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Abstract

This paper presents the mathematical developments of a planar mechanical library imple-
mented in the AMESim simulation tool. Body and joint components are the basic components
of this library. Due to the library philosophy requirements, the mathematical models of the
components have required a generic vector calculus based formulation of the constraint equa-
tions. This formulation uses a set of dependent generalized coordinates. The dynamics equa-
tions are obtained from the application of Jourdain’s principle combined with the Lagrange
multiplier method. The body component mathematical models consist of differential equations
in terms of the dependent generalized coordinates. The joint component mathematical
models are based on the Baumgarte stabilization schemes applied to the geometrical, kine-
matic and acceleration constraint equations. The Lagrange multipliers are the implicit solution
of these Baumgarte stabilization schemes. The first main contribution of this paper is the
expression of geometrical constraints in terms of vectors and their exploitation in this form.
The second important contribution is the adaptation of existing formulations to the AMESim
philosophy.
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1. Introduction

This paper, organized in two parts, presents a new library for the simulation tool
AMESim [2]. The first part is dedicated to the theoretical developments of the
library. The second part shows the composition of the library as it was primarily
implemented in AMESim and illustrates it with an application example of a
seven-body mechanism. This library proposes components belonging to the planar
mechanical domain. The objective with this library was not to compete with multi-
body system software tools that are better adapted to this domain. The objective was
more to enlarge the range of industrial applications capable of being treated by
AMESim. From a theoretical point of view the challenge of implementing this
library was to fit existing mechanical formulations to the inherent requirements of
AMESim philosophy. The solution has been found by adapting the dynamic equa-
tions expressed from Jourdain’s principle and the Lagrange multiplier method
together with Baumgarte’s stabilization. Also a generic feature of the formulation
has been researched over the library components (bodies and joints) and one key
contribution of this paper is concerned with this generic feature. Basically the formu-
lation consists of expressing the geometric constraints associated with joints in terms
of vectors and carrying out the developments of this form. The result is the set up,
for kinematic and acceleration constraints, of a unique expression that fits every joint
presented in the library.

The generic feature of the formulation proposed thus enables the derivation of
joint contraints to be systematized. One can then imagine a new joint with its corre-
sponding vector constraint and derive straightforwardly the corresponding mathe-
matical model by applying the proposed formulation. Also, in the context of
predefined component models, the given formulation clearly shows the frontiers of
the different mathematical models in terms of inputs and outputs. Therefore it also
helps to define in which models output equations must be implemented. Also, the
formulation proposed intrinsically enables closed loop structures to be dealt with.

AMESim (for Advanced Modeling Environment for performing Simulations) is
organized in component libraries. The components, represented by symbolically
technologically suggested icons, can be interconnected exactly like the system under
study. AMESim was first applied to electrohydraulic engineering systems with simple
one-dimensional mechanical systems (like inertia, springs, and dampers in transla-
tion or in rotation). It recently opened its libraries to a variety of other component
domains. One can now carry out modeling, analysis and simulation for systems con-
sisting of pneumatic, powertrain, hydraulic resistance, thermal, electromagnetic and
cooling components for instance. The restriction to only one-dimensional motion for
the mechanical components has motivated the development of a two-dimensional
mechanical library.
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Section 2 presents an overview of some multibody codes and object-oriented
tools, as well as the environmental requirements of AMESim. These requirements
have some implications on how the 2D library is built. Section 3 details the theoret-
ical developments that enabled the mathematical models of the library components
to be set up. Section 4 concludes this first part.

2. Constraints of AMESim library philosophy

After a brief overview of multibody code principles and some object-oriented
tools, a presentation of AMESim requirements is given.

Concerning multibody codes a state of the art is given by [23]. Details are not
reproduced here and readers are referred to this book for a more profound presen-
tation. Although more than a decade has passed and certain tools are no longer
developed and others have changed, this state of the art book gives a good idea of
the main principles that can be used as a basis for multibody codes. Also this over-
view enables the library proposed to be positioned with respect to these codes. There
are different approaches for writing dynamic equations. The approaches most repre-
sented in multibody codes are, the Newton—Euler equations applied to each body,
the Newton—Euler equations applied to sets of bodies, Lagrange’s equations and
Kane’s equations [13,14]. The variables, in whose terms the dynamic equations are
written, are either absolute coordinates or relative coordinates. Also supplementary
methods are used for reducing the index of the Differential-Algebraic Equations.
The principal ones are the coordinate partitioning method, the projection matrix
method, the Baumgarte stabilization and the penalty formulation [9]. The first two
methods aim at working with a set of independent generalized coordinates while
the Baumgarte stabilization enables the constraints, together with the differential
equations, to be handled and the penalty formulation increases the differential sys-
tem order by introducing extra dynamics into the model.

In the domain of the object-oriented tools to which AMESim may be attached,
certain enable multibody systems to be treated with a different approach to the mod-
elling. For instance Dymola [21] is, like AMESim, based on well-identified techno-
logical components in a pluridisciplinary context but it sets up the mathematical
model in a different way. Basically each component model consists of equations
not oriented in terms of variable assignments nor organized a priori. Then, at the
component connection stage, all the mathematical models are gathered in an implicit
form and the compilation carries out the variable assignments and the organization
of the equations in a consistent manner. Thus the order of the whole model is glob-
ally reduced and a number of constraints are a priori symbolically eliminated. Like-
wise, tools based on bond graph (e.g. 20Sim [1] or MS1 [18]) can deal with multibody
systems in a pluridisciplinary context (e.g. [4,7]). The essential feature of bond graph
language is its ability to describe the energy topology of a model at an acausal level.
This enables all the model variables to be globally assigned and all the equations to
be globally organized. This also eliminates superfluous dependencies of the multi-
body models.
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It is now important to show the key features of AMESim to justify how the planar
mechanical library has been implemented. Its feature oriented towards engineering
systems and its user friendliness make AMESim work with well-identified technolog-
ical components, symbolically manipulated by means of icons. These icons are inter-
connected, one to the other and identically to the engineering system architecture
under study. Fig. 1 shows an example of a door locking system using a permanent
magnet modelled in AMESim. The icons displayed here belong to the magnetic,
mechanical and signal libraries. This simple example shows the coupling between
mechanical and magnetic domains where one circuit, fed by a permanent magnet
(right-hand side magnetic circuit), is forced to move with respect to another passive
circuit (left-hand side circuit). The main components consist of a permanent magnet
(rectangle with a compass needle inside), three magnetic circuit parts characterized
by a certain reluctance (rectangles with ‘square’ ports with a diagonal cross inside),
two variable air-gaps (vertical twin rectangles), two mechanical nodes (both sides of
the air-gap components), a signal generator with a signal-to-displacement converter
(in the centre of the right-hand side circuit), and a component for the set of the mag-
netic medium characteristics (B-H diagram in a circle). Each component can be
associated with one model from a set of component compatible mathematical
models. As soon as the model has been chosen the component conserves this
mathematical model.

Contrary to acausal tools, AMESim works with component models that have
equations both a priori oriented in terms of variable assignments and organized. This
feature requires implementing new models in a predefined calculus scheme. Also the
mathematical formulation of a component model has to be organized in order to fit
into other potential component connections. So each component associated with a
mathematical model has a predetermined set of input and output variables. It can
thus be considered as a causal model. The connection of the components enables
the exchange of those variables on the way out a component for those variables that
are calculated by its mathematical model (outputs) and, the exchange of those vari-
ables on the way in a component for those variables that are calculated by a con-
nected component mathematical model (inputs). This causal feature of AMESim
philosophy is the main constraint when implementing new components. This differs

Door locking system using a permanent magnet

Fixed part & Moving part

Fig. 1. Example of an AMESim model representation.
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from other object-oriented tools, based on acausal component models or acausal
phenomenon models, like Dymola, or tools with a bond graph input (e.g. 20-Sim
or MS1).

Fig. 2 gives an example of two components in the mechanical (a mass in transla-
tion) and the hydraulic (a two way hydraulic pump) domains respectively. The con-
necting ports of the components show the variables exchanged by them and
especially the outputs (‘exiting’ arrows) passed to the connected components and
the inputs (‘entering’ arrows) received from the connected components. These con-
necting ports are intimately associated with power ports since two of the variables
exchanged at these ports are power variables.

Fig. 2 examples illustrate two key features of a library oriented simulation tool.
The first one is the domain port concept. It shows how AMESim can deal with plu-
ridisciplinary systems. The second feature is the connecting port constraints. Since
one component mathematical model requires given inputs to then calculate its state
and its outputs, not all combinations of the component connections are allowed. For
instance the Fig. 2 examples cannot be connected one to the other by any port. How-
ever a mass component may be connected to a spring component or a damper
component.

Another key feature of a library oriented simulation software tool is the modular-
ity concept. This often results in symmetrical components with respect to their con-
necting port. This symmetry property, though not generalized to all components in
AMESim, has been adopted for the planar mechanical library. The reason will ap-
pear obvious when components of this library are presented.

In the context of planar mechanisms and rigid bodies the library is not restricted
to any mechanical domain application. The library also accepts closed loop struc-
tures. Although relative coordinates are generally more efficient for dynamic equa-
tion formulation, AMESim philosophy requires the use of absolute coordinates.
The absolute coordinates of the mass center have been chosen for each body. Nev-
ertheless the planar feature of the library does not require any specific variables for
the body orientation. Thus the absolute angular position has been chosen for each
body as well. Once again, due to AMESim philosophy, the equations of the compo-
nents cannot be globally reorganized when the components are connected. This for-
bids the use of the coordinate partitioning method or the projection method to
decrease the index of the Differential-Algebraic Equation systems. For this reason
the Baumgarte stabilization has also been used in the library.

Pressure l T

Flow rate

Acceleration €— —> Acceleration Torque €—_
Velocity €—— [+ —> Velocity Revolution speed —>
Displacement €<— " —> Displacement
—_— «—— Force
Honee Pressure T l Flow rate

Fig. 2. Example of two AMESim components.
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3. Theoretical developments of the library components

As has been explained in the previous section the library must be organized in
well-identified technological components. It has been decided to base the planar
mechanical library on a body component and on joint components. The body com-
ponent is associated with a supposed rigid material item of a mechanism. Its behav-
ior is essentially governed by its kinetic state. The joint components are associated
with the abstract items that represent the attachment of bodies in a mechanism. They
are supposed to be ideal and their mathematical model is based on the constraints
that they impose on the connected bodies.

3.1. Body component mathematical model

The mathematical model of the body component is based on Jourdain’s Principle
formulation (e.g. [5,23])":

A" =P (1)

where 4* is the virtual power developed by the acceleration quantities and P* the
virtual power developed by the actions on the body.

In the library philosophy there is no a priori privileged candidate for the role
of the generalized coordinates. For a planar motion, the generalized coordinates,
which have been chosen, are the absolute mass center coordinates projected onto
the absolute frame of reference (xg,, ;) and the absolute angular position 0; (Fig.
3). This choice enables the more general case of a body motion to be dealt with.
The body motion restriction will be determined by the joint constraints, as shown
later.

With this choice of generalized coordinates (xg,, y;,, 0;) Eq. (1) members may now
be written

A" = Ak + Ad + A0,

. : e (2)

P = Qx5 + (0, —mig)ig + 040,
with m; the body mass and g the gravity acceleration. We consider here ¥, as the
ascendant vertical axis. The star superscript indicates virtual quantities. The coeffi-
cients of the virtual velocities in 4* are derived from the kinetic coenergy (e.g. [6])
of a body by the equation:

= % - 2—2 with ¢ a generalized coordinate (3)

! A nomenclature is given in Appendix A.
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Yi

Body fixed
. frame
Yo

Absolute frame
of reference

O

X0

Fig. 3. Schema of a body in planar motion.

Applied to Fig. 3 body in planar motion these quantities are written simply:

Ax = m,‘)‘écl
A, = m;y; with I; the body moment of inertia around (G, %) (4)
Ay =10,

O., 0y, and Qy are the generalized forces including the constraint actions resulting
from the fact that x¢,, y;,, and 0; are not necessarily independent after the connection
of a body component to a joint component. From Eq. (1) and by taking a compat-
ible virtual transformation with the joints as they exist at time ¢, we can now write
the three identities that constitute the formulation basis for the body components.
These three identities are

mixc, = O,
m;yg, = Q, —mg (5)
Iiéi = Qe

This formulation requires that the expression of the three generalized forces Q,, Q,,
and Qy be further developed in order to fit any potential connected joint component.

First let us inspect the case of a body with only one connecting port at a point M.
Let us also consider simply a given action on the body characterized by a wrench
about point M (e.g. [17]):

F=F3%+F y, force
{79 - L : (6)
M(M) = C.Z torque about point M
The virtual power developed by this action is
P =F 7 M)+ M) 3 (7)

where 7 (M) is the virtual absolute velocity of point M and fl? is the virtual abso-
lute angular velocity of the body. The velocity transport (e.g. [11]) enables Eq. (7) to
be written as:
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- =0 - —0* — . =0
Pr=F-7 (G)+F- (Q,. X G,»M) +M(M) -G,
= e o . _, —_ - PO
— P (5, %0 + 35, 70) + (M(M) +GM x F) 0% 8)

From Eq. (8) we can clearly identify the generalized forces used in the dynamic for-
mulation of a body component:

Q,=F 5 =F, (9)
0, = M(M)Jrﬁixﬁ) Zy=C.+F- (3 x GM)

Since aﬁ is a characteristic vector of the body, the variables F,, F,, and C., char-
acterizing the given force at point M, are the only variables passed to the body at the
connecting port. The variables Q,, Q,, and Qy are calculated in the body component
model on Eq. (9) basis.

It is shown in the next section that the equation formulation for the generalized
forces (Eq. (9)) applies for any type of joint component connected to a body compo-
nent. The expressions of F,, F, and C. vary with the type of the connected joint but
are calculated in the joint component.

3.2. Joint component mathematical model

First a general formulation is given for the joint component mathematical model.
It is then illustrated in the example of a translational joint.

Let us consider this time two bodies connected by a joint. By the only fact that
both bodies are connected (a joint component between two body components) their
generalized coordinates (xg,, y5, and 0; for body i and xg,, y;, and 0; for body j) are
no longer independent. In the library philosophy the constraint equations are ex-
pressed in the joint component, which in turn furnishes the constraint actions to
the body components. These constraint actions correspond to the variables F,, F,,
and C. previously presented and passed to each body component. The general
expressions of these variables are now determined.

The joints considered in the planar mechanical library generate only geometrical
constraints. These constraints may be expressed in a general way in an implicit form

by Eq. (10) (e.g. [15]).
g(q1,.-.,q,)=0 fork=1tom (10)

with n the number of generalized coordinates involved in the constraints and m the
constraint number.

It is supposed here that the constraints are scleronomic [16], which means that
time does not explicitly appear in the constraint equations. At the kinematic level
these equations become
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: : . 0g; .
gk(qh"'aqn?ql?"'aqn):a_kqi:0
q

i

for £ = 1 to m and with the Einstein implicit summation convention

on repeated subscript i (11)
In the case of bodies connected by a joint the generalized coordinates are
QT = [*a Ys 0 xg ys 0] (12)

The library philosophy imposes working with a set of dependent coordinates. A
Lagrange multiplier is then associated with each constraint equation of the joint be-
tween both bodies. Let 4, (kK = 1 to m) be these Lagrange multipliers. We now devel-
op the expressions of the resulting constraint terms F,,, F',,, and C., on the body i side
and F,,, F Vo and C.,, on the body j side in terms of the Lagrange multipliers 4, (k =1
to m) and the joint geometry.

Let us first consider the Fig. 4 schematic representation of two bodies in a general
planar motion (note that in the context of a planar motion, Z; = Z; = Z). The joint is
characterized by the geometric axes (M, X;;) and (N, X;;) respectively on bodies i and j
(no peculiarity is shown at this point in order to keep the generality of the develop-
ment). These two axes are defined by their relative positions in the corresponding
body frames (relative coordinates (xar, ym) and (xn, yn) with respect to body frames,
respectively, for points M and N, and angular relative positions 0, and 0 for the vec-
tor axes X; and X;;).

The geometrical joints considered between bodies i and j may also be expressed by
the follgwing equations (this conjecture is at least verified for joints considered in the
library)~:

—_— N = = =
fi <OM, ON,xil,yﬂ,xﬂ,yﬂ> —0 fork=1tom (13)

Next the kinematic equations corresponding to these geometrical constraints are
obtained by differentiation with respect to time and in the same reference frame. Let
the absolute frame of reference be the frame of differentiation. The kinematic con-
straints are (see the appendix for the calculus details and the notations used)

-

. = . o - = 3 — - — N —
fko_A)// (k6. %o +3679) + | GiM x fk,o_A)// = Frgy XXt — fug, XV | - 0iZo

R — - -

+fk.(7v : (XG,fo +J-}G,-}_;O) + <GjN Xf — —fk«x,, X X _fk,j»j, X 5’}1) 0Z0=0

fork=1tom (14)

2 Even if Egs. (10) and (13) correspond to the same constraint equations, there is a fundamental
distinction between their expressions. In fact g, may be defined as a linear form on R" while f; may be
defined as a linear form on the Cartesian product of two dimensional vector spaces &°. Having dispelled
this ambiguity the distinction in the constraint notation is no longer applied in the rest of the paper.
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Fig. 4. Geometrical characteristics of two bodies in planar motion.

It is worthwhile noting that all vectors in Eq. (14) must be expressed in the absolute
frame of reference.

The constraint terms contributing to the generalized forces are obtained from the
general expression given by

m d m a
0,=> a{]"iukza%ik (15)

Using the generalized coordinates defined for Fig. 4 bodies in planar motion and
Eq. (14) for the expression of the kinematic constraint equations, the constraint
terms contributing to the generalized forces are

O, =Mhf — X

for body i: O, =kf — ¥

i k.OM
5 . 5 . . - L =
Op, = —& (ka,-, X Xt + [z, X J’n) “Zo+ Akfk(;; ‘ (Zo X GiM)

Qx, = /“kf — 'fO
k k,ON

for body J: 0, = WS =5y

k,ON

2 - 2 — — s P — e
0y, =~ (Fusy ¥ %+ Tz, x35) Fo+ il - (B2 x GN)
(16)

with the Einstein implicit summation convention on the repeated subscript k.

By analogy to the case of a given action (Eq. (9)) the following variables can now
be clearly expressed:
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Fo=hf — %

k,OM

N F, = },kﬂ —
for body i ¥ v con Yo
C, =~k (fkjc‘,/ X X + [z, X )2-1) “Zo
=] T
i k,ON

for body j: F, = I o Vo

CZ] = _)Vk (f]‘:j’f/'l X Xji +fkﬂ)7/‘/ X yjl) )

These variables are calculated in the joint component and passed respectively to
body i and body j components that calculate the terms given by relations (18) to
complete the generalized forces O, and 0y,-

=

I
B (zo x G,M) with F, = F, %) + F, 7, for body i

) N L (18)
E;- (Zo % GjN) with F; = F, X —|—F}i/)70 for body j

In turn each body component integrates its dynamic model and furnishes, to the
joint component, the absolute position of point M for body i and point N for body j
and the absolute angular position of axis ¥; for body i and axis X, for body j (Eqs.
(19) and (20)). The absolute position of a point M (respectively, N) is obtained with
the absolute position of the body mass center G; (respectively, G;) and the relative
position vector of this point M (respectively, N) projected onto the absolute frame
of reference. The absolute angular position of the axis ¥;; (respectively, X;;) is simply
the sum of the body absolute angular position and the relative angular position of
this axis X; (respectively, X;;) in the body frame. The relative position vectors of
points M and N and the relative angular positions of axes ¥;; and X;; are parameters
in the body components

XY, = xg, + xp cos 0; — y,, sin 0;
Wy =y, + Xy sin 0; + y,, cos 0; (19)
0%, =0, + 0,

X3y = xg, +xycos0; — yy sin 0,

Yy =Yg, +xysin0; + yy cos0; (20)
0

HN = 01 + Hj[

In the joint component the Lagrange multipliers 4, remain to be calculated. This
is addressed later in this section. Before this we will illustrate the above mathematical
formulation onto the example of a translational joint.
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3.3. Illustration of the joint dynamics formulation on the translational joint example

A translational joint between points M and N of two bodies may be schematically
represented by Fig. 5.
The geometrical constraints imposed by a translational joint may be expressed by

—_— = —_— — —
f1(0M70N7)_";1>:MN'J_"iIZON'fiz_OM'fiJZO
—_— — — — -_— (21)
£ (OM, ON7yj1) —MN-5,=ON -5, - OM -5, =0

An alternative to this formulation is, for instance, MN - ¥y =0andX; -y, =0 but
Eqgs. (21) enable the symmetry property of the translational joint component to be
conserved in its model formulation. Then Eq. (22) give the variables calculated in
the translational joint component and passed to the body components (see Eq. (17)).

-

Foy = A(=¥,) %o+ 22 (=¥, - %o = Ay sin 0}, + 2 sin 0},
Fy, = A(=3)) - Fo + da(=F) - ¥y = —1 cos 0y, — 2y cos 0
for body i s
C, =1 [(ON - OM) X )7,.,} %
= = [( = x3y) cos O + (b — 53 sin 0},
F, = ¥y %o + Ay, - ¥y = — A sin 0y, — 4, sin 0
Fy = ¥y Fy + Al - ¥y = A cos by, + 4y cos Oy,
for body J: SO
C., =—is [(ozv - OM) x yj,} %
=~ [(x} —xiy) cos Oy + (3, — »},) sin 0]

(22)

Fig. 5. Schematic representation of a translational joint between two bodies.
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Furthermore the generalized forces due to the constraint terms in the body compo-
nent mathematical models are calculated with Egs. (16).

Until this point bodies with only one connecting point have been considered. For-
mulation development is strictly identical, as in those seen above, for bodies with
several connecting points. Previous calculation is only lengthened proportionally
to the number of connecting points. The generalized forces due to different con-
straints in this case are simply summed up for the number of connecting ports.

Now the calculation of the Lagrange multipliers is addressed.

3.4. Calculation of the Lagrange multipliers

This formulation, in dependent coordinates, led to the use of the Lagrange mul-
tiplier method. The Lagrange multipliers are implicit solutions of the constraint
equations embedded in the joint components and thus must be calculated in these
components. AMESim enables implicit equations to be programmed, the dynamics
equations, however, globally obtained on a complete system, are generally a Differ-
ential-Algebraic Equation system of index 3 [10,22] with the geometrical constraints
programmed in this way. This Differential-Algebraic Equation index causes serious
and even critical problems for numerical resolution. Implementation of kinematic
constraint equations or even the second derivative with respect to time (acceleration
order) of the geometrical constraint equations would decrease the index. However
this also causes a loss of information at the geometrical or even kinematic level
and the numerical solution has a high chance of diverging from the exact solution.

In order to circumvent this problem, the Baumgarte stabilization [3] is used to cal-
culate the Lagrange multipliers in an implicit manner. The Baumgarte stabilization is
based on a control scheme [20] of the constraint errors to make them converge
towards zero. Its calculus scheme is a PID control on the kinematic constraint equa-
tions which then also use the constraint equations at the geometrical and accelera-
tion orders (e.g. [8]). In this manner all the information about the constraints is
kept and the judicious choice of the PID schema gains enables the constraint errors
to converge towards zero.

If Eq. (13) represents the geometrical constraint equations then the Baumgarte
stabilization calculus scheme is given by:

fo420f, +Ffi=0 fork=1tom (23)

where o/f and  may, respectively, be interpreted as a damping coefficient and a nat-
ural pulsation of the solution for f;. The same numerical coefficients have been arbi-
trarily chosen for all the constraint equations.

The use of this stabilization scheme obliges the body component to supply an-
other piece of information other than the information concerning the point M posi-
tion and on the angular position of the joint axis. In fact the kinematic and the
acceleration constraint equations are obtained from the differentiation, with respect
to time, in the absolute frame of reference of the geometrical constraint equation
(13). The first differentiation gives (see the appendix for calculation details and
notations)
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7 0 = 0 = 7 0= c0 = n (7 = 7 =
f = (xMxo +yMy0) +f —- (xNxo +J’N)/o) +0; (fkj,-l “Yu =Sz, 'xil)
k,OM k,ON
+0,(Fasy T = Frg, %) =0 fork=1tom (24)

Eq. (24) shows that body components must also supply the absolute velocities of
points M and point N and the absolute angular velocities of both bodies (which
are equal to the absolute angular velocities of the joint axes). These quantities for
point M (respectively, for point N by substituting i by j and M by N) are given by

{ %0, = xg, — 0:(xy sin 6; + y,, cos 6;) (25)

W =g + 0:(xps cos 0; — y,, sin 6;)
The second differentiation, with respect to time, in the absolute frame of reference of

the geometrical constraint equations gives (see the appendix for calculation details
and notations):

7 .0 > <0 = 02, .02
T (@Rt F0) +F o (%0 +7070) +£ o (387 +347)
k,OM k,ON k,OM

2 92 0.0 .0 . N
+/ ( YN ) +2f — (XOMX?V +y0My0N) +0; (fk,;” Vi —Srz, 'xil)
k. ON k,OM,ON

/o . = . 2/ . = . N . = .
+0; (fk.f,», Vil _fk.ﬁ,, -x_,-,) -0 (fk‘j,, X1 +fk._;7,, 'J’ﬂ) - 9_,- (fk,)?,y “Xji +fkj/, 'yj1>
+ 29"61' [(fk«?,w?ﬂ +ﬁ=?uﬁﬂ) cos (00 - 60 ) - (ﬁf Xit V1 _fkfiz-fﬂ) sin (02/1 - Q?V)}

—2iY, _(9, ( QJH,, sin 0, + LG cos 0, ) +0, sm o +f s, 9%)}

|

k,OM ¥ OM 3, OM

—|—2j/24{[9,~< — cos0l, ~f = sm0°>+9,< cos fﬂ sin 09,
/LOMJC/

—2i% |0 (fﬂ smHM—&-fH cos@0

k,ON. k,0 KON J

+9,<f sind, +1 — cos@?\,ﬂ

+2i% |0 _ (f — cosf), fk.o?v.y,., sin%) +9j (fk‘oﬂwﬂ cos f — sin@?\,)

k,ON X LJON 3j;

=0 fork=1tom (26)
Eq. (26) shows in turn that the absolute accelerations of points M and N and the
absolute angular accelerations of both bodies (equal to the absolute angular acceler-
ations of the joint axes) are needed for a joint component model where Baumgarte
stabilization is implemented. The acceleration of point M (respectively, for point N
by substituting i by j and M by N) is given by

{ %0, = kg, — 0:(xy sin 0; 4 y,, cos 0;) — Gf(xM cos 0; — y,, sin 0,) )

P =g + 0:(xps cos 0; — y,, sin ;) — éf(xM sin 0; + y,, cos 6;)
The peculiarity of each joint generally eliminates a number of terms in these equa-
tions. Nevertheless Egs. (24) and (26) enable generic kinematic and acceleration con-

straint equations to be expressed in terms of the variables supplied to a joint
component.
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The kinematic and acceleration constraint equations are now illustrated on the
translational joint example. The geometrical constraint equations in this case are
given by Egs. (21). In terms of the variables passed at the connecting port of the joint
component these equations become:

— (% = x3) sin O + (% — 3) cos by, =0 08)
—(x = ) sin O, + (v —»3,) cos Oy = 0
The corresponding kinematic constraint equations are
5y V(M) 43, V') + (~OM +ON) - (& x 3,) =0
o =0 L =0 — — S0
5 V(M) + 5, - P'(N) + (—~OM + ON) - (8] x3,) = 0
— (&8 — 5, sin 60, + (3%, — ;) cos 0, — 0;[ (x% — x3,) cos 6,
+(% =) sin6,] =0

— (&, — &) sin 0% + (5% — 3%,) cos 0%, — 0, (x§ — x9,) cos 0%
08— sindh] =0
Finally the acceleration constraint equations are
- -0 . -0 N . —_— =0 . =0
Vi (M) +5y-J (N) JF"/iO ’ (yil X MN) +2[Qi X (7yil):| V(M)
+2[§? x 3] - 7'(v) =0

L =0 L =0 L — -0 R -0
5 B M)+ 5 T W) 47 (5 x MN) +2[8) x (—55)| - 7 ()

=0

+2[Ezf xyj,} PNy =0

- (x?\, - xzou) sin 924 + (y?v - yjow) Ccos 024 —0; [(x}), — xgl) cos 92/[
+(% — ) sin 924] + 20, [— (&% — 1)) cos 0, — (% — ) sin (924] =0

(8, ) sin ]+ (5 — %) cosh — B ) s
+(% — ) sin 0?\,} + 23,— [— (i} — 1Y) cos 0, — (% —3) sin 0?\,] =0
(30)

<~

It is worthwhile noting in Eq. (30) that the squared terms of the absolute angular
velocities of bodies vanish by using the geometrical constraint equations. Some terms
will often vanish, particularly for the joints presented in the library.

4. Conclusion

The purpose of this paper is not to develop a new mechanical theory or a new for-
mulation for writing dynamics equations of planar multibody mechanical systems
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(one may find valuable information on this topic in [19] or [12]). Instead the issue was
more to fit existing formulations to the AMESim requirements in order to build a
new library in the domain of planar mechanical systems. The tool requirements were
principally modularity and communicability between components which must have
predefined mathematical models, in particular between body and joint components.
This has led to a formulation in dependant coordinates, so the Lagrange multiplier
method was used. The generalized coordinates are the absolute Cartesian coordi-
nates of the body mass centers and the absolute angular positions of the bodies.
The body component mathematical model consists of the Lagrange equations writ-
ten in terms of the previously given generalized coordinates. The joint components
consist of joint constraint equations from which the Lagrange multipliers, as implicit
solutions, are numerically obtained. Baumgarte stabilization schemas have been
implemented onto the constraint equations in order to decrease the Differential-
Algebraic Equation index without degrading the numerical solution.

The main originality of the mathematical model implementation, caused by Ame-
sim requirements, consists of geometrical constraint equations explicitly expressed in
terms of vectors and exploited in this form (Eq. (13)) instead of expressed in terms of
scalars (Eq. (10)). This was required to show the generic formulation of constraint
actions and the variables received by body components (Eq. (9)), whatever the con-
nected joint component. In fact Eq. (10) would not have enabled terms (18) to be
developed, these terms are to be treated in the body component.

The generic formulation proposed in this paper (in particular for joint con-
straints), though dedicated to causal component mathematical models, may be
used for systematically deriving the equations associated with joint constraints.
One can even imagine a symbolical routine that generates these equations with the
vector constraint as the only input. Concerning the use of Baumgarte’s stabilization
with Lagrange’s equations and the Lagrange multiplier method, the formulation is
more classical. Here it shows how to split the different mathematical submodels
according to the modular and component approach of an object-oriented tool.
Also it is quite well adapted to tools that do not globally re-oriente in terms of var-
iable assignment and re-organize the mathematical model. Moreover, in the context
of object-oriented tools, one advantage of the formulation presented is that the gen-
erated Differential-Algebraic Equation system is generally of index one even for
closed loop structures. In fact, by using Baumgarte’s stabilization, it was not needed
to reformulate a posteriori the model that otherwise would have been at least of
index three. The drawback to this approach is that the size of the state model is in-
creased and it has, in addition, certain number of algebraic equations and implicit
variables.

One logical perspective to the formulation proposed is its extrapolation to three
dimensional mechanisms. There is no conceptual difficulty for using the same scheme
by combining Lagrange’s equations, the Lagrange multiplier method and Baumg-
arte’s stabilization as well as splitting the models into the same components, namely
bodies and joints. Basically the main difficulty is intrinsic to the three dimensional
mechanism domain. This renders the generic formulation proposed in this paper
more tedious. The main reason resides in the necessity of taking the body orientation
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into account. For planar mechanisms only the rotation around one absolute refer-
ence fixed axis was needed. This has greatly simplified some mathematical develop-
ments in the formulation. With three dimensional mechanisms it is necessary to
choose a set of generalized coordinates to represent the absolute orientations of
bodies. Euler’s angles or Euler’s parameters are examples of such generalized coor-
dinates. With three of Euler’s angles the main drawback is the possible occurrence
of singularities where there is either non unique solutions or discontinuities. It is then
necessary to switch to another set of Euler’s angles. Otherwise Euler’s parameters are
well designed for these cases but there are four of them and so this requires an extra
algebraic relation to be taken into account in the formulation [24].

Part II of this paper details the library composition and illustrates it with the
example of a seven-body mechanism [23]. It also shows how actuating items are
included in the joint components.

Appendix A. Nomenclature

[l

scalar product between two vectors
cross product between two vectors

[ISESERSYARSY)
X
alo SN

=4, a= ‘3127? first and second time differentiations
& partial derivative
a* virtual quantities
a vector
a column vector
a’ matrix transpose
A* virtual power developed by acceleration quantities
A acceleration quantities
T kinetic coenergy
P* virtual power developed by mechanical actions
(0] generalized forces
(0, %o, ¥y, 20) absolute frame of reference
(Gi, %, ¥;,2i) body frame
(M, %1, %, Zi1) joint privileged frame
(x6,, Y6, absolute coordinates of the body mass center
0, absolute angular body position
(xXat5 Y1) relative coordinates of point M;
0 relative angular position of joint privileged frame
(3, %,) absolute coordinates of point M;
9% absolute angular position of joint privileged frame
m;, I; body mass, central moment of inertia about Z,
g gravity acceleration
i“f/ } wrench
F force
F.F, force absolute coordinates

)

torque about point M
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C. torque component on %

~0 . .

Y (M) absolute velocity of point M

J 0(M ) absolute acceleration of point M

Q, absolute angular velocity of body i

)7? absolute angular acceleration of body i
q generalized coordinates

i fx geometrical constraint expressions

Ak Lagrange multipliers

o f parameters of the Baumgarte stabilization

Appendix B. Notation conventions on partial derivatives with respect to a vector

We introduce here a conventional notation for sake of conciseness. The vector
noted fa = % represents the partial derivative in the absolute frame of reference of
f with respect to the vector d. We suppose here that the constraint equations only
consist of sums of scalar products of the form oa - b. In this case f“a = ub. The vector
components of ‘/_";1 are the partial derivatives of f with respect to the vector compo-
nents of d. With the scalar product properties, we may manipulate the partial deriv-
atives with respect to a vector as we do with partial derivatives with respect to
scalars. Furthermore the partial derivative of fﬁ with respect to a second vector is
a scalar noted f; ; = 2’5’ In the same context, for constraint equations consisting only
of sums of scalar products f;; = f; ; = o. The notation introduced here differs from
that in [19] for instance, in the sense that 1 is not treated as a row vector but as a full
vector. Finally we denote [ = f;2.

Appendix C. Development of the kinematic and acceleration constraint equations

The kinematic constraint equations are obtained by differentiation with respect to
time in the absolute frame of reference of Eq. (13) (see appendix on notation
conventions):

dfk(m,m,fﬂjﬂafﬂjﬂ)
de

o dOM o dON 0 diu Ofi d¥y i diy

ooM dt  poN dr oy dr 9y, dr Oxy  d

=0 fork=1tom

of, dy
#~ﬁ:0 fork=1tom
oy, di
5 -0 5 -0 5 ~0 5 ~0
= f S VM) +f -V (N)+fiz - (Q,- Xxil) + iz, (‘Qi Xyil>
koM k,ON

o 50 - S0
 Fesy (8% %) + Fug, - (4 % 7,) =0 fork=1tom (31)
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These equations are used for the joint component generic model (Eq. (24)). The con-

straint terms used in the body component are obtained by expressing Eq. (31) in

terms of the generalized velocities. Using the velocity transport from points M

(respectively, N) to points G; (respectively, G;) achieves this.

G)+ 0 ><GM>+f—>-< (G)+Q xGN)Jrka,,

kOM (

(.Q ><x,1
+ijij, (f)/ ><yﬂ> =0 fork=1tom
- -0 - =0
=[5 V(G +f - T (G)
k,OM k,ON
— — - =0
+ | GM ><fk0—A>4 —kai, X Xj — fk), Xy ) Q

— o o . o .
+({GN kao_)zv _fkjrf,-[ X X1 —fk,y,., X Vi

which leads to Eq. (14).

Starting again from Eq. (31), their differentiation with respect to time in the
absolute frame of reference gives

of — of —
j—; . —»0( )—i—f . jO(N)—|— k;'OM dOM I—/»O M) k‘ON dON
k,OM K, oM dt 60N Sdr
of — of
fk,OM dON I—/»O M) fk40N dOM I—/»O N)
oon dr ooM dt
of — o f — 0 O = O — oy
I fk,OM dx fk,OM dyy fk,OM% fk,OM% -170( M)
oxy dr oy, dt ox; dt oy, dt
of o o — 10 O — u Of — 4=
i fk,ON dx; fk,ON dy; fk,ON % i ka,ON% -VO(N)
ox,; dt oy, dt ox; dt oy, de
-0 =0 =0
(Q. ><x,-,> . d(Qi ><y,.,> . d(Qj xle)
+fky,, ’ dr +fk755,'1 ’ d ki

fk\r;dOM aka dON 6ka, dx; 6ka1dy,/

oM

dt 60N dr oy de oy, dt

aka, dOM akal dON aka/, ,[ aka,, dyll

dt " goN dr &, dr 9y, dr

o0M

f t
(fky;dOM afky dON+afky1 iy fkyzdy/1>
oOM

de 60N dt ox; dr oy, dt

-Q?:O fork=1tom
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n afk),dOM+afky1dON+afkyﬂ ,/Jrafﬁ,;j,dj/'i, ~<f.29><j)'j,)
60M dt 6ON dt ox; dr oy, dt
=0 fork=1tom

Using the hypothesis of constraint equations only constituted by a sum of vector
scalar products, we may also state that these scalar products never imply axes of the
same joint privileged frame (e.g. X;; - X;; or X; - ¥, and the same with substitution of i

gy Uz Uiy, o,
oL il et and ' (and the same with
Xy it X

substitution of i by j) do not appear in the previous equations. Usmg again the nota-
tion convention of the partial derivatives with respect to a vector we obtain

by j). This explains that terms such as

P Fonaf o By s [P 0] vr [P )

k,OM koM k,OM k,OM
+2f 7)) +2{f . (Q x xl,>
k,OM ,ON kOM 3y
-0
+f —hJ’zl(Q; X _»il) +/ — (Qj X)_C'/l)
k,OM %)
-0 N =0 -0 .
+f — (‘Q/‘ijl} VM )+2[f—> (Qixxil)
kOMjgy \ kOM %y
-0 =0
+f = (B xF)+f = (8 %)
k,ON 3, KON %)
-0 - -0 - ~0 -
T (Q/ x ],) (N) + Fr, [(; X x,,) 10 x (Qi x x,,)]
KON 3
7 =0 = =0 =0 - - = —
+ ez, [(Vi X zl) + @, x (Qz Xyzl)] +fiz, [(’/ X xﬂ) +Q; x <Qj x xﬂ)}
- o 50 -0
+fk,yj,[<7j X)’//) +Qj X (Q XJ’,/)}
0 -0 -0
+ f/uc/,xﬂ< ' )+ka,/y,1 (QJ )] (Q, X t/)
0 0 S0
+ ka;/“/I( j X ﬂ) +fk)’,/yjz( J X /l)} ('Qi X zl)
-0 50 50
+ ﬁm,m,( ,X )+ﬁ<x,1v,,< l>< zl)] ( ' X jl)
r S0 0 S0
+ ﬁﬁfﬂv’?’/ (Ql X x,-,) +f}(,;j1,y’]( : )] ( X ﬂ> =0 fork=1tom

Ql
¥
=
—+
=
&
=]
4,
o
=
2.
=]
aQ
-
=
o
(o
)
o

Using the relation d x (5 X E) =(@-¢)-b— (Zi . l;)
ble products, these equations become
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T+ 7 H-i°<N>+fH P00 +r [P w0]

k,OM k,ON k,OM k, ON

/ xtlekx1+yzlekv,)

+ 5’? : (55/‘1 X J?kj, + 3 x fkj»-,) - Q,- (ka,», - Xit +fk.y,-, ')71‘1)
(ka, Xj1 JFfA}, yjl) +2f kx5, (Q? X fjl) ‘ (é? X fil)
+ 2fkjc’,,y,(Q X yﬂ) . (Ql. X 56,»1) +2fkj”jﬂ (f);) X fj,) . (f)? X j}’i,)
+ fky]yﬂ( 'Xy]l)'(‘é?xj;il)

[Q,- X ( e le +f o )41)

Q, ( s, X +f;{’0_]\)/[j/[}7jl):| V(M)

+2|:‘Qix f—> x11+f—> yzl
ON 3

k,ON X;

—I—Q;) X (f_1>v x,;—l—f—> yﬂ)} -VO(N):0

45

x,,
fork=1tom
Noting also that X -X; =¥, -¥; and X;; -y, = —¥; - X; and using the relation

(a x 13) : (5 x 3) = (@) (13 : Ei) - (5-3) (5-5) we finally obtain
- =0 — O 0 2
P 7 Ny s ) B [ al15) I Lal1Y)

k,OM k,ON k,OM k, ON
=0 =0 . — 5 —
+2f SV (M)-V (N)+7, - (x,—, X frzy + Vu ka,yi,)
k,OM ON
— - iy - - _’02 - — 2 -
+ V,Q : (le X frz, TV ¥ fky,,) -9 (ka,-, X+ iz, 'yi1>

_’02 7 - 7 — [ - -
- ‘Qj (fkjﬂ - Xji +fky/, 'yjl) +2 (fkff/vf/l +fk~,)711~}7/1> (xil 'xﬂ)

20 =0 -0
+(ﬁcf;l~)7j1 _J{/ﬂf’il,fj/)(le yjl)] (Q j) +2|:‘Q; X (f — xtl+f — yzl

k,OM X;; k,OM y;;

KON %y N i
-0
+Q x|\ f = X+f = V)|V N)=0
J X KON 5
fork=1tom

which leads to Eq. (26).
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