
www.elsevier.com/locate/simpat

Simulation Modelling Practice and Theory 14 (2006) 25–46
A planar mechanical library in the
AMESim simulation software. Part I:
Formulation of dynamics equations

Wilfrid Marquis-Favre *, Eric Bideaux, Serge Scavarda

Laboratoire d’Automatique Industrielle, Institut National des Sciences Appliquées de Lyon,
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Abstract

This paper presents the mathematical developments of a planar mechanical library imple-

mented in the AMESim simulation tool. Body and joint components are the basic components

of this library. Due to the library philosophy requirements, the mathematical models of the

components have required a generic vector calculus based formulation of the constraint equa-

tions. This formulation uses a set of dependent generalized coordinates. The dynamics equa-

tions are obtained from the application of Jourdain�s principle combined with the Lagrange

multiplier method. The body component mathematical models consist of differential equations

in terms of the dependent generalized coordinates. The joint component mathematical

models are based on the Baumgarte stabilization schemes applied to the geometrical, kine-

matic and acceleration constraint equations. The Lagrange multipliers are the implicit solution

of these Baumgarte stabilization schemes. The first main contribution of this paper is the

expression of geometrical constraints in terms of vectors and their exploitation in this form.

The second important contribution is the adaptation of existing formulations to the AMESim

philosophy.
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1. Introduction

This paper, organized in two parts, presents a new library for the simulation tool

AMESim [2]. The first part is dedicated to the theoretical developments of the
library. The second part shows the composition of the library as it was primarily

implemented in AMESim and illustrates it with an application example of a

seven-body mechanism. This library proposes components belonging to the planar

mechanical domain. The objective with this library was not to compete with multi-

body system software tools that are better adapted to this domain. The objective was

more to enlarge the range of industrial applications capable of being treated by

AMESim. From a theoretical point of view the challenge of implementing this

library was to fit existing mechanical formulations to the inherent requirements of
AMESim philosophy. The solution has been found by adapting the dynamic equa-

tions expressed from Jourdain�s principle and the Lagrange multiplier method

together with Baumgarte�s stabilization. Also a generic feature of the formulation

has been researched over the library components (bodies and joints) and one key

contribution of this paper is concerned with this generic feature. Basically the formu-

lation consists of expressing the geometric constraints associated with joints in terms

of vectors and carrying out the developments of this form. The result is the set up,

for kinematic and acceleration constraints, of a unique expression that fits every joint
presented in the library.

The generic feature of the formulation proposed thus enables the derivation of

joint contraints to be systematized. One can then imagine a new joint with its corre-

sponding vector constraint and derive straightforwardly the corresponding mathe-

matical model by applying the proposed formulation. Also, in the context of

predefined component models, the given formulation clearly shows the frontiers of

the different mathematical models in terms of inputs and outputs. Therefore it also

helps to define in which models output equations must be implemented. Also, the
formulation proposed intrinsically enables closed loop structures to be dealt with.

AMESim (for Advanced Modeling Environment for performing Simulations) is

organized in component libraries. The components, represented by symbolically

technologically suggested icons, can be interconnected exactly like the system under

study. AMESim was first applied to electrohydraulic engineering systems with simple

one-dimensional mechanical systems (like inertia, springs, and dampers in transla-

tion or in rotation). It recently opened its libraries to a variety of other component

domains. One can now carry out modeling, analysis and simulation for systems con-
sisting of pneumatic, powertrain, hydraulic resistance, thermal, electromagnetic and

cooling components for instance. The restriction to only one-dimensional motion for

the mechanical components has motivated the development of a two-dimensional

mechanical library.
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Section 2 presents an overview of some multibody codes and object-oriented

tools, as well as the environmental requirements of AMESim. These requirements

have some implications on how the 2D library is built. Section 3 details the theoret-

ical developments that enabled the mathematical models of the library components

to be set up. Section 4 concludes this first part.
2. Constraints of AMESim library philosophy

After a brief overview of multibody code principles and some object-oriented

tools, a presentation of AMESim requirements is given.

Concerning multibody codes a state of the art is given by [23]. Details are not

reproduced here and readers are referred to this book for a more profound presen-
tation. Although more than a decade has passed and certain tools are no longer

developed and others have changed, this state of the art book gives a good idea of

the main principles that can be used as a basis for multibody codes. Also this over-

view enables the library proposed to be positioned with respect to these codes. There

are different approaches for writing dynamic equations. The approaches most repre-

sented in multibody codes are, the Newton–Euler equations applied to each body,

the Newton–Euler equations applied to sets of bodies, Lagrange�s equations and

Kane�s equations [13,14]. The variables, in whose terms the dynamic equations are
written, are either absolute coordinates or relative coordinates. Also supplementary

methods are used for reducing the index of the Differential–Algebraic Equations.

The principal ones are the coordinate partitioning method, the projection matrix

method, the Baumgarte stabilization and the penalty formulation [9]. The first two

methods aim at working with a set of independent generalized coordinates while

the Baumgarte stabilization enables the constraints, together with the differential

equations, to be handled and the penalty formulation increases the differential sys-

tem order by introducing extra dynamics into the model.
In the domain of the object-oriented tools to which AMESim may be attached,

certain enable multibody systems to be treated with a different approach to the mod-

elling. For instance Dymola [21] is, like AMESim, based on well-identified techno-

logical components in a pluridisciplinary context but it sets up the mathematical

model in a different way. Basically each component model consists of equations

not oriented in terms of variable assignments nor organized a priori. Then, at the

component connection stage, all the mathematical models are gathered in an implicit

form and the compilation carries out the variable assignments and the organization
of the equations in a consistent manner. Thus the order of the whole model is glob-

ally reduced and a number of constraints are a priori symbolically eliminated. Like-

wise, tools based on bond graph (e.g. 20Sim [1] or MS1 [18]) can deal with multibody

systems in a pluridisciplinary context (e.g. [4,7]). The essential feature of bond graph

language is its ability to describe the energy topology of a model at an acausal level.

This enables all the model variables to be globally assigned and all the equations to

be globally organized. This also eliminates superfluous dependencies of the multi-

body models.
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It is now important to show the key features of AMESim to justify how the planar

mechanical library has been implemented. Its feature oriented towards engineering

systems and its user friendliness make AMESim work with well-identified technolog-

ical components, symbolically manipulated by means of icons. These icons are inter-

connected, one to the other and identically to the engineering system architecture
under study. Fig. 1 shows an example of a door locking system using a permanent

magnet modelled in AMESim. The icons displayed here belong to the magnetic,

mechanical and signal libraries. This simple example shows the coupling between

mechanical and magnetic domains where one circuit, fed by a permanent magnet

(right-hand side magnetic circuit), is forced to move with respect to another passive

circuit (left-hand side circuit). The main components consist of a permanent magnet

(rectangle with a compass needle inside), three magnetic circuit parts characterized

by a certain reluctance (rectangles with �square� ports with a diagonal cross inside),
two variable air-gaps (vertical twin rectangles), two mechanical nodes (both sides of

the air-gap components), a signal generator with a signal-to-displacement converter

(in the centre of the right-hand side circuit), and a component for the set of the mag-

netic medium characteristics (B–H diagram in a circle). Each component can be

associated with one model from a set of component compatible mathematical

models. As soon as the model has been chosen the component conserves this

mathematical model.

Contrary to acausal tools, AMESim works with component models that have
equations both a priori oriented in terms of variable assignments and organized. This

feature requires implementing new models in a predefined calculus scheme. Also the

mathematical formulation of a component model has to be organized in order to fit

into other potential component connections. So each component associated with a

mathematical model has a predetermined set of input and output variables. It can

thus be considered as a causal model. The connection of the components enables

the exchange of those variables on the way out a component for those variables that

are calculated by its mathematical model (outputs) and, the exchange of those vari-
ables on the way in a component for those variables that are calculated by a con-

nected component mathematical model (inputs). This causal feature of AMESim

philosophy is the main constraint when implementing new components. This differs
Fig. 1. Example of an AMESim model representation.
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from other object-oriented tools, based on acausal component models or acausal

phenomenon models, like Dymola, or tools with a bond graph input (e.g. 20-Sim

or MS1).

Fig. 2 gives an example of two components in the mechanical (a mass in transla-

tion) and the hydraulic (a two way hydraulic pump) domains respectively. The con-
necting ports of the components show the variables exchanged by them and

especially the outputs (�exiting� arrows) passed to the connected components and

the inputs (�entering� arrows) received from the connected components. These con-

necting ports are intimately associated with power ports since two of the variables

exchanged at these ports are power variables.

Fig. 2 examples illustrate two key features of a library oriented simulation tool.

The first one is the domain port concept. It shows how AMESim can deal with plu-

ridisciplinary systems. The second feature is the connecting port constraints. Since
one component mathematical model requires given inputs to then calculate its state

and its outputs, not all combinations of the component connections are allowed. For

instance the Fig. 2 examples cannot be connected one to the other by any port. How-

ever a mass component may be connected to a spring component or a damper

component.

Another key feature of a library oriented simulation software tool is the modular-

ity concept. This often results in symmetrical components with respect to their con-

necting port. This symmetry property, though not generalized to all components in
AMESim, has been adopted for the planar mechanical library. The reason will ap-

pear obvious when components of this library are presented.

In the context of planar mechanisms and rigid bodies the library is not restricted

to any mechanical domain application. The library also accepts closed loop struc-

tures. Although relative coordinates are generally more efficient for dynamic equa-

tion formulation, AMESim philosophy requires the use of absolute coordinates.

The absolute coordinates of the mass center have been chosen for each body. Nev-

ertheless the planar feature of the library does not require any specific variables for
the body orientation. Thus the absolute angular position has been chosen for each

body as well. Once again, due to AMESim philosophy, the equations of the compo-

nents cannot be globally reorganized when the components are connected. This for-

bids the use of the coordinate partitioning method or the projection method to

decrease the index of the Differential–Algebraic Equation systems. For this reason

the Baumgarte stabilization has also been used in the library.
Fig. 2. Example of two AMESim components.
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3. Theoretical developments of the library components

As has been explained in the previous section the library must be organized in

well-identified technological components. It has been decided to base the planar

mechanical library on a body component and on joint components. The body com-
ponent is associated with a supposed rigid material item of a mechanism. Its behav-

ior is essentially governed by its kinetic state. The joint components are associated

with the abstract items that represent the attachment of bodies in a mechanism. They

are supposed to be ideal and their mathematical model is based on the constraints

that they impose on the connected bodies.
3.1. Body component mathematical model

The mathematical model of the body component is based on Jourdain�s Principle
formulation (e.g. [5,23])1:

A� ¼ P � ð1Þ

where A* is the virtual power developed by the acceleration quantities and P* the

virtual power developed by the actions on the body.

In the library philosophy there is no a priori privileged candidate for the role
of the generalized coordinates. For a planar motion, the generalized coordinates,

which have been chosen, are the absolute mass center coordinates projected onto

the absolute frame of reference ðxGi ; yGi
Þ and the absolute angular position hi (Fig.

3). This choice enables the more general case of a body motion to be dealt with.

The body motion restriction will be determined by the joint constraints, as shown

later.

With this choice of generalized coordinates ðxGi ; yGi
; hiÞ Eq. (1) members may now

be written

A� ¼ Ax _x
�
Gi
þ Ay _y

�
Gi
þ Ah

_h
�
i

P � ¼ Qx _x
�
Gi
þ ðQy � migÞ _y�Gi

þ Qh
_h
�
i

ð2Þ

with mi the body mass and g the gravity acceleration. We consider here ~y0 as the
ascendant vertical axis. The star superscript indicates virtual quantities. The coeffi-

cients of the virtual velocities in A* are derived from the kinetic coenergy (e.g. [6])

of a body by the equation:

Aq ¼
doT
dto _q

� oT
oq

with q a generalized coordinate ð3Þ
1 A nomenclature is given in Appendix A.
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Applied to Fig. 3 body in planar motion these quantities are written simply:

Ax ¼ mi€xGi

Ay ¼ mi€yGi
with I i the body moment of inertia around ðGi;~z0Þ

Ah ¼ I i€hi

ð4Þ

Qx, Qy, and Qh are the generalized forces including the constraint actions resulting

from the fact that xGi , yGi
, and hi are not necessarily independent after the connection

of a body component to a joint component. From Eq. (1) and by taking a compat-

ible virtual transformation with the joints as they exist at time t, we can now write

the three identities that constitute the formulation basis for the body components.

These three identities are

mi€xGi ¼ Qx

mi€yGi
¼ Qy � mig

Ii€hi ¼ Qh

ð5Þ

This formulation requires that the expression of the three generalized forces Qx, Qy,

and Qh be further developed in order to fit any potential connected joint component.

First let us inspect the case of a body with only one connecting port at a point M.

Let us also consider simply a given action on the body characterized by a wrench

about point M (e.g. [17]):

fWg :
~F ¼ F x~x0 þ F y~y0 force

~MðMÞ ¼ Cz~z0 torque about point M

(
ð6Þ

The virtual power developed by this action is

P � ¼ ~F � ~V 0� ðMÞ þ ~MðMÞ � ~X0�

i ð7Þ
where ~V

0� ðMÞ is the virtual absolute velocity of point M and ~X
0�

i is the virtual abso-

lute angular velocity of the body. The velocity transport (e.g. [11]) enables Eq. (7) to

be written as:
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P � ¼ ~F � ~V 0� ðGiÞ þ~F � ~X
0�

i � GiM
��!� �

þ ~MðMÞ � ~X
0�

i

¼ ~F � ð _x�Gi
~x0 þ _y�Gi

~y0Þ þ ~MðMÞ þ GiM
��!�~F

� �
� _h�i~z0 ð8Þ

From Eq. (8) we can clearly identify the generalized forces used in the dynamic for-
mulation of a body component:

Qx ¼ ~F �~x0 ¼ F x

Qy ¼ ~F �~y0 ¼ F y

Qh ¼ ~MðMÞ þ GiM
��!�~F

� �
�~z0 ¼ Cz þ~F � ð~z0 � GiM

��!Þ

ð9Þ

Since GiM
��!

is a characteristic vector of the body, the variables Fx, Fy, and Cz, char-

acterizing the given force at point M, are the only variables passed to the body at the

connecting port. The variables Qx, Qy, and Qh are calculated in the body component

model on Eq. (9) basis.

It is shown in the next section that the equation formulation for the generalized
forces (Eq. (9)) applies for any type of joint component connected to a body compo-

nent. The expressions of Fx, Fy, and Cz vary with the type of the connected joint but

are calculated in the joint component.
3.2. Joint component mathematical model

First a general formulation is given for the joint component mathematical model.

It is then illustrated in the example of a translational joint.
Let us consider this time two bodies connected by a joint. By the only fact that

both bodies are connected (a joint component between two body components) their

generalized coordinates (xGi , yGi
and hi for body i and xGj , yGj

and hj for body j) are

no longer independent. In the library philosophy the constraint equations are ex-

pressed in the joint component, which in turn furnishes the constraint actions to

the body components. These constraint actions correspond to the variables Fx, Fy,

and Cz previously presented and passed to each body component. The general

expressions of these variables are now determined.
The joints considered in the planar mechanical library generate only geometrical

constraints. These constraints may be expressed in a general way in an implicit form

by Eq. (10) (e.g. [15]).

gkðq1; . . . ; qnÞ ¼ 0 for k ¼ 1 to m ð10Þ

with n the number of generalized coordinates involved in the constraints and m the

constraint number.
It is supposed here that the constraints are scleronomic [16], which means that

time does not explicitly appear in the constraint equations. At the kinematic level

these equations become
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_gk q1; . . . ; qn; _q1; . . . ; _qnð Þ ¼ ogk
oqi

_qi ¼ 0

for k ¼ 1 to m and with the Einstein implicit summation convention

on repeated subscript i ð11Þ

In the case of bodies connected by a joint the generalized coordinates are

qT ¼ xGi yGi
hi xGj yGj

hj
� �

ð12Þ

The library philosophy imposes working with a set of dependent coordinates. A

Lagrange multiplier is then associated with each constraint equation of the joint be-

tween both bodies. Let kk (k = 1 to m) be these Lagrange multipliers. We now devel-

op the expressions of the resulting constraint terms F xi , F yi , and Czi on the body i side

and F xj , F yj , and Czj , on the body j side in terms of the Lagrange multipliers kk (k = 1

to m) and the joint geometry.
Let us first consider the Fig. 4 schematic representation of two bodies in a general

planar motion (note that in the context of a planar motion,~zi ¼~zj ¼~z0). The joint is
characterized by the geometric axes ðM ;~xilÞ and ðN ;~xjlÞ respectively on bodies i and j

(no peculiarity is shown at this point in order to keep the generality of the develop-

ment). These two axes are defined by their relative positions in the corresponding

body frames (relative coordinates (xM,yM) and (xN,yN) with respect to body frames,

respectively, for pointsM and N, and angular relative positions hil and hjl for the vec-
tor axes~xil and~xjl).

The geometrical joints considered between bodies i and j may also be expressed by

the following equations (this conjecture is at least verified for joints considered in the

library)2:

fk OM
��!

;ON
�!

;~xil;~yil;~xjl;~yjl
� �

¼ 0 for k ¼ 1 to m ð13Þ

Next the kinematic equations corresponding to these geometrical constraints are

obtained by differentiation with respect to time and in the same reference frame. Let

the absolute frame of reference be the frame of differentiation. The kinematic con-
straints are (see the appendix for the calculus details and the notations used)

~f
k;OM
! � _xGi~x0 þ _yGi

~y0
� �

þ GiM
��!�~f

k;OM
!�~f k;~xil �~xil �~f k;~yil

�~yil

� 	
� _hi~z0

þ~f
k;ON
!� _xGj~x0 þ _yGj

~y0
� �

þ GjN
��!�~f

k;ON
!�~f k;~xjl �~xjl �~f k;~yjl

�~yjl

� 	
� _hj~z0 ¼ 0

for k ¼ 1 to m ð14Þ
2 Even if Eqs. (10) and (13) correspond to the same constraint equations, there is a fundamental

distinction between their expressions. In fact gk may be defined as a linear form on Rn while fk may be

defined as a linear form on the Cartesian product of two dimensional vector spaces E6. Having dispelled

this ambiguity the distinction in the constraint notation is no longer applied in the rest of the paper.



Fig. 4. Geometrical characteristics of two bodies in planar motion.
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It is worthwhile noting that all vectors in Eq. (14) must be expressed in the absolute

frame of reference.

The constraint terms contributing to the generalized forces are obtained from the

general expression given by

Qq ¼
Xm
k¼1

ofk
oq

kk ¼
Xm
k¼1

o _f k

o _q
kk ð15Þ

Using the generalized coordinates defined for Fig. 4 bodies in planar motion and

Eq. (14) for the expression of the kinematic constraint equations, the constraint

terms contributing to the generalized forces are

for body i:

Qxi ¼ kk~f
k;OM
! �~x0

Qyi
¼ kk~f

k;OM
! �~y0

Qhi ¼ �kk ~f k;~xil �~xil þ~f k;~yil
�~yil

� �
�~z0 þ kk~f

k;OM
! � ~z0 �GiM

��!� �

8>>>>><
>>>>>:

for body j:

Qxj ¼ kk~f
k;ON
! �~x0

Qyj
¼ kk~f

k;ON
! �~y0

Qhj ¼ �kk ~f k;~xjl �~xjl þ~f k;~yjl
�~yjl

� �
�~z0 þ kk~f

k;ON
! � ~z0 �GjN

��!� �

8>>>>><
>>>>>:

ð16Þ

with the Einstein implicit summation convention on the repeated subscript k.

By analogy to the case of a given action (Eq. (9)) the following variables can now

be clearly expressed:
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for body i:

F xi ¼ kk~f
k;OM
! �~x0

F yi ¼ kk~f
k;OM
! �~y0

Czi ¼ �kk ~f k;~xil �~xil þ~f k;~yil
�~yil

� �
�~z0

8>>>>><
>>>>>:

for body j:

F xj ¼ kk~f
k;ON
! �~x0

F yj ¼ kk~f
k;ON
! �~y0

Czj ¼ �kk ~f k;~xjl �~xjl þ~f k;~yjl
�~yjl

� �
�~z0

8>>>>><
>>>>>:

ð17Þ

These variables are calculated in the joint component and passed respectively to

body i and body j components that calculate the terms given by relations (18) to

complete the generalized forces Qhi and Qhj .

~F i � ~z0 � GiM
��!� �

with ~F i ¼ F xi~x0 þ F yi~y0 for body i

~F j � ~z0 � GjN
��!� �

with ~F j ¼ F xj~x0 þ F yj~y0 for body j
ð18Þ

In turn each body component integrates its dynamic model and furnishes, to the

joint component, the absolute position of point M for body i and point N for body j

and the absolute angular position of axis~xil for body i and axis~xjl for body j (Eqs.

(19) and (20)). The absolute position of a point M (respectively, N) is obtained with

the absolute position of the body mass center Gi (respectively, Gj) and the relative

position vector of this point M (respectively, N) projected onto the absolute frame

of reference. The absolute angular position of the axis~xil (respectively,~xjl) is simply
the sum of the body absolute angular position and the relative angular position of

this axis ~xil (respectively, ~xjl) in the body frame. The relative position vectors of

points M and N and the relative angular positions of axes~xil and~xjl are parameters

in the body components

x0M ¼ xGi þ xM cos hi � yM sin hi

y0M ¼ yGi
þ xM sin hi þ yM cos hi

h0M ¼ hi þ hil

8>><
>>: ð19Þ

x0N ¼ xGj þ xN cos hj � yN sin hj

y0N ¼ yGj
þ xN sin hj þ yN cos hj

h0N ¼ hj þ hjl

8>><
>>: ð20Þ

In the joint component the Lagrange multipliers kk remain to be calculated. This

is addressed later in this section. Before this we will illustrate the above mathematical
formulation onto the example of a translational joint.
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3.3. Illustration of the joint dynamics formulation on the translational joint example

A translational joint between points M and N of two bodies may be schematically

represented by Fig. 5.

The geometrical constraints imposed by a translational joint may be expressed by

f1 OM
��!

;ON
�!

;~yil
� �

¼ MN
��! �~yil ¼ ON

�! �~yil � OM
��! �~yil ¼ 0

f2 OM
��!

;ON
�!

;~yjl
� �

¼ MN
��! �~yjl ¼ ON

�! �~yjl � OM
��! �~yjl ¼ 0

ð21Þ

An alternative to this formulation is, for instance, MN
��! �~yil ¼ 0 and~xjl �~yil ¼ 0 but

Eqs. (21) enable the symmetry property of the translational joint component to be

conserved in its model formulation. Then Eq. (22) give the variables calculated in

the translational joint component and passed to the body components (see Eq. (17)).

for body i:

F xi ¼ k1 �~yilð Þ �~x0 þ k2 �~yjl
� �

�~x0 ¼ k1 sin h
0
M þ k2 sin h

0
N

F yi ¼ k1 �~yilð Þ �~y0 þ k2 �~yjl
� �

�~y0 ¼ �k1 cos h
0
M � k2 cos h

0
N

Czi ¼ �k1 ON
�!� OM

��!� �
�~yil

h i
�~z0

¼ �k1 x0N � x0M
� �

cos h0M þ y0N � y0M
� �

sin h0M
� �

8>>>>><
>>>>>:

for body j:

F xj ¼ k1~yil �~x0 þ k2~yjl �~x0 ¼ �k1 sin h
0
M � k2 sin h

0
N

F yj ¼ k1~yil �~y0 þ k2~yjl �~y0 ¼ k1 cos h
0
M þ k2 cos h

0
N

Czj ¼ �k2 ON
�!� OM

��!� �
�~yjl

h i
�~z0

¼ �k2 x0N � x0M
� �

cos h0N þ y0N � y0M
� �

sin h0N
� �

8>>>>><
>>>>>:

ð22Þ
Fig. 5. Schematic representation of a translational joint between two bodies.
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Furthermore the generalized forces due to the constraint terms in the body compo-

nent mathematical models are calculated with Eqs. (16).

Until this point bodies with only one connecting point have been considered. For-

mulation development is strictly identical, as in those seen above, for bodies with

several connecting points. Previous calculation is only lengthened proportionally
to the number of connecting points. The generalized forces due to different con-

straints in this case are simply summed up for the number of connecting ports.

Now the calculation of the Lagrange multipliers is addressed.

3.4. Calculation of the Lagrange multipliers

This formulation, in dependent coordinates, led to the use of the Lagrange mul-

tiplier method. The Lagrange multipliers are implicit solutions of the constraint
equations embedded in the joint components and thus must be calculated in these

components. AMESim enables implicit equations to be programmed, the dynamics

equations, however, globally obtained on a complete system, are generally a Differ-

ential–Algebraic Equation system of index 3 [10,22] with the geometrical constraints

programmed in this way. This Differential–Algebraic Equation index causes serious

and even critical problems for numerical resolution. Implementation of kinematic

constraint equations or even the second derivative with respect to time (acceleration

order) of the geometrical constraint equations would decrease the index. However
this also causes a loss of information at the geometrical or even kinematic level

and the numerical solution has a high chance of diverging from the exact solution.

In order to circumvent this problem, the Baumgarte stabilization [3] is used to cal-

culate the Lagrange multipliers in an implicit manner. The Baumgarte stabilization is

based on a control scheme [20] of the constraint errors to make them converge

towards zero. Its calculus scheme is a PID control on the kinematic constraint equa-

tions which then also use the constraint equations at the geometrical and accelera-

tion orders (e.g. [8]). In this manner all the information about the constraints is
kept and the judicious choice of the PID schema gains enables the constraint errors

to converge towards zero.

If Eq. (13) represents the geometrical constraint equations then the Baumgarte

stabilization calculus scheme is given by:

€f k þ 2a _f k þ b2fk ¼ 0 for k ¼ 1 to m ð23Þ
where a/b and b may, respectively, be interpreted as a damping coefficient and a nat-

ural pulsation of the solution for fk. The same numerical coefficients have been arbi-

trarily chosen for all the constraint equations.

The use of this stabilization scheme obliges the body component to supply an-
other piece of information other than the information concerning the point M posi-

tion and on the angular position of the joint axis. In fact the kinematic and the

acceleration constraint equations are obtained from the differentiation, with respect

to time, in the absolute frame of reference of the geometrical constraint equation

(13). The first differentiation gives (see the appendix for calculation details and

notations)
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~f
k;OM
! � _x0M~x0 þ _y0M~y0

� �
þ~f

k;ON
! � _x0N~x0 þ _y0N~y0

� �
þ _hi ~f k;~xil �~yil �~f k;~yil

�~xil
� �

þ _hj ~f k;~xjl �~yjl �~f k;~yjl
�~xjl

� �
¼ 0 for k ¼ 1 to m ð24Þ

Eq. (24) shows that body components must also supply the absolute velocities of

points M and point N and the absolute angular velocities of both bodies (which

are equal to the absolute angular velocities of the joint axes). These quantities for
point M (respectively, for point N by substituting i by j and M by N) are given by

_x0M ¼ _xGi � _hi xM sin hi þ yM cos hið Þ
_y0M ¼ _yGi

þ _hi xM cos hi � yM sin hið Þ

(
ð25Þ

The second differentiation, with respect to time, in the absolute frame of reference of

the geometrical constraint equations gives (see the appendix for calculation details

and notations):

~f
k;OM
! � €x0M~x0þ€y0M~y0

� �
þ~f

k;ON
!� €x0N~x0þ€y0N~y0
� �

þ f
k;OM
!2 _x0M

2þ _y0M
2

� �
þ f

k; ON
!2 _x0N

2þ _y0N
2

� �
þ2f

k;OM
!

;ON
! _x0M _x0N þ _y0M _y0N
� �

þ€hi ~f k;~xil �~yil�~f k;~yil
�~xil

� �
þ€hj ~f k;~xjl �~yjl�~f k;~yjl

�~xjl
� �

� _h
2

i
~f k;~xil �~xilþ~f k;~yil

�~yil
� �

� _h
2

j
~f k;~xjl �~xjlþ~f k;~yjl

�~yjl
� �

þ2 _hi _hj fk;~xil ;~xjl þ fk;~yil;~yjl
� �

cos h0M �h0N
� �h

� fk;~xil;~yjl � fk;~yil;~xjl
� �

sin h0M �h0N
� �i

�2 _x0M _hi f
k;OM
!

;~xil
sinh0M þ f

k;OM
!

;~yil
cosh0M

� 	
þ _hj f

k;OM
!

;~xjl
sinh0N þ f

k;OM
!

;~yjl
cosh0N

� 	
 �

þ2 _y0M _hi f
k;OM
!

;~xil
cosh0M � f

k;OM
!

;~yil
sinh0M

� 	
þ _hj f

k;OM
!

;~xjl
cosh0N � f

k;OM
!

;~yjl
sinh0N

� 	
 �

�2 _x0N _hi f
k;ON
!

;~xil
sinh0M þ f

k;ON
!

;~yil
cosh0M

� 	
þ _hj f

k;ON
!

;~xjl
sinh0N þ f

k;ON
!

;~yjl
cosh0N

� 	
 �

þ2 _y0N _hi f
k;ON
!

;~xil
cosh0M � f

k;ON
!

;~yil
sinh0M

� 	
þ _hj f

k;ON
!

;~xjl
cosh0N � f

k;ON
!

;~yjl
sinh0N

� 	
 �
¼ 0 for k¼ 1 tom ð26Þ

Eq. (26) shows in turn that the absolute accelerations of points M and N and the

absolute angular accelerations of both bodies (equal to the absolute angular acceler-

ations of the joint axes) are needed for a joint component model where Baumgarte
stabilization is implemented. The acceleration of point M (respectively, for point N

by substituting i by j and M by N) is given by

€x0M ¼ €xGi � €hi xM sin hi þ yM cos hið Þ � _h
2

i xM cos hi � yM sin hið Þ
€y0M ¼ €yGi

þ €hi xM cos hi � yM sin hið Þ � _h
2

i xM sin hi þ yM cos hið Þ

(
ð27Þ

The peculiarity of each joint generally eliminates a number of terms in these equa-

tions. Nevertheless Eqs. (24) and (26) enable generic kinematic and acceleration con-

straint equations to be expressed in terms of the variables supplied to a joint

component.
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The kinematic and acceleration constraint equations are now illustrated on the

translational joint example. The geometrical constraint equations in this case are

given by Eqs. (21). In terms of the variables passed at the connecting port of the joint

component these equations become:

� x0N � x0M
� �

sin h0M þ y0N � y0M
� �

cos h0M ¼ 0

� x0N � x0M
� �

sin h0N þ y0N � y0M
� �

cos h0N ¼ 0

(
ð28Þ

The corresponding kinematic constraint equations are

�~yil � ~V
0ðMÞ þ~yil � ~V

0ðNÞ þ �OM
��!þ ON

�!� �
� ~X

0

i �~yil
� �

¼ 0

�~yjl � ~V
0ðMÞ þ~yjl � ~V

0ðNÞ þ �OM
��!þ ON

�!� �
� ~X

0

j �~yjl
� �

¼ 0

8><
>:

()

� _x0N � _x0M
� �

sin h0M þ _y0N � _y0M
� �

cos h0M � _hi x0N � x0M
� �

cos h0M
�

þ y0N � y0M
� �

sin h0M
�
¼ 0

� _x0N � _x0M
� �

sin h0N þ _y0N � _y0M
� �

cos h0N � _hj x0N � x0M
� �

cos h0N
�

þ y0N � y0M
� �

sin h0N
�
¼ 0

8>>>><
>>>>:

ð29Þ

Finally the acceleration constraint equations are

�~yil �~J
0ðMÞ þ~yil �~J

0ðNÞ þ~c 0
i � ~yil �MN

��!� �
þ 2 ~X

0

i � �~yilð Þ
h i

� ~V 0ðMÞ

þ 2 ~X
0

i �~yil
h i

� ~V 0ðNÞ ¼ 0

�~yjl �~J
0ðMÞ þ~yjl �~J

0ðNÞ þ~c0j � ~yjl �MN
��!� �

þ 2 ~X
0

j � �~yjl
� �h i

� ~V 0ðMÞ

þ 2 ~X
0

j �~yjl
h i

� ~V 0ðNÞ ¼ 0

8>>>>>>>>>><
>>>>>>>>>>:

()

� €x0N � €x0M
� �

sin h0M þ €y0N � €y0M
� �

cos h0M � €hi x0N � x0M
� �

cos h0M
�

þ y0N � y0M
� �

sin h0M
�
þ 2 _hi � _x0N � _x0M

� �
cos h0M � _y0N � _y0M

� �
sin h0M

� �
¼ 0

� €x0N � €x0M
� �

sin h0N þ €y0N � €y0M
� �

cos h0N � €hj x0N � x0M
� �

cos h0N
�

þ y0N � y0M
� �

sin h0N
�
þ 2 _hj � _x0N � _x0M

� �
cos h0N � _y0N � _y0M

� �
sin h0N

� �
¼ 0

8>>>>><
>>>>>:

ð30Þ

It is worthwhile noting in Eq. (30) that the squared terms of the absolute angular

velocities of bodies vanish by using the geometrical constraint equations. Some terms

will often vanish, particularly for the joints presented in the library.
4. Conclusion

The purpose of this paper is not to develop a new mechanical theory or a new for-
mulation for writing dynamics equations of planar multibody mechanical systems
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(one may find valuable information on this topic in [19] or [12]). Instead the issue was

more to fit existing formulations to the AMESim requirements in order to build a

new library in the domain of planar mechanical systems. The tool requirements were

principally modularity and communicability between components which must have

predefined mathematical models, in particular between body and joint components.
This has led to a formulation in dependant coordinates, so the Lagrange multiplier

method was used. The generalized coordinates are the absolute Cartesian coordi-

nates of the body mass centers and the absolute angular positions of the bodies.

The body component mathematical model consists of the Lagrange equations writ-

ten in terms of the previously given generalized coordinates. The joint components

consist of joint constraint equations from which the Lagrange multipliers, as implicit

solutions, are numerically obtained. Baumgarte stabilization schemas have been

implemented onto the constraint equations in order to decrease the Differential–
Algebraic Equation index without degrading the numerical solution.

The main originality of the mathematical model implementation, caused by Ame-

sim requirements, consists of geometrical constraint equations explicitly expressed in

terms of vectors and exploited in this form (Eq. (13)) instead of expressed in terms of

scalars (Eq. (10)). This was required to show the generic formulation of constraint

actions and the variables received by body components (Eq. (9)), whatever the con-

nected joint component. In fact Eq. (10) would not have enabled terms (18) to be

developed, these terms are to be treated in the body component.
The generic formulation proposed in this paper (in particular for joint con-

straints), though dedicated to causal component mathematical models, may be

used for systematically deriving the equations associated with joint constraints.

One can even imagine a symbolical routine that generates these equations with the

vector constraint as the only input. Concerning the use of Baumgarte�s stabilization
with Lagrange�s equations and the Lagrange multiplier method, the formulation is

more classical. Here it shows how to split the different mathematical submodels

according to the modular and component approach of an object-oriented tool.
Also it is quite well adapted to tools that do not globally re-oriente in terms of var-

iable assignment and re-organize the mathematical model. Moreover, in the context

of object-oriented tools, one advantage of the formulation presented is that the gen-

erated Differential–Algebraic Equation system is generally of index one even for

closed loop structures. In fact, by using Baumgarte�s stabilization, it was not needed
to reformulate a posteriori the model that otherwise would have been at least of

index three. The drawback to this approach is that the size of the state model is in-

creased and it has, in addition, certain number of algebraic equations and implicit
variables.

One logical perspective to the formulation proposed is its extrapolation to three

dimensional mechanisms. There is no conceptual difficulty for using the same scheme

by combining Lagrange�s equations, the Lagrange multiplier method and Baumg-

arte�s stabilization as well as splitting the models into the same components, namely

bodies and joints. Basically the main difficulty is intrinsic to the three dimensional

mechanism domain. This renders the generic formulation proposed in this paper

more tedious. The main reason resides in the necessity of taking the body orientation
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into account. For planar mechanisms only the rotation around one absolute refer-

ence fixed axis was needed. This has greatly simplified some mathematical develop-

ments in the formulation. With three dimensional mechanisms it is necessary to

choose a set of generalized coordinates to represent the absolute orientations of

bodies. Euler�s angles or Euler�s parameters are examples of such generalized coor-
dinates. With three of Euler�s angles the main drawback is the possible occurrence

of singularities where there is either non unique solutions or discontinuities. It is then

necessary to switch to another set of Euler�s angles. Otherwise Euler�s parameters are

well designed for these cases but there are four of them and so this requires an extra

algebraic relation to be taken into account in the formulation [24].

Part II of this paper details the library composition and illustrates it with the

example of a seven-body mechanism [23]. It also shows how actuating items are

included in the joint components.
Appendix A. Nomenclature
~a �~b scalar product between two vectors
~a�~b cross product between two vectors
_a ¼ da

dt ; €a ¼ d2a
dt2 first and second time differentiations

oa
ob partial derivative

a* virtual quantities
~a vector
a column vector

aT matrix transpose

A* virtual power developed by acceleration quantities

A acceleration quantities

T kinetic coenergy

P* virtual power developed by mechanical actions

Q generalized forces

ðO;~x0;~y0;~z0Þ absolute frame of reference
ðGi;~xi;~yi;~ziÞ body frame

ðMi;~xil;~yil;~zilÞ joint privileged frame

ðxGi ; yGi
Þ absolute coordinates of the body mass center

hi absolute angular body position

ðxMi ; yMi
Þ relative coordinates of point Mi

hil relative angular position of joint privileged frame

ðx0Mi
; y0Mi

Þ absolute coordinates of point Mi

h0M absolute angular position of joint privileged frame
mi, Ii body mass, central moment of inertia about~z0
g gravity acceleration

fWg wrench
~F force

(Fx,Fy) force absolute coordinates
~MðMÞ torque about point M



Cz torque component on~z0
~V

0ðMÞ absolute velocity of point M
~J
0ðMÞ absolute acceleration of point M

~X
0

i absolute angular velocity of body i

~c0i absolute angular acceleration of body i

q generalized coordinates

gk, fk geometrical constraint expressions

kk Lagrange multipliers

a, b parameters of the Baumgarte stabilization
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Appendix B. Notation conventions on partial derivatives with respect to a vector

We introduce here a conventional notation for sake of conciseness. The vector

noted ~f~a ¼ of
o~a represents the partial derivative in the absolute frame of reference of

f with respect to the vector ~a. We suppose here that the constraint equations only

consist of sums of scalar products of the form a~a �~b. In this case~f~a ¼ a~b. The vector
components of ~f~a are the partial derivatives of f with respect to the vector compo-

nents of~a. With the scalar product properties, we may manipulate the partial deriv-
atives with respect to a vector as we do with partial derivatives with respect to

scalars. Furthermore the partial derivative of ~f~a with respect to a second vector is

a scalar noted f~a;~b ¼
o~f~a
o~b
. In the same context, for constraint equations consisting only

of sums of scalar products f~a;~b ¼ f~b;~a ¼ a. The notation introduced here differs from

that in [19] for instance, in the sense that~f~a is not treated as a row vector but as a full

vector. Finally we denote f~a2 ¼ f~a;~a.
Appendix C. Development of the kinematic and acceleration constraint equations

The kinematic constraint equations are obtained by differentiation with respect to

time in the absolute frame of reference of Eq. (13) (see appendix on notation

conventions):

dfk OM
��!

;ON
�!

;~xil;~yil;~xjl;~yjl
� �

dt
¼ 0 for k ¼ 1 to m

() ofk

oOM
��! � dOM

��!
dt

þ ofk

oON
�! � dON

�!
dt

þ ofk
o~xil

� d~xil
dt

þ ofk
o~yil

� d~yil
dt

þ ofk
o~xjl

� d~xjl
dt

þ ofk
o~yjl

�
d~yjl
dt

¼ 0 for k ¼ 1 to m

() ~f
k;OM
! � ~V 0ðMÞ þ~f

k;ON
! � ~V 0ðNÞ þ~f k;~xil � ~X

0

i �~xil
� �

þ~f k;~yil
� ~X

0

i �~yil
� �

þ~f k;~xjl � ~X
0

j �~xjl
� �

þ~f k;~yjl
� ~X

0

j �~yjl
� �

¼ 0 for k ¼ 1 to m ð31Þ
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These equations are used for the joint component generic model (Eq. (24)). The con-

straint terms used in the body component are obtained by expressing Eq. (31) in

terms of the generalized velocities. Using the velocity transport from points M

(respectively, N) to points Gi (respectively, Gj) achieves this.

~f
k;OM
! � ~V

0
Gið Þ þ ~X

0

i � GiM
��!� �

þ~f
k;ON
! � ~V

0
Gj

� �
þ ~X

0

j � GjN
��!� �

þ~f k;~xil

� ~X
0

i �~xil
� �

þ~f k;~yil
� ~X

0

i �~yil
� �

þ~f k;~xjl � ~X
0

j �~xjl
� �

þ~f k;~yjl
� ~X

0

j �~yjl
� �

¼ 0 for k ¼ 1 to m

()~f
k;OM
! � ~V 0

Gið Þ þ~f
k;ON
! � ~V 0

Gj

� �
þ GiM

��!�~f
k;OM
! �~f k;~xil �~xil �~f k;~yil

�~yil

� 	
� ~X0

i

þ GjN
��!�~f

k;ON
!�~f k;~xjl �~xjl �~f k;~yjl

�~yjl

� 	
� ~X

0

j ¼ 0 for k ¼ 1 to m

which leads to Eq. (14).

Starting again from Eq. (31), their differentiation with respect to time in the

absolute frame of reference gives

~f
k;OM
!�~J 0ðMÞþ~f

k;ON
�!�~J 0ðNÞþ

o~f
k;OM
!

o ~OM

dOM
��!
dt

�~V 0ðMÞþ
o~f

k;ON
!

oON
�! dON

�!
dt

�~V 0ðNÞ

þ
o~f

k;OM
!

oON
�! dON

�!
dt

�~V 0ðMÞþ
o~f

k;ON
!

oOM
��! dOM

��!
dt

�~V 0ðNÞ

þ
o~f

k;OM
!

o~xil

d~xil
dt

þ
o~f

k;OM
!

o~yil

d~yil
dt

þ
o~f

k;OM
!

o~xjl

d~xjl
dt

þ
o~f

k;OM
!

o~yjl

d~yjl
dt

0
@

1
A �~V 0ðMÞ

þ
o~f

k;ON
!

o~xil

d~xil
dt

þ
o~f

k;ON
!

o~yil

d~yil
dt

þ
o~f

k;ON
!

o~xjl

d~xjl
dt

þ
o~f

k;ON
!

o~yjl

d~yjl
dt

0
@

1
A �~V 0ðNÞ

þ~f k;~xil �
d ~X

0

i �~xil
� �

dt
þ~f k;~yil

�
d ~X

0

i �~yil
� �

dt
þ~f k;~xjl �

d ~X
0

j �~xjl
� �

dt
þ~f k;~yjl

�
d ~X

0

j �~yjl
� �

dt

þ
o~f k;~xil

oOM
��! dOM

��!
dt

þ
o~f k;~xil

oON
�! dON

�!
dt

þ
o~f k;~xil

o~xjl

d~xjl
dt

þ
o~f k;~xil

o~yjl

d~yjl
dt

 !
� ~X

0

i �~xil
� �

þ
o~f k;~yil

oOM
��! dOM

��!
dt

þ
o~f k;~yil

oON
�! dON

�!
dt

þ
o~f k;~yil

o~xjl

d~xjl
dt

þ
o~f k;~yil

o~yjl

d~yjl
dt

 !
� ~X

0

i �~yil
� �

þ
o~f k;~xjl

oOM
��! dOM

��!
dt

þ
o~f k;~xjl

oON
�! dON

�!
dt

þ
o~f k;~xjl

o~xil

d~xil
dt

þ
o~f k;~xjl

o~yil

d~yil
dt

 !
� ~X

0

j �~xjl
� �
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þ
o~f k;~yjl

oOM
��! dOM

��!
dt

þ
o~f k;~yjl

oON
�! dON

�!
dt

þ
o~f k;~yjl

o~xil

d~xil
dt

þ
o~f k;~yjl

o~yil

d~yil
dt

 !
� ~X

0

j �~yjl
� �

¼ 0 for k¼ 1 tom

Using the hypothesis of constraint equations only constituted by a sum of vector

scalar products, we may also state that these scalar products never imply axes of the

same joint privileged frame (e.g.~xil �~xil or~xil �~yil and the same with substitution of i

by j). This explains that terms such as
o~f k;~xil
o~xil

,
o~f k;~xil
o~yil

,
o~f k;~yil
o~xil

and
o~f k;~yil
o~yil

(and the same with

substitution of i by j) do not appear in the previous equations. Using again the nota-

tion convention of the partial derivatives with respect to a vector we obtain

~f
k;OM
! �~J 0ðMÞ þ~f

k;OM
! �~J 0ðNÞ þ f

k;OM
!2

~V
0ðMÞ

h i2
þ f

k;OM
!2

~V
0ðNÞ

h i2

þ 2f
k;OM
!

;ON
!~V

0ðMÞ � ~V 0ðNÞ þ 2 f
k;OM
!

;~xil

~X
0

i �~xil
� �


þf
k;OM
!;~yil ~X

0

i �~yil
� �

þ f
k;OM
!

;~xjl

~X
0

j �~xjl
� �

þf
k;OM
!

;~yjl

~X
0

j �~yjl
� ��

� ~V 0ðMÞ þ 2 f
k;OM
!

;~xil

~X
0

i �~xil
� �


þf
k;ON
!

;~yil

~X
0

i �~yil
� �

þ f
k;ON
!

;~xjl

~X
0

j �~xjl
� �

þf
k;ON
!

;~yjl

~X
0

j �~yjl
� ��

� ~V 0ðNÞ þ~f k;~xil
~c0i �~xil
� �

þ ~X
0

i � ~X
0

i �~xil
� �h i

þ~f k;~yil
~c0i �~yil
� �

þ ~X
0

i � ~X
0

i �~yil
� �h i

þ~f k;~xjl
~c0j �~xjl
� �

þ ~X
0

j � ~X
0

j �~xjl
� �h i

þ~f k;~yjl
~c0j �~yjl
� �

þ ~X
0

j � ~X
0

j �~yjl
� �h i

þ fk;~xil ;~xjl ~X
0

j �~xjl
� �

þ fk;~xil;~yjl
~X

0

j �~yjl
� �h i

� ~X
0

i �~xil
� �

þ fk;~yil ;~xjl
~X

0

j �~xjl
� �

þ fk;~yil ;~yjl
~X

0

j �~yjl
� �h i

� ~X
0

i �~yil
� �

þ fk;~xjl;~xil ~X
0

i �~xil
� �

þ fk;~xjl;~yil
~X

0

i �~yil
� �h i

� ~X
0

j �~xjl
� �

þ fk;~yjl;~xil ~X
0

i �~xil
� �

þ fk;~yjl;~yil ~X
0

i �~yil
� �h i

� ~X
0

j �~yjl
� �

¼ 0 for k ¼ 1 to m

Using the relation~a� ~b�~c
� �

¼ ~a �~cð Þ �~b� ~a �~b
� �

�~c for transforming the dou-

ble products, these equations become
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~f
k;OM
! �~J 0ðMÞ þ~f

k;ON
! �~J 0ðNÞ þ f

k;OM
!2

~V
0ðMÞ

h i2
þ f

k; ON
!2

~V
0ðNÞ

h i2
þ 2f

k;OM
!

ON
!þ ~V

0ðMÞ � ~V 0ðNÞ þ~c0i � ~xil �~f k;~xil þ~yil �~f k;~yil

� �
þ~c0j � ~xjl �~f k;~xjl þ~yjl �~f k;~yjl

� �
� ~X

0

i

2
~f k;~xil �~xil þ~f k;~yil

�~yil
� �

� ~X
0

j

2
~f k;~xjl �~xjl þ~f k;~yjl

�~yjl
� �

þ 2f k;~xil ;~xjl
~X

0

j �~xjl
� �

� ~X
0

i �~xil
� �

þ 2f k;~xil ;~yjl
~X

0

j �~yjl
� �

� ~X
0

i �~xil
� �

þ 2f k;~yil ;~xjl
~X

0

j �~xjl
� �

� ~X
0

i �~yil
� �

þ 2f k;~yil;~yjl
~X

0

j �~yjl
� �

� ~X
0

i �~yil
� �

þ 2 ~X
0

i � f
k;OM
!

;~xil
~xil þ f

k;OM
!

;~yil
~yil

� 	


þ~X
0

j � f
k;OM
!

;~xjl
~xjl þ f

k;OM
!

;~yjl
~yjl

� 	�
� ~V 0ðMÞ

þ 2 ~X
0

i � f
k;ON
!

;~xil
~xil þ f

k;ON
!

;~yil
~yil

� 	


þ~X
0

j � f
k;ON
!

;~xjl
~xjl þ f

k;ON
!

;~yjl
~yjl

� 	�
� ~V 0ðNÞ ¼ 0

for k ¼ 1 to m

Noting also that ~xil �~xjl ¼~yil �~yjl and ~xil �~yjl ¼ �~yil �~xjl and using the relation

~a�~b
� �

� ~c�~d
� �

¼ ~a �~cð Þ ~b �~d
� �

� ~a �~d
� �

~c �~b
� �

we finally obtain

~f
k;OM
! �~J 0ðMÞ þ~f

k;ON
! �~J 0ðNÞ þ f

k;OM
!2

~V
0ðMÞ

h i2
þ f

k; ON
!2

~V
0ðNÞ

h i2
þ 2f

k;OM
!

ON
!~V

0ðMÞ � ~V 0ðNÞ þ~c0i � ~xil �~f k;~xil þ~yil �~f k;~yil

� �
þ~c 0

j � ~xjl �~f k;~xjl þ~yjl �~f k;~yjl

� �
� ~X

0

i

2
~f k;~xil �~xil þ~f k;~yil

�~yil
� �

� ~X
0

j

2
~f k;~xjl �~xjl þ~f k;~yjl

�~yjl
� �

þ 2 fk;~xil ;~xjl þ fk;~yil;~yjl
� �

~xil �~xjl
� �h

þ fk;~xil ;~yjl � fk;~yil ;~xjl
� �

~xil �~yjl
� �i

~X
0

i � ~X
0

j

� �
þ 2 ~X

0

i � f
k;OM
!

;~xil
~xil þ f

k;OM
!

;~yil
~yil

� 	


þ~X
0

j � f
k;OM
!

;~xjl
~xjl þ f

k;OM
!

;~yjl
~yjl

� 	�
� ~V 0ðMÞ

þ 2 ~X
0

i � f
k;ON
!

;~xil
~xil þ f

k;ON
!

;~yil
~yil

� 	


þ~X
0

j � f
k;ON
!

;~xjl
~xjl þ f

k;ON
!

;~yjl
~yjl

� 	�
� ~V 0ðNÞ ¼ 0

for k ¼ 1 to m

which leads to Eq. (26).
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