前者通过定义模糊集表示环境中的空与非空区域，对各栅格

单元根据测量结果计算相应的隶属度；后者对各栅格单元给出其为障碍物占有的概率，

根据 Bayes 规则进行信息融合。分析与实验均表明，基于概率方法产生的地图精确度

较高，轮廓清楚，但对错误信息过于敏感，误判率高。而模糊逻辑方法则有较高的鲁

棒性，在信息不确定程度高时仍然稳定，但精确度较低，产生的地图不清晰。 

1.2.2.3 基于概率的增量式环境建图与自定位 

未知环境中导航的移动机器人增量式环境建图与自定位的主流研究方法是基于概

率的方法。文献[13]对此进行了很好的总结：基于概率的方法即在机器人所有的可能位

置上保持概率分布，随着机器人的运动，感知到新的环境数据，概率分布被更新，从

而减小机器人位置的不确定性。其基本思路是将移动机器人定位看作是 Bayesian 评估

问题，即通过给定输入数据、观测数据、运动与感知模型，使用预测/更新步骤估计当

前时刻机器人隐式位姿状态信度的最优化问题。典型的评估状态一般为 ),,( θyxs = ，其

中 ),( yx 表示 Cartesian 坐标系中机器人的位置，θ表示机器人的航向角；输入数据 u 通

常来自内部传感器里程计；观测数据 z 来自外部传感器如激光雷达、摄像头等；运动

模型 ),|( 11 −− ttt ussp 表示 t时刻系统起始状态为 1−ts ，输入 1−tu 到达状态 ts 的概率；感知模

型 )|( tt szp 则表示 t时刻在状态 ts 所能观测到 tz 的似然概率。定位、建图以及 SLAM 问

题的概率数学描述如下： 

♦ 定位（Localization）：给定历史的环境观测 tz :1 和控制输入信息 1:0 −tu ，以及环

境特征 n，确定机器人在运行环境中位姿的概率分布 ),,|( 1:0:1 nuzsp ttt − 。 

♦ 建图（Mapping）：给定历史的环境观测 tz :1 和更新后的机器人历史位姿信息 ts :0 ，

建图问题可以表示为计算概率分布 ),|( :1:0 ttt zsnp 。 

♦ 并发定位与环境建图（SLAM）：通过给定历史的环境观测 tz :1 和控制输入信息

1:0 −tu ，并发地评估机器人的位姿和环境地图的概率分布 ),|,( 1:0:1 −tttt uzsnp  

具体的概率定位方法包括扩展卡尔曼滤波（EKF）、马尔可夫定位（Markov 

Localization）、多假设跟踪（Multiple Hypothesess Tracking，MHT）和蒙特卡罗定位

（Monte Carlo Localization，MCL）等[37-45]。 
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♦ 扩展卡尔曼滤波（Extended Kalman Filter，EKF）[10]：是 SLAM 问题中最重要

的理论方法，应用前提为移动机器人的运动模型和感知模型假设为带高斯噪声的线性

模型，系统状态服从高斯分布。如果系统误差过大将造成定位的不可恢复失败。 

♦ 马尔科夫定位（Morkov Localization）[74]：与 EKF 不同之处在于不使用高斯分

布表示概率密度，而是将整个状态空间离散化，直接以每个（离散后）空间单元的概

率密度来表示状态分布。由于是对整个空间姿态概率分布的记录，因而需要消耗很大

的内存资源和计算代价。 

♦ 多假设跟踪（Multiple Hypothesis Tracking，MHT）[75]：使用环境的不完全拓

朴表示方法，结合多假设卡尔曼滤波方法，在线产生和跟踪基于 Gaussian 分布的移动

机器人位姿。该方法除了具有卡尔曼滤波方法所具有的不足之外，还需要解决跟踪中

的数据关联问题。 

♦ 蒙特卡罗定位（Monte Carlo Localization，MCL）[76]：是 SLAM 问题中最流行

的研究方法，将粒子滤波（Particle Filter，PF）与移动机器人运动和感知的概率模型

相结合，使用若干带权重的样本（也称粒子）来表达任意分布包括多模的概率密度函

数，能够对于非线性非高斯过程进行评估。但是存在样本退化等问题。 

实际应用中，机器人实时在线的增量式环境建图与定位算法需要对多种传感器信

息进行融合。决策或检测理论（Decision or Detection Theory）是信息融合的重要理论

方法之一，主要用来做决定，对对象进行探测或分类。其基础理论为人工智能技术，

如：神经网络，模糊逻辑，贝叶斯方法，基于规则的方法，D-S（Dempster-Shafer）证

据理论。因而，如何利用概率方法、决策理论（如模糊逻辑，神经网络）等多种理论

方法的复合策略实现未知环境中移动机器人的可靠自定位是当前智能移动机器人研究

的核心。 

1.2.3 研究难点及解决途径 

1.2.3.1 复杂地形下的航迹推测 

在移动机器人运动学建模方面，大多数研究者所建立的模型局限于室内或高速公

路等结构化的环境中，一般是基于二维平面的假设。近年来，对复杂地形下的移动机

器人的研究逐渐活跃起来。复杂地形下的移动机器人其航迹推测的累积误差增长迅速，

系统的不确定性明显增加。如何解决这一问题，进行精确的航迹推测，是移动机器人

自定位研究的难点之一。具体解决方法可以通过研究有效的内部传感器数据的关联技

术； 或者基于概率技术设计在线的航迹推测算法，实现适应复杂地形下更广泛噪声类
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型运算速度更快的移动机器人航迹推测自定位算法。 

1.2.3.2 动态环境建图与定位 

目前大部分移动机器人定位算法都建立在静态环境、人工建筑或较小区域的假设

下，而真实环境却是动态变化，这都会带来无法预测的噪声。分辨动态障碍与静态障

碍，并确定动态障碍的运动参数，对于移动机器人的环境建图与自定位具有重要的意

义。同时，动态环境下针对运动障碍的检测也是一个研究难点。具体解决方法包括研

究复杂环境中动目标识别技术，提高识别的准确性与实时性；采用滤除动态信息策略

建立环境地图，研究如何处理滤除过程中引起的不确定性，提高模型的准确性。 

1.2.3.3 多传感器信息融合 

对采样率不一致的定位传感器信息，如何利用概率方法、决策理论等多种理论的

复合策略实现未知环境中移动机器人的可靠自定位也是研究的难点。具体解决方法包

括研究各种外部传感器信息的可信度评价机制，为多传感器融合奠定基础；结合概率、

决策等多种理论来研究误差估计、传感器的相关性、数据级信息融合；基于概率方法

来分析外部感知传感器获得环境信息的不确定性，利用机器学习的方法获取概率函数，

基于 D-S 证据理论进行特征级的信息融合，并进行通用性的研究。 

 

1.3 论文的课题来源与研究意义 

 

1.3.1 课题来源 

本论文研究课题得到国家自然科学基金重点项目 “未知环境中移动机器人导航控

制的理论与方法研究” (批准号：60234030)的资助 ，该项目已于 2007 年 1 月结题被

评为优秀。由于该项目的研究涉及复杂而广泛的领域，本论文只是为期四年研究中的

一个部分。本论文重点围绕移动机器人系统定位的不确定性处理展开工作，针对定位

传感器噪声所带来的测量误差、内部本体感受航迹推测误差、外部环境感知观测误差

和未知的数据关联所带来的误差进行分析研究，以期实现未知环境中移动机器人的自

定位，为进一步开展移动机器人导航控制的研究打下基础。 
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1.3.2 研究意义与目的 

移动机器人能够通过传感器和学习，感知环境和本身状态，实现有障碍环境中向

目标的自主运动，即导航。在移动机器人导航控制理论和方法的研究中，确定性环境

的导航控制方法已取得了大量的研究和应用成果。而对于未知环境中的导航控制尚未

形成统一和完善的体系结构，还有许多关键理论和技术问题有待解决和完善。其中，

由于先验知识的匮乏和环境的不确定性, 使得未知环境中移动机器人环境建图与定位

方法成为亟待研究的课题。 

本论文研究未知环境中移动机器人导航的定位问题，这是移动机器人导航的首要

环节和重要技术。该研究将为项目的进一步深入打下基础，促进移动机器人技术的发

展，丰富人工智能的相关研究领域，促进我国空间探测技术的发展，具有重要的科学

意义。本项目的研究成果也将带动航天、海洋、军事、工业等领域移动机器人的应用

开发，特别是为无人探察车、排险车、扫雷车和无人运输车的应用提供技术支持。 

 

1.4 研究内容及章节安排等 

 

1.4.1 研究内容 

本论文是针对不确定性误差处理的移动机器人定位研究。利用现有移动机器人实

验平台的多种内外部定位传感器，基于估计理论，决策理论，概率及地图匹配等方法

相结合的复合定位。围绕上述研究目标，具体研究内容如下： 

♦ （1）研究移动机器人实验平台的多种内外部定位传感器的误差分析及校准方

法，包括里程计的系统及非系统误差，光纤陀螺仪的漂移误差，激光雷达的测距影响

因素等； 

♦ （2）研究二维及三维空间中移动机器人基于运动学约束的运动学建模，并基

于该运动学模型进行复杂地形下移动机器人的相对定位即航迹推测； 

♦ （3）研究非静态环境中基于激光雷达感知与建图的动静态障碍自主检测，以

及基于动态障碍的运动跟踪定位，基于静态障碍栅格地图的匹配定位； 
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♦ （4）研究未知数据关联下基于概率的移动机器人增量式环境建图与自定位，

通过特征提取并进行有效的数据关联实现未知环境中移动机器人的自定位。 

1.4.2 章节安排 

全文共分六个章节，各章节的安排如下： 

第一章 介绍了移动机器人导航与定位的发展历史，分析了移动机器人定位不确定

性的来源及类型，综述了移动机器人定位的国内外研究现状，概括了论文的研究内容

与研究方法。 

第二章 研究了移动机器人实验平台的多种内外部定位传感器的误差分析及校准

方法。针对光纤陀螺仪的漂移进行常规校准以外，提出采用遗传算法优化的神经网络

来对温漂建模及校准，对于运动过程中的通讯时滞采用了动态系统的 α-β 滤波的状态

预测方程来进行状态补偿；针对激光雷达测距数据中包含的噪声干扰，提出采用动态

自适应滤波技术进行预处理。 

第三章 研究了如何建立复杂三维环境下移动机器人的运动学模型，并基于运动学

模型对移动机器人的航迹进行推测。根据刚体运动学的约束分析了一种轮式结构与悬

浮式摇架系统相结合的移动机器人在复杂地形下的运动，采用里程计、光纤陀螺仪、

倾角传感器等传感器信息推导移动机器人的运动学模型，提出一种运动学模型与车轮-

地面运动角度相结合的估计方法，融合移动机器人的多传感器信息，实现移动机器人

运动状态的估计。 

第四章 针对非静态环境中动态障碍的检测，以激光雷达作为环境感知的传感器，

以栅格法来表示环境地图，提出一种非静态环境中基于二维激光雷达的自主动静态障

碍检测与数据关联分析方法，以此实现环境中动静态障碍的分离。对于获得的动态障

碍，利用改进建议分布的粒子滤波对于动态障碍实现运动过程定位。对于获得的静态

障碍地图，将模糊逻辑与最大似然估计相结合，采用地图匹配方法改进移动机器人自

定位的性能。 

第五章 针对未知数据关联下移动机器人增量式环境建模与自定位问题，通过对基

于 Rao-Blackwellized 粒子滤波的 FastSLAM 算法改进，实现移动机器人位姿和环境特

征的联合评估。提出将无监督聚类学习应用于障碍的特征提取，并将模糊逻辑引入到

增量式数据关联。同时，结合地图匹配改进评估移动机器人位姿的粒子滤波算法的重

采样，基于有效样本大小实现重采样自适应并对其改进；相对于传统扩展卡尔曼滤波

EKF 提出采用自适应过程噪声技术和 Unscented 变换机制进行环境特征更新。 

第六章 对本论文研究进行总结，并对有待进一步研究的问题进行分析与展望。 
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1.4.3 论文的组织框架 

    围绕四类定位不确定性研究，结合移动机器人定位的系统流程，论文的组织框架

如图 1-2 所示： 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

图 1-2  论文的组织框架 
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第二章  移动机器人定位传感器误差分析及其校准 

 

 

根据定位方法的不同，定位传感器可以分为两类：相对定位传感器（Relative 

Position Sensors），又称本体（内部）传感器（Proprioceptive Sensors）或航迹推测传

感器（Dead-Reckoning Sensors）；绝对定位传感器（Absolute Position Sensors），又称

外部传感器（Exteroceptive Sensors）。相对定位传感器中，里程计可以分为模拟式和数

字式的，最常用的模拟式里程计是旋转电位计（Rotating Potentiometers），而数字式里

程计是光电编码器（Photoelectric Encoders）。光电编码器分为绝对式编码器（Absolute 

Encoders）和增量式编码器（Incremental Encoders），前者将位移直接变换成数字量并

行输出，后者将位移变换成相对于某基准点的串行脉冲序列输出。惯导传感器包括陀

螺仪（Gyroscopes），加速度计（Accelerometers），倾角仪（Inclinometers）等。陀螺

仪测量旋转角速度，加速度计测量加速度，测量值的一次积分或二次积分可分别求出

角度或位置参量。倾角仪实质是加速度计的集成，用于测量三维环境中移动机器人的

俯仰或横滚角度。绝对定位传感器中，主动传感器包括声纳（Sonar），激光雷达（Laser 

Radar），全球定位系统（Global Positioning System，GPS）等，被动传感器包括摄像

头（Camera），磁罗盘（Magnetic Compasses）等。前者向环境中发射能量，发射的能

量被环境中的物体反射回来，后者则从环境中直接捕获能源信号。 

针对自行研制的移动机器人实验平台中南移动 1 号 MORCS-1，研究的定位传感

器包括内外部传感器。其中，内部传感器有 360 脉冲/转增量式光电编码器构成的里程

计，用来测量机器人车轮的相对位移增量；精密角度电位器，用来测量摇架转角的相

对偏移角度；KVH 公司生产的数字光纤陀螺仪，用来测量机器人航向角的相对角度增

量；Crossbow 公司生产的倾角传感器，用来测量机器人的俯仰角与横滚角的相对角度

增量；外部传感器采用 SICK 公司生产的 LMS291 激光雷达测量系统，用来测量环境

中的障碍物分布，实现环境建模。本章研究移动机器人实验平台的多种内外部定位传

感器的误差分析及校准方法：针对里程计的误差主要通过其在移动机器人增量式环境

建图与自定位中融合其他传感器信息，利用概率和地图匹配消除其长期累积造成的里

程误差；针对光纤陀螺仪的漂移除进行常规校准以外，采用基于遗传算法优化的神经

网络来对温漂建模及校准，对于运动过程中的通讯时滞采用了动态系统的 α-β 滤波的

状态预测方程进行状态补偿；针对激光雷达测距数据中包含的噪声干扰，采用动态自

适应滤波技术进行预处理。 
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2.1 移动机器人实验平台 MORCS-1 

 

面向移动机器人导航理论和方法研究的需要，蔡自兴等[5]设计并研制了适应于复

杂未知环境下的移动机器人实验平台 MORCS-1（如图 2-1 所示）。该移动机器人车体

左、右两侧各有一个摇架，每个摇架上安装了两个驱动轮。左、右摇架的中部与机器

人底盘通过一个转动轴（称为肩关节）连接，摇架可以围绕转动轴做 o15± 的浮动。当

遇到障碍物的阻挡时，摇架在驱动轮的推动下可以沿着障碍表面攀越。由于摇架的作

用，降低了越障过程中机器人的重心，从而使机器人具有一定的越障能力。移动机器

人采用左、右两侧步进电机的差速驱动实现转向。系统装配了里程计、光纤陀螺仪等

内部传感器测量机器人的位姿，利用激光雷达、摄像头作为外部传感器实现环境的感

知，这里以激光雷达为主进行环境感知的研究工作。 

 

 

 

 

 

 

 

 (a) 运动机构                               (b) 实验平台 

图 2-1  移动机器人 MORCS-1 

移动机器人 MORCS-1 采用的是分布式控制系统，以便于组织和协调各种传感器

与计算机系统资源，实现系统功能模块的灵活组合。系统采用可以容纳四个工控机系

统（IPC）的总线底板，可以安装四个工控机 CPU 全长卡。每个工控机系统可以安装

两个 PCI 插槽功能板和两个 ISA 插槽功能板。选择了具有 PⅢ800MHz CPU，内存 256M

的低功耗工控机主板，分别应用于运动控制、激光雷达信息处理、多目视觉信息处理

以及决策支持等系统。系统的开发环境为 Windows98/2000 系统，采用 Visual C++作为

软件开发工具。通过一个集线器（Hub）将车载计算机组织成为一个局域网控制系统。

其硬件结构如图 2-2 所示： 
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图 2-2  移动机器人 MORCS-1 硬件结构 

2.2 本体感受传感器 

 

本体感受传感器通过测量位置、速度、方向等状态参数，利用机器人的运动学模

型进行航迹推测来提供机器人的动态位姿信息。为了能够在复杂的环境中运行，多数

移动机器人利用轮式结构，MORCS-1 也是轮式结构。因而，最直接的航迹推测方法

是通过测量轮子的角速度来计算车体参考中心的运动速度以及车体的航向[15]，这些信

息可以用来构造系统的运动学模型。早期的轮式移动机器人一般采用编码器来获得机

器人的航向与里程信息[63]。但是，依靠编码器进行航迹推测的误差很大，尤其是用编

码器信息来计算移动机器人的航向 [47]。近年来，随着光纤技术的发展，光纤陀螺仪

(Fiber Optic Gyros，FOG) 已经广泛应用于移动机器人导航控制系统中，用于测量移动

机器人的航向角[64]。为了对三维地形下的机器人姿态进行推测，还需对机器人的俯仰

角与横滚角进行检测[65]。 

为了对移动机器人 MORCS-1 进行相对定位，基于它的运动机构利用高精度的传

感器，包括两个角度传感电位器，四个增量光电编码器，一个光纤陀螺仪和一个倾角

传感器，来进行航迹推测。角度传感电位器用于测量每个摇架相对车体的转动角度（左

摇架夹角βL、右摇架夹角βR）；光电编码器用于测量每个车轮的转动角度，并计算出

相应车轮的转动速度 vR1、vR2、vL1、vL2；光纤陀螺仪用于测量机器人的航向角θ及偏

转角速度ω（围绕移动机器人平台参考坐标的 Z 轴转动）；倾角传感器用于测量平台

相对水平面的俯仰角α与横滚角Φ。以上传感器可以观测移动机器人的 10 个状态变

量：{ vR1， vR2，vL1，vL2，βR，βL，θ，α，Φ，ω}。 
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2.2.1 里程计 

2.2.1.1 工作原理 

里程计因其价格低廉、采样速率高、短距离内能够提供精确的定位精度，是移动

机器人最常用的定位方法。对于差分驱动的移动机器人而言，其里程计是通过装在驱

动车轮上的光电编码器旋转计数，检测出车轮在一定采样周期内转过的圈数来测定。

这里采用 360PPR 的增量式光电编码器，具有相差为 90 度的双路脉冲输出，可以通过

双路脉冲的相位变化来判断车轮的旋转方向。光电编码器安装在驱动电机的轴伸上，

直接测量电机的转动。电机通过 15 倍的减速器驱动车轮，这意味着车轮旋转一周，电

机将旋转 15 周，采用车轮直径为 250mm，由此计算出理论上的里程计分辨率为： 

14537.0
36015
25014.3 =

×
×==

P
D
η
πδ （mm） （2-1）

其中：δ 表示里程计的分辨率，也即将编码器脉冲变换为线性车轮位移的转换因子；D
表示车轮直径（mm）；η表示驱动电机的减速比； P 表示编码器的精度（PPR）。 

在采样间隔 tΔ 内，左（右）驱动车轮的光电编码器输出的脉冲增量为 LN （ RN ），

则可以计算出左（右）车轮的增量位移 LdΔ （ RdΔ ）为： 

LL Nd ⋅=Δ δ  （2-2）

假设左右驱动车轮之间的间距为 w，机器人从 1−t 时刻的位姿 ),,( 1111 −−−− = tttt yxS θ
运动到 t 时刻的 ),,( tttt yxS θ= ，则单位采样时间内计算的机器人位姿增量为： 

⎩
⎨
⎧

Δ−Δ=Δ
Δ+Δ=Δ

wdd
ddD

t

t

/)(
2/)(

LR

RL

θ
 （2-3）

    里程计的模型可以分为圆弧模型和直线模型两种：圆弧模型是一种通用模型，其

不但考虑机器人运动变化中的位移变化，同时还考虑运动中航向角的变化。直线模型

实际是圆弧模型的简化形式，它近似地认为机器人在很短的时间内航向角的变化很小，

近似为零，所以用简单的直线对机器人的运动进行模拟。直线模型的形式简单，降低

了系统计算负担，在里程计模型满足频率足够高的情况下同样可以满足系统要求。 

♦ （1）圆弧模型 

移动机器人里程计的圆弧模型我们参考 Patric Jensfelt 和 Henrik I. Christensen 在文



博士学位论文                                               第二章  移动机器人定位传感器误差分析及其校准 

 19

献[77]中所介绍的模型，考虑用圆弧去逼近移动机器人运动中的实际轨迹效果根好。

当机器人终止位姿和起始位姿的方向角的差值 0>Δ tθ 时，圆弧模型方程可描述为： 

⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

Δ+

−Δ+
Δ
Δ

−

−Δ+
Δ
Δ

+

=−

tt

ttt
t

t
t

ttt
t

t
t

tt
D

y

D
x

uSf

θθ

θθθ
θ

θθθ
θ

)cos)(cos(

)sin)(sin(

),( 1 ， 0>Δ tθ  （2-4）

♦ （2）直线模型 

直线模型因假设机器人在极短的时间内的运动可用直线来表示，即 0=Δ tθ ，所以

直线模型的方程可描述为： 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
Δ+
Δ+

=−

t

ttt

ttt

tt Dy
Dx

uSf
θ

θ
θ

sin
cos

),( 1 ， 0=Δ tθ  （2-5）

该模型推导简单，其实际是圆弧模型的简化形式。 

我们使用的 MORCS-1 机器人实验平台采用直线里程计模型，即以直线模型为主，

同时在位姿航向角差值的推测中使用弧线模型，具体描述如下： 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

Δ+
Δ+Δ+
Δ+Δ+

=−

tt

tttt

tttt

tt Dy
Dx

uSf
θθ

θθ
θθ

)sin(
)cos(

),( 1  （2-6）

2.2.1.2 性能分析 

里程计是基于安装在驱动车轮上的编码器将车轮旋转转化为相对地面的线性位移

这一前提，因而具有一定的局限性[78]。其误差来源分为系统误差（Systematic Errors）

和非系统误差（Non-Systematic Errors）：系统误差包括左右驱动车轮半径的差异、车

轮半径平均值与标称值的差异、车轮安装位置的差异、有效轮间距的不确定性、有限

的编码器精度和采样速率，它对里程计误差的积累是恒定的；而非系统误差则包括运

行地面的不平整、运行中经过意外物体、以及多种原因造成的车轮打滑，它对里程计

误差的影响是随机变化的。 
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针对安装在移动机器人平台上的航迹推测传感器，我们使用 UMBmark(University 

of Michigan Benchmark)实验[47]（图 2-3（a））来对其航迹推测性能进行评定。下面是

在标定的边长 4 米的正方形中，移动机器人按照预先设定的控制要求以一定的速度前

进（测量里程误差），在拐角处原地转动 90º（测量航向角度误差）所测定的航迹推测

误差数据。图 2-3（b）显示机器人运动 2 圈的测量误差数据。 

 

 

(a) UMBmark 实验(文献[47])                    (b) 里程误差 

图 2-3  里程计的系统误差 

 

2.2.1.3 校准方法 

在一般光滑的室内地面上运行的移动机器人，系统误差对里程计的影响较大；而

在不规则的粗糙地面上，则以非系统误差对里程计的影响为主。文献[79]利用 Labmate

机器人，装配有里程计、经纬仪、激光测距系统和摄像头等多种内外部传感器，实验

环境模型为室内垂直边缘，包括墙角、门框等。对 Labmate 机器人只通过里程计在室

内环境进行导航过程中由于累积误差过大而造成定位失败的情况进行了分析。 

    在移动机器人导航，针对里程计的误差校准方法只能依靠激光雷达、摄像头等外

部传感器信息进行校正。例如：文献[49]提出了并发定位和里程计校准（包括系统误

差和非系统误差）的方法，利用里程计读数作为输入，激光雷达的读数作为观测数据，

使用观测滤波器 OF 对于里程计的非系统误差进行评估，和扩展卡尔曼滤波 EKF 相结
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合使得能够在导航过程中并发评估系统和非系统里程误差。文献[80]利用占据栅格环

境地图，通过引入两个参数自动校准里程计的系统误差，结合先前和现在获得的外部

传感器和里程计信息，使用有效增量式的最大似然评估 MLE 算法可以自适应地评估

和补偿误差。文献[26]通过分析里程计的定位模型的误差，基于全景视觉信息，利用

卡尔曼滤波器融合不同观测点的观测数据，提出基于路标观测的自定位算法。 

2.2.2 光纤陀螺仪 

2.2.2.1 工作原理 

早期的轮式移动机器人一般采用编码器来获得机器人的航向与里程信息。但是，

依靠编码器进行航迹推测的误差很大，尤其是用编码器信息来计算移动机器人的航向。

近年来，随着光纤技术的发展，光纤陀螺仪 FOG 已经广泛应用于移动机器人导航控制

系统中，用于测量移动机器人的航向角。 

自 1976 年美国 Utah 大学 V.Vali 教授首次提出光纤陀螺仪设想以来[81]，光纤陀螺

仪已经发展了二十多年。光纤陀螺仪是基于 Sagnac 干涉原理，如图 2-4（a）所示。对

于在半径为 R 的圆环光路中，二束光从位置 A 同时发出，但方向相反。若环路以ω的

角速度旋转，正、逆二束光沿闭和光路走一圈后会合时的光程差为： ωπ
c
RS

24=Δ ，其

中， c 为光速。可见，二束光的光程差与陀螺仪相对惯性坐标系的角速度ω成正比，

只要测出光程差，即可测得ω。 

 

             (a) Sagnac 效应                       (b) 结构示意图 

图 2-4 光纤陀螺仪工作原理 

作为移动机器人航迹推测的主要器件之一，光纤陀螺仪性能好坏直接影响到移动

机器人定位的精度。结合课题研究的实际情况，这里选用美国 KVH 公司生产的

E-Core1000 系列中型号为  RD1100 的光纤陀螺仪作为航向测量传感器 [82]。E-Core 

RD1100 是传统机械陀螺的替代品，具有带宽较宽、分辨率高、漂移稳定、抗冲击和

激光源 

检测器 

耦合器 
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抗振动等特点，主要应用在通信天线定向、光学平台稳定、导航、定位、机器人和仪

表自动化等方面。该型陀螺仪是能够适用于移动机器人导航的单轴采用干涉测量的光

纤角速度传感器。作为一种精度比较高，性能/价格比适当的产品，E-Core RD1100 光

纤陀螺仪可以精确地测量对象的角旋转速率，它的工作电压为标准的 12 VDC，在 24 

VDC 情况下也可以正常工作。 

2.2.2.2 性能分析 

光纤陀螺仪漂移的产生原因比较复杂[83]，按误差性质来分可以分为随机漂移和零

漂；按产生原因来分可以分为由外部因素（如温度变化、地球自转）和内部因素（如

元器件的参数漂移、工作特性）分别产生的误差；按性能参数来分包括零漂、标度因

数非线性度、角度随机游走、量化噪声等。造成光纤陀螺仪漂移误差复杂的原因就是

因为各种误差相互关联和相互影响。目前国内外研制的光纤陀螺仪的漂移量减少程度

和标度因数稳定性能都以数量级的形式提高，但是其漂移误差的存在还是无法避免，

特别是受环境温度影响而产生的误差项。因此结合当前采用的 E-Core RD1100 干涉型

光纤陀螺仪的漂移观测数据，对光纤陀螺仪的误差进行了分析，图 2-5 为未经任何校

正的静态光纤陀螺仪输出的原始数据曲线。从图中可以看出角速率变化不是很明显，

而角度却在 50 分钟内漂移了 150 度。通过理论分析和实验，发现光纤陀螺仪对移动机

器人航向所带来的误差影响因素主要为：（1）零漂；（2）标度因数的非线性度；（3）

环境温度所造成系统的时变特性。 

 

图 2-5  未经校正的 FOG 角度和角速率输出曲线 (温度: 28.2°~34.4°) 

♦ （1）零漂 

零漂即当输入旋转角速率为零时，陀螺输出量围绕其均值的离散程度。一个静态

陀螺的输出应该为ωg=0.00º/s。然而由于漂移，其实际值不同于理想输出值。 

零漂是陀螺的固有误差，可以通过软件设计解决。一种常用的补偿过程是在陀螺
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处于静止没有做任何工作之前收集一些静止陀螺输出的漂移数据（比如 10 到 20 秒），

算出它们的平均值作为零漂，进行后面的测量时从读数中减去该偏移值。如下式所示： 

∑
=

=
n

i
in 1

0
1 ωω  （2-7）

这里 ω0 是零漂，ωi 是陀螺输出的漂移数据，n 是采集数据的总数（对于 10 秒的 RD1100

采样数据，n 等于 100）。需要指出的是，ω0 也包括地球自转角速度的成分。在接下

来持续进行的采集过程中，需要从陀螺的输出中减去 ω0。 

♦ （2）标度因数非线性度 

标度因数是输出量与输入角速率的比值。它是用某一特定直线的斜率来表示。该

直线是根据整个输入角速率范围内测得的输入输出数据，用最小二乘法拟合求得。设

标度因数为 K，有 ω=KΩ+Ω0，其中 ω 为输出信号，Ω为输入角速率，Ω0/K 就是零

漂。标度因数非线性度（或称刻度因子误差）是指在输入角速率范围内，陀螺仪输出

量相对于最小二乘法拟合直线的最大偏差值和最大输出量之比。标度因数非线性度是

反映光纤陀螺仪性能的一个主要指标。 

通过对测试电转台输入角速度为±0.5º/s，±1º/s，±1.5º/s，±2.5º/s，±4º/s，±6º/s，±10º/s，

±15º/s，±25º/s 对 RD1100 光纤陀螺仪的标度因数及其非线性度进行测试。通过测试结

果及 KVH 公司提供的文献以及 E-Core RD1100 光纤陀螺仪的性能参数，我们得到对

于-25º/s~+25º/s 之间，RD1100 光纤陀螺仪的标度因数非线性度非常小，这说明标度因

数非线性度对于我们研制的移动机器人的航向影响不大。 

♦ （3）其它影响因素 

研究中发现，由于光纤陀螺仪的数据采样周期为 0.1s，系统程序中数据通讯过程

需要 0.1s，这样移动机器人当前获得的光纤陀螺仪数据实际上是 0.2s 前的航向角度。

也就是说，移动机器人系统存在 0.2s 的时滞。为了解决这一问题，我们采用了动态系

统的 α-β 滤波的状态预测方程对移动机器人系统进行状态补偿。其基本思想为：设描

述移动机器人转动的状态 X 是二维向量，即  ] [ xxX &= ，x 和 x&分别是移动机器人的角

度和角速度。其状态方程为 

)()()1( kGVkXkX +Φ=+  （2-8）

其中， ⎥
⎦

⎤
⎢
⎣

⎡
=Φ

10
1 T

； ⎥
⎦

⎤
⎢
⎣

⎡
=

T
T

G
2/2

；V(k)是标量零均值白噪声序列，Φ是状态转移矩阵，
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G 是过程噪声协方差矩阵，T 是采样间隔。 

βα − 滤波器的状态估计方程为 

⎪
⎩

⎪
⎨

⎧

+−+++=++

+−+++=++
∧∧∧

∧∧∧

)]|1(()1([β)|1()1|1(

)]|1(()1([α)|1()1|1(

kkxkz
T

kkxkkx

kkxkzkkxkkx

&&
 （2-9）

其中 α，β 是无量纲参数，代表角度和角速度的滤波器增益。则相应状态预测方程为 

⎪⎩

⎪
⎨
⎧

=+

+=+
∧∧

∧∧∧

)|()|1(

)|()|()|1(

kkxkkx

kkxTkkxkkx

&&

&
 （2-10）

通过以上分析及常规校正，在环境温度比较稳定的情况下，我们将光纤陀螺仪的

角度漂移控制在 15~26°/h。但是由于光纤陀螺仪使用的实时性和对环境温度变化的灵

敏性，使得移动机器人利用光纤陀螺仪进行航迹推测时仍不可避免地存在航向误差。 

 

图 2-6  常规校正的 FOG 角度和角速率输出曲线 (温度: 32.95°~36.4°) 

2.2.2.3 校准方法 

在光纤陀螺仪性能分析及常规校正的研究基础上，提出利用 RBF（Radial Basis 

Function）神经网络和遗传算法所构建的进化神经网络实现光纤陀螺仪漂移误差模型

的辨识，并用它对移动机器人航向误差进行校正。通过实验获得进化神经网络的训练

样本，在 RBF 神经网络的训练中，提出了基于 Elitist 竞争机制的遗传进化训练方法。

RBF神经网络具有很强的局部逼近能力，而遗传算法具有优良的全局搜索与优化性能，

从而能够有效地对陀螺仪误差的非线性与时变特征进行建模与辨识。通过实验，证明

该方法可以大幅度减少光纤陀螺仪的误差，从而提高移动机器人导航定位的精度。 
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♦ （1）RBF 神经网络模型 

RBF 神经网络与多层前馈神经网络类似，由输入层、隐含层和输出层组成（如图

2-7 所示）。其中，输入层只是传递输入信号到隐含层，权值固定为 1；隐含层通过径

向基函数实现输入变换后送到输出层；输出层是隐含层输出的线性组合。由于隐含层

使用径向基函数，RBF 神经网络对于输入激励产生一个局部化的响应。因此 RBF 神经

网络具有很强的局部逼近能力。 

 

 

 

 

 

 

图 2-7  RBF 神经网络的结构图 

具 有 n 个 输 入 和 一 个 输 出 的 RBF 神 经 网 络 ， 设 其 输 入 为 n 维 矢 量 
T

2,1 ],,[ nxxxX L= ，选用高斯函数作为径向基函数，则第 j 个隐节点对于输入矢量 X 的

径向基函数为 

))()(exp()( jj
T

jj cXcXXf −Δ−−=  （ jΔ =

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

2

2
1

/10

0/1

nj

j

σ

σ
O

） 
（2-11）

其中， ),,,( 21 njjjj cccc L= 是隐含层第 j 个径向基函数的中心矢量； jΔ 是隐含层第 j 个

神经元的归一化参数，用来确定隐含层第 j 个神经元对其输入矢量 X 之间距离响应的

面积宽度； j =1，2，…，m(m 为隐含层神经元个数)。 

则网络的输出为 

∑
=

=
m

j
jj Xfwty

1
)()(  （2-12）

这里， jw 是隐含层第 j 个神经元节点到输出层的连接权值。由上可见，RBF神经网络

是通过非线性基函数的线性组合实现从 nR 到 mR 的非线性影射。 
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♦ （2）基于遗传算法的网络训练 

RBF神经网络训练的关键是根据给定训练样本，快速有效地确定径向基函数的中

心位置、宽度和输出层权值等有关参数的估计。遗传算法是模拟生物的进化过程，根

据许可的计算时间，运用遗传算子对群体优化，同时以全局并行搜索技术来搜索优化

群体中的最优个体，以求得满足要求的最优解或准最优解。利用遗传算法优化RBF神

经网络时，一般需要编码、确定种群规模、确定适应度函数、选择操作、交叉操作、

变异操作以及确定终止条件等几个步骤来实现。具体的算法如下： 

♦ A 编码：遗传算法编码常用的有二进制编码或实数编码。这里采用实数编码，

以避免采用二进制编码时，因过多的估计参数导致码字很长，从而与精度要求相矛盾

的问题。RBF 神经网络的结构参数包括径向基函数的中心位置 cji、宽度 σji 和输出层

权值 wj 等，其中 i=1，2，…，n；j =1，2，…，m，待估参数个数为 2mn+m。个体 θG

编码为： 

}…,2,1;,…1,2,R;,,|          
),…,,,…, ,,…,,,…,,,…,({ 111111111

mjnicw
ccccwwG

jijij

mnmnmnmnm

==∈
=

σ
σσσσθ  （2-13）

♦ B 种群规模：种群的规模直接影响遗传算法的最终结果以及算法的执行效率。

种群太小容易陷入局部最优解，优化效果不良；而种群太大则计算复杂度提高，不利

于求解。根据经验取种群规模为 Psize=10，即有 }…2,1|{ sizePGP == θθ 。 

♦ C 适应度函数：适应度函数是算法对个体 θG  “好坏”的评价标准，取值为正。

这里采用 RBF 神经网络的目标函数作为适应度函数。即 

 )]()([  
2

1)()( 2

1
tytx

Nsize
tGf kk

Nsize

k
−== ∑

=
εθ  （2-14）

其中xk (t)表示陀螺仪实际输出，yk (t)表示神经网络预测输出，Nsize表示样本集大小。 

♦ D 竞争：以初始种群中根据适应度函数选拔出来的最优个体作为优胜者，具有

唯一的与种群中其他个体交叉的权利；新产生的个体与优胜者竞争，失利一方作为普

通个体。 

♦ E 遗传算子：包括选择，交叉和变异。选择是指普通个体按照与适应度函数相

关联的概率淘汰，并由随机产生的新个体取代，以维持原有的种群规模。个体 Gθ遭遇

淘汰的概率为 
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∑
=

=
sizeP

i
iGf

GfGP

1
)(

)()( θ
θ  

（2-15）

交叉采用单点交叉方式，以相等的概率（0.5）决定前交叉或后交叉，一次交叉只产生

一个后代个体，并用该个体替换适应度较低的一个父代个体。变异采用按位变异。产

生变异有2种情形：一种是个体的编码与当前优胜者编码相同时，通过变异，避免算法

早熟；另一种是普通个体以0.2的概率进行变异。 

♦ （3）实验结果 

为了实现光纤陀螺仪漂移的误差补偿，将光纤陀螺仪的输出角速率值作为神经网

络的输入，并取电控转台的旋转角速率值作为参考输出，对不同温度不同旋转角速率

下光纤陀螺仪的输出进行采样。测试转台的转动速度在-25~25°/s范围内以5°/s的间隔

作为一个测量点，陀螺仪上电后从环境温度逐步上升到一个稳定温度，通过改变陀螺

仪工作环境温度，测得温度变化范围为10~40ºC的数据，从中选取温度变化间隔为0.1ºC

的100个数据之和作为训练样本，从而获得神经网络的训练样本集。利用遗传算法对

RBF神经网络进行训练，调整RBF神经网络的参数，使RBF神经网络的输出与训练样

本集的参考输出之间的误差最小。当训练完成后，为了检验训练好的神经网络的灵敏

度和容错能力，利用移动机器人对用神经网络补偿后的光纤陀螺仪进行校验。 

训练神经网络的误差指标为误差平方和(Sum-Squared Error)，图2-8是RBF神经网

络的训练结果。由训练结果可以看出，采用遗传算法训练RBF神经网络具有较好的收

敛效果。经过261代的优化后，误差已经收敛到足够小的状态。 

 

 

 

 

 

 

 

 

图2-8  RBFNN的训练结果 

经测试，用该神经网络补偿前，温度由10℃变化到40℃，光纤陀螺仪角速率输出

与温度之间呈现出一定程度的非线性度。陀螺仪的漂移变化达15~26°/h ，若不进行补
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偿，对于移动机器人的导航定位将产生很大的误差。而经过神经网络补偿后，在同样

的测试条件下，陀螺仪的漂移变化控制在3~6°/h，已经接近于该公司提供的在恒温条

件下该产品的测试输出（2~4°/h）标准。图2-9是应用训练好的神经网络对不同温度段

下的光纤陀螺仪在1小时内的漂移误差进行补偿的结果。显然，该神经网络较好地获得

了光纤陀螺仪的输出与温度之间联系的知识，表明网络具有较强的学习和泛化能力。

经过神经网络对光纤陀螺仪的温度敏感度特性进行补偿，大幅度减少了环境温度变化

下的光纤陀螺仪的漂移，为实现移动机器人准确的航迹推测奠定了基础。 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

图2-9  不同温度下经过神经网络校正后的光纤陀螺仪输出 

2.2.3 倾角传感器 

移动机器人在复杂地形下运行，就不得不考虑对俯仰与横滚姿态进行检测，防止

机器人出现重心失衡。同时，移动机器人在起伏地形下进行航迹推测时，也需要俯仰

与横滚的姿态参数。由 Crossbow 公司生产的 CXTILT02E/02EC 传感器，是二组正交

配置的微机械加速度传感器，能够分别测量平面的俯仰与横滚方向的倾斜状态，精度

可以达到 0.1 度。倾角传感器采用硅材料微机械技术制造工艺，具有较高的可靠性、

稳定性与紧凑的外形。数据通讯采用 RS232 接口，通过串口指令标定倾角水平零点，

选择倾角传感器滤波器参数为 1 的设置，此时数据更新频率为 12.5Hz，角度分辨率为

0.101°。CXTIL02EC 具有较高的测量精度与线性度，采用在板温度传感器进行温度补

偿，避免了因温度变化而引起的漂移[84]。 
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为了分析倾角传感器的性能，结合移动机器人具有水平和俯仰转动功能的电控转

台（精度为 0.01°）分别对其俯仰和横滚姿态进行如下测试，如图 2-10（a）所示（室

温）。 

♦ 电动控制：控制转台在 0~45°之间转动，每间隔 5°使转台静止时测量一组数据，

共测量十组数据。测量结果显示角度偏差均值为 0.70953°，统计标准差为 0.04524°，

数据随时刻而漂移的趋势线斜率为 10-5，非线性度<0.3%。 

♦ 转台匀速运动：电动控制转台在 0~55°之间分别以 2°/s、4°/s、8°/s 的速度匀速

进行俯仰运动，测量结果如图 2-10（b）所示。可以看出该传感器具有较好的线性度。 

通过测试分析，该型倾角传感器具有可靠的分辨率和非线性度，并且能够采用在

板温度传感器进行温度补偿，避免了因温度变化而引起的漂移，可保证极高的精确度。 

 

         

            (a) 测试实验                         (b) 转台运动时测量的俯仰角度 

图 2-10  倾角传感器性能测试 

 

2.3 环境感知传感器 

 

利用里程计、光纤陀螺仪等内部传感器，依据运动学模型自我推测机器人的航迹，

可实现短时间短距离内的机器人相对定位。但是这种方法不可避免地存在随时间距离

增加而增加的累积航迹误差，不适于长时间长距离的准确定位。针对这一问题，绝对

定位方法被引入，采用外部传感器感知环境中障碍的绝对位置信息，用来校正机器人

航迹推测的长期累积误差[51]。采用的外部传感器包括声纳[6]、摄像头[85]、激光测量系

统[13]等等。由于激光雷达具有探测距离远，测量精度高等优点，已广泛应用于移动机
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器人导航定位系统。激光雷达可以采用在平面上进行线扫描的二维激光雷达或者能够

进行面扫描的三维激光雷达。鉴于三维激光雷达价格、体积与重量等因素影响，面向

移动机器人实时自主导航的需求，二维 TOF 激光雷达是最佳选择[71]。 

 

2.3.1 激光雷达 

2.3.1.1 工作原理 

研究所用的德国 SICK 公司的 LMS291 激光雷达（如图 2-11（a）所示）是一种

非接触自主测量系统，通过扫描一个扇形区域来感知该感知区域的障碍。它采用飞行

时间法测距（如图 2-11（b）所示），激光器发射的激光脉冲经过分光器后，分为两路，

一路进入接受器；另一路则由反射镜面发射到被测障碍物体表面，反射光也经由反射

镜返回接受器。通过反射镜的旋转，激光雷达得以在一个角度范围内获得线扫描的扇

形区域。由于发射光与反射光的频率完全相同，通过测量发射脉冲与反射脉冲之间的

时间间隔并与光速的乘积来测定被测障碍物体的距离。 

 

 

(a) 激光雷达 LMS291                    (b) 工作原理 

图 2-11  激光雷达 LMS291 及其工作原理 

LMS291 对物体移动距离的最小分辨率为 10mm，可以采用 1º/0.5º/0.25º 等 3 种扫

描角解析度模式。扫描角度范围为 180º（采用解析度为 1º/0.5º）和 100º（采用解析度

为 0.25º）。这里采用 180º/0.5º 扫描模式，通过 0.5º 相位差的 2 次扫描得到 180º 扫描范

围内的 361 个测量数据，扫描时间为 26.67ms。激光雷达测量数据的输出格式为 13 位

字长，可以采用 mm/cm 输出模式，最大输出值为：213-1=8191。 

分光器 

旋转镜面

激光器

接受器 

障碍 
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2.3.1.2 性能分析 

♦ （1）测距数据的标定 

为了检验激光雷达的测距精度，在图 2-12（a）的测试台上，标定出 20~248cm 的

距离刻度，被测物体每次平移 3cm，在每个刻度值测量 100 次。获得 20~248cm 之间，

间隔 3cm 的 77 组共计 7700 个测量数据。将测量数据在各个测量点的分布曲线绘制在

图 2-12（b）中。在图中分别画出了各个测量点的测量平均偏差，测量数据组中的最

大正向偏差（上限）与最大负向偏差（下限）。该测试表明针对某固定反射率的物体测

量数据最大偏差在-3~3cm 范围内，此外对 7700 个数据计算出测量误差的标准方差为

0.94cm。在 1~20m 范围内，反射率为>10%的某个固定值时，环境照度<=5000Lux（勒

克斯）条件下，对激光雷达的测距数据的影响不大。 

 

 

 

 

 

（a） 激光雷达测距标定实验 

 

 

 

 

 

 

 

 

 

 

 

 

（b） 激光雷达测距误差分布曲线 

图 2-12  LMS291 在 20~248cm 范围的测量误差 
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♦ （2）不同测量距离下的统计特性分析 

采用反射率较高的金属铝板，放置在实验室走廊上不同的距离处进行测量。获得

距离为 251cm，500cm，1347cm，2453cm，4291cm，6289cm 的测量数据，每个距离

点连续测量 8000 余次数据（每次测量间隔时间为 0.5 秒）。在以上数据中剔除因为人

员走动干扰的非正常数据，也剔除了测量值明显有别于其它数据的脉冲性干扰（由通

讯干扰、日光噪声引起）。统计分析表明，激光雷达测距数据的分散度随着距离的增加

而有扩大的趋势。采用金属铝板做反射物时，在 251~6289cm 的距离中，从 85.0=σ 变

化到 78.1=σ cm。考虑到实际环境中物体的表面特性不尽相同，而对所有不同特性材

料作测试还不具备试验条件。把测量距离的标准差分为表 2-1 中的几个级别，其中 dσ

作为针对同一目标多次测量条件下均值的标准差，并取 3 倍 dσ 作为对不同类物体测距

时的系统误差估计值 dσ 。在激光雷达进行环境感知时，以 dσ 作为静态条件（机器人

以及激光雷达均静止）下对静止目标（如墙壁）的测量均值估计误差；在运动条件下， 

dσ 作为单次测量下的估计误差。 

表 2-1  不同距离范围下的标准差取值 

测量距离

d (cm） 
500≤d  <500 1000≤d 20001000 ≤< d 40002000 ≤< d  4000>d

静态统计方差

dσ (cm) 
1.0 1.2 1.35 1.7 1.8 

动态统计方差

dσ (cm) 
3.0 3.6 4.05 5.1 5.4 

♦ （3）不同表面特性物体的测距对比 

在距离 100cm 处，分别采用金属铝板（反射率 110~150%）和木板（反射率约 20%）

进行不同反射率下的对比实验；采用纯白色的打印纸与采用三原色 RGB(Red，Green，

Blue)值为 0 的同质打印纸进行表面不同灰度值的对比试验；采用红色、绿色、蓝色的

装饰纸进行表面不同色度的对比试验；采用 230mm×280mm 页状耐水砂纸，砂纸粒度

号分别为 120（中磨）、360（细磨）及 400（精磨），其磨料粒度分别为 90、240 及 280，

进行表面不同粗糙度的对比试验；采用相同材质的圆形物体，表面为抛光处理的不锈

钢，半径分别为 11cm 和 23cm 进行表面不同曲率（圆形物体的曲率为 1/半径）的对比

试验。以上试验的统计结果如表 2-2 所示，通过对具有不同反射率、灰度、色度、粗

糙度、曲率特性的多种材料进行试验，从试验结果可知不同表面特性物体其统计特性

的 1 倍标准差小于 10mm，在 1~20m 范围内，反射率为>10%的某个固定值时，环境照

度<=5000Lux（勒克斯）条件下，对激光雷达的测距数据的影响不大。 
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表 2-2  不同表面特性物体的测距试验 

试验 样本均值 d  (cm) 标准差σ  (cm) 

金属铝板 101.05 0.30 
1．不同反射率 

木板 100.17 0.76 

白色打印纸 100.07 0.26 
2．不同灰度值 

黑色打印纸 100.30 0.35 

红色装饰致 100.52 0.34 

绿色装饰纸 100.21 0.31 3．不同色度值 

蓝色装饰纸 100.49 0.32 

120 号砂纸 100.37 0.83 

360 号砂纸 100.57 0.63 4．不同粗糙度 

400 号砂纸 100.58 0.61 

抛光不锈钢桶(11cm) 100.09 0.84 
5．不同曲率 

抛光不锈钢桶(23cm) 100.10 0.83  

♦ （4）对角度分辨率的测试 

激光雷达的扫描分辨率为 1°/0.5°/0.25°，扫描点的间距随着测量距离增加而发

散。激光脉冲的光束直径对于测量的角度敏感性有很大影响，从 LMS291 的技术手册

了解到激光光束直径的参数为发散的射线状，光斑直径随距离的增加而扩大。为了测

量角度变化的敏感度，采用精密电控转台进行测试，精密转台的角度 hγ 分辨率 0.01°。

LMS291 角度分辨率测试方法见示意图 2-13。激光雷达距离检测板 1.5m，在检测板后

约 0.8m 处放置一个背景板。转台带动激光雷达旋转，当光束处于检测板边缘与背景

板之间时会产生混合像素现象。 

 

 

 

 

 

 

 

图 2-13  LMS291 角度分辨率测试装置示意图 

转台首先按顺时针方向转动，每转动 0.01°记录一组测试数据（100 次测量值），

通过检测板到背景板之间的过渡状态中是否出现混合像素干扰来确定角度敏感度。通

hγ  

LMS291 

0.8m 

背景 

检测板 

激光束 

1.5m 
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过转台顺时针和逆时针转向的测量，测得 LMS291 发生混合像素干扰的敏感角度为

0.19°，这为建立 LMS291 测距的误差模型提供了基础。 

2.3.1.3 校准方法 

激光雷达的测距数据中包含一定的噪声干扰，主要源自环境中与激光雷达相近频

率成分的光源干扰；混合像素干扰；测量目标反射率太小或者入射角较大造成的数据

丢失；障碍物遮挡造成的扫描盲区；激光雷达扫描线之间的间隙（目前采用 0.5º 的解

析度）而未能扫描的空间区域。在导航过程中，由于这些干扰的存在，可能导致不精

确的障碍检测。因此，为了满足导航的实时要求，需要进行动态在线的滤波。 

通过对移动机器人动态运行过程采集的数据分析表明，激光雷达的测量值表现为

在每个极坐标测量角度方向上，相邻时刻的测量值具有相关性。同时，在同一组测量

的相邻扫描角度上的测量值也存在较大相关性。因此，本文采用动态自适应滤波

（Dynamic Adaptive Filter，DAF）方法消除障碍检测中的噪声干扰。针对测量值（ρi,j , 

λi,j），建立如下的数据分析窗口： 

1,1 −− jiρ ,  ji ,1−ρ , 1,1 +− jiρ  

1, −jiρ ,   ji ,ρ ,  1, +jiρ  

1,1 −+ jiρ , ji ,1+ρ , 1,1 ++ jiρ  

（2-16）

式中，i 是表示一个数据包组的编号，一个数据包组包含了 180°范围的 361 个测量数

据，采样时间间隔为 40ms；j 是同一组数据中的序列号。激光雷达的旋转镜面以 75Hz
的频率旋转，每次扫描时间 13.3ms，扫描的角度间隔 1°；采用 0.5°分辨率模式时，

通过二次扫描获得相差 0.5°的角度解析度。因此上述 9 个测量值具有时间与空间上最

大的相关性。在数据窗口中根据公式（2-17）计算出 ji,ρ 与邻近测量值之差 minρΔ 。 

}0,0&0,0&1,0,1,

|,min{| ,,min

≠==≠−=

−=Δ ++

ststst
jiisit ρρρ

 （2-17）

在静态环境且机器人处于静止状态时，可以用不同距离范围下的标准差来估计

minρΔ 的合理性。在动态环境或机器人自身处于运动状态时，则需要考虑到机器人的运

动速度以及目标的运动速度。在动态环境下测量值的可接受邻近差值的阈值设定为： 

|)||(|
25
1)(),( robotgoal vvv ++= ρσρδ  （2-18）
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式中， )(ρσ 可以依据环境状况及机器人运动状态利用不同距离范围下的标准差来估计。 

为了实现 DAF 处理过程，当前时刻的测量值先被置于缓存器中，必须要等下一时

刻的测量数据接受后，才能对时刻 1,,1 +−= iiin 的数据进行判别。意味着在环境数据

更新上将出现一个周期（40ms）的延迟。对于运动速度并不太高的移动机器人来说，

不会对机器人的行为造成很大影响。采用 DAF 能有效地滤除激光雷达测距信息的干扰

噪声。 

依据激光雷达测距数据的统计特性，结合 DAF 对机器人障碍测距数据处理。当机

器人处于静止状态时，对静止目标进行测距时，此时 1),( =vρδ cm；当机器人处于运动

过程中，此时取 3),( =vρδ cm。这里应用 DAF 对图 2-14（a）包含混合像素干扰的数

据进行处理，此时，Vgoal=0，Vrobot=0。运用 DAF 对测量数据进行滤波后，对于 λ=2.0º
方向混合像素干扰滤波效果非常显著，可以滤除 98%的混合像素干扰，见图 2-14（b）。 

 

 

 

 

 

 

 

 

 

(a) 混合像素干扰时的测距数据 

 

 

 

 

 

 

 

 

 

(b) DAF 滤波后的数据分布 

图 2-14  DAF 滤波效果图 
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2.4 小结 

结合自行研制的移动机器人 MORCS-1 系统的多种内外部定位传感器，研究这些

定位传感器的误差分析及校准方法，主要包括里程计的系统及非系统误差，光纤陀螺

仪的漂移误差，激光雷达的测距影响因素等。 

针对由光电编码器构成的里程计，利用 UMBmark 实验对里程计所计算的里程进

行实验，通过系统/非系统误差的分析，考虑其在移动机器人增量式环境建模与自定位

中融合其它传感器信息，利用概率和地图匹配消除其长期累积造成的里程误差； 

针对光纤陀螺仪的漂移误差，分别进行常规消除零漂、温漂建模、动态补偿等实

验，在进行常规的零漂校准以外，对于运动过程中的通讯时滞采用了动态系统的 α-β
滤波的状态预测方程进行状态补偿，提出采用基于遗传算法优化的神经网络来对光纤

陀螺仪的温漂建模及校准，能够将其温漂变化控制在恒温条件下标准测试输出附近； 

针对激光雷达测距数据中包含的噪声干扰，分别进行测距数据标定、不同材质物

体的表面特性（反射率、灰度、色度、粗糙度、曲率）、混合像素等影响测距精度的因

素实验，考虑移动机器人导航中激光雷达测距数据的时空关联性，提出采用动态自适

应滤波技术进行预处理，从而可以有效滤除噪声干扰满足导航中障碍实时精确检测的

要求； 

    同时，对于测量移动机器人俯仰与横滚姿态的倾角传感器的工作原理及性能指标

进行了介绍分析，得出其性能指标能够满足移动机器人的定位需要。 
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第三章  复杂地形下基于本体感受的移动机器人航迹推测 

 

 

精确可靠的航迹推测（也即相对定位）是实现移动机器人导航定位的一个重要环

节[9,55]。移动机器人的航迹推测主要依靠里程计、陀螺仪等本体感受传感器，给定初

始位姿，通过测量机器人相对于初始位姿的距离、方向等参数，依据运动机构的运动

学模型获得自身的当前位姿。相对定位具有自包含的优点，能够依据运动学模型自我

推测机器人的航迹，不需要对外界环境的感知信息，可以在一定时间内保持定位精度，

减少绝对定位的计算量。 

移动机器人的运动机构可以分为腿式、履带式和轮式等类型[86]。一般来说，腿式

移动机器人和履带式机器人比较适合于崎岖起伏的路面环境，但腿式移动机器人的结

构与相应控制器设计复杂，目前的技术还难以达到实用阶段。而履带式移动机器人，

其消耗的功率要比相近体积、质量的轮式移动机器人要高许多。尽管轮式结构比较适

合平缓的环境，但可以通过选择合适的摇架系统来使其适应起伏不平的地形。因此，

在星际漫游车的设计中，多采用轮式结构与摇架系统相结合的设计思路，把轮式结构

在平缓环境下的低能耗与摇架系统越障性能突出的优点相结合[87,88]。 

航迹推测通过测量位置，速度，方向等参数来提供机器人的动态位姿信息。对于

轮式移动机器人而言，最直接的航迹推测方法是基于机器人的运动机构构造系统的运

动学模型，通过测量轮子的角速度来计算车体参考中心的运动速度以及车体的航向，

进而对机器人的运行航迹进行推测。现有的航迹推测方法主要应用于平坦地形下移动

机器人的导航定位中，一般采用编码器来获得机器人的航向与里程信息[63]。但是，依

靠编码器进行航迹推测的误差很大，难以保障起伏地形下移动机器人的导航精度。近

年来，光纤陀螺仪 FOG 已经广泛用于测量移动机器人的航向角[64]。此外，为了对复

杂非结构化环境下移动机器人的姿态进行推测，还需对机器人的俯仰角与横滚角进行

检测[65]。 

本章根据刚体运动学的约束分析了一种轮式结构与悬浮式摇架系统相结合的移动

机器人在复杂地形下的运动。采用里程计、光纤陀螺仪、倾角传感器等传感器信息推

导移动机器人的运动学模型，提出一种运动学模型与车轮-地面运动角度相结合的估计

方法，融合移动机器人的多传感器信息，实现移动机器人运动状态的估计。通过对不

同地形下的运动进行仿真以及利用机器人进行的实验，证明了该算法的正确有效性。 
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3.1 移动机器人的航迹推测基础 

移动机器人运动学（Kinematics）讨论机器人由于运动引起的空间姿态变化，它

是建立机器人运动方程，进行机器人运行轨迹计算，预测机器人航迹的基础。在室内

或高速公路等结构化的环境中，一般是基于二维平面的假设。对于非道路环境下复杂

的三维环境，估计移动机器人的状态，就必须考虑移动机器人在三个坐标方向上的运

动情况。 

 

 

 

 

 

 

 

图 3-1  复杂地形下移动机器人的参考坐标 

移动机器人的状态轨迹可以由该参考中心的运动速度，以及航向、俯仰、横滚角

度的变化确定。在移动机器人基准面上配置的姿态检测传感器包括检测围绕 Z 轴转动

的航向测量光纤陀螺仪，测量与水平面相对的俯仰角与横滚角传感器。图 3-1 中，设 rO

为移动机器人的参考中心，以移动机器人的前进方向为 rX 轴，垂直于机器人参考面以

右手准则建立以移动机器人的运动参考坐标系 }{ rO ，参考中心的运动参数可以由速度

向量 T]0[ rrr
r

ZYX
O vvvu = 以及转动向量 T

r ]0[ rrr
r

ZYX
O δδδδ = 确定。 

移动机器人在世界坐标系 }{O 中的运动姿态可以用如下参数进行描述： 

♦ x ， y ， z ：移动机器人参考中心 rO 在世界坐标系 }{O 中的坐标； 

♦ θ ：航向角，Xr轴在 }{O 中 YX − 平面的投影线与 X 轴的夹角，逆时针为正方向； 

♦ α ：俯仰角，Xr轴相对于 }{O 中 YX − 平面的夹角，以抬起方向为正方向； 

♦ φ：横滚角，Yr轴相对于 }{O 中 YX − 平面的夹角，以向右侧翻滚为正方向； 

♦ v：移动机器人参考中心 rO 在世界坐标系 }{O 中的运动速度。 

Zr  

X 

Z 

Y 
O 

Xr 
Yr 

Or 
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图 3-2  机器人平面在世界坐标系中的坐标变化示意图 

为了实现移动机器人的航迹推测，就需要将移动机器人参考中心的运动映射到世

界坐标系 }{O 中。以世界坐标系 }{O 为参考坐标系，对机器人坐标系 }{ rO 进行逆变换，

记为 TO
Or

，该变化可以采用如下的变化组合得到： 

)',(Rot),(Rot),(Rot),,(Trans rnewnewr
φαθ XYZzyxTO

O −=  （3-1）

其中， ),,(Trans zyx 表示从世界坐标系的原点 O 平移到机器人的当前位置 ),,( zyx ，

),(Rot new θZ 表示围绕平移后的新坐标系中的 Z 轴（ newZ ）旋转θ 角（机器人航向角）；

),(Rot new α−Y 再围绕变换后的新坐标系中的Y 轴（ newY ）旋转 α− 角，由于前面定义

机器人以抬起方向为俯仰角正方向，与右手规则定义的旋转方向相反，因此旋转变化

中的角度取 α− ； )',(Rot r φX 最后围绕上述变化后的新坐标系中的 X 轴（ rX ）旋转 'φ 角，

'φ 为等效横滚角。 

等效横滚角 'φ 是围绕机器人坐标系 }{ rO 中的 rX 轴在 rrr ZOY −− 平面上旋转至与世

界坐标系平面 YOX −− 的夹角为φ时的转动角度。φ是机器人平台的横滚角，可以通

过倾角传感器直接测量，等效横滚角 'φ 与横滚角φ之间存在如下关系： 

α

Yr 

Y 

Xr 

Z 

gyroϖ  

X O 
x  

z 

Zr 

θ

φ

'φ  

Or 

y 
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α
φφ

cos
sinarcsin'=  （3-2）

经过计算可以得到[1]： 

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡
−+
+−

=

1000
'cc'scs

'sc'css-'cc'sss-s
'ss'csc-'cs'ssc-cc

r z
yc
x

TO
O φαφαα

φθφαθφθφαθαθ
φθφαθφθφαθαθ

 （3-3）

其中， c表示 cos() , s 表示 sin()。 

 

3.2 移动机器人航迹推测的输出变换 

 

3.2.1 航迹推测的输出变换 

移动机器人一般通过安装在车轮上的编码器测定车轮的转动。安装在机器人平台

上的光纤陀螺仪与倾角传感器测定机器人的航向角θ、俯仰角α与横滚角φ。航向角θ
定义为在世界坐标系 }{O 中围绕 Z 轴，相对 X 轴旋转的角度，按照右手准则，逆时针

旋转方向为正方向。但是，陀螺仪安装在机器人平台上，输出的是机器人坐标系 }{ rO 中

围绕 rZ 轴旋转的转动角速度 gyroϖ ，因此需要通过微分转动变换求解世界坐标系 }{O 中

的航向角θ。由公式（3-3）可以得到 }{ rO 中 rX ， rY ， rZ 轴在世界坐标系 }{O 中的矢量

方向表示为公式（3-4）、（3-5）和（3-6）： 

krjrir

kjiXO

rrr

rrrr

312111

r

         

sincossincoscos

++=

⋅+⋅+⋅= ααθαθ
 

krjrir

k

jiYO

rrr

r

rrr

322212

r

       

'sincos          

)'coscos'sinsinsin()'cossin'sinsincos(

++=

⋅+

⋅+−+⋅−−=

φα

φθφαθφθφαθ

 

krjrir

k

jiZO

rrr

r

rrv

332313

r

        

'coscos           

)'sincos'cossinsin()'sinsin'cossincos(

++=

⋅+

⋅−−+⋅+−=

φα
φαφαθφθφαθ

 

（3-4）

（3-5）

（3-6）
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围绕 }{ rO 中 rX ， rY ， rZ 轴的微分转动 X'δ ， Y'δ ， Z'δ 等价于分别围绕 }{O 中 X 、Y

和 Z 轴的微分转动 Xδ ， Yδ ， Zδ ，则有[1]： 

⎪
⎩

⎪
⎨

⎧

++=
++=
++=

ZYXZ

ZYXY

ZYXX

rrr
rrr
rrr

'''
'''
'''

333231

232221

131211

δδδδ
δδδδ
δδδδ

 （3-7）

采用陀螺仪与倾角传感器等组成的航迹推测系统可以测量出 Xδ ， Yδ 以及 Z'δ ，通

过公式（3-7）经过线性变换可以求得 X'δ ， Y'δ ， Zδ ： 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

Z

Y

X

Z

Y

X

rrr
rrr
rrr

''''
'''
'''

'
'

333231

232221

131211

δ
δ
δ

δ
δ
δ

 （3-8）

其中： 
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−
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通过光纤陀螺仪和倾角传感器可以得到： 

rollX φδ Δ= ， pitchY αδ Δ= ， gyroZ θδ Δ='  （3-9）

则根据公式（3-8）能够计算出 Zδ ，可以得到： 

XT
δφ 1=& ， YT

δα 1=& ， ZT
δθ 1=&  （3-10）
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其中，T 为测量间隔时间。根据公式（3-7）计算出围绕 }{ rO 中 rX ， rY 轴的微分转动

变化率： 

XT
'1' δφ =& ，    YT

'1' δα =&  （3-11）

3.2.2 航迹推测方程 

设 rO 在 }{O 中的位置矢量为： Tzyxu ]0,,,[= ，则： 
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⎥
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由此可以得到在非平坦地形环境下，移动机器人的姿态可以用机器人平台参考

中心的状态 ),,,,,( iiiiii zyx φαθ 来表示，其中 i 表示与时间序列相应的时刻序号，则有

如下航迹推测状态方程： 
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 （3-13）

 

3.3 基于摇架机构的速度矢量角分析 

 

移动机器人的运动机构可以分为腿式、履带式和轮式等类型。目前，多数移动机

器人采用轮式移动结构。一般来说，腿式移动机器人和履带式机器人比较适合于崎岖

起伏的路面环境，但腿式移动机器人的结构与相应控制器设计复杂，目前的技术还难

以达到实用阶段。而履带式移动机器人，其消耗的功率要比相近体积、质量的轮式移

动机器人要高许多。尽管轮式结构比较适合平缓的环境，但可以通过选择合适的摇架
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系统来使其适应起伏不平的地形。因此，在星际漫游车的设计中，多采用轮式结构与

摇架系统相结合的设计思路。把轮式结构在平缓环境下的低能耗与摇架系统越障性能

突出的优点相结合。典型轮腿式移动机器人如 NASA 研制的行星漫游车 ROCKY7[56]：  

 

 

(a)  ROCKY7 的侧视图 

 

(b)  ROCKY7 的俯视图 

图 3-3  NASA 研制的行星漫游车 ROCKY7 

在上节我们推导了机器人参考平面的运动方程，根据公式（3-12）和（3-13）计

算出机器人的运动状态，需要确定移动机器人参考中心的运动速度。对于采用遥架机

构的移动机器人，确定移动机器人的运动，主要是确定左右遥架相对地面的运动，而

遥架以上的状态则可以由各类姿态传感器进行检测。因此，在估计机器人状态的推导

中，确定左、右肩关节处的速度以及速度矢量的方向成为复杂地形下导航的关键。 

3.3.1 摇架约束下的速度矢量角分析 

通常，人们假设环境地形的改变是比较平缓的，可以把移动机器人的车体看作与

地面相互平行的移动，参考中心的速度可以通过各个车轮上的编码器的转动计数来求

得。车轮的线速度可以看作平行于车体方向，在三维地形中的运动速度可以通过俯仰、

横滚等角度的测量计算出在各个坐标轴方向上的分量。但如果车体的尺寸与地面的变

化相比，不能满足近似平面的假设条件下，就有必要做一个更准确的估计。 
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图 3-4 是一个采用摇架式结构的移动机器人简化运动模型。假设车轮与地面始终

接触良好，没有腾空离地的情况出现。则车轮的运动受到地形起伏变化的约束，同时

安装在刚性连杆遥架上的二个驱动轮受到刚体运动学的约束。在文献 [57] 中提出通

过连杆上二个轮子转速间的约束关系，计算出车轮与地面相互作用的着地角。本节在

此基础上，通过轮地作用角的计算，推导出肩关节处的速度矢量大小及方向；并进一

步给出了在三维地形条件下估计移动机器人运动的状态方程。 

 

 

 

 

 

 

 

 

 

图 3-4  摇架结构中轮子间的刚体约束示意图 

刚性车轮运行在松软地面时，与地面的作用不再满足单点接触的假设。如图 3-4
所示，首先对左侧摇架的运动进行分析。 1L ， 2L 为左侧驱动轮的圆心， 3L 为左侧连

杆的中点。对有关的变量与参数说明如下： 

♦ Lv ：左侧肩关节的空间运动速度矢量； 

♦ L'γ ：左侧肩关节速度矢量 Lv 相对车体平面 rrYX 的夹角； 

♦ 1Lv ， 2Lv ：分别为左侧驱动轮 1L ， 2L 相对地面运动的线速度； 

♦ 
1L'γ ，

2L'γ ：分别为速度矢量 1Lv ， 2Lv 相对车体平面 rrYX 的矢量角； 

♦ Lβ ：左侧摇架相对车体平面 rrYX 的夹角，以摇架抬起的方向为正方向； 

♦ Lβ& ：左侧摇架相对车体平面 rrYX 的夹角变化角速度； 

♦ α ， 'α& ：α 是机器人平台相对于水平面的俯仰角， 'α& 是机器人平台围绕当前 }{ rO

坐标系中 rY 轴旋转的角速度，以抬起方向为正方向； 

♦ ld ,  ： 3L 到肩关节点 0L 的距离 d=30LL ，连杆的长度 l=21LL ，并且左右侧摇

架的几何尺寸完全相同。 

L'γ
r,L Zv

1Lv  

2Lv  

Lβ

Xr L0 

1L'γ  
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根据刚体运动的几何约束关系，摇架在地面上运行时，车轮的运动受到连杆与地

形曲面的约束，在连杆 1L 与 2L 之间满足如下的约束关系： 

)'cos()'cos( LLLLLL 2211 βγβγ −=− vv  

)'sin()'()'sin( LLLLLLL 2211 βγαββγ −=+−− vlv &&  

（3-14）

（3-15）

由公式（3-14）等号二侧平方与公式（3-15）等号二侧平方之和，得到： 

2
L

2
L

2
LLLL

2
L 2111 )'()'sin(2 vlvlv =++−− αββγβ &&&  （3-16）

进而计算出前驱动轮以及驱动轮与地面之间的作用角
1L'γ ，

2L'γ （相对于车体平面）： 

⎪
⎪
⎩

⎪
⎪
⎨

⎧

+
+

+−−=

+
+

++−
=

L
LL

2
L

22
L

2
L

L

L
LL

2
L

22
L

2
L

L

2

21
2

1

21

1

)'(2
)'(arcsin'

)'(2
)'(

arcsin'

β
αβ

αβγ

β
αβ

αβ
γ

vl
lvv

vl
lvv

&&
&&

&&

&&

 （3-17）

在 3L 与肩关节 0L 之间的连杆间存在如下关系： 

)'()'cos()'cos( LLLLLLL 11
αββγβγ && +−−=− dvv  

2
)'sin()'sin()'sin( LLLLLL

LLL
2211 βγβγβγ −+−=− vvv  

（3-18）

（3-19）

由公式（3-15）得： )'()'sin()'sin( LLLLLLL 1122
αββγβγ && +−−=− lvv  代入公式

（3-19）得到： 

2
)'()'sin()'sin( L

LLLLLL 11

αββγβγ
&& +−−=− lvv  （3-20）

由公式（3-18）、（3-20），得到公式（3-21）、（3-22）： 

)')(cossin
2

('cos'cos LLLLLLL 11 αβββγ && +−+= dlvγv  （3-21）



博士学位论文                                         第三章  复杂地形下基于本体感受的移动机器人航迹推测 

 46

)')(sincos
2

('sin'sin LLLLLLL 11 αβββγγ && ++−= dlvv  （3-22）

显然，根据公式（3-21）、（3-22），即可计算出左侧肩关节的速度矢量 Lv 在机器人

参考坐标系 }{ rO 中沿各个坐标轴方向的速度分量。 

⎪
⎪

⎩

⎪
⎪

⎨

⎧

++−=

=

+−+=

)')(sincos
2

('sin

0

)')(cossin
2

('cos

LLLLLrL

,L

LLLLLL

11

r

11r

αβββγ

αβββγ

&&

&&

dlvv

v

dlvv

,Z

Y

,X

 （3-23）

同理，针对右侧摇架上的驱动轮 1R 、 2R 我们可以计算出 1R 、 2R 速度的矢量角： 

⎪
⎪
⎩

⎪⎪
⎨

⎧

+
+

+−−=

+
+

++−=

R
RR

2
R

22
R

2
R

R

R
RR

2
R

22
R

2
R

R

2

21
2

1

21

1

)'(2
)'(arcsin'

)'(2
)'(arcsin'

β
αβ

αβγ

β
αβ

αβγ

vl
lvv

vl
lvv

&&
&&

&&
&&

 （3-24）

由右侧驱动轮 1R 以及
1R'γ 计算出右侧肩关节速度矢量 Rv 在机器人参考坐标系

}{ rO 中沿 rrr ZYX 坐标轴方向的速度分量。 

⎪
⎪

⎩

⎪
⎪

⎨

⎧

++−=

=

+−+=

)')(sincos
2

('sin

0

)')(cossin
2

('cos

RRRRRrR

,R

RRRRRR

11

r

11r

αβββγ

αβββγ

&&

&&

dlvv

v

dlvv

,Z

Y

,X

 （3-25）

关于公式（3-24）、（3-25）中有关的变量与参数说明如下： 

♦ Rv ：右侧肩关节的空间运动速度矢量； 

♦ R'γ ：右侧肩关节速度矢量 Rv 相对车体平面 rrYX 的夹角； 

♦ 1Rv ， 2Rv ：分别为右侧驱动轮 1R ， 2R 相对地面运动的线速度； 

♦ 1Rγ ， 1R'γ ： 1Rγ 为速度矢量 1Rv 相对水平面 XY 的夹角， 1R'γ 为速度矢量 1Rv 相对车

体平面 rrYX 的夹角； 
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♦ Rβ ：右侧摇架相对车体平面 rrYX 的夹角，以摇架抬起的方向为正方向； 

♦ Rβ& ：右侧摇架夹角变化的角速度。 

我们假设图 3-4 的移动机器人的参考中心位于左右肩关节的连线中点上，机器人

中心在坐标系 }{ rO 中的速度向量为： 

⎪
⎪

⎩

⎪
⎪

⎨

⎧

+
=

=

+
=

2

                 0
2

rr

r

r

rr

r

,L,R

,L,R

ZZ
Z

Y

XX
X

vv
v

v

vv
v

 （3-26）

3.3.2 矢量角计算的奇异状态 

在公式（3-24）中存在 0'L =+αβ && 或 01L =v ， 0L2 =v 的奇异点。当 01L =v ，意味着

车体实际上处于静止状态，因此不能确定机器人的运行姿态。当 0'L =+αβ && 时，根据公

式（3-14）与（3-15），可以得到： 

⎩
⎨
⎧

−=−
−=−

)'sin()'sin(
)'cos()'cos(

LLLLLL

LLLLLL

2211

2211

βγβγ
βγβγ

vv
vv

 （3-27）

此时可能出现以下几种满足该方程的奇异值情况： 

♦ 当
21 LL vv −= ，

2
' LL1

πβγ ±= ，
2

' LL 2

πβγ m= 时，二个车轮转动方向相反。由于 1L ，

2L 的线速度总是给定为相同的方向，不会出现
1Lv 与

2Lv 异号的情况，因此这种情况在

实际运行中不会出现。 

♦ 当 0
1L >v ， 0

2L =v 时，
2

' LL1

πβγ ±= ，而
2L'γ 的状态则不能由公式（3-17）确定，

见图 3-5(a)，此时约定 k,L1k,L 22
'' γγ =+ 。 

♦ 当 0
1L =v ， 0

2L <v 时，
2

' LL2

πβγ ±= ，而
1L'γ 的状态则不能确定，见图 3-5(b)，

此时约定 k,L1k,L 22
'' γγ =+ 。 

♦ 当
21 LL vv = ，

21 LL '' γγ = 时，此时可能出现多种的摇架平移运动形态，见图

3-5(c)~(e)。 
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(c) 摇架平行向下运动 ↑Lβ ， ↓'α ， LβΔ = 'αΔ−  

(d) 摇架平行向上运动 ↓Lβ ， ↑'α ， =Δ 'α LβΔ−  

(e) 摇架、车体与地面平行运动， =Δ 'α 0L =Δβ  

 

 

 

 

(a) 当 0
1L >v ， 0

2L =v 时的运动        (b) 当 0
1L =v ， 0

2L <v 时的运动 

 

 

 

 

(c) 摇架平行向下运动      (d) 摇架平行向上运动     (e) 摇架、车体与地面平行运动 

图 3-5  摇架的平行移动 

因此，当 0'L =+αβ && 或 01L =v ， 0L2 =v 时，用下标 k 表示时刻，我们假设机器人保

持着 0'L ≠+αβ && 时的最后时刻着地角估计值，即： 

⎪
⎩

⎪
⎨

⎧

≠+==

≠+≠+
+

++−
=

+

+

 0'0 ,                                                            ''

0' , 0 , 
)'(2

)'(
arcsin'
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LL,

2
L

22
L

2
,L

1,L

111

1

1

,21

1

k,k,kkk

k,k,kk
,kkk

k,kkk
k

v

v
vl

lvv

αβγγ

αββ
αβ

αβ
γ

&&

&&
&&

&&

或

 （3-28）

同样，对于右侧的摇架，按照公式（3-28）计算： 

⎪
⎩

⎪
⎨

⎧

≠+==

≠+≠+
+

++−
=

+

+

0'0 ,                                                              '

0' , 0 , 
)'(2

)'(
arcsin'

RR,R1,R

RRR,
RR,

2
R

22
R

2
,R

1,R

111

1

,21

1
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k,k,kk
,kkk

k,kkk
k

v

v
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lvv

αβγγ

αββ
αβ

αβ
γ

&&

&&
&&

&&

或

 （3-29）
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3.3.3 基于运动学分析的航迹推测算法实现 

通过以上机器人运动学分析，设计如图 3-6 所示的航迹推测算法： 

（1）传感器信息预处理：通过滤波、微分等预处理，可以得到车轮转动速度{
1Lv ，

2Lv ， 1Rv ， 2Rv }，摇杆与车体参考面的夹角以及变化角速度{ Lβ ， Rβ ， Lβ& ， Rβ& }；倾

角传感器输出的俯仰角、横滚角及其变化率{α ，φ，α& ， φ& }；陀螺仪输出的机器人

参考坐标系中的微分转动 gyroZ θδ Δ=' 。 

（2）输出变换：通过公式（3-7）经过线性变换可以求得 X'δ ， Y'δ ， Zδ 。根据公

式（3-11）计算出围绕 }{ rO 中 rX ， rY 轴的微分转动变化率{ 'α& ， 'φ& }。                       

（3）轮地作用角估计：通过公式（3-17）、（3-24）计算驱动轮速度矢量相对车体

平面 rrYX 的矢量角{
1L'γ ，

2L'γ ，
1R'γ ，

2R'γ }。 

（4）根据公式（3-23）、（3-25）与(3-26)计算机器人在参考坐标系 }{ rO 中沿 rrr ZYX
坐标轴方向的速度分量{

rXv ，
rYv ，

rZv }。 

（5）航迹状态更新：根据公式（ 3-12）、（3-13）更新机器人航迹状态变量

},,,,,{ 111111 ++++++ iiiiii zyx φαθ 。 

 

图 3-6  移动机器人航迹推测算法流程图 
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3.4 移动机器人的运动仿真与实验分析 

 

3.4.1 移动机器人阶跃地形下的运动学仿真 

为了对移动机器人的运动进行评估，采用 Visual C++设计了一个移动机器人攀越

障碍时的仿真程序。假设移动机器人攀越障碍过程中车轮始终与地面附着良好，没有

出现腾空、弹起以及坠落等情况。同时，电机的驱动力矩足够大，与地面接触没有出

现打滑等情况。则在仿真过程中，假定前轮保持稳定的线速度，而中轮（摇架中的后

驱动轮）、后轮根据刚体的约束计算运动速度，同时根据给定的地形截面曲线确定各个

车轮中心的位置。假定在仿真过程中左右侧的地形条件一致，车体只有俯仰角度的变

化，没有发生航向与横滚方向的变化，此时显然有 'αα && = （α& 为车体平面相对水平面

的俯仰角变化率， 'α& 则是相对当前车体坐标系下的转动）。在此前提下，令 βαϕ += ，

β 为摇架与车体平面的夹角，α 为车体的俯仰角，ϕ为摇架的俯仰角度；则摇架前轮

与后轮相对地面的矢量角为：
11 LL 'γαγ += , 

22 LL 'γαγ += 。考虑到车体的运动姿态主

要由摇架上的驱动轮确定，因此，没有对后轮的运动进行分析，而是认为后轮只是跟

随车体的运动，起支撑点的作用。 

♦ （1）移动机器人攀越高于轮半径的台阶 

 

      

         (a) 摇架水平运动                           (b) 摇架前轮攀越 

 

        

         (c) 摇架倾斜平行运动                      (d) 摇架后轮攀越 
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         (e) 摇架水平运动                             (f) 摇架前轮落下 

     

(g) 摇架倾斜平行运动                          (h) 摇架后轮落下 

       

(i) 摇架水平运动 

图 3-7  移动机器人攀越台阶障碍的运行过程 

图 3-7 反映了在该仿真实验中，移动机器人攀越障碍的运行过程。可以把这一过

程分解为几个运动形态： 

♦ 摇架水平运动状态：此时摇架的倾斜角度与摇架二驱动轮的着地角相同，摇

架前后轮运动速度相同，沿着与摇架倾斜角度一致的方向平行运动。此时，

21 LL vv = ， ϕγγ ==
21 LL ， 0=ϕ& 。 

♦ 摇架前轮攀越阶段：此时
12 LL vv < ， 0>ϕ& ，摇架呈现围绕后轮为支点的转动

上升，即前轮沿着阶梯攀越，而后轮由于受到摇架刚体的约束，转动速度减小。 

♦ 摇架倾斜平行运动状态：
21 LL vv = ， ϕγγ ≠=

21 LL ， 0=ϕ& 。 
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♦ 摇架后轮攀越阶段：
12 LL vv > ， 0<ϕ& 。 

♦ 摇架水平运动状态：
21 LL vv = ， ϕγγ ==

21 LL ， 0=ϕ& 。 

♦ 摇架前轮落下阶段：此时
12 LL vv < ， 0<ϕ& ，摇架呈现围绕后轮为支点的转动

下降，即前轮沿着阶梯边沿下落，而后轮受到摇架刚体的约束，转动速度减小。 

♦ 摇架倾斜平行运动状态：
21 LL vv = ， ϕγγ ≠=

21 LL ， 0=ϕ& 。 

♦ 摇架后轮落下状态：此时
12 LL vv > ， 0>ϕ& ，摇架在后轮落地的瞬间快速转动，

而摇架在从高于轮半径台阶降落时，由于失去支撑点而快速下落，此时后轮呈现

快速坠落时的转动速度脉冲。 

♦ 摇架水平运动形态：
21 LL vv = ， ϕγγ ==

21 LL ， 0=ϕ& 。 

从图 3-8 中可以看到，当运行于地形变化较大的地形上，如从台阶状的障碍翻过，

摇架的前轮在后轮驱动力的支持下，以较恒定的速度沿地形截面曲线运动，而后轮由

于受到地形与车体摇架的约束，速度发生较大的变化：当前轮攀越台阶时，摇架接近

于以后轮为中心的旋转运动，此时后轮的速度下降；而在以前轮为支点，发生旋转运

动时，后轮的速度将会加大。由于后轮从台阶障碍落下时，车体出现了腾空与颠簸，

车轮与地面之间不存在滑动的假设不满足，此时的状态估计出现较大的误差。因此，

移动机器人应当尽量避免通过陡升与陡降地形。 

 

 

(a) 摇架前后驱动轮速度(
1Lv ,

2Lv )及其中心高度（
1Lz ,

2Lz ）的变化曲线 

速
度

（
cm

/s
）

 
高

度
（

cm
）

 

时间（1:10ms） 



博士学位论文                                         第三章  复杂地形下基于本体感受的移动机器人航迹推测 

 53

 

 

(b) 摇架对地角度ϕ、俯仰角α 、前驱动轮着地角
1Lγ 及后驱动轮着地角

2Lγ 的变化曲线 

图 3-8  移动机器人翻越台阶障碍的仿真 

 

3.4.2 平缓变化地形下的运动学仿真 

图 3-9 显示了移动机器人在正弦变化地形的仿真结果。从图 3-8 中可以看到，在

变化平缓的地形运动时，假设地形截面的曲线是微分连续的，则轮子受到刚体约束以

及地形的约束也是微分连续的，此时摇架对地角度ϕ与俯仰角α 微分连续，轮地作用

角度的估计效果比较准确。 

 

 

(a) 移动机器人运行轨迹 

时间（1:10ms） 

角
度

（
º
）
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(b) 摇架对地角度ϕ、俯仰角α 、摇架前轮速度
1Lv 及其着地角估计值

1Lγ 与实际值的变化曲线 

 

 

(c) 摇架对地角度ϕ、俯仰角α 、摇架后轮速度
2Lv 及其着地角估计值

2Lγ 与实际值的变化曲线 

图 3-9  移动机器人通过正弦变化地形的仿真 

3.4.3 移动机器人航迹推测的实验 

♦ （1）人设斜坡地形下的实验 

假设机器人通过一组凹陷突起的斜坡地形（如图 3-10 所示），斜面的角度与地面

呈 30°变化，通过斜面的运动，着地角的变化呈现 30°的阶跃，估计值接近于真实状

态，在 'L αβ && + 接近于 0 时，公式（3-17）与（3-23）中对分子项中速度的变化很敏感，

速度测量的误差可能造成较大的着地角估计偏差。通过实验的对比分析，说明运用着

地角分析方法获得的移动机器人航迹推测效果比直接运用倾角推算 [55,62]的效果更为

接近真实值（如图 3-10（e）所示）。 

时间（1:10ms） 

角
度

（
º
）

 
速

度
（

cm
/s
）

 

时间（1:10ms） 

角
度

（
º
）

 
速

度
（

cm
/s
）
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(a) 移动机器人运行轨迹 

 

(b) 摇架前驱动轮着地角估计值
1Lγ 及其中心高度

1Lz 的变化曲线 

 

(c) 摇架后驱动轮着地角估计值
2Lγ 及其中心高度

2Lz 的变化曲线  

 

时间（1:200ms） 

角
度

（
º
）

 
高

度
（

cm
）

 

时间（1:200ms） 

角
度

（
º
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(d) 摇架对地角度ϕ、俯仰角α 、前后轮速度(
1Lv ,

2Lv )及其中心高度(
1Lz ,

2Lz )的变化曲线 

 

 

(e) 利用着地角、俯仰角推测的机器人参考中心 )( Lγz 、 )(αz 与实际值 realz 的比较 

图 3-10  移动机器人攀越凹陷突起斜面地形 

 

♦ （2）自然斜坡上的航迹推测实验 

    为了验证上述方法，使用设计的移动机器人 MORCS-1 作为实验平台（如图 3-11

（a）所示），上述的本体传感器用于 MORCS-1 的航迹推测系统中。在一个相对地面

的角度为 6.5 度，长度为 660cm 的斜坡上进行实验。条件 βββ == RL 和 0=φ 依然成立。

结合公式（3-12）和（3-26），世界坐标系中 Z 轴方向的速度矢量分别利用遥架对于地

面的着地角 Lγ 和俯仰角α 求得。实验中，机器人以 20cm/s 的速度前进，系统的总采

样周期为 200ms。利用遥架相对于地面的着地角 Lγ 和俯仰角α 求得的角度与真实的俯

仰角的误差如图 3-11（b）所示。从中可以看出，依据遥架相对于地面的着地角求得

的航迹推测误差比依据倾角传感器[55,62]求得的更小。因而，图 3-11（c）据此计算的移
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动机器人参考中心的 Z 轴高度更为精确。尽管由于本体传感器的噪音干扰，据此获得

的真实高度和测量高度之间的误差不可避免地存在，但却相当小在一定程度上足以满

足航迹推测的需求。 

 

 

 

 

 

 

 

(a) 斜坡实验 

 

 

(b) 着地角 Lγ 和俯仰角α 与真实俯仰角 realα 的角度误差 

 
 

(c) 移动机器人参考中心 Z 轴变化曲线 

图 3-11  移动机器人攀越斜坡的实验 

时间 (1:200ms) 

时间 (1:200ms) 

高
度
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角
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误
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3.5 小结 

 

精确可靠的航迹推测是实现移动机器人导航定位的一个极为关键的环节。针对一

种轮式结构与悬浮式摇架系统相结合的移动机器人运动机构，基于运动机构间的刚体

约束建立运动学模型，并据此实现复杂地形下的航迹推测。鉴于文献[60]对二维平面

进行分析，文献[59，61]所用机器人结构上存在较大差异，因而只对文献[55，62]中的

采用加速度计获得的俯仰角进行航迹推测方法进行比较。 

根据刚体运动学的约束分析了一种轮式结构与悬浮式摇架系统相结合的移动机器

人在复杂地形下的运动，采用里程计、光纤陀螺仪、倾角传感器等传感器信息推导移

动机器人的运动学模型，提出一种运动学模型与车轮-地面运动角度实现运动轨迹估计

的方法。通过对不同地形下的运动进行仿真以及利用机器人进行的实验，获得的移动

机器人航迹推测效果比直接运用倾角推测的效果更为接近真实值。 
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第四章  非静态环境中基于激光雷达感知与建图的定位 

 

 

航迹推测具有自包含的优点，并且能够依据运动学模型推测机器人的航迹。但是

这种方法不可避免地存在随时间距离增加而增加的累积航迹误差。针对这一问题，研

究人员大多采用扩展卡尔曼滤波 EKF 方法来消除航迹推测误差，保证导航的实时性。

但是，由于许多不确定因素的影响，仍然不能从根本上解决问题。因此，绝对定位方

法被引入以校正机器人航迹推测的长期累积误差。地图匹配的定位方法是目前移动机

器人绝对定位中最常用的方法。地图的表示包括栅格表示法[89]、几何表示法[6]和拓扑

表示法[90]。采用的外部传感器有声纳、摄像头、激光测量系统等等。由于激光雷达能

够以较快的速度提供大量精确的距离信息，已经广泛应用于移动机器人环境建图领域。

而基于栅格的地图表示方法在未知环境中能够较好地融合传感器信息，减少不确定因

素的影响，获得更为精确的机器人位置。 

未知环境中移动机器人利用激光雷达感知与建图实现自身定位，其实质是通过建

立当前局部地图与已经获得的全局地图间的对应关系，来减少航迹推测误差所造成的

机器人定位的不确定性[91]。采用的地图匹配算法，可以是基于图标或者是基于特征[46]。

具体实现技术主要是概率算法，包括扩展卡尔曼滤波(EKF)、马尔科夫定位(Markov 

Localization)、蒙特卡洛定位 (Monte Carlo Localization，MCL) 、最大似然估计

(Maximum Likelihood Estimation，MLE)等。相对于其他方法，MLE[92]不依赖某次观察

的准确性，即使是环境特征无法清晰辨认的大规模环境也有能力建立一致性的地图，

并且绕过数据相关性的问题。因而，更适合于未知环境中移动机器人增量式环境建图

与自定位。 

本章研究主要是以激光雷达作为环境探测的外部传感器，以栅格法来表示环境地

图，利用占据栅格地图融合机器人航迹推测的位姿信息和激光雷达的障碍测距信息。

由于现有的环境建图算法大多以静态环境为假设前提，而真实环境却是动态变化的如

人的走动、门的开闭等。动态障碍的存在是环境不确定性的主要来源，会在移动机器

人依靠自身装载的传感器建立的环境地图和真实环境之间造成误差和不一致性。因此，

针对非静态环境中动态障碍的检测，提出一种基于二维激光雷达的自主动静态障碍检

测与数据关联分析方法，以此实现环境中动静态障碍的分离。对于获得的动态障碍，

利用改进建议分布的粒子滤波对于动态障碍实现运动过程定位。对于获得的静态障碍

地图，将模糊逻辑与最大似然估计相结合，采用地图匹配方法改进移动机器人自定位

的性能。 
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4.1 基于激光雷达的环境感知与建图 

 

4.1.1 系统结构组成 

感知系统主要由二维激光雷达与高精密的电控转台组成，通过转台水平与俯仰角

度的精确转动，从而可以实现非结构环境的检测（如图 4-1 所示）。电控转台作为机器

人的“头部”，可以实现水平方向±150°、俯仰方向-50~+15°的扫描运动。对“头部”

的控制与机器人车体的运动控制相分离，从而具有更大的灵活性。转台由 24VDC 的

步进电机驱动，步进电机的步距角为 1.8°。 运动控制由 PCL839 步进电机控制卡进行

控制，驱动器采用 10 倍细分方式。转台的机械减速比为 180:1，即电机旋转 180 周，

转台旋转 1 周；一个驱动脉冲产生 0.18°的电机旋转，即转台旋转 0.001°。因此从电气

控制角度上保障了转台位置的精度。实际上，由于存在机械传动间隙，转台所能达到

的重复定位精度为 0.01°，最大负载为 10kg，最大旋转速度为 25°/s（空载）。激光雷达

及其安装部件的重量约为 6kg，在实际应用中，水平转台的最大速度限制在 16°/s，俯

仰转动的最大速度限制在 8°/s。 

 
 
 
 
 
 
 

图 4-1  激光雷达与转动云台的示意图 

在机器人控制系统中，采用集成工控机来实现分布控制，可以安装 4 套独立的工

控机（Industrial Personal Computer， IPC）系统。机器人配置了 3 个 IPC 系统，分别

实现车体的运动控制（IPC0）、视觉信息处理（IPC2）和激光雷达的信息处理与传感

器转台的控制（IPC1）。IPC1 的系统结构如图 4-2 所示。作为环境信息处理系统，IPC1

也能够判断移动机器人前方的自由区域与障碍区域来分析地形，并且建立局部环境的

高度图。为了分析障碍，在移动机器人静止时，通过传感器转台俯仰与水平的转动感

知环境；当移动机器人前进运动时，激光雷达通过俯视扫描前方的区域。 

IPC1 配置了一块 PCI 插槽的高速串行通讯接口卡，与激光雷达（LMS291）通过

RS422 接口实现 500K 波特率下的通讯；一块基于 ISA 插槽的 PCL839 对传感器转台

水平转动中心  扫描光心 俯仰转动中心  
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的水平转动与俯仰转动的步进电机控制。该感知系统中，激光雷达在采用 180°/0.5°每

次扫描获得 361 个测量数据，厘米数据模式下最大测量范围为 81.92 米。每个测量数

据为 2 个字节，包含起始码与校验码的数据包长度为 732 个字节；在以 500K 的通讯

速率下，传输延迟时间约为 13.3ms，激光雷达的扫描时间为 26.67ms，因此采用 40ms

的监控周期启动激光雷达的线扫描，并对数据进行处理。 

 

 

 

 

 

 

 

 

 

图 4-2  感知系统结构组成 

 

4.1.2 环境建图原理 

将同侧的驱动轮简化为一个轮子，移动机器人平台的运动学模型如图 4-3 所示。

假定移动机器人的出发点为世界参考坐标系{O}的坐标原点 O， X 轴指向机器人出发

时的初始运动方向，Z 轴垂直于水平面，按照右手规则确定 Y 轴。若采样时间取的足

够短，则实际运行情况与理想模型十分近似，通过计算单位采样时间（ TΔ ）时间内车

体的位姿变化，进行累加，从而求出车体在世界坐标系的位姿。 

⎪
⎩

⎪
⎨

⎧

Δ+=+
Δ+⋅Δ+=+
Δ+⋅Δ+=+

                                 (k))()1(
)(k))(sin()()()1(
)(k))(cos()()()1(

θθθ
θθ
θθ

kk
kkdkyky
kkdkxkx

rr

rrr

rrr

 （4-1）

式中， ))1(),1(( ++ kykx rr 和 ))(),(( kykx rr 分别表示移动机器人参考中心当前 1+k 时刻与

先前 k 时刻在世界坐标系的位置； )1( +krθ 和 )(krθ 则分别表示其航向角。 )(kdΔ 是依据

PCL839 高速串口通讯接口

转台 

俯仰 

驱动 

转台

水平

驱动

激光 
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IPC0 

ISA 总线 PCI 总线

RS232

RS232

车载局域网 Hub (10M) 

倾角传感器
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PⅢ/800M 
Win2000 
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光电编码器测量的里程信息所获得的相邻采样时间间隔的相对位移增量； )(kθΔ 则是

依据光纤陀螺仪测量的偏转角速度所获得的相邻采样时间间隔的相对偏移航向角度。

可以依据以下的公式计算出 )(kdΔ 和 )(kθΔ 。 

⎪⎩

⎪
⎨
⎧

Δ⋅=Δ

⋅=Δ

Tk

N
P
Dkd

ωθ
η
π

)(

)(
 （4-2）

其中，机器人车轮直径为 D ，减速器的减速比为 P/1 ，编码器的精度 (Pulses Per 
Resolution，PPR)为η，单位采样时间内（ TΔ ）光电编码器输出的脉冲数为 N ，光纤

陀螺仪测出的偏转角速度为ω。 

 

 

 

 

 

 

 

图 4-3  基于激光雷达的环境建图 

环境信息来自于激光雷达的环境“快照”。激光雷达在-90~+90º 范围内一次扫描

361 个障碍距离数据，每 0.5°一个数据。采用极坐标表示这些距离数据，极点位于激

光 雷 达 的 扫 描 光 心 ， 极 轴 则 为 激 光 雷 达 主 扫 描 方 向 （ 0º ）。 这 里 采 用

)360,,0(),( ⋅⋅⋅=nnn φρ 来表示激光雷达的一次扫描数据。其中， nρ 表示从扫描光心到

第 n 个障碍的距离； nφ 表示从第 n 个障碍扫描方向到主扫描方向（0º）的角度；n 是

扫描数据的个数。 

采用二维笛卡尔矩形栅格来表示雷达探测到的环境，二维数组来记录环境地图中

对应栅格是否有障碍物信息。假定每个栅格只有空闲和占据两种状态，在给定各个栅

格单元先验概率的条件下，k 时刻依据激光雷达观测信息记录给定栅格的占据情况。

如果某个栅格单元有障碍物被观测到，对应该栅格的数组值被置 1。栅格大小的选取

直接关系到控制算法的精度，考虑到激光雷达精度较高且速度快的优点，选择 5cm×

θΔ  
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5cm 为一个栅格。这样建立的机器人环境地图可以达到较高的精度和实时性。通过公

式（4-3）可以把激光雷达测得的距离信息映射到机器人的世界坐标系中。 

⎪⎩

⎪
⎨
⎧

+⋅+=

+⋅+=

)sin(

)cos(
'

'

nrnrn

nrnrn

yy

xx

φθρ
φθρ

 （4-3）

其中， ( )'' , nn yx 表示障碍物在世界坐标系中的位置； ( )rr yx , 和 rθ 分别表示机器人参考中

心在世界坐标系中的位置和航向角（由公式（4-1）获得）； nρ 和 nφ 则分别表示激光雷

达探测到的距离和激光束相对于激光雷达主扫描方向的夹角（如图 4-3 所示）。另外，

如果激光雷达不是水平放置，还需要把距离信息根据俯仰角度转换为水平距离值。 

通过公式（4-4）可以将障碍物位置信息映射到环境地图中相应的栅格单元。 

⎪⎩

⎪
⎨
⎧

+⋅=

+⋅=

)2/int()/int(

)2/int()/int(
'

,

'
,

wwwyy

wwwxx

nng

nng  （4-4）

其中， ),( ,, ngng yx 为障碍栅格在世界坐标系中的位置，w为栅格的宽度。这样就可以把

整个环境用栅格表示出来。 

4.1.3 高度图的建立 

依据移动机器人的机械结构通过二个步骤实现激光雷达测量信息的障碍表示[93]。 

 
 
 
 
 
 
 
 
 
 

图 4-4  激光测距系统到机器人坐标系的坐标变换 

第一步：假设车体不动，将测量信息映射到以机器人为参考中心，车体平面为参

考平面的机器人坐标系 Or 中（如图 4-4 所示）。设传感器转台的激光雷达扫描圆心处

x
z

y

hγ
pγ

rx

rz

ry or 

d0 

o1 
1y1x

1zo2 

2y2x

2z
d1 

d2 

扫  
描  
面  

O 



博士学位论文                                           第四章  非静态环境中基于激光雷达感知与建图的定位 

 64

的扫描面坐标系为 O2，云台面绕坐标系 O1 的 y1 轴做俯仰角为 pγ 的转动；云台的水平

转动等效为围绕机器人参考平面的运动中心坐标系 Or 绕 zr 轴的转动，设转动角度为

hγ 。O1 在 Or 中沿 zr 平移 d0；O2 在 O1 中沿 z1 平移 d1，沿 x1 平移 d2。 

激光雷达的扫描面为 x2-y2 上以 O2 为圆心-90~+90°范围的辐射扇面。测量数据表

示为扫描扇面上的极坐标测量值（ρi,j , λi,j），ρi,j 为测量距离，λi,j 为极角（以 x2 为极轴）。

下标 i 表示激光测距数据包组的采样时刻，在时刻 i，激光雷达传送一次扫描的数据包，

其中包含了 361 个测量数据。下标 j 代表了一个数据包中测量点的编号。将扫描数据

映射到机器人平面的结果为： 
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分析高度方向的测量误差： 
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（4-6）

式中 Δρi,j ，Δλi,j ，ΔγP 可以通过实验获得，d1 为 2.5cm，d2 为 7.5cm。 

在 o45−=Pγ 时，可以依据公式（4-6）估计出高度误差的值 2.2|| ,| ≤Δ jirz cm。我们假定

移动机器人的越障能力为 10cm，为了保证运行的安全性，机器人必须能够分辨出高度

在 5cm 左右的地形变化。因此，该系统能够满足对地面高度区分度为 5cm 的性能要求。 

 

 

 

 

 

 

 

图 4-5  机器人坐标平面到世界坐标系的坐标变换 
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第二步，考虑移动机器人的坐标变换，把测量信息从机器人坐标系映射到世界坐

标系中（如图 4-5 所示）。这种情形下，移动机器人的姿态可以用机器人平台参考中心

的状态（xi, yi, zi, iθ , iα , iφ ）来表示，其中 iθ 表示机器人的航向角， iα 表示机器人的俯仰

角， iφ 表示机器人的横滚角。机器人的航向角由光纤陀螺输出，俯仰角与横滚角由机

器人平台上的倾角传感器输出，俯仰角与横滚角是机器人平台面与参考水平面的夹角。

进一步将测量点映射到世界参考坐标系中，采用如下的等效坐标转换方式：首先机器

人坐标平移到（xi，yi，zi），围绕新坐标系的 z 轴方向旋转 iθ （航向角），围绕新坐标

系的 y 轴方向旋转 iα （俯仰角），围绕新坐标系的 x 轴旋转到 'iφ （横滚方向）。从机器

人参考平面映射到全局坐标： 

rr O
O

OO uTu || ⋅=  （4-7）

式中， 
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由于定义机器人平台抬起方向为俯仰角正方向，与右手规则定义的旋转方向相反，

因此旋转变化中的角度取 iα− 。 'iφ 是考虑了俯仰角补偿后的横滚转动，该变化可见图

4-5，变换的公式表示为： 

i

i
i α

φφ
cos
sin

arcsin'=  （4-8）

应用二维数组 ]][[ nmA 来记录平面上的环境高度信息，数组的数值就代表了曲面与基

准面的相对高度，m，n 代表了投影平面上相应的栅格坐标，在水平面上采用 3cm 解

析度的栅格，在高度方向上采用 2cm 的解析度，则： 
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4.1.4 实验分析 

基于激光雷达感知和建图的方法已应用于移动机器人 MORCS-1 上（图 4-6（a））。

由于机器人感知系统能够实现俯仰与水平的二维运动，因此不仅能够应用于障碍物高

于传感器平面的结构化环境，同时也可以应用于存在多种形态障碍物的环境。感知系

统在移动机器人自身静止的情况下，通过头部的灵活运动，可以实现对机器人周围环

境的全面观测。也可以在行进过程中，通过对运行前方地面的俯视来累计测量信息，

实现地形高度检测与分析。在图 4-6 的实验中，移动机器人的运行环境中散布着各类

高度不一的障碍物，当移动机器人在运行中，激光雷达以一定的角度（-45°）对路面

进行观测，通过机器人的运动实现对地面环境的扫描，不断积累扫描的数据。采用

Visual C++设计实现了感知系统的处理软件，并设计了能够显示 100×100 栅格的局部

障碍。图 4-6（b）中环境水平面上的栅格解析度为 3×3（cm），高度上的分辨率设为

2（cm）。图 4-6（c）是根据环境地形高度图进行地形变化梯度分析后分割出的可行区

域与障碍区域，从而引导机器人避障。实验中，机器人的运行速度范围为 20~35cm/s。 

 

 

 

 

 

 

 

 

(a) 运动过程中的障碍检测 

 

 

 

 

 

 

 

 

 

(b) 经过滤波的高度图 
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(c) 障碍感知与环境建图 

图 4-6  运动过程中的障碍感知与环境建图 

 

4.2 非静态环境中动静态障碍的检测与分析 

动态障碍的存在是环境不确定性的主要来源，会在移动机器人依靠自身装载的传

感器建立的环境地图和真实环境之间造成误差和不一致性[68]。在基于激光雷达的移动

机器人动静态障碍检测中，具有代表性的研究有 Biswas 等人[94]首次提出的动态占据

栅格图算法，该算法能够学习运动物体的形状特征，将其作为物体的运动模型。但该

算法仍然存在很多问题，如假设物体形状不变、容易从背景检测、对快速移动的物体

无能为力等。Wang 等人[95]则提出了基于运动的检测方法，多假设跟踪的数据关联方

法。而基于运动的检测方法不能检测到临时静态障碍，而且跟踪的计算复杂度是指数

级。Schulz 等人[96]针对多个行人的跟踪进行了研究，提出了基于采样的点概率数据关

联滤波方法。尽管可以处理非线性系统任意分布的观测模型，但在序列重要性采样中

存在着退化问题，进一步的样本重要性重采样中可能出现采样枯竭。国内的杨明等[71]

在时变势场法的研究基础之上，提出了多分辨率的势场法，该方法对移动机器人导航

中的路径规划及障碍避碰具有其优势，但是文中对于如何利用激光雷达分辨动静态障

碍，进行有效的数据关联没有涉及。因此，针对非静态环境中动静态障碍的检测，提

出一种基于二维激光雷达的自主动态障碍检测与数据关联分析方法。 

 
起点 

目标 

     障碍物 
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4.2.1 基于空间聚类的障碍分类 

利用二维笛卡尔矩形栅格来表示雷达探测到的环境地图，二维数组来记录环境地

图中对应栅格是否有障碍信息。假定每个栅格只有空闲和占据两种状态，在给定各个

栅格单元先验概率的条件下，采样时刻依据激光雷达观测信息记录给定栅格的占据情

况。如果某个栅格单元有障碍被观测到，对应该栅格的数组值被置 1。在世界坐标中，

通过障碍栅格几何位置以欧基里德距离来进行聚类分析，是在二维平面上的计算过程，

计算量往往比较大。而针对极坐标形式进行聚类分析，则是一个一维的搜索过程，计

算量大为减少（如图 4-7 所示）。 

 
 

 

 

 

 

 

 

 

 

 

 

图 4-7  障碍的位置计算 

定义 4-1： k -近邻差值 kρΔ 是障碍点 ),( i,ji,j λρ 距其第 k 个相邻极角上障碍点

),( ki,jki,j ++ λρ 的距离。即 

kkjijikjijik λρρρρρ Δ−+=Δ ++ cos2 ,,
2
,

2
,  （4-10）

将测距数据聚类划分为障碍区域依据以下的原则：通过公式（4-10）比较机器人

在采样时刻 i 时两个连续障碍的距离 kρΔ ，j 从 0 开始，k 从 1 开始，如果 k 达到某个

数值时，k 近邻区域内的最小邻近差值 minρΔ 小于某个预设的阀值 setρΔ （实验中设为

50cm），则 j 从 0 开始，到 k 个相邻极角区域 K 内的障碍视为一类障碍。再从 j+k 开始，

依次聚类障碍区域。但是对于相同的相邻极角区域 k，如果测量值较远时，相邻点的

间距 kρΔ 也就加大。因此，根据测量距离 i,jρ 确定 k 近邻区域内的最小邻近差值 minρΔ 存

在一个比例因子 η，即： 

ρi,j 

Δλk 

ρi,j+k

Δρk 
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ji,

set

ρ
ρη Δ=  

（4-11）

其中， setρΔ 是设定的邻近差值的阈值。 

在极坐标内以 k 近邻区域内的最小邻近差值 minρΔ 进行聚类，即在采样时刻 i 的 361

个测量值，将其归纳为 n 个不相连的障碍集合。设集合 O 是全部障碍所占据的空间位

置（占据栅格）几何，根据障碍栅格的空间关联度，将其聚类分为 n 个子集合，在每

个子集合内的栅格满足最小邻近差值 minρΔ 小于给定的阈值 setρΔ 的条件。 
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(a) 2D 激光雷达的环境障碍感知                   (b) 障碍空间聚类 

图 4-8  基于空间聚类的障碍分类 

 

如图 4-8 所示，根据极坐标内的邻近差值，将采样时刻 i 的激光雷达 361 个测距

数据占据障碍栅格进行聚类，分为了 O1~O6 等 6 个障碍子集合，并用相应的下标值来

表征其属性。 

4.2.2 聚类障碍属性参数及关联性分析 

♦ （1）聚类障碍属性参数 

在对某一时刻的测量数据构成的环境障碍栅格进行空间聚类后，我们进一步分析

每个障碍子集合所具有的特征。通过对每个障碍子集合的以下几个特征来进行描述： 

♦ 障碍子集合的区域度量 

设在障碍子集合 nO 内测量值最大与最小值分别为[ min,nρ ， max,nρ ]，极角范围为

[ min,nλ , maxn,λ ]，则定义在 nO 全局坐标内的区域面积 S 为[x，y]： 
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其中： 
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♦ 障碍子集合的质心与质量属性 

障碍子集合的质量被定义为子集合 nO 内的栅格数 nM ，由 nO 的区域范围和地图的

栅格精度决定，极坐标下取为临近极角的差值。子集合 nO 的质心由平均测量值与平均

极角值来确定。 

n

k

kj
i,j

n M

ρ∑
==

2

1ρ  

n

k

kj
i,j

n M

λ
λ

∑
==

2

1  

12 kkM n −=  

（4-13）

根据公式（4-3）将障碍子集合 nO 质心的极坐标转变为全局坐标下的质心坐标，

即有：  

⎩
⎨
⎧

++=
++=

)(sin
)(cos

robotrobot

robotrobot

θλρyy
θλρxx

nnn

nnn  （4-14）

♦ 障碍子集合的运动参数 

获得障碍子集合 nO 的质心坐标后，采用一定的数据关联方法，依据评价函数获得

的障碍信息，可以对连续采样时刻之间对应障碍的运动速度进行评估，即： 

tiOiOv nnOn
Δ−−= /))1()((  （4-15）
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其中， tΔ 是采样周期。获得障碍子集合 nO 的运动参数，可以对障碍物体的运动状态进

行评估，预测及跟踪提供依据。 

♦ （2）障碍属性关联性分析 

在对激光雷达测距数据进行障碍聚类分析后，要想进一步获得各个障碍子集的类

型及更为详细的运动状况，就需要对先前聚类的障碍数据时间关联性进行分析，即确

认障碍子集的数据关联性。采用适当的数据关联方法分析采样周期，可以知道动态障

碍与前一时刻的空间位置既有所关联，又有所不同。具体的数据关联评估函数为： 

G
f

F
fiOiOC nn

11))1(),(( 2121
+=−  （4-16）

其中： 

⎪
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⎪
⎨
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1

||))1()1(()),()((||

inin
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OO

OiO

nnnn

SS

SS
G

iy,ixiy,ixF

U

I  （4-17）

数据关联评估函数 ))1(),((
21

−iOiOC nn 式中第 1 项 F 为障碍子集的质心间的距离。

第 2 项 G 表示非重合度量，为二者不重合面积所占的总面积的比例。f1，f2 为系数，

当关联评估函数值增大，表明二者的关联性增加，即为同一障碍的可能性增加。S 表

示二个障碍集的区域面积（或包含的栅格点数），交并集符号表示他们重合的点数或面

积。 

根据数据关联评估函数 C 的不同取值，可以把通过激光雷达测距数据聚类后获得

的障碍类型确定如下： 

♦ 静态障碍：表现为数据关联评估函数的取值比较大（由于障碍是静止的，在不

同时刻测量下的障碍点集重合度是最高的）。 

♦ 动态障碍：表现为数据关联评估函数的取值小于静止障碍，但该取值仍然具有

较大的关联性。 

♦ 不同的障碍：对于二个完全不同的障碍，在不同的采样时间间隔内，会呈现为

不关联的性质，因此关联函数的取值也更小。 
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4.2.3 基于聚类障碍时空关联的动静态属性检测 

由于对于所有探测范围内的实时信息都进行检测，会大大降低系统的实时性，同

时对于较远处的信息特别是在动态环境下的远处信息是不可靠的。因此本文选取了机

器人正前方 20m 的半圆范围作为当前的实时检测窗口，不仅可以满足避障和规划的需

要同时也保证了系统的实时性。 

根据公式（4-14）可以求出世界坐标系下障碍子集合 nO 的质心坐标 ),( nn yx ，由于

每次扫描到的障碍物信息是不完全的，所以该质心坐标只能大致反应障碍物的位置。

为了便于分析，取障碍的外切圆代替聚类障碍物。激光雷达每个周期只能采集到当前

周期局部环境信息，因此对于动态环境的检测必须采样多个周期进行分析。这里取多

个周期的检测窗口中的环境信息，分析并建立障碍物链表，链表中每个节点都记录一

个障碍物的估计位置、外切圆半径、障碍物的标志位、障碍物运动的速度以及方向。

其中标志位反应该障碍物的类型：静态障碍物、动态障碍物和未知的障碍物。 

基本分析算法如下： 

步骤 1：读取探测到的检测窗口的实时环境信息，建立并保存该检测窗口的栅格地

图。对栅格地图中的聚类障碍计算出估计坐标，外切圆半径，以此建立 T 周期的聚类

障碍物链表。 

步骤 2：读取下一个周期检测窗口的实时环境信息，同步骤 1 建立 T+1 周期的聚

类障碍物链表。 

步骤 3：搜索 T+1 周期聚类障碍物链表，并和 T 周期聚类障碍物链表进行配对，

匹配标准是两个聚类障碍物节点的估计坐标之间的距离小于一个域值 λ 。每对配对的

聚类障碍可以认为是同一个障碍物。 

步骤 4：在 T 和 T+1 周期的两副栅格地图中，对每对聚类障碍的所在的栅格地图

进行局部地图匹配，匹配出这个两个周期内聚类障碍移动的 αΔΔΔ ,, yx 。并计算出聚类

障碍移动的距离 dΔ ，速度 v和方向α。 

步骤 5：确定各聚类障碍的状态，通过 dΔ 是否小于一个域值 δ 来判断该聚类障碍是

静态还是动态。判断后记录信息并插入聚类障碍物链表中。 

步骤 6：聚类障碍物链表 2 赋值给链表 1，栅格地图 2 赋值给栅格地图 1。 

步骤 7；返回步骤 2。 

其中，由于系统采样周期很短，为了便于聚类障碍分析和计算，T 和 T+1 的时间

间隔取 8 倍采样周期，为 0.1s。试验中 λ取 20cm，δ 取 10cm。由于该算法每次只是计

算检测窗口中的信息，所以可以减少计算量。 
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4.2.4 实验分析 

♦ （1）机器人静止时动静态障碍物的检测 

在实验室走廊对非静态环境中动静态障碍进行检测，静态障碍由室内墙等组成，

动态障碍由人的行走实现。图 4-9（a）为机器人静止情况下基于激光雷达的障碍感知

和环境建图，图中蓝色方框为机器人，黑色表示感知的障碍，栅格大小为 10cm×10cm；

图 4-9（b）为通过上述方法对动静态障碍物检测的某个时间序列结果，右上方框为检

测的静态障碍黑色表示，右下方框为检测的动态障碍红色表示。 

 

(a) 机器人静止时动静态障碍感知与建图 

 

(b) 机器人静止时动静态障碍检测结果 

图 4-9  机器人静止时动静态障碍物的检测 
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♦ （2）机器人运动时动静态障碍物的检测 

图 4-10（a）为机器人运动情况下基于激光雷达的障碍感知和环境建图，图中蓝

色为机器人运行轨迹，黑色表示感知的障碍，栅格大小为 10cm×10cm；图 4-10（b）

为通过上述方法对动静态障碍物检测的某个时间序列结果，右上方框为检测的静态障

碍黑色表示，右下方框为检测的动态障碍红色表示。 

 

 

(a) 机器人运动时动静态障碍感知与建图 

 

(b) 机器人运动时动静态障碍检测结果 

图 4-10  机器人运动时动静态障碍物的检测 
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♦ （3）实验结果分析 

为了验证基于聚类障碍时空关联的动静态属性检测方法的有效性，针对室内的动

态环境设计了上述两组实验：第一组实验设定移动机器人静止不动，环境是动态变化

的，测试移动机器人静止时动静态障碍的检测效果，第二组实验设定移动机器人处于

运动状态中，环境中有不同数目的行人走动，测试移动机器人在动态未知环境中运动

时动静态障碍的检测情况。结合获得的实验数据，对于文献[97]中提出的栅格地图差

分检测法（简称差分检测法）和本文的检测方法（简称时空检测法）进行性能比较。 

针对移动机器人静止时动静态障碍的检测实验，差分检测法存在一个问题，即移

动机器人把部分静态墙壁数据点当作了动态障碍点，而采用时空检测法能够大量降低

移动机器人在这方面的误检概率。实验结果表明移动机器人静止时，采用基于聚类障

碍时空关联的动静态属性检测方法优于基于栅格地图的差分检测法。表 4-1 总结了采

用地图差分检测法与时空检测法的性能比较，其中有效检测率意味着移动机器人在整

个采样时间内能够正确检测到动态障碍的比率。 

表 4-1  移动机器人静止时动静态障碍的检测性能比较 

检测方法 聚类障碍个数 累计时间(ms) 平均时间(ms) 有效检测率 

原始数据 26 1222 47.0000 0% 

差分检测 26 1919 73.8148 95.64% 

时空检测 26 968 37.2593 98.71% 

针对移动机器人运动时动静态障碍的检测实验，差分检测法的弱点再次表现出来，

将少量本该属于静态实体墙壁的数据点当作了动态障碍数据点。两种方法检测动静态

障碍的性能比较如表 4-2 所示。由表 4-2 可以发现，采用地图差分法检测动静态障碍

在单位样本数据内的处理时间比较长，近似于时空检测法所花时间的三倍。 

表 4-2  移动机器人运动时动静态障碍的检测性能比较 

检测方法 聚类障碍个数 累计时间(ms) 平均时间(ms) 有效检测率 

原始数据 99 4962 50.1212 0% 

差分检测 99 11208 113.210 93.13% 

时空检测 99 4237 42.8021 97.22% 

    通过机器人静止以及运动时动静态障碍的检测性能分析，表明本文所提出的基于

二维激光雷达的自主动态障碍检测与数据关联分析方法对于非静态未知环境中动静态

障碍的检测具有实时性好、有效检测率高的优点。 
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4.3 基于改进建议分布的粒子滤波的动态障碍跟踪定位 

4.3.1 粒子滤波 PF 及其建议分布选择 

♦ （1）粒子滤波 PF 算法 

作为利用蒙特卡罗仿真执行递归贝叶斯滤波的技术，粒子滤波 PF 的关键思想[98]

是使用一组相关权重的样本（也称粒子）集合，以及基于这些样本的估计来表示后验

概率密度函数（Probability Density Function，PDF）。PF 是一种次优滤波，只有样本数

目非常大时这种概率估计等同于真实 PDF。但是相对于 EKF 方法，PF 能够使用样本

表达任意分布包括多模的 PDF，对于非线性非高斯过程进行评估等优点而得以广泛应

用。PF 开始时从初始信度 )( 0sp 采样，接着对每个时间步执行预测-更新-重采样递归循

环过程。在权重 )(i
tw 经过归一化处理，PF 使用 pN 个相关权重的样本集合

pNi
i

t
i

t ws ,,1
)()( },{ L=

计算相应时刻 t的后验概率密度，可以表示为 ∑ =
−= pN

i
i

tt
i

ttt sswzsp
1

)()(
:1 )()|( δ 。其中， (.)δ

表示 Dirac delta 函数。 

由于很难直接从后验概率密度函数 )|( :1 tt zsp （简写为 p ）采样，样本采集需要借

助建议分布 q来实现。这里，建议分布 (.)q 是指概率分布与 p 相同，概率密度分布已知

且容易采样的分布函数。如果样本 )(i
ts 来自建议分布 )|( :1 tt zsq ，使用重要性采样原理计

算权重为 )|(/)|( :1
)(

:1
)()(

t
i

tt
i

t
i

t zsqzspw ∝ 。 

♦ （2）建议分布选择 

粒子滤波 PF 基于序列重要性采样（Sequential Importance Sampling，SIS）算法进

行采样，会存在样本退化问题。文献[99]指出：重要性权重的方差随着时间增长而增

大，因而样本退化是不可避免的。这样，大量的计算时间浪费在更新权重较小的样本

上。针对样本退化问题，可以增加样本大小 pN 至无穷来解决，但很低效。文献[98]提

议的解决方案为：选择好的建议分布及进行重采样。选择一个好的建议分布能够有效

地防止样本退化，因而建议分布的选择是当前研究的关键技术之一。 

在重要性采样中，建议分布 q 用于近似后验概率分布 p ，从而计算样本的重要性

权重 )(i
tw 。如果在后验概率分布 p 分布集中的区域，建议分布 q只产生很少的样本，则

粒子滤波的效果很差。选取一个好的建议分布 q 的准则应该包括：有较大的范围足以

覆盖后验概率分布；有长尾的行为足以解决异常问题；采样易于执行，最好是线性复

杂度；考虑基于状态模型的状态转移、基于观测模型的观测似然以及最新的观测数据；

重要性权重的方差最小；近似真实分布。但是，要实现其中任一准则都很难。理论上

说，最优建议分布 pq = 的选择是在给定 Markov 假设和先前历史信息的条件下，使得

样本重要性权重 )(i
tw 的方差最小[100]。这样，重要性权重 )(i

tw 就可以通过递归计算求得。
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但 是 ， 最 优 建 议 分 布 需 要 从 )|( )(
1

i
tt ssp − 采 样 ， 并 且 计 算 积 分

∫ −−− = 1
)(
1

)(
1 )|()|()|( t

i
tttt

i
tt dssspszpszp 。同时对于不同的问题，也没有统一的建议分布[101]。

从应用角度来看，已经提出了许多算法，如表 4-3 所示。 

表 4-3  选择建议分布得到的重要性权重及相应算法 

类型 建议分布 重要性权重 算法 

)(),|( 111 −−−= tttt sBelusspq  )|( ttt szpw ∝  Rao-Blackwelliz
ed PF[99] 

状态转移

(运动方程) β)](),|([ 111 −−−= tttt sBelusspq  
α)](),|()[|( 111 −−−∝ ttttttt sBelusspszpw  

退火参数 10;1 ≤≤−= αβα  
Annealed PF[100] 

)|( tt szpq ∝  )(),|( 111 −−−∝ ttttt sBelusspw  观测似然 
(感知方程) )()|( 1−∝ ttt sBelszpq  ),|( 11 −−∝ tttt usspw  

全面信息 ),|()|( 11 −−∝ ttttt usspszpq  1111 )(),|( −−−−∫∝ tttttt dssBelusspw  

Robust MCL[101] 

)ˆ,ˆ;( 1| −= tttt PssNq  

其中： 

]E[ˆ tt ss = , ]Cov[ˆ
1| ttt sP =−  

q
sBelusspszpw tttttt

t
)(),|()|( 111 −−−=  EKF [102] 

近似信息 
),|()|(ˆ 11 −−∝ ttttt usspszpq  

其中： )~|()|(ˆ tttt szpszp =  

)],|(E[~
11 −−= tttt ussps  

1);|(ˆ1 =∝ ∑− ttttt szpw λλ  

)|(ˆ
)|(

tt

tt
t szp

szpw ∝  
Auxiliary PF[103] 

 

4.3.2 基于改进建议分布的粒子滤波的动态障碍跟踪定位 

检测出动态障碍后，利用公式（4-14）、（4-16）可以得到动态障碍的位置、速度

等信息，这些信息用来驱动机器人对动态障碍进行跟踪。为了使跟踪更准确平滑，通

常采用扩展卡尔曼滤波 EKF [104,105]对目标运动进行估计。但是 EKF 算法使用 Taylor

级数的一阶局部线性化近似状态方程，计算的运动估计有较大的截断误差。近年来，

粒子滤波 PF [98]备受关注，但其性能很大程度上取决于建议分布的选择。基于 SRUKF

（Square-Root Unscented Kalman Filter）[106]构造 PF 算法的建议分布，对于现有的基

于序列重要性采样的粒子滤波 PF 进行改进，用于估计动态障碍位置并利用观测值进

行校正。移动机器人目标跟踪的运动与观测方程为 

⎪⎩

⎪
⎨
⎧

=
= −−

),,(
),(

robot

11

kkk

kkk

WXXhZ
VXfX

k

 （4-18）
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其中，状态向量 ),,,( vyxX θ= 表示运动目标在世界坐标系中的位置、航向角及运动速

度；过程噪声V 假设服从高斯分布。而观测向量 ),( λρ=Z 表示机器人相对于运动目标

的距离和方向，由激光雷达通过机器人的感知模型观测得到；移动机器人的位姿

),,( robotrobotrobotrobot θyxX = 依据自身的运动模型，由里程计和陀螺仪测量得到；观测

噪声W 同样假设服从高斯分布。机器人通过感知模型获得障碍的位置，通过上面的检

测方法确定运动目标的初始位置，航向角，速度。在如下实验中，运动目标的运动模

型 )(⋅= fX k 采用恒速（CV）模型[107,108]。 

利用粒子滤波进行运动估计和更新的过程如下： 

估计步 

从建议分布中采样： 

),|(~ )(
1

)(
k

i
kk

i
k ZXXX −π  （4-19）

更新步 

计算重要性权重： 

),|(
)()|(
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k

i
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i
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 （4-20）

权重归一化：  

∑ =
= N

j
j

k
i

k
i

k www
1

)()()( /~  （4-21）

依据权重进行重采样： 

)|(~)(
kk

i
k ZXpX  （4-22）

    依 据 粒 子 滤 波 PF 算 法 获 得 一 组 粒 子 用 于 近 似 后 验 分 布

∑ =
−= N

i
i

kkkk XX
N

ZXp
1

)( )(1)|(ˆ δ 。但是基于序列重要性采样的粒子近似的性能取决于建

议分布是否和真实后验分布接近，如果没有足够的重叠则会出现粒子退化从而导致跟

踪失败。通过吸收当前感知改进传统运动传递先验，利用 SRUKF 产生高斯近似最优

建议，可以更为精确地对状态分布的高斯近似的均值和方差传递。 
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相对于传统 PF，应用 SRUKF 构造 PF 建议分布的算法的主要改进如下： 

初始化 

;  ;  ]};)ˆ)(ˆ[({chol  ];[ˆ
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T
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估计步 

计算每个粒子的西格玛（Sigma）点： 

]     [ 11111)2,,0(,1
αααααα γγχ −−−−−− −+= kkkkkLk SXSXXL  （4-23）

传递西格玛（Sigma）点到下一时刻： 
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更新步 
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（4-25）

式中 λγ += L 为分解的范围参数， L为状态的维数， λ为控制 Sigma 点分布的常数，

相关说明见文献[106]。 
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4.3.3 实验分析 

以室内办公场所的走廊为实验环境，以单个行人为动态障碍进行检测与跟踪，机

器人的运行速度设定为低速 5cm/s，行人的速度范围控制在 0.8m/s 到 1.6m/s。通过实

验采集数据离线进行算法的检验与分析，对于分离出来的动态障碍分别采用 EKF、传

统的基于序列重要性采样的 PF、以及应用 SRUKF 构造建议分布的 PF 进行目标的运

动估计，实验结果如图 4-11 所示。图 4-11（a）、（b）显示了机器人和行人同向行进的

实验与轨迹评估，由于机器人相对于行人的运行速度较慢，所以图（b）中看到的机器

人轨迹较短，较长直线轨迹为行人（速度大约为 1.2m/s），符号 x 表示利用滤波算法评

估的行人运行轨迹；图 4（c）、（d）、（e）则分别显示了利用不同算法对于行人相对于

机器人的距离、航向以及行人的速度进行的评估。从图 4-11（b）到（e）图中利用 EKF、

传统的基于序列重要性采样的 PF、以及应用 SRUKF 构造建议分布的 PF 对于动态障

碍跟踪的轨迹、距离、航向以及速度的评估比较可以看出所提算法的有效性。 

 

(a) 机器人实验 

 

(b) 轨迹评估 

 

(c) 距离评估 

机器人轨迹 行人轨迹  
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(d) 航向评估 

 

(e) 速度评估 

图 4-11 动态障碍跟踪算法比较 

 

4.4 基于模糊似然估计的局部静态地图匹配定位 

 

4.4.1 基于最大似然估计 MLE 的局部地图匹配 

如果移动机器人运行环境中的多数物体是相对静止的，环境栅格的不确定性主要

来自于航迹推测的累积误差。机器人位姿的推测值与真实值之间的误差可以采用

),,( δθδδδ yxX = 表示，这些参数的统计特性可以利用机器人运动中的航迹推测传感器

（里程计、光纤陀螺）获得。通过地图匹配搜寻最优参数 xδ ， yδ ， δθ ，可以找到机

器人在世界坐标系中的最可能的位姿。因此，参数 xδ ， yδ ， δθ 的估计是一个最大似

然估计问题。 

),,(maxarg),,(
,,

*** δθδδδθδδ
δθδδ

yxlyx
yx

=  
（4-26）
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为了估算参数 xδ ， yδ ， δθ ，基于最大似然估计的地图匹配需要公式化。可以使

用当前局部地图中的障碍栅格到先前地图中与之最临近的障碍栅格之间的距离进行估

算。假定局部地图中有 n 个占据栅格，对于激光雷达 LMS291 而言，其一次扫描的 n
值为 361。定义这些匹配的障碍栅格之间距离为 nDD ,,1 L ，参数 xδ ， yδ ，δθ 估计的似

然函数可以公式化为这些距离的概率分布乘积。 

),,;(ln),,(
1

δθδδδθδδ yxDpyxl
n

i
i∑

=

=  （4-27）

这里，对点到点进行栅格地图匹配的 ),,;( δθδδ yxDp i 的概率分布函数(Probability 

distribution function, PDF)采用如下的匹配规则。采用 3×3 栅格匹配模板，当前局部地

图中某个障碍栅格如果能够和先前地图中对应栅格匹配，这个障碍栅格的 PDF 被赋为

1；如果是其上下左右的 4 个邻近栅格，其 PDF 被赋为 0.6；如果是其对角线上的 4 个

邻近栅格，其 PDF 被赋为 0.3；如果没有匹配上，则其 PDF 被赋为 0。在前面机器人

进行的 UMBmark 实验中，应用基于最大似然估计的地图匹配方法对参数 xδ ， yδ ，δθ

进行估计，激光雷达一次扫描的障碍测距数据和已经建立的局部栅格地图匹配的结果

如图 4-12 所示。 

 

图 4-12  基于最大似然估计的地图匹配 

4.4.2 模糊逻辑在地图匹配中的应用 

应用最大似然估计的地图匹配方法对参数 xδ ， yδ ， δθ 进行估计，并利用这些参

数来修正机器人的位姿和环境地图中障碍物的位置，可以实现较为精确的机器人自定

位。但是，激光雷达的测距数据中包含一定的噪声干扰，主要源自环境中与激光雷达

匹配次数

似
然

估
计

个
数

 

误
差

参
数

 (
0.

1m
m

 / 
º)
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相近频率成分的光源干扰、混合像素干扰、测量目标反射率太小或者入射角较大造成

的数据丢失。同时，由于运行环境存在着随机噪声、动态干扰、障碍物遮挡造成的扫

描盲区以及激光雷达扫描线之间的间隙（目前采用 0.5º 的解析度）而未能扫描的空间

区域等，这都可能造成不精确的障碍测量信息。因而，利用最大似然估计的地图匹配

方法不能完全发现移动机器人的最佳位置。为此，模糊逻辑被引入基于最大似然估计

的地图匹配中用于处理这些不确定因素的影响，以提高机器人的自定位性能。 

为了对以上的不确定性有较好的鲁棒性以及应用模糊逻辑，这里将激光雷达 180°

的扫描范围划分为三个等大小的扇区 A（左扇区），B（中扇区），C（右扇区）。对每

个扇区地图匹配的似然估计个数 ),,,361( CBAimm ii =<= 模糊化，将其划分为 3 个模糊

集{小（S），中（M），大（B）}，模糊隶属函数如图 4-13（a）所示。对这 3 个扇区

地图匹配的似然估计结果（result），同理可以按照模糊规则推理后的结果，将其论域

分成 5 级，对应的模糊集为{小（S），较小（PS），中（M），较大（PB），大（B）}，

其模糊隶属函数如图 4-13（b）所示。 

 

 

 

(a) 似然估计个数 m 的隶属度函数 μ(m) 

 

 

 

 

(b) 模糊匹配结果的隶属度函数 μ(result) 

图 4-13  模糊隶属度函数 

4.4.3 实验分析 

针对移动机器人 MORCS-1 实验平台，在办公室的局部环境，对上述方法评定。

实验结果如图 4-14 所示。图（a）中机器人利用内部的航迹推测传感器（里程计，光

纤陀螺）推测自身的位姿，利用外部的环境感知传感器（激光雷达）建立一个初始的

μ(m)

m 

0 180

S M B

360110 250

1

result 

μ(result) 

0 1

S PS M

32

1 

4

BPB

5 6
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局部地图。图中的黑色栅格是障碍，左边是门口，右边是作为动态障碍的研究人员。

图（b）中机器人按照环境漫游的策略（这里采用跟墙走的策略）对环境进行遍历。图

中的蓝色曲线是机器人的运行轨迹，同时由图（a）和图（b）可以看出，随着机器人

运行时间和距离的增加，其航迹推测的误差越来越大，从而造成静态障碍物（如墙壁）

的测距误差。图（c）和（d）是将模糊逻辑应用到地图匹配自定位前后的局部地图，

比较这两张图的左边和右边，可以看出：模糊逻辑应用前后，由于不确定性影响，最

大似然估计的地图匹配结果存在着差异。由图（a）和（c）可以看出，机器人漫游一

段时间之后， 机器人在世界坐标系中的坐标由于航迹推测的误差而发生改变，同时也

造成了环境地图的不准确。将模糊逻辑和最大似然估计相结合，并应用到机器人的地

图匹配自定位中，由图（a）和（d）知道不仅机器人航迹推测的误差被校正，而且对

于环境噪声，动态障碍也有一定的鲁棒性。 

 

 

 

 

 

 

 

 

 

 

 

图 4-14  局部地图匹配定位 

    针对上述实验，通过对于原始传感器数据、最大似然估计 MLE 地图匹配以及模

糊似然估计 FLE 地图匹配的定位误差包括里程和航向误差进行量化分析[109]，地图匹

配的执行周期为 sT 1= 。实验结果如表 4-4 所示，从表中可以看出所提方法对于机器人

里程和航向的误差有较好的校准作用。 

 

机器人 

占据栅格 机器人 

运行轨迹

门口 

动态障碍 

(a) 初始局部地图 (b) 机器人漫游

(c) 校准前的局部地图 (d) 校准后的局部地图 
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表 4-4  基于局部地图匹配定位的不同算法性能比较 

定位算法 里程（cm） 航向（rad） 

原始传感器获得的定位误差 24.75 0.08 

基于 MLE 局部地图匹配的定位误差 8.66 0.03 

基于 FLE 局部地图匹配的定位误差 3.32 0.02 

 

4.5 小结 

利用二维激光雷达作为环境感知的外部传感器，通过占据栅格地图融合机器人航

迹推测的位姿信息和激光雷达的障碍测距信息。对于非静态环境中动静态障碍自主检

测，动态障碍的运动跟踪定位以及静态障碍栅格地图匹配定位进行研究。 

提出一种基于二维激光雷达的自主动静态障碍检测方法。通过 k-近邻方法对激光

雷达测距数据进行空间障碍聚类，在此基础上分析聚类障碍的特征参数如区域、质心，

据此可以对连续采样时刻之间对应障碍的运动速度进行评估，从而为障碍物体的运动

状态预测及跟踪提供依据；利用聚类障碍数据的时间关联性分析确定障碍的类型，对

于多次连续扫描的聚类障碍的时间关联性进行分析，确定了聚类障碍的数据关联评估

函数，依据其取值对聚类障碍的数据进行关联。 

对于获得的动态障碍，结合移动机器人单目标跟踪的状态和观测模型，基于

SRUKF 构造粒子滤波算法的建议分布，对于现有的基于样本重要性重采样 SIR

（Sampling Importance Resampling）的粒子滤波进行改进，用于估计动态障碍位置实

现运动过程跟踪定位；对于获得的静态障碍栅格地图，将模糊逻辑与最大似然估计相

结合，采用地图匹配方法改进移动机器人定位的性能。 
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第五章  未知数据关联下基于概率的增量式环境建模与自定位 

 

 

在未知环境中，由于导航是基于地图建立的导航，移动机器人在本身位置不确定

的条件下，借助于所装配的传感器不断探测环境来获取有效信息，据此构建环境地图，

并使用此增量式环境地图实现本身定位。这种情形下，移动机器人自定位与环境建图

是紧密相关的。环境地图的准确性依赖于定位精度，而定位的实现又离不开环境地图，

其实质是并发定位与环境建图（Simultaneous Localization and Mapping，SLAM）[30]。 

SLAM 可看成同时估计机器人位姿和环境特征位置的状态估计问题。扩展卡尔曼

滤波 EKF 通过增量评估机器人位姿和环境特征位置的联合后验概率，已经吸引了众多

研究人员的关注 [31-45]。但是基于 EKF 的 SLAM 存在两大缺陷 [110]：计算复杂度为

)( 2KO ， K 是地图特征数目，这限制了能够处理的特征数目不能太大；依靠观测与环

境特征之间的数据关联是已知的假设，如果关联错误则 EKF滤波器将发散。针对 SLAM

问题，一种替代的方法是将 SLAM 后验降解为定位问题和基于机器人位姿的 K 个独立

环境特征的评估问题。这也就是 FastSLAM 算法[102,110]，使用改进的粒子滤波 PF 递归

地评估机器人位姿路径的后验概率，每个粒子处理 K 个独立卡尔曼滤波 KF，KF 基于

粒子的轨迹评估环境特征的位置。FastSLAM 实质上是 Rao-Blackwellized 粒子滤波器

(Rao-Blackwellized Particle filters, RBPF)的一个实例[67]，时间复杂度为 )log( KNO p ，

其中 pN  是粒子数， K 是地图中的特征数。目前这种方法得到了广泛的重视。 

本章针对未知的数据关联，利用粒子滤波概率方法研究移动机器人的增量式环境

建模与自定位问题，实现移动机器人位姿和环境特征位置的联合评估。为了自主地对

二维激光雷达的环境障碍感知信息进行类别划分特征提取，提出将无监督聚类学习应

用于障碍的特征提取，基于有效性索引函数和自调整学习机制解决未知特征个数的类

别个数，并将模糊逻辑引入到增量式特征的数据关联进行障碍的分类判决。对于评估

机器人路径位姿的粒子滤波进行了两点改进：考虑将地图匹配和粒子滤波重采样相结

合，使用相隔一定时刻（如 k 个采样步）地图匹配校准后的机器人位姿信息作为粒子

滤波的采样输入，以便减少粒子滤波采样中的不确定性影响；基于有效样本大小

（Efficient Sample Size，ESS）来实现粒子滤波的重采样自适应，并且对于获得 ESS

的样本权重计算方法进行改进，以保证能够有合适的重采样次数。对于环境特征的评

估，考虑由于机器人系统实际运行中具有未知时变的噪音统计特性，利用过程噪音自

适应评估技术以解决这些问题。同时，考虑采用确定性的采样近似方法 Unscented 变

换（Unscented Transformation，UT）和扩展卡尔曼滤波 EKF 相结合的 UKF 方法[111]。 
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5.1 增量式环境建模与自定位的概率定义 

 

5.1.1 增量式环境建模与自定位的概率描述 

未知环境中移动机器人增量式环境建图与自定位问题实质是 SLAM问题（如图 5-1

所示），主流的研究方法是基于概率的方法，基本思路是将其看作是 Bayesian 评估问

题，即通过给定输入数据、观测数据、运动与感知模型，使用预测/更新步骤同时估计

机器人位姿 s 和环境特征位置 λ的状态信度的最优化问题[112]。 

 

图 5-1  SLAM 问题 

针对 SLAM 问题的一般定义有 

♦ t：采样时间索引， L,2,1,0=t ； 

♦ ts ： t时刻机器人位姿，一般 ),,( θyxs = ，其中 ),( yx 表示 Cartesian 坐标系中机

器人的位置，θ表示机器人的航向角； 

♦ 1−tu ： 1−t 时刻驱动机器人从 1−ts 运动到 ts 的输入数据，来自内部传感器里程计； 

♦ tz ： t时刻机器人位姿为 ts 的观测数据，自外部传感器如激光雷达、摄像头等； 

♦ k
tλ ： t时刻环境中的第 k 个特征， Kk ,,1L= ，其中 K 表示环境特征的数目； 

♦ tn ： t时刻观测数据与环境特征之间的数据关联， },,1{ Kn L∈ 。 

此外，定义如下的集合 

♦ ts ：历史的机器人位姿， },,,{ 10 t
t ssss L= ； 

♦ 1−tu ：历史的输入控制数据， },,,{ 110
1

−
− = t

t uuuu L ； 

♦ tz ：历史的观测数据， },,,{ 10 t
t zzzz L= ； 

♦ tλ ： t时刻所有环境特征的集合， },,{ 1 K
ttt λλλ L= 。 
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SLAM 问题的前提假设是已知机器人的初始位姿 0s ，给定输入控制数据集合 1−tu ，

没有提供初始的环境特征 λ。 

机器人的运动和感知模型为 

♦ 运动模型 ),|( 11 −− ttt ussp ：表示 t时刻机器人起始位姿为 1−ts ，输入控制数据 1−tu 到

达位姿 ts 的概率，如公式（5-1）所示，其中 )(tW 表示模型的随机噪音，一般采用服从

高斯分布 ),0( tQ 噪音。 

)(),(),|( 1111 tWusFussp ttttt += −−−−  （5-1）

♦ 感知模型 ),,|( tntt nszp
t

λ ：表示 t时刻机器人位姿为 ts ，标识为 tn 的环境特征
tnλ

观测值为 tz 的似然概率，如公式（5-2）所示，其中 )(tV 表示模型的随机噪音，一般采

用服从高斯分布 ),0( tR 噪音。 

)(),(),,|( tVsHnszp
tt nttntt += λλ  （5-2）

对于 SLAM 问题，利用上述信息可以求得 t时刻机器人位姿 s 和环境特征位置 λ的

联合后验概率 

1
121

1111
1 ),,|,(),|(),,|(),,|,( −

−−−
−−−−

− ∫= t
ttt

ttttttntt
ttt

tt dsnuzspusspnszpnuzsp
t

λληλ  （5-3）

假定环境服从 Markov 的前提，这分为预测/更新两步递归执行。 

预测：依据前一时刻状态的后验信度 ),( 11 −− ttsBel λ 也即 ),,|,( 111
11

−−−
−−

ttt
tt nuzsp λ ，结

合运动模型来预测当前 t时刻状态 ts 的先验信度 ),( ttsBel λ− 。 

∫
∫

−−−−−

−
−−−

−−−−

−−−−

=

=

=

11111

1
121

1111

111

),(),|(

),,|,(),|(

),,|,(),(

tttttt

t
ttt

ttttt

ttt
tttt

dssBelussp

dsnuzspussp

nuzspsBel

443442144 344 21
后验信度运动模型

λ

λ

λλ

 
（5-4）

更新：利用感知模型，结合当前的感知测量信息 tz 来更新当前 t时刻状态 ts 的后验

概率分布 ),( ttsBel λ 。 
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{ 4342144 344 21
先验信度感知模型

标准化因子

),(),,|(

),,|,(),,|(

),,|,(),(
111

1

tttntt

ttt
tttntt

ttt
tttt

sBelnszp

nuzspnszp

nuzspsBel

t

t

λλη

λλη
λλ

−

−−−

−

=

=

=

 
（5-5）

5.1.2 基于粒子滤波 PF 的 SLAM 

相对于 EKF 方法，粒子滤波 PF 因其能够使用样本（也称粒子）表达任意分布包

括多模的概率密度函数 PDF 等优点而得以广泛应用。Dallert 等[112]将 PF 和移动机器人

运动和感知的概率模型相结合，提出了移动机器人蒙特卡罗定位 MCL。PF 采用 pN 个

随机加权的样本集合
pNi

i
t

i
t ws ,,1},{ L= ，将公式（5-4）中求解 ),( ttsBel λ− 的积分运算转化为

样本的求和运算，即 

),()(),(),|(),( 11
1

11
1

11 −−
=

−−
=

−−
− ∑∑ −== t

i
t

N

i

i
tt

i
tt

i
t

N

i
t

i
tttt sBelsswsBelusspsBel

pp

λδλλ  （5-6）

其中， (.)δ 表示 Dirac delta 函数； i
tw 表示样本的权重。当 ∞→pN 时，利用公式（5-5）、

（5-6）的样本可以近似达到真实后验分布 ),( ttsBel λ 。 

PF 算法开始时从初始信度 )( 0sp 采样，接着对每个时间步执行预测-更新-重采样递

归循环过程。公式（5-7）形式化 PF 的执行步骤，它源于应用 Beyes 规则到后验概率

中，接着使用 Markov 假设，该公式从右到左执行。 

{
444444444 3444444444 21
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4444 34444 21

44 844 76
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∫ −
−−−
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− = 1

PDF

121
1111

PDF

1 ),,|,(),|(),,|(),,|,( t
ttt

ttttttntt
ttt

tt dsnuzspusspnszpnuzsp
t

λληλ  
（5-7）

粒子滤波 PF 基于 SIS 算法进行采样，会存在样本退化问题。文献[99]指出：重要

性权重的方差随着时间增长而增大，因而样本退化是不可避免的。这样，大量的计算

时间浪费在更新权重较小的样本上。针对样本退化问题，可以增加样本大小 pN 至无穷

来解决，但很低效。文献[98]提议的解决方案为：选择好的建议分布及进行重采样。 

♦ 建议分布 (.)q 是指概率分布与 p 相同，概率密度分布已知且容易采样的分布函

数。由于很难直接从后验概率分布 ),|( 1−tt
t uzsp （简写为 p ）采样，样本采集需要借

助建议分布 q 来实现。选择一个好的建议分布能够有效地防止样本退化，因而建议分

布的选择是当前研究的关键技术之一。 
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♦ 重采样在 SIS 算法中起着非常重要的作用：如果重要性权重分布不均，那么在

动态系统中传递较小权重的样本则是浪费计算资源；当重要性权重发生偏斜，重采样

则可以提供选择重要样本和复原采样器的途径。但是重采样不仅引入了额外的蒙特卡

罗误差，而且可能导致样本多样性丧失出现样本耗尽问题。同时，频繁重采样会出现

负面效应。 

    由于存在这些潜在问题，使得 PF 在移动机器人应用中还存在局限和不足。为了

解决这些问题，目前基于 PF 方法研究的关键技术要集中在：建议分布的选择；重采

样策略的改进；有效推理的执行；自适应机制的引入以及与其它方法的集成。 

5.1.3 基于 Rao-Blackwellized 粒子滤波的 FastSLAM 算法 

利用 PF 对移动机器人位姿状态进行在线递归评估推理，需要考虑推理的有效性。

为此， Casella[113]提出了几点建议：Rao-Blackwellization；评估应当在重采样前进行；

延迟评估；频繁重采样可能有负面影响。作为一种边缘化技术 Rao-Blackwellization 由

Rubin[114]首次在蒙特卡罗采样中用于计算边缘密度。Casella[115]则为拒绝采样和采用重

要性采样的 Metropolis 算法开发了 Rao-Blackwellization 方法。因其固有的减少方差的

属性，Rao-Blackwellization 已经用于粒子滤波来改进滤波性能。Montemerlo 等人[102]

提出了基于 Rao-Blackwellized 粒子滤波（Rao-Blackwellized Particle filters, RBPF）的

SLAM 算法，称为 FastSLAM 算法。SLAM 是同时评估机器人位姿 s 和环境特征位置 λ
的状态估计问题，也即评估 ),,|),( tttt nuzsp λ 。FastSLAM 将问题降解为两个部分，一

部分用 EKF 求得准确解，另一部分则用 PF 近似推理。由于第一部分可以进行准确快

速地求解，计算时间和方差均得以减少。 

444 3444 21444 3444 21
EKF

1

1PF

11 ),,,|(),,|( ,,|,( tttt
k

K

k

tttttttt nuzspnuzspnuzsp −

=

−− ∏= λλ  （5-8）

♦ （1）已知数据关联的 FastSLAM 算法 

♦ A 机器人位姿路径评估 

类似于基于粒子滤波 PF 评估机器人位姿后验概率的蒙特卡洛定位 MCL，

FastSLAM 使用粒子滤波评估机器人位姿路径的后验概率 ),,|( 1 tttt nuzsp −
，记为 tS 。每个

粒子 t
i
t Ss ∈ 表示机器人位姿路径的近似，其中 i 表示粒子在集合中的次序。 

i
i
t

ii
i

it
t ssssS },,,{}{ 21

, L==  （5-9）
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基于 1−t 时刻的粒子集合 1−tS ，控制输入信息 1−tu 和环境观测信息 tz 计算 t时刻粒子

集合 tS 。首先 1−tS 中的每个粒子结合运动模型用于产生 t 时刻机器人近似位姿

),|(~ 11
i
ttt

i
t susps −− ，并将其和 1−t 时刻的机器人位姿路径添加到临时粒子集合。基于假设

),,|( 1211 −−−− tttt nuzsp ，产生粒子滤波的建议分布 ),,|( 111 −−− tttt nuzsp 。在这样产生 pN 个粒子，

新的粒子集合 tS 通过采样临时粒子集合获得，每个粒子依据重要性权重
i
tw 进行采样，

即 

),,|(
),,|(
111,

1,

−−−

−

==
tttit

tttit
i
t nuzsp

nuzspw
建议分布

目标分布
 （5-10）

    当粒子数目 pN 趋向于无穷时，粒子集合 tS 近似于真实后验分布 ),,|( 1 tttt nuzsp −
。同

时，由于 tS 只与前一时刻的机器人位姿有关使得粒子数目独立于时间。 

♦ B 环境特征评估 

FastSLAM 在公式（5-8）中使用扩展卡尔曼滤波 EKF 表达有条件的环境特征评估

),,,|( 1 tttt
k nuzsp −λ 。由于环境特征的评估以机器人的位姿为前提条件，EKF 则和粒子集

合 tS 中的单个粒子相关联。因而，FastSLAM 算法中机器人位姿路径和环境特征位置

的完全后验概率可以表示为 

i
i
K

i
K
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t
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i
K

i
K

iiit
t ssssS },,,;,,,{},,,;{ 112111

, ΣΣ=ΣΣ= μμμμ LLL  （5-11）

这里
i
kμ 、

i
kΣ 分别为和第 i个粒子关联的采用高斯分布表示的第 k个环境特征 kλ 的均值与

方差。 

第 k个环境特征 kλ 的后验概率的计算简单，它不依赖于在 t时刻 kλ 是否被观测到，

即无论 knt = 与否。当环境特征 kλ 被观测时，即 knt = ，则有 
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当环境特征 kλ 未被观测时，即 knt ≠ ，则有 

),,,|(),,,|( 12111 −−−−−
≠ = tttt

k
tttt

nk nuzspnuzsp
t

λλ  （5-13）
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    FastSLAM 算法使用 EKF 执行更新方程（5-12）。类似于 SLAM 问题中的 EKF，
FastSLAM 中的 EKF 使用线性高斯函数近似感知模型 ),,|( tntt nszp

t
λ 。即使运动模型是

非线性的，使用线性高斯感知模型会使分布 ),,,|( 1 tttt
k nuzsp −λ 服从高斯分布，也即这是

由于使用粒子近似机器人的位姿的结果。 

♦ （2）未知数据关联的 FastSLAM 算法 

在真实世界问题中，环境特征是不可辨识的，同时其数目 K也不容易确定。这种

情况下，机器人不得不对瞬间感知的环境特征 tz 和地图上的环境特征λ建立数据关联。

而且如果由于误差而引入的错误特征，环境地图应能够利用相关信息进行消除，如果

感知到新的，以前没有的环境特征，环境地图应据此扩增。文献[109]提出了几种数据关

联的方法：每个粒子最大似然数据关联，蒙特卡罗数据关联，互斥，否定信息。其中，

最大似然 ML 数据关联方法是最为经典的方法。ML 数据关联实质上是将负的对数似

然看作距离函数的最近邻方法。对于高斯分布而言，负的对数似然是马式距离

（Mahalanobis Distance，MD），ML 通过选择最小化的 MD 来执行数据关联。在

FastSLAM 算法中，通过对每个粒子的位姿路径
its ,
选择 tn 来最大化感知数据 tz ，即 

),,,ˆ|(maxargˆ 11,,1 −−−= ttitit
t

n

i
t uzsnzpn

t

 （5-14）

5.1.4 针对 FastSLAM 算法改进的趋势 

♦ （1）改进机器人位姿路径评估的粒子滤波 PF 

针对粒子滤波 PF 存在的局限和不足，目前进行的改进如前面所述，主要是针对

以下的关键技术进行改进：建议分布的选择；重采样策略的改进；自适应机制的引入

等。 

♦ 选择建议分布：在重要性采样中，建议分布 q用于近似后验概率分布 p ，从而

计算样本的重要性权重 i
tw 。如果在后验概率分布 p 分布集中的区域，建议分布 q 只产

生很少的样本，则粒子滤波的效果很差。选取一个好的建议分布 q 的准则应该包括：

有较大的范围足以覆盖后验概率分布；有长尾的行为足以解决异常问题；采样易于执

行，最好是线性复杂度；考虑基于运动模型的状态转移、基于感知模型的观测似然以

及最新的观测数据；重要性权重的方差最小；近似真实分布。但是，要实现其中任一

准则都很难。 

♦ 改进重采样策略：重采样是为了解决 SIS 算法中样本退化问题而引入的，一般

在两个重要性采样之间进行，依据样本的权重对后验概率的近似离散分布重新采样 pN
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次，产生新的样本以取代原来的样本。但是重采样也引入了额外的蒙特卡罗误差，同

时频繁重采样可能导致样本多样性的损失（样本枯竭），即具有较大权重的样本被多次

选取，采样结果中包含了许多重复点。为了克服这些问题，需要提供一些特殊的策略

进行改进。现有的解决方案有：多项式重采样，残差重采样，系统重采样，规则重采

样，分层重采样，局部蒙特卡罗重采样。 

♦ 引入自适应机制：在对整个状态空间处理过程中，现有的粒子滤波算法大多使

用固定大小的样本数[112]。这显然非常低效，因为概率密度可能会随时间的变化发生巨

大改变。在粒子滤波中引入自适应机制，可以改进粒子滤波执行和计算的有效性，从

而有效地降低移动机器人的定位误差。在粒子滤波的自适应机制研究方面，目前主要

提出了样本数目自适应[116]、重采样技术自适应[117]、建议分布自适应[118]以及运动模型

自适应[119]。 

♦ （2）改进环境特征评估的扩展卡尔曼滤波 EKF 

可以考虑采用混合卡尔曼滤波 MKF（Mixture Kalman Filter）。MKF 是采用蒙特卡

罗采样的 KF/EKF 随机版本[120]。MKF 方法中采用了重采样和拒绝控制方案，实质上

可以看作是有条件地对高斯线性动态模型进行边缘化的 Rao-Blackwellized 粒子滤波的

特殊例子。MKF 的显著优点在于它的计算有效性。 

考虑采用确定性的采样近似方法 Unscented 变换（Unscented Transformation，UT）

和扩展卡尔曼滤波 EKF 相结合的 UKF 方法[111]。UT 变换利用 sigma 点和偏态参数来

覆盖和传播数据信息，已经开发的 Unscented 滤波有 UKF[111]、UPF[121]，尽管利用 UT

的计算复杂度稍高，但其对非线性评估具有较好的效果。 

 

5.2 基于模糊聚类算法的特征提取 

 

5.2.1 模糊聚类算法 FCM 及其变种 

FCM 算法是由 Dunn 于 1974 年提出并经 Bezdek 加以推广的模糊聚类算法[122]。

其基本原理为：把 N 个 M 维数据集 },,2,1|{ NjXX j L== 划分为 )2( Ncc ≤≤ 个模糊类

别 },,2,1|~{~ ciFF i L== 。通过欧氏距离 d 的度量，求得第 i个聚类 iF~ 的类心 )1( ciVi ≤≤ ，

使得准则函数 ),( VUJ 最小化。 
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其中, m 为模糊加权系数， Uij ∈μ  是数据 jX 属于 iF~ 的模糊隶属度，它必须满足以下

的约束条件： 

iNj&
N

j
ij

c

i
ijij ∀<<∀=∈ ∑∑

==

  0 &    1  ]1,0[
11
μμμ  （5-16）

FCM 算法计算简单，运算速度快，但只适合于发现球型的类，而且存在对噪音数

据敏感等缺陷。因而针对这些缺陷及特殊场合的应用，一些文献提出了新的模糊聚类

算法[122-126]，这些算法大多基于对距离测度 d 的改进。 

表 5-1 不同模糊聚类算法的距离度量 

算法 距离测度 

FCM[122] )()'( ijMij VXIVXd −−=  

GK[123] )()'( 1
ijiij VXAVXd −−= −  

EFCM[124] 2)()'( iijMij rVXIVXd −−−=  

EGK[124] 21 )()'( iijiij rVXCVXd −−−= −  

KFCM[125] ∑
=

−−−−=
km

k
ikijijMij uVXVXIVXd

1

2])'[()()'(  

LKFCM[126] 2)()'( iijMij fVXIVXd +−−=  

其中， MI 是 M 维单位矩阵； iA 是第 i个聚类的范数诱导矩阵； ir 是由第 i个聚类的

协方差矩阵的特征值决定的常数； iku 是由第 i个聚类的协方差矩阵的 km 个最大特征值

决定的特征矢量矩阵； if 是由 jX 到第 i个聚类原型的正交距离。 

5.2.2 标准聚类算法的改进（wFCA） 

由于运行环境中包含了大量不规则形状的障碍，这些障碍几何特征的先验知识难

以预先获得。为了对激光雷达感知的环境障碍信息进行特征提取，比较经典的算法有

近邻方法，即对于二维激光雷达获得的测距数据在极坐标内以 k 近邻区域内的最小邻

近差值 minρΔ 进行聚类，近邻区域内的 minρΔ 小于某个预设的阀值 setρΔ （实验中设为

50cm）可以归为一类。根据测距数据的空间关联度，从而可将 361 个测距数据归纳为
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若干个不相连的类别集合。也就是说，利用测距数据的空间近邻的思想进行分类，可

以对环境障碍的类别划分有一个较好较快的评估范围，但这种方法并不能提取出障碍

的线段特征。 

为了对在平面上线扫描的测距数据进行聚类分析特征提取，这里将测距数据的空

间近邻信息集成到模糊聚类算法中。基于线性变换不变性的马氏距离基础之上，提出

了一种加权的模糊聚类算法 wFCA。在集成过程中，考虑测距数据的空间近邻性对于

类别中心的影响，引入加权系数到标准模糊聚类算法 FCM 中。即有： 

∑∑
= =

=
c

i

N

j
ijij

m
ij VXdVUJ

1 1

2 ),()(),( ωμ  （5-17）

其中， ijω 是依据近邻原则确定的第 j个测距数据隶属于第 i个类别的权系数，权系数是

通过对测距数据的近邻分类所获得的信息求得的。 

同时，对于距离测度采用马氏距离（如公式（5-18）所示）， iC 是第 i个聚类的协

方差矩阵。但是通过对马氏距离进行线性变换分析，得到对于每个类别的隶属度是等

同的，也即马氏距离并不能直接用于聚类算法中。考虑聚类的大小，将每个聚类的最

小特征值 λ引入来改变等同的隶属情况。 

)()'(),( 1
ijiijij VXCVXVXd −−⋅= −λ  （5-18）

对激光雷达获得的测距数据集，利用本文提出的聚类方法 wFCA 和前面提及的可

以用于提取线特征的六种聚类算法进行。通过 20 次测试，图 5-2 显示了不同算法对某

一环境场景的分类情况（共有七类，近邻分类为四类），wFCA 算法相对其它算法有较

好的聚类效果，特征提取的有效率为 98%。 

 

图 5-2  不同算法的特征提取结果 

: Real 
: wFCA 
: FCM 
: GK 
: EFCM 
: EGK 
: KFCM 
: LKFCM 
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通过 20 次测试，表 5-2 显示了不同算法的性能比较结果，所列指标均是针对测距

数据集。为了更好地说明其它算法的优劣，这里也将下面用到的 Iris 数据的分类效率

列出。标准数据集 Iris 由四维空间的 150 个数据组成，共分为三类，每类各有 50 个数

据，其中两类存在着重叠。测距数据集由二维空间的 361 个数据组成，类别数目视环

境而定，类间的重叠很少。通过实验比较，对于具有重叠分布的 Iris 数据集，LKFCM

具有最好的分类结果；但对于测距数据集，wFCA 具有最好的分类结果。 

表 5-2  不同算法的性能比较 

分类率(%) 
算法 误差平方和

测距图像 Iris 

FCM 14.2770 71.20 89.33 

GK 2.0552 90.03 90.00 

EFCM 11.3290 65.65 89.33 

EGK 1.4618 86.70 95.33 

KFCM 0.1122 87.25 50.00 

LKFCM 15.6100 70.09 90.67 

wFCA 0.0951 98.34 49.67 

 

5.2.3 聚类有效性索引函数评估 

聚类算法是以确定的类别数目为前提，但在实际情况中很难事先给定先验信息。

类别数目未知情况下进行聚类，其难点在于如何依据聚类的有效性索引函数自主地确

定最优的类别数目。目前，针对模糊划分已经提出了多种有效性索引函数[127-133]。由

于有效性索引函数对于不同的应用事例不一定能给出准确的聚类数，当前的一些研究

采取综合多种索引函数确定最优的类别数目。但是其计算代价较大，这里对于真实反

映环境场景信息的测距图像进行聚类分析时，采取计算评估选取最合适的有效性索引

函数来解决该问题。给定合适的有效性索引函数之后，通常采用递归试探的自调整学

习机制自主确定最优类别数目。 

真实反映环境场景信息的激光雷达测距数据，由二维空间的 361 个数据组成，类

别数目视不同的测试环境而定，类间的重叠很少。在对其进行聚类分析时，这里采取

计算评估选择最合适的有效性索引函数作为遗传算法的适应度函数来解决该问题。选

用测距数据集作为测试集来对上述的七个有效性索引函数进行评估，通过比较测试数

据集的先验信息以确定最合适的有效性索引函数。 
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表 5-3  基于 wFCA 算法的测距数据特征提取的有效性评估 

c PC CE XB(*10-1) DB PCAES(*10-1) Srel(*10-4) OS 

4 0.92033 0.14047 1.2016 0.72598 -0.12425 0.162190 0.36313 

5 0.93339 0.12198 0.74576 0.76061 -0.22373 0.052943 0.14270 

6 0.92972 0.13220 0.80514 0.53149 -0.30579 0.027421 0.056924

7 0.94400 0.10849 0.81905 0.42923 -0.40119 0.012270 0.028831

8 0.90883 0.17239 0.69763 0.49462 -0.51233 0.029128 0.049014

9 0.86606 0.24330 0.87773 0.99532 -0.52983 0.035415 0.047763

10 0.83520 0.29498 0.57423 0.55334 -0.45964 0.048137 0.054163

11 0.84575 0.27361 0.59295 0.54747 -0.55095 0.041187 0.049873

12 0.83605 0.29365 0.41300 0.49038 -0.70291 0.034160 0.036013

13 0.82145 0.33045 0.49773 0.87593 -0.72344 0.023641 0.040683

14 0.82155 0.34841 0.50426 1.47080 -0.83937 0.022142 0.024446

 

利用提出的集成空间分布信息的加权模糊聚类算法对激光雷达的测距数据进行特

征提取评估。根据有效性索引函数的第一显著拐点确定最优类别数目，从表 5-3 中可

以看出：基于 wFCA 对于测距数据（这里的先验类数为七类）进行评估 )144( ≤≤ c ， PC

和 CE 索引函数单调下降或上升，评估最优特征数的拐点不明显，XB(*10-1)、

PCAES(*10-1)则存在不能较好评估的问题，DB、Srel(*10-4) 、OS 均能较好评估，但

OS 是其中对几何图元为线段的测距数据的最好评估函数（如图 5-3 所示）。 

 
 
 
 
 
 
 

 

 

图 5-3 基于有效性索引的分类数评估 
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5.2.4 实验分析 

    为了验证所提方法的有效性，对于测距数据集，将不同的聚类算法和不同的有效

性索引函数集成起来，通过递归试探进行聚类算法，有效性，聚类数目等方面的性能

评估，验证所提聚类算法 wFCA 及所选用的有效性索引函数 OS。计算机硬件软件环

境如下：P4 赛扬 1.7GHz，256M DDR 内存，集成显卡；WindowsXP 操作系统，Matlab6.5

编程环境，每组实验测试 20 次记录其平均值。 

     通过不同聚类算法与不同的有效性索引函数集成，对测距数据集大量测试，进行

聚类算法及有效性等评估。文中所用聚类算法均采用 0001.0,2 == εm 的参数设置。图

5-4（a）显示了基于 OS 索引函数的不同聚类算法在不同聚类数下 )144( ≤≤ c （先验类

数为七类）获得的曲线，可以看出，wFCA 算法和 OS 索引相对于其它算法，能进行

很好的聚类划分特征提取。而且，在图 5-4（b）中的算法时间曲线中，wFCA 算法和

OS 索引组成的聚类算法的计算代价明显小于其它算法。 

0
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(a) 基于 OS 索引的聚类算法 
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(b) 时间性能 

图 5-4  基于 OS 索引的聚类算法评估 
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5.3 增量式数据关联及特征匹配 

 

5.3.1 增量式数据特征的关联性分析 

对于未知类别数目的在线增量式数据而言，除了利用在线无监督聚类学习对每个

采样时刻的数据进行优化分类提取特征信息，由于数据的增量式获取还需要对前后采

样时刻类别的特征进行时空关联性分析。设在 t， 1+t 时刻的数据集为 )(tX ， )1( +tX ，

聚类的类别为 )1)((~ CitFi ≤≤ ， )1)(1(~ CitFi ′≤′≤+′ ，则 )(~ tFi 与其对应 )1(~ +′ tFi 必然存在特

征的最大关联性。如果这些增量式数据在空间区域中没有发生变化（也即静止），则其

区域及形状等的关联性最大；如果发生变化（如添加，移除，运动），则在某种程度上

也存在着关联性；对于不同的类别，则会呈现不关联的性质。 

 

 

图 5-5  增量式数据特征的关联性分析 

对某一时刻的数据集 X 进行在线最优聚类后，获得了 c个模糊类别 ),,2,1(~ ciFi L= 。

iF~ 除了具有由隶属于其中的所有数据 ),,2,1( ik nkX L= 最大与最小取值 [ min,kX ， max,kX ]

确定的区域范围， kX 的数据个数 in 确定的区域质量及其聚类的均值矢量 iV 确定的质心

等区域特征外，还具有一些共同的结构特征包括特征值矢量 iλ 以及主特征矢量的方向

iθ 。利用提取出的数据特征，分析相邻采样时刻聚类区域的关联性（如图 5-5 所示）： 

♦ （1） 区域的质心 

对于相邻时刻的每个聚类区域如 )(~ tFi  与 )1(~ +′ tFi ，利用它们质心 iV 及 iV ′之间的距

离测度，建立对应的关联关系。 

)cos()( ϕθ −−=Δ ′′ iii VVd  （5-19）

这里ϕ表示 )( ii VV ′− 的夹角方向。 
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♦ （2）特征矢量 

对于相邻时刻的每个聚类区域如 )(~ tFi  与 )1(~ +′ tFi ，利用它们主特征矢量是否重

叠，或者它们主次特征矢量的比率是否相近，建立对应的关联关系。 

)sin()( ϕθ −−=Δ ′′ iii VVr  （5-20）

♦ （3）主特征矢量方向的角度相似系数 

对于相邻时刻的每个聚类区域如 )(~ tFi  与 )1(~ +′ tFi ，利用它们主特征矢量方向的角

度相似系数建立对应的关联关系。 

ii θθθ −=Δ ′  （5-21）

5.3.2 特征空间的模糊化 

为了更好地对在线增量式获取的具有不确定性的量测数据进行判决分类，这里将

模糊逻辑与数据关联相结合来改进分类的性能。对于相邻采样时刻的聚类区域 )(~ tFi 与

)1(~ +′ tFi 之间的关联特征 θΔ ， dΔ 及 rΔ ，这里采用量化特征的模糊划分方法。将每个

关联特征看作是一个语言变量，每个语言变量可以量化地划分为 ),4,3,2( L=KK 个语言

值。模糊隶属函数采用三角函数。对于变化范围在 0 到 cθθσ + 范围内的关联特征 θΔ ， 
θΔ

miKF , 表示定义在特征 θΔ 上 K 个语言值中的第 mi 个语言值。用 θμ Δ
miK , 表示 θΔ

miKF , 的隶属函

数，定义其语言值 3=K ，则有： 

⎪⎩

⎪
⎨
⎧

<Δ<Δ−

>Δ<Δ
=Δ

       0          ,1

  0               ,0
1,3

σ
σ

σ
θ

θθ
θ
θ

θθθ
μ

或

 （5-22）

        

⎪
⎪
⎪

⎩

⎪
⎪
⎪

⎨

⎧

+<Δ<
−Δ

−

<Δ<Δ
+>Δ<Δ

=Δ

                 ,
 

1

           0                    ,

  0                ,0

2,3

c
c

c

θθθθ
θ
θθ

θθ
θ
θ

θθθθ

μ

σσ
σ

σ
σ

σ
θ

或

 （5-23）
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⎪⎩

⎪
⎨
⎧

+<Δ<
−Δ

+>Δ<Δ
=Δ

                 ,

                 ,0

c
3,3 θθθθ

θ
θθ

θθθθθ
μ

σσ
σ

σσ
θ

c

c或

 （5-24）

 

对关联特征 θΔ ， dΔ 及 rΔ 分别模糊化之后，特征空间用 333 ×× 的 3 维模糊栅格表

示（如图 5-6 所示）。 

 

 

 

图 5-6  特征空间的模糊化表示 

5.3.3 基于模糊数据关联的特征匹配 

对于相邻采样时刻的聚类区域 )1)((~ citFi ≤≤ 与 )1)(1(~ citFi ′≤′≤+′ 之间的关联特征

),,( rdE ΔΔΔ= θ ，依据如下的模糊关联规则建立其对应的关联关系。 

),,,(en          th

  is  and  is  and  is  f:

1

,,, 321

k
c

k
i

k

r
iK

d
iKiKk FrFdFIR

ααα

θ θ

LL

ΔΔΔ ΔΔΔ
 （5-25）

这里， k
iα 表示由第 k 个规则 kR 确定的类别 )1(~ +′ tFi 属于 )(~ tFi 的置信度。如果其模糊置

信度 k
iα 大于等于预定义的最小置信度 αmin (这里取为 0.4)，则该规则是有效的。 
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设关联规则集为 },,{ 1 LRRR L= ，第 jL 个规则用于产生相邻采样时刻的聚类区域 )(~ tFi

与 )1(~ +′ tFi 增量式分类判决。对于增量数据的关联特征 ),,( rdE ΔΔΔ= θ ，模糊数据关联

方法考依据关联规则条件部分的特征匹配度和所属类别的置信度的最大值进行决策分

类。采用如下的步骤进行： 

步骤 1：计算模式匹配度。通过关联规则条件部分求取特征 E 的匹配度

)(ERk ),,1( Lk L= 。 )(ERk 通过对子条件
θθ ΔΔ

1, is iKF 的满意度应用 T-范式来求得。 

)}(),(),(min{

))(),(),(()(

3,2,1,

3,2,1,

rd

rdTER

r
iK

d
iKiK

r
iK

d
iKiK

FFF

FFFk

ΔΔΔ=

ΔΔΔ=

ΔΔΔ

ΔΔΔ

μμθμ

μμθμ

θ

θ

 （5-26）

步骤 2：计算关联度。依据特征的模式匹配度和第 k 个规则 kR 确定的置信度计算

类别 )1(~ +′ tFi 和 )(~ tFi 的关联度。 

),,1(  )()),(( LkERERh k
jk

k
jk L== αα  （5-27）

步骤 3：计算所有类别的分类合理度。依据属于类别 )(~ tFi 的规则计算分类关联度。 

),,1( )),((max cjERhY k
jk

Lk
j

j
L==

∈
α  

（5-28）

步骤 4：应用决策函数进行分类判决。 这里采用最大关联度函数。 

jcj
Y

,,1
max

L=
 

（5-29）

5.3.4 实验分析 

图 5-7 实验中，在给定控制指令后移动机器人 MORCS-1 按照规划的路径以 20cm/s
的速度运行。通过给定采样周期 ms200=t ，激光雷达对机器人外切圆半径 cm54=rW 以

外的前方环境扫描获得障碍的测距数据，结合机器人的运动学模型及航迹推测传感器

信息能够确定运行环境中的障碍位置。其中，内部传感器进行航迹推测造成的定位误

差参数为 T0223.0=σθ ， Td 01.0=σ ， Tr 002.0=σ 。图 5-7（a）是机器人基于激光雷达

感知的障碍分布，红色方框代表 2m1 的面积，蓝色曲线代表机器人的运行轨迹，黑色

代表环境中的动静态障碍信息。对于障碍特征提取的周期设定为 s1=T ，通过聚类分析

提取障碍特征建立障碍链表记录其特征参数。 
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(a) 移动机器人的障碍感知 

 

0

2

4

6

8

10

12

1 6 11 16 21 26 31 36 41 46 51

总数

遮断

特征

关联

静态

动态

 

 

(b) 增量式数据关联及障碍分类判决 

图 5-7  基于模糊数据关联的障碍分类判决 

对于采集到的增量式测距数据，按照上述关联方法进行障碍的分类判决（见图 5-7

（b））。机器人在起点视野处特征总数为 11，激光雷达关测的特征个数为 7（均视为静

态包括行人 A）；在走到行人 A 处进行避障转向，行人 A 走到另一处，此时特征为 5，

关联和特征个数相同均视为静态；之后行人 B 走进房间，特征为 6，关联个数为 5，

可以判定未能关联的障碍为动态；在遭遇到行人 B 处再次避障转向，此时特征为 6，

关联个数为 6，所视障碍均为静态；此后，机器人对先前感知的场景重新分析，判断

行人 A 为动态。机器人长期运行中由于航迹推测误差的影响，会造成障碍位置的偏差

（图中障碍曲线加粗），为此在数据关联中引入模糊逻辑可消除航迹推测误差造成的特

征不一致，同时对简单场景下的运动物体也有一定的辨识能力。该方法能够可靠地对

障碍动静态属性进行分类判决，统计分析其正确关联率达到 98%。 

时间 (s) 

个
数

 
走廊

机器人
行人 B

办公室 A

行人 A

起点 



博士学位论文                                     第五章  未知数据关联下基于概率的增量式环境建图与自定位 

 104

5.4 改进的 RBPF 滤波算法实现增量式环境建模与自定位 

 

5.4.1 结合地图匹配的粒子滤波重采样策略 

重采样是为了解决 SIS 算法中样本退化问题而引入的[134,135]。其基本思想是通过

对样本和相应权重表示的概率密度函数重新采样，排除权重较小的样本，增加权重较

大的样本。重采样一般在两个重要性采样之间进行，依据样本的权重对后验概率的近

似离散分布 ∑
=

− −=
pN

i

i
tt

i
tttt sswuzsp

1
1:0:1 )(),|( δ 重新采样 pN 次，产生新样本 )/1;1}(,{ p

i
tp

i
t

i
t NwNiwx =≤≤

以取代原来的样本。重采样在 SIS 算法中起着非常重要的作用：如果重要性权重分布

不均，那么在动态系统中传递较小权重的样本则是浪费计算资源；当重要性权重发生

偏斜，重采样则可以提供选择重要样本和复原采样器的途径。但是重采样不仅引入了

额外的蒙特卡罗误差，而且可能导致样本多样性丧失出现样本耗尽问题。针对这些问

题，需要提供一些特殊的策略进行改进。一种解决途径就是有足够大的样本数目来表

示后验，但是样本数目太多将影响在线滤波的速度。这里，借鉴文献[136]的思想，结

合前面所提出的基于似然估计的地图匹配的结果为重采样提供一种改进的策略。 

 

图 5-8  结合地图匹配的粒子滤波 

考虑将地图匹配和粒子滤波重采样相结合，使用相隔一定时刻（如 k 个采样步）

地图匹配校准后的机器人位姿信息作为粒子滤波的采样输入，以便减少粒子滤波采样

中的不确定性影响。其基本思想见图 5-8。 
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♦ 假设 t 时刻机器人位姿为 ts ，获得的局部地图为 tm ，则经过 k 个采样步基于激

光雷达局部地图匹配的观测似然函数 ),|( ttkt smmp + ，取为前面计算得到的 ts 的模糊似

然估计 )( tfuzzy sl 。 

♦ 在 kt + 时刻经过局部地图匹配的具有高度似然性的机器人位姿信息作为粒子

滤波的采样输入。 

5.4.2 基于有效样本大小 ESS 的重采样自适应 

粒子滤波 PF 基于 SIS 算法进行采样，会存在样本退化问题。文献[99]指出：重要

性权重的方差随着时间增长而增大，因而样本退化是不可避免的。这样，大量的计算

时间浪费在更新权重较小的样本上。重采样技术是为了解决 SIS 算法的退化而引入的，

但是重采样不仅引入了额外的蒙特卡罗误差，而且可能导致样本多样性丧失出现样本

耗尽问题。针对这些问题，另外一种解决途径就是限制重采样的次数，以避免在不确

定条件下滤波太快地收敛到最大似然状态，但是过少的重采样将导致滤波器发散。这

里基于有效样本大小（Efficient Sample Size，ESS）来实现粒子滤波的重采样自适应，

以保证能够有合适的重采样次数。用于评定算法退化的有效因子是由 Liu[137]定义的有

效样本大小 effN ，它表示当前样本集合近似后验的好坏，即 

)(1 )*(i
t

p
eff

wVar

N
N

+
=  （5-30）

其中， ),,|(/),|( 111:0:1
)()*(

tt
i
t

i
ttt

i
t

i
t zussquzspw −−−= 表示真实权重。 

但是真实权重 )*(i
tw 很难评估，实践中采用有效样本大小 ESS 的估计值 effN̂ 来评估

当前样本集 

∑ =

=
pN

i
i

t
eff

w
N

1
2)( )(

1ˆ  
（5-31）

其中， )(i
tw 表示标准化的权重。 

由于频繁 /过少重采样均会出现负面效应，因而基于有效样本大小 ESS 估计值

effN̂ Doucet 提出了重采样自适应技术，也即如果 effN̂ 小于固定阈值 thresN ，则在 SIS 算

法执行重采样，否则不进行[99]。该方法在机器人领域得到有效应用[117,138]。这里，我

们采用 Doucet 所提出的基于有效样本大小 ESS 的重采样自适应技术，阈值

2/pthres NN = ，并且对于获得 ESS 的样本权重计算方法进行改进。样本权重的计算公
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式为[99]： 

),|(
),|()|(     
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tt
t
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t
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t

zssq
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zsqzssq
zspusspszpw

−
−−

−

−−−

−−
−−

∝

∝
 （5-32）

假设 ),|(),|( 1
1

ttt
tt

t zssqzssq −
− = ，一般情况下选择移动机器人运动学模型作为建

议分布即 ),|(),|( 111 −−− = tttttt usspzssq ，那么样本重要性权重的计算公式为 

)|(1 tttt szpww −∝  （5-33）

但是，这里只是考虑了基于运动模型的状态转移，从前面实验分析来看移动机器

人仍然存在一定的定位误差，据此并不能完全近似真实分布。考虑通过改进传递先验

吸收当前感知信息到状态评估中，用高斯混合分布来近似建议分布 

P
i
tt

i
ttttt NiPssNzssq ,,1         )ˆ,ˆ;(),|( 1|1 L== −−  （5-34）

其中， ts 是用二阶泰勒级数近似的吸收了当前感知的转移状态，定义其对数似然为 

),|(log)(   ; ))(()(
2
1))(()()( 1

'''
tttt

T
ttt zsspslssslssssslslsl −=−−+−+=  （5-35）

而 i
tŝ ， i

ttP 1|
ˆ

− 分别为 

),|(ˆ 1
ti
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i
t zssEs −=  （5-36）

),|(ˆ
11|

ti
tt

i
tt zssCovP −− =  （5-37）

从而样本重要性权重的计算公式更改为 
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5.4.3 使用自适应过程噪音 UKF 的环境特征更新 

通过特征提取及匹配获得相应的数据关联，FastSLAM 算法使用 EKF 执行地图中

K 个环境特征的概率分布更新 ),,,|( 1 tttt
nk nuzsp

t

−
=λ ， 如公式（5-12）所示。由于 EKF 使

用线性高斯近似感知模型，因而环境特征的概率分布也服从高斯分布。对于每个样本

（粒子）而言，由于环境特征更新只涉及两维高斯（对应于两个特征位置参数），也即

FastSLAM 算法中基于 EKF 进行环境特征更新的时间复杂度是常数级，因而对集成观

测的时间花费并不依靠与环境特征总的个数 K 。 

针对前面提取出的线性环境特征 ),,1( Kkk L=λ ，在 RBPF 实现的 FastSLAM 中用

高斯表示其 t时刻的位置
i
tλ，即有 

i
i

Kt
i
Kt

i
t

i
t

i
t },,,{ ,,1,1, ΣΣ= μμλ L  （5-39）

这里
i
kt,μ 、

i
kt,Σ 分别为在 t时刻和第 i个粒子关联的采用高斯分布表示的第 k个环境特征 kλ

的均值与方差。 

特征更新就是根据新的观测信息 tz 重新计算地图中每个特征的位置。特征更新过

程取决于在 t 时刻这个特征是否被机器人看到，如果没有被机器人观测到，那么它的

位置保持不变： 

),(),( )(
)1(

)(
)1(

)()( i
jt

i
jt

i
tj

i
tj −− Σ=Σ μμ  （5-40）

如果在 t时刻特征 )(i
tjm 被机器人看到，则： 

),|()|(),|( 11)()( −−= tti
tjtt

tti
tj zxmpxzpzxmp η  （5-41）

利用新近感知的观测信息 tz ，基于扩展卡尔曼滤波 EKF 思想重新计算地图中每个

特征的位置以实现地图特征更新。但是，EKF 要求非线性方程必须一阶可微，且在强

非线性情况下，会导致有偏估计。由于机器人系统实际运行中具有未知时变的噪音统

计特性，同时，为了补偿利用 EKF 线性化对环境特征感知的非线性造成的误差，这里

利用过程噪音自适应评估技术以解决这些问题[139]。同时，考虑采用确定性的采样近似

方法 Unscented 变换（Unscented Transformation，UT）和扩展卡尔曼滤波 EKF 相结合

的 UKF 方法[111]。UT 变换利用 Sigma 点和偏态参数来覆盖和传播数据信息，具有和

EKF 相同的计算复杂度，有较好得实时性，且其计算精度可达到二阶泰勒级数展开
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（EKF 计算精度为一阶），对于非线性评估具有较好的效果。 

自适应过程噪音 UKF 方法利用了 Sigma 点的采样过程：如果自适应算法对于过

程噪音进行了评估，协方差矩阵在每个更新步进行重构，产生一个新的 Sigma 点，然

后进行 Sigma 点的重采样，最后新的重采样的 Sigma 点矢量用于每个预测和更新步。

假设 t时刻机器人位姿 ts 的均值 ts~ 和方差 tP ，运动模型 )(),(),|( 1111 tWusFussp ttttt += −−−−

的随机噪音 )(tW 服从高斯分布 ),0( tQ ，感知模型 )(),(),,|( tVsHnszp
tt nttntt += λλ 的随机

噪音 )(tV 服从高斯分布 ),0( tR ，算法的基本思想如下： 

步骤 1：初始化状态变量及协方差矩阵，设置自适应因子 annealFactor( 以及过程噪

音 tQ 允许的最小方差 tQmin  

[ ]tt ss =α ； [ ]tt PP =α  （5-42）

步骤 2：产生具有 12 +L 个（其中 nL = 是 ts 维数）Sigma 点 αχ t  

[ ]αααααα λλχ tttttt PLsPLss )(~)(~~ +−++=  （5-43）

也即（其中 λ为控制 Sigma 点分布的常数）。 

⎪
⎩

⎪
⎨

⎧

+=+−=
=++=
==

;2,,1         ,)(~
;,,1         ,)(~

;0                                ,~

,

,

,

LLiPLs
LiPLs

is

ttit

ttit

tit

L

L
αα

αα

α

λχ
λχ

χ
 （5-44）

    步骤 3：执行 UKF 算法 

在预测步中，使用 Sigma 点计算状态的预测值、均值与方法预计为 
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其中， )(m
iw 、 )(c

iw 分别是均值与协方差的权重，计算公式为 



博士学位论文                                     第五章  未知数据关联下基于概率的增量式环境建图与自定位 

 109

⎪
⎪
⎩

⎪
⎪
⎨

⎧

⎩
⎨
⎧

=+
=+−++

=

⎩
⎨
⎧

=+
=+

=

nin
in

w

nin
in

w

c
i

m
i

2,1                        )}(2/{1
;0     )1()/(

2,1     )}(2/{1
;0           )/(

2
)(

)(

L

L

λ
βαλλ

λ
λλ

 （5-46）

式中，α 控制 Sigma 点分布的范围、 β 是非负常数，作用是使变换后的方差含有部分

的高阶信息，对于高斯分布 2=β 。根据感知模型计算每个 Sigma 点： 

)1()( ,1,1 ++= ++ tVHZ s
itit χ  （5-47）

则 tz 的均值与方差估计如下： 
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 （5-48）

在更新步中，应用 UKF 更新地图中的特征： 
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 （5-49）

步骤 4：对过程噪音 tQ 进行自适应预测评估 1
ˆ

+tQ  

)min,ˆ*max(ˆ
11 ttannealt QQFactorQ −
+

+
+ =  （5-50）

其中， −
+1

ˆ
tQ 表示 1+t 时刻的状态噪音协方差的期望值。 

 

5.4.4 实验分析 

为了验证所提方法的有效性，采用下面几组实验来评测所提的方法。一是对于结

合地图匹配的粒子滤波重采样策略对于移动机器人定位的有效性进行验证；二是对于
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基于有效样本大小 ESS 的重采样自适应方法对于移动机器人定位的有效性进行验证；

三是对于使用自适应过程噪音 UKF 的环境特征更新的有效性进行验证；最后，对于所

提的有如上改进的 RBPF 滤波算法实现的定位性能进行综合评定。程序运行的软硬件

环境与上面实验相同。 

♦ （1）结合地图匹配的粒子滤波重采样策略的定位性能分析 

前面提出的基于似然估计的局部地图匹配方法，能有效减少航迹推测误差所造成

的机器人定位的不确定性。图 5-9 中（a）图显示了 UMBmark 实验中使用原始传感器

信息产生的机器人位姿（里程）的样本密度，（b）图显示了经过地图匹配校准后重新

采样的机器人位姿（里程）的样本密度。从图中可以看出，经过地图匹配之后重采样

获得的样本比较集中，能有效减小了机器人位姿的后验估计偏差。 

 

 

 

(a) 原始里程样本密度分布             (b) 地图匹配后重采样里程样本密度分布 

图 5-9  地图匹配前后机器人位姿样本密度分布情况 

♦ （2） 基于有效样本大小 ESS 的重采样自适应方法的定位性能分析 

利用移动机器人在 UMBmark 实验中获得的原始传感位姿，利用上面方法提取的

相应环境特征（线段），利用粒子滤波（样本数目为 200）分别进行传统的粒子滤波（图

5-10（a）），重采样自适应粒子滤波（图 5-10（b））以及改进样本权重计算的重采样自

适应粒子滤波（图 5-10（c））（阈值 2/pthres NN = ）的定位实验。从图 5-10 可以看出，

通过采用基于有效样本大小 ESS 的重采样自适应技术，由于重采样操作只有在需要时

才执行从而可以减少好的样本被取代的概率；而改进样本权重计算获得有效样本大小

ESS 的重采样自适应方法由于把当前感知信息吸收到状态估计中，粒子向高概率区域

移动，从而更为有效地减少定位误差。 
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      (a) 传统 PF  (b) 基于 ESS 重采样自适应的 PF  (c) 改进 ESS 计算的重采样自适应 PF 

图 5-10  基于 ESS 重采样自适应的粒子滤波 PF 定位性能比较 

♦ （3） 使用自适应过程噪音 UKF 的环境特征更新的有效性分析 

在上面的定位实验中，选择特征线段（733.54cm，30.94deg）对其在机器人移动

过程中测量的特征变化进行分析。图 5-11（a）是该特征线段在世界坐标系下质心位置

的测量变化、（b）是其相对于世界坐标系原点的距离测量变化、（c）是其相对于世界

坐标系原点的角度测量变化。从图中可以看出：距离随着机器人运动位姿误差的增加

而增加；角度则不受影响而体现出感知测量误差。 

 

 

    (a) 特征质心位置变化          (b) 特征距离变化               (c) 特征角度变化 

图 5-11  机器人运动过程中特征线段的测量误差 
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利用 EKF 和自适应过程噪音 UKF 对环境特征进行更新实验，移动机器人的位姿

评估采用粒子滤波（样本数目为 200），实验结果如图 5-12 所示。图 5-12（a）显示了

机器人运动过程中环境特征距离的评估，利用 EKF 更新的环境特征距离和真实距离间

的误差较大，而利用自适应过程噪音评估的环境特征距离和真实距离间的误差较小，

有效抑制了机器人位姿传感误差的时变影响。而由于环境特征的角度误差不受影响这

两种方法评估的差异不是很大，如图 5-12（b）所示。 

 

    

 

                 (a) 特征距离变化                         (b) 特征角度变化 

图 5-12  环境特征更新的算法比较 

♦ （4） 改进的 RBPF 粒子滤波 FastSLAM 算法的定位性能分析 

通过以上实验，局部验证了所提算法对基于 RBPF 粒子滤波的 FastSLAM 算法在

性能上的改进。现利用移动机器人 MORCS-1 对整个改进的 FastSLAM 进行定位实验。

如下实验中，通过结合机器人的其他导航方法（漫游策略，路径规划，运动控制等），

机器人首先使用自身装载的内外部传感器，通过漫游策略建立运行环境的全局地图，

然后按照设置的起点与终点进行路径规划（设从办公室 A 的起点出发，相邻办公室 B

的目标点作为终点），并交由底层运动控制系统执行。在实验中，移动机器人从办公室

A 出发，顺利地避开障碍物穿越门廊，到达了相邻办公室 B 的目的地。其中，机器人

底层硬件采样周期为 0.05s，经传感器原始信息采集利用航迹推测获得机器人位姿所用

周期为 0.25s，局部地图匹配的周期为 1.25s。通过实验采集原始实验数据进行离线分

析，利用上面所提出的方法，对基于 RBPF 粒子滤波的 FastSLAM 算法的整体定位性

能进行分析。 
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图 5-13 是利用移动机器人进行增量式地图建模与自定位的实验。绿色曲线表示真

实的环境信息，黑色曲线表示机器人在运行过程中由于航迹推测误差感知的出现偏差

的环境信息。实验中环境特征个数为 32 个，机器人运行速度为 10cm/s，移动距离为

16.2m，算法执行的循环步为 130，利用传感器获得的最终里程误差为 98cm，航向误

差为 0.08rad。 

 

图 5-13  移动机器人增量式环境建模与自定位实验 

表 5-4 显示了不同算法进行自定位的性能，所提方法相对于已知数据关联的

FastSLAM1.0 和未知数据关联的 FastSLAM2.0，可以有效减少里程和航向定位误差。

通过复杂较大环境范围内移动机器人的实验验证了所提方法的有效性。 

表 5-4  不同算法定位性能比较 

算法 
样本

个数 

重采样

阈值 
时间(s) 

里程 RMSE 

(0.1mm) 

航向 RMSE  

(rad) 

FastSLAM 1.0 200 1 0.647 606.221 0.043093 

FastSLAM 2.0 200 1 0.965 378.173 0.033074 

所提算法 200 0.5 1.169 263.929 0.020489 

起点 A 

终点 B 

真实的环境信息 
感知的环境信息 
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5.5 小结 

 

针对未知数据关联下移动机器人的增量式环境建模与自定位，利用粒子滤波概率

方法实现移动机器人位姿和环境特征位置的联合评估。研究包括：二维激光雷达环境

特征提取，增量式数据关联及特征匹配以及改进 RBPF 滤波算法实现增量式环境建模

与自定位。 

针对二维激光雷达感知的环境障碍，提出将无监督聚类学习应用于障碍的特征提

取。相对标准聚类算法，将激光雷达测距数据的空间近邻信息集成到其中，基于线性

变换不变性的马氏距离基础之上，提出了一种加权的模糊聚类算法 wFCA 算法；针对

障碍个数未知的情况，结合有效性索引函数通过自调整机制动态获得最优分类个数，

利用测距数据及标准数据集 Iris 对其有效性进行计算评估。通过在线增量式测距数据

进行特征提取分析，建立了它们之间的关联关系；针对系统的定位误差以及环境的动

态干扰造成的不确定模糊状态，将模糊逻辑引入到增量式数据关联来进行障碍的分类

判决。 

对于评估机器人路径位姿的粒子滤波进行了两点改进：考虑将地图匹配和粒子滤

波重采样相结合，使用相隔一定时刻（如 k 个采样步）地图匹配校准后的机器人位姿

信息作为粒子滤波的采样输入，以便减少粒子滤波采样中的不确定性影响；基于有效

样本大小（Efficient Sample Size，ESS）来实现粒子滤波的重采样自适应，并且对于获

得 ESS 的样本权重计算方法进行改进，以保证能够有合适的重采样次数。对于环境特

征的评估，考虑由于机器人系统实际运行中具有未知时变的噪音统计特性，利用过程

噪音自适应评估技术以解决这些问题。同时，考虑采用确定性的采样近似方法

Unscented 变换（Unscented Transformation，UT）和扩展卡尔曼滤波 EKF 相结合的 UKF

方法。 
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第六章  总结与展望 

 

 

6.1 本论文工作总结 

 

本文以移动机器人导航中的定位问题为研究内容，利用自行研制的装配有二维激

光雷达环境感知系统，并通过里程计、陀螺仪等实现航迹推测的移动机器人 MORCS-1，

重点围绕影响移动机器人系统定位的四类不确定性处理展开研究：通过移动机器人定

位传感器的误差分析及校准，旨在消除传感器噪声所带来的测量误差；通过建立移动

机器人的三维运动学模型进行航迹推测，以期实现复杂地形下精确的移动机器人本体

姿态感受；通过基于激光雷达的动静态障碍的自主检测等相关研究，尽量减少环境的

不确定因素影响进而实现可靠的移动机器人绝对定位；通过以上研究，针对未知数据

关联下移动机器人增量式环境建图与定位方法的研究提出一种鲁棒的滤波算法，改善

未知环境中移动机器人自定位的性能。 

总结全文，在移动机器人定位不确定性处理研究中，提出了一些具有一定创新性

的方法： 

♦ 结合自行研制的移动机器人 MORCS-1 系统的多种内外部定位传感器，针对内部本

体感受传感器光纤陀螺仪的漂移误差，提出采用基于遗传算法的神经网络来对光

纤陀螺仪的温漂建模及校准；针对外部环境感知传感器激光雷达测距数据中包含

的噪声干扰，考虑移动机器人导航中激光雷达测距数据的时空关联性，提出采用

动态自适应滤波等技术进行预处理。 

♦ 根据刚体运动学的约束分析了一种轮式结构与悬浮式摇架系统相结合的移动机器

人在复杂地形下的运动，采用单轴光纤陀螺仪、倾角传感器、里程计等传感器信

息推导移动机器人的运动学模型，提出一种运动学模型与车轮-地面运动角度结合

实现运动轨迹估计的方法。 

♦ 利用二维激光雷达作为环境感知的外部传感器，通过占据栅格地图融合机器人航

迹推测的位姿信息和激光雷达的障碍测距信息，提出一种非静态环境中基于二维

激光雷达的自主动静态障碍检测法。对于获得的动态障碍，利用改进建议分布的

粒子滤波对于动态障碍实现运动过程定位。对于获得的静态障碍地图，将模糊逻

辑与最大似然估计相结合，采用地图匹配方法改进移动机器人自定位的性能。 
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♦ 针对未知数据关联下移动机器人的增量式环境建模与自定位，利用改进 RBPF 滤

波算法实现移动机器人位姿和环境特征位置的联合评估。为了自主地对二维激光

雷达的环境障碍感知信息进行类别划分特征提取，提出将无监督聚类学习应用于

障碍的特征提取，并将模糊逻辑引入到增量式特征的数据关联进行障碍的分类判

决。对于评估机器人路径位姿的粒子滤波进行了两点改进：考虑将地图匹配和粒

子滤波重采样相结合，并基于有效样本大小 ESS 来实现粒子滤波的重采样自适应；

对于环境特征的评估，利用过程噪音自适应评估技术和 UKF 相结合的滤波方法。 

 

6.2 进一步的研究方向 

 

基于对现有阶段性成果的分析，通过与同领域其它研究方法的比较，结合在实际

应用中依然存在的问题，本论文提出的移动机器人定位不确定性处理还有待于进一步

的完善。具体而言，作者认为在以下几个方面还有待进一步研究： 

♦ 在线传感噪声概率的自适应评估。在当前移动机器人定位主流的概率算法中，过

程和观测模型中的噪声分布均来自于定位传感器精度标识的噪声先验。这就需要

研究在线的噪声自适应评估技术，实现移动机人位姿的有效评估。 

♦ 自然环境粗糙地形下的定位算法。航迹推测是移动机器人定位极为关键的一个环

节，在粗糙地形下由于内部本体感受传感器的非系统误差增大，因而会引起移动

机器人较严重的位姿不确定性。同时，由于自然环境中路标在表示的不变性、检

测的稳定性、匹配的准确性、评价的有效性等方面的研究不足，结合环境特征的

绝对定位也需要进一步完善。 

♦ 杂乱动态环境中的感知与定位算法。非静态环境中由于动态障碍较少，因而在动

态障碍检测滤除、数据关联、跟踪定位都相对简单，而在杂乱动态环境中，移动

机器人环境感知和定位的复杂性就大为增加。研究如何提高动态障碍检测滤除的

准确性和实时性，从而提高环境静态模型的准确性以实现移动机器人的精确定位。 

♦ 基于 RBPF 滤波的 FastSLAM 算法的深入研究。针对未知数据关联下移动机器人

增量式环境建模与自定位，基于 RBPF 滤波的 FastSLAM 算法是能够在线实时执行

的最有效途径。但是针对该算法本身还有许多进一步改进的地方，包括如何确定

粒子滤波中样本数目与滤波收敛速度之间的关系，如何有效解决粒子滤波重采样

的多样性减缓样本的退化，如何自适应选择建议分布来对不可靠数据进行鲁棒处

理以及对于环境特征的如何有效提取、数据关联、滤波更新等方面。 



博士学位论文                                                                                   参考文献 

 117

参考文献 

 
[1] 蔡自兴. 机器人学. 北京: 清华大学出版社, 2000 

[2] 欧青立 , 何克忠 . 室外智能移动机器人的发展及其关键技术研究 . 机器人 , 2000, 22(6): 

519~526 

[3] 李磊, 叶涛, 谭民, 等. 移动机器人技术研究现状与未来. 机器人, 2002, 24(5): 475~480 

[4] 蔡自兴 , 贺汉根 , 陈虹 . 未知环境中移动机器人导航控制研究的若干问题 . 控制与决策 , 

2002, 17(4): 385~390, 464 

[5] 蔡自兴 , 邹小兵 , 王璐 , 等 . 移动机器人分布式控制系统设计 . 中南大学学报(自然科学

版), 2005, 36(5): 727~732 

[6] Leonard J, Durrant-Whyte H. Dynamic map building for an autonomous mobile robot. The 

International Journal on Robotics Research, 1992, 11(4): 286~298 

[7] Desouza G N, Kak A C. Vision for mobile robot navigation: a survey. IEEEE Transactions on 

Pattern Analysis and Machine Intelligence, 2002, 24(2): 237~267 

[8] Cox I J. Blanche-an experiment in guidance and navigation of an autonomous robot vehicle. 

IEEE Transactions on Robotics and Automation, 1991, 7(2): 193~204 

[9] Borenstein J, Everett H R, Feng L, et al. Mobile robot positioning-sensors and techniques. 

Journal of Robotic Systems, 1997, 14(4): 231~249 

[10] Leonard J J, Durrant-Whyte H F. Mobile robot localization by tracking geometric beacons. 

IEEE Transactions on Robotics and Automation, 1991, 7(3): 376~382 

[11] Barshan B, Durrant-Whyte H F. Inertial navigation systems for mobile robots. IEEE 

Transactions on Robotics and Automation, 1995, 11(3): 328~342 

[12] Lu F, Milios E E. Robot pose estimation in unknown environments by matching 2D range 

scans. Journal of Intelligent and Robotic Systems, 1997, 18(3): 249~275 

[13] Olson C F. Probabilistic self-localization for mobile robots. IEEE Transactions on Robotics 

and Automation, 2000, 16(1): 55~66 

[14] Chung H, Ojeda L, Borenstein J. Accurate mobile robot dead-reckoning with a 

precision-calibrated fiber optic gyroscope. IEEE Transactions on Robotics and Automation, 

2001, 17(1): 80~84 

[15] Negenborn R. Robot localization and Kalman filters: [Master’s Thesis]. Copenhagen, 

Denmark: Copenhagen University, 2003 

[16] Wu Y X, Hu X P, Hu D W, et al. Strapdown inertial navigation system algorithms based on 

dual quaternions. IEEE Transactions on Aerospace and Electronic Systems, 2005, 14(1): 

110~132 

[17] Xiang Z Y, Liu J L, Gu W K, et al. Obstacle detection by ALV using two 2D laser range 



博士学位论文                                                                                   参考文献 

 118

finders. Journal of Zhejiang University Science, 2001, 4(2): 388~394 

[18] 张朋飞, 何克忠, 欧阳正柱, 等. 多功能室外智能移动机器人实验平台-THMR-V. 机器人, 

2002, 24(2): 97~101 

[19] 孙振平, 安向京, 贺汉根. CITAVT-视觉导航的自主车. 机器人, 2002, 24(2): 115~121 

[20] 杨明, 王宏, 张钹. 基于激光雷达的移动机器人位姿估计方法综述. 机器人, 2002, 24(2): 

177~183 

[21] 赵翊捷 , 陈卫东 . 基于地图的移动机器人定位技术新进展 . 上海交通大学学报 , 2002, 

36(10): 1435~1438, 1447 

[22] 李磊 , 陈细军 , 侯增广 , 等 . 自主轮式移动机器人 CASIA- I 的整体设计 . 高技术通讯 , 

2003, 13(11): 51~55 

[23] 李群明 , 熊蓉 , 褚健 . 室内自主移动机器人定位方法研究综述 . 机器人 , 2003, 25(6): 

560~573 

[24] 徐德, 谭民. 移动机器人的在线实时定位研究(英文). 自动化学报, 2003, 29(5): 716~725 

[25] 尚文 , 马旭东 , 戴先中 . 融合多传感器信息的移动机器人自定位方法 . 东南大学学报(自

然科学版), 2004, 34(6): 784~788 

[26] 王景川, 陈卫东, 曹其新. 基于全景视觉与里程计的移动机器人自定位方法研究. 机器人, 

2005, 27(1): 41~45 

[27] 贾建强, 陈卫东, 席裕庚. 开放式自主移动机器人系统设计与控制实现. 上海交通大学学

报, 2005, 39(6): 905~909 

[28] 刘俊承. 室内移动机器人定位与导航关键技术研究: [博士学位论文]. 北京: 中国科学院

自动化研究所, 2005 

[29] 吴伟. 基于二维地图匹配的机器人定位关键技术研究: [博士学位论文]. 沈阳: 东北大学, 

2006 

[30] Smith R, Self M, Cheesman P. Estimating uncertain spatial relationships in robotics. 

Autonomous Robot Vehicles. London: Springer, 1990. 167~193 

[31] Moutarlier P, Chatila R. Stochastic multi-sensory data fusion for mobile robot location and 

environment modeling. Proceedings of the 5th International Symposium on Robotics Research. 

Tokyo, Japan: The MIT Press, 1989. 207~216 

[32] Thrun S, Fox D, Burgard W. A probabilistic approach to concurrent mapping and localization 

for mobile robots. Machine Learning and Autonomous Robots, 1998, 31(1): 29~53 

[33] Gutmann J S, Konolige K. Incremental mapping of large cyclic environments. Proceedings of 

the International Symposium on Computational Intelligence in Robotics and Automation. 

Monterey, CA: IEEE Press, 1999. 318~325 

[34] Feder H J S, Leonard J J, Simth C M. Adaptive mobile robot navigation and mapping. 

International Journal of Robotics Research, 1999, 18(7): 650~668 

[35] Dissanayake G, Newman P, Clark S, et al. A solution to the simultaneous localization and map 



博士学位论文                                                                                   参考文献 

 119

building (SLAM) problem. IEEE Transactions on Robotics and Automation, 2001, 17(3): 

229~241 

[36] Mourikis A I, Roumeliotis S I. Analysis of positioning uncertainty in simultaneous 

localization and mapping (SLAM). Proceedings of the 2004 IEEE/RSJ International 

Conference on Intelligent Robots and Systems. Sendai, Japan: IEEE Press, 2004. 13~20 

[37] 迟健男, 徐心和. 移动机器人即时定位与地图创建问题研究. 机器人, 2004, 26(1): 92~96 

[38] 罗荣华 , 洪炳熔 . 移动机器人同时定位与地图创建研究进展 . 机器人 , 2004, 26(2): 

182~186 

[39] 王璐, 蔡自兴. 未知环境中移动机器人并发建图与定位(CML)的研究进展. 机器人, 2004, 

26(4): 380~384 

[40] 陈卫东 , 张飞 . 移动机器人的同步自定位与地图创建研究进展 . 控制理论与应用 , 2005, 

22(3): 455~460 

[41] 庄严, 王伟, 王珂, 等. 移动机器人基于激光测距和单目视觉的室内同时定位和地图构建. 

自动化学报, 2005, 31(6): 925~933 

[42] 徐则中. 移动机器人的同时定位和地图构建: [博士学位论文]. 杭州: 浙江大学, 2004 

[43] 庄严. 移动机器人基于多传感器数据融合的定位及地图创建研究: [博士学位论文]. 大连: 

大连理工大学, 2004 

[44] 厉茂海, 洪炳镕. 移动机器人的概率定位方法研究进展. 机器人, 2005, 27(4): 380~384 

[45] 方正, 佟国峰, 徐心和. 基于贝叶斯滤波理论的自主机器人自定位方法研究. 控制与决策, 

2006, 21(8): 841~847,862 

[46] Murphy R R(著), 杜军平, 吴立成, 胡金春, 等 (译). 人工智能机器人学导论. 北京: 电

子工业出版社, 2004 

[47] Borenstein J, Feng L. UMBmark: A benchmark test for measuring odometry errors in mobile 

robot. Proceedings of the 1995 SPIE Conference on Mobile Robot. Philadelphia, Pennsylvania: 

SPIE Press, 1995. 22~26 

[48] Chong K S, Kleeman L. Accurate odometry and error modelling for a mobile robot. 

Proceedings of the 1997 IEEE International Conference on Robotics and Automation. 

Albuquerque, NM: IEEE Press, 1997. 2783~2788 

[49] Martinelli A, Siegwart R. Estimating the odometry error of a mobile robot during navigation. 

Proceedings of European Conference on Mobile Robots. Warsaw, Poland: Zturek Press 

Warschau, 2003. 1~6 

[50] Ojeda L, Chung H, Borenstein J. Precision-calibration of fiber-optics gyroscopes for mobile 

robot navigation. Proceedings of the 2000 IEEE International Conference on Robotics and 

Automation. San Francisco, CA: IEEE Press, 2000. 2064~2069 

[51] SICK AG Corporation. Technical Description: LMS200/ LMS211/ LMS220/ LMS221/ 

LMS291 Laser Measurement Systems.  Waldkirch, Germany: SICK AG Corporation, 2000 



博士学位论文                                                                                   参考文献 

 120

[52] Ye C, Borenstein J. Characterization of a 2-D laser scanner for mobile robot obstacle 

negotiation. Proceedings of the 2002 IEEE Internaitonal Conference on Robotics and 

Automation. Washington DC, USA: IEEE Press, 2002. 2512~2518 

[53] Ye C, Borenstein J. A novel filter for terrain mapping with laser rangefinders. IEEE 

Transactions on Robotics and Automation, 2004, 20(5): 913~921 

[54] Roumeliotic S I. Reliable mobile robot localization: [PhD Thesis]. Los Angeles, California: 

University of Southern California, 1999 

[55] Fuke Y, Krotkov E. Dead reckoning for a Lunar rover on uneven terrain. Proceedings of the 

1996 IEEE International Conference on Robotics and Automation. Minneapolis, Minnesota: 

IEEE Press, 1996. 411~416 

[56] Volpe R, Balaram J, Ohm T, et al. Rocky 7: a next generation Mars rover prototype. Journal of 

Advanced Robotics, 1997, 11(4): 341~358 

[57] Iagnemma K, Rzepniewski A, Dubowsky S, et al. Control of robotic vehicles with actively 

articulated suspensions in rough terrain. Autonomous Robots, 2003, 14(1): 5~16 

[58] Tarokh M, McDermott G, Hayati S, et al. Kinematic modeling of a high mobility Mars rover. 

Proceedings of the 1999 IEEE International Conference on Robotics and Automation. Detroit, 

MI: IEEE Press, 1999. 992~998 

[59] 刘方湖, 马培荪, 曹志奎, 等. 五轮铰接式月球机器人的运动学建模. 机器人, 2001, 23(6): 

481~485,492 

[60] 王巍 , 强文义 , 梁斌 . 月球机器人运动学建模与运动收敛性分析 . 控制与决策 , 2002, 

17(6): 904~907 

[61] 邓宗全 , 胡明 , 高海波 , 等 . 月球探测车的运动学建模 . 中国机械工程 , 2003, 14(22): 

1911~1913 

[62] 蔡则苏, 洪炳熔, 刘玉强, 等. 基于虚拟样机的月球探测机器人运动学建模. 哈尔滨工业

大学学报, 2004, 36(2): 209~214 

[63] Ridao P, Forest J, Pacheco L, et al. Sensorial and navigation systems for a mobile robot 

(ROGER). Proceedings of the 3rd IFAC Symposium on Intelligent Autonomous Vehicles. 

Madrid, Spain: Elsevier Science Publishing Company, 1998. 450~455 

[64] Bennett S M, Emge S, Dyott R. Fiber optic gyros for robotics. Journal of American Institute of 

Aeronautics & Astronautics, 1998, 44(1): 1315~1321 

[65] Iagnemma K, Dubowsky S. Traction control of wheeled robotic vehicles with application to 

planetary rovers. International Journal of Robotics Research. 2004, 23(10): 1029~1040 

[66] Borenstein J, Feng L. Gyrodometry: A new method for combining data from gyros and 

odometry in mobile robots. Proceedings of the 1996 IEEE International Conference on 

Robotics and Automation. Minneapolis, MN: IEEE Press, 1996. 423~428 

[67] Ojeda L, Raju M, Borenstein J. FLEXnav: A fuzzy logic expert dead-reckoning system for the 



博士学位论文                                                                                   参考文献 

 121

segway RMP. Proceedings of the SPIE Defense and Security Symposium, Unmanned Ground 

Vehicle Technology VI (OR54). Orlando, FL: SPIE Press, 2004. 1~13 

[68] Thrun S. Robotic mapping: a survey. Pittsburgh: Technical Report CMU-CS-02-111, Carnegie 

Mellon University, 2002 

[69] Biswas R, Limketkai B, Sanner S, et al. Towards object mapping in non-stationary 

environments with mobile robots. Proceedings of the 2002 IEEE International Conference on 

Intelligent Robots and Systems. Lausanne, Switzerland: IEEE Press, 2002. 1014~1019 

[70] Janet J A, Luo R C, Kay M G. Autonomous mobile robot global motion planning and 

geometric beacon collection using transversability vectors. IEEE Transactions on Robotics 

and Automation, 1997, 13(1): 132~140 

[71] 杨明, 王宏, 何克忠, 等. 基于激光雷达的移动机器人环境建模与避障. 清华大学学报(自

然科学版), 2000, 40(7): 112~116 

[72] 项志宇. 基于激光雷达的移动机器人障碍检测和自定位: [博士学位论文]. 浙江: 浙江大

学, 2002 

[73] 王卫华 , 陈卫东 , 席裕庚 . 移动机器人地图创建中的不确定传感信息处理 . 自动化学报 , 

2004, 29(2): 267~274 

[74] Fox D. Markov localization: a probabilistic framework for mobile robot localization and 

navigation: [PhD Thesis]. Bonn, Germany: University of Bonn, 1998 

[75] Jensfelt P, Christensen H I. Active global localization for a mobile robot using multiple 

hypothesis tracking. IEEE Transactions on Robotics and Automation, 2001, 17(2): 748~760 

[76] Dellaert F, Burgard W, Fox D, et al. Monte Carlo localization for mobile robots. Proceedings 

of the 1999 IEEE International Conference on Robotics and Automation. Detroit, USA: IEEE 

Press, 1999. 1322~1328 

[77] Jensfelt P, Christensen H I. Pose tracking using laser scanning and minimalistic environmental 

models. IEEE Transactions on Robotics and Automation, 2001, 17(2): 138~147 

[78] Borenstein J, Feng L. Measurement and correction of systematic odometry errors in mobile 

robots. IEEE Transactions on Robotics and Automation, 1996, 12(6): 869~880 

[79] Perez J A, Castellanos J A, Montiel M M, et al. Continuous mobile robot localization: vision 

vs laser. Proceedings of the 1999 IEEE International Conference on Robotics and Automation. 

Detroit, Michigan: IEEE Press, 1999. 2917~2923 

[80] Hoseinnezhad R, Moshiri B, Asharif M R. Improved pose estimation for mobile robots by 

fusion of odometry data and environment map. Journal of Intelligent and Robotic Systems, 

2003, 36(1): 89~108 

[81] Vali V, Shorthill R W. Fiber ring interferometer. Applied optics, 1976, 15(7): 1099~1100 

[82] KVH Industries Incorporation. E-Core 1000 fiber optic gyro technical manual. Middletown, 

USA: KVH Industries Incorporation. 1999 



博士学位论文                                                                                   参考文献 

 122

[83] 朱光辉. 在移动机器人定位中光纤陀螺仪的误差分析与建模: [硕士学位论文]. 长沙: 中

南大学, 2004 

[84] Crossbow Technology Incorporation. Tilt sensors. San Jose, California, USA:  Crossbow 

Technology Incorporation, 2001 

[85] Goel P, Roumeliotis S I, Sukhatme G S. Robot localization using relative and absolute 

position estimates. Proceedings of the 1999 IEEE International Conference on Intelligent 

Robots and Systems. Kyongju, Korea: IEEE Press, 1999. 1134~1140 

[86] 胡明, 邓宗全, 王少纯, 等. 月球探测车移动系统的关键技术分析. 哈尔滨工业大学学报, 

2003, 35(7): 795~798 

[87] 王巍, 夏玉华, 梁斌, 等. 月球漫游车关键技术初探. 机器人, 2001, 23(3): 280~284 

[88] Iagnemma K, Rzepniewski A, Dubowsky S, et al. Control of robotic vehicles with actively 

articulated suspensions in rough terrain. Autonomous Robots, 2003, 14 (1): 5~16 

[89] Elfes A. Occuapancy grids: a probabilistic framework for mobile robot perception and 

navigation: [PhD Thesis]. Pittsburgh, USA: Carnegie Mellon University, 1989 

[90] Kuipers B, Byun Y T. A robot exploration and mapping strategy based on a semantic hierarchy 

of spatial representations. Journal of Robotics and Autonomous Systems, 1991, 8(1-2): 47~63 

[91] Lu F. Milios E E. Globally consistent range scan alignment for environment mapping. 

Autonomous Robots, 1997, 4(4): 333~349 

[92] Olson C F, Matthies L H. Maximum likelihood rover localization by matching range maps. 

Proceedings of the 1998 IEEE International Conference on Robotics and Automation. Leuven, 

Belgique: IEEE Press, 1998. 272~277 

[93] 邹小兵. 移动机器人原型的控制系统设计与环境建模研究: [博士学位论文]. 长沙: 中南

大学, 2005 

[94] Biswas R, Limketkai B, Sanner S, et al. Towards object mapping in non-stationary 

environments with mobile robots. Proceedings of the 2002 IEEE International Conference on 

Intelligent Robots and Systems. Lausanne, Switzerland: IEEE Press, 2002. 1014~1019 

[95] Wang C-C, Thorpe C, Thrun S. Online simultaneous localization and mapping with detection 

and tracking of moving objects: theory and results from a ground vehicle in crowded urban 

areas. Proceedings of the 2003 IEEE International Conference on Robotics and Automation. 

Taipei, Taiwan: IEEE Press, 2003. 842~849 

[96] Schulz D, Burgard W, Fox D, et al. People tracking with mobile robots using sample-based 

joint probabilistic data association filters. International Journal of Robotics Research, 2003, 

22(2): 99~116 

[97] Wolf D F, Sukhatme G S. Mobile robot simultaneous localization and mapping in dynamic 

environments. Autonomous Robots, 2005, 19(1): 53~65 

[98] Arulampalam M S, Maskell S, Gordon N, et al. A tutorial on particle filters for online 



博士学位论文                                                                                   参考文献 

 123

nonlinear/non-Gaussian Bayesian tracking. IEEE Transactions on Signal Processing, 2002, 

50(20): 174~188 

[99] Doucet A, Godsill S J, Andrieu C. On sequential Monte Carlo sampling methods for Bayesian 

filtering. Statistics and Computing, 2000, 10(3): 197 ~208 

[100] Liu J S, Chen R. Sequential Monte Carlo methods for dynamical systems. Journal of American 

Statistical Association, 1998, 93(5): 1032~1044 

[101] Doucet A, de Freitas N, Murphy K, et al. Rao-Blackwellised particle filtering for dynamic 

Bayesian networks. Proceedings of the Conference on Uncertainty in Artificial Intelligence. 

San Francisco, USA: Morgan Kaufmann Publishers, 2000. 176~183 

[102] Montemerlo M, Thrun S, Koller D, et al. FastSLAM: A factored solution to simultaneous 

localization and mapping problem. Proceedings of the National Conference on Artificial 

Intelligence. Edmonton, Canada: AAAI Press, 2002. 593~598 

[103] Deutscher J, Blake A, Reid I. Articulated body motion capture by annealed particle filtering. 

Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Columbia, 

USA: IEEE Press, 2000. 2126~2133 

[104] Kalman R E. A new approach to linear filtering and prediction problems. Transactions of the 

American Society of Mechanical Engineers, 1960, 83(1): 35~45 

[105] 王璐 , 崔益安 , 苏虹 , 等 . 移动机器人的运动目标实时检测与跟踪 . 计算机工程与应用 , 

2005, 41(15): 30~33 

[106] Van der Merwe R, Wan E. The square-root unscented Kalman filter for state and 

parameter-estimation. Proceedings of the International Conference on Acoustics, Speech and 

Signal Processing. Salt Lake City, Utah, USA: IEEE Press, 2001. 3461~3464 

[107] 周宏仁, 敬忠良, 王培德. 机动目标跟踪. 北京: 国防工业出版社, 1991 

[108] 左东广 . 机动目标多模型跟踪理论及算法研究 : [博士学位论文]. 西安 : 西安交通大学 , 

2003 

[109] Yu J X, Cai Z X, Duan Z H. Fuzzy likelihood estimation based map matching for mobile robot 

self-localization. Lecture Notes in Artificial Intelligence (ICNC06-FSKD06). Xian, China: 

Springer, 2006. 846~855 

[110] Montemerlo M, Thrun S. Simultaneous localization and mapping with unknown data 

association using FastSLAM. Proceedings of the 2003 IEEE International Conference on 

Robotics and Automation. Taipei, Taiwan: IEEE Press, 2003. 1985~1991 

[111] Wan E, van der Merwe R. The unscented Kalman filter for nonlinear estimation. Proceedings 

of the IEEE Symposium 2000 on Adaptive Systems for Signal Processing, Communication 

and Control. Lake Louise, Alberta, Canada: IEEE Press, 2000.153~158 

[112] Dellaert F, Burgard W, Fox D, et al. Monte Carlo localization for mobile robots. Proceedings 

of the IEEE International Conference on Robotics and Automation. Detroit, USA: IEEE Press, 



博士学位论文                                                                                   参考文献 

 124

1999. 1322~1328 

[113] Casella G. Statistical inference and Monte Carlo algorithms. Test, 1997, 5(2): 249~344 

[114] Gelman A, Rubin D B. Inference from iterative algorithms using multiple sequences (with 

discussions). Statistical Science, 1992, 7(4): 457~511 

[115] Casella G, Robert C P. Rao-Blackwellization of sampling schemes. Biometrika, 1996, 83(1): 

81~94 

[116] Fox D. Adapting the sample size in particle filters through KLD-sampling. The International 

Journal of Robotic Research, 2003, 22(12): 985~1004 

[117] Grisetti G, Stachniss C, Burgard W. Improving grid-based SLAM with Rao-Blackwellized 

particle filters by adaptive proposals and selective resampling. Proceedings of the IEEE 

International Conference on Robotics and Automation. Barcelona, Spain: IEEE Press, 2005. 

2443~2448 

[118] Beeson P, Murarka A, Kuipers B. Adapting proposal distributions for accurate, efficient 

mobile robot localization. Proceedings of the IEEE International Conference on Robotics and 

Automation. Orlando, USA: IEEE Press, 2006. 49~55 

[119] Milstein A, Wang T. Localization with dynamic motion models - Determining motion model 

parameters dynamically in Monte Carlo localization. Proceedings of the Third International 

Conference on Informatics in Control, Automation and Robotics. Setubal, Portugal: Springer, 

2006. 120~127 

[120] Chen R, Liu J S. Mixture Kalman filter. Journal of the Royal Statistical Society, 2000, 62(3): 

493~508 

[121] van der Merwe R, Doucet A, de Freitas N, et al. The unscented particle filter. Cambridge, 

United Kingdom: Department of Engineering, Cambridge University, 2000 

[122] Bezdek J C. Pattern recognition with fuzzy objective function algorithms. New York: Plenum 

Press, 1981 

[123] Gustafson D E, Kessel W C. Fuzzy clustering with a fuzzy covariance matrix. Proceedings of 

the IEEE Conference on Decision and Control. San Diego, CA: IEEE Press, 1979. 761~766 

[124] Kaymak U, Setnes M. Fuzzy clustering with volume prototypes and adaptive cluster merging. 

IEEE Transactions on Fuzzy Systems, 2002, 10(6): 705~712 

[125] 孙即祥. 现代模式识别. 长沙: 国防科技大学出版社, 2002 

[126] Borges G A, Aldon M J. Line extraction in 2D range images for mobile robotics. Journal of 

Intelligent and Robotic Systems, 2004, 40(3): 267~297 

[127] Bezdek J C. Numerical taxonomy with fuzzy sets. Journal of Mathematical Biology, 1974, 

1(1): 57~71 

[128] Bezdek J C. Cluster validity with fuzzy sets. Journal of Cybernetics, 1974, 3(3): 58~72 

[129] Xie X L, Beni G. A validity measure for fuzzy clustering. IEEE Transactions on Pattern 



博士学位论文                                                                                   参考文献 

 125

Analysis and Machine Intelligence, 1991, 13(8): 841~847 

[130] Davies D L, Bouldin D W. A cluster separation measure. IEEE Transactions on Pattern 

Analysis and Machine Intelligence, 1979, 1(2): 224~227 

[131] Kim D W, Lee K H, Lee D. On cluster validity index for estimation of the optimal number of 

fuzzy clusters. Pattern Recognition, 2004, 37(10): 2009~2025 

[132] Kim Y I, Kim D W, Lee D, et al. A cluster validation index for GK cluster analysis based on 

relative degree of sharing. Information Sciences, 2004, 168(1-4): 225~242 

[133] Wu K L, Yang M S. A cluster validity index for fuzzy clustering. Pattern Recognition Letters, 

2005, 26(9): 1275~1291 

[134] Rubin D B. Comment on 'The calculation of posterior distributions by data augmentation' by 

Tanner M A, Wong W H. Journal of the American Statistical Association, 1987, 82(398): 

543~546 

[135] Liu J S, Chen R. Blind deconvolution via sequential imputation. Journal of the American 

Statistical Association, 1995, 90(2): 567~576 

[136] Hahnel D, Burgard W, Fox D. An efficient fastslam algorithm for generating maps of 

large-scale cyclic environments from raw laser range measurements. Proceedings of the 2003 

IEEE International Conference on Intelligent Robots and Systems. Las Vegas, USA: IEEE 

Press, 2003. 206~211 

[137] Liu J S. Metropolized independent sampling with comparisons to rejection sampling and 

importance sampling. Statistics and Computing, 1996, 6(1): 113~119 

[138] Li M H, Hong B R, Cai Z S, et al. Novel Rao-Blackwellized particle filter for mobile robot 

SLAM using monocular vision. International Journal of Intelligent Technology, 2006, 1(1): 

63~69 

[139] Lee D J. Nonlinear Bayesian filtering with applications to estimation and navigation: [PhD 

Thesis]. Texas, USA: Texas A&M University, 2005 

 

 



博士学位论文                                                                                     致  谢 

 126

致  谢 

 

时光荏苒，岁月嬗递，从报考至攻读博士研究生学位已经度过了五年历程！ 

能够跨入中南大学校门，完全受益于恩师蔡自兴教授，在竞争如此激烈的求学环

境中，仍然为我保留了一年入学资格，提供给我继续深造进修的阶梯！恩师宽而不失

其严，容而不失其度，不仅授我以文，而且教我做人，虽历时仅仅几载，却终生受益

无穷：深夜时分的研究讨论，工作失误的批评教育犹宛如昨日；严谨自律的治学态度、
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法研究" (项目批准号：60234030)，2003～2006，主要研究人员。 
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目批准号：A1420060159），2005～2006，主要研究人员。 
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1. 于金霞, 蔡自兴, 邹小兵, 段琢华. 基于动态自适应滤波的移动机器人障

碍检测[J]. 自然科学进展, 2006, 15(5): 618-624. 
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误差校准方法研究[J]. 中南大学学报, 2005, 36(5): 745-750. (EI 收录) 

3. 于金霞, 蔡自兴, 段琢华. 基于激光雷达特征提取和增量式数据关联的障

碍分类判决[J]. 高技术通讯, 2007. (EI 源，录用) 

4. Yu Jinxia, Cai Zixing, Duan Zhuohua, Zou Xiaobing. Design of a dead 

reckoning system for mobile robot[J]. Journal of Central South University of 
Technology, 2006, 13(5): 542-547. (SCI、EI 收录) 

5. Yu Jinxia, Cai Zixing, Zou Xiaobing, Duan Zhuohua. Research on the 
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evolutionary neural network prediction[A]. Lecture Notes in Computer 
Science(ISNN2005)[C]. Chongqing, China, 2005: 265-270. (SCI、EI、ISTP

收录) 

6. Yu Jinxia, Cai Zixing, Zou Xiaobing, Duan Zhuohua. Self-localization of a 

mobile robot by local map matching using fuzzy logic[A]. Lecture Notes in 

Artificial Intelligence(ICNC05-FSKD05)[C]. Changsha, China, 2005: 921-924. 
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Hongkong, China, 2005: 658-663. (ISTP 收录) 
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10. Yu Jinxia, Cai Zixing, Duan Zhuohua. An improved method for feature 

extraction of laser scanner using genetic clustering[J]. System Engineering 
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Lecture Notes in Computer Science(ISNN2007)[C]. Nanjing, China, 2007. (EI
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研究[J]. 传感技术学报, 2006, 19(2): 356-360. (EI 收录) 
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研究[J]. 传感器与微系统, 2006, 25(5): 31-33, 36. 
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统设计[J]. 河南理工大学学报, 2005, 24(3): 210-216. 

15. 于金霞, 蔡自兴, 段琢华. 基于粒子滤波的移动机器人定位关键技术研究

综述[J]. 计算机应用研究, 2007. (录用) 
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    第三作者发表录用 11 篇（SCI 检索 3 次，EI 检索 9 次， ISTP 检索 4 次） 

17. Duan Zhuohua, Cai Zixing, Yu Jinxia. Fault diagnosis and fault tolerant 

control for wheeled mobile robots under unknown environments:  a 
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