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KEY ISSUES IN HARDWARE-IN-THE-LOOP
OF SMART GRID

ABSTRACT

Hardware-in-the-loop simulation combines the merits of real-time digital simulation
and dynamic physical simulation, which is a key technology to study the system
properties and the integration technologies of the renewable energy, energy storage
devices and microgrid in the smart grid. According to the difference of physical
hardware under test, hardware-in-the-loop simulation system can be divided into two
types which are PHIL system and CHIL system. The paper analyzes the two systems
respectively in detail. Firstly, the paper studies and establishes the stability and
accuracy characteristics of the PHIL interface algorithms. Then the paper simplifies the
Damping Impedance model (DIM) interface and discovers that, when the damping
impedance in the VES matches the equivalent impedance in the HUT, the simplified
DIM interface has ‘transparent’ feature which means that the response in the digital
simulation is not affected by the delay introduced by the interface. And it also draws
the conclusion that driving capability of the Ideal Transformer model (ITM) interface is
good when the HUT contains power source. According to the above conclusion, the
paper proposes a novel interface algorithm, which uses the ITM to drive the physical
hardware under test and employs the Simplified DIM to obtain accurate response in the
virtual electrical system. The result of simulation shows that the novel interface
combines the merits of the Simplified DIM and the ITM when the hardware under test
is active. Secondly, the paper applies the CHIL simulation technology to test the DFIG
controller and establishes the wind farm simulation platform in which the short-circuit
fault characteristics after Crowbar’s starting are analyzed and simulated. The results
show that the ability of anti-transition impedance in distance relay will be related to the
operational status when using bus memory voltage as polarization voltage. By
comparison, when using positive sequence voltage as polarization voltage, the ability of
anti-transition impedance will be reduced. Based on the results, this paper designs the
preliminary adaptive distance protection for wind farm.

KEY WORDS: Hardware-in-the-loop, PHIL, Interface algorithms, DFIG,
Distance protection, Polarization voltage
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JEVRAS 3%, AR SCAEAM I, 45 3 5 52 4% Fi T R 5 HE AR IR A 4 4 T2,
HL LIRS R LB RAE HUT IR 5 RS, A5 EISER 30710 B R4t
H, DRIERG T — M EB KRS . 70 iR BRE R BURES 5 I 5 B
I 8 0 2% DLVE B FH Ih 3O B AN YR T HUT 72 AR 0 i K %

T I O 23S B SR SR AR 1, Rt i B fE
=B R Is T FVESHE 5L, LU T E AT .

FE VB 0 W 5 3 2 BER H SCHR[2] 38 H AE B A #ris, an P 2-2 s
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VES B0 HUT
T " T *
11 [ ™ > IF #
UT> '? T U
s 12 22
} X, Y, v J
Tg = — X Ty

B 2-2 PHIL # %844 i R 4 25 M) B
Fig.2-2 Transfer function diagram of PHIL system
FLrp T, i G AR S R . A AR GUT [AD I B R AL SE N AT A R T
T =e ™o Ty NHJA FIEM LSRR & RG0S R BRI . R
&, MT, =[E]. Wk E(EIENE (Lower power filter, LPF) , JU T, AHM &
AR . Ty, AVESH YR U, 77 A AR Ry, U AL PR A T, A RBAS & X,
AR ALy, WU A IS R . T, NHUTH R U, 7 A B R BAR &y, WUl
WItEIL R E . T, NARMACE X, P AR SR &y, WU 115 3 bR 2

IR FE AN SR R AR s ek S, T DA BT AL B N ST B A B
AL R JEE BT, T, T, T, MIRRFAER, VU AH IR R 2R GE 1 I A% 3 R 20
PR 7% As s IR, mT DLHE RA AR EMES

I R Gk e R LB RETTIMEB R G(jo)H (jo) 153 K
AT Wl (-1 jo) KIEEA: N=—P . Hrh P MG Pra Bk 2. xt
TN RGP =0, I RGEFRE N AT LEZM T AE (-1, jo) . T %

(-1, jO), WRSIG A FE

22 FEORKRLB R HZEM
2.2.1 IBETEFRE (1ITM)

ITM (ldeal Transformer Model) #11 FJEEE M & BRI B AR B . B

TG T LoV e BRI AE 2 itk i B, HL R B A 2-3 B B Z, Az, 43
N VES {1l i) 584 m S s BB RR HUT (56 3BT ug A VES I S5 280 LR

NP E IR R s SRR O R, 2 HUT TJFI'JIEIE%EPEI‘J%B/F
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LR, 32815 u, 9 u, DR TR BORR B SERR LT s At 9 S SRR, 12440
F75 I 0 38 T8 R T R RO A RE I DA S TR I TE HH AJD AR e AR 8 I 1 SiE
iN

V&S 3%????@? 7777777777777777777777777 i) HUT
Za T v * ]
i]_:ig
A
- HEIhRBCR | -

B 2-31TM #0249 B
Fig.2-3 Structure diagram of ITM interface

WA DRI R 5 R AR AT, T AR I 18] 2-4 Ffros

VES BO HUT
r 1 »(% U > e'SAt U2 ‘
Us -Zs 1/Z|_ 0
i BN
7 L 1 =2 X< 0
B 2-4 ITM 4% 0 418 8 $ 2 4 B
Fig.2-4 Transfer function diagram of ITM interface
WRAE & 2-4, & 5152 HITHALE R EON -
Zy oose
GL_ITM = Z_be t (2-1)

WAL A, HRENREATES (1,00, AR (-1 EMNR
TN

<1 (2-2)

Za
Zb

ITMES R 5, 5 T SEBL, 2 H AT S ) 2 R IR — % 1 5.
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2.2.2 B —FE RS (TFA)

TFA (The Time-variant First-order Approximation) 32 B45 FH i #5241k i 4%
A DAR — M 26 R s % (RL HEERER RC HLEE) il HJFEFEE WA 2-5 A, #ik
WESE RTDS M (B R — /N v f B A Rk, AR R r i 5 S A 3 i AR

.
k) io(K)
+ g - +
| +
VES  ui(K) Geq(k u(k) HUT

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

B 2-5 TFA 3 2 Z4 F
Fig.2-5 Structure diagram of TFA interface

TN L S A A I AR A0 T I 3T A

di, _ ai, +bu,
dt
Horbra b MR AR AR A B AN T S
HIR IR i
dy _
o=y

h
Yoa = Yn +§[f (Xn1 yn) +f (Xn+l’ yn+l)]

L, (k+1) =1i,(k) +g[ai2(k) +bu, (k) + ai, (k +1) +bu, (k +1)]
o A,
6 +0) = — o (kD) + (4 S () + 20, ]

1-=
2

EEE 0,00 = Kk-1) , H i) =, (K)G, () +ig (K) =i, (k+1) , T4

-10-

(2-3)

(2-4)

(2-5)

(2-6)



oSS N T e S VAT

1 bh
Geq(k): P
1 ah 2
1 2 ah bh @7
Ieq (K) = ——-[(@+ =), (k) + —-u, (K)]

e (2-6) eI W LIAFH] av b HIMH

al 2[ L) +ik-1)  w)+uk-1) T i,k -i,(k-1) -
b| hli,(k-D+i,(k-2) u(k-D+u,k-2)| Ti,(k-1)—i,(k—2) (2-8)

EAERNZ, HEPIEH VMR, DAPRIEZEREIER 7, TIX IR M
3. Rk, MR LB GEEE, BIAZERE R EOR, NMEshsE s
B o SO EE R B IR KT FIRBUE R A 557 Z0 s P R FR PR il 1 1245
IR .

2.2.3 R gL (TLM)

TLM (Transmission Line Model) )34 Ji ¥ oK 4% T 28 380N — 25 T F 2R 1
H R K 2-6 Fis:

Z k) Ry Wk) +
a + +
+ uy(k) Ua(k) | 2o
us(t) Up(K-1)+Ryio(K-1)  [Us(K-1)+Ryis(k-1)
ij .

B 2-6 TLM 4% o 24
Fig.2-6 Structure diagram of TLM interface

H R RN R 2-9 TR
L
R":A_t (2-9)
A LN EE S R, AUNTE STELR B P AL R I [R], 72 PHIL R4t
R R A ) S IR A ]«
TLM [P 3R 38 b6 B0 ™.
l-ae®M Z,

e — 2-10
1+ae ™" R, (2-10)

GTLM

~-11-
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_Z,-R,

Zb +Rk

HAR R T 5 S P 24 17 A R 2L A e 2 0 HL

RSO RL, TESERR PHIL i GEOCRR . 5340 R, O (LBE k85 5K

BB VERR LTI, RIRPERZE. AL PR B MU R, 45 2 5 SR

P TR,

1 TLM o 125 R s 2k 24 Ly Bergeron HUUA, PR i% %1

BB ARG ARAS R HOR 22T 2 0 2O K I A 07 2P A
Fl, JHREACOE BRE, IRRFPERAAE 3.23 150 T LLAGRAMT

(2-11)

2.2.4 B EBEEEFIE (PCD)

VES - ANN——— HUT
+ +
Za Zap n 4 Zap
+ us'(t) u'(t) 2,
Us(t) u(t)=u,'(t) U,(t)=u,'(t-At)
L T1

B 2-7PCD # Z# KB
Fig.2-7 Structure diagram of PCD interface

PCD (Partial Circuit Duplication) 5.3 LAHL AR S mt, WsIn 73RS Z,,

HERE A 2-7. KB OGN, 551533 PCD VAR AL 3 k4L
— ZaZb —SAt
2 N

T IR 36 B BT R, H A BIREE R T F1E, 52, Z, BUMEER, MR
GIR A RRENER .. BEBRINI G <1, Z, WIBAK K, ZIHESSHEE
IR EAFE, 7ESEBR7 5P 2 AR HME S o

TER SR ERIRTIR T, PCD MEHI07 BORS A J2 1ITM =R,

(2-12)

2.2.5 PFHEEFEITE (DIM)

DIM (Damping Impedance Method) # 1 7 3 4n&2-8ff 7~ . B Z,, AT
ERBAYT; Z2* AVESIFRJEFEST; u,' & VESHE NP im LR, u,' A HUT i 7 g

-12-
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LT o
HUT

Zab Z* i z(t) Zab

— VAT AN > .
Za | A N
uS(t+) us'(t) i) u'(t)| Zy
1

i1 (t)=i(t) Uy (t)=u,'(t) Uz(t)=u,"(t-At)

B 2-8 DIM 4% & 2544
Fig.2-8 Structure diagram of DIM interface

H [ 2-8 7T #E 5 HY DIMAEE 1 () TF 30 4% 328 5 5 90,
Za(zb -Z *) e—sAt

DIM (2-13)
Z+Z,+Z*Y +Z, )
R R R E YA, IR B RS E R E R e
Za(zb _Z*) (2_14)

(Z,+Z N2+ 2, +27%)

o3 R (2-14) T4 B R &5 it .

1) HTHAEZ, , TSAEHUTIF RSB BESUT:, X AR TR %
BAETT AR NEASEEIEF TR 0T, AR Z,, =0, ML
AL FIDIMAR Y, A SCTEFRySDIM(Simplified-DIM)AE R . = GeAa € ) T8 256 1AL
N

HR@-2) LA AT W, 24 2%~ Z, 5, SDIMABERLF T ITME% 1 B T m e
M

2) Hz*=7Z i, FFILEREIRENO, RGRESSLE, WEAMTED
KREAZER, RANRERAE T — W EH A0

3) HZ* > olit, DIMBEALELL NITM.

4) THEJOK LRI IE At N2 RS HI R e 1 .

HHUEFT L, - Z* B EUE S T SDIM 2 FS AL 4 R e 21 = 0 2 1R o

(2-15)
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2.3 OB DR

AR T & A O AR E MR DIMEE O B3 T I Ak . ITMAZ H Rl 72
FH PO, MSDIMA] LA S 2 ITME A I, B A S DUTMEE F1 A JE i,
H AR SDIMABRRE,  ULR 3 S VRS R ) A BEEAT 0 #T -

A MEORBHERRY, BREHUTTFREAN G HIE. ARSI HAE
REVR N S AU TR 2L, AR SO R — e MEHWVE S IRHUT R, T U R AN
=AM Bow K- RIIEM AR, FURGHAEESELDTFRE, €
AR THEENEIR . ML, MR HAE TP RGN ZE 25 K
H: VESTRAMHUT 7 RA B RABA R EHBRIERR, u v Z, 75 AVESH
LIRS EREEPT, u v Z, 2 ONHUTN S R F s S S8 3B T

e o

BH2-9 5% ZAEHELIEE
Fig.2-9 Equivalent circuit of reference system

S RGP R IR BT R R S )

_ U —ug

i = 2-16
° Z.+Z, (2-16)
. Z Z
Uy =lpZ, +U = —b;S :ZauL (2-17)
a b

FUBIR, PHIL REMR TSR, MBI R0, B
I VES TG0 HUT T 55 2 A7 TIABT L. R 9407 76 5 B 47«

2.3.1 VES FREGHIEHIE ST

D RAHITMEEN
R F T AT Vs S T, JHG v i S5 1 2- 10T s
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Zy t Zy
+ + +

B 2-10 ITM # o S8 36 B (X 7 AA R)
Fig.2-10 Equivalent circuit of ITM interface (with active HUT)

A ITMZE R X VESIN S 5 B B% B R 72, 25 52 15 21 W e 3«
U _ Zu,+Z.u,
Iz ey 7z,

XL (2-16) 25 H RS R nT £ . FR TARAEEE TR 3R e, VES{IN B e i
LK AR . R E B T IX M AR AR A . W HUT . VESHIFH Bt Eb (B A

%y =al0Jiliasl. GRS CLHRLD:

(2-18)

ul_,TM|:\/ 1+a®+2acosf
Uy |

2-19
1+ a® + 20 cos(6 + wAt) (2-19)

sin wAt

2 %me  arctan — %“LO‘COS_Q : (2-20)
U, a”sin® 0 —asin @sin wAt

1+
(1+ o cos 6)?
ik z, — M. A RGN Z, 2, WX (2-19) fX (2-20)

faAL 9

Uy 1w | =\/ 1+a’ +2a (2-21)
U, | Vi+a?®+2acoswnt
2%mearctan (sm a)Atj - A (2-22)
U l+a l+a

BRI MEAE 5 225 (e AR K, AR A HL IR BT SE R
M RGN z, SR, A
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| [T o2
U, 1+a’ + 2asin wAt
P HL VI arctan( f n a)A-t ) ~ a)At2 (2-24)
u, l+a“+asinwAt ) 1+a
IS HEAE 5 S AE AR LUl S, AR [RIFE B T ELIE BT o
2) KFSDIM#E
23K I SDIMHZ [ i A 5 5 BN, A g IR B A0 1 2-11 s
VES i* u* i2 HUT
— AN AN —
Za Z* Zb
+ + + +
u u
; <> 1=l ¢ U=u; Up=u*e ™" - <>
B 2-11 SDIM 2 ¥ w36 B (#X F7 AA R)
Fig.2-11 Equivalent circuit of DIM interface (with active HUT)
T
U, =U, =u*e (2-25)
C L uresAt_y
p=l,=—_— L 2-26
1 2 Zb ( )
X VESHN BT R A FH 28 2R B K LI e el
*_ *a—SAt _ *a—SAt _ %
u US+U <] uL:u e u (2-27)
Z, Z, Z*
et
é (Zbus + ZauL)
u*= b (2-28)

1
Zb

FEE R (2-16) 5K (2-28), AN F 4L,
1) 7%~ Z, I, SDIMES:HI B AE R FR e (B s A 7 (Zi—%) I35
b

Z,+7*+2,2% (2 - 1)
Z *
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I

2) M2 Z*=2, 1, uX=Uy, i*=iy. BIMVESEIL %, BH T RG R EAIE
R, TRA 5 BB VESI R B . FEJRIR N 5E A Z B BB e, R 2
ZRG . JFH, HUTHVESEXTVESI . I 0 B34 TE 52 m .

SDIM £ 2 i LLEAE IR, REDVELZ ITM #2H, SDIM £ HAE R |7]
IR EIR GIN T R BRI, AT RO I35 T HE S FE TR DR A 3R T
FMALZE . BT PHIL REERIHEE E IR @ H A B = A 2 3 (4T 50 Hz %48, 1 ms
JERT X R T 18 FEARRE), ToikZEE AT, # SDIM 42 F B B (i v 2 Ak
BRI

2.3.2 HUT TR GZGRIFEFRME D
B K 2-8Z% 2%, HEIERHETA:

Zu,+Z.u, U
R
- U —U _Up—U Z,+7Z, (2-29)
Z.+2, Z, Z,
e zx=2,, H(2-16). K (2-17). (2-25)% 5 R X HITMESDIM$EE

1A HEHUTA ) BV 43 50 A

Zu,+Z,u st

—-u
: U e -u,  Ze™M+Z :
Iy == 7 b=t Zb (2-30)
b b
20420
* —_ L
i _ U som€ a —u_ Za +Zb (2_31)
2-SDIM — 7 = Z,
b

NG 280 DLREAT T 18

1) HUTEE

B u, =0, A3 (2-30)7T W, K AISDIME: O HIHFTILE R, 52% K45
FEHUT R 40 1 L 5 g e B Sl AR ZE ) A, HEHRBOE T AL . T 24 %
FITMEZ O], BH3(2-29) 0T WL, Hhi 5255 2 G0 bz O 4R AN i SR Al fr i
[AAEIRIAT, 2SR T HE. HRBEIEREAE,

2) HUTHIE

HUTII A 5 ks, d(2-28)-20(2-30), S H (WA R HITM S
SDIMFZ TS, HUTA FAL T i 97 B85 A28 PR AF O 5% 22 43 30 A -
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Z.u +ZauL| (G |

2ITM_ |

|ierr—|TM | = |0 ‘ U _ UL ‘ Zb " Zae_sm (2'32)
B _ Z Z —SAt _1
|Ierr—SDIM | — IZSDIiI\(:I I0 % — | blljsst uaLuL H(e Zb )% (2_33)

b i (2-31) F1 =R (2-32) vl 41, ITMEZ 0 B B /N AR X R 2 . AR 4 3140,
Tt — DAk i, A5 2 IR IR A AR 228

Z/ i (2-34)

| err—IT™ | < |Ierr SDIM | ~ wAtl+ /

U (2-34) a] 0L, HHUTFRGA PR, A B g g i 2 1 B 5 IE L
TAESIFEME R, F5VEST RAMHUTF RSN HPT 2 IEAH R,
HHBHZHEFAEG. MHUTMBEREZRZN S, ITME LR TDIMEE .
EAEERE, MVESIBIESHUTM IS RE S YA 22 EN, REGasAh
FasE

2.3.3 ITM X DIM #Z OISR NG

Zi LT, 1TM 5 SDIM(BHHLIT ACHT )82 RS I R e 45 R 3R 2-1 P

Rk 2-1 B AhHbE
Table 2-1 Summary of interface accuracy

HUT JCURaT VES ] FL Hs i 7 HUT {1 F e i J3
ITM £ 1 BV WA, AT BICAWAL, AR
SDIM #11 K W EEARAERS At, {HICHAS
HUT A YRS VES ] FL Hs i 7 HUT {1 F e i J3
IT™M #2111 BICA WAL, AT G U
SDIM #2111 s VA TR LIUN

P EE RS I 1 LU Tk — 20 AR R 45k

1) X TVEST #%t, SDIMEZ N EAG“FEI Rk, G570 ma RAZE O
FERSIREM . TITMEZE DU B X AN, M DR R, & S EVES T &
SRR HR AR

2) ATFHVER HUT 7 5%, SDIM Al ITM £ H#54-S BF R 2 481
R AEWGAR . P LR, 1ITM 4 0 T S8R AR T /)N
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24 —MENBEMRNARSENFHEZEOZE
2.4.1 EF SDIM-ITM B9 BE O /53E

H_ESCHH el L, 24 HUT RS S A BIER, G2 SDIM £ I8 % ITM
B VHSAE LU A 77 B RGBT RAEWKE L. A, AR H—M
454 SDIM 5 ITM & B s B 8 B, iRk SDIM-ITM £ R, H R
WK 2-12 fiios. B ARE S XS0 2.3 17, CT MM EESS, PT N &I
DFT 85 i fdf B AR sl e

VESL1:

ITM (

Wk

VES2:
SDIM

L 2%

X
o
v

E 2-12 SDIM-ITM 4 0 532
Fig.2-12 Structure diagram of SDIM-ITM interface

HTHE 7 A SER B B R S [FIi 257 2 EAH R VES T 24t (R VESL
FVES2), 154> %157 FH ITM $2 U1 SDIM 4 1 £E 3T FHFRMT &I, VESL Hl VES2
HAMRIYIRIRE o B 7 B 03T, BT R A FER#E DR, VESL I VES2
(P SR T AN o ARFEASCER IR EE, HUT R VES FRSED ITM #:0
HATHEUR, T EAS R H U E R A SDIM 20§ VES2 ¥ & %, ik 2 4
VES T RS HAL S DUE s E RS . Kb, VESL AV BIHRE S,
VES2 it [Fi B RS S, DASCILR R, ARG, R 588t HUT %%éﬁ
t Z, Bh AN ERER .

HT/EH VESI-ITM-HUT RS B RS KH 1 ITM #:0, "JRIS
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B ARG TR P BRASE B, T AE 1 VES2-SDIM-HUT I RIR &1 B R G %
T SDIM #:1, #1543 R HITICE % Z* =Z, B, Ui Bas RAZHN
JEIR [Py gem, BRI R Td B R

ZITVEI B AE T 7 EAE SN i R R P FIN AT 2 8 VES T R4, b
FF B SHIRER . B SE 5071 B R Guis 56 )RR SRR AN B oK, X
R TATIN

L3 B TR AR B LB 5% 2,

2.4.2 LR FEIIRERE X

N FSDIMEE RS, TEie MR G R E R R R HvE S, #IERVES T R4
FI Z* 5HUT T RS0 Z, SCBFEPTICHC . SCRR[12]38 H, AT L@ I EHUT
T RS 1 RS IR A BUE T RE BT, HZ 5 AUE TR A HUT
TR

AR T RAE R S AR R S HUT 1~ R G855 RUH T SE I BRER o 12 50E O A
SCHER[43][44] AR RIS A, DRI ARENE oG (PMU) #dELE 1~2 A& A Al
BRSSP A

B HUT U0 f i FLE S . R B R L . G, &4 B s Bt
e (DFT) FARME. WIRMHEU,Zg, X 1,Zp, . DFT NE&EZE 2 MR
SREHGE, BRI ik BRMEREU,Zp, X 1,Ze, , FHES RIS
M. MATTEARA RS SE 2) -

Uz +UZ-2UU,cos(q, —
_ 12 22 U, cos(gy, —,,) (2-35)
Iy +1; _2|1|2C05(¢|1_§0|2)
U, cos¢, —U,cos I, cose, —1,cos
@, = arcsin 222, TR, arctan 2k 2P, (2-36)
JUZ +UZ =20, cos(a,, — 1) I sing, —1,sing,

K FIPMUSREUR &, 15808 91o810~20 ms. 1 A SCA FH SEi 34 H 4%
(RTDS) i RVEST R%4t, FHAB2UAHEvHE ARG N2 M 5K, 49754100 us,
XIT50 Hz &40, AHARNLINL1.8% TEIXFERLIIIT ][] R Y, BFZR R A 2
EAE S AH A RN AR RS . S IR B b R BT, SCRR[43]4% 1 et i s 4
PSR R R, DL A AR SRR B Y AH A AR A I A e S RS R & . A
T RR R GBI BRI ) AR E I R, AT LA RS AEVES T R Gt
FEAE—ANRE, AT DR SCHER 44142 H 1 3Rt Fe S50 PR ER S B R  R L J7

-20-



oSS N T e S VAT

R T SEIAE S MR B B BEPTUCAD, W] B 0(2-35) A1 (2-36) it — DT &
HYRPE R S HURR Lo 4RI RTDS SEBURS, AT LAEHEAEA] RTDS 4246 4% R-L
H Y rtds-sharcu-VARL.

2.5 EHl ot R EIE

A FET Simulink IR A5 EARTYL, XA T B BRI /AT AT B IGALE,
PLR 2 HUT CVEATA Y8 2 Pl ol gk 4705 F o

2.5.1 IiE R-L fa%y

Je5 8 HUT M8 B R-L J\%E"Jﬁ'ﬁﬁ‘%ﬁé 7% R4 in e 2-13 F}T/T
R LA BB O RT, KB RGN VES T RGN HUT 1R 5.
R VES 7 &40 % HUT ?%’:é}EE‘J L %ﬁﬂ@&ﬁgﬁ%ﬁéﬁthiﬁuﬁﬁ%
FRS L .

Z, | Ry, Lp

B 2-13 #K A RA LR QB 6 F % B
Fig.2-13 Equivalent circuit of HUT with passive R-L load

VES MRS AR 5 3 UGEN, #HOEREEN1ms. iERGHHEKS
é&)h%% 2-2:

& 2-2 H41 1 AHBA
Table 2-2 System parameters for example-1
RGSH HUE
P 100V, 70°

Us =R 30V, 15°
Za 50Q
Rb 100
Lb ImH

BEZEIR ims
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ITM, SDIM, SDIM-ITMZE3Fh42 15 N A VESI H s . HL J70 i B 4 K] 2-14
15F7~, HUTMIEE. HEm S ankE2-16. 17075

o . L . .
0.035 0.04 0.045 0.05 0.056
tis

B 2-14 VES MW, kv 2 (ALK HUT)
Fig.2-14 \oltage responses of VES (passive HUT)

1o T

53 3

D&F

nat

D2t

I/A
o

-l.o L L 1 L
0.035 0.04 0.045 0.05 0.055
t/s

B 2-15 VES & i#irq 2 (L kR HUT)
Fig.2-15 Current responses of VES (passive HUT)

100 T

Jm L L L .
0.035 0.04 0.045 0.05 0.055
t/s

B 2-16 HUT il % 2+ &2 (LK HUT)
Fig.2-16 Voltage responses of HUT (passive HUT)
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o . . . .
0.035 0.04 0.045 0.05 0.055
tfs

B 2-17 HUT Ml krq 2 (LR HUT)
Fig.2-17 Current responses of HUT (passive HUT)

] 2-14 % 2-17 {OSTH EDUHL R T /R [ 82 11 BEEE 2 5 o A
RIfIZES, FEHAT RN, 1RG0 07 2 (S B S b A
fOLRE . HIRAIRE . BB AL 221, e T RAA IR 00T, WOy
WA S 2 ANSERRTE O 0 LRG0 5% RGMRAAIRL A Uy L, K
L, + BEVIIRAMBAMBINU Loy, | Lo, « A3CEL(U-U /U, S
KifE, Loy, — g, IPHVRIGORE . 45 gk 2-3 .

& 2-3 &3 o R AR AT (LR HUT)
Table 2-3 Summary of interface accuracy Comparisons of interface accuracy (passive HUT)

k VES 1l B [ VES il HL i
ek s . s s
IR AR YR MHAiRZE
IT™ 1.10% -5.98° 1.10% 12.02°
SDIM 0.00% 0.00° -0.07% 1.00°
SDIM-ITM 0.00% 0.06° 0.10% -0.13°
o HUT il B & HUT il B
Mzt . s s s
M A 1R 22 IR IR T IR
IT™ 1.10% 12.02° 1.10% 12.02°
SDIM 0.00% 18.00° 0.00% 18.00°
SDIM-ITM 1.10% 12.02° 1.10% 12.02°
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ST EEE T, R HUT FREASHIE, KM SDIM £, VES ¥
RGN RS S8 — 8, 5B a2 IR K, BAE
MAE HUT ], &48 SDIM £ 1 S EU AR i, HIHma N AR ZEIR T 1 ms

O T 18%), M. HRBEIEIFAR R AR,

TR HITM #2000, Bt VES 7RG HUT 1RG0 AR R4 1 A& B 1 7= A
WIEAR . 124K SDIM-ITM £ 11, VES T R4 KM N ISEIT SDIM 11,
HUT 7 RGN RT 1ITM 821

2 LERTA, 2 HUT NLEIERSN, H#EHKH SDIM #21. FiR 7 45 R HT 3
e e —5.

252 HIR R-L ta%

FHHHE HUT S BIRINY, 2% REAMAHME 2-18 FiRl, mak
B T
— A AN

Za, i u Zy
+ | +

O o'

[ 2-18 #K R S A I R #0235
Fig.2-18 Equivalent circuit of HUT with active load
PIE RGBS HNR 2-4. VES MIFIEEA RS 3 Gl HUT &
JEIFAT R-L 8. 0 RITHEIR RN 1 ms.

k 2-4 34 2 SRR
Table 2-4 System parameters for example-2

ARG ZH HUE
Us vk 100V, 0°
=IRIEYE: 30V, 30°
U, 40V, 50Hz,40°
Zal 20Q+50mH
Za? 10Q
Zb 50Q+1mH
BIIER 1ms
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ITM, SDIM, SDIM-ITMZE3F4: 1 5%F N AVESI FE s o FE AL i S 4 & 2-19
2-20F 7%, HUTHUEE & FE MmN anE2-21. 2-22F 7~ . SREw L E S —iEFE
N1 B A R A R ) 4l 5840

30 27,
26}
20t /\ o
25}
24}
=
= 23t
=
HERGR
2 SDIM
SDIMITM
21}
20}
/
.30 ‘ ‘ . ‘ . ‘ ‘ 19 i ‘ . . . w | .
235 024 0245 025 0255 026 0265 027 0275 0242 0243 0244 0245 0.246 0247 0248 0249 0.25
tis t/s

B 2-19 VES & i (A K HUT)
Fig.2-19 Voltage responses of VES (active HUT)

0.8 /_‘\ 0.8 /\w
0.6} \ 0.75+ 4 N
' N
041 f N 07t
y \
0.2p i } 0.65}
- ! r SDIM
2 oy J \\ / J § 06l SDIM-ITM
\ Il
-0.21 4 / \\ A 0.55-
‘ 4
04l // 1 // B 0.5}
0.6 .‘ ' J 0.45
JPON B v ‘ LM ‘ oal ol
0.235 0.24 0.245 0.25 0.255 0.26 0.265 0.27 0.275 0266 0.267 0.268 0.260 0.27 0.271 0.272 0.273 0.274 0.275
tis t/s
B 2-20 VES Ml ®.ifivh &z (A R HUT)
Fig.2-20 Current responses of VES (active HUT)
30 : ' ' : ; ; ; 30
o5l BERG |
: SDIM
20t : 4
-
- IT™
P SDIMLITM
151 .
10 1

. L L L L I I I 5
%?235 024 0.245 025 0255 026 0265 027 0275 0.24 0.242 0.244 0.246 0.248 0.26 0.2562 0.2564 0.256
tis t/s

B 2-21 HUT & Eeh 2 (A% HUT)
Fig.2-21 Voltage responses of HUT (active HUT)
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1 ; - ; ; ; - : 0.95

0.8

0.6
IT™

snn\«unu\‘l;"\A /SDIBI

0.41

0.2r

I/A

oF
-0.2+
-0.4}

o8l /

-08f /

-1 L L L L L L L 0.45 L L L L L L P L L
024 0245 025 0-255“50-25 0.265 027 0275 0.266 0.267 0.268 0.269 0.27 0.271 0.272 0.273 0.274 0.275
tis

B 2-22 HUT & sz (& HUT)
Fig.2-22 Current responses of HUT (active HUT)

% FH BT R FEFR IR ITM, SDIM, SDIM-ITM £33 M faism ks B, 4558

% 2-5 Ao

% 2-5 B oy AAF T (R HUT)
Table 2-5 Comparisons of interface accuracy (active HUT)

VES ] 5 & VES I HL3%
e mEayi] - . . ~ X .
I ERT = AH AR 2 Y ER = HH AR 2
ITM 1.10% -5.00° 9.10% -10.00°
SDIM 0.00% 0.02° -0.23% 0.03°
SDIM-ITM 0.00% 0.01° 0.20% -0.03°
il < MEERD
- ) H‘UT1J\J%H: ‘ ) H}JT1J\JEE01L ‘
IR AH AR 2 I ER = AH AR 2
ITM 1.10% 6.36° 4.50% -8.43°
SDIM 0.00% 18.00° 24.60% 3.80°
SDIM-ITM 1.10% 6.38° 4.45% -8.43°

TR AT AL =R SDIM 45 3 2 BEPTILECHITE &0 T, 3 VES 7 R4t
R HLRM A2 8 (BB LK HUT &G A IR, B O R EAT <& 1]
PE?, X 5 HEAR T A R

MAE HUT VARG T, IRRAEAME O, HUT 7 RS0 R H
PRI FHER T AR AR . 242K H] SDIM #2 F1, HUT 1~ 5 48 A I M i e A2 7™
MR ITM S5 E 5, R AR 22D

KA SR SDIM-ITM #% )5, HAE VES T R G0 1 355 [F] T SDIM
BO, MAE HUT 7RG R REE R T ITM 20, 307 SDIM A ITM #2111
WAl fem VBN B ER G 0 B RGN 545
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RGBS RIGE T HR OS5 8. 22 LR, 4 HUT 7RG H R, #E5
KA CHE ) SDIM-ITM 1.

2.6 INE /g

BOSIEEERE T R EEN R YIERA T ERR MR, NESEE
ITM F1 DIM X 2 288z MRl it B b, nl#3 2L DIM £ 1—SDIM
0. X DIM #: 3T R G, BERIT 20 dr HAetE, SETSEBRrsisl. {2 SDIM
e OO BRBTUC LS H T B8 i K

M FRE PERURS A PE 2 AN AT R . et R — N E R A,
TR A ) 75 23 AN VES FITHUT X 2 T RS T % 5L,

HHEERERFIERS (VES) KIFSHIPERS, NALEHEE SDIM 1. 4
SCHLBHBLITECES , SDIM #2110 2 PUFE B R, B4 TN A B AN 22 5210 VES + &
G N, AR VAR — .

11724 p E Y ERAL R G (HUT) BRE B PR, SR [ Fhde 1 B0 E A HUT
AR E . 24 HUT AR RS, SDIM 42 1S3 —AN 4l () i 1A ZE IR 3R,
WU RS A AR, AR, Y% HUT &A RIER, ITM #0024
TR A IR AR YT, HSBUBIE AR 2 SDIM # LTS, R E.

T XN RS T I T S, AT AR S TR I R S DA IR AR
FYNENRA U B RS0 O BT TS, &t 7 Sen FHPUTR B, five T
AU R AR PAPURER S UTRC A & $& 4 7 —Fh SDIM-ITM IR A#: 0, 1351
HITM 322 R ST ) 3% 3 8%, SDIM 432 LM RS R VLI 2%, S 1 B0 1 7
VIR RS Bk T 2 A E SR, BUE T ENR A ATAE 1R, JRIRIE TR A
e miC SPRIUEERIE
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F=F FSEUFIBEREMERS

3.1 CHIL BYEA#L&

AZNE S RB YIRS L A4 (CHIL, Control Hardware-in-the-loop)
HEAT M

FEHAT(E S ER ST 5N, 03 B RTDS 2 [8] R A # AR T 2 1)
W EAZ S HIEHIE T, HALRIAE N v ZBE AT o I gl e B — i o ) 2% 5L
PR3 E, B HUT FREARGE SRS, Hib, SR EEMBFEGER
GitLL, 15 S RECT I E ARG AN AR R E PE I A

ST CHIL AT 2 E 77 seas 4 e SEst i, I BARAERS A 1/0 2101
LT BRI A RS — MK N (29 50~60 us ) TR BT A% 2
TERCKARIMERE 5y SEISRAREAY . X)L BT . S DIRE. H AT,
W R Gt 2 R H RTDS AR A Al K ) 52 #er77 B 4% RTDS (Real time digital
simulator).

CHIL AR 72 B FHAE 4% LR 37 38 B AR L F ) i T35 28~ se 0 5
R M CHIL HoREAT 4k LRy 3 B, 7T LARIA RTDS 1) -
HAORG—IRARG, FHAEMREFRAEM . @it RTDS Y GTAO (B i
) KRy A B R R A R BRSO E SR BT ORRE
—EAE CT. PT 2 G, LT EAE GTAO M4k R 38 E 2 (R In— AN Th &K
KA AKTBOK GTAO %t i Hs  FRITBEINE, DA A0 4k B R 3 B I R B B K

Ry BEERER L. BRGE S, FEHWEEEEW . Ry R BBkEad, W
Wk (55 k%45 RTDS ) GTFPI &, RTDS £xilfiid GTFPI B2 2] — Mk 5 5
F S-R fiil A #3412 kb S 5 B3 RIVRT FH 1421 RTDS P4 #8 FR) R 0L I8 i 2 1 O AT
HIRFR K 3-1 s
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@—D—\—% S T S ?—\—D—@
Digital 1/0 N Digital 1/0
A A

A
Digital to Analog
Converters

y
F
| [mm e

»i
(<

Power
Amps

=)

A
Relay #2

Relay #1 [3

\A 4

B 3-1 A Bl CHIL 3 AR 3t 2k & £k 47 2 47 M 3K,
Fig.3-1 Test the relay by RTDS and CHIL

M L) RS A DR R RO, IJLH%?F”E R, BRSH
ARSI L e — . IXFE, BEACHT R N R a@E RTDS Skl 4k H Ok
PR E, AT ZR e B A B £ L BR I

IR BE A S R R G KR, fﬁ'fﬂ@%%ﬂéﬁﬂ%ﬁ%ﬁa%‘ (BN S E
IEC61850 WM i1 & HF BT RN RAFEE 5, & I 5o RE IR I & U K /ME 5 4%
FIoRIEHE RTDS 1) GTAO iR, 43 A H D) 200K & O FT g

CHlL%ﬁzﬂ%ﬂﬂﬂfﬁﬁmﬁﬁﬁmmﬁﬁEE%%EE@&%J%& b & Re
FARPIAWIRE, ARG KRER B JERE, s KL i:BH iid
JeAR R & B O RS 1) DC-AC W48 8% i B 558 AC-DC-AC ZFifi %
AL IR T AR B 1 2 ) 2 — il DSP B PLC K4, oA Rt ikt T A 3@ CHIL
FEAKSLHL. i RTDS M RGHHIHEE . HL- IJBK:@H:*E Hifid GTAO Jﬁ
Fit, 18 DSP 8¢ PLC 4R RGUIRASE R PWM sk ik, J8id GTDI ($F
BN HiNF| RTDS AR, GRS f (g 100 AR 88 3047 1 il

AFEFET RTDS A —AN BRI () — RN AT A, 5evt 1 3 28 EE 305
FLE O, S T XU R T R AL R B CHIL BEARAERR O . AR
AR LA FAR ST AR ZE R
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Bl R Y - N2 T =L YA 78
3.2 EF RTDS B9 R M1 CHIL {(FE R %

3.2.1 i KB HLLE R B AR B 1T R IR R T HI SR

FEEF XAV AMLE) CHIL MK R Ged, AR R4aH 38 R B ey, HAt
S MIRA RTDS SEALAE 705 FARRY . b T4l 2830 0 KA AL 7 N E 5 &
% D] AN AE AR 0 PRI )
RO X 7 K BB HLALEE (DFIG) & B ML 20 1 R #E A& 3-2 Fios - DFIG
REERFEAAFE: KM WEHE . USRS AL BkTE ASIES . $H 2Ry

ol
&fm

Dmemﬁ%ng%m%%ﬁﬁﬁ@f%m BATE. BB, K
T T EAE B 5SS A TR — A % AR I S SIS G -
s B A A 8 SR P 15 0 19 1 o RS M 52, 5 B B W 4 B I 0 e
SR T AR 5 o 025 40 5 R e 2 R — 1 X 0 58 SR 984 e A
43R I o

R4 2

BYmAHg  MURHRS

5533
T

B 3-2 MU KALR 22 B
Fig.3-2 Schematic of DFIG

Pl

a

2 DFIG A TREIBAT IR, & TR il 5 5 7 e bk h 3 2 R D e b 1
£ 3271, . f, 70508 DFIG & ¥ T HIRKIMR, Hrp f 5 R,
N RN TR . BOXHNURS RO p, F2BEEn, WA

L - (31)
60
Hn<n i, KENFEELS T RBHELLTIEAT, NRERE, R s

AR AR P XU LIRS 7 B R PR DD Zn > n IV, IR & R E, N
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R [F AR, XS FAL AR 38 0 a4 2% 1) F B R Dh s Hn=n I5F, AR
AOIRAS, MR FRUS EEHLER LT [FPHLIZ AT, G AR e s iRt B bt . R,
M n R AR R ESE G AT T iR f, , R ORER f ah A S N —
B, MM SEIASEAEATGE AT

L, oA 042 1) 2% 32 47 T2 U8 59 XU AN L) D28 R S B BE R L, T4
) 28 3 B T SR NL IR P Q Az i1, o 042 1) 5 SR FFY 22 T ol 90 1L 1 58
) RGNS, B d R EAE S ER AR R, g flor R A R I R R A
N4 o) 3 SR P 8 TS W SE [ R B ), ST P Q ARSI, Hgh iy
JE P U 3-3 & 3-4 Flion:

Yi—— -1l ,
* R + . x Urd +}‘7
I o L e T e
< isq | i, |l ' PUrg p e R
P o pr L, py P e U o g
PS |rq Au,q

Usd
dg
Usq | Vo
Iﬂ% H - -
i Isd o sa lsa
At : " I
lsq ap |, Isp abe |, lge {
FEL DoY)

B33 #TMEARRETHEL G LXTIEH
Fig.3-3 RSC stator flux oriented vector control strategy
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Vdc ‘
Vdc* “ P igd*+ P| Ugd - Ugd Uge ald
+ % X+ dq SVPWM =
o Ug | U Ug | RERR ]
i +X_ p| 2% |-, ) 99 | /aff Ugp
LiLiL
eg
SPLL
L €ga €ga
oot | Cad dg o By
i ap |.Cop | abc Eac
0)1L )
igg | lgp iga
. dq . af Igb
Igd af Iga abc|_lgc
2R

B 3-4 & MM EARSZEMEEL R KZIEF
Fig.3-4 GSC grid vltage oriented vector control strategy

HHE I EER K )k L R G R AR R FFRAE T, BN ORYT SR, A AR
R i H P 2B BE /7. Crowbar )5 317 R A LR AR #2641 SR 41K 55 4% RSC,
T F% T ORI FE AR B B, M o AR Bish A, 4Kl
ARG HEF I, O RRDIER RS i, w5 B H] B R oA R Rk 32 3h 2
Ry, WImlRH GTO. IGBT S8AN AR E F B AE T o AL LRI, %74
Tias n] P 5 ORI AR . PRIRER A, B PR ) BR ORI LB AT KU R G
POEWEIEF BT, ARG KM 13030 Crowbar, J#KH IGBT S5 /] Ko ft,
H a5 an &l 3-5 fron:

~ NN A
]
S NN
RSC
ST IR

& 3-5 Crowabar £k 47 /7 32 I
Fig.3-5 Schematic of Crowbar in DFIG
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SR R AR
3.2.2 CHIL R&ZZE5#1%1t

AET 3.2.1 A7 ARG RN IE A IS AT 5 2 e P ) R, X AR 48
CHIL MR R GEEAT 4307« B 53T RTDS X B R G0 K AU R B LA g — W )
KL B RNl E R AR & ) RG T AT @A AR IR A (0 4 i) SR
NI DSP 528, % DSP B A2 ) HUT,

A AR DSP HIREAE R 40K F A K 22 R A 0 5 32 0F K (1) DSP $ il
Ao N E A EIE TR I E] T ] R AR e A . iRYE B AR
Rz A, R AR RGN 5 4% O S5 2 P o ] 3-6 o :

AR > T R <> - FB»>
s 525 L w3 BA
B B
o
A
) BMMAD). £
p e v
R
I D 7
po grww RIN coma wms BR < o ws > OO
A A
A A, A
GTAO GTDI GTAI GIDI | — GTAO
A A X
PV KK P BT
A
BEWO e B R |
VSCHEHI vscizsl 1
A

B 3-6 i AL CHIL & 22
Fig.3-6 CHIL Schematic of DFIG

B, B:0%5% B RTDS #) GTAO £. GTDI £ & GTAI ££#Hl. GTAO £H
T RGEF I HEIE. HR. R%(ES. GTDI H T2 DSP & H ) A Kk
DL S AR 28 10 TAE . GTAI T a2 32yt R ISR fE 5, LA F|H AR
JIEREE
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3.2.3RTDS NEKIFAERG D

ARATET RTDS A 5 AUR I L 77 2 58 S US4 T BB 5347

N B S M R RS R PE, RTDS SRA 7 L RE A 50us (K5 K 1 &
2us HI/NB KA BB 50us (A KA H A TR B A RG R RGBT &,
2us [/NEK R G H T B A PR AR 0 s 7 oo fF . RTDS B/ KT
PR AL T EE RNEK IO, AR GTO. IGBT SHLTH oo, it
LT B ND K TR L. PWM 2488 . NE KB AR RS20 tE, REfg
W R H I R R A AR IR CELHE R, OKBHRE. ERESE) MUEAREIR.

B TR AN — AT E TR S, FRERILBN NI KRG, #T
R BRI, i P R, SR RTDS $2AL /NP KAC T
BB . ARG AW E NP KRG NP KRGH Y. HpRobK
PRI FEEN J180 5y (RGE S RIHL AEBhEE) A RISy, /N5 KA AL
AR R R AT R AL ASI 3% K Crowbar 47 FELI . 417 B0 2R G5 () B AR 5 46 T 2 1]
3-7 s

RTDS CBRER
KB KATH RS —
‘ DFIGH Y :i>§ o o R0
b N O kR
R ATHL Il 25
ezt — s
i He
Crowbar Hi. #% ®
. GTAOGTDMEMHi: |
PWM Ik P X 50 H, it DSPz il 2%
A0 45 5| (BRI E)

B 3-7 AU AL CHIL 4 o R 32 B
Fig.3-7 CHIL interface Schematic of DFIG

RS AR . KPR ARG LN D R AGIERR? ] LA NIX R
— A RHARGTEA KRG ERG . RE 0 E RG24 22 0
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Bk, RTDS HRRIME A& T3 OBAGSRERE KB KRG MNP K RS, HAEH
(R4 VB N AR SO — B 3 AT ) PHIL #2 4R .

RTDS A P ML AR R AR A . — i 2.2.1 F7 R 40 BT () ITM ZEAB AR 345
., HonEEwE 3-8 fis:

DFIG or

RTDS RTDS STATCOM
Simulator Simulator

\V
|||— .
Current {SZ T
Measurement

Discrete Time-Step

) VSC Model
Main Network (1.4 to 2.0ps)

(50us)

A

H38KFK, My KEnREE
Fig.3-8 Interface of large step- system and small-step system

WRTAE, ITM 2 H3E TR KRG BORTE L (B RGSERPETTEUND,
BNRETT AR GREMRERBUNER KA. OB KM B IE SR E K
280, PR B EIREROOE K R G, 1%3% TR BRPELE T/ B KA 4
RCRE BT T A% R RPN 1 55 R FELATT o H 3 S5 R PP TEH 3 2% B BGE A [F
PRI X T v O G R BN D A BE BTN TR A5 DL, 2 51N I S B3t
1 RGAFEE . 1L H ATH) RSCAD3.0 il i I iZ3% I RTDS 245 % i .

T 2.2.3 FHH T TLM A2 A . PSR R 4 1 48 1 2 45 2K
N LR . TLM 32 R RE & TIER I DA R R S8, RIS RS
BEAT 70 B NIMA T HRAT AL P el 042 DAE R0y — S M s ki, E3E HAbvsin 1
—NEIEA C, AR AR R L RO S U, HAUA R R

At=yLC (3-2)
R AUAIBE KRG EA K. B ERATH.
At?
C=—- 3-3
L (3-3)

T SR ML AP AE A, PO DB E S B T 3R 45
SHLPUAAN, I 2 SR I S BT UL R AR B SEBR N 7 2R
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IR P R IATS
F T PURIAR ZE N KT 0.05p.u.

3.2.4 RTDS B e2 15 /Y

NP ARG T — %0 AR A Ay U HL, RTDS $24t 7 BUR A5 3.
BROGI
! 3 5
25\’%%5 45\’%%5 ES:%%S

TWO LEVEL WiC
A 3-9 RSCAD #97F % & % 2 RLC #2 A
Fig.3-9 The equivalent RLC switch model in RSCAD

HMR N 3-9 FraRSEROTRERAL . AR R RAE AT oG, MR Ak

T Dommel EyEIF AT 7853, Sl LS IF L, LM B RC 321
REBFFKE . ARG RERIE, L & C RS~ AgEiik.

ERDG1 P
0.o 0.oom
] A
R S LY - ] B
| A Iy T G
N
b A

LOW LOSS TWO LEVEL WS

& 3-10 RSCAD #9/& Hi4£32 48 JF X B AL A
Fig.3-10 Low loss ideal switch model in RSCAD

F— A 3-10 Fros KRS B AR TR S A . A7 A Y BT O e
IR, WMAFEREES L. HNERGRFRE, ERRTHECLELMA T HE
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P FL 2 2% DABTT IERAS RAR T AR 2R A2 L H R L S5 B2 C 2B R RN

JLC=1SDT T/L (3-4)

HASDT T/ILANSKATESK . HTIIN T — 0 U A SO, X H
R 2 AR . T S R BR U 2L, FEGBOR, T FL S RN )N

3.2.5 RTDS By/NFS K FHHEHIER

RTDS $& 4L K/IND K2l UL RE IS 2 XU X B LA O/ 22, iR AR
FI 7 2T dqO Ak R HIVELH Fo i 2T a5t o FLE M) DA AN B I e BELL - A
PR, TR R i 2R RS

AT PRI AT A N AR I A R N AR S I R A\ e AR
N e AR B AR, W U T 05 BT AR PO S R s 4
NSRRI, SN BN, R e s sl iR sk il o

3.2.6 RTDS By X#1EHY

RTDS [ 7e R et 7 KL AL . Fof NAR B Rl v & 2B 1 hiE 5
B it hE P SFET WAL -

T R?

Pm=§Cp(ﬁ,ﬂ) P 5 Ve (3-5)
T R®

Tt:ﬁcp(z,ﬂ)”z % (3-6)

1—3(1—e’§) 2 C,
W]—(ﬁ—%l—e )Cs 8]+ L+ 1)

HrtC, ~C, M54, RTDS eivfi i [ S8 I, SCARTAS)

C,(A.A)=I(C, ~C,p)sin[L57 (3-7)

3.2.7 CHIL EFI&5E

R 3-6 FIRGFEIEK, HBEBEANKEF—XM/NEK RS, WK 3-11
s, BRSO ERS . GRS, NEKAR RS, Crowbar £ HL %
R T AR, 312 VRS KE RS, Rk, ik Ls K
FEL YR
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B 3-11 i A ALey RTDS s 37 KA A
Fig.3-11 The DFIG model in RTDS smaII step system

Eew

. -e-) - TLLINE NAME T.
1 cela o LA TLiA 4 IBURC
1BURB
T : sEHoINo 10 RECEUIN END \auna —
uuuuu TERMNAL NAVE:  TER
—é—-e-)—/ 3 TLIASE Eytay ;(e_@_
cole 1BURA

Fault Cortrol Recloser Lagie

H312 Ky Ke) ZaEaR
Fig.3-12 Schematic of power system in large-step system

KL N A REZG L O 690V, THIEE 35KV 54— 20km H%m FRLZER T

LR, AN RGNS AT SN T R PTR -

% 3-1 DFIG CHIL H-15] % 3
Table 3-1 System parameters for example-DFIG-CHIL

RESH ZHUA RGBH ZHUAE
KL & 2MW JE 1 HLFH 0.0042 p.u.
P BT A 3kHz JEFHT 0.1021 p.u.
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AT R A A S

RHLAE HL R 690V - L 0.0060 p.u.
e AT 12m/s T 0.0859 p.u.
Jh gt 4.38 p.u.

EFXf—% 2MW XU XLA, 38 F ESCRUR AR T CHIL 245, XL
YA Tl XTE R s AT dIE LT IR G0 5.

ARG LR 1847 DFIG & T HIR AN 3-13 Fiom » M2 JF a] n Ho e i 15 5% 3
LMt HASEE D THD EN 1.05%, £F4 GB14549 ( HiAE i & 2 F HL W i
BeY HHE 3 AR

FITh

nnnnnnnnnnnnnnnnnnnn

B 3-13 DFIG & T #.i&
Fig.3-13 Stator current of DFIG

i

IEHIZATI DFIG ¥ 7 R BIE an &l 3-14 Fios, IR BT

WAROTOR T O
W—Ihg W-lory

AWANFAWs WAWAWAVAWA

OO0
Y

T SR N N NS A VNN

aaaaaaaaaaaaaaaaaaaaa

E 3-14 DFIG % T ®i&
Fig.3-14 Rotor current of DFIG

1B IBATI B AR H R AR , B AR /N T 0.2%. 7E PR )45 (BT,
REFIERE Rif. HEEwE 3-15 frx:
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B 3-15 A AA &K L AL
Fig.3-15 DC bus voltage amplitude

IEHIBATIN A ThE D AR E , BWahH /N T 1%, A DIZhHR L8 1.93MW,
FFRIRRIE 96.5%. it A I EIBIE A 3-16 fios:

Subsystem #1|CTLs|Vars | O
[

B 3-16 A%k 69 H 2. LR
Fig.3-16 Wind farm output waveform of active and reactive power
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BT XEBIHEBEYE 7 X ERIE

=2 AH CHIL AR X DFIG #HT T R 7R PR IR, FF M8 7 X 48 &5k
1P . ARBRHZ Gk — 00 K SR 3R T 20

DFIG [&5H S ig AT JE AN E T g K L, HR NSRS E A 7P
ML, &7 EEEGEE BRI, 7 NS 5 RS BN AIE . BT
RIS X A7 A FB LR S5 A A B L AT R BELJE PR D), 5t i 77 2R G v (R 3h U R 4
e UHL RS UK SRR, HE TR SR, RN R A
WA HR . W H g, EN SRS HAE NIRRT A .
H—ERE TR, 7RISR EH. AR &N ZAeEBT,
— A I B Crowbar {37 B s 5 148 e M0 Of: PRASRS T-IAR i A

TE F X R A R R, U XU ATLEE () R R 1 S A S R LA A E, 7
TN M bR . AR DFIG SRS A 7P L, (HILERE 5 %
Gl DR ML (SCIG) WAHVFZ A, FEARBLLELL T # 7TH :

1) BT Crowbar HFHEK, PG EE 70U B FHAS BE 20

2) DFIG #7872 %15[-0.3,0.3], 1M—M 5P HHLEA s ~0 MfEE.

— & Crowbar B35, FHENCRE G RS XIS IAER 1 3 A K
L T i 25 TR A P 0 AL . AR IR R, A T T SOUUR R AL ) FEL G
BAAL, B XL DAL S A SO R (R B AR, B RS A LVRT
Iy HT S J5 DFIG LI AR AL JUAEE

4.1 WIGRE N FE AL AR FE A 0 AT
411 FRESHEE
ARDCAE T Vo e AR R I 32 A% R STRR[30] 70 Bt B e 29 8 05 V2 o % 1 = AR Y
248, H MR RRN:
u, =Ucos(wt+g), ub=UCOS(a)t+¢)—2?ﬂ), uC:Ucos(a)t+go+2?ﬁ) (4-1)
xf b EAT Ry s AR, AT — A IR R E A AL LR = AR Rk 5

u= %[ua1 t)+au, ()+a’u_(H)]=uee* (4-2)
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XTSRRI RS, AR RS RTAER . %, TR A Ve x
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G=§[ua(t)+aub (O+a?u, ()]=U e +U e e 1 (4-3)
KA u, NIEF D EIRE, o NIEFDEVIME, U, ATFDERE, o, N7

BRI . W 4-3 %A 0 B A 82, T8 %k 2 B R i -
u,=Re(u), U,=Re(a?u), U,=Re(au) (4-4)
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N AL G SRR . PP SRR B B 4-1 K 4-2 s
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ro I Nej S
r S

—€— NN+
VAR

T ET

A 4-1 R EHERFHELEE
Fig.4-1 Positive sequence equivalent circuits of SCIG
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Fig.4-2 Negative sequence equivalent circuits of SCIG
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Pl 0 NETHRRAE, | NETHEERE.

138 45 (IR AT RR AT ARAR I, i 2eik ks

(4-5)

R T T
.= —— 4-6
TLoCGL L Lo (4-6)
L 01— 1
j=—m ¥ 47
L Lo “-7)
N St N St N1 2y W L Ny L
oAl B A, Al faidE RS Rk, = Lm BTG Rk = Lm ,
L=l —L2/L, L'=L L2/, .
FH L% B AT L O M CE IR 2 S R L
, L L LL, L (L +L) )
L'=L +—wem o 4 rom oy fm\se ) o 21 4-8
et L L T L, L+l L - L/l (4-8)
L' N MFEFIE 2 S 2 L
Lrl:Lro-+ LSO'Lm :Lro_+ LSO'Lm +Lm_Lm(LSU+Lm):Lr—L$n/LS (4_9)
LSO' +L|T| LSO' +Lm LSO' +Lm
Zr ERrR, EMH e A A
=k P (4-10)

LS LS
B = (o Lo Lo L)y Bty w, WS RGRAR KR, L, L LA
RGBH. AT, HESRIE THsEy, TRy, , i BT BRE T, UUF

MR, By,
4.1.3 EFHL5E

ME N RGRERRG, AH T BRI ERAR, N E TR R
w, B =R

Js.:asfl-*_!r;sfz-l_l?/sn (4'11)
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Heby ARGIEFREIR CRRAWRD, v, NRESUFEEIER, 5
WRGREG . v NARGEARIAR (BRAWRD, 525 M EWSHG %,
LR A .

WG 24 ORBE T BT AMBHILT IEF. RN, e
TERGN T RN, TN B, 2B TR mER, k),

J:LST:LS' Jal)JL , :jia) (4'12)
MG IE T 577 5] 2 B R A :
_ u IO
%Fi%A%Tyw (4-13)
. 0 2 i
[//sz = juaz) :%e]wﬂ (4_14)

Krp U R BRIEE, o WIEFREYIR, U, BGFaRiEeE, o, i
¥ BRI -
5 4-11 T (AR R LT BN B, HA R R 2 G S T LR ik
HAFfh e, BAFRIER
AN () (4-15)
R Bl < LT, B B S BB R R A, T BASRAS SRV L AT HE IR
V0 (07 ¢ pre — [ 41 (07) +1/,(07)]
_Upemelt yeineint Yt U e -Ue -Ue  (4-16)

J (2

t=0
Joog

Hrhy,,, WSRO BERE R B, U, AT R IR, o, RO RT LR

HIFH

FH T 4-1 7 25 20 re 3% PRI R DA SR R ] 3 an =X 4-17 Fioms:
_Ls_Lfn/LrZE _
== s (4-17)

S S

H1 I, XX Crowbar J5 31 i€ F- I RESE Y B 2800 358 i 3K 4-18 fros:

U e _yeln _y. el
l//sn: pre : 1 2 e—t/TS (4'18)
J[OX

XA BT ARG REIA R 5 E TSR S A I REE LN, L
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Ts 0
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IR HCT, S0
G LA, SRR Crowbar 1505 5t T-0UREEE ik Ut 4-19 7

i 1Ppre jo P
L Uem . Uele U e —Ue” -U,e
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Jo, Jo, Joo,

By =t (U2a Uy Lo, U Lo tlT) » ST, o 5 R G W S K

LLLRRAR UlpU,Zp,U,. Lo, W15 RGN A %,

e—jwst

et (4-19)

4.1.4 FEF s pE

55 FONBAEE S, U oy = 5 5 e 27
V=W 1 W W g (4-20)
SCHRI26]ZEHE SR, YCAFERRR LGS T, #6235 ~0, PHILE T,
Trih, BRI R TN & TR R
o= Lol =L (4-21)
w.=Li+Li ~L i
{Hi%307E Crowbar FUBHAELER HAER . [, SUERLAT K IEE i,
e 7 R N BUE TR N [-0.3,0.3] s FEANH AL s ~ O IS8 . DL 7E5% FE I 4 i 74 1) 36
il EHEAT I
B SREUE 4 B T 72 2 O o 7 RE0RAE B, S5 F0N IE 5 v
WA
U
|s,1:Z—l (4-22)
HAR I A R TR, 254 R4 Crowbar FBHBEE, HRAE 4097 55 R T4 T

UEREENWSE

T ja)sLm s }
"R oL (4-23)
AR 4-5 1T 15 5% - BB F) I e 5t i 2 Ay «
— e < j L - e " u,
Wi1= Lrn|5!1+LrIr!]-:(Lm+RCJ/aS)S+—I}2)SrLr)ISv1:Lrl IS']-:Lrl ;_ll (4_24)
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VORI 575 5y B S B0 RE v ., AR 4-2 PORIGGUF SRR, I
RAE TR ZR, Fer My BN

s Jo, Lm - Jo, Lm u (4_25)

Ir2= : Is2= : —
TRIC-9)+jol, | RI2-s)+]jol, Z,
RN 4-5 T35 TG B 1R A7 o il e 97 Ay
— _ - ra. ja) L L - v " E
—L Is +L |r - L + S m T |s —L Is —L — 4'26
l//rf,Z m 1s.2 .2 ( m RC/(2_5)+ ja)er) 2 r2 182 r2 22 ( )

St L=l +—I%Enbe it s Crowbar HuBELEY R T 6 S HUER.
Rc/(Z—S) +Ja)er

#5¢ i SR VR (1 SR WA R 5y A5 58 AR A2, #7474 7 Crowbar
DR LR A BRI A HRLREL,  SRABA— i FRL A T 5250l 1~ FX) B R WA, 2% AR N E
LIS S R R o

JoT [BATIRER 7Y, ACAR ML 2 N H BN F,  JRAE AL e AR SN LA B
BELA BB ) AR A

dy,
- i joost
o ()7 ——dL = Y (4-27)
R+jol,' R +ol,'
T 4 T e P R AR A I B R e A B R A B, Bt PRt

=K, e (4-28)

r

H Ky NEIR GG, R0 TR AT,
L' L -2

T == 4-29
R (4-29
B 4-27 J 4-28, W15 1S R RS RERE I 1 e RAERIA U
VTrr;(t): l//snejwSt +Lrliac (t)+Lrlidc (t):(l_ &) l//snejwSt -|-chl//rne7t/Tr eiwrt (4_30)
Rc 1) @, I-rl

T REBE A RESRAR, LU AR T E A6 BRI K, o 128, 0 e B
TR e > VAR T < 16 5 BT 435
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V(O e =11 12 (07) 41, (0)]F (W, o8 — L —L—el™ - L "= —e i )| =
Zl Zz
U ej‘/’l U ej‘ﬂz
=W, e — Lr nZ1r |_r n=2v
P ' Zl ? Zz
(4-31)
gha R 4-16 KM w, (0), FIFI R 4-30 78 AT f5 psE s E v BT, A -
jo, L' jot T, _ jo, L' _
1-—T el +K e | =(l-———"— 0)+K 0)=y.. (0
( RC +ja)er,)V/sn dc‘//rn |t—0 ( Rc+ja)s r,)'r//sn( ) dcl//rn( ) Wrn( )
(4-32)
TRy sk B ) K,
K, —1-(1-—JeL ¥ (4-33)
RC + Ja)S LI" V/rn (0)
RIS RHBAE T I3 M K i s
K =1-—dobL (4-34)
R +joL
EERy, NERSE, WEe 4-18, A
;/.rn (t) = Kacl//sn (O)e_t/-l—S + chl//rn (O)eit/T"ejwrt (4-35)
i bR, B 4-20. 24, 26. 35 WIAGEE T ARG BE M N A -
. ja P . )
l//r (t)erlnuL ej(ost + L,—ZHUL e—ja)st +Kacl//sn (o)e—t/TS + chwm (o)eft/TreJa)rt
Zl Zz
(4-36)
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LLLR A% UlgnUnlonU. Lo 55 REAHIRRIAT S, 0 ot T4t
.
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kf?ﬁﬂm,ﬁﬁﬁ%hﬁiﬁﬁ;g%:—%%ﬁdm,%E%ﬁﬁ
el THRER A R

FER 4-37 HEAT T A, P8 L) 25 45 ORI 5 T AR O 22
B 0L A MG, SRR,

. _ —t/T
Isa (t) _Iac—l cos (a)st+¢ac—1)+|ac—2 cos (a)st+¢ac—2) +Idce . -'-Iac—a)r cos (a)rt-'-wac—wr )e

I(.ic :[1_

T,
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FH b 20T Az b s e gt e DU 56 o 2R 2 — B0 s s 1 1R P AR s
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KETESIETH &
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AR AT M. 55 =E8 0 T RN i TR A R E S BN ER =
oy & (8% T Crowbar HFHFT S EUN B W ). 50U nl g Nt T
A A e B FEUNAE TAUZ R . T B AR, & T Tl
HL AR T IESZBEh NI — W B N, I T BRI = 2B
wmFEE T DEAERP e (Flan 1.1 R HED, AT L1 R E e 1w
H(F=Ni, N AIEED . A DIE € T =4 7 1.1 580 R A8 it (55Hz
FEFH I TR 2208k, BR] 9 Jil e B B 1) 3 0k

FANE T B R AR A SR L B BIR, HKN SRS EEE K. &
AENRHLARN 1/3, B B 37t i K AN R I LA 25t B i /31470, 4%
EhdE ey E EURARASE, MBI K B E i (e B s T M A2 28 (GSC) [
PR E, AHAZ AL AR AN 5 28— J B P o L

TGO T, H AR IR AR AE A I A7 7 F A R bRt 2 R, B
TAAR R BT A 3 B, 5 IR E TR R AT R 3
[F) 2 s XL EEL 3 HE 1 A ) e L o

X 4-38 I —, et oGP R g, B IET
Fasor s e E 25 KU B H T RRZR I B R BRVE /KA o0, HE R IRV 7K - bk
s MEEHOR; 28 3 B P RS R W S =AM APAETEE A OC, 5T =ik,
T L MREL R OR s 28 =B 70 1) EL I A o0 B PR it 5 BEZR F e RV 7K P IEAE G,

JCHAB AR =2 58 DU I A = A 5 9ok 70 1 o HL s i ) o 8 ph =X 4-29 e
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Y, es L' L"BIERGIBIPIREA K, Ul KU 51 R
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Fig.4-3 Negative sequence equivalent circuits of SCIG

BRI, R 1R L B AT IR IZ A 1] FELYR AL Ty, 90 H R AR A A d v
FF B ] YR RV AL 0. B BRI, HANTRIE. S HUR ZZ TR AR A
%, HEALE W B X I, Y R ACREE T e DRI AR
[ A o 2 A EARE R s B b MBS, DFIG 38U AE TAR ) AN S W o T
BRI R ORI S SV RAIRES W 1 D0 N PRI A AEAS IER SR B A fE o
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e ERRES

S BES

REBZTER B8 (A
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B 4-4 4048 1848 34 B 69 5 0 R 4 AR 1 0L
Fig.4-4 Negative sequence equivalent circuits of SCIG
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% 4-1 DFIG 4254 # [ H17) 5 4
Table 4-1 System parameters for example-DFIG-Fault

RASH ZHIAE REZH A
ML = 2MW SEFHLH 0.0042 p.u.
5 i SR A 3kHz JEFHLBL 0.1021 p.u.
BLAE L 690V e 0.0060 p.u.
BE R 12m/s L 0.0859 p.u.
Crowbar J& zl i [] 5ms Jalte FEL AT 4.38 p.u.
Crowbar [H{E lohm LR AE L 35kV
BRI E HLIR 0.4kA

Htghsja R G R T B R -

HER [ I Rrekst

B —=—20

Ml EHRKRG

o SEH AL
BHIE: RESFHDE FHSTATCOMER fi%
e SN,
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B 4-5 K ¥ 3% 48 543 & ik H 1)
Fig.4-5 System circuits for example-DFIG-Fault
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Fig.4-6 Phase-ground short circuit fault current and spectrum (Fault in 20% of Line)

02 S [Erpel Fourier Analysis
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B 4-7 % ARAE M3 1% W R RO (B 42 B & 95 4 K 80%)
Fig.4-7 Phase-ground short circuit fault current and spectrum (Fault in 80% of Line)
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Fig.4-8 Phase-phase short circuit fault current and spectrum (Fault in 20% of Line)
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Fig.4-9 Phase-phase short circuit fault current and spectrum (Fault in 80% of Line)
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Fig.5-1 Short-circuit fault schematic diagram

W 5-1 s, 24 d AR ARG, ORGP 22 e Ak B FR T 5 L R L I
f 2 A
U.J :|;12L1+|;12 ZL2+|t;10 ZLO_'_Rg I;g (5'1)

FoPZ,,y 2y, S 7, AR b 5 O R BB, O A
R, =0, FLLREI0IE RIS T SUF I Z, =2, WA

UJ :(Ial+ Ia2 )ZL1+ IaO ZLl_ IaO ZL1+ IaO ZLO

= Ia ZL1+(ZLO _ZLl) IaO (5'2)
. _ . def . . def .
:ZLl(Ia+ﬁ'3|aO):ZL1(|a+K.3|aO):ZLIIJ
3Z,
Z =7 .. Tl B o= N _ " NN
Hr, K:%jﬂ%@?%l\%%ﬁ(o R A R A, 4k F SN LR
L1

5 R R A SR FLA A0 R IR AR

-54-



oSS N T e S VAT

|, =1,+K-3l,=1+K)I, (5-3)

VEE, AR AL R S R A ALY, IR 8 B35 Crowbar 30 )5
P AR, AT

Ea = ZW1 Ial_{_ZWZ Ia12+ZW0 IaO—i_UJ = (ZWl Ia1+ ZW2 Ia2+ZW0 Iao)_'_ZLl IJ

| : [ : (5-4)
=2 (Zy +Zy,+Zyo)+ 21, = L (Zy1+ 2y, +Zyo)+ 2,4 1,
3 3(1+K)
b QAT HE S A5 & H IR 5 XU B PN SRS A A R SR RN
E,
j B ZWl + ZWZ + ZWO (5_5)
3(1+K)
L4 PR A AZ ML FE KA A S (MIHOD 31 3045 0915,
U,
90" <arg—0 < 270° (5-6)
U—2Z,|

set " j
2% 6 N S RN ER 4 IE 7 [m) R g s, FHa 5-5 A 5-6 A 45 LAREZR T2 B R AR AL
2 10 R B ORI LU AH IR A -
ZWl + ZW2 + ZWO .
30+K) Y 7 (5-7)
Z-7, K

a

Mg B3 SR NI P BT T O L, R Z,,,=Z,,, 1, B R

NS LRI IE . P it LEARIAD, RT3 2 T 2
Zo—2Zy, — Zyo —Zw

90" <arg

T3z, 37, -8)
EEINRE
st Bty 7, 59
M= 5-7 A A% St i BR AR 4k F 2 I:[Q*H%H%i
90’ <arg ﬂu—o <270° (5-10)

Z _Zset E

.-55-



oSS N T e S VAT

{HAE, 2RI X i H 2 0% R A R e s i, 2, =2, S 3 5-8 IX AN 25 A
BIAFL S, LR SEbRahfERVE S5 485 3K 5-10 At 0 R 45 SRk A 1R KA,
PRI B R R AR A

22 D RERATAZ oS M Ak v 0 — R 4 ).

A<argZ e U.‘(" <B (5-11)
J -7, ¢
HIS AR BB P, 2 B— A=180° I, FHETHLE NETE .. Hh Z 9B HT#L

M SRR R, Z, R R AL i B B, Rk |Z,— 7| BRI I A

W 5-2 ffrs:
XA

Zo PR i

BRImBEZ

B 5-2 VA& ITIC 0 R H BB 69 B 3B 5 4k & 3B 52 IR DA 451t
Fig.5-2 The actual region of distance relay when using bus memory voltage as polarization voltage
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Fig.5-3 The structure of positive sequence net
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Fig.5-6 In Less-synchronous-speed case, the actual region of distance relay when using bus
memory voltage as polarization voltage

X A

Rt R S

Zc

Zp

B 5-7 AB ) ¥ 1 Bf WAZ B ATIC R A MACE A9 38 5 28 & 5 K IRAR AP TE
Fig.5-7 In Over-synchronous-speed case, the actual region of distance relay when using bus
memory voltage as polarization voltage
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Fig.5-8 In Reverse-fault case, the actual region of distance relay when using bus memory
voltage as polarization voltage
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Fig.5-10 The maximum wind power tracking curve
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