
§7.1 引言 



连续时间信号、连续时间系统 

连续时间信号： 

        f(t)是连续变化的t的函数，除若干不连续点之外对

于任意时间值都可以给出确定的函数值。函数的波形都

是具有平滑曲线的形状，一般也称模拟信号。  

连续时间系统： 

    系统的输入、输出都是连续的时间信号。  

模拟信号 

抽样信号 

量化信号 



离散时间信号、离散时间系统 
离散时间信号： 

    时间变量是离散的，

函数只在某些规定的时刻

有确定的值，在其他时间

没有定义。  

离散时间系统： 

    系统的输入、输出都是离散的时间信号。如数字

计算机。 

o
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离散信号可以由模拟信号抽样而得，也可以由实际系

统生成。  



量化 

幅值量化——幅值只能分级变化。 

采样过程就是对模拟信号的时间取离
散的量化值过程——得到离散信号。 

数字信号：离散信号在各离散点的幅值被量化的信号。 
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离散时间系统的优点 

•便于实现大规模集成，从而在重量和体积方面显示其

优越性； 

•容易作到精度高，模拟元件精度低，而数字系统的精

度取决于位数； 

•可靠性好； 

•存储器的合理运用使系统具有灵活的功能； 

•易消除噪声干扰； 

•数字系统容易利用可编程技术，借助于软件控制，大

大改善了系统的灵活性和通用性； 

•易处理速率很低的信号。 



离散时间系统的困难和缺点 

  高速时实现困难，设备复杂，成本高，通信系统由

模拟转化为数字要牺牲带宽。 

应用前景 

  由于数字系统的优点，使许多模拟系统逐步被淘汰，

被数字（更多是模／数混合）系统所代替； 

  人们提出了“数字地球”、“数字化世界”、“数

字化生存”等概念，数字化技术逐步渗透到人类工作与

生活的每个角落。数字信号处理技术正在使人类生产和

生活质量提高到前所未有的新境界。 



混合系统： 

        连续时间系统与离散时间系统联合应用。如自控

系统、数字通信系统。 需要A/D、D/A转换。 

不能认为数字技术将取代一切连续时间系统的应用 

•人类在自然界中遇到的待处理信号相当多的是连

续时间信号，需经A/D、D/A转换。 

•当频率较高时，直接采用数字集成器件尚有一些

困难，有时，用连续时间系统处理或许比较简便。 

•最佳地协调模拟与数字部件已成为系统设计师的

首要职责。 

混合系统 



系统分析 
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特解经典法：齐次解
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:

连续时间系统——微分方程描述   
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离散时间系统——差分方程描述 

 差分方程的解法与微分方程类似  



本章内容 

•离散时间信号及其描述、运算； 

•离散时间系统的数学模型——差分方程； 

•线性差分方程的时域解法； 

•离散时间系统的单位样值响应； 

•离散卷积。  

    注意离散系统与连续系统分析方法上的联系、

区别、对比，与连续系统有并行的相似性。和前几

章对照，温故而知新。 

学习方法 



§7.2 离散时间信号——序列 

•离散时间信号的运算 

•常用离散时间信号 

•离散信号的表示方法 



一．离散信号的表示方法 
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值的大小线段的长短表示各序列波形表示

可以用函数表示有规则的

如数字序列
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序列的三种形式 
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二．离散信号的运算 

1．相加： 

2．相乘： 

3．乘系数： 
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5．倒置： 
6．差分： 

7．累加： 

8．重排（压缩、扩展）： 
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注意：有时需去除某些点或补足相应的零值。 
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三．常用离散信号 

•单位样值信号 

•单位阶跃序列  

•矩形序列 

•斜变序列 

•单边指数序列 

•正弦序列 

•复指数序列 



1．单位样值信号 
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利用单位样值信号表示任意序列 
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2．单位阶跃序列 
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3．矩形序列 
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4．斜变序列 
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5．单边指数序列 
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6．正弦序列 

数值。个重复一次正弦包络的则序列每＝当

的速率。序列值依次周期性重复正弦序列的频率
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        sin  0 是周期序列应满足离散正弦序列 nnx 

N称为序列的周期，为任意正整数。 
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正弦序列周期性的判别 
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7．复指数序列 

复序列用极坐标表示： 
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复指数序列： 



数字角频率（离散域的频率）的取值 

●数字频率——抽样间隔的关系应满足Nyquist抽样率  
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 范围内取值。，只能在但
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例7-2-2 
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例7-2-3 

设N=10，说明正弦序列的包络线每隔10个样值重复一 

次，周期为10。 

π2.0
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小。间弧度

小，两个序列值率，速反映每个序列值出现的
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 tΩ0sin1

10

。的弧度数为表示相邻两个序列值间 π2.0
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例7-2-4 



       4.0sin 是否为周期信号？信号 nnx 

       4.00 
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§7.3 离散时间系统的数学 
   模型—差分方程 

•用差分方程描述线性时不变离散系统 

•由实际问题直接得到差分方程 

•由微分方程导出差分方程 

•由系统框图写差分方程 

•差分方程的特点 



一．用差分方程描述线性时不变离散系统 

离散时间系统

)(1 nx )(1 ny

离散时间系统
)(2 nx )(2 ny

离散时间系统

)()( 2211 nxcnxc  )()( 2211 nycnyc 

线性：均匀性、可加性均成立； 



时不变性 
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二．由实际问题直接得到差分方程 

例如： 

y(n)表示一个国家在第n年的人口数 

a(常数)：出生率 

b(常数): 死亡率 

设x(n)是国外移民的净增数 

则该国在第n+1年的人口总数为： 

y(n+1)=y(n)+ay(n)-by(n)+x(n) 

=(a-b+1)y(n)+x(n) 



三．由微分方程导出差分方程 

     
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 ：输出ty

 ：输入tf

T  :  时间间隔



列差分方程 
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     nfnTftf 
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若在t=nT  各点取得样值 

当前输出 前一个输出 输入 

n代表序号 



四．由系统框图写差分方程 

1．基本单元 

 nx1

 nx2

   nxnx 21 


 nx1

 nx2

   nxnx 21 

加法器： 

乘法器： 

 nx1

 nx2

   nxnx 21 



 nx  nax
a

   

 nx  naxa

 

 

 

延时器 

单位延时实际是一个移位寄存器，把前一个离
散值顶出来，递补。 

 ny  1ny

E

1  ny  1ny
1z

标量乘法器 

系统框图 



五．差分方程的特点 
  (1)输出序列的第n个值不仅决定于同一瞬间的输入样

值，而且还与前面输出值有关，每个输出值必须依次

保留。 

(2)差分方程的阶数：差分方程中变量的最高和最低

序号差数为阶数。 

如果一个系统的第n个输出决定于刚过去的几个输出

值及输入值，那么描述它的差分方程就是几阶的。 

   



M

r

r

N

k

k rnxbknya
00

:通式



差分方程的特点 

(4)差分方程描述离散时间系统，输入序列与输出序

列间的运算关系与系统框图有对应关系，应该会写

会画。 

(3)微分方程可以用差分方程来逼近，微分方程解是

精确解，差分方程解是近似解，两者有许多类似之

处。 



例7-3-1 

     1 naynxny

框图如图，写出差分方程 

解： 

a

 nx  ny


E

1

a

 nx  ny


E

1

     naynxny 1

    nxny
a

ny  1
1

  )( 或

一阶后向差分方程 一阶前向差分方程 



§7.4 常系数线性差分方程
的求解 



解法 

1.迭代法 

3.零输入响应+零状态响应 

 利用卷积求系统的零状态响应 

2.时域经典法：齐次解+特解 

4. z变换法反变换y(n) 



一．迭代法 

解差分方程的基础方法 

差分方程本身是一种递推关系， 

 的解析式但得不到输出序列 ny



二．时域经典法  

1.齐次解：齐次方程的解 

    01  nayny

 
 
 

 
 

 
 

a
ny

ny

y

y

y

y
y 







10

1

1

0
,01 

  n
Cany 

指数形式 

  

     不能全为零但起始状态 Nyyy  ,2,1

  所以的几何级数是一个公比为说明    ,         any

arar  可得或由特征方程 ,0     

  nn
CaCrny 



求待定系数 C由边界决定 

  

      

    210  ayy

代入原方程，    ,
2

1
a

y 设 0n令

 ny  由方程解

  CCay  0
0 2C所以

  n
any 2 

齐次解 

求差分方程齐次解步骤 

差分方程 

特征方程特征根 

y(n)的解析式由起始状态定常数 



根据特征根，解的三种情况 

       n
nn

nn
rCrCrCny  2211

阶方程无重根 nrrr n 21     .1

2.有重根  如三重根r1=r2=r3=r 

3.有共轭复数根   可视为二个不等单根 

       n2

3

n

2

n

1 rnCrnCrCny 



2.特解 
线性时不变系统输入与输出有相同的形式 

  an
nx e   an

Any e

  n
nx

j
e   n

Any
j

e

输入 输出 

   nnx cos   )cos(   nAny

   nnx sin   )sin(   nAny

  k
nnx    01

1
1 AnAnAnAny

k
k

k
k  

 

  Anx    Cny 

   nrnx     nrCny 

   nrnx       nn
rCrnCny 21  （r与特征根重）  



三．零输入响应+零状态响应 

1.零输入响应：输入为零，差分方程为齐次 

C由初始状态定（相当于0-的条件）  

 nrC齐次解： 

2.零状态响应：初始状态为0，即 

    021  yy

求解方法 

经典法：齐次解+特解 

卷积法 



例7-4-1 

    111300  yyn

    410311  yyn

    1311322  yyn

    4012333  yyn

由递推关系,可得输出值： 

 






















,40,13,4,1

0n

ny

        求解方程。，且已知 ,0113  ynunyny



      02615  nynyny

       11,20 。已知  yy

3,2 21  rr

 

  13211

200

21

21





CCyn

CCyn

     nn
ny 3325 

求解二阶差分方程 

特征方程    032065
2  rrrr

齐次解      nn
CCny 32 21 

定C1,C2 

解出 3,5 21  CC

例7-4-2 

特征根 



        的解。

求方程

03ny82ny121ny6ny 

       nnn
nCnCCny 222

2

321 

特征方程 

  0208126
323  rrrr

三重根    2r

给定边界条件即可求出常数 
321 ,, CCC

例7-4-3 



例7-4-4 设差分方程的特征根为 

 jj
MerMer

 21

     nn
rCrCny 2211 

   njnj
MeCMeC

  21

    njnMCnjnMC
nn

sincossincos 21 

 nQMnPM
nn

sincos 

 P,Q为待定系数 

为减幅正弦序列  nyM 1

 nyM 1 为等幅正弦序列 

 nyM 1 为增幅正弦序列 

讨论零输入响应情况 



例7-4-5 

     
 

求全解
且 








11

512

y

nunyny

202  rr

齐次解

    （常数）时全为   5    05  nnunx

  Cny p 

)0(52  nCC

3

5
C

代入原方程求特解 

       
3

5
21 

n

ph Cnynyny

   n

h Cny 21 

特解 

    全解形式



3)1(25)0(        0  yyn

  迭代出由 11 y

    ，得代入　解
3

5
21 

n
Cny

 
3

5
30 1  Cy

3

4
1 C

    0
3

5
2

3

4
 nny

n

由边界条件定系数



         1nxnx2ny21ny3ny  

 LTIS的差分方程

          0102  yynunx
n

已知

    时的解。即当零输入响应 0,   nxnyzi

求系统的零输入响应。 

      02213  nynyny

1,2023 21
2  rrrr

     nn

zi CCny 12 21 

例7-4-6 



求初始状态（0-状态）  

题目中                          ,是激励加上以后的,不能说明状态 

为0,需迭代求出                          。 

    010  yy

   2,1  yy

             021212031    1
0
uuyyyn 

    1121200  y

 
2

1
1  y

             120222130     0
10




uuyyyn

    122130  yy

 
4

5
2  y



    :2,1 代入方程以  yy

     

     

















4

5
122

2

1
121

2

2

2

1

1

2

1

1

CCy

CCy

zi

zi









2

3

2

1

C

C

     nn

zi ny 1223 

解得 

零输入响应与输入无关 

由初始状态（0-状态）定C1，C2  



注意 

在求零输入响应时，要排除输入的影响—— 

找出输入加上以前的初始状态。 

 
    。

可以求出初始值代入方程由初始状态再以

01,00

,0  





yy

nx



§7.5 离散时间系统的单位样值
（单位冲激）响应 

•单位样值响应 

•因果性、稳定性 



一．单位样值响应 

系统

)(n )(nh

  Nkkh ,3,2,10 

   nhn    响应，表示为作用下，系统的零状态即



二．因果性、稳定性 

对于线性时不变系统是因果系统的充要条件：            

稳定性的充要条件： 

 





n

Pnh

  00  nhn

单位样值响应绝对和为有限值（绝对可和）收敛。 

因果系统：输出变化不领先于输入变化的系统。 

一个非因果系统的示例 



已知系统框图， 

求系统的单位样值响应。 


1
z

1
z

1
z

 ny

 nh
3

3

1






 nx

 n



列方程 

         nxnynynyny  3 2313

例7-5-1 

     
   nyny

nynynx





3

2313

从加法器出发： 



求解h(n) 

 作用于系统：单位样值信号 n    

     

  

 

         nnhnhnhnh  32313

时当 0n

        032313  nhnhnhnh

特征根   

  01,0133
323  rrrr

1321  rrr

方程成为齐次方程 
特征方程 

  32

2

1 CnCnCnh 所以



如何求待定系数？ 先求边界条件 

      0321  hhh零状态 



          10323130  hhhh

        3213031  hhhh

        6103132  hhhh

     2,1,0 hhh可迭代出

  得代入 32

2

1 CnCnCnh 

1,
2

3
,

2

1
321  CCC

   nunnnh 







 1

2

3

2

1 2所以

的。项是，边界条件中至少有一对于求 0n)n(h 



例7-5-2 



1
z

1
z

 ny
 nx

3






5

6



1z

1z

系统图为  

         261523  nynynxnxny

         232615  nxnxnynyny



可以用线性、时不变特性求解 

         232615  nxnxnynyny

 ny nx

3






5

6



1
z

1
z

1z 1z


 ny1



例7-5-3    nuanh
n

0)(0  nhn 时，即

 收敛，即时，只有当 nha 1  

(1)讨论因果性： 

(2)讨论稳定性： 

因为是单边有起因， 




n

nh )(

所以系统是因果的。 

系统是稳定的即 ,1a














1       

1
1

1

a

a
a






0n

n
a



§7.6 卷积（卷积和）   

•卷积和定义 

•离散卷积的性质 

•卷积计算 



一．卷积和定义 

   





m

mnmx 

    :的加权移位之线性组合表示为任意序列 nnx 

)(nx )(ny
)(nh

)(n )(nh

             

    







mnmx

1n1xn0x1n1xnx

       



   mnhmn 

       mnhmxmnmx 

   





m

mnmxnx )(

     





m

mnhmxny    nhnx 

时不变 

均匀性 

可加性 

输出 

 

 加权。处由

和，在各每一样值产生的响应之的响应系统对

mx

nx 

     。即零状态响应将输入输出联系起来， nhnxnh 

卷积和的公式表明： 



二．离散卷积的性质 

不存在微分、积分性质。 

1．交换律 

)()()()( nxnhnhnx 

)]()([)()()()( 2121 nhnhnxnhnhnx 

  )()()()()()()( 2121 nhnxnhnxnhnhnx 

   nnx 

2．结合律 

3．分配律 

4． 



三．卷积计算 

1.解析式法 

2.图解法 

3.对位相乘求和法求卷积 

4.利用性质 

离散卷积过程：序列倒置移位相乘取和 

       





m

mnhmxnhnx

范围共同决定。范围由 )(),( nhnxm

例6-6-4.ppt


y(n)的元素个数? 

Annx             )(
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个元素：  8       70    )(  nny



例7-6-1 
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例7-6-2 

使用对位相乘求和法求卷积 

步骤： 

两序列右对齐→ 

逐个样值对应相乘但不进位→ 

同列乘积值相加（注意n=0的点） 
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§7.7 解卷积（反卷积）  

•解卷积 

•例题 

•应用实例 



一．解卷积 

积。这两类问题都称作解卷

问题。地质勘探、石油勘探等　　如地震信号处理、

（系统辨识）；如何求、　　若已知

　　如血压计传感器；

（信号恢复）；如何求、　　若已知

式中在
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写为矩阵运算形式 
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二．例7-7-1 
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系统方框图。算为基本单元，试画出以延时、相加、倍乘运

求

。表示，且满足用

函数若地层反射特性的系统接收回波信号
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解：（1）求h(n)  
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系统框图 



三．应用实例 

 te
 thT

 th  thR

 tr

发送
信号

接收
信号

发送
天线

接收
天线

待测
目标

)()()()()( RT thththtetr 

运算时需离散化。

，即可判别目标，求出系统的冲激响应 )(th

雷达探测系统 


