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Vibration Measurement System Based on Magnetic

Levitation Effect

Abstract

Traditional vibration measurements mainly include mechanical, optical and
electrical means, as well as the integration of these three methods. The research
of vibration measurement system based on magnetic levitation effect in this
paper is an exploratory research, which can supply reference to the further
application of magnetic levitation effect and developing new vibration measuring
method.

The variety disciplinarian of the magnetic intensity and force on the
condition of various control-current and air gap was obtained through simulating
the magnetic field of the hybrid maglev ball system, and the simulated results are
verified by experimental measurement. On this basis, the maglev vibration
measurement system model is established, and the systematic dynamical equation
under exoteric vibration is deduced, which is consistent with the constant
coefficient second order differential equation of mass-spring vibration measuring
system. The damping coefficient and natural frequency are obtained using the
analytical methods of mass-spring system for reference.

The time-frequency domain analysis software was compiled to analyze and
process the vibration signal. The software can realize vibration signal waveforms
display, data browsing and storing, signal filter and other functions. It can also
complete further signal analysis, such as autocorrelation, spectrum, phase
spectrum, power spectrum in time-frequency domain.

Based on the designed Maglev ball vibration measurement system, an
exoteric vibration which has a given frequency of 50Hz is measured, and the
collected vibration signal are analyzed and processed by the designed time-
frequency domain analysis software. The parameters of the vibration signal such
as frequency, amplitude, etc are obtained, which validated the feasibility of the
system and the theory of Maglev technology to measure vibration. Results of this
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study can provide a foundation for further research in the vibration measuring
system applying magnetic levitation effect.

Keywords vibration measurement, magnetic levitation effect, magnetic field
simulation, spectrum analysis
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Nia
K, k=1, 2, ... N, i=1. 2, ...... n<<N .

B 45K B R — AN BE LT PR AE AR R B AN S R e 2 BB RO A SRR A
FriBfEsX RIGEUES B SR, BN7ERT (A)Ah b A£ 7 R % 4 B 35 B 20 HG
REXEEHERRARS, ZHEHRTFHEnI AT FYE, Wk -
10) , BHRARSAHE, SAHEMALEKHEEFARBROOBERK, #AHX
HiF. RZ, HREBHEBANZIKREC-. xt+oB A ERRENE, BFS
HriHHRE, FRAER, WHMARERAE, BR3HA, SHEMBELERNE
FHFBRMOPBUER D, BAARMEARETF. Lro0nt, 4 ERMAXENES
x(0), HR—AFEETAMEAHEXEEEIES .

x(t)5x(t, +71)
TN Lk o T T (4-10)

x(t, ) 5x(t, +7)

4.1.4 IRzHES AR
ERANIREESERMNAKENER, NEEEEER. 5 FERNE
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R, EEERERER. BERTAESFHHASEASHENER. M TREEHK
BESHEEEHENE R, XeFa] R FAr &S HK. ELHTFi#
MRRE. REAESIRESMEBLWNETL, ATEIRUGES THE. W
MREMENEFATH, FEFTERNEEESEHRIBER LU, NREMH
R R ABRGE SRR IE, KR E 5T 897 5 R RS 4 47 77 i
12}

Sk ST B R RIBE RN BRI, SEIHBRMERNE T —
R BRBIF, URBESHMRBREHNURSERIBEMEMER. M
SHATHES AT URBEZHERGER, WRBHHESHHE M ARRS
MBS HIEHE, KBS MIRBESRESANGEEI M, NTEHEER
BRI MAAEE. REFSHERRBRTENAR, TURSHIEME
W, AT, ThERiEL,

1. fHm3EHk

BIYMHRBRMEITPH—NEENTR. ANEEARH, HERH 0
WA TEE R, HIE (~oo,+o0) LA ATER, WIEK 2L x(¢) °T LASEAT S0 M 38
YAy S

*(©) =% [X (@)™ do (4-11)
X(0)= Ix(t)e'j‘”‘dt (4-12)
FARME R S A X AT SRR TEAL -
1 )
=— jog 4-1
x(f) ﬁELHMe o (4-13)
1 ot )
X@pvi{wy dt (4-14)
FIRE ] LUK AR R IE A R B -
X(@)= ﬁ x(Ne™ dt = B(w)e’*® (4-15)

2. HEH

RNMFESMBLBERBELAMB I ZHROEM LN, EXL, BREHHAE
B BETEABEIH R R BT 808 38 B2 5% 76 FR K B )
), BEFR LR AT TR KA F(E 5 KA, RERERRKHEKER
FEEYE. XHEYTH—/MERR RS RN LR K EAESRABRK. X
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RREE T AR TR EZAIE L

P LB SBAREDTR-AENRE, BRI HERARRILH
PR, HERBURMTHBLRE, FRPHREMRE. BAORSE S BOE K
MR B — R R R K M R R BIE K 5 — R B R X BRAT AL
HEHRNESRLE—ARY, FXESELRLFRRREY, TEESER
SERLE R AL, XA AR DR, X—RRER A TR

HERE:
w(t)={:) (((t);)g) (4-16)

X (4-16) AERFEY. EREALTHESRABWIRNERE,
EHEREA, AFEREE, FROS—AAEENERN 21%, B EE
BEHEBE 12.6%, B-ANRIEEHEBN 9%, HERRTIRRE, HER
K. W@ 4-3 1, a) K3t 300Hz EZFEMELETEER, b) HRTBEKAIH
A

'&?ﬁ (Haning):

w(t)={l(l+cos%t) 0<t<T)

2 4-17)

0 @=T)

A (4-17) ARTFEER. RTEMRELRF LRE=EAERETLHEEIMN
BEMTRK, NTENE—FMIBMERETMIBMEN 0.027, XFEZB/ATLEK
PR Hb L ARIENY, MTTIAZINIREMEIER, HRRE BB AFRME. X
AR FERBTAMEERME, BAEZEREN 18dBlotc, BAMELHELL
ERENE TR, ERTRERERNRE, Fik, SEXERTRME LS
AMRE AR R TERTA R AN B LK AN ZRANTE. WE 44
H, a) HXf 300Hz EXEMATEEEE, b) ARMBKMALIEEE.

% (Haming):

0.54+0.46 costh- 0<t<T)

o(t) = (4-18)

0 (t=T)

X (4-18) HEHRFRY. BUEFSNTERBTRELETRH, BEHN
FEHERNSBBEEFENREF, BEERLNTEEHE L. BRENER
KEREELNTEER AARTEN 1/5, HEBZRETE 40dB/lotc, X
REVPFLNTERBEZ L. BR, BHENZFBERARNTERE, X2
WEAE S S, W 4-5 F, a) K3 300Hz EXEMEBHEFFEE, b AR
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MREE T RETHM 28X

BRI A LIREE

I5.3; ! : : : 4 Revefo
N . i " 1
0 0 087
-5.3 :
a)
2.8 Mplitude Spectrus
2 A o _815.2344

)
Bl 4-3 300Hz IESXBUNFETY & Ja B LA R R UK O 4 AL W 1
Fig.4-3 The sine waveform of 300Hz with Rectangular window and partial enlarged refining

amplitude spectrum

5.3 Yaveform

a)
s : : Anplitude: Spectrup

815, 2344

b)
4-4 300Hz IESZ P IR T B /5 BN RERK R AR EE
Fig.4-4 The sine waveform of 300Hz with Hanning window and partial enlarged refining
amplitude spectrum

k7 EH (black-man):
27t

0.42+0.5 cosz5+o.08cos—T— (0<t<T)

a(t)= (4-19)

0 t=T)
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R (419 HHXRETERY. HXRBENNTEREHE—HRARBRT
YL EERN, ESRTERRUTHARKENENHT, TRXTEFNTR
R, SWMEERE. WE 4-6 F, a) H3F 300Hz EZEMAREREFE
., b) AREBKEAIREE.

5.3

a)
26 . : : fmplitude Spectrap

815. 2344

.b).

B 4-5 300Hz IE X BE i O B 5 WG RSP K O R 4L
Fig.4-5 The sine waveform of 300Hz with Hamming window and partial enlarged refining
amplitude spectrum

Fa : : : i Mayeform : :

-5.3 : :
a)
Fe : : : Anplitude Spectrun

B 4-6 300Hz IESX U A6 3K 72 8 B /5 WA 5 8B K AL IR i
Fig.4-6 The sine waveform of 300Hz with Blackman window and partial enlarged refining

amplitude spectrum
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3. WEfEE SHEALIE
HEMEBELED, F5HNEEIESHMEREENIRGIFFE.
WESHEERIIAX(n), n=0,+1,+2,---, HEHER:

X(@E”)= i X (n)e™” (4200

n=—c0

X(eiw) =

X(e)|e® (4-21)
B X ()| M A SIBER, HRRRERRN:

(@) = ARG[ X(e”) |+ 27 L(w) (4-22)

TBEE R RME TP &R RS MRER/NEREMB SR AEER
BRAE 5 & SR A AR AL SR B B B AR B o

ML R BR T & AR R RIAEAL, R B iE RE 3R B &N 4 2 A 23 B AR AL
.
B EET RBEAF S RIER, L, EIIESHEREHWEIERD K
WESBTARKRE S TERRNEAMIN S, BEER 2 4. 3 &, 4 FF
AR B 0.5 HHRMSEER S8, HARIER S &P 1iE
ERARY, KR7EMHREHEMHER.

4. EHREHER

HTEIRLAARTLRAYERYL, BNREERREEFEXARL
it

G.(H=2[ R@}e™"dr  (f20) (4-23)

EREMBF N ESHRERNSMERN MR . X B 2hZE TR R HHT
IFT, m‘J ﬁ H

1 1 ot
R(D)=o- f (@)™ do (4-24)
é’f'—'O’ ?‘%:
1
R . R
RO)=y} = fG,(w)dw (4-25)

AR, WHERE B HREEEEENBH LRSS, MR THER
STHHE. BEit, BUFREERRERS T EYIRS K77 EEREL I 7
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WEE, RAMPR LRIDHIENEE, WAEHREERZR. QHRETE
RBEHRTESHHREH, LR ENA+STZ.,

42 BRI

4.2.1 LabVIEW X443

LabVIEW(Laboratory of Virtual Instruments Engineering Workbench)& 325
EEMNBERFER R, BEEEKRMNBERAE NI(National Instruments)H
HEGIF KGR, LEBFNARZ. REERR. RN ERILKYG
FFR#FE. LabVIEW B—NMFRAMBRERFRRENARE, ©HiRT
FERB|ET —AMERE. BRROBOIE, FABERTETUERERAR—#, 2%
AR NMBRERPEERERS, HERWEECHUSRER, MEHET
R EBRHENEFRENRE, WM UKKEEFR R, LabVIEW
5 Visual C++, Visual Bassic, LabWindows/CVI ZHEESAHE, FHEFRAN
RETUXES ARG, T LabVIEW R FHBEEHEFRITES G
R ERRE T HENEFAE. GBS £ LabVIEW M#.L. LabVIEW fiz
ARREERSH%ER. TRMISIBHARSBREEA -, XERFEET
B REIEEMAMU. A LabVIEW Rit#ERURFT LU E LabVIEW FF
RIFE, BLRAPELYRMEREAMSAUNRERIR.

FiEH LabVIEW MR, BIEAEE, E8FEFHEIR (front paneD.
Jif2E (block diagram) DAK E4r/iZE#:#% (icon/connector) =#47r. AIHEHIRE
BRERF S E, il VI fEMNSEER, X—RELERPRANERS
HAENR, BERIAFIX. Ed. BEUEEEES (control) MERX
% (indicator).

B MEFIHERBYNE-BEREF. EREFA LabVIEW B4
BESRE, TUEEEBRRALEFHERL. E-EFdRD. W8, B
EAELH M. HoP i O RARZEHEF AR 2R ea iR, RgARE
RERFAEEA, BEARIASHUEFZESGS, MEXNRREFIIT
ARRFRBER, EXTERAMBEERS T H.

BirEgB ¥ VIKEE VIFANED. BRETF VIELEREFER
FHARAMTARAER: MERSURTTEREEMNBAARED, RERBEH
MSH. P LRFEERSROSHERMNZESMER ——X M. LabVIEW
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WBREE T K% T 202 i X

HISE AT R T EMB RSN, RAPaTLUEeIge VI BFLUETEFR
M, URIRESZRNERF, MXHARKERREHBEIN.

422 HRIESHHRFERE LT

LabVIEW EREATREMAENREHLE, BFSHTKFMNHK
O, HERAAS. B EEERFATER, RERE, AATUELTRE
ERIFR. BMFERRENMAZE, B RizREEERNYHTLES)
€, BIRTIRRIMER T 2R SEELIhRE

WERSESHITLEER, EFEFEEH=MERMR, WA 4-7 57
~ NBRBEEEER. HROFTLEE, SRR, 3 THERERML
X, FEREEFENELBASKER, KOTSRS BMER AR
WA MEEFE L, RT505 =7 BURIR S A bR B BT 3T T AR
F. HWAEKEFmME 4-8 Fiow.

FES AR
[ [ l
i
. ok
s g 2
% 5 S
] i i
T
F__TJ | [ I1 | 1
sl el B8] 2] e g
,\‘:" 8 .“3‘:
E g %?; 2l E| |®| |®

B 4-7 EIES AR
Fig.4-7 The vibration signal analysis system
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o T 7 ¥ ) ) T 3 )
0 D05 01 D15 02 B2 03 DB 04 045 05 i}

BB
0.014

0.912

001 B8
,,; 0008 B
Zoooe B
5 oom
0,002
g
~0.002 }

Tine

nethode

d

i 3 3 Il
200 400 600 BOO
Timi

BEIE] Yoiased

v ¥ ¥ i vk
1000 1200 1400 1EOD 1800
. ]

e ]

— ljﬁzlgzééym

7
7
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Fig.4-8 The main interface of the vibration signal time-frequency analytic system

423 (MBESEKEEERIER

KREBIMBE SEREFAMET XMHF, HRE 49 ForfiiEsm 5 8L
MBERBTRER, REFERE. XEENFEKE, shiTERRAER
RBFETRER. BREEFNE 4-10 iR,

S MK EE T UBRRERK SR, N TRETHERFENHY
B, AR AR AR BRI HWT, WA, TR 18 3

= HEHE R

LESHERBREER:
2. REAME S REHEM:
3.45 5 ALY BRI A SR .
B, XENAMESHERFHARSELR, EHEE—THRES

BT TR
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RBIRRE TRZE TEB L2610

Bl 4-9 BEERERGEE
Fig.4-9 The flow chart of waveform display module

) ; [t tins]
y. 3
: , E .
| Read From
Measurement
File

L

Bl 4-10 B EFERIEF
Fig.4-10 The program of waveform display module

424 ESEHEAMERER

AXRRMNE T/ RERR IR T TR BEMAEHEXEH. BN
FERMEFNE 4-11. 4-12 Fi7R.

BRI P BRI T .

1. SHER EEHIENEITIRE, FREESERTFER:

2. EHIFEEANBAAEFTEAR., KBILMAR, Ak ThEasd
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RRIEE T KE THER-H 2R3

EREREABMNE, AFKE. &3, WEBGEHE.

TR

B 4-11 R HTRRIEE
Fig.4-11The flow chart of time-domain analysis module

3. AAHETREF, ANNHAARTETE. A TARERSZSHEL
MZRE NN, FlammEE RN KR, Wil HHERSNH
BBILAE R PARERSE, YHARRNEEREEED, BriER.

4 EEEHABHESR, ARAPHFENTEFAOUMHERSR, BF
Butterworth Filter. Chebyshev Filter. Inverse Chebyshev Filter il Bessel Filter.
HEmpstEfim o afidd, XLF RSB n T ARM4mEAtt.

5. VRART VI, LREEIEHERERERE.

BHXMTHERASREEHEINEMALYU, SEETERERAMENT VI
BT SEER.



MRIRET KETEW LR

< _Defsult vp|

Tab Controllf |=

B 4-12 B BT SRR
Fig.4-12 The program of time-domain analysis module

BT LRFEUERTMIRS, FRAMENES, wEEnES, SHREMHE
PERES, EXEESPEERFHFZHIES, LXE@REERNSBRET
WENFRREEET. BHEXTEARBREIE S ERE 2B E
E x5 73— HZIFBEIEE x(+1), RERERARRR x(OEFH N ZIKH
itE. Hik, B BMAXRETUAEIGES PEARGESRNER. THLER
AR P K ASE S R R R E RN EH S SRS FlkE.

4.2.5 {ES5lgbIELER

A EF IS VOER R FREE S M RE, ERER IR
BATRROETREEE, RETENEHTRE, TUREFHSEHM
ErBsE, FRNREHEE, BHERL, KEESEITHE. XESTFER
W A BARE RS, ESVTHIEHRR AG & A RH A B AME e R
BalE, HEFMFE2RmE-13. 4-14,

WES IR LIS BT

1. REHER EBITIRE, FRRS TR FRERF;

2. B WRE, OFEHEEMEE (Magnitude Peak). 375 #3IiE {1
(Magnitude Rms). IhEi%, HEREFE;

3.EFE S, 8% Hamming. Hanning. Exact Blackman. Blackman.
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Black-Harris. Flat Top. 4term B-Harris. Low Sidelobe;

4. ZBEEHRITHEFHZE, GEFHER GYFR. BE . AR
(&t ]R50 UURBCFERAN G

5. PSRN, WFES I MGRIT. Rk,

6. MR MN FREFF, SKEUAHMLh AT B iR (Em B f 2k . A5 7 mA Y fh 2% LA
BN ERE.

True ¥

B 4-13 Hug o il iz Ty

Fig.4-13 The program of frequency-domain analysis module

B e Y et W A
3 f 1 7k i 5% ¢ 7 ¥ ¥ i 1 ¥ 2. 1 ¥
50 100 150 7000 750 30 v g 3100 150 700 20 0
fremuence/llz . 7 .

frequance/liz

mseid I

Kl 4-14 5584 Hrisi BRI AR

Fig.4-14 The panel of frequency-domain analysis module
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43 RENG

AENBRTF LabVIEW KIERUTE MR THEE, BSEilssiiy
BRI MTURIT T RARENERMLLRMR, BN TLER:

1. FIAEMMRBARLIERRE S, ERBE S8, TLlEIk
FRR. MRS, B, SESSheE, B RET X MBEEMER
IR LI B (X 5]

2. WHAERXEFEFE LabVIEW #1748, TR THEELTHES
RIIREURE A 447 .

3. WHTRAE SR, ARIFLHANR, RRERTHHEE.

XA EACER (VD) B 58 R B 34T B S 4 5 88 40 W E X B 2015 St AT U
BEHRmMELE. AWEBIGSHAE, MERNESH,FETEEER
N LHER. FEANEENERIESR, BAGKFHANAE.
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FSE RIMAERS D

ABEERLEMEM EFHCHZRSRALE, RESKREEE, FIRAKSY
155 R ST R 34T I B AT R S 24, NTTRIE# & FRRAIR AR
ST RERFFE

5.1 #RaEnMiXRGELHRK

ENESUESTRAME 5-1 Fra, HRKBOES, —#Ho ke
NERSE, EAFERKUNE FFFHRS) MUBMERE HEARRIRIE
BIMPERENESHSY, FZRBFENRERARES. 5820
BHIERE. B LEBRMIARE, HREEMXSIAS, HIERRRA
7 SHHTRERIREET, RANHETE-DHNLE. 2.

a4 R GERI oA 3%

5-1 IWFIME RS

Fig.5-1 Vibration measurement system

KRR EFRNRERAMBREERTEE TR LSRG, BBiREE,
WSEW K= AR, EFHMAFRNRAENTAIRS, HE&FRERE
RIERFBEMRENAAIEE, BRERBBFRENBRBERBERNE
g, MBARSEEESREIF BT HEBBRICKER, 2EARKSELER
M EEEIES PC Hl, 7 PC HLEBITRIMESHEAMTRGE, #ESUMLE
B BRHBEATRE, ST

REFHSMNIRS HEESE N 50Hz MBIRE &S E, 2HRATHE
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TR RIEE T R¥E T 24 X

R m=126.5g 1 m=198.5¢ MIFNEMBZHRIRRIHITRIIARE S5
B, RBWTER,

52 F—HNRTELERS

HERBITRFRY 198.5g MURAL, HMERTRENLHAEHS
BAE=Z8, RENBEARES o= % ct187mars,» BHEHEY

m

D, 15Z 3 b7 23 c
fu=3k=1889Hz, xeﬁJ%ﬁﬁE’JFﬂEE%@zM:Qm

BRSBTS, RE BRI ER A AL BT R OE T A T B B
BIREME 5-2. EPAEHEHREBEME 19Hz, RIEBERDRILIEHE
0.008 mm?,

HEMXMEZNE 5-3. 8L, R&ELALESH BHEXR S HENE
HHEREE, BTAURARZGFATURRRESRE-HEREHLUNSH
FietE, ABEEBEAMR, WEE A9z HARSE, BRTEERSRR
FRLRET HIEE, FALEFTRES.

’ : I O AR T R RN L gl
£ o5 | - I
d T L P L»M,M Al
3 o5 o "J" ™ 11 L4 ]k h\ﬂ l\q L I | [l w
:: e O ¥ T

-1
LI

0 061 02 o
BRVL LIS Time/s

%0. 008

“30. 006

E

=0 004

80. 002

= o Kon A N

. ! [
6 50 100 150 200 250 300 350 400 450 50

DEH oo frequence/Hz 4

B 5-2 @& IR K m=198.5g, RINSFIRB LB BThRi%
Fig.5-2 Displacement variation and self-power spectrum when m=198.5g and no external

vibration
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o 1, OF -~ i il
" 0.04

g: 0.03
0.02
1 Shatodt U U PY Y YV A LT P

J A AAAA a
VIV vy ML VyvreyE
= .01 L UL AR LR

-0.02 - '
. 4] 200 400: 600 800 1000 1200 1400 1600 1800 2000/
%, . Time/ms

5-3 WARIFEERH m=198.5g, RIMSMFIRBIAS B KK

Fig.5-3 The autocorrelation curve when m=198.5g and no external vibration

=

5-4 FE 5-5 AXT RGN S0Hz wRhaLRER, MEHRBEHT K
HbTH EEMEMAR, Bl EHEXREMENNE, RAESPEERER
GEEHEZSIMIRAESE, BE5RE 52 HxFELar CLUE B B W R)X —4%F
fiE, #HTXHESFHATEI T, WE 54 a7 LEIHAMEEE, 17.5Hz
50Hz, X 17.5Hz 4 EIRMHEN 0.022 mm?, 50Hz ZEIEEN 0.007 mm?. &
&R, 50Hz RS BAFNENESGES. EEEFMEN 19Hz BFEH
17.5Hz BWRERM. A TH—PRIERZWRMEE, BERREROIERER
BRI AL, HIEBERL S0cm £BIEZE 10em &, LRERWE 5-6 iR,

6 01 02 03 04 05 06 07 08
{nERe Time/s

g A
§0. 005 ‘j\

0 50 100 150 200 250 300 350 400 450 500
DHEH frequence/Hz 4

5-4 5P RIRIFEER YL S0cm, f=50Hz, HEBZFIRA m=198.5g BF A BAILFI B Tl

Fig.5-4 Displacement variation and self-power spectrum when m=198.5g and external vibration
far from system 50cm, frequency is 50Hz

-50-



MRRET R ETEH EEaRx

=]
33
et

E 0.08
g o-bmoms VAW/ UAWWM \ )\u A
=

0/2004“)6008001000120014@15001&)0%2)03
Timefms
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Fig.5-5 The autocorrelation curve when m=198.5g and external vibration far from system

50cm, frequency is SOHz

. t
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3 oLnMPAN FAL A L VA K
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: _0- 5 N T

g -1
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,‘,_vﬁgﬂ‘fi%&ﬁ Time/s

% 0.125
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56 SPFIRIFEERZ 10cm, f=50Hz, HEBIERR m=198.5¢ BB HIhERiE
Fig.5-6 Displacement variation and self-power spectrum when m=198.5g and external vibration
far from system 10cm, frequency is 50Hz

EPEIL, MEN S0Hz KEPIRSRMEMRK, ERFEESRZL 10cm &
B 0.125mm’, EEEEEAFMRMOEE. BRA AR NBESS TR
FRTH IR, BIRMERINIBEMEEREESREMYA, TEEREE
ERRTREMTEEIERL, XRE N EES IR BB ER, BBRER
EVEA RN BIRITREMK, X E/EH S 88 AN 18 A 18 K e R 6 BV R A ]
v E, BEMEMAT R, RIABIRLERTRMEIN G R
M, BSREN B REAARERE, EXHREWERZRURRAN RE
5 HIM NG S 2
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53 F_HMIRIKERS

BT H—SRITHBFRUR AL R FEERMRNR, ERET R
BERAL, BEARRENEEFRTARRE, XA m=126.5g, WHEH
B PD Y, FEBFREFRE, SKAE 35em, FH < RUKATT

# i=0.5A. HBESHERIRENETAREN 0, = \/—Z;: =163.37rad/s

ﬁﬁ%%f——~45&h E@?%mﬁﬁiﬁﬁ-Jjju%o
m

ARSI G T BB RS R B S 2B B B ZhREm
B 57, BMXEHHEME 5-8.

B 5-9. 5-11 54 IHEEE MR RS 10cm M S0cm &4 T B HKIALB B
T REEHE BRI TR, B 5-10. 5-12 45 FENK BAHXHZ.
TS EEREMN 26Hz BEE 24Hz, WEBBSMMIRSITE KR
50Hz, IEMEMEIRFEEEREMZRAME K. Wi, EEFERFTFRT
wm&ﬂﬁ@ﬁﬁ ﬁ%%ﬁ?i%ﬁﬁmﬁ

fadibia

E 0. 5 N ' , 4
oy AV/\l r.u_h A %JAHF l'hﬂ' . AR 4“\. &
205 LY. AR AR
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%0. 015
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3 0,
-

ot
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5-7 BEBIEERN m=126.5g, KSR BRMMATHEE, ~26Hz
Fig.5-7 Displacement variation and self-power spectrum when m=126.5g and no external

vibration
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Fig.5-8 The autocorrelation curve when m=126.5g and no external vibration
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