
成都理工大学

硕士学位论文

基于DCC和JTAG的ARM硬件仿真调试器的研究与实现

姓名：罗志刚

申请学位级别：硕士

专业：计算机软件与理论

指导教师：洪志全

20080501

摘要

基于DCC和JTAG的ARM硬件仿真调试器的研究

与实现

作者简介：罗志刚，男，1982年10月生，师从成都理工大学洪志全教授，

2008年6月毕业于成都理工大学计算机软件与理论专业，获得工学硕士学位。

摘要

嵌入式系统开发是当今计算机软件发展的一个热点。嵌入式系统调试器是进

行嵌入式开发的关键工具，常用于对嵌入式软件的调试和测试。嵌入式系统调试

器由交叉调试器和调试代理组成，其特点在于交叉调试器和调试目标的运行环境

相互分离，依赖调试代理来实现其调试会话。随着嵌入式硬件技术的发展，嵌入

式应用的不断增长以及嵌入式系统复杂性不断提高，要求嵌入式软件的规模和复

杂性也不断提高，嵌入式软件的质量和开发周期对产品的最终质量和上市时间起

到决定性的影响，嵌入式软件调试工具的效率成为了人们关注的重点。

本文详细介绍了基于DCC和JTAG的删硬件仿真调试器的研究与设计
过程。该硬件仿真调试器除了具有下载、断点、单步运行、连续运行、读写内存

区域和对寄存器操作等基本调试功能外，还有通过使能DCC通道，来进行快速

对目标机内存读写的功能。因为读写内存是调试过程中最常用的功能，这样就大

大地提高了调试的效率。文中，首先对嵌入式系统开发和嵌入式调试器进行了全

面的介绍。然后对当前嵌入式调试中应用最为广泛的JTAG技术和删中的
JTAG原理作了详细介绍。接着对删片上调试原理进行了深入分析。最后，
深入阐述了L锄bdaICE的设计、实现和测试过程。
本硬件仿真器在设计过程中有两大特色：一是在进行大量数据的内存读写

时，采用了DCC通道来进行数据传输，这样大大提高了调试器的内存读写速度；

二是在保护或恢复上下文时(内核寄存器)，采用了批量数据存储指令，这样极

大地加快了停止和恢复运行的时间。

关键词：硬件仿真； 调试器； 删；JTAG；EmbeddedICE：DCC

垒!!!!兰!! 一——一
The Research and Realization ofA】王M hardware emulation debugger based on

J1’AG and DCC

111协Dduction of t11e autllor： LuoZlligang，male，was bom i11 0ctober，1 982

Ⅵ，hose mtor waS Professor HongzK删1．He graduated劬m Chen酣u U11iVers埘of
Tecllllolog)，i11 Computer So舢唧e趾d 111eo巧m萄or and waS gmted the MaSter

Degree iIl June，2008．

Abstl‘act

Embedded system is ahotspot hl me deVelopment
ofcomputer so竹ware nowadays·

As a crucial ernbedded development tool， tlle embedded system debugger
ls usually

used to debug and test embedded sofhⅣare．A锄bedded syStem debugger Conslsts ot a

cross debugger a11d a debugger agent，wllich仃ait
lies on t11e s印aratlon ot删ng

enVn衄ents be铆een t11e Cross debugger and me debugging target，and tIle

dependence on t11e debugging agent i11 the debug session．Witll
the deVelopmem of nle

锄beddedhardware technology and也e irnproVement of embedded印plication觚d

embedded syst锄complexi劬the requirement of scale aIld coIllplexi够0f锄bedded

s0脚are is妣reasing，me qual时of embedded so胁are aIld deVelopment c鹏le play

decisiVe 砌uence on the fiIlal q砌it)r aIld mar蛐g time of舭products，也e
efficiencv of锄bedded so矗=、^，are debugging tools becomes people’s￡吡entlon tocus·

ms paper p枷砌arly introduces me research狃d desigIl process of ARM

hardware emulation debugger baSed on DCC and J7I'AG Except吐Ie
baSic debuggmg

盒mction of doWlloadiIlg，brea虹ng poir如smgle step，continuous眦埘ng，memory

reading and州t吨，register operation and so on，thjs hardware emulatlon debugger has

quick reading and writing target memory by enabling
DCC ch锄e1．Because memory

reading a11d嘶t啦are me moSt co蚴on胁ction i11 debuggill岛it脚∞Ves也e
debugging efficiency舒eatly．FirsUy'this p印er

irl仃oduces t11e embedded syStem

development肌d ernbedded d吐Iugger in the round．7n忙second is
me particular

血roduction of JTAG t11eory埘m谢de．application J1'AG teclulology
aJld删hl

c肼ent embedded debugger．The曲d is me morou曲ana蛳s of debug舀ng p衄clple

iIl AI己M cllip．At laSt the design，realization锄d teSt process of
L耐bdaICE is

expounded．
．

ms h莉啊e e训ator has咖伊eat f．e船s iIl desi印process：firstly，也e uSe o士
DCC ch锄elto仃趾sferdatainmemoryreading aIld、砸ting啊mmaSs加，m廿lisway，
we call盯eatly hIlprove也e speed of debugger’s memory reading and、mtlng；secondly，

TT

Ab stract

in protection a11d restoring of comext(the kemel register)，the use ofbatch data stomge

i11stmctio玛so、ve c锄greatly quicken the run t油e of stop aIld restoring 11ln．

K野僻ords：hardware emulation；debugger；ARM； J1'AG；embeddedICE； DCC

III

独创性声明

本人声明所呈交的学位论文是本人在导师指导下进行的研究工作及取得的

研究成果。据我所知，除了文中特别加以标注和致谢的地方外，论文中不包含其

他人已经发表或撰写过的研究成果，也不包含为获得盛壑堡王盔堂或其他教

育机构的学位或证书而使用过的材料。与我一同工作的同志对本研究所做的任何

贡献均已在论文中作了明确的说明并表示谢意。

靴做储鹳川拇＼ M扩年f月M

学位论文版权使用授权书

本学位论文作者完全了解盛都堡王盔堂有关保留、使用学位论文的规定，

有权保留并向国家有关部门或机构送交论文的复印件和磁盘，允许论文被查阅和

借阅。本人授权盛壑堡王太堂可以将学位论文的全部或部分内容编入有关数

据库进行检索，可以采用影印、缩印或扫描等复制手段保存、汇编学位论文。

(保密的学位论文在解密后适用本授权书)

学位论文作者签名：哩匆

学位论文作者导师签名：l峻

砷多年 ， 月 夕口日

第1章引言

1．1嵌入式系统概述

第1章引 言

随着信息化技术的发展和数字化产品的普及，以计算机技术、芯片技术和软

件技术为核心的嵌入式系统再度成为当前研究和应用的热点。通信、计算机、消

费电子技术(3C)合一的趋势正在逐步形成，无所不在的网络和无所不在的计

算(everytlling connecting，eve可where computing)正在将人类带入一个崭新的信

息社会。

1．1．1嵌入式系统

嵌入式系统是现代科学的多学科互相融合的以应用技术产品为核心，以计算

机技术为基础，以通信技术为载体，以消费类产品为对象，引入各类传感器加入，

进入Intemet网络技术的连接，而适应应用环境的专用系统。嵌入式系统最典型

的特点是与人们的日常生活紧密相关，任何一个普通人都可能拥有各类形形色色

运用了嵌入式技术的电子产品，小到MP3、PDA等微型数字化设备，大到信息

家电、智能电器、车载GIS，各种新型嵌入式设备在数量上已经远远超过了通用

计算机。

一般认为，嵌入式系统的体系结构可以分为四部分：嵌入式处理器、嵌入式

外围设备、嵌入式操作系统和嵌入式应用软件。

1．1．1．1嵌入式处理器

嵌入式系统的核心是各种类型的嵌入式处理器，它将通用CPU中许多由板

卡完成的任务集成到芯片内部，从而有利于嵌入式系统在设计时趋于小型化，同

时还具有很高的效率和可靠性。

嵌入式处理器的体系结构经历了从CISC至ⅪSC和Compact对SC的转变，

位数则由4位、8位、16位、32位逐步发展到64位。目前常用的嵌入式处理器

可分为低端的嵌入式微控制器(111icro con_crolleru11it，MCU)、中高端的嵌入式微

处理器(embedded micro processoru血t，EMPU)、用于计算机通信领域的嵌入式

DSP处理器(embedded d西tal si弘al processor，EDSP)和高度集成的嵌入式片

上系统(system on ctlip，SOC)。

目前几乎每个半导体制造商都生产嵌入式处理器，并且越来越多的公司开始

拥有自主的处理器设计部门，据不完全统计，全世界嵌入式处理器已经超过1000

多种，流行的体系结构有30多个系列，其中以删、PowerPC、MC 68000、

成都理工大学硕士学位论文

MIPS等使用得最为广泛。

1．1．1．2嵌入式外围设备

在嵌入系统硬件系统中，除了中心控制部件(MCU、DSP、EMPU、SOC)

以外，用于完成存储、通信、调试、显示等辅助功能的其他部件，事实上都可以

算作嵌入式外围设备。目前常用的嵌入式外围设备按功能可以分为存储设备(如

EPROM、FLASH等)、通信设备(如RS．232接口、USB接口、Etllemet接口等)

和显示设备(如LCD)3类。

1．1．1．3嵌入式操作系统

为了使嵌入式系统的开发更加方便和快捷，需要有专门负责管理存储器分

配、中断处理、任务调度等功能的软件模块，这就是嵌入式操作系统。嵌入式操

作系统是用来支持嵌入式应用的系统软件，是嵌入式系统极为重要的组成部分。

嵌入式操作系统根据应用场合可以分为两大类：一类是面向消费电子产品的

非实时系统，这类设备包括个人数字助理(PDA)、移动电话、机顶盒(STB)

等；另一类则是面向控制、通信、医疗等领域的实时操作系统，如晰nd鼬ver公

司的VxW6rks和pSOS、科银京成的Delta0S、Micro、vave的OS．9等。实时系统

(real time system)是一种能够在指定或者确定时间内完成系统功能，并且对外

部和内部事件在同步或者异步时间内能做出及时响应的系统。

1．1．1．4嵌入式应用软件

嵌入式应用软件是针对特定应用领域，基于某一固定的硬件平台，用来达到

用户预期目标的计算机软件。由于用户任务可能有时间和精度上的要求，因此有

些嵌入式应用软件需要特定嵌入式操作系统的支持。

1．1．2嵌入式系统开发

1．1．2．1嵌入式系统开发流程

在嵌入式系统的应用开发中，整个系统的简要开发流程如图1．1。

2

第1章引言

／， 、
(开始)
＼ ／

，

选择嵌入式处理器

(硬件平台)

是

系统测试

，

／， 、

(结束)
＼ ／

图卜1嵌入式系统的开发过程图

由图1．1中可以看出，嵌入式系统的开发分为以下三个阶段：

(1)硬件系统的开发，即根据需求和实际情况选择嵌入式处理器平台，相

关外围设备，确定系统硬件平台。

(2)底层系统开发，根据需求和实际情况进行板级支持包(BSP)的开发和操

作系统的移植、以及驱动和B00tloader的开发等，确定软件平台。

(3)上层应用开发，如Wreb Server、监控软件等。

嵌入式系统发展到今天，对应于各种微处理器的硬件平台一般都是通用的、

固定的、成熟的，这就大大减少了由硬件系统引入错误的机会。嵌入式系统的开

发者现在已经从反复进行硬件平台设计的过程中解脱出来，从而可以将主要精力

放在满足特定的需求的嵌入式软件的开发上。

1．1．2．2嵌入式系统软件开发

(1)底层系统开发

对于嵌入式系统底层软件的开发，难度相对较大，需要了解相关的硬件平台

和底层开发的特性。底层系统的开发一般包括B00tloader、操作系统内核的移植

或裁减和设备驱动程序的开发等等。

成都理工大学硕士学位论文

作为一个嵌入式软件底层开发人员，最重要的就是要了解硬件平台的特性。

一般来说，选定的硬件平台往往就是一个关于某个处理器平台的成形开发板。拿

到手里之后，嵌入式软件开发人员至少要了解开发板的电路布局以及处理器等的

工作特性，才可能进行操作系统的移植或者驱动程序的开发。

在了解硬件平台的特性后，需要弄清底层开发的特性。例如在移植Lil姒内
核时，需要了解Linux内核的源代码结构以及如何在里面添加一个新的开发板甚

至一个新的处理器的支持代码。在LiIlux内核中，同硬件相关的文件主要都在

arcⅣ目录下面，每种不同的处理器和开发板都有单独的配置文件。每一个开发板

所具有的不同特性主要在于内存芯片的类型以及在处理器看来的物理地址分配

等，还有板上的外接设备的连接方式导致的访问方式的不同。每一个不同的处理

器，则具有更多的复杂特性，包括芯片初始化方式、中断处理方式、引脚对应功

能等等，需要仔细研究处理器的参考手册，才能进行内核的移植工作。

除此以外，直接编写控制程序，或者在移植的操作系统上开发驱动程序或

Bootloader程序，也需要在了解硬件设备的工作特性的基础上，根据编写相应底

层程序的方法、框架进行开发。由于这部分工作的比较繁琐、复杂，这种底层开

发大多数都是由此开发板的供应商来完成。

实际开发中，用户一般只需要对操作系统的内核(如使用嵌入式Linu)【系统)

进行配置裁减，就可得到适合的嵌入式操作系统。配置裁减内核相对简单一些，

但是也要求开发人员精通内核原理和体系结构。

(2)应用软件的开发

嵌入式系统的应用软件开发，通常是在已经准备好的底层系统环境之上，开

发特定的应用软件。假如底层系统是配置好了的嵌入式Lillu)(系统，嵌入式应用

开发者就可以在某个嵌入式开发环境中采用LinuX的软件编写方式，利用LiI呶
提供的操作系统接口，来完成特定功能的实现。由于嵌入式LirIu)【屏蔽了底层硬

件的复杂性，使得开发者通过操作系统提供的API函数就可以完成大部分工作，

因此大大简化了开发过程，提高了系统的稳定性。所以嵌入式应用软件的开发，

主要精力可以集中在应用软件具体的程序流程上面，而不用太过于关心开发板的

底层实现。

一般来说，应用软件的开发是在某个嵌入式应用软件开发平台上来完成的，

从而使得这个嵌入式系统能够具有某种特定的功能，进而满足市场需求。

(3)嵌入式软件开发环境

无论是嵌入式底层系统的开发，还是嵌入式应用软件的开发，都离不开良好

的嵌入式系统开发环境的支持。由于嵌入式系统受资源限制，不可能附带庞大、

复杂的开发环境，因此嵌入式系统软件的开发环境和运行环境往往互相分离，采

4

第1章引言

用宿主机／目标机模式。宿主机(Host)通常是一台通用计算机(如PC机或者工

作站)，是嵌入式系统软件的开发平台。宿主机的软硬件资源比较丰富，不但包

括功能强大的操作系统(如Windows和Linu)【)，而且还有各种各样优秀的开发

工具(如、Mndmver的W6rkBench、科银京成的L锄bdaPRO、MicrosoR的
Embedded visual C++等)，能够大大提高嵌入式应用软件的开发速度和效率。目

标机(Ta昭et)是嵌入式系统的硬件平台，嵌入式系统软件在其中运行。宿主机

通过串口、网络接口或特殊的硬件调试接口与目标机通信，从而完成嵌入式软件

的开发过程，一般步骤如下：

1)在宿主机上建立开发环境，进行程序的编码和交叉编译以生成目标平台

上可以运行的二进制代码；

2)下载程序到开发板(目标机)上；

3)进行交叉调试；

4)将程序固化到开发板中，并实际运行。

其中，步骤2)和步骤3)比较复杂。

对于步骤2)，下载Bootloader的动作是根据处理器所支持的方式来实现的，

每个平台各不相同(如s3c2410的开发板，可以通过JTAG方式下载)；而下载

LinuX内核的动作又是根据Bootloader所支持的方式来实现的，每个B00tloader

也各不相同；下载应用程序的方式又是根据操作系统所提供的方式来实现的，是

网络方式还是串口方式，通讯协议又是哪种，都无法确定。对于步骤3)的交叉

调试，将在1．2节中简要介绍。

1．2嵌入式系统调试器概述

调试(debug)就是跟踪程序中的错误并加以改正的过程。用于调试程序的

工具就是调试器。

许多的编程实践，都是从描述问题逻辑和设计所需的数据结构开始，进而是

划分和组织软件模块，最后才着手实现，这样做有助于减少错误和潜在的问题。

这也是软件设计与软件工程所存在的价值，一个上百行的程序都应该经过仔细分

析和周密设计，而不是等到这个程序将要运行时才来修改。

然而，程序员毕竟是人，编程错误终究难以避免，即使是经过良好设计和良

好实现的程序也偶尔会出错。当程序在某处出错而又无法断定为什么出错时，一

个行之有效的方法就是用调试器调试代码，运行并观察该程序在哪里发生了错

误。因此，调试是开发过程中必不可少的环节。

成都理工大学硕士学位论文

1．2．1嵌入式系统调试器

根据调试器和被调试程序的运行环境，软件调试可分为两种方式：一种是本

地调试(Ilative debug)，这种情况下调试器与被调试的程序往往是运行在同一台

机器、相同的操作系统上的两个进程，调试器进程通过操作系统专门提供的调用

接口控制、访问被调试进程；另一种是交叉调试(cross debug)，这种情况下调

试器运行在开发主机上，而被调试程序则运行在目标机上。

交叉调试常常又称为远程调试(remote debug)，一般用在嵌入式系统的软件

开发中。用于交叉调试的调试器叫做交叉调试器。

进行交叉调试时，开发主机上的交叉调试器以某种方式控制目标机上被调试

程序的运行方式，并具有查看和修改目标机上内存单元、寄存器以及被调试进程

中变量值等各种调试功能。而提供这种控制功能的就是目标机中称为调试代理的

模块，它负责与交叉调试器共同配合以完成对目标机上运行着的进程的调试。一

般地，将交叉调试器和调试代理一起称为嵌入式系统调试器。

1．2．2嵌入式系统调试器的分类

从调试代理的技术实现途径及其应用两个角度，可以将嵌入式系统调试器分

为硬件调试器、软件调试器和模拟调试器等3类。

硬件调试器与软件调试器在很多方面存在很大的差别。硬件调试器通常适用

于嵌入式底层系统的开发。例如，在一块嵌入式开发板上实现一个Bootloader

程序，或将LiIlux内核移植到一种新型体系结构的CPU上等等。在进行硬件调

试时，宿主机和目标机之间一般是通过特殊的硬件调试接口来连接的。软件调试

器通常适用于嵌入式应用软件的开发，但也可进行嵌入式底层系统的开发。在进

行软件调试时，一般使用串口和网络接口来连接宿主机和目标机，调试会话还必

须得到目标机上系统软件环境的支持，包括内核、交叉编译器、库程序、sheU

交互程序、终端仿真程序等等。

1．2．2．1硬件调试器

(1)在线仿真器(in—circuit e邮1ators，ICE)

ICE是嵌入式系统领域使用得最多，也是功能最强大的调试器之一。ICE是

一个用来设计其他计算机系统的计算机，它代替了目标机上物理的处理器或

MCU，其表现与被代替的目标机处理器完全一样，但是他允许用户查看处理器

内部的数据或代码并控制CPU的运行【251。一个在线仿真器通常由仿真探头和仿

真器主板组成。仿真探头通过一条电缆与仿真器主板相连，里面包含了一颗与被

6

第1章引言

代替的CPU完全相同的处理器，但是为了调试的目的经过了特殊处理。由于ICE

对目标机处理器的代替完全是物理上的替代，用户通常要将目标机上的处理器拔

出，然后将ICE的仿真探头(probe pod)插入目标机的CPu插槽中。仿真器主

板提供了断点、复杂断点、触发(trigger)、实时跟踪(teal．time妇ce)、重叠洲
和影子RAM等众多调试资源，它通过串口(现在出现了USB接口)连接开发

宿主机上。其中，实时跟踪是ICE提供的最有特色的调试手段，它可以在不占用

运行时钟周期的情况下获得程序的执行情况，具有非干扰性(nonjntnlsive)的特

点。特别是在强实时系统中，由于无法使用断点，因此实时跟踪就成了唯一有用

的调试方式。因此在实时系统的调试中，往往需要使用ICE。尽管ICE有许多优

点，但是存在通用性不强与价格昂贵的缺陷，使得ICE的应用受到了限制。

(2)片上调试器(on—chip debuggers，OCD)

由于现代的处理器封装越来越表贴化，仿真器探头的实现也越来越困难。另

外，根据统计：在大约95％的调试过程中，用户仅仅使用了简单断点、单步以

及访问处理器资源、内存和外设等一些运行控制方面的基本调试手段。因此，一

个很自然的发展趋势就是将实时跟踪和运行控制分开，将运行控制放到目标机系

统的CPu核(CPU core)内由一个专门的调试控制逻辑模块来实现，并用一个

专用的串行信号接口开放给用户，用户可以通过CPU核内的调试控制逻辑模块

来停止／继续CPU的运行，并访问目标机上的各种资源。这种放弃实时跟踪功能，

但是提供了大多数ICE的调试特性的工具，就是片上调试器【251。在OCD接口中

使用串行信号接口是为了减少调试接口的引脚数目。

为了实现主机与目标机处理器的片上调试逻辑之间的连接，可以用一块简单

的信号转换电路板来匹配主机通信接口和目标机CPU的串行调试接口。这块信

号转换电路板称为“片上调试器”或“串行调试器’’，信号转换只是它的一个最

基本的功能，而其它高级功能的实现由各个厂商在其发布的片上调试器产品中完

成。

摩托罗拉公司最早认识到OCD技术这个发展趋势，并率先在683X)【和

68HCl6处理器上创造了BDM(backgroud debug mode)调试接口，并将其用于

它的Coldfire、PowerPC等系列微处理器中。而MIPS、Imel、TI、IBM和删
等则实现了基于JTAG(．joint teSt access group)标准的串行调试接口【251。

与ICE相比，BDM和JTAG不存在任何因CPU封装或CPU速度而带来的

问题。尤其是JTAG，现已成为了IEEE的国际标准，即正EEll49．1．1990【11。具

有JTAG接口的芯片一般都有如下的引脚：测试数据输入(TDI)、测试数据输出

(TD0)、测试时钟(TCK)、测试模式选择引脚(TMS)，有的还加了一个异步

测试复位引脚(TRST)；其片上调试逻辑包括3个主要模块：测试访问端口TAP

控制器、指令寄存器、数据寄存器。虽然JTAG调试不占用系统资源，能够调试

7

成都理工大学硕士学位论文

没有外部总线的芯片，代价也非常小，但是由于JTAG是通过串口依次传递数据，

速度比较慢，只能进行软件断点级别的调试，自身还不能完成实时跟踪和多种事

件触发等复杂调试功能。因此便有了几种功能更为完善的增强版本。例如删
推出了采用基于J1’AG版本的E．Trace，E．TraCe通过EmbeddedICE硬逻辑、实时

监控、实时跟踪(包括嵌入跟踪微核、跟踪分析仪、跟踪调试软件3个部分)3

个增强的辅助片上调试硬件来完成实时调试。

1．2．2．2软件调试器

(1)ROM monitor

ROM mollitor是指一段驻留在目标机的ROM或FlaSh中的小程序，它可以

在开发过程中辅助测试与调试用户所编写的嵌入式程序。采用ROM mo血or方

式进行交叉调试需要在目标机上运行ROM mollitor和被调试程序，宿主机的调

试器通过远程调试协议与目标机上的ROM mo血tor建立通信连接。当处理器复

位时，RoM moIlitor将首先被执行。

在执行完一些必要的初始化后，ROM mollitor一般将等待来自宿主机端的连

接，以建立调试会话。ROM momtor能完成被调试程序的下载、目标机内存和寄

存器的读写、设置简单断点以及单步运行等功能。一些高级的ROM mollitor能

完成代码分析(code profiling)、系统分析(system profiling)、ROM空间的写操作，

以及设置各种非常复杂的断点等功能。

(2)调试桩和调试服务器

调试桩(debugging stub)和调试服务器(debuggillg seⅣer)也是一小段驻留

在目标机上的代码。采用这种调试方式进行交叉调试也需要在目标机上运行调试

桩(或调试服务器)和被调试程序，宿主机的调试器和目标机的调试桩(或调试

服务器)也使用远程调试协议进行连接。

与ROM mo血or调试方式不同的是，RoM mo血0r程序是驻留在目标机的

ROM中的，系统复位时首先被执行，然后下载被调试程序进行调试；而调试桩

和调试服务器不是固化在目标机上的，需要先通过某种工具将它们下载到目标机

中。由于调试桩往往是被设计用来独立运行于目标板上的，不需要系统软件环境

的支持，因此它必须与被调试程序编译、连接在一起运行，一般用于底层系统软

件的调试；而调试服务器通常作为目标机系统上的一个应用程序运行，一般用于

应用软件的调试。

以典型的GNU调试器gdb为例，当使用gdb调试底层系统程序时，需要使

用gdb的调试桩——gdbshlb，而使用gdb调试应用程序时，需要使用gdb的调

试服务器——gdbseⅣer。调试桩或调试服务器的职责就是在目标机上实现由宿主

8

第1章引言

机上的调试器发送过来的调试命令，如读写内存、读写寄存器、设置断点以及运

行被调试程序，并将结果返回，以配合宿主机的调试器完成调试【37】。

1．2．2．3模拟调试器

通常使用的Simulator是指令级的模拟器(IIS)，它相当于在宿主机上虚拟

了一台目标机。该目标机可以是和宿主机的CPU不同的类型【37】。利用指令集模

拟器进行的交叉调试是一种完全软件模拟的调试方法，根本不需要目标板的支

持，就连I／O等设备也都是软件模拟的。而实际上软件模拟的结果有时与真实板

卡还是有一些差别，硬件的信号、延迟以及对资源的竞争用纯软件的方法根本无

法模拟。由于指令集模拟器不需要开发板卡的支持，因此适合于嵌入式系统开发

的初级阶段，硬件板卡不是批量生产，数量十分有限。

指令集模拟器也适合于应用程序的调试，因为应用程序与硬件和外围设备关

系不是很大。虽然指令模拟器功能有限，但是采用的软件模拟的方法，节省了嵌

入式系统开发的成本。

1．3本文研究目标

在1．2节中，我们对目前常用的嵌入式交叉调试方式都做了简单的介绍，对

每一种方式的实现原理有了比较清楚的认识：

软件仿真方式使用起来简便、灵活，对硬件依赖程度小。这样在没有目标机

硬件的情况下也能够开发调试嵌入式应用软件，实现了软件和硬件同步开发，能

够有效缩短产品开发周期。但是由于其纯软件实现的特点，决定了它的强项在于

功能仿真，而对嵌入式软件要求较高的实时性这点就难以保证了。所以，嵌入式

软件开发最终还是要回到真实的交叉环境中来。

存储监控调试是最常见的也是最经济的一种交叉调试方式。建立交叉环境的

过程很简单，只需将一段存储监控程序移植到目标机，利用目标机的硬件(串口、

并口、USB和网卡等)同宿主机调试器通讯，就可以完成各种调试功能。但是

同样是纯软件实现的监控程序存在对被调试程序的影响，最主要缺点包括占用内

存和硬件通讯设备，消耗处理器时间。

在线实时仿真器ICE具有最完善的功能和最优异的实时性能，其他任何调试

方式都是无法比拟得。但是由于其高昂的价格，在嵌入式软件开发调试领域正在

被后起之秀仿真调试器慢慢超越。仿真调试器可以完成和在线实时仿真器相似的

调试功能，但是其成本却低得多。加上众多嵌入式处理器设计生产厂商Motorola、

ARM等的大力推广，仿真调试器会是今后的一个热点。

因此，本课题研究的目标为：利用删处理器上自带的EmbeddedICE调
9

成都理工大学硕士学位论文

试模块，开发一个高效的删硬件仿真调试器。
基于上述目标，本课题主要研究以下几项内容：

(1)利用m己M处理器中EmbeddedICE模块进行调试控制(停止、运行、

单步、设置断点等)；

(2)利用EmbeddedICE中的DCC通道进行快速的内存读：

(3)利用EmbeddedICE中的DCC通道进行快速的内存写；

(4)利用删的LDM指令实现高效的现场环境(寄存器)保护；
(5)利用删的STM指令实现高效的现场环境(寄存器)恢复。

1．4本文章节安排

第l章介绍了本课题的一些相关背景知识；

第2章深入分析了JTAG基本原理和ARM中的JTAG实现原理；

第3章深入分析了ARM内核中EmbeddedICE的实现原理；

第4章详细描述了基于DCC和JTAG的ARM硬件仿真调试器L锄bdaICE

的总体结构、运行方式、模块间接口等部分的设计思路和实现方法；

第5章简单介绍了L锄bdaICE的测试；
然后是对本文进行的总结；

最后是参考文献和致谢。

lO

第2章JTAG原理分析

第2章JTAG原理分析

80年代，伴随着信息技术日新月异的发展，电子设计和嵌入式软件开发领

域对专业硬件测试标准的呼声越来越高。在这样的背景下，联合测试行动组(ioint

teSt action group，JTAG)于80年代后期正是起草了边界扫描测试(bouIldaw．scan

testiIlg，BST)规范，于1990年正式成为IEEE 1149．1工业标准，简称JTAG标

准。边界扫描测试技术目前已经广泛应用在电子线路设计和软件开发领域。目前

生产的多数大规模集成电路(包括MPU、DSP等)都提供了JTAG功能。

2．1 JTAG基本原理

2．1．1 JTAG边界扫描的工作原理

边界扫描测试的基本原理是通过在芯片的各个输入／输出端口增加边界扫描

单元(BSC，bound叫sc趾cell)捕获端口信息【11。每个BSC单元由寄存器和两
个数据通道构成。一个数据通道用于正常的数据输入和输出，包括NDI(nomal

da：ta input)和NDO(nomal daca output)；另一个数据通道用于边界扫描测试，

包括TDI(test da．ta input)和TDO(test da_ta o咖ut)。典型的边界扫描实现方式
如图2．1所示。

图2—1 BSC结构图

具有边界测试功能的芯片在正常情况下的工作流程是：输入的数据从NDI

经输入端的BSC直接发往应用逻辑，然后经过应用逻辑处理后的结果送往输出

端BSC，直接经NDO输出结果。在边界扫描状态下，输入端的BSC可以有选

择的从NDI或者TDI获得输入数据，数据经应用逻辑处理之后的结果送往输出

端BSC，输出端的BSC也可以有选择的将数据发往NDO或者TDO川。

在最简单的边界扫描形式下，测试数据连续循环地通过被测单元所有可扫描

成都理工大学硕士学位论文

的IC引脚。这些IC引脚是连续的，组成被测电路扫描链(一组串行连接的TDI

和TDO引脚)。换句话说，基本的边界扫描仅仅确定各边界扫描器件是连接正确

上。如果采用更复杂的边界扫描形式，例如，将被测单元的寄存器设计成可以累

计边界扫描测试数据。累计这些数据后，被测单元根据边界扫描控制器来的串行

数据和测试命令处理这些数据。累计的数据能给被测电路提供并行激励，被测电

路的响应再被累计，然后通过TAP端口输出或者被被测单元测试点上的其它测

试设备测量。

可见，对正常使用的芯片边界扫描部件是透明的，不会对芯片产生任何影响。

在测试或者调试状态下，通过控制BSC单元的状态可将需要检测的应用逻辑单

元从系统中隔离出来，这时对应用逻辑单元进行的测试操作便不会对其他单元造

成影响。

2．1．2 JTAG接口的内部结构

JTAG控制器的电路结构如图2．2所示。JTAG控制器主要由三个部分组成：

测试端口控制器(test access poIrt，TAP)、指令寄存器(瓜．IIls仃uction RegiSter，

包括指令译码器)和数据寄存器(DR．Data Re百Ster)【11。

括夸寄存鼍

图2—2边界扫描测试的内部电路结构

12

第2章JTAG原理分析

(1)TAP控制器

这是边界扫描测试核心控制器，有以下5个控制信号：

TCK：边界扫描时钟，TAP的所有操作都是通过这个时钟信号来驱动的。

TMS：JTAG测试模式选择，用来控制TAP状态机的转换。TMS信号在TCK

的上升沿有效。

TDI：串行边界扫描输入数据，所有要输入到特定寄存器的数据都是通过TDI

接口一位一位串行输入的。由TCK驱动，在TCK的上升沿被采样。

TDO：串行边界扫描输出数据，所有要从特定寄存器的数据都是通过TDI

接口一位一位串行输出的。由TCK驱动，在TCK的下降沿被更新。

TRST：JTAG测试逻辑复位(对TAP控制器复位，初始化)，低电平有效，

当TRST输入为低电平时，芯片进入正常工作状态，JTAG测试逻辑无效。

前四个信号在IEEEll49．1标准里是强制要求的，第五个信号在IEEEll49．1

标准里是可选的，通过TMS也可以对TAP控制器复位。

(2)指令寄存器

‘若执行数据寄存器边界扫描测试，则指令寄存器负责提供地址和控制信号去

选择某个特定的数据寄存器；也可以通过指令寄存器执行边界扫描测试，这时，

TAP输出的SELECT信号选择指令寄存器的输出去驱动TDO。

(3)数据寄存器

JTAG标准规定，必须具有的两个数据寄存器是边界扫描寄存器(boulldary

scaIl register)和旁通寄存器(bypaSs register)。其它的寄存器是可选的。由指令

寄存器选择某个特定的数据寄存器作为边界扫描测试寄存器，当一个扫描路径选

定后，其它的路径处于高阻态。边界扫描寄存器是由围绕IC管脚的一系列的边

界扫描单元BSC组成的，正是由它来实现测试管脚信号的输入，输出。旁通寄

存器只由一个扫描寄存器位组成，当选择了旁通寄存器，TDI和TDO之间只有

一位寄存器，实际上没有执行边界扫描测试，旁通寄存器的作用是为了缩短扫描

路径而对不需要进行测试的IC进行旁通。

2．1．3 TAP控制器的状态机

TAP控制器是边界扫描测试核心控制器。在TCK和刑S的控制下，可以选
择使用指令寄存器扫描或数据寄存器扫描，以及控制边界扫描测试的各个状态。

刑S和TDI是在TCK的上升沿被采样，TDO是在TCK的下降沿被采样‘11。TAP
控制器的状态机如图2．3所示。

成都理工大学硕士学位论文

图2—3 TAP控制器的状态机

如图2．3所示，TAP控制器共有复位、自检、指令寄存器扫描和数据寄存器

扫描4部分，共16个状态。

(1)复位

测试复位态(Test-Logic Reset)：设备在正常工作的时候，TMS维持至少5

个时钟周期的高电平之后，状态机就处于测试复位态，这时JTAG不影响设备的

正常运行。当设备需要进行边界扫描测试时，在TCK和TMS的配合下，TAP

状态机从测试复位态进入其它测试状态。设备在上电、TRST复位之后会立即进

入测试复位态。

(2)自检

设备测试／暂停态(Rlm．Te伽dle)：若当前执行自检指令(如I砌NBIST等)
时，设备进入此态之后进行片上系统自检。该状态的另一功能是用于各个边界扫

描操作之间的过渡。在一个边界扫描操作完成之后，只要TMS保存低电平，TAP

控制器就一直处于测试暂停状态。

(3)数据寄存器扫描

数据寄存器选择态(SeleCt．DR．Sc锄)：临时状态，决定TAP状态机下一步

14

第2章JTAG原理分析

的工作状态。若TMS置O，TAP状态机进入Cap眦．DR态；若TMS置1，TAP
状态机进入Select．IR．Scan。

数据寄存器捕获态(C印眦．DR)：临时状态，在TCK上升沿，数据可能被
并行送入当前指令选择的测试数据寄存器。若当前指令选择的寄存器不支持数据

并行输入或者当前测试项目不需要获得数据，那么测试数据寄存器的数据将保持

原有数据不变。若TMS置0，TAP状态机进入SmR．DR态；若TMS置1，TAP

状态机进入Exitl．DR。

数据寄存器移位态(S11iR．DR)：当前指令选择的测试数据寄存器已经放在

TDI和TDO之间，配合使用TCK和TMS可以将测试寄存器的数据移出。移出

操作完成之后，TMS置l，TAP状态机进入Exitl．DR态。

数据寄存器扫描退出态1(Exitl．DR)：临时状态，若TMS置O，TAP状态

机进入Pause．DR态；若TMS置l，TAP状态机进入Update．DR态。

数据寄存器暂停移位态(Pause．DR)：暂停数据移位操作，维持测试数据寄

存器不变。若退出该状态，TMS置1，TAP状态机进入EX砣．DR态。

数据寄存器扫描退出态2(E)【it2．DR)：临时状态，若TMS置O，TAP状态

机进入SmR．DR态；若TMS置1，TAP状态机进入Update．DR态。

数据寄存器更新态(Update．DR)：临时状态，在TCK的下降沿，通过移位

过程获得数据被锁存在测试数据寄存器的输出端口。若刑S置O，TAJP状态机
进入mm．Test／Idle态；若TMS置l，TAP状态机进入Select—DR．Scan态。

(4)指令寄存器扫描

指令寄存器选择态(Select．IR．Scall)：临时状态，决定TAP状态机下一步的

工作状态。若TMS置0，TAP状态机进入CaptuI．e．IR态；若TMS置1，TAP状

态机进入Test．Lo西c Reset态。

指令寄存器捕获态(Capture．IR)：临时状态，在TCK上升沿，一组固定数

据可能被并行送入移位寄存器(ShjR-register)。若TMS置O，TAP状态机进入

SMR．瓜态；若TMS置1，TAP状态机进入Exitl．m。

指令寄存器移位态(Smft．IR)：移位寄存器(s11iR．register)已经放在TDI

和TDO之间，配合使用TCK和TMS可以设置移位寄存器。移出操作完成之后，

TMS置1，TAP状态机进入Exitl．R态。

指令寄存器扫描退出态1(EXitl．IR)：临时状态，若TMS置O，TAP状态机

进入Pause．IR态；若TMS置1，TAP状态机进入Update．IR态。

指令寄存器移位暂停态(Pause．瓜)：暂停指令移位操作，维持移位寄存器

(s11iR．re西Ster)不变。若退出该状态，TMS置l，TAP状态机进入Exit2．IR态。

指令寄存器扫描退出态2(Ex砣．IR)：临时状态，若TMS置0，TAP状态机

进入S11i丘．m态：若TMS置l，TAP状态机进入Update．IR态。

成都理工大学硕士学位论文

指令寄存器更新态(Update．IR)：临时状态，在TCK的下降沿，通过移位

过程获得的指令被锁存在移位寄存器的输出端口。一旦指令被锁定，该指令就成

为当前的TAP指令。若聊S置O，TAP状态机进入Rull．Te刚dle态；若TMS
置1，TAP状态机进入Select．DR．Sc如态。

TAP控制器的状态机只有6个稳定状态：测试逻辑复位(Test．Logic．Reset)、

测试／等待(mm．Test／Idle)、数据寄存器移位(SlliR．DR)、数据寄存器移位暂停

(Pause．DR)、指令寄存器移位(SlliR．IR)、指令寄存器移位暂停(PauSe．IR)。

其它状态都不是稳态，而只是暂态。

在数据寄存器扫描过程中所做的操作都不会影响当前指令；同样，在指令寄

存器扫描过程中所做的操作不会影响当前数据寄存器。

2．2删中的JTAG原理
在上一节已经介绍过，JTAG控制器主要由三个部分组成：测试端口TAP(teSt

aCcess port)控制器、指令寄存器(包括指令译码器)、数据寄存器。在本节将以

删7Ⅱ)MI为例来分析删内核如何通过各个部分的协调工作，来完成对
删内核的各条扫描链的各种操作，研究成果也可应用到删7和删9系列
的其他处理器上面。

2．2．1 TAP控制器、指令寄存器、数据寄存器

TAP控制器控制着整个J1’AG的逻辑切换。而整个逻辑的切换过程可以通过

TAP状态机来描述。状态机的切换过程可以参照前一节的TAP状态机图。

通过状态机的切换，可以在TDI和TDO之间连接的测试数据寄存器为如下

几个【3】：

旁路寄存器；设备D寄存器；指令寄存器；扫描链选择寄存器：扫描链O、

1、2、3 。

(1)旁路寄存器

目的：为提供TDI和TDO之间提供一个扫描路径，从而实现对设备的旁路。

长度：1位。

操作方法：如果BⅥ)ASS指令是当前指令。

在CAPlrI瓜E．DR态，BⅥ'ASS寄存器被装载0。

在SHⅢT．DR态，TDI的数据经过BⅥ悛SS寄存器，在一个TCK时钟之后

从TD0串行输出。因此实现了对设备的旁路。

16

第2章JTAG原理分析

(2)ARM7TDMI内核设备ID寄存器

目的：用以读取32位的内核设备ID。

长度：32位。

操作方法：如果IDCODE指令是当前指令时，将把设备ID寄存器连接在

TDI和TDO之间。ID寄存器的格式如图2．4所示。

在CAPTURE．DR态，32位的设备ID将会从设备ID寄存器的并行输入端

加载到ID寄存器。注意，设备ID寄存器并没有并行输出端。

在SHIFT-DR态，在CAPTURE．DR态加载到设备ID寄存器的32位设备ID

会从TDO串行移出。

I

小IoIo 。Io|0 O O 1 1 ，11Io O 小 1 1 ，11l¨ 0 O 。I。 O o I o 1 1I

·‘⋯⋯一⋯“●-I—————————————————一⋯⋯⋯⋯⋯——————————————————◆、向噶i∞ p叠rt numb|r ·——猫滋茹黼㈧矿
图2．4 ID寄存器的格式图

(3)指令寄存器

目的：变换当前的TAP指令。

长度：4位。

操作方法：

在CAPTURE．IR态，会将固定的值b000l加载到指令寄存器。该值在

SHIFT-IR态时被串行由TD0移出。复位时，IDCODE指令被设置为当前指令。

在TAP状态机处于SHIFT-IR态时，指令寄存器就会在TDI和TDO之间建

立一个串行路径连接。然后在TCK的时钟下将数据移入指令寄存器。

在UPDATE．IR态，由TDI串行移入指令寄存器的指令被设置为当前指令。

(4)扫描链选择寄存器

目的：用来变换处于激活地位的扫描链。

长度：4位。

操作方法：如果SCAN N是当前指令，则可以通过设置扫描链寄存器的方

法来选择在TDI和TDO之间建立连接的扫描链。

在CAPTUI迮．DR态，会将固定的值b1000加载到该寄存器。这个值会在

SHIFT．DR时被串行的由TDO移出。

在SHIFT-DR态，将要选择调试链的数据索引由TDI串行移入扫描链选择寄

17

成都理工大学硕士学位论文

存器。

在UPDATE．瓜态，由寄存器中的值来决定选择哪个扫描链作为当然被激活

的扫描链。在此以后的所有进一步的指令(如INTEST)都应用到该扫描链上。

直到后续的SCAN N指令执行进而选择其它扫描链、或者发生复位。当复位时，

扫描链0被设置为激活扫描链。

(5)扫描链0、1、2、3

关于扫描链0、1、2、3将在2．2．2部分中详细介绍。

2．2．2 A砌Ⅵ7TDMI的扫描链

JTAG的工作原理就是通过JTAG接口，对各个扫描链进行编程，从而实现

调试和系统配置功能。

在删7Ⅱ)MI内部，有三条扫描链，正是通过对这三条扫描链的，实现了
对内核的调试以及对EmbeddedICE逻辑进行配置【21。表2．1是删7TDMI扫描
链的编号及功能。

表2—1扫描链的配置表

扫描链编号 功能

0 宏单元扫描测试

1 调试

2 EmbeddedICE逻辑编程

3 外界边界扫描

4 保留

8 保留

在ARM7TDMI内部，0、1、2三条扫描链的配置情况如图2．5所示【3】：

18

第2章JTAG原理分析

图2—5 A刚7T叫I结构图

Scan chain O：分布在删7TDMI Core的外围。通过这条链可以控制所有
发生在Core上的输入和输出。长度为113bit。

Scan chain 1：可以说是ScaIl ch血0的子链，仅仅分布在数据总线和

breal【point上。这条链的功能就是将数据或指令扫描到Core上。因此这条链的主

要功能是调试功能，所以我们也将他称为调试链(debug chain)。长度为33bit。

为什么会有breakpoint这位，我们会在以后详细阐述。

Scan chain 2：这条链是EmbeddedICE的配置(编程)链。EmbeddedICE有

的地方称为ICE．RT，或IECBRE剐旺R。长度，38bit。

对扫描链的操作方式可以分为以下几种：

INTEST方式：内核测试。将TDI上串行扫描进扫描链中的数据，加载到内

核中。所得到的输出单元被捕获后，通过扫描链在TDO上串行输出。

EⅪ【’EST方式：外部设备测试。将TDI上串行扫描输入的数据加载到内核

的输出单元，而不是内核中。系统的输入数据在输入单元被捕获，然后通过扫描

链在TDO上串行输出。

SYSTEM方式：扫描单元空闲。这是系统与内核之间进行数据交换的状态，

系统将数据加载到内核的输入端，并将内核输出加载系统中。

19

成都理工大学硕士学位论文

(1)扫描链O

通过扫描链0可以对整个删7TDMI的核外围(包括数据总线和地址总线)
进行访问。通过扫描链0，可以实现对器件之间(iIlter-device)的测试(EXTEsT)

和内核的测试(INTEST)，该扫描链的长度为113位。

从TDI到TDO，扫描链的依次顺序如下：

I DB：Do～D31 l 内核控制信号 AB：A31～Ao I EmbeddedIcE控制信号 l

(2)扫描链1

扫描链1的主要用途是调试，可以将这条扫描链理解为扫描1的子链。完全

可以说这条链就是为了调试目的而定义的，之所以单独定义了一条扫描链专门用

于调试是因为扫描链0过长，不便进行调试，并且效率也不高，该扫描链的长度

为33位。

从TDI到TDO，扫描链的依次顺序如下：

l DB：D0～D31 l BREAKPT l

(3)扫描链2

扫描链2是为设置EmbeddedICE而定义的。通过这条扫描链可以可以对

EmbeddedICE进行编程，从而设置断点(Breakpon)和观察点(Watchpo硫)。

从本质上说，扫描链2是一个长度为38位的移位寄存器，包括：

>32位数据

>5位地址选择

>1位读写控制

(4)扫描链3

这条扫描链并不是ARM7TDMl的扫描链，它是由具体的芯片生产厂商根据

具体的芯片外围逻辑设计，以及集成了不同的内部外设所决定的。因此这里不作

详细的介绍。

(5)控制信号

在除了扫描链扩展之外，删核还进行了额外引脚信号的扩展，这些引脚
信号一般在最终的ARM处理器芯片上并没有，只是ARM核周围的引脚。在这

些删核扩展的额外引脚中最重要的三个引脚是BI迮触oT、DBGRQ、
DBGACK，这三个信号的具体情况参考表2．2删核信号扩展表。

第2章JTAG原理分析

表2—2 A刚核信号扩展表

引脚 说明

通过该引脚可以强制停止内核运行。在系统运行时，断

BREAKPT 点指令的执行会该引脚的电平变，此外也可以通过

EmbeddedICE宏单元声明该引脚的电平，并告知内核

该信号可以使内核在执行完当前指令后进入调试态。外
DBGRQ

部硬件可以通过该信号使内核进入调试态

ARM核的输出信号。如果该信号为高电平，表明内核当前
DBGACK

处于调试态。这个信号通常用来判断内核状态

2．2．3 TAP指令

ARM7TDMI的TAP指令长度为4bit。没有奇偶校验位。在TAP控制器的状

态处于CAPTURE．瓜时，会将固定的值b0001加载都指令寄存器中。指令寄存

器的最低位被最先扇入(sc锄m)和扇出(scan out)。下表是JTAG指令集的列

表2．3【21。

表2—3 A跚7TDMIJTAG指令集

Instruction Binary Hexadec imal

EXTEST b0000 OxO

SCAN N b0010 Ox2

SAMPLE／PRELOAD b001l Ox3

RESTART b0100 Ox4

CLA^IP b010l 0x5

HIGHZ b0111 0x7

CL．AMPZ b1001 Ox9

INTEST b1101 OxC

IDCODE b1110 0xE

BYPASS b1111 0xF

2l

成都理工大学硕士学位论文

注意：在以下的对指令的描述中，在TCK的上升沿对TDI和TMS采样。

而TDO上的所有变化都是在TCK的下降沿上发生的。

(1) EXTEST(b0000)

执行EXTEST指令将被选择的扫描链连接在TDI和TDO之间，同时使被选

择的扫描链处于测试模式。

当TAP状态机处于CAPlrI爪E．DR状态时，由扫描单元捕获来自内核系统的

输入和输出扫描链单元到系统的输出。

当TAP状态机处于SHIFT-DR状态时，在CAPn瓜E-DR状态捕获的测试数

据将从TDO串行输出。

EXTEST指令对于器件间测试非常有用，例如进行电路板上各个器件的连接

测试。如果要进行器件间的测试，在TAP控制器扫描链0后，然后执行EXTEST

指令。

(2) SCAN—N(b001 0)

通过SCAN N指令可以实现在TDI和TD0之间连接扫描路径选择寄存器。

通过对扫描路径选择寄存器的设置可以实现扫描链的切换。

当TAP状态机处于CAPTUI也．DR状态时，会将固定的值bl000加载到扫描

路径选择寄存器。

当TAP状态机处于SHIFT-DR状态时，将所需的扫描链的ID号移进扫描路

径选择寄存器。

当TAP状态机处于UPDATE．DR状态时，所选的扫描链在TDI和TDO之间

建立连接，直到下一个SCAN N指令发生为止。

在ARM7TDMI中，扫描链选择寄存器的长度为4位。首先移入移出的是

LSB位。

(3) SAMPLE／PRELOAD(b001 1)

这条指令仅用于产品测试，如用户附加的扫描链(边界扫描链)，不允许在

ARM7Ⅱ)MI提供的扫描链上使用。

(4) RESTART(b01 00)

RESTART指令在调试态的出口重新启动处理器。I也START指令将会在TDI

和TD0之间连接BⅥ'ASS寄存器。且不用执行BⅥASS指令。

执行RESTART操作后，TAP状态机进入Run．Tes们dle态，然后退出调试装

态。

(5)CLAMP(b01 01)

第2章JTAG原理分析

CLAMP指令只能在chain O作为当前链时使用，使用后会在TDI和TDO之

间连接BⅥ)ASS寄存器，所有的输出信号都会恢复成上一次读入的chain 0数据。

当TAP状态机处于CAPTURE．DR状态时，会将固定的值b0加载到BYPASS

寄存器。

当TAP状态机处于SHIFT_DR状态时，TDO第一次输出的是0。

BⅥ狻SS寄存器在UPDATE．DR状态时不受影响

(6)HIGHZ(b0111)

HIGHZ指令在TDI和TDO之间连接BⅥ，ASS寄存器。地址总线、数据总

线、删nOPC、 LOCK、MAS【1：O]以及nT凡州S都置为悬空的高电平状态，
而且外部的HIGHZ信号也置为高电平。

当TAP状态机处于CAPTUI迮．DR状态时，会将固定的值bO加载到BⅥ狻SS

寄存器。

当TAP状态机处于SHIFT-DR状态时，TDO第一次输出的是0。

BⅥ)ASS寄存器在UPDATE．DR状态时不受影响。

(7)CLAMPZ(b001)

CI AMPZ指令在TDI和TDO之间连接BⅥ)ASS寄存器。所有3态输出端

口设置为非激活状态。

当TAP状态机处于CAPTUl迮．DR状态时，会将固定的值b0加载到BⅥ)ASS

寄存器。

当TAP状态机处于SHIFT-DR状态时，TDO第一次输出的是0。

BYPASS寄存器在UPDATE．DR状态时不受影响。

(8) INTEST(b1 1 00)

INTEST指令使所选择的扫描链连接在TDI和TDO之间，并使扫描链处于

测试模式。

当TAP状态机处于CAPTURE．DR状态时，由输出扫描单元捕获来自内核逻

辑的输出，输入扫描单元捕获来自系统逻辑的输入数据。

当TAP状态机处于SHIFT-DR状态时，在CAPn瓜E．DR状态捕获的测试数

据将从TDO串行输出。

(9)IDCODE(b111 O)

IDCODE指令在TDI和TDO之间连接设备ID寄存器，该寄存器为32bit长。

当IDCODE指令加载都指令寄存器时，所有的扫描单元都被置成处理器正常操

作时的系统模式。

成都理工大学硕士学位论文

当TAP状态机处于CAPTURE．DR状态时，设备ID由ID寄存器捕获。

当TAP状态机处于SHIFT-DR状态时，在CAPTUI迮．DR状态捕获的设备ID

将从TDO串行输出。

(10)BYPASS(b1111)

BⅥ)ASS指令在TDI和TDO之间连接旁路寄存器，该寄存器1位长度。当

指令加载到指令寄存器时，所有的扫描单元都被置成处理器正常操作时的系统模

式。

当TAP状态机处于CAP，n瓜E．DR状态时，0被BⅥ)ASS寄存器捕获。

当TAP状态机处于SHIFT-DR状态时，在CAPn瓜E．DR状态捕获的数据0

将从TDO串行输出

当TAP状态机处于UPDATE．DR状态时，不对BⅥASS寄存器做任何操作。

第3章AI{M片上调试原理分析

第3章ARM片上调试原理分析

基于ARM技术的处理器以其良好的性能，低廉的价格，再加上众多的软硬

件厂商的支持，已经占据了全球32位mSC芯片75％的市场份额。删体系结
构共有六个版本，各个版本都在之前的基础上有所扩展或者修改，但是同种版本

处理器的应用程序相互兼容。目前应用最广泛是第五版的删7系列和删9
系列。后面我们就以删7TDMI为例分析AIW片上调试的工作原理，研究成
果也可应用到删7和删9系列的其他处理器上面。

3．1 A】引Ⅵ7TDMI的EmbeddedICE

通过前面对删7TDMI JTAG的介绍，我们大致了解了ARM7TDMI上面
JTAG的工作原理和方式。本节将详细介绍删7TDMI片上调试功能的核心：
EmbeddedICE的结构、工作原理以及编程方式。通过深入分析EmbeddedICE原

理为后面实现片上调试功能打下基础。

3．1．1 EmbeddedICE结构

在2．2．2节介绍扫描数据链Chain 2的时候我们曾经简要提到过

En曲eddedICE(也称为ICEBeral(er)。EmbeddedICE为删7TDMI核提供了片
上调试功能，可以通过数据链2(Chajn 2)对其进行编程控制。EmbeddedICE主

要由2个实时监控单元(Real．Time watch Point u11it)以及相关的外围控制单元

构成。

EInbeddedICE的结构以及其内部的寄存器如图3．1所示【21。

25

成都理工大学硕士学位论文

图3—1 E胁eddedlCE结构图

各寄存器组可以单独编程，并且拥有各自独立的地址。EmbeddedlCE寄存

器地址分配如表3．1所利31。

表3—1 E曲edded I CE寄存器地址分配表

AddfeSS Wid伽 Func戗On

oooc扮 3 DI咖u口C洲
嘲1 5 D咖8t砷辱
∞1∞ 6 D曲叼Q腑a删融峪蜘
蝴01 32 玖出叼c‘黼嘲a融嘲
O'伽O 32 W越ctp踊m O Add他鹞V粕e

01∞1 匏 W矗翻∞艄O^翻悖鹞Ma醴

O'010 验 W越曲∞IⅡO DabVah格

010” 弛 W叠口删OD如M御嫩
011∞ 9 W矗曲∞吼O O甜I蝌V■ue

O”01 8 W碱口事硼OC∞喇鼬
1蝴 32 W雹a劫晴’l'^凸lr戡喀V锄e

1ⅨⅪ1 驼 W重口呻t1 A翻麟M_出
10们O 32 W■口∞O¨1‰ⅥI№
1∞11 亚 W■口删1 D出脯
10'∞ 9 W重廿岫l 1∞喃谊V翻L静
10101 8 W越d∞萌1t 1 COn协嘲№味

第3章ARM片上调试原理分析

当EmbeddedICE处于监控状态时，实时监控单元中的一个或者两个实时地

监控系统中三种总线的数据情况：数据总线、地址总线以及各种的运行控制信号

总线。通过比较器判断三组是否同时匹配实时监控单元中的对应数据，一旦出现

总线数据与监控单元内的数据完全匹配的情况，EmbeddedICE马上发出暂停内

核信号(BI迮AKPT)，内核在当前指令执行完以后转入调试状态。

3．1．2实时监控单元

实时监控单元由3对寄存器组成，每对寄存器包括一个数据寄存器和一个掩

码寄存器：

(1)地址总线数据寄存器和地址总线掩码寄存器

(2)数据总线数据寄存器和数据总线掩码寄存器

(3)控制数据寄存器和控制掩码寄存器

数据寄存器和掩码寄存器都是32位寄存器，需配合使用。掩码寄存器某一

位设置为1时，对应位置的数据寄存器的比较结果始终为1；掩码寄存器某一位

设置为0时，只有在对应位置的数据寄存器和总线数据一致的情况下比较结构为

1。例如，硬件断点只比较地址完全匹配的情况。将地址寄存器设为断点地址，

掩码可以设置为0，仅在规定位置触发。将数据总线寄存器掩码设置为

0xFFFFFFF，这样任何数据都可以触发。

I 8 7 6 l 5 I 4 3 l 2 1 o l

l ENABLE RANGE cHAIN I既TERN l nTRANs noPc I M^S【11 ．MAS囹 nRw l
l _

图3—2控制寄存器结构图

如控制寄存器结构图所示，控制寄存器有8个状态位，分别是nRw、

MAS【0：11、nOPC、nTRANS、EXTERN、CHAIN、RANGE和ENABLE：

n刚：检查总线的活动方向，1表示写周期，0表示读周期：
MAS【0：1】：检查总线宽度。如表3—2所示。

27

成都理工大学硕士学位论文

表3-2总线宽度表

bn 1 嘲t O Data Size

0 0 bm

0 1 h曩IⅥf硎

1 O 辅Old

1 1 frese n『e彤

nOPC：检查当前周期，0表示取指周期，1表示数据访问周期。

nTRANS：检查用户模式，0表示用户模式，1表示非用户模式。

EXTERN：观察点外部输入逻辑使能，0表示允许观察点1接收DBGEXT

输入，1表示运行观察点1接收DBGExT输入。

CHAIN：链接到其他观察点输出。

RANGE：链接观察点1和观察点2，两个观察点可以同时检查输入数据。

通常用于范围检查。

ENABLE：观察点允许位，1表示允许观察点，0表示禁止观察点。只有在

允许观察点的情况下，观察点触发后才产生BREAKPT信号。

3．1．3外围控制单元

EmbeddedICE外围控制单元包含调试控制寄存器(debug controI)、调试

状态寄存器(debug status)、调试通讯控制寄存器(debug comms∞ntroI

陀gister)和调试通讯数据寄存器(debug Comms data register)。

调试控制寄存器和调试状态寄存器用于处理内核调试信号：T B|T，nMREQ，

DBGACK。DBGRQ和DBGACK。图3．3是TBITl nMREQ，DBGACK，DBGRQ

和DBGACK结构副引。

第3章ARM片上调试原理分析

De坟嘲
O。n扛翰

fo弘硝0矿

O幻蝴
Stall喀

栩嚼lg谢

淼矿—E卜—悃

图3—3 EITlbedded ICE外围控制单元图

1只蜘
归∞塘》

D8GRa

fto∞fea棚
^刚7TDMI戗卸‘啦

D8G^CK

do ARM7TD¨l

a岫n}

调试控制寄存器(debug controI)有6个控制位：

DBGACK：第0位，强制设置内核DBGACK状态，告知其它模块内核处于

调试状态；

DBGRQ：第1位，强制设置内核DBGRQ状态。在内核正常运行的时候设

置该位，使内核进入调试状态；

INTDIS：第2位，在调试状态关闭外部中断。FIQ、IRQ在DBGACK为1

或者INTDIS为1的情况下不能被响应；

SBZ／RAZ：第3位，该位必须置0；

监控模式使能：第4位，如果该位置1，当到达观察点或者断点时内核进入

调试模式；该位置O，当到达观察点或者断点时内核进入中断响应模式。

禁止EmbeddedICE．RT：第5位，禁止比较器输出。

调试状态寄存器(debug status)有5个状态位：

DBGACK：第O位，DBGACK同步值；

DBGRQ：第1位，DBGRQ同步值：

成都理工大学硕士学位论文

IFEN：第2位，内核中断使能的同步值；

nMl地Q：第3位，标示调试期间的存储器访问是否结束；

TBIT：第4位，TBIT同步值。

调试通讯控制寄存器(debug comms controI register)和调试通讯数据寄

存器(debug comms data陀gister)用于和宿主机上面的调试器通讯，将在3．1．4

调试通信通道中详细介绍。

3．1．4调试通信通道

ARM7TDMI处理器的EmbeddedICE逻辑，包含一个调试通信通道(debug

commuIlicationS cha皿el，DCCl【31。通过调试通信通道，可以实现目标机和宿主

机上的调试器进行通信。

调试通信通道主要由以下几部分组成：

(1)32位通信读寄存器：

(2)32位通信写寄存器；

(3)32位通信数据控制寄存器，用于处理器和调试器之间的同步握手。

这些寄存器在EmbeddedICE逻辑中有固定地址映射，处理器可以使用MCR

和MRC指令访问协处理器P14来对这几个寄存器进行读写。而调试器可以通过

扫描链2来访问这些寄存器。关于它们的地址映射信息，可以参看介绍扫描链2

部分。

3．1．4．1 DCC控制寄存器

DCC控制寄存器用来实现处理器于调试器之间的同步握手。该寄存器的格

式如图3．4所示。

EmbeddedlCE cont帕I
VerSjOn Resen，ed bi协厂-^^
31 30 29 28 27 2 1 0

l o 1 0 0 ● ．1 l‘ ● W R|
l L

|
DCC data read陀gister

DCC data write register

图3-4 DCC控制寄存器结构图

第3章ARM片上调试原理分析

Bitsl3l：28】：EmbeddedICE版本号，ARM7TDMI EmbeddedICE版本号为

0001：

Bits【27：2】：保留数据区；

Bitll】：对宿主机而言是通信写寄存器写入标志。当宿主机发现该位为1时，

表明通信写寄存器有新的数据到来。对处理器而言是通信写寄存器可写标志，当

处理器发现该位为O时，表明通信写寄存器可写；

Bit【Ol：对处理器而言是通信读寄存器写入标志。当处理器发现该位为1时，

表明通信读寄存器有新的数据到来。对宿主机而言是通信读寄存器可写标志，当

处理器发现该位为0时，表明通信读寄存器可写。

3．1．4．2通过DCC通信

调试器可以通过DCC发送信息给处理器；处理器也可以通过DCC向调试器

发送信息。这样便实现了调试器与处理器之间的通信。图3．5是主机端调试器和

目标机处理器通过DDC通讯的示意图。

．～l。，，。⋯。，．：．
一l
⋯⋯⋯

一，‘
TARGETHOST — DCCCO咖l

Debug盯 CPU

／ ＼
n，’严n．．．。．．』 l—．

I
～。一～“

l一

图3—5叩C通讯的示意图

3．2删7TDMI片上调试的实现
3．2．1调试系统

关于通过JTAG对以删7TDMI为内核的处理器进行调试的方法，图3．6
很好的表达其中的逻辑关系。

成都理工大学硕士学位论文

图3-12仿真调试系统结构图

整个系统清晰的分为三个部分：宿主机、协议转换器以及目标机。

(1)宿主机：运行调试器(如GDB、ADS)，宿主机发出高级的调试命令，

如设置断点，查看寄存器，查看内存，执行指令等。

(2)协议转换器：负责解析调试命令，然后转化为JTAG接口支持的低级

指令。如我们常见的BDI，MuItiICE(ARM公司提供给用户的调试工具，但是

只有在删的调试器ADW上才能使用)。当然，最典型的还是BDI。这并不
是说BDI比MuItiICE要好，这里典型的意思是更能清晰的代表层次体系，因为

Mu|ti|CE的协议转换是在宿主机上完成。

(3)目标机：包含以删7TDMI为内核的处理器系统。
3．2．2 A砌Ⅵ7TDMI的调试模式

删7TDMI调试接口是基于IEEE标准1149．1一1990以及标准测试访问接
口和边界扫描体系结构(st锄dard teSt access port锄d bounda巧．sc觚arcmtectI玳)。

删7TDMI为提供先进的调试特性而做了相应的硬件扩展。这使开发应用
软件、操作系统以及硬件本身都更加容易。增加这些硬件扩展之后，使得内核在

调试时可以处于两种不同的模式，分别为：

(1)暂停模式(HaIt Mode)：在这种模式下，内核进入调试状态(debug

32

第3章ARM片上调试原理分析

State)。这时内核被停下来，并且与系统的其他部分隔离。运行在宿主机上的调

试器(GDB)通过操作JTAG口，完成对内核、内存以及系统其他设备的操作。

待调试完成之后，调试器恢复内核和系统的状态，程序继续开始运行。

(2)监控模式(Monitor Mode)：与暂停模式不同的是，在监控模式下为

了保证系统对中断或者异常事件的处理能力，当内核其他部件已经暂停的情况

下，异常复位部件仍然可以正常工作。当发生数据访问异常或者指令取指异常，

这时内核并不进入调试状态，可以继续执行异常复位例程。

3．2。2。1暂停模式(HaIt Mode)

(1)调试阶段

下列事件都有会引起内核进入暂停模式：

1)断点(breakpoint)，读取断点处指令：

2)观察点(watchpo．nt)，对设置观察点处进行数据访问；

3)调试请求(DBGIⅫ)，外部调试请求。
在内核进入调试状态后，内核与外部系统隔离，这时可以通过JTAG接口来

串行检测内核状态。这样就使得在内核与外部系统隔离的情况下仍然可以对内核

进行调试。此外，通过扫描链1还可以把指令串行地插入到指令流水线(iIlstlllction

pipeline)。例如在调试状态时，通过往指令流水线插入STM指令来输出

删7TDMI寄存器的内容，并通过TDO串行的移出。
(2)时钟

ARM7TDMI内核有两个时钟，或者说可以在两个时钟下工作。

1)MCLK：存储器时钟。当系统正常运行，或者说系统运行在系统速度

(System Speed)下的时钟。

2)DCLK：测试时钟，即当内核进入调试状态后的运行时钟。在JTAG接

口的测试时钟TCK下产生，但并不是说DCLK与TCK相同或成某种分频的比

例关系。

3．2．2．2监控模式(Monitor Mode)

ARM7TDMI逻辑允许在进行系统调试时，并不完全地将内核停下来；而是

当内核正在被调试器询问地时，它仍然可以继续执行关键的中断服务例程。通过

设置调试控制寄存器的第4位(监控模式使能)，可以使能监控模式。当

EnlbeddedICE逻辑被设置成Mo西tor模式，断点和观察点就会使内核产生指令预

取异常和数据异常，并分别执行中断向量表中各自的异常处理程序。设置成监控

模式后，内核就不会因为发生断点和观察点而进入调试模式。如果要将

成都理工大学硕士学位论文

删7TDMI设置成Monitor模式进行调试，一些限制是用户必须要注意的。
Monitor模式下断点和观察点必须与数据无关；不支持外部断点和观察点；

不支持暂停模式(HaIt Mode)和监控模式(Monitor Mode)的混和模式；不提

供范围功能；断点和观察点的发生仅仅依赖于以下条件：

(1)指令地址或数据地址。

(2)外部观察点条件位(EXTERN0，EXTERNl)。

(3)用户或特权模式访问(nTRANS)。

(4)观察点的数据读写(nRW)

(5)访问观察点的数据宽度(MAS【1：0】)

3．2．3断点和观察点

软件调试中最基本的功能是断点和观察点的设置。在正常情况下一般通过替

换中断位置的代码，设置一条软件中断指令的方式实现断点功能；通过硬件指令

设置观测点。而ARM7TDMI由于内置了EmbeddedlCE，利用其提供的硬件监

测功能，可以很方便的实现断点和观察点功能。通过对EmbeddedlCE编程，在

不改动被调试文件代码的基础上实现断点和观察点设置，可以进行一些常规方式

无法实现的固化调试等功能。下面将介绍如何对EmbeddedICE编程实现断点和

观察点。

3．2．3．1断点

断点可以分成硬件断点和软件断点两类：

(1)硬件断点

硬件断点一般通过监视地址的方式实现。它不受存储器种类限制，可以在代

码的任何位置设置。但是由于受EmbeddedICE实时监控单元数量的限制，系统

中最多有2个硬件断点同时存在。

对观察点单元进行设置，进而产生硬件断点的过程如下：

1)对观察点地址值寄存器编程，将产生硬件断点的指令地址写入该寄存器。

2)如果运行在ARM状态，需要设置观察点地址屏蔽寄存器的位【l：0]为b11。

如果运行在THUMB状态，则将观察点地址屏蔽寄存器的位【1：0】设置为b01。

3)如果需要数据相关的硬件断点(数据相关是指除了需要匹配地址值外，

还要匹配该地址处的指令代码)，则编程观察点数据寄存器；且要确保将数据屏

蔽寄存器的全部位清零(0×00000000)。如果不需要数据相关，则将数据屏蔽寄

存器写为0×FFFFFFFF(全部置位)。

4)观察点控制寄存器nOPC位清零。

第3章ARM片上调试原理分析

5)观察点控制屏蔽寄存器nOPC位清零。

6)当需要区分用户模式和非用户模式时，编程nTRANS的值和相应的屏蔽

寄存器。

7)若需要，则以同样的方法编程EXETERN，RANGE和CHAIN位。

8)将所有未使用的控制值的屏蔽位置位。

注意：在监控模式(Mollitor Mode)下，在改变EmbeddedICE的寄存器之

前，必须设置EmbeddedICE禁止位，在编程完成后在清除该位。

(2)软件断点

软件断点可以通过监视从任何地址读取的位图实现。因此EmbeddedICE可

以支持任何数量的软件断点。软件断点一般只能在RAM中设置，因为要产生软

件断点处的指令需要被这个特定的位图替换，从而在该处产生一个软件断点。

通过编程观察点单元，可以实现在处理器读取特定的位图时会引起软件断

点。操作过程如下：

1)将观察点地址屏蔽寄存器全部置位(0xFFFFFFFF)，使任何地址处的特

定位图都会引起软件断点。

2)将该特定位图写到观察点数据寄存器。如果处于THUMB模式，则将高

16位和低16位重复写入特定的16位位图。例如，特定的位图是OxDEEE，则编

程0xDEEEDEEE到数据寄存器。

3)将观察点数据屏蔽寄存器全部清零(Ox00000000)。

4)观察点控制寄存器noPC位清零。

5)观察点控制屏蔽寄存器nOPC位清零。

6)当需要区分用户模式和非用户模式时，编程nTRANS的值和相应的屏蔽

寄存器。

7)若需要，则以同样的方法编程EXETEI埘，凡蝌GE和CHAIN位。

8)将所有未使用的控制值的屏蔽位置位。

设置软件断点的操作过程可以分为设置软件断点和清除软件断点两个步骤：

1)设置

a)读取要设置软件断点处地址的指令，并将其保存到别处。

b)在该地址处写入引发软件断点的特定位图。

21清除

如果要清除断点，则恢复该地址原来的指令。

3．2．3．2观察点

观察点的实现方式和硬件断点的实现方式非常相似：通过数据访问时产生观

成都理工大学硕士学位论文

察点实现。它同样不受存储器种类限制，可以在代码的任何位置设置。但是由于

受EmbeddedICE实时监控单元数量的限制，系统中最多有2个观察点同时存在。

通过编程观察点单元，可以实现在处理器读取特定地址的数据时会引起观察

点触发。操作过程如下：

(1)用数据访问的地址来编程观察点单元地址值寄存器。

(2)将观察点地址屏蔽寄存器的值全部清零。

(3)如果需要数据相关(除了要匹配地址值外，还要匹配读或写的数据值)

的观察点，要确保清除观察点单元数据屏蔽寄存器。如果不需要数据相关，则要

将数据屏蔽寄存器全部置位。

(4)按需要编程观察点控制寄存器，即：

1)nOCP=l；

2)l瓜W=O(读)或11IW=1(写)；
3)根据数据宽度设置MAS[1：0】；

(5)编程控制屏蔽寄存器：

1)nOCP=0；

2)nRvV=0；

3)根据数据宽度设置MAS【1：0】=0；

4)所有其他位置位；

(6)当需要区分用户模式和非用户模式时，编程nTRANS的值和相应的屏蔽

寄存器。

(7)若需要，则以同样的方法编程EXETERN，RANGE和CHAlN位。

第4章LambdaICE的设计与实现

第4章LambdaICE的设计与实现

本章主要从L锄bdaICE的总体设计、运行设计、接口设计和核心代码的实
现四方面，由粗到细的方式来介绍Lan曲daICE的实现原理。

4．1总体设计

本节主要从L锄bdaICE的系统组成、运行环境和系统结构三方面对
L锄bdaICE的总体设计进行介绍。因为是在一个较高的层次来介绍LambdaICE，

故在本节中不会关心实现细节方面的内容。

4．1．1交叉调试系统组成

交叉调试是嵌入式调试的一个显著标志，通常由宿主机、目标机和调试代理

3个部分组成。

HOST LambdalCE TARGET

0 PeriphealDevices

掣啐J Debug Protocol

Converter ◆

■ ARM

Gcc

Debug Co咖nd Abstract
Laver

’●涯H=上
一

GDB JTAG Interface 圈[
图4_1交叉调试环境结构图

如图4．1所示，由L锄bdaICE组成的交叉调试环境由如下3个部分组成：

(1)宿主机(HoST)：宿主机就是平常使用的装有Willdwos操作系统的

PC机，并在上面运行由北京科银京成技术有限公司开发的L锄bdaPRO集成开

发环境。

(2)LambdaICE硬件仿真器：L跚lbdaICE是片上调试方式(OCD)实现

的硬件仿真器。支持ARM7和删9提供的片上调试功能；提供网络和USB两
种方式与宿主机进行通信。

(3)目标板(乳忸GET)：支持任何采用删7或ARM9为内核的处理器
目标板，通过JTAG口与L锄bdaICE硬件仿真器连接。

37

成都理工大学硕士学位论文

4．1．2 LambdaICE的运行环境

(1)目标机端环境

L锄bdaICE支持任何一款支持以删7或删9为处理器内核的目标板，
唯一的硬件要求是目标板要提供标准14针或者20针JTAG接口。

(2)仿真调试器环境

L觚1bdaICE仿真调试器以科银京成的实时操作系统DeItaOS为基础，运行

在ATMEL公司生产的AT91IW9200处理器上(删9内核)。为了获得较好的
仿真效果，L锄bdaICE的硬件配置较高：主频180M，8MB的SDRAM，lMB的
NorFlash用来作为程序存储，10／100M以太网接口，全速USB2．0接口和RS．232

串行接口。

(3)主机端环境

主机端运行由北京科银京成技术有限公司开发的基于Eclipse架构的专业嵌

入式软件集成开发环境L锄1bdaPRo。LambdaPRO以LambdaTOOL为集成开

发框架，支持多种嵌入式实时操作系统，包括科银京成的实时操作系统DeItaOS、

开源嵌入式实时操作系统eCos等。针对不同版本的LambdaPRO，所支持的嵌

入式操作系统会有所不同。

(4)连接方式

宿主机中的L锄bdaPRO可以通过两种方式与LanlbdaICE连接：一是以太网
接口，通过这种方式可以实现远程调试功能；另一种是通过USB接口，在这种

方式下可以实现即插即用，非常方便用户的使用。以上两种方式都可以得到高速

的下载调试效率。

4．1．3 LambdaICE系统结构

LambdaICE是一个硬件仿真调试器，在交叉调试系统中充当调试代理的角

色，根据宿主机发送的调试命令，完成对目标的调试控制。

38

第4章LambdaICE的设计与实现

图4—2 La曲dalCE系统结构图

如图4．2所示，L锄bdaICE由3个模块组成：

(1)JTAG接口(JTAG Inte概e)
(2)调试命令抽象层(Debug CoIllIIlaIld Abstrauct Layer)

(3)协议转换器(Debug Protocol ConVerter)

4．1．3．1 JTAG接口层

JTAG接口是L锄bdaICE最底层模块。它直接和目标机的JTAG通讯，向上

层模块提供最基本的JTAG TAP状态机操作命令，包括状态机复位、TAP状态的

转换、JTAG命令的执行和JTAG数据寄存器的读／写等操作。L锄bd2LICE对删
内核的任何操作最终都将转化为对状态机的一系列操作。

事实上，本模块是对JTAG的TAP状态机操作的封装。按照TAP状态机的

定义，状态机只涉及各个状态之间的切换关系，与被扫描对象的实现方式无关。

也就是说，JTAG命令接口层如果基于上述原则设计，那么与ARM内核的内部

实现将没有直接联系，该接口也无需任何改动就可以很方便的应用到其他的

JTAG的设备上面，如PowerPC构架的目标板上等。

4．1．3．2调试命令抽象层

调试命令抽象层是L锄bdaICE的核心模块。它在底层JTAG接口的基础上，
将调试需要的基本命令再进行了一层封装。该模块和ARM内核的联系就非常紧

39

成都理工大学硕士学位论文

密，是直接通过JTAG口对删内核中的各条扫描链、EmbeddedICE等设备执
行读写操作。

抽象层包括实现调试代理需要的基本功能：

(1)寄存器读写

(2)内存读写

(3)运行控制命令

硬件仿真方式实现上述功能与软件监控调试的方式实现有很大的差别，这是

由于两者的实现机理不同导致。下面以软件和硬件仿真方式实现一条读取r3寄

存器的命令为例，说明两者的实现机制的差别。

由于调试代理运行于特权模式，能够执行全部指令，所以通过软件方式实现

读取任何寄存器的操作非常简单：系统在进入调试代理服务程序之后会立即执行

现场保护操作，保存当前执行程序的上下文。调试代理如果要获得r3寄存器的

信息只需要在现场保护的记录中查找上下文的r3寄存器信息即可。

ARM内核没有提供直接访问寄存器的扫描链，但是扫描链0和l能够扫描

处理器用于读写操作的32数据总线。要获得r3寄存器的数据，必须设法先将r3

寄存器的数据打到数据总线上面，再通过扫描数据总线的方式获得。通常的做法

是：首先在数据总线上打入一条读r3寄存器的指令，然后执行该指令。当让处

理器执行完该指令停止后，r3寄存器的数据就在数据总线上，这样就可以通过访

问扫描链0或者1获得。

从上面的例子可以看出硬件仿真调试方式获取数据的一个特点就是：所有数

据(寄存器数据或者内存数据)都是通过执行读写指令(寄存器、内存读写)将

数据打到数据总线上获得。

调试命令抽象层是整个L锄bdaICE的3个模块中结构最复杂，功能最灵活
的部分，代码量占到L锄bdaICE代码总量的50％以上。

4．1．3．3协议转换层

协议转换层是协议转发组件，负责接收主机端L锄bdaPRO发送过来的调试
命令，然后调用调试命令抽象层的相应接口，来对目标机进行调试控制。

和调试命令抽象层对应，协议转换层也提供3种类型的调试命令：

(1)数据读写命令：包括内存读写和寄存器读写命令

(2)运行控制命令：包括状态查询命令和控制命令

(3)辅助命令：一些为了方便用户使用而添加的功能

在调试命令抽象层基础上实现的协议转换层，无需关心底层硬件平台的差

异，这样便于实现一个通用的协议转换层。

第4章LambdaICE的设计与实现

4．2运行设计

LalllbdaICE调试环境是一个由多个组件组成，主机端调试器、仿真器和目

标机端协同工作，并接受用户命令的复杂的交叉调试环境。用户应该如何使用

LambdaICE，以及L锄bdaICE应该如何运行都是一个非常重要的问题，不仅关
系到最终完成的L锄bdaICE在操作上是否方便高效，更重要的是，关系到
L锄bdaICE的设计与实现。本节从L锄bdaICE总体运行流程出发，依次介绍本

文研究的重点：读内存、写内存、上下文保护和上下文恢复的操作流程。其他操

作流程不是本文关心的重点，这里不再赘述。

4．2．1 LambdaICE总体运行流程

软件的总体运行流程是在一个非常高的层面来解析软件的运行过程，从中可

以清楚的了解软件是如何运作的。

调试完成

’

／， 、
f 结束
＼ ／

图4-3 La胁daICE总体运行流程图

41

成都理工大学硕士学位论文

如图4．3所示，L锄bdaICE的总体运行流程如下：

(1)L锄bdaICE上电之后进行自检、设备初始化；

(2)检查目标板内核版本信息(通过查询JTAG设备ID Code)。目前

L锄bdaICE支持删7和删9系列内核，如果检测到是其他内核就通知调试
器发现不支持的内核；

(3)待全部初始化工作完成之后，L锄bdaICE进入就绪状态，等待调试器

命令；

(4)接收到调试器命令后交给协议处理程序；

(5)协议转换器将调试器命令转换成相应的抽象层命令执行；

(6)将执行结果重新封装后返回调试器；

(7)检查调试过程是否结束，否则回到状态(3)；

(8)调试结束。

4．2．2 LambdaICE读内存流程

读目标机内存是调试过程中运用最为频繁的动作之一，它的效率是影响调试

效率的主要因素。

图4-4 La曲daICE读内存流程图

如图4．4所示，L锄bdaICE在读内存时，首先要判断要读写的大小是否大于

64个字节。如果是大于64字节，则采用DCC方式读内存，否则采用指令模拟

方式读写内存。

42

第4章LambdaICE的设计与实现

4．2．2．1指令模拟方式读内存流程

指令模拟方式读内存是当今硬件调试器中运用最为广泛的读目标机内存方

式，它的特点是实现简单。

／， 、
(开始)
＼ ／

J，

选择扫描链l 执行指令

0T

将内存读指令输 从扫描链l读入

出到扫描链l 数据

T；么∑
是

图4．5指令模拟方式读内存流图

L纽1bdaICE通过指令模拟方式读内存的过程如图4．5所示：

(1)在使用指令模拟方式读写内存时，首先要选中删内核提供的扫描
链1；

(2)将读内存指令通过删内核提供的JTAG口传输到删内核的扫描
链l上；

(3)当读内存指令输出到扫描链1上后，触蝴内核会自动执行这条指令：
(4)在读内存指令的执行过程中，删内核会将读到的数据放到数据总线

上，故要通过扫描链1将读到的数据传送出来；

(5)如果要读多个数据，则要重复执行(2)到(4)的过程。

4．2．2．2 DCC方式读内存流程

DCC通道是砧洲内核专门为调试而设计的一种通信方式，通过DCC通道
读目标机内存，可以大大提高读内存的速度，从面提高调试效率。

43

成都理工大学硕士学位论文

／， 、
(开始)
＼ ／

1L ●

从扫描链2读入
启动DCC r+

数据

苓◆

选择扫描链2

●

将要读的内存起

始地址和长度输

出到扫描链2 停止DCC

●

／厂 、
(结束 】
＼ ／

图4-6 DCC方式读内存流程图

L锄bdaICE通过DCC方式读内存的过程如图4．6所示：

(1)当通过DCC方式读内存时，首先要在目标机中启动DCC Halldler；

(2)因DCC相关的寄存器是通过删内核提供的扫描链2来访问的，故
要先选中扫描链2；

(3)根据设计好的协议，将要读的内存起始地址和长度通过扫描链2传给

DCC H锄dler：

(4)DCC Handler接到读内存命令后就会根据得到的起始地址和长度去读

内存，并把读到的数据传输到扫描链2上，因此要从扫描链2上循环地将所有数

据传出；

(5)当数据全部读完后，为了执行其它调试命令，要停止DCC Halldler的

运行。

4．2．3 LambdaICE写内存流程

写内存也是调试过程中运用最为频繁的一个动作之一，它的效率最终影响调

试的效率。

第4章LambdaICE的设计与实现

图4_7 La岫dalCE写内存流程图

如图4-7所示，L锄bdaICE在写内存时与读内存相似，首先要判断要写的大
小是否大于64个字节。如果是大于64字节，则采用DCC方式写内存，否则采

用指令模拟方式写内存。

4．2．3．1指令模拟方式写内存流程

指令模拟方式写内存是当今硬件调试器中运用最为广泛的写目标机内存方

式，它的特点是实现简单。

是

图4-8指令模拟方式写内存流程图

45

成都理工大学硕士学位论文

L锄bdaICE通过指令模拟方式写内存的过程如图4．8所示：

(1)在使用指令模拟方式写内存时，首先要选中删内核提供的扫描链1：
(2)将写内存指令通过ARM内核提供的JTAG口传输到删内核的扫描

链1上；

(3)当写内存指令输出到扫描链1上后，’删内核会自动执行这条指令；
(4)在写内存指令的执行过程中，删内核会先把数据从数据总线上读入，

再写到内存中去，故要通过扫描链1将数据传送到总线上去；

(5)如果要读多个数据，则要重复执行(2)到(4)的过程。

4．2．3．2 DCC方式写内存流程

DCC通道是删内核专门为调试而设计的一种通信方式，通过DCC通道
写目标机内存，可以大大提高写内存的速度，从而提高调试效率。

开始

启动D(℃

选择扫描链2

将要写的内存起

始地址和长度输

出到扫描链2

否

将要写的数据输

出到扫描链2

所有数据是

否全部写完

是

停止DCc

■

／厂 、
【 结束

＼ ／

图H DCC方式写内存流程图

LaIllbdaICE通过DCC方式写内存的过程如图4．9所示：

(1)当通过DCC方式写内存时，首先要在目标机中启动DCC HaIldler；

(2)因DCC相关的寄存器是通过删内核提供的扫描链2来访问的，故
要先选中扫描链2；

第4章L锄bdaICE的设计与实现

(3)根据设计好的协议，将要写的内存起始地址和长度通过扫描链2传给

DCC Handler：

(4)DCC Halldler接到写内存命令后就会根据要写的内存长度不断地从

DCC的数据寄存器中读数据，并连续不断地从起始地址开始写入内存，因此要

把要写入的数据连续不断地输出到扫描链2上；

(5)当数据全部传输完后，为了执行其它调试命令，要停止DCC Handler

的运行。

4．2．4利用STM指令实现高效的上下文保护流程

在目标机停止运行后的首要动作就是保护目标机的上下文，因为它的使用频

率也是非常高的，故它的效率对最终的调试效率影响也是很大的。

是

图4-10利用STM指令实现高效的上下文保护流程图

LambdaICE通过STM指令实现高效的上下文保护流程如图4．10所示：

(1)因为此方式进行上下文保护的基本原理也是基于指令模拟的，故首先

要选中删内核提供的扫描链1；
(2)将STM队指令通过删内核提供的JTAG口传输到删内核的扫

描链l上；

(3)当STM认指令输出到扫描链1上后，删内核会自动执行这条指令；

47

成都理工大学硕士学位论文

(4)在STMM指令的执行过程中，ARM内核会先把所有寄存器的值连续

地传送到总线上，因此要不断地从扫描链1读入寄存器的数据，直到所有要读的

寄存器读完。

4．2．5利用LDM指令实现高效的上下文恢复流程

在目标机恢复运行前的重要工作就是恢复目标机停止时的上下文，因为每次

恢复运行前都要恢复目标机的上下文，故它的效率对最终的调试效率影响也是很

大的。

是

图4-11利用L嗍指令实现高效的上下文恢复流程图

L锄bdaICE通过LDM指令实现高效的上下文恢复流程如图4．11所示：

(1)因为此方式进行上下文恢复的基本原理也是基于指令模拟的，故首先

要选中ARM内核提供的扫描链l；

(2)将LDMn指令通过删内核提供的JTAG口传输到删内核的扫
描链l上；

(3)当LDM认指令输出到扫描链1上后，ARM内核会自动执行这条指令；

(4)在LDM队指令的执行过程中，ARM内核会连续地从数据总线上读入

数据，并把读到的数据写入相应的寄存器中，因此要不断地把要恢复的寄存器值

输出到扫描链1上，直到所有要恢复的寄存器全部写完。

第4章LambdaICE的设计与实现

4．3接口设计

本节主要就L锄bdaICE的3个模块的主要对外接口API进行简单介绍。通
过对模块的每一个对外接口的介绍，可以清晰的了解该模块的每一个功能。

4．3．1 JTAG接口层接口设计

JTAG接口层的主要接口如表4—1所示：

表4-1 JTAG接口层主要接口表

接口序号 接口名称 功能描述

l fnJTAGjargetReset 复位目标机处理器

2 fnJTAG-TAPReset 复位目标机TAP

3 fnJTAG—SetTapStat 设置TAP状态机到另一个状态

4 fnJTAG—GetTapStat 获得当前TAP状态机状态

5 fnJTAG—ExchangeData JTAG接口数据交互

6 fnJTAG—ExchangeTAPInst JTAG接口指令交互

4．3．2调试命令抽象层接口设计

调试命令抽象层主要接口如表4．2所示：

表4—2调试命令抽象层主要接口表

接口序号 接口名称 功能描述

l fnDCALSetScanChain 设置扫描链

2 fnDCAL—IDCode 读取IDCode

3 fnDCAL_ICE-Read 读取扫描链2

4 fnDCALICE-wr i te 写扫描链2

5 fnDCAL—StopCore 停止内核

6 fnDCAL-Restart 内核重新运行

7 fnDCAL—S tartDCC 启用DCC

49

成都理工大学硕士学位论文

8 fnDCAL—ExecuteInst 执行处理器指令

9 fnDCAL—SaveContent s 保存处理器当前上下文

10 fnDCAL—RestoreContents 恢复处理器当前上下文

11 fnDCAIJteadMemByWord 指令模拟字方式读内存

12 fnDCAL—ReadMemByHWord 指令模拟半字方式读内存

13 fnDCAL—ReadMemByByte 指令模拟字节方式读内存

14 fnDCAL—WriteMemByWord 指令模拟字方式写内存

15 fnDCAL—Wri teMemByHWord 指令模拟半字方式写内存

16 fnDCAL—Wri teMemByByte 指令模拟字节方式写内存

17 fnDCAL—CheckPower 检查目标机是否上电

18 fnDCALResetTarget 复位目标机

19 fnDCAI七—DCCWriteMemByWord DCC字方式写内存

20 fnDCAL—DCCWri teMemByHWord DCC半字方式写内存

2l fnDCAL—DCCWri teMeIIIByByte DCC字节方式写内存

22 fnDCAL—DCCReadMemByWord DCC字方式读内存

23 fnDCAL-DCCReadMemByHl】『ord DCC半字方式读内存

24 fnDCAL—DCCReadMemByByte DCC字节方式读内存

25 fnDCAL—EnCache 打开Cache

26 fnDCAL-Di sCache 关闭Cache

27 fnDCJ址-Cl eanCache 清Cache

28 fnDCALSetwPTRegs 设置观察点寄存器

4．3．3调试协议转换层接口设计

调试协议转换层主要接口如表4．3所示：

表4-3调试协议转换层主要接口表

接口序号 接口名称 功能描述

1 fnDPCL—ReadReg 读取指定寄存器

2 fnDPCL—Wri teReg 改写指定寄存器

3 fnDPCL—Step 单步执行

第4章LambdaICE的设计与实现

4 fnDPCL—CheckStat 检查目标机状态

5 fnDPCL—Cont i nue 连续执行

6 fnDPCL—S tartDCC 启动DCC

7 fnDPCL—Pause 停止处理器

8 fnDPCL—HardBkpt 设置硬件断点

9 fnDPCL—Watch 设置观察点

10 fnDPCL—TargetReset 复位目标机

11 fnDPCL—IDCode 读取IDCode

12 fnDPCL—DCCWri teMem DCC方式写内存

13 fnDPCL—DCCReadMem DCC方式读内存

14 fnDPCLWri teMem 指令模拟字节方式写内存

15 fnDPCL—ReadMem 指令模拟字节方式读内存

4．4 DCC Handler的实现原理

DCC Handler是一个运行在目标机端的用于提高L锄bdaIcE对目标机内存

读写速度的小程序。DCC Halldler借助EmbeddedICE中的调试通信通道(debug

com删micatiolls challllel，DCC)，以一定的通信协议来与L锄bdaICE交换数据。

与指令模拟方式相比，这样可以大大地提高L锄bdaICE与目标机的数据交互能
力。

4．4．1 DCC HandIer通信协议

根据DCC的硬件实现原理，每次通信最大能传输32Bit数据。据此，DCC

Handler与LambdaICE交互数据的协议设计如下：

(1)读内存

第1个32位数据：Bit[31]固定为b1，表示读内存：Bit[30—29]为读内存方式

选择位，boo表示32位方式，b01表示16位方式，b10表示8位方：Bit[28-O】

为本次读内存长度。

第2个32位数据：Bit[31·0】本次要读内存的起始地址。

(2)写内存

成都理工大学硕士学位论文

第1个32位数据：Bit[31]固定为bO，表示写内存；Bit[30—29】为写内存方式

选择位，b00表示32位方式，bol表示16位方式，b10表示8位方；Bit【28一O】

为本次写内存长度。

第2个32位数据：Bit[31．0】本次要写内存的起始地址。

第3一N个32位数据：为要写入的数据。

4．4．2 DCC Handler实现

DCC Handler代码采用汇编编写，且要与目标机无关，编译成二进制文件，

为作一个数据块放在L锄bdaICE中。因目标机有大小端，故得要有大端方式和

小端方式两个二进制文件。当要调试目标机时，首先判断目标机是大端还是小端，

然后把相应数据(DCC Halldler代码)通过扫描链l下载到目标机中，并让其运

行。这样L锄bdaICE就可以通过调试通信通道(Debug Cor衄u11ications Ch锄el，
DCC)实现对目标机内存的快速读写。DCC Handler的代码如下：

在如上所示代码中是两个宏函数，第一个是通过DCC通道接收数据的宏函

数，第二个是通过DCC通道发送数据的宏函数。

52

第4章LambdaICE的设计与实现

如上所示代码是DCC HaIldler的入口，主要完成的功能是接收L锄bdaJCE

发送给目标机的通信协议，并解析，然后跳转到相应的处理接口中。

成都理工大学硕士学位论文

如上所示代码是写内存接口。wHteWbrds接口是以32位方式写内存；

嘶teHWbrds接口是以16位方式写内存；WfheBytes接口是以8位方式写内存。

第4章LambdaICE的设计与实现

如上所示代码是读内存接口。Whtew6rds接口是以32位方式读内存；

WHteHWbrds接口是以16位方式读内存；WHteBytes接口是以8位方式读内存。

55

成都理工大学硕士学位论文

第5章LambdaICE的测试

对L锄bdaICE的测试主要进行了两个阶段的测试，即单元测试和系统测试。

5．1单元测试

由于整个L锄bdaICE使用GlW交叉环境开发，在单元测试中我们采用

GammaCP进行覆盖测试。GaⅡunaCP是一个运行在WiIldowS平台下的gcc程序

覆盖测试工具，它提供以下功能：

(1)语句覆盖测试；

(2)分支覆盖测试；

(3)决策覆盖测试。

经过不断地增加和优化测试案例，L锄bdaICE的3个模块的覆盖率达到了

95％以上。最后尚未被覆盖的代码主要是一些错误处理代码，构造案例来完全覆

盖这些代码非常困难。

5．2系统测试

系统测试从测试设计到测试完成，历经3个多月。测试主要分为三个大的方

面来进行测试：功能测试，联机测试和回归测试。在功能测试中，被测对象的设

计较为充分，设计的仿真调试案例比较完善，被测对象的规模也较大；在联机测

试中，不仅测试调试器的常规操作，也进行许多非常规操作的测试，应该说本次

测试是较为充分的。在回归测试中将前期发现并解决的所有问题设计成新的测试

案例，重新对L锄bdICE完整地测试一遍确保问题彻底解决。
本次测试的前期发现L锄bdaJCE存在较多不完全正确的地方。通过与研发

人员的不断交互，在回归测试中，以前存在的绝大部分问题都得到解决。整个回

归测试过程中，LambdaICE的运行非常稳定，经过修改后的L锄bdaICE能够正

确的实现调试功能。

本次测试耗费较长时间，主要按照测试计划、测试设计、测试实现和测试执

行四个步骤来进行。测试耗费的时间主要在测试的实现和测试执行上面。在测试

实现过程中，由于本次测试计划中涉及的被测对象规模较大，所以进行了自动生

成被测对象和测试案例以及自动生成测试报告的设计工作，该工作耗费了较长时

间。在测试执行过程中，由于被测对象的规模较大，加上测试的功能点较多，也

占用了整个测试过程中的很多时间。

第5章LambdaICE的测试

5．3测试结果

本文研究的重点是利用DCC通道提高删硬件仿真器LambdaICE读写目
标机内存的效率，故测试结果中启用DCC通道后L锄bdaICE读写目标机内存速
度成为了本文关注的焦点，表5．1是测试结果。

表5—1读写内存速度测试结果

目标板类型 读写内存方式 速度

ARM7 指令模拟方式 130 KByte／S

ARM7 DCC方式 690 KByte／S

ARM9 指令模拟方式 150 l(Byte／S

AI瑚9 DCC方式 700 l(Byte／S

对比表5．1中指令模拟方式和DCC方式读写内存的速度可知，当启用DCC

通道后，L锄bdaICE读写目标机内存的效率大大提高，达到了本文研究的目标。
通过对L锄bdaICE严格的单元测试和系统测试之后，LambdaICE的质量和

可靠性有一定的保证，我们对L锄bdaICE也有了可以度量的信心。当然无论测
试有多么全面，肯定会有遗留的bug没有发现，在以后的工作中我们将继续跟踪

bug，不断完善L锄bdaICE。

57

结论

结 论三日 J．匕

嵌入式系统开发是当今计算机软件发展的一个热点。随着嵌入式硬件技术的

发展，嵌入式应用的不断增长以及嵌入式系统复杂性不断提高，要求嵌入式软件

的规模和复杂性也不断提高，嵌入式软件的质量和开发周期对产品的最终质量和

上市时间起到决定性的影响，嵌入式软件调试工具的效率成为了人们关注的重

点。为此，本课题利用删处理器上自带的EmbeddedICE调试模块，研究实
现了一个高效的删硬件仿真调试器。
从5．3节的测试结果中可以看出，当打开DCC通道后，ARM7和ARM9类

型的目标板内存读写速度分别为690KByte／S和700KByte／S，而采用传统的指令

模拟方式的内存读写速度仅为130KByte／S和150KB删S。由此可知，通过DCC
通道对目标机进行内存读写，可以大大提高调试效率，达到了本文研究的目标。

本文就创新点而言主要有以下几点：

(1)在进行大量数据的内存读写时，采用了DCC通道来进行数据传输，这

样大大提高了调试器的内存读写速度；

(2)在保护或恢复现场时(内核寄存器)，采用了批量数据存储指令，这样

极大地加快了停止和恢复运行的时间。

目前，L锄bdaICE对多内核的支持还不十分完善(只支持删7和ARM9
系列处理器)。相信，随着我们对硬件调试技术研究的不断深入，能够在不久的

将来推出一个功能更加强大，更加稳定的硬件调试器，为嵌入式应用的开发，提

供一把利剑。

致谢

致 谢

本文是在导师洪志全教授的悉心指导下完成的，他渊博的知识、丰富的实践

经验、严谨的治学态度、精益求精的工作作风、对学科发展方向的敏锐眼光和对

科学的献身精神给予了我极大的启迪和引导，他是我终生学习的榜样。洪老师是

我进入嵌入式领域的领路人，而且在我的课程学习、研究方向、研究方法、论文

写作等方面都进行了精心的指导。他对我的严格要求，使我对科学研究的精神、

方法和内在规律有了非常深刻的领会，这些收获是我今后工作和继续学习的重要

基础。洪老师除了在学习上给予我帮助，在平时的工作中也潜移默化地影响着我，

使我明白了诚实、正直的为人道理和踏踏实实、有始有终做好每一件事的处事态

度。在此，我向洪老师致以最诚挚的感谢和最崇高的敬意!

我的周围是一群风华正茂的有志青年，终日沉溺于学术，偶尔游历于山水。

指点江山直抒胸臆，青梅煮酒，纵论英雄。他们永远是我高歌猛进的力量之源。

谢谢你们，我亲爱的同学!

感谢我的父母和家人，在我最困难的时候，他们总会在生活上给我无微不致

的关心和精神上的鼓励，还有他们对我的学业的关心和理解，常令我感动不已。

最后，但绝非不重要，要衷心感谢为评阅本论文而付出辛勤劳动的各位专家

和学者，在我即将离开母校之际，他们所提的宝贵意见和诚恳批评将使我受益匪

浅。

59

参考文献

参考文献
[1] IEEE． IEEE Standard Test Access Port and Boundary—Scan Architecture[R]．

IEEE．1990．

[2]ARM公司．A删Architecture Reference Manual[R]．ARM公司，2005．

[3]A跚公司．ARM7TDMI Technical Reference Manual[R]．ARM公司，2004．

[4]ARM公司．A跚7TDMI—S Technical Reference Manual[R]．ARM公司，2001．

[5]ARM公司．A跚710T TecIlnical Reference Manual[R]．ARM公司，2004．

[6]A删公司．A跚720T Tecllnical Reference Manual[R]．ARM公司，2004．

[7]ARM公司．A删740T Technical Reference Manual[R]．ARM公司，2004．

[8]ARM公司．ARM9TDMI Technical Reference Manual[R]．A跚公司，2000．

[9]ARM公司．ARM920T Tecllnical Reference Manual[R]．A删公司，2001．

[10]ARM公司．A雕940T Technical Reference Manual[R]．A跚公司，2000．

[11]A跚公司．The A蹦1删皿Procedure Call Standard[R]．ARM公司，2000．

[12]ARM公司．ARM PrimeCellTM Vectored Interrupt Contr011er(PLl90)[R]．ARM公司，

2000．

[13]周立功．ARM嵌入式系统基础教程[M]．北京：北京航空航天大学出版社，2005．30—71．

[14]周立功．A删微控制器基础与实战[M]．北京：北京航空航天大学出版社，2003．卜33．

[15]王田苗．嵌入式系统设计与实例开发[M]．北京：清华大学出版社，2003．

[16]杜春雷．A跚体系结构与编程[M]．北京：清华大学出版社，2003．

[17]谭浩强．C语言程序设计教程[M]．北京：高等教育出版社，1997．

[18]桑楠．嵌入式系统原理及应用开发技术[M]．北京：北京航空航天大学出版社，2002．

[19]罗蕾．嵌入式实时操作系统及应用开发[M]．北京：北京航空航天大学出版社，2005．

[20]Jean J．Labrosse．嵌入式实时操作系统uc／OS—II(邵贝贝译)[M]．北京：北京航空航

天大学出版社，2003．34—281．

[21]李芳敏．Vxworks高级程序设计[M]．北京：清华大学出版社，2004．

[22]孔祥营，柏桂枝．嵌入式实时操作系统Vxworks及其开发环境Tornado[M]．北京：中国

电力出版社，2002．23—211．

[23]Steve Furber著，田译等译．ARM S0c体系结构[M]．北京：北京航空航天大学出版社，

2002．

[24]Jean J．Labrosse．EⅢbedded Systems Building Blocks，2E[M]．北京：机械工业出版

社，2002．

[25]陈渝，李明，杨晔．源码开放的嵌入式系统软件分析与实践——基于SkyEye和A跚开发

平台[M]．北京：北京航空航天大学出版社，2004．

[26]陈智育，温彦军，陈琪．VxWorks程序开发实践[M]．北京：人民邮电出版社，2004．

[27]毛德操，胡希明．Linux内核源代码情景分析[M]．浙江：浙江大学出版社，2001．

[28]赵炯．Linux内核O．11完全注释[M]．北京：机械工业出版社，2004．

[29]陈文智．嵌入式系统开发原理与实践[M]．北京：清华大学出版社，2005．

[30]李伯成．单片机及嵌入式系统[M]．北京：清华大学出版社，2005．

[31]Jonathan矾Valvano．嵌入式微计算机系统实时接口技术[M]．李曦，周学海，方潜生，

熊悦等译．北京：机械工业出版社，2003．

[32]李华，孙晓民MCS一51系列嵌入式微处理器实用接口技术[M]．北京：北京航空航天大

学出版社。1993．

[33]任晓东，文博．CPLD／FPGA高级应用开发指南[M]．北京：电子工业出版社，2003．

参考文献

[34]wayne Wolf著，孙玉芳，梁彬，罗保国，谢谦等译．嵌入式计算系统设计原理[M]．北京：

机械工业出版社，2002．

[35]毛德操，胡希明．嵌入式系统一采用公开源代码和StrongARM／XScale处理器[M]．浙江：

浙江大学出版社，2003．

[36]陈莉君．Linux操作系统内核分析[M]．北京：人民邮电出版社，2000．

[37]尹立孟．嵌入式应用交叉调试器的设计与实现[D]．成都：电子科技大学，2001．

[38]张彦明．嵌入式操作系统远程调试器的研究与实现[D]．西安：西北工业大学，2001．

[39]何先波．嵌入式系统软件开发环境中调试器的设计与实现[D]．成都：四川大学，2001．

[40]魏勇．嵌入式交叉调试技术的研究与实现[D]．成都：电子科技大学，2005．

[41]张静．任务级调试的设计与实现[D]．成都：电子科技大学，2003．

[42]郑家玲，张云峰．嵌入式系统的内核载入过程分析[J]．微型机与应用，2002，2l(11)：

59—60．

[43]陈定君，郭晓东．嵌入式软件仿真开发系统的研究[J]．电子学报，2000，28(3)：137—139．

[44]曾杰，蒋泽军，王丽芳，张彦明．嵌入式远程调试器的设计与实现[J]．计算机测量与控

制，2005，13(7)：73卜733．

[45]DeltaCore使用手册[J]．成都：北京科银京城技术有限公司成都研发中心，2005．

[46]DeltaCore参考手册[J]．成都：北京科银京城技术有限公司成都研发中心，2005．

61

基于DCC和JTAG的ARM硬件仿真调试器的研究与实现
作者： 罗志刚

学位授予单位： 成都理工大学

相似文献(10条)

1.学位论文 左刚 基于Motorola16位微控制器的嵌入式开发系统设计及实现 2004
 近年来随着嵌入式技术在各个领域的普及以及消费者对于嵌入式产品的迫切需求，使嵌入式开发吸引了越来越多的关注。但是由于一些众所周知的

原因，长期以来国内的一些开发人员只好使用国外的嵌入式开发产品。这样，在提高了开发效率、缩短了开发周期的同时，导致最终产品的成本颇高。

Motorola公司的16位MCU提供了一种全新的片上调试模式：后台调试模式(BackgroundMode)，并提供了相关的开发资料，这样就使开发自主的嵌入式开发

系统成为可能。本文在深入分析了Motorola公司的相关资料以及第三方厂商为Motorola所设计的调试硬件的基础上，使用Motorola的16位微控制器

MC689S12DP256B设计并实现了目标芯片为Motorola16位处理器的嵌入式开发系统。

 本嵌入式开发系统大致分为几个模块：调试模块、编译模块和PC端主控模块。此外，本嵌入式开发系统还针对目前主流的开发工具的一些不足，提

出并实现了相关的解决方案。

 本文首先介绍了嵌入式调试的背景资料，主要是嵌入式调试技术的发展历史以及演变；然后介绍了与该系统相关的硬件设计，并着重阐明了基于

Motorola16位微控制器的硬件调试技术的实现；之后讲述了嵌入式编译器和汇编器的相关原理与实现，主要集中介绍了汇编器对于嵌入式开发的多种灵

活的支持；接着介绍了本开发系统的实现所参照的Motorola16位微控制器，以及选择该种处理器的原因；然后，在总体上阐述了本嵌入式开发系统的设

计及实现的过程；最后本着测试和验证的目的，介绍了使用本嵌入式开发系统进行多任务应用程序的开发过程。

2.学位论文 高峰 基于嵌入式开发板S1S65000的Linux系统移植和驱动开发 2004
 嵌入式ARM微处理器S1S65000是专为带网络功能的数码相机设计的，文章介绍了以S1S65000嵌入式开发板为基础，将Linux系统(内核版本2.4.18)移

植到开发板上，然后开发引导装载程序BootLoader和以太网卡、CF卡、CAMERA等驱动程序。

 文章首先在第二章介绍了嵌入式系统的硬件和软件、开发嵌入式系统时如何选择硬件和软件。第三、四章介绍了嵌入式微处理器S1S65000和

S1S65000的开发板。

 第五章介绍了如何将Linux内核移植到S1S65000开发板上，这部分包含开发环境的建立、调试和纠错环境、内核移植、文件系统的选择等内容。

 第六章介绍了如何开发系统的装载引导程序BootLoader，着重介绍了BootLoader的原理、流程和烧写FLASH的方法。

 第七、八、九章分别重点介绍了以太网卡、PCMCIA接口的CF卡、带JPEG编码模块的CAMERA等设备驱动的开发方法。这几章包括网络设备驱动程序的

概念和结构、PCMCIA和CF卡的知识、JPEG编码等丰富的内容。

 最后，第十章介绍了整个网络数码相机系统的构成和原理、应用程序的开发、技术特点和优点、尚存在的问题等，并展望了系统适合应用的领域。

 文章针对嵌入式系统的Linux内核移植和驱动开发、系统集成做重点介绍，对嵌入式系统的开发者特别是消费类嵌入式网络设备的开发者有很高的参

考价值。

3.期刊论文 耿玉菊 嵌入式系统开发技术分析 -牡丹江教育学院学报2009,""(1)
 基于嵌入式系统的概念,阐述了嵌入式系统的关键技术及嵌入式开发.首先分析嵌入式系统的技术特点,分别从嵌入式处理器和嵌入式操作系统两方面

介绍;在此基础上阐述嵌入式软件的开发过程,并结合嵌入式软件开发的实践,着重阐述嵌入式软件的一些开发技巧.

4.学位论文 刘华 基于ARM-Linux的嵌入式开发关键技术的研究与应用 2007
 随着软硬件技术的不断发展，嵌入式系统的应用越来越广泛，嵌入式技术也全面渗透到日常生活的每一个角落。掌上汉语学习机系统的开发是为满

足对汉语学习有需要的人群。随着经济、技术的不断提高，中国逐渐走向国际化，汉语学习人员的人数也不断增加，开发出一款掌上汉语学习机系统是

有充分的市场需求的。

 系统的开发环境是基于ARM-Linux开发平台，并应用了嵌入式开发的相关关键技术，包括嵌入式图形用户界面系统MiniGUI和嵌入式数据库

SQLite，系统开发的目的是在这些技术的基础上，为需要学习汉语的人员提供一款界面友好、功能丰富的语言学习工具。

 本文主要讲述的是掌上汉语学习机系统的软件开发过程以及开发过程中涉及的开发环境及开发技术。随着手持设备的硬件条件的提高，嵌入式系统

对轻量级GUI的需求越来越迫切，图形用户界面的支持是实现一个完善的语言学习系统的基础，本文首先从图形用户界面的历史、技术特点、结构模型、

发展状况等方面做了介绍，然后介绍了MiniGUI的体系结构和版本，以及移植的方法和过程，还详细阐述了应用程序开发中对MiniGUI函数库的使用和调

用方法。同时一个简单实用的数据库的支持会为系统中的数据处理和组织提供方便，本项目中有六个字典和其它学习程序，对数据的处理也相当多，本

文介绍了嵌入式数据库的知识和Sqlite数据库在项目中的使用和开发技术。最后，以系统中的单位换算模块为例详细介绍了应用程序的开发过程。本文

的内容涉及了嵌入式Linux软件开发的主要技术，在ARM-Linux嵌入式开发领域具有很强的实践意义。

5.学位论文 程君 基于ARM平台的GDB远程调试环境的研究与移植 2007
 嵌入式系统开发工具在开发过程中所起的作用日益突出，相关研究、技术也随之不断更新。随着硬件性能不断提升，很多智能家电、智能手机、甚

至高端游戏机都采用了嵌入式系统作为平台进行开发。作为嵌入式开发的关键，调试环节成为嵌入式系统研发的主要瓶颈。在嵌入式硬件性能不断提升

的同时，嵌入式软件规模也不断扩大，因此调试难度也与日俱增。

 本文首先简要说明了嵌入式软件的开发过程，回顾嵌入式交叉调试技术发展的各种技术。然后分析调试器整个框架和核心，介绍了调试器相关理论

和设计思想，并分别研究、对比几种调试技术实现途径和方法，并对调试器中关键流程进行详细阐述。

 然后，针对GDB所提供i386和SPARC架构下远程调试环境代码进行分析，抽象出调试桩GDB进行远程调试的核心流程，并根据具体硬件平台差异在

ARM处理器上进行代码和远程调试协议移植。本文编写过程中所使用的硬件平台是由使用ARM7处理器的S3C4510b开发板。进入测试阶段，又在S3C4480开

发板上进行了测试，对这套模式的可用性进行了验证。

6.期刊论文 袁明.张连芳.董淼.赵宇.郑武 面向对象技术在嵌入式开发中的应用 -计算机应用研究2003,20(2)
 随着信息技术的发展,对嵌入式系统的研究与开发也成为当前的一个热点.由于PC机上应用的GUI占用资源太多,不适合嵌入式的应用,因此嵌入式系统

对轻量级 GUI 的需求越来越迫切.首先介绍了嵌入式系统及其相关概念,并针对图形用户界面在嵌入式系统中的重要性,从技术角度对其进行了详细介绍

;最后结合当前流行的面向对象技术,介绍了该技术在开发TianCai GUI 2.0过程中的应用.

7.学位论文 赵星星 嵌入式实时操作系统移植技术研究与应用 2007
 随着嵌入式系统在各个领域的不断蓬勃发展，嵌入式操作系统对不同硬件平台的系统移植技术的研究就成为了嵌入式开发中的一个重要问题。嵌入

式操作系统的移植与嵌入式微处理器和嵌入式操作系统的体系结构密切相关，所以随着嵌入式操作系统种类的不断增加，微处理器体系结构的不断变化

，嵌入式操作系统的移植就越来越复杂。在这种情况下，提出一种通用的嵌入式操作系统移植技术来指导和简化嵌入式操作系统的移植工作是很有必要

的。

 本论文深入研究了嵌入式操作系统在不同平台的移植的理论与技术，在此基础上总结分析出嵌入式操作系统移植技术中的共同点，提出了一神通用

的嵌入式操作系统移植技术。这种通用的嵌入式操作系统移植技术总结了嵌入式操作系统移植过程中所涉及的所有技术，对嵌入式操作系统移植过程中

，从建立交叉开发环境到移植成功后的测试都给出了详细的指导。通用嵌入式操作系统移植技术包括了嵌入式操作系统移植过程中涉及的以下六个方面

内容：

 ■嵌入式系统硬件平台分析

 ■嵌入式开发工具环境配置技术

http://d.g.wanfangdata.com.cn/Thesis_Y1259044.aspx
http://g.wanfangdata.com.cn/
http://s.g.wanfangdata.com.cn/Paper.aspx?q=Creator%3a%22%e7%bd%97%e5%bf%97%e5%88%9a%22+DBID%3aWF_XW
http://s.g.wanfangdata.com.cn/Paper.aspx?q=School%3a%22%e6%88%90%e9%83%bd%e7%90%86%e5%b7%a5%e5%a4%a7%e5%ad%a6%22+DBID%3aWF_XW
http://s.g.wanfangdata.com.cn/Paper.aspx?q=Creator%3a%22%e5%b7%a6%e5%88%9a%22+DBID%3aWF_XW
http://d.g.wanfangdata.com.cn/Thesis_Y817632.aspx
http://s.g.wanfangdata.com.cn/Paper.aspx?q=Creator%3a%22%e9%ab%98%e5%b3%b0%22+DBID%3aWF_XW
http://d.g.wanfangdata.com.cn/Thesis_Y809749.aspx
http://s.g.wanfangdata.com.cn/Paper.aspx?q=Creator%3a%22%e8%80%bf%e7%8e%89%e8%8f%8a%22+DBID%3aWF_QK
http://d.g.wanfangdata.com.cn/Periodical_mdjjyxyxb200901064.aspx
http://c.g.wanfangdata.com.cn/periodical-mdjjyxyxb.aspx
http://s.g.wanfangdata.com.cn/Paper.aspx?q=Creator%3a%22%e5%88%98%e5%8d%8e%22+DBID%3aWF_XW
http://d.g.wanfangdata.com.cn/Thesis_Y1163939.aspx
http://s.g.wanfangdata.com.cn/Paper.aspx?q=Creator%3a%22%e7%a8%8b%e5%90%9b%22+DBID%3aWF_XW
http://d.g.wanfangdata.com.cn/Thesis_Y1096761.aspx
http://s.g.wanfangdata.com.cn/Paper.aspx?q=Creator%3a%22%e8%a2%81%e6%98%8e%22+DBID%3aWF_QK
http://s.g.wanfangdata.com.cn/Paper.aspx?q=Creator%3a%22%e5%bc%a0%e8%bf%9e%e8%8a%b3%22+DBID%3aWF_QK
http://s.g.wanfangdata.com.cn/Paper.aspx?q=Creator%3a%22%e8%91%a3%e6%b7%bc%22+DBID%3aWF_QK
http://s.g.wanfangdata.com.cn/Paper.aspx?q=Creator%3a%22%e8%b5%b5%e5%ae%87%22+DBID%3aWF_QK
http://s.g.wanfangdata.com.cn/Paper.aspx?q=Creator%3a%22%e9%83%91%e6%ad%a6%22+DBID%3aWF_QK
http://d.g.wanfangdata.com.cn/Periodical_jsjyyyj200302017.aspx
http://c.g.wanfangdata.com.cn/periodical-jsjyyyj.aspx
http://s.g.wanfangdata.com.cn/Paper.aspx?q=Creator%3a%22%e8%b5%b5%e6%98%9f%e6%98%9f%22+DBID%3aWF_XW
http://d.g.wanfangdata.com.cn/Thesis_Y1081330.aspx

 ■bootloader的移植技术

 ■嵌入式操作系统的内核移植技术

 ■嵌入式操作系统的内核调试技术

 ■嵌入式操作系统移植测试技术最后，在通用嵌入式操作系统移植技术的指导下成功实现了CRTOS(ChineseReal-time Operating System)内核到

HHARM2410评估板的移植，并对移植后的CRTOS进行了功能测试、实时性测试和存储性测试，取得了很好的移植效果。

8.会议论文 叶林辉.张春红.勾学荣.于斌 基于嵌入式平台SIP终端的设计与实现 2006
 SIP(session initiate protoco1)是VoIP(voice overinternet protocol)协议之一。将SIP软终端移植到嵌入式系统中使SIP终端有好的移动性和便

携性，也使得SIP协议更为推广。嵌入式技术是当前微电子技术与计算机技术中的一个重要分支。本文介绍了Linux下的SIP软终端Linphone1.2.0移植到

OMAP5910的过程，并介绍了嵌入式开发的一般过程。重点讨论了嵌入式系统、bootloader等关键技术。

9.学位论文 李向蔚 嵌入式系统软件开发平台配置管理技术的研究与实现 2004
 嵌入式系统的专用和资源约束等特性要求嵌入式操作系统必须是可定制的,而嵌入式系统开发平台作为嵌入式应用开发必不可少的一个组成部分,其

重要性越来越突出.如何构建开放、灵活的嵌入式开发平台,实现对开发资源的重用,并降低由于配置工具的差异性、复杂性带来的操作系统定制难度,一

直是个难题.本文正是基于这个目标,对嵌入式开发平台及操作系统配置管理技术展开了深入的理论研究和实践探索.嵌入式操作系统受应用需要、资源有

限、目标平台差异等方面的制约,需要不同的操作系统构件支持,其定制环节是现今嵌入式软件开发不可缺少的一步.而研究操作系统结构组成是研究嵌入

式操作系统可配置技术的关键.论文首先从可配置性视角对嵌入式Linux和CRTOS的结构上进行了详细分析.接着对几种嵌入式操作系统的定制技术进行研

究,抽象其共性,从通用性、可重用性、方便性出发,提出了一种基于构件模块的操作系统定制过程模型OSTAILOR,并从结构和原理上对其进行阐述.软件体

系结构是嵌入式软件开发平台构件集成的粘合剂.论文接着分析比较了几种平台相关的软件体系结构,选定具有"即插即用"特性的工具软总线作为开发平

台配置的基础,并提出了一种基于工具软总线的开发平台配置剪裁器设计方案.在上述基础上详细介绍了所实现的配置剪裁器的核心模块所采用的主要数

据结构、算法、函数流程和接口.最后给出了配置剪裁器评测结果.

10.学位论文 刘云霞 嵌入式集成开发环境的研究设计与测试 2007
 嵌入式系统是计算机应用研究领域的重要分支之一。根据嵌入式软件交叉开发的特点，普通集成开发环境(Integrated Developping

Environment，以下简称IDE)软件不能满足嵌入式软件开发要求，而由于嵌入式软件运行的目标机及其安装或移植的RTOS具有多选择性，目前还没有通用

的嵌入式IDE。

 海尔嵌入式IDE在Delphi环境下开发，实现支持C/C++，以及汇编语言开发的，面向多种目标机的嵌入式集成开发环境。本文从用户界面的设计原则

出发，参照多种嵌入式IDE的用户界面，设计出海尔嵌入式IDE的用户界面。通过研究分析代码编辑软件应具有的主要功能，采用开放源码的第三方控件

SynEdit作为海尔嵌入式IDE的代码编辑组件，设计实现海尔嵌入式IDE个性化的代码编辑模块，缩短嵌入式软件开发时间，为用户带来方便。

 本文重点是研究分析GCC编译、GDB调试的原理，采用后台调用GCC，GDB的方式，根据用户设置动态生成Make命令文件实现编译模块，并通过本项目

组开发的JTAG调试软件下载到目标板，进行各种调试。

 本文还研究分析了嵌入式软件测试流程及测试方法和策略，针对海尔嵌入式IDE开发流程，给出V型测试模型，对每个开发阶段进行测试，保证海尔

嵌入式IDE的功能性、稳定性等需求，使海尔嵌入式IDE具有一定的参考价值。

本文链接：http://d.g.wanfangdata.com.cn/Thesis_Y1259044.aspx

下载时间：2010年5月26日

http://s.g.wanfangdata.com.cn/Paper.aspx?q=Creator%3a%22%e5%8f%b6%e6%9e%97%e8%be%89%22+DBID%3aWF_HY
http://s.g.wanfangdata.com.cn/Paper.aspx?q=Creator%3a%22%e5%bc%a0%e6%98%a5%e7%ba%a2%22+DBID%3aWF_HY
http://s.g.wanfangdata.com.cn/Paper.aspx?q=Creator%3a%22%e5%8b%be%e5%ad%a6%e8%8d%a3%22+DBID%3aWF_HY
http://s.g.wanfangdata.com.cn/Paper.aspx?q=Creator%3a%22%e4%ba%8e%e6%96%8c%22+DBID%3aWF_HY
http://d.g.wanfangdata.com.cn/Conference_6473089.aspx
http://s.g.wanfangdata.com.cn/Paper.aspx?q=Creator%3a%22%e6%9d%8e%e5%90%91%e8%94%9a%22+DBID%3aWF_XW
http://d.g.wanfangdata.com.cn/Thesis_Y695966.aspx
http://s.g.wanfangdata.com.cn/Paper.aspx?q=Creator%3a%22%e5%88%98%e4%ba%91%e9%9c%9e%22+DBID%3aWF_XW
http://d.g.wanfangdata.com.cn/Thesis_Y1096760.aspx
http://d.g.wanfangdata.com.cn/Thesis_Y1259044.aspx

	﻿封面
	﻿文摘
	﻿英文文摘
	﻿声明
	﻿第1章引言
	﻿1.1嵌入式系统概述
	﻿1.1.1嵌入式系统
	﻿1.1.2嵌入式系统开发

	﻿1.2嵌入式系统调试器概述
	﻿1.2.1嵌入式系统调试器
	﻿1.2.2嵌入式系统调试器的分类

	﻿1.3本文研究目标
	﻿1.4本文章节安排

	﻿第2章JTAG原理分析
	﻿2.1 JTAG基本原理
	﻿2.1.1 JTAG边界扫描的工作原理
	﻿2.1.2 JTAG接口的内部结构
	﻿2.1.3 TAP控制器的状态机

	﻿2.2 ARM中的JTAG原理
	﻿2.2.1 TAP控制器、指令寄存器、数据寄存器
	﻿2.2.2 ARM7TDMI的扫描链
	﻿2.2.3 TAP指令

	﻿第3章ARM片上调试原理分析
	﻿3.1 ARM7TDMI的EmbeddedICE
	﻿3.1.1 EmbeddedICE结构
	﻿3.1.2实时监控单元
	﻿3.1.3外围控制单元
	﻿3.1.4调试通信通道

	﻿3.2 ARM7TDMI片上调试的实现
	﻿3.2.1调试系统
	﻿3.2.2 ARM7TDMI的调试模式
	﻿3.2.3断点和观察点

	﻿第4章LambdaICE的设计与实现
	﻿4.1总体设计
	﻿4.1.1交叉调试系统组成
	﻿4.1.2 LambdaICE的运行环境
	﻿4.1.3 LambdaICE系统结构

	﻿4.2运行设计
	﻿4.2.1 LambdaICE总体运行流程
	﻿4.2.2 LambdaICE读内存流程
	﻿4.2.3 LambdaICE写内存流程
	﻿4.2.4利用STM指令实现高效的上下文保护流程
	﻿4.2.5利用LDM指令实现高效的上下文恢复流程

	﻿4.3接口设计
	﻿4.3.1 JTAG接口层接口设计
	﻿4.3.2调试命令抽象层接口设计
	﻿4.3.3调试协议转换层接口设计

	﻿4.4 DCC Handler的实现原理
	﻿4.4.1 DCC Handler通信协议
	﻿4.4.2 DCC Handler实现

	﻿第5章LambdaICE的测试
	﻿5.1单元测试
	﻿5.2系统测试
	﻿5.3测试结果

	﻿结论
	﻿致谢
	﻿参考文献

