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ABSTRACT

PRESSURE COMPENSATING EMITTER NUMERICAL
SIMULATION OF FLOW FIELD AND ANALYSIS OF
COMPENSATION COMPONENT

ABSTRACT

Drip irrigation is one of the most effective methods in water-saving
irrigation.Emitter is the most important equipment in drip irrigation system.Its
capability directly influences the quality and cost of drip irrigation. Thus, the
study on the hydraulic performance and ability of emitters has important
significance.The pressure compensating emitters which have the advantages of
constant flow under the change of pressure,anti-clogging and self-cleaning
performance have been the hotspot in research in the world.

A CFD model,which was used to simulate the flow field within emitter,was
established and calculated fluid-solid coupling by the mercantile ANSYS
software.To verify the CFD numerical simulation modelthe results were
compared with traditional emitter’s hydraulic performance tests.It shows that
insteading of the traditional hydraulic performance tests of emitters,using the
CFD numerical simulation method studies the flow field within emitter is
feasible.Simulating flow mostly were bigger than fact flow,but the windage was
under 10%. Numerical visualization can reduce the times of experiment,and can

realize low cost and high efficiency development of high quality emitter.
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The experiment and numerical simulation are carried out with orthogonal
design method,both of them are used to get the hydraulic performance data of
online pressure compensating emitters. Three main factors were selected,the size
of dividing grid,the computational physics model and the solving treatment
mode,which have significant influence on the CFD simulation precision.Using
the above three factors,an orthogonal experiment had been established to
simulate the effects of CFD precision.According to the simulation results,the
significance of these factors’effects,from height to low,is the size of dividing
grid, the computational physics model and the solving treatment mode. Among
these influencing factors, the level of the best combination of factors is the
transient solving treatment mode,0.15 mm grid size and laminar flow model.

Though theory analysis. single factor and orthogonal experiments, studied
the effect of elastic membrane parameters on hydraulic performance of emitters
thickness and hardness. In certain flow field structure, obtained the linear
regression equation of pressure compensating emitter nominal flow and elastic
membrane of thickness and hardness. Guiding significance for development of

pressure compensating emitter.

KEY WORDS : pressure compensating emitters, CFD,  simulation

precision,hydraulic performance, characteristic parameters
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FRS UGB, BOLRKRRE —EN— S RE R ZBKXR, Ll
Ui 8 B0 RGER L2 Uk v BNV BY B KA R St S i Bk 2, JFSEILE R, SRS
R AVOERA R, ATTINE E B ArH =5 B R 3k - an il 210,

1.3 FEI

WRE AR RSO, KIASRMARREREMANERNEZ—.
BEH KRB P EE U T AR Z A F BTN

(1) WBUR SCRR AT LAE B, B AR & Pk B U0 SR 0 T A WA RS ML (5
RBE . REXENMERLMHREL FRINE, HRHEREZ. SO TRFR
HIE. EHAMERSLRIE DY RBIERNRERE, BRI S HEDAMER K GE R
A MBS PURAGE K R, MEAK DR AERES, fHESLFE
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(2) Fi CFD BUE I 75 130T LA R £ 5 vl i Sk A ROV 3R » XM TATERE
BTk R N R BCASTZ, TR T E AR Sk R I WAGE . Sk RUE
/N, CFD S iy KB 2 RIRA MRS N F e, $l RIS 1 #H ik,
B AE AT CFD ATl /24, Wi S8R RE . FAARA KGR R BE T E T
LR E 7 A ERE A9

(3) B4 CFD HBEMBTENR ISR E Y . BT &ML ERVES Juk e g4
SHTRE A RIE LB, RIRIEAFTEIR % ) 7 B o 4 T R B R X 5 Sk B
WIRBHLIT 2 RRR, RENLERAERBWGHRZ, £18 CFD BEMUSERT
EHATHER R SG T -

LAMRBHRMRE

1.4.1 AEBRE

H T SURR K FUE AR RN | FRAE P AR SR SRR 3 MR B U7 6 VRS, A
SR FA BB KRR /D S AR T4 B 9F T LLB /R 8 W AR E L) CFD $UE A
T REENAMEREKHPRE R RARSA R B ETF R EEIE RS 5
RRAHG S HTT I, FIREDAMER R AME T RIXT R kK R s s, MRS
AMEE K BT R B R KR

1.4.2 IRNE

(1) GHTEIAMER KR BB URAMEX & S5 MR R, Bzt
FAMERL by R D AMERSOK A P RE R B S 5L

(2) GEREAENMER LK DR SAAREIE, MH ANSYS M CFX
BpExt B AMER LI E ARG BT BB, Kk CFD BUEHG T A B IR ) w2
WKV 9 T AR A R AT AT M . B AT AT AR BT R TH R AR R D R
KIBVHE 7T B R R CFD BEAE AU LRI o

(3) #4174 CFD EEHAR, KA BRRARAERZ KA &R FAME
TEHS B R AMER K A PR R R o FFI8 I BB RS B ST A S 5 S kK
NERES B RIEYERIATIRE, kM2 kAT R IR GEE T
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=T WhAMER L AR RER SR

o8 EHOMEFRMETH ST RN RS

JE 34 Sk T 0 A DX SR PR (O PR e R Sk I AME Y B TR KM, (B B A
E AR AL PR KRIET . TR FMER R A M 708 A TE Q12D B,
HRBEEAZ .

FESEFHERFANE EXEH MR LGB MRKRSE, BT — PR
FIR B .

2.1 BBREHIMEEKRGHTR

EAiMER SRR 70 EAPHHRNHE RS, CZHUREREEE. BERY
e A T HUUE AT A LRAR . Br T SR E Wi R~ Mz skoh, R B s
- TERERRL, ZAEEAMEPRESN B RFBRAMUERHE, tny LUEGE 2 —5
®&5.

EAMERRRESHETNERTANAR, TEFE EXMAEANR NG
R EXRAFAORK., RWFERX BERA=F, AOKXEHE LA, fmFRmEER
AR AMETAZ AR, h RS EAMETHR. Tz LR
H W E S Az LD,

2.1.1 AOREH#MEB K

BRI AL O M2 KR — M ERE MRk (LE 2-1), ERWEAT
YRR R, MR ZF AR MK BRI, FE R BV T SRR [ R B, AV
A KB . Sk A T MR, S84 R 55 68 B 2 [R] ) U T8 B & T ) AR AT
A, EHEKE, FEWEMAN, KRR, FERTEEA, TRk R
RIFEGE : HIEH /DB —BEN, WAEEANPRRE, AR RT LN ERE, .
KAERRA, HBEBHANER,

2-1 B EREN#MER KRR

Fig.2-1 Schematic diagram of online pressure compensating emitter
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2.1.2 REXEHFMER*

B 2-2 PR E SRS IER “RAM” [EA4MERL, £EHAYE (RKHE)
ZRIET —BRERE. 5IL AR, ERLNE RS Xasmn T —&HA
FHeENEERERE, REMMXK FEEGERERR, EXBRERX, ##
B REXMFUEE SR, FARRARNREPEL: FEHHTX, BHERF R
EEREAYOER. XHEFEATEENTEERET, BREHBAVHEIRE
WK, BFEVILKRAD, RETHEN A LT, AMERE (60-100kPa) MEE
(350-400 kPa) il AR AEHEIT ERAR B RS .

B 22 LEFIRIGIES “RAM” W PREDIMER LS RRER
Fig.2-1 Schematic diagram of Israel Netafim RAM flat pressure compensating emitter

2.1.3 AERXEHMER%

B iERE DM Sk R B ERER, A B LAk ERE, Mk TRERE
R, BKAIEE] 100mm BLE, TRFREDAMERKHIEERIE—RAH 20mm
Ef. GRS SRENZAN, EdRAKRELRE REN KRR RE,

EMER AR RFEAMTERE, HiisERREF.
R ' kD

a&uﬁ! #AKD

— wce T e e

IR E Y
B 23 BEAEDIMEILS 1R E
Fig.2-3 Schematic diagram of cylindrical pressure compensating emitter
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B KOhAMER L AAURE BB A R

2.1. 4 FEKEMEREHhMERL

Xk 5 ERAN AR R, WFMEEE LT T 5 R AR
3 B B R B R K BRI R . WG R ARk A R
AT R E RIS, FERERETWK MRS TR T — B R E RiE, Bk
HOEE, FE SR R A. EAREN, MR R e RiEE, KR
B R ERKERE, EhEN, AERERNXERER, KAEEIRKNEER
&, MR EERE.

P R e e
s g S

(BN CE KR
B 24 Rl KM DR LR E
Fig.2-4 Schematic diagram of flow channel length compensation pressure compensating emitter

2.2 RB A E H#MRR AR SHE R

T BRI A HTAMEER I ALK K464 5 XTI Sk PERE RO, I 78 R0
AT HE, IR AR R A A A7 231 b B LR A
%, fEREHTR D EES%, M 2-6 Fi7m

B 2-5 & EXEAERL TR
Fig.2-5 Work plans of online pressure compensating emitter
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Kt

2-6 & LR A2k
Fig.2-6 Online pressure compensating emitter

(a) WikE# (b)ik Atk
27 #WL4H
Fig.2-7 Emitter structure

ME 2-6 ATLAE, EAMERLHES. BERA . kA= XBoHR. E
m I ERER R RIETERAE L, 78 iR A — N2 AR MBEK D 23\ 5
SKEESKE— 84 SABRER 0 LR, MRAERA ERmAKE. RERHRES
AMER KRR R B, KEEEREWRTE: 1) MRENFESER. A LMED
KEERT, BEARLIAGKIE L, fKRRRNREEY: 2) REFTEA.
ARG LBE, MNESNIMETKOIMER, SR EES, BEBRAEL
TEENERTRERR, #OENRR, ZRADMEAR, NEERETHRER B,
illl 2-8 (a) Bfi"\':

16



=% EHIMENLARIHN AR SR

(a) Lt (b) Fhytiie
B 2-8 R H EHAMER L T RER

Fig.2-8 Schematic of pressure compensating emitter for test
ME 2-8 (b) FTLUE 2405 J7 FRRR Sk AL T vk A, BB BIMEZRAD,
BB 2 B E, AfEMEX R, AmEzemHL .

2.3 EhMEEEIEERR A

2.3.1 BB RAHRSH

EEMRRA LR R AP RBK . AR Z KRR M. 23 B4 o w B /R R
BHRBIRERLR. BT Si-0-5i REHMBMAFREY, BETEEERTE, NE
ESIABRDOBONBRNER, 2FFRIEMADN, 5FERIEREH, PEBAIHFIHAT
B difes:, BERRRAERFRARNGRE. €5, "%, MK, aRagtt, £8
SR AET DA, TRV RAMNMEEEFRER T AR,

FRPERE A 1R 8 B AME KRR EE U, XM BERATEHER S o A R R
#o HET, BERIMEFHERED M2 AR O R R SRR N £ . REARAR
RBIEH—F, BT®E5TiE, BEREFNHE, TR IS AERATREERHE
BRMGES, MEREINGE, XEKRRROER, LFEFEKAZR.

BB R 4 Z 20, BBREOHESERLT R RIER IR, JRE
R, BRAEREERS, BFEENEERE, TABRKMEZEE. AEMNR. &
A MBE RN R NFRROTWE+ 5B EFRRPERIRRAT AR
it EES.
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-1 0 1 2 3 4 5 B 7 8
i

Bl2-9 1SRRI - ik
Fig.2-9 Rubber typical stress-elongation curve

MRk R AR R IR A R AE 0.6-1lmm 224, FEREERE—
R, MITZ a8k —&, EOFMERE L P ERRBRERS T /M
,Et[%]:

(D FEAKFREERBAFZIRIC, HHIRBERERAKE,

(2) 4R AR TG 3L TR R SRR % R 2 AR B LA

(3) [l 388 0 950 V) 8 ) IS g M S BT BE SR YR B IRV R o TR A @ AR R, % 4%
R EBRIEI# S, WERRKE#ARE.

(4) BRALRR I AR /R BB

i ELIX DY KR R — IR RE A 7E . b, WnREERE IR My s m, W
WATEREM, WKFERM. RETEBXMUEME N RERE, BREHMMERRELUR
BN RERRKEEIREREERR. B TFREHR, RXRHERREMIT
ZHATHA.

2.3. 2RSS

B EEANE, THEEDAMERE KR TSR KABKO#ENG, HEEAR
X HMBA LA, db B M E TR T B2, FRERA RETK, #OE
AXRR, BREZRRAR, FMEX KM ERBARR, 230 i 5T
ZIR R — LB R, RAT R RFEED.

RiRAMER B/ M A ER N 0, .
o=axb 2-1)

:’th:lz a-— *I\%E‘ﬂgy m,
b~ MER B /ML AT E SR, m, DAMER R EER, b AIMERMER: X4
MER AR, b HHMERH R
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=T e JIAMER L IS B R RS R

TS ERBAEZ AP RER, RRERDSNMTEN 0,, ZRFRX

H KGR A 4 = 0 - 0, » KT o, G LLKE AARE TR 78, AR AP
FERT, HRM LN ARME, wTHE:

B 2-10 BB AR

Fig.2-10 Schematic diagram of elastic membrane deformation

BT, 5EER:

, =%lr2~9—b r’ —(5—)2] (2-2)

" b=2rsin£§, BIK L =r0

BriAfE i, %=aw—hw—§f] (2-3)

KA r— BB R B RE 42, m;
6 - FEAM R Ja BRI B O A
IR AT 4T, PR R AR AR TG N R 2 B () A PR, R
N, BUBRFE—REANZDIHIXNS, WA

X

& 2-11 kR 4k
Fig.2-11 Isolated body

SAMERE AR AR B DU AL T PEORE, tiZY =0, BB 2B H7EY J5 i
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EHARE, B3
APxé= N cos(90° -§)=Nsing
2 2 2

BrEd

N= bAP

2sin€
2
A N-BAEREZBR MRS, N
TN FER/mM, B NS ERME K.

LEX.L.‘_LE(E_I]
e b b

RHp: E-#MEE, MPa;
e— B AR E, mm,
BEST 2-5 F0 2-6 T] 15 :

L=b(l+1)=b bAP |4 =b(%+1

Ee 2Eesin g

(2-4)

(2-5)

(2-6)

Q-7

B L@ AT LR, WREEL AU, FELHLOREBRFAZE, HLHA
AR KM KT . BEAKE RN 0,, AAK 2-3, 24, 2-5KE, o, R

WEBERENE APEIEM, HRRHEMZAMHERBENE K .

FRMRERETHARR: TELDMSHRETE A LT HEZE AP B/ i

HHER o KHE, B

O=Vo-= {ZgyAP (ab—a)o)

%24, 25, 2.7 RGE, BEWLAEXEL:

. Jz%Az -1 b(ﬁi‘]bmﬂ

Kp: 0-WHLWE, L-n'
V- iMER B RETHORE, ms';
y-EHKEE, N-m™~.
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T R JMER L RIS R AR RS R

LRI, WSkBEREWE R WA ETEE AP . AMEKHRE %
by WIAIREE a. FTEBRREGRIIKEEr . BB HER e . PV R30S

BE.

2.4 MR RBSHHHE

2.4.1 BEHHFHESH

ERBR I, & HBRKRAEERRRREGHEEEE, IR R EL— iR
BB — R TR 00 Sk I n — R PR BT T 0 5 RS R T R B8 PR AR T o B O BB b SR AR
B2 lfifE—E HE xR,

BIRHBIVIEE G — A IMPa £4, TARHERE K & 103MPa, FEHZER
K, BEEH/DERN, RIEHRERR, HEITFAMRL o SR E MRS R.

_(3k-2G) 1 -
#= (6K +26)7 2 210
B E=2(1+4)G~3G (2-11D)

E—REW, BRRYWRERUN, RARREAE. RRIEH, £AHIX0%E
FERf R, ETRBCAAT B MR AT, MR RRER A BB AL
ARGV R, Bl E~3G.

2.4.2 BRHBESHEHRIZEHXR

FERB AP, WEARRNERRE BRI E . SRR R E—
EZ A FTIAR RIR AT . TUR RV BERE R — Nl — B AR B RSk — %2 19
Harm AR R AR R REGROBR—BRAMR A BE . 80K A 8%
WHES R NE Fim. BETHEEE dRER, R NETE, JEMAWREA
AL, Homim SEEHRIIER —FEN, BEREHFTIEZIENA 100 K, B

HA=(11;§—)><100 (2-12)
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2-12 /R A TR JE AR B

Fig.2-12 Pressure needle of Sauer A

X B E BT I 7 B KR BE TR R E R X R P& TR -

F=0.550+0.075H (2-13)

KA F-XEEBTMM S, N;
0.550- L&t ARIEARFERT (BERETHIERET) BEM S, N;
0.075-A/REEFVHE 1 BEFTX R J7, N;
H-AB/R A BEREVH R 4.
HRYE R E B ISRPFARERALR, BEREE TR ERE, £/ 2 PR HIEAGE
T B S AT F F R RIA:

s=1"Hp
4aG (2-14)

;EQEF': 5“EA%§/§» mm;

2a-F AR EZ, mm;
F-{E A7 4T BT N;

s

5
Y
|
|
2

B 2-13 EREESKIEAN
Fig.2-13 Press of cylindrical pressure needle

22



8% HOAMEN AR MBS R

HTRRR A BT RESSHIBA R, MERER, B REERLUT
—ARAEAE, HARERSE FET MR mARK) LT 218, W-

1
2a=(Dd): (2-15)
WA IRIOAT B4, BESL 2-12, 2-14,2-15 HARA S HE K-

_0.755H, +5.53
100-H, (2-16)

ERBIL TSR G 5EUR ABEKXRER.

BEST 2-10, 2-11, 2-12 3%, BPAT/8H.

£ 3(0.755H ,+5.53)
© 100-H,

2-17

BR/RTEE H, ERTHRAREERR/R A B 20 F2 00 BGEAMEREIR. &
SRR RERR AR R A TERE(ERE R vHI B N, DRk, SRR mBRREERE B,
PRV B e X AN R 0] LU WA D AME T SRR B, HE T S R 0 FME RS Sk 1
KIrtEgE.

2.5 FE h#METE Kk A tEgE AR

A, X Sk TS PR K D TP T 7Sk N AE R B BR B, 55 B R
A HZEARNCEAENA. B, B0 LREFERLE, BaKN%EANE M
TS RENEZERAZMNRREAE LXEMER KRB S EIRER, HRH
SkUE A ERIIAK D ERE, B X BRI, THE. BEERIKKHETEARK.

2.5.1 EOMERFKNMERERE
FREFRORHSET (o NRILHEE iz 288 KM 284 E /42

AL RHREE) A (PN RICH H B SRR R & — R AR T A S
Frigy PO, R ERREmME 2-13 fiR:
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A

A

LWdiReE 2EhL 34R 4ARKREENRIT SERE 6Kl 7K 84KE
2-14  KAOvEaeNRE E R R
Fig.2-14 Schematic diagram of hydraulic performance test device

KRR FESEEHER:

AOTAEES: HELHIR, FEH 0254, MPa

WkRE: AR, 250, mL
KE, =ZE: BEH, BMZERSIT, C
BfE): PR, B/MER 0.01s,s

ERKEFRES, KEPHIKEIT g8 B EENARE, KA BRKIENKE,
HIRFEA 2m M EREREREE S, HIFTRRENSER LN TIEES, HlikE
EAREREE. KENZLS FBUKHFREORERL, KEHFELMRER T2
BRI A 7K AR AL T AR AL, TR A Sk P IS AR U B M Rt S BE/K IR BT B3R, X
S S B ME R AEBES) . FTUARRAKEEKERRE—K, FKREEEE
HATER .
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= KAWL ARBNEERIRLS R

8 2-15 K S HERER AR E
Fig.2-15 Hydraulic performance test device

25.2RBABREAHZE

REAAETERMEE EXENMERLERR LIRS (50-350kPa) T HIHE H
&, RRER T EEAANE EXENMER RTINS, EARETRNORER
BELI S HES. R E E N TR A i 5 E 5 B vk i3 K B ARAE R 3
ERNER . £ QBT EHT, KAGREMNERLNLAKR, §40ED TR E
H 3min, BREREEN 25min, RAKBHRK, BERMBHKRBREDT 2%, BF
AR B R &M T E MR E -

2.5.3 RRLER
HBAREHTRLORE, WTFRAR:
x21 RB|-EHXR
Table 2-1 Relationship of pressure-flow
TAEES1/kPa 50 100 150 200 250 300 350

#ig/L-h' 2.37 2.33 233 222 2.19 2.15 2.13
FHRBREBEET —ERE CFD HEEBRR T LB




BB EAMER LA I B R A R

E=ZE EHMEBIAFIZHBEEBRER

EAT, X3 Rk BB 5 T RS H #R R A SR A BT 2 e, R RISty
ol ZRELE EEAMEHTRAL, BERIEAR KRN REE, Wil
HEEENZEKXRR. BMIEAIKERAR, WRARSRAFERITER, M
T ER PUE U Sk B 45 M A R AR A L, Bl it AR K IR 3210,

WA 2T HHAAS) % CFD MEERE, TLAFES NGRS, I KiEmD
Lk FMAREEREA AN TR, EuitE UBRN . BEFTrgE, HEMEE
SR TR, FEITKAYIEDEA. B, NBEERE, NRELRERER
MR R EZRPEEEMEERG L, BAYRREBE, XTEIMER ARG
HIBOIR L R BB R £HKIFTF

EAMERK AT U EZE MR RANE KIS, BEASER, FREEKX, ©
BA VR & B R R &AL BEARKFRENEERSZ —. — i, EAFMER L+
R B E B RERR, TSRS, REBRARUFEERNE, FERK
KRB KBE A ER, ATER SRR ERIFRE, PO TH#EBEAERSR TEE
N ERAEAEEER o BT RL TR MR Wl E K, BB A BEE
FEES WX A, BRI 2T RS ER KM ERE, RERRE—FET
CFD 73 Hr /& 134 Sk V8 B3 B 75 ¥ -

3.1 RENDB

Bt AT EREBEmL K4 EER LS-DYNA, ADINA. ANSYS.
STAR-CD. FLUENT %. #JEE|EAMER LAENE RN S RHE, 43
PR EER ANSYS 1 ANSYS CFX11.0 BiAN8k . Hob ANSYS % 45 Hyisk4T 20471,
CFX X AR BEAT ST o

3.1.1 ANSYS Workbench 448

ANSYS Workbench & ANSYS K A# 3 b5 9] S5 — 7= 5, ‘B4 ANSYS HKi#
AT RAK T RE . IXFPERE A CAD RAF R THEM T 2HMF &, FRIiE T BEF K CAE
LR, ANSYS Workbench #RELM—FE MR, WLABBESIN DT HES
Wit HRAES N FSTRE GRS, VR, Eid CAD RAEMEEME, 7TLLEHE
By R L. THHe, RETHREMERKIT.

ANSYS Workbench t JQME SR B :
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(1) DesignSimulation & ANSYS [k f## 5%, DesignSimulation 5] LUH(¥) 43 ATy K Y
FLFERTEN F7. A, Mg, KtEmih. LS %E.

(2) DesignModeler B8RRI CAD JUFTHIAL, K 34T #HE % - Design Modeler
BHEMER CAD @@ T R, SN R LB SBE 7, I irds 4,
KESE, NS, EEAESEERDEE, BdRTWE) AR KR 2D B
A . DesignModeler if 7] LAF1 ANSYS Workbench LI E44%E# .

(3) DesignXplorer FI THAZEKHEAN (LM, ) MUY (WS, 45
) IR,

(4)  FE Modeler F3k 4 Nastran fM4& 5446 2] ANSYS 1A

ANSYS Workbench 5§ CAD ZZ&M X RIEH V). ENNEEMEMH CAD Z4H)
A, MEHBETYS CAD RAREMNRSHEFXF.

sk |
(* whdh) J

DM 8L
* iﬁ:(*.agdb) “".’.....’.l..‘.."..b CADEFI)EJ%ﬁi#
(i*.step *.x_t)
| | T4 CAD ¥
X4 (r*.prt)

DS SR E
SCHE(*.dsdb)
: HE

. > medb
DX R4
X4 (*.dxdb)

P& 3-1 Workbench ¥ 55 #(35 #LF2 1
Fig.3-1 Environmental data flow chart

A FEFH ANSYS Workbench i) DesignModeler 1 DesignSimulation #5t
et 7 ¢ % Sk 8 A 8 HERE SR DesignModeler #EAT L 3D A&, X5
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Fr7E DesignSimulation 31T AL EL5KI T, W LAV SL# BT H F 10 RS2 IR A RE
B, BEKRZEE. BAbFEE R RS . :

3.1.2 ANSYS CFX 11.0 7148

ANSYS CFX 11.0 ({5} 88 CFX) & H ikt T R se L ) CFD 8 F2 —, "2 H
FRAUSFRARD . £, REeRbE RMN%R R, CFX X% % CFD %R
&, CFX XA THETHRBRTHARARE, FERIETHRERIEN FIEEERERE,
WL T A RTTERMBEREHTE. CFX fEmMEHONA Lth—HEWRTL, BRTH
MR AERSE, CFX B ER T KRB (LES) f4 B iRtERl (DES) &= &k
R,

CFX AIUAZ M T A B RHAB It EER, flln, BREEREBR. EH%MHEE
Bl. FRER. EHZE. AR, 28 XY 848, 228, £RAZTHNE,
HATHLFIB IS,

AP, FENA CFX B AKRMENITRMR. IBFE DesignModeler & &7
A AME T L TRIE 3D M S N CFX-Pre P 1T4 i R & FIE EWIH & B S5 1E,
BT CFX-Solver SEFH I, BIGTE CFX-Post 2GR BE THE, B 3IE F ML
SkRERRBIES . HE A A,

3.2 REMENENIFAE

HRERE NERARA N ZEB D EZXMERK—TIH %S, ERMAERE
HIEEFAIER T & FIT A LR BRI X — &R R — 1R A
BENFNETRER AN TZ MM EAEA  (fluid-solid interaction,FSI) : 25 R 14
FERFBPBFERA TR AR SIES), MAERRIES) RIS KEWF T, SR
BB D AR ERXFHHEAERGERRALNE T AR MHEER ST R4,

TRERE A o) B — M Ry = 2640,

(D) HEHE, ARG H—MUBKE. ZHEEERBRESHLULERN
PR MBEATRS), B EEEEIRABRERRENE. BN ERNEEE
HIFELVE ] BE 43 AR AR T B N JHOT B AR AR 1) 481

(2) WRFFRE &, RAGHGE EFIITKIE, 82 MBI — DN —MLIRFEHT .
BRI NERENE ZANDESIINERT. MEMTRZLBAMN, BagE
MBI RN EWE—NYEIVIHEA . HRBS R R HERH T4
MmN TR, R T2 BEWRLA B MESEBARIERS: THE
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B . EhEPHEX LR “FHEE”.

(3) FL K, XFpITER RIS RAA D AT . IR ME BT A& F i,
BEER AR —EEN R, AR —MEFRERER TR, dTrRERS>E2R , AR
FERBEERNGEER TENER , k2 —MHAFHELYRSI AN ELN “RES” F
2.

CE IR RN BRI ) A T Sk R A SR R R 2 IR) B R R 1) R K BRI EE A7

BV 1T, Ko SRR R 502 T X B RIS LTGRO e scbr i
F&F B TE ST R 5 B LR TR B RN, (B4EJE D AMER B LT R R A B K
2, BEEEHEERENRS. BT, ERSTPRATRES R,
H, ANSYS XTEEHBEATHHT, CFX SHRAARBATHHT, #R)5HE T Multi-field Solver %
H 258K 4 M AFAA T REAE A 247 - Multi-field Solver £ ANSYS11.0 H4[7H
THHELYERGIE B vEEAER, ErTLLRIEEAT ANSYS ZHTHE 2R CRX itk
WERF . B RS MAT R L Ak, SIS F Ia] ) B TR A S A R
&, HKMBBAEAFIRTERY . FEARBREDTEFR:

B S E
y
e AR N WA R
%1434 BR 7T ™
BIHITYH >
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Fig.3-2 Solving process
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3.3 EH*MEH LA CFD #=H1

3.3.1 CFD B HEB R HSHIAHE

Wkt DENARR, FUBHKFEERAR, Bk s mA R RIEERE .
Z RN BT B R SMKE K TR /N P R0 TSR R PR AT 4, 2649
EHIBMAREMZHERE, ELN FRAE) % EZRRE T K N-S(Navier-Stokes)
FREAEH TSR TR 1 mm A4 KR E kPR R RS R E.

B SR L RE—fRATE 0.3-2.0mm Z[A], BRI IRAE P VL)) BRI 4 O IR 4 i
1k, TR RIE F HIK A E B RBh B BA T B4 A, BT R M/MRE A ZE i
RS, REKS: KRR FRESASTRER, BRAikgErEs, A
MR HREK . ERARBEAOEERZF, HTFAFEDHE, FERFRD
wAERY,

3.3. 1.1 FEH RGN RRMBEHITTER:

B —+—t+—=0 (3-1)

o), 30w) dww) __10p, Ou du u

(____

ox dy oz pox ox* ot o

ALY (3-2)

o(uv) . o(w) . owv) 10p 6p (6_2v+ v o

o oy & poy o ayzaz)

o) 20w) 2vw) __12p Ow Dw O (3-4)
ox oy 0z p 0z oot o

(3-3)

RA: v, w— FIETE x,y,z =BT R B
p-IKIEE, kg-m™;
v-BIhEERE, m’-s™
p-HiARES, Pa

3.3.1.2 REPRGEAERBIEHHES:
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JE ST KA A R

, oF v oW
TR —+—+—=0 (3-5)
o & TR 6x+6y+6z
o o w_, (3-6)
o&x oy oz
_ i) O(piti, i —
s, J0R) OPRE) B 0 O o (3-7)
ot Ox; Ox, 6xj ox;
(i=1~3,j=1~3)
o pe g oy, a"f
BERMNVHETE: (7)), = pk5 +n,(F+0) (3-8)

ox. OoOx

j i

2
7, =P kz (3-9)

K. n— TR

- hETREREG
k,e AJLLSF RIRR A

ok ok ok 6u

— ———[( ey —1+7 '( —L)-pe
k3578, ot ’6 ox, o, Ox, ij xj 6x,. (3-10)

oe oe 0 7,06, cg_Ou Ou Ou g’ (

. p08, 08 _ 0 o )08 , L 3-11)

eI port P e Do T, o, T “r

k- HBHHEARE (c,..0) IENEH (0,,0,,0,) WERFEHD, HEwx

3-1:
#31 k- HFBEERTHER

Table 3-1 k—& Equation of constant experience table

c ¢ c o} o, o;

0.09 1.44 1.92 1.0 1.3 0.9-1.0

3.3.1.3 kAR FI AN R IRR

RAKRE S A BRI MERADC ] NRROARRE, BRASR LR
BERZARRERENEEEURAZNBNEGE: MEREHNTRERZEBEEETF
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BB BAMERI AR RIS R

#h, MAFROHEELHERIITUINK, B5EZ BB R E X8 K.
W8 Re BHEMKRAFFRIRA, EREM AR L. &iESHE T
R =E (3-12)

€

Hep: V-#EHFIEE, m-s';
L-FHEKE, m;
v-RAMIZHEE, m?-s7.
NTREENGS, FIEKELRRAEHERL . —RIADKEFFEECh 2320, B
¥ Re<23200, BHRERH; HRe>2320p, HhREKR.
Xt T REEEAN RS, FEKERUKNER, MEERRTHERA:

|4

R, = Vi" (3-13)
AUEEKNBEREXWT:
d, =4§ (3-14)

Heb: A-HREOER m® - REE RS E &Sm0 AK, m. WIENE
BHEEENERETERA:

Re=%a (3-15)
At a- EHHEELK, m.

X F A AMER KK B, Q%EE“%EJJ"FB@%EE FHGE S A I O A

Y

y== (3-16)
A
RN 3-16 ABPA R IE T TR AR R A 4 Sk — R I T & 0 H
10
= (3-17)

B, N TREREENBRSHBIARE, X EDFMER LA BRSLRE R
GATRTIA . k2 RAE P A RA I HIE B 2 E R AR E S KK, 8
AR B R K B RATRH X —RRAE 0.5 KA B, MEHARAT
FIAER, XX THUE TR (BIEE T E A7) MK s v BN % =2 18 24
(o S TR KE - REXR MR, BKRENDEIRBLNKRERARLL,
THEER Y AR IR T SR A 5 R SR I OB A R P R B AR YT R R AR AL
Bl TRARESHERRE, LRAHEWL, MKRREZR—FANHE, Bk
WP 68 R B B WA 2300 R K RRAHAEE. FERF, HIFREDIN A Frik
ERERK SRR ARSI E B EET T 047, WARERIREN Re £ 105-930
Z M, HEREEITHmAE R RRERENEE D, BERT 255.

AERAARIERFEEHFRFTELRETNE LRXE MR L, R
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JE A T RS20 i

50-350kPa [E %M T kKUK 4tE, HB N Q0=23L-h', WkiEHmLEE
B, SHKENORM X, —BERF, FETEA4=(0.6-1.0)x10°m*, W7 E K
i B SF W E v=Q/A4=04-1.0 m-s' , /K 7 i& K B B 20 C B 1H -
v=1.003x10"m? /s, BIHLTTLAHHE L Re = 9002570 . RIS WG S E i Bk 21N,
B AN FRTUE A B, B BHEREE, EASMRE R LM X E K45 #7E 0.50-0.65
28], RPEAMASIAERR. &R EARLRSOHANTTE EXRTPNTE LR
FE aMER Sk, 50-350kPa FEW&MT, FHREZRUAK, FUlEREEDISEESD,
SEFKHABTRE, REEMTAREER KA EREEN.

AT, FITFRR:

(1) MEAMBRAERES. BRI

(2) EHRBESTLLARE, ERERS.

(3) WARAFEERIRERE (o hEEO;

(4) BPER LN R AT R HEAR aummm%.

EREHEFNT, REEARRICH 300 KX, —B7E 200 kZEA R AT LA, W8UE
HEERFSAZZIE, REHARLERE.

3.3. 2 it HXBMSMMiERE

fEBYRATAZLH) 3D P BB WL HR L kbR R, WERES 0.00lmm. RER
YE R LSRR ALK B R . T W B A2 A oh MR Sk O B B9 3D JLART#E
R, ME—EfRE LTl “ariih”, X B RIS — L1 0 Bep s sk,
7E ANSYS Workbench f] DesignModeler itk sh 8411 F -

\uawﬂf."m/ .
B33 1/2 GEEn B 34 1/2BPEEEHEY
Fig.3-3 Half of the flow channel model ~ Fig.3-4 Half of the elastic membrane model



B=% JRHAMENL AN R RS R

HB/R A BETMHBERERH, =55, 2K 2-17 T4:

_3(0.755H,+5.53)
100-H,

MAEPHRRAERE K, FE p=1000kgm™ , 3 H % R K
v=1.003x10°m? s . ¥, W F S aMER K, ZE#OE S /MF 50KPa 5t KT 400KPa
RIX 8, EEAREEEH-REMETIEE, BTUAASGERRSE N EHTEE AN 50-350KPa.

=3.138MPa

3.3.3 MR 5

P4 & CFD AR JLARERR, LEEENVIHRE. MikREST CFD &
BEMTEAEEEENEW. XHTHEX CFD A8, MEEREYFER, BRSH
B, ERMEFRENEEEKTEER CFD #HKNE. A XMMERSKE ANSYS
Workbench [¥] Meshing 3R o 52 5 . %5 18 B I 2 7 45 W 1 B 78 BE I PO Ak s i e 1)
AR ZRRRBLR RAFEA RN 0.10mm KIPUE 1AM LAERHTERRS . 4
BURFIHIMEECH 1.6x10° 4. HYEBLA BIMEH ANSYS BZh4ER. MERIS%ERMT
BB

e

0 18 32 48 B8.5(mm)

B 3-5 ¥k AR A PUAR 21 9
Fig.3-5 Meshing in internal emitter flow

3.3.4 hRFH
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Jb stk TR S 2R 5

TR R H AR AR LTI, LMk 0 22 AR [ 52 1 K
S, DAWCE TR, ¥R MIEANDAR &M, (£ 50-350kPa G 1, HF4 S0kPa i
YERRRA O CEES, 3t 7 AKTFHA . LA N, dTREERER S, Yok
HANKRRIE, WERHBANDSN, HEDR EEEREHAE.

3.3.5 MAHEHLEGR

AT EMER#T 3D MERRBER, BFRFERE L@, SHrixLFim
EREESATBREILS R, RERSERY-FE, A 6882k REARER
RIMEI R O, X B AR E J)AME R L ME R b=0.1mm K WPHE.

3.3.5.1 WKFEANEND 5

JE 3BT FRAE CFX-Post F#AT, ATk ATSAMBMLI T, REBHE. A
R WER S, EHULRRAEE LSRRI %. £ 3-6 il gk

M TAEIE 7 P 4, =100kPa, SKARSE 8 511K 47 B AT AL 4 SR B B

IPal

g 0.005 (m) A
e —
0.0025

Bl 3-6 Wk BN E 5 E
Fig.3-6 Distribution of emitter flow pressure

MBI G5 R T AR Y - 5 DM Sk T AR K 83 1 e AR R 5/ e i
e B 3-6 BoRAtER b=0.1mm FENRHHEH ST, NEPRTLIES, MR
R EGINHK WA KREDFWENERL, KRTEKRAH [EHBERE.
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BW R AMERN LA TR BB R 4 R

FERILT FE )M Sk B e L, A0 ORE R Sk T LUK K It AR B A1 R4 I i
WA L%

3.3.5.2 ilkABEREESH

: -
Im s*-1]
KR
1] 0.006 (m) %

Pl 3-7 100kPa B Sk .18 P9 188 BE 53 6 o Bk
Fig.3-7 Distribution of emitter flow velocity vector at 100kPa

Im s#-1]

0.0025

Bl 3-8 5O0kPa e i Sk I i Py 3 BE 43 2K ]
Fig.3-8 Distribution of emitter flow velocity vector at 50kPa
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LA TR0 1AL X

B 3-7, 3-8 SR T WA h=0.1mm P W Hi35 A& RER e 7 Ao, wTBAF i,
FEIENAMEX TSR HIER, FETEEY 0.3-0.8mss, %R BABTEREARN, R
HATRE R, BFHE T HAINIE S o AKX MWK Bt P ol LUT h, ZEUE R b A2 77
fE “IRHK ", ERERIC, HIEAKEPEHRDFR IR, T BURLAF R
AT 2E B S BRI RIUR TR, AMAZ LMWL AREEIE. Hrelxt
FXFRLME, 7T LU AT RS, Ralfe@f “IGER” MFFENMD
AR R/, B IARIRE, AR AUERDUEZEPERE.

3.3.5. 3 MM A TR ST

RIS, Ay LARIA CFX-Post i) EIB)MREIR, 70k A0 TLER BIFVERR A 221k Jy K
ER T REMZER:

T T L L] T

B 39 #ERAERRER
Fig.3-9 Schematic diagram of elastic membrane deformation

£ LBFROITEEDTIE, BERSRAEBRKRY, SBAMZE LK EiE@ER
A, HmAFRiEP BB MR, BARTKEBR/ME—EREE_LaTLU#nhMz
BOKIERE, HRFHREHEE.



B=F EHAMERKAIRNRERLESR

ca A Ay i ; ..
RS e Foi i S S =
¥ - . PR e - = ¥
Im s*-1| I
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] 0.005  {m}
[ S

P 3-10 5OkPa B3R A R E
Fig.3-10 Schematic diagram of elastic membrane deformation at 50kPa

g1 3-11 ATEEDAMERKE TEEANL S0kPa R EA L FH¥eiRE, HiEs
IMEREME, HAFE, HRAMEKIDKEEERER, WS REEE, RN
AT CATE BRI 3K P BB

3.3.5. 4 REITH

B 3-12 I8 DA S A 2%, X BiRR S, Y MRS ERREV,, BER
BATEL B A DK IR D AMER SR KRR, KB EMBH T ER, AAEREX
BRAER/NTROBEN, RERELIREH N THOERAS, NxAS BI#ELH

HAKFAE Q. MAXAG LW LUMEH 7 100kPa i, EAMERHLHREN
Q=226L-h".

L TN 10 O TN o G b

A 3-11 HOERE S R
Fig.3-11 Distribution curve of outlet velocity
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JE AL TR Z 24 18

3.3.5.5 LML RMBEI LRI LLILRE A

it CFD BU{ERRIB R T 50-350kPa JEE AN 7 AV D E H &M T RIS RERIR &
8, 7658 —&Frh, FEitseseib iz T 50 -350kPa JE 6 B A 08 50kPa [k 1 &4 T Y
BhiitE. ERERILTR:
#32 FRAOAMERLZARRASERRRE

Table 3-2 Pressure compensating eriitter of measured values and simulation flow values

b= #OES/kPa

/L-h" 50 100 150 200 250 300 350
SPE 2.37 2.33 2.33 2.22 2.19 2.15 2.13
HEAE 2.54 2.50 2.46 24 2.35 2.33 2.33
hxEE% 449 7.39 5.65 8.18 6.90 8.57 9.52

Bl 3-13 BiRSKA L H-FEFH K CFD RS R ELMLE R LB WEFATLL
B, £ THEENT, CFD HERBRNENFRERE LS LML RCBEIE,
FHIRENT 10%, 8 CFD Al M E DR B S LMERAERE 3.

3.0 4
—a— WA
—e— EIE
2.5 4
&
g ‘ -\\"\4-_\‘\'___.
o
¥ 2.0
X
=
s
=
E 1.51
1.0 LI T d | B | v T T T T T 1
50 100 150 200 250 300 350
13 83k B 1/KPa

3-12 EAMER K EL R KRB

Fig.3-12 flow and pressure curve of pressure compensating emitter
CFD MM BKRTLAE, EUESLAENTAEHTERITFIMEXNE, #R
B A TE DB B Hmksb, MR ZE, YN CFD BRI EEM T4
ERESAMERE KRR E T H . 76 50-350kPa 1y, BEEEAK LT, BN EBUEN
SERRE-EAXRMEFEERRRERRL. MELRKOERENRN, SHR
EHgahrtEe, RENRZE—ENEWH, REZNK,
SR B A SR B HEAT IR E T AT 40
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F-F KMEH AR MBI RLR LS R

(1) YR FMET A A OSB3 3k F33F DR o 0 38 408 1% T
PLcHRE, LM B, AKEE ORI KBS 1N T SL T R K BE 7 B R ik
FIBRFH DK, (FAEMRE SRR B mER K.

(2) fE#1T CFD B{EHERIE RS, #ITHEHSERERN, MHSEHELHE,
KATRGHME. BB E SLHFRESRAR.

Zfi N-S . ELEM KRR EDAMER LR BRS R TITH. FA
Multi-field Solver BT FE A FMER LB & 04T, W UMUK FRIER T AR A &
Féo BAERBU T IET B IE Mz Sk A s, aTLLEBRATMA =48 L E R RSG5
A, LA LE R AT LUK RN ROE AT AT, XX T IR AR K RE I R
BIE PR FE AR R EE . EAFHERKOFER . A KKREH L&
RE, THANS. Bh.

3.4 CFD HEXRLBEZ WA RS

ERERIA £ BAT. FRITAFEEY, ERNFNREERS, THSIHRE
FIKFEABRE , SR I R3PX R R AN K T AR — A & %98 —#AT
K, BHTEEmRE, RRKREHALL . BRETTERRXAREERRE R’
HE, UMEBETELHERREH K. EXRERERAM “ERR” #TH ¥R
ZH SR RAR I K. HEEZR R T UER SR 77 R Pk AR PR A
DEOANRR TR, HRELXOHRE T ROERST, HHHRRTR, FIER
PMEH— B H0H, BEHMRRERAGANNEELNAXRERENER.

Emk CPFD HEBMARNERAMRE, ARLHIE 3D JUTHREKNEE. X
43 W i R BUH AR R AR SRARAL 2R 07 L HN 1R 25 R 30 A0 3 2 R 28 O AR UL 4
K. WMRX CFX RF[ETEHEMRE, LIRS EAMER L FERMRSI R E.
S XHIX — 8], AR X Sk CFD RS (0 BB R AT B R AT IR 04T
K BEAE CFD BUERIRA B R INE K PAHS .

3. 4.1 RWRITEF*

®Wik CFD HEMEMS KRR FE SRR AR EANHT, E2H —LRH
EA RS R BB, KRAR T Xk CFD BB IS iR R i
T4

FESERRAI A CFX 80X K 8 7 Sk 8 R 3738 1T CFD BUERIIRS, RIURAAR
FEIP% R R AR ERRRR @A B 75 XFIERE, CFD HEARE
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JEA TR EFA 8 X

WEFARKEMN. T, KWERR RS, TR EEARR A 77 01F A X
ER KN E R ZFEE K FRIERRY. CFD HERMERED, RIEH DGR &4t
WEAEAHARK, #OESEREHR 100kPa, FESOURFHFRENESHO
BR, HOEHEREHR 0 Pa, HAuhFAiaaemats. £ AL - BRI 4

WF, k- HRBPWEARM c, 0, IEAE B 0,,0,,0, NERME, 1F 3-1 Fiko
R 3IHAARE-KER
Table 3-3 Study of factors-the level

%
*F A WEBTRS  BHEMEMN  C KRBT
1 0.10 =¥ BE
2 0.15 Wk —¢ 22

RIRRME R S5KFE, HRL,Q) IFRARTH 4 MUERR, LA 100kPa #F 1K
T4 TR & 55 R B M mEE D RRER. KRAIFRRNE 34

% 34 EXIRRE
Table 3-4 The orthogonal experiment table
5 A P& BT R B IR C SR H T vk
EX1 0.10 B &
LEX 2 0.10 ik —¢ 2
FExX3 0.15 B (733
FX 4 0.15 Witk —¢ ST

3.4.2 HBGERAH

3.4.2.1 BEXHH

EXRRE A I ARRE ST, & B aTsREr P2 MR —F07i%. BES
P B AR Bl BIER R R P & ERFIRER KD E H & H R AR
PR ERIGUT; CAR KRR, BERE KT R AR TE bR E 0 A AR,
i &R E SRR EFGEE R, EEARPEERANAREFRERKEEERNR
HKT, B B mIAR T R,
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BT MO ER L RS BRI AR

& 3-5 EARZHRRE R
Table 3-5  The analysis of orthogonal test
2053 A B C YiEwE/L-h
1 1 1 1 0.39
2 1 2 2 0.44
3 2 1 2 0.16
4 2 2 1 0.28
M, 0.83 0.55 0.67
M, 0.44 0.72 0.60
m 0.42 0.28 0.34
my; 0.22 0.36 0.30
R. 0.20 0.08 0.04

Fo M, FR8 UK B A i MO B R R, my B § K200 § v R
EilE, R%T ) FIEENEE, R=max(m,)-min(m,).

ST & B EIVRMIREA D, 7T IR IR WL V5 030 48 R BRSO 20
Bk, S4B R LM EWNUF . IR 570 T SRR S it 5
Jrik. fRHERESRRIFOEHE, TE 313

0.5 7

04 4

o
w

B REIE

0.1 4

0.0

Al A2
PR TR

()
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Fig.3-13 The diagram of test index and factors

KR EZRR IR IEVFRZ 100kPa HE O IE F) %44 T 515 8 5 5 i 7 2 16 W
Z, R e, CFD BEEMNEESS. ETit, NERKFESHEME
HEBETh, TURHEERNREAEH ABICy, BIMEATRSI 0.15mm, #H
WERALE A BRERE, KRBT EERBSKRBTE. HAS ABCENEE
/K, #E 100 kPa OB 44 30 B A a2k 2E1T CFD BUERHL, #RIE B
BN 242 L-h', SLPHBEAMWZES 0.16L-h , BIHAT LUH5E K /144 3k CFD
BUESIRE R ME RN RELEH ABICr.



BER RO AR BRI R 25 R

3.4.2.2 FESH

W Hi ik EM, R, ERXMIEARRAMA AR P R 4
R th LREERIREZEN KA, FUEAGERIE X 2 R H R S ACE Pt AR 30 4 R
ERRER BT RPOSRFTIER, L2 HTRRIRERTIRMN. FNEKZENAR
4 R W E R RS TE R RS MR R E i, B L E#AT T E S
M. HESPrEER ALK 3-6:

£3-6 HESHE
Table 3-6 The table of variance analysis
TEKRE  REFLA a)::)34 BJi R F{i BFH
A 0.0380 2 0.0019 3.255 NTE
B 0.0075 2 ~0.0038 0.642 N E
C 0.0015 2 0.0008 0.128 NGRS
e 0.0033 2
T 0.0467 8
F, F,s(2,8) =4.46 F,,(2,8)=8.65

Wit 3-6 A LATE H & IR S HE BURE FE B ma K /MU A PR S e RS T
B RARAE B F 1, X GRESNIEER . LB EFHKF a =0.05 REKE, &
B 3 AR I A7 M5 Sk BB U T2 (K R 3 A A B R 3E K E, IRt — €
PR ERAE T RIA CFX K AHA ANSYS #4436 ) M2 Sk 34T CFD BUERIR HL
FREATITH, BiATREERERME TR A IBER . IERRBEW T
£ (R 35 FEXRBRAR | MERRERK, BRRESZHRENRERSE
16.8%, MERMIAK R ABIC, PRI &5 LR B A WEZE N 7.08%, HILTTLE
&R FEIHERRE MR B R B E B2, EXE N #M2Hki#4T CFD #
BRI A L EAR SRR E RS E W, R % R EE IR T K FHaTiR
THEHEEMNTE.

3.4.3 MBI RTX CFD il E R m

SRR BT MM RIS R CFD SUERIMEZETIE, MR RSEET#E
B B AR, A B PAR B B I SE LR A T S B ST SR AR S T SR R
Feik, WIRERE PR ITR T X CFD BB R R R AR W .

W% Rt %t CFD BUERSIR AR KKIEM, —RBoR UM R NMiZFED /T
HR B SEARRIRFIE R T, XA REBCUT R R 1 SE PR P9 B SRR U E, AT AR IEAR SR
SRR TFI 5 KRR LR ZE EXRIERRR P IREL LR E T M4 BRI R K
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JEs A TR AR

SERIEIN, BUAR I PR RS /KR R R, BAS3 T P A B 70 RS RN 15 TE 2K B
3 CFD HUE A IS TS 1 B 1 L o

HEFR KRR DGR, €/ CFX 3R #MER kAT CFD BHARIUR, +§
YRR R R R, kSRR MBS, e DL EA 100kPa,filil Mk
REHFRBEAEADHOER, HOESEREHR 0Pa, HALF KA LEEMIAEE, Mg
BIL RSP 9IE R 0.064 0.08. 0.1, 0.15. 0.2, 0.25. 0.30. 0.35. 0.4, 0.45mm. E

PHERAULE R IR 3-7:
R 3-7 PR ETT R E K/ RURS RE R 52
Table3-7 The effect on the simulation precision imposed by the size of grid cell

M4 Rt /mm 006 008 o010 015 02 025 030 035 04 045
FigmE/L-h! 0.i19 023 020 016 030 035 043 047 056 0.61

W ZEE % 840 1052 885 7.08 13.32 1554 19.07 20.88 24.86 27.04
TE AR /A 8 6 5 4 35 . 2 1.5 1.0 08 0.5

M 3-7 ] LU H PR BTG R H KX U R B SO R mAR K, R
F 0.45mm K/ P g 2 5T RSH R0 43 9 R B AL 7 B 5 5 T VA 2 4 22 2 8 27.0%
Bh X A M Sk BB AR E ™ E R LB E 5, PSSR T RS RA 0.15mm B8
NS BLES R R E, MEIRZRRISHITE 10%A4h, FARWRE LK RIRE
FREGTRENIE M . LAFIAG 50 R~ A BAR bR, TRERE A AL PR i 8 2= BE g R~
KA ERE, WK 3-15,
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Fig. 3-15 The trend map of grid cell’s size influencing on flow deviation
ME BT LLE H: BRI RH iR 0.15 mm 25746 T 8 K R 7 4 Sk B CFD
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0.15mm 2277 2 8 /N HE A 3k CFD BUE RS BE S TRUE , SRl i o s
PR PP TT R s LR AR e B A M I RS 18, T T RSB T FO I ] At 6T A
T, B2 A& TR FE 0.1-0.15mm i F P HRU(E

3.5 FE/NG

AR E WS EREAMER LI CFD ERIMIRKKIIE, BHTUT4R:

(1) FIAJ CFX #1 ANSYS Vi E#54 Thiexd E A 4MEw ki Wit 5T CFD 8
EHBFBREREGEE 10%445, FIXFFEEAT CFD BT LUK K S 42
kTR B MR H 2 B R ft— 2 5% . RIEE D3 B M2 Sk e 45 1
BT AHT, BERNBRTRAKES . EEEDME.

(2) XA SCIRE R AR Sk #E1T CFD BRI, , SEwEREREm 3 M ER
RENBEKFAE N ABICo, BIMAE TR 0.15mm, WY BEMRLERA B
R, SRARALIR 7 kit PR R AR AR 7 152

(3) ATHEERRBRUBEENEREREAE, RFEERAHTRERTRT
EZERUKERRS, ERERT, EMRBRENESIMER L CFD BUEEIIRSE
S 0 VR A PR BT R ST TS B AR R SR A b B 75 3% B E K @ =0.05
KK, BEECAT 3 MRRE E xS HMET L CFD BB RE WA EE.

(4) PR B TE R ST R/NSHE R B WSRO R K, W TRIESHE
e E I FMERE L, 2R HIC RS 0.1-0.15 mm JE B RN EUER, CFD HUEBRIHIHE
BEMIRT R, PR RTANB— e B @ it vl /s A B 28 8 R~ R MESR & CFD il
BRI
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BIE SEIR) B B A ) Rk il B

BIE MRS EO6 K R KRR AT

FAVERE R 1 o B MR K IR R o, PR S BB e w Ik D 42 i Sk 0
FKIVERELA BB E R SIS BE . L SR BTN, ST g A2 R Sk A B R s
FEBHCATRRER H, MRS e . ZEHILEDRIET #Ed CFD HFESIEN
MR kK DR ATHE. AE ST CFD kxR AE IR A B9 RE S B0 R~F
it I A M 3 kK O #E BE IR i AT RGBT 9T

4.1 BEHRANSHEKDEEZ NN RRRAE

4.1.1 RIWHEESKE

BENSTAM, SRR SECHERER H, AR R EE e BANEE
HRAKRER, FMERRUHAKFME 4-1 Fiow:
41 HIRFE-KFE
Table 4-1 Study of factors-the level

AES
K Ry S SRR T
e /mm H, /3R ERE
1 0.7 45
2 0.8 50
3 0.9 55
4 1.0 60

4.1.2 [EH#MEFESKNEEENS BN E
4121 ERS

EAAMER LEMEX B A KE 23CRNAE, RABIERE, BAANL-0'. &
HHL 100kPa B M KM EBEEA VR EHMER LT ERDIZEHE, NHREXHRER
BHREQ, .
4.1.2.2 RHEN

RABERENMERL— N EESH. AKX 1-1 PRRSHERX KRBT L&
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Jesr b T NF 1A 3

St 7 Y BUSFERE, X F BRALA I AM g 3k X=0 , {B R 73 BR i 7 Mg Skt AR
SEE, —BEAAX AT 04 B, HAELHEEEIMEN. XBEET 0, BkK%
BEERERUBGR. PR bruEfoll 2 M B 25 T LB R BTG AR L 7772 (GB/T17187-1997)
FME X <02, BPRERHE 1S09261 45 MR A HOM [k F M2 Sk R AME T BEBEAT T 53
K, W& 4-2:

& 42 FRI4MER KR KR

Table 4-2 The classification performance of pressure compensating emitter

AN SRR gy 2K kISR X
R ar 0<X<0.05
% 0.05<X<0.10
—f 0.10< X <0.15
= 0.15<X <0.20
PR X>020

BT E R E AR ERIE, SEDMERLRERREENRRETIE.
X Q0 =KH* BIUBNE, RRBRTR:
logQ=1logK+XlogH (4-1)
BUE MR B BREHER R, U EREZEATGE, RIEARE S KR E,
BN ZRFVWEXKE:

Y (logH-logQ) —% D logH+Y logQ

— - (4-2)
2. (logH)" -—(3 log H)
K = 10720 ¥ Zhet) (4-3)
JE SR BB AR R RSO TR
Z(logH logQ)~—ZlogHZlogQ
(4-4)

J{ZlogH —=(D logH) ][ZlogQ ——(ZlogQ)]

4.1.2.3 EhiMEXE

FE 3 E U E HE K B3 FRHE (SL/T67.1~3-94) Plehsg YR HAMER B K. [EH-Gig
BHZR BRSNS (R AR Z R i 4-1 s, H,, R
H,, Z BT EREE S MER L MR ). B, —MTE 40-70kPa, H, —RHE
300-400 kPa. 7E/E#MEX Bl EE S T HRLRBEAN THERE Q HRE. A

50



BIUE FPERRS S B3 KRR W R AT

EAMZKT 5%, BEANIZKT 10%.

7§

AR
]
P
|
E
1
i

Heia H=100kPa R KJiAPs
B 41 FEHi sk — Bt

Fig.4-1 The general Characteristics of pressure compensating emitter

4.1.3 AHBERHESHERTHERRZLE

4.1.3. 1 TR R & o E D MRSk RE M08

NI —EHRME EXE S AMER KRB AR, B AERE A 0.8mm K
ST, XA BEEE H, 5 HEGAK B KF (45, 50, 55, 60), X
ZE TR BEARER T ERATRERRNAR, Kb, M RTRSTECY 0.15mm, itEY
BRRGE N B RARR, KR ARANE, REHOOREGRENEDFOELN,
HOEAEREHR 100kPa, HEHPOBAFGREAESHOBK, BOEMERE
2 0Pa, HihiaRELMHERMEE, HEEH, 5 HBOREEITHH 4 NMKFE (45, 50,
55, 60) Bf, ML 2-17 B EE 7 7B 2.155MPa, 2.600 MPa, 3.125 MPa F1
3.814MPa. _

A LATR BN R BB B 4544 F IR 1 AMER L7k S P Re dh 2%, & 4-2 B
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34 4
3.2 4 —8— HA=45
—eo— HA=50
3.0 1 —a— HA=55
2.8 4 ‘\\ —y— HA=60
226 ., 00 Y — Y
) —
ﬁ o] N,/a“\‘t\\‘
‘f( 224 * M
;g 2.0 4 \.Mﬂ
?-é o] .-\.\’—\-\‘\.\.
.R
PREE
1.4 4
1.2
1.0 +———r—1——1——1——1——1—
50 100 150 200 250 300 350
& @3k 1/KPa

B 4-2 FRIBERESRA4 T B M2 SR IK 0 RE il 2%

Fig.4-2 Pressure compensating emitter hydraulic performance curve of different hardness
WIE A 4-2 R IR EHBIER 4-3 WERTLUES, QAL REMEEREK
WM ESE K, EEMSES, HARLRESHERAE, ER—EEEBRT, #
VR A BB S MR RE R R B, BB R TR, WASIREUEMK, IMErEAE TR,

T8 A B N, R S M X i) th B 2 D o
& 4-3 SVERE BB Sk AMEE RE A R 0

Table 4-3 Elastic membrane of the impact of the hardness of the emitter compensation performance

WEIY H , /AR HEIRE X [E])/kPa XA R?
45 -0.0503 50-240 0.8457
50 -0.0526 50-270 0.6798
55 0.0564 50-310 04781
60 0.0679 50-330 0.5047

R 4-4 FIH T ARG /RBERE R T KRR R B O, - it Xt R i kAR FR I B 1E
O, # TR, [EIESRRE 4-3:
2R 4-4 BRI RO E S S AR AR UL R S

Table 4-4 Elastic membrane of the impact of the hardness of emitter nominal flow

W H , /AUREIE 45 50 55 60

WRHEQ, /L-h 1.96 2.29 248 2.79
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30+

28 4

26 4

24 4

2.2 4

2.0 y=0.055%-0.515

1.8 4

FRARIAR/L . h1

1.8 A

14 4

1.2 4

10 T T T T T T T T T Y T T T v T T T v 1
44 48 a8 50 52 54 a6 58 60 62

WA BREABRER
Bl 43 BRPERE RO Sk A R UL At R B

Fig.4-3 Function chart of the hardness of elastic membrane and emitter nominal flow
ALARH, FEHMEE ) EER 0.8mm B, 3P EERE H, 5k KRR E Q,
ZIHIRARA:
0,=0.055H,-0.515 (4-5)
HR?*=038679, KHREE, EREBRAEE—EMHT, Bl A 44 LA
H AN VR A 454 F R D AME T K AR PRI R « M, T LU e il B ok Sk B e 8
PR A R . '

4.1.3.2 FEBEEERR R B X E h Mz Kok 71 1 RE R 0a

N FART— BT RIS L RE S AMER LG AR, MR RN H, =551
T, StEtEERKEE e 4 HBGRK RPN K (0.7, 0.8, 0.9, 1.0), %R
T Bk B BUE U7 ik T BUE R HIRK:, 7€ ANSYS Workbench i) DesignModeler
B B R R R, B SO N TR E RS & B B RE, ARG K74 31
HATEUE RN, BT AR B A T B A ahE i Sk K h tE R k.
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50 - —8— e=0.7mm
28] —e— e=0.8mm
46 4 Yw»—»——yﬂ‘____v_hﬂ_ —aA— e=0.9mm
44 4 [ o - e=1.0mm
4.2 ] “‘\F___
4.0 4 i
; 38
- 364
o 34
i 3.2 ] W
¥ 30
K 28]
;. 2.6 4
ﬂ_f 24 1 N_H\‘\\‘_.
ﬁ_
B oo
1.8 4
1.6
1.4 -
1.2 4
1.0 T v T v T ¥ T 4 T d T v T
50 100 150 200 250 300 350
ENa 2Rk EKPa

Bl 4-4 IR RE A T B S AME RS LK A A 2k
Fig.4-4 Pressure compensating emitter hydraulic performance curve of different thickness
R B P LR EA N T REE, WTUEE, EEOMERLEERARE,
REREMSLIIE N T, BRI SAMEYERE AR LE R R Bt R PR
WIS TRER, AMETERERRC, S RS, T R M (X ) B 2 %
P

& 4-5 BYERR T BT R LAMENE AR B

Table 4-5 Elastic membrane of the impact of the thickness of the emitter compensation performance

JE ¥ e /mm RERK *MEIX [)/kPa HXHE R
0.7 -0.0517 50-260 0.8124
0.8 -0.0564 50-300 0.6781
0.9 -0.0765 50-330 0.4789
1.0 -0.0945 50-340 0.4575

R 4-6 FYERR A 5 BEXT I S AR FRIAL AR B

Table 4-6 Elastic membrane of the impact of the thickness of emitter nominal flow

JBJE e /mm 0.7 0.8 0.9 1.0

WREEQ,/L-h’ 2.08 2.48 3.40 4.59
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BA BEimm
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Fig.4-5 Function chart of the thickness of elastic membrane and emitter nominal flow .
LA, ZEM TR H, = 550, BB IO B, SRS HOR TR O,
ZIBHIRER A
Q,=1.055e+3.535 (4-6)
HR?=09052, KWREE, ERHEBRAEE—ENFHT, BLAK 4-6 LA
HAF R &M T ESAMER KRR & . AH R, o] DUE S TUE I8 kK78 7 o8
WA REE.

4.2 BHERR RS EE SRk h it RE R MmAY E3Z 5

EARB B RHAL RS ATHX—HE T, ERREERENEHERE
P A KRN AT RE, RREREENARET “BHO0H, Fun
b HAS S, FACRB B RARTE BRI EB . B—HEHE. RE. 250
SR,

4.2.1 RERIHERZE

B RRF R MR, B OEEH, AR A B e N EE
X S MK BIPE B W D8 T 3 — 0 5 & B X Sk K P RESE i R LA
REMZHfZREXR, RITIELRRR.

(D) RRIERR: EHMER LKA AR
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(2) RRKRFEEV AR OEERE H, BB B e, HMEE KT, #
PRI & =K FIIFAC & T, K 4-7 Fios:
%47 WRNE-KPE
Table 4-7 Study of factors-the level

S
AF A BHMPE T
e /mm H , 14V
1 0.8 45
2 0.9 50
3 1.0 55

4.2.2 RBEREWE

4.2.2.2 WS

B ARPHEESKTE, HBLEGY) ERXRZH 9 MUERE, L 50-350kPa K
DX V8] P IR A TR B X AE B HI W e, VR IRESL A AMEYERE.

F 48 LXRE R
Table 4-8 The orthogonal experiment table
g A YRR R B BPERE f A
EX1 0.8 45
LX2 0.8 50
EX3 0.8 55
EX 4 0.9 45
EXS5 0.9 50
X6 0.9 55
EX7 1.0 45
EX8 1.0 50
L9 1.0 55

HHEF B KR ATEEAAR R E & L7 100kPa B KRB 5 5 B R K FH
BRAWEK 49 iR
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BIUE SR Y S EO K I RS R B TR
& 49 EXRRL R
Table 4-9 The analysis of orthogonal test

Rigs] A B X Qu
LR 1 1 1 -0.0071 1.96
a2 1 2 -0.0012 2.29
S 3 1 3 -0.0033 2.48
E 4 2 1 -0.0107 2.09
LS 2 2 0.0256 2.40
L4 6 2 3 -0.0643 2.63
&R T 3 1 -0.0118 221
X8 3 2 -0.0336 2.55
49 3 3 -0.0681 2.80

M, -0.0116 0.0296 .

M, -0.1006 -0.0604

M;, -0.1135 -0.0135

m,; -0.0039 -0.0099

my -0.0335 -0.0201

my, -0.0378 -0.0452

R -0.0339 -0.0353

ML AT A R B AR ZE KIS VT RN R A B B8 PO T # M  Sk IRAS FR B
RTHUEBRAERRNEW. 53R 49 FERRAIRKFSHFEHME, TUEHEEEHN
APRAES, fEtr (FAAHRED MR LES, &RENRRER WSS ETE E-
kIR FHERR-1EE, REURFEKPERYE, &ERERRKFSH

FEIE m AHPIRRAER . ERBRESRRIEFHERE, WE 4-6:
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HUBEEE e

(a) X RN mE S

-0.01 4 [}

-0.02 4 \l

REREX

B1 ' B2 ' B3
HIEBA PR EHA
(b) BEREXT SR A AR R
B 4-6 REEHLREXRE
Fig.4-6 The diagram of flow index and factors
MBS B S RSHERE ZErE T LE L, Bl 50-350kPa &A1 X ] A4
RIS TE B X 1B A FIMIRIRIT . X S0 E BN IRy fMEE T Sk R AME PR AT - AT LAB 2]
MM TRSEHOEEROREAEE AB, BIHMEBA BRI 0.8mm,BEAHK 55 4/R
W,
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4.2.3 HkFRERSRERHF SHNERSE

Bl 100kPa it O EH4&H4 THRLAREHEINEER, LK 49 PHHEERAS
¥R 100kPa i O B 477K L& 4F T 3 L i B R0 A HT 808, %3 100kPa #E O K
U TR LR BM R ERBM M, B3 T EIMERLFRER Q. 5HERA
J2 1 OB A 2 (6] i) — R Rl 7R

Q, =1.45¢+0.06H, —1.277 (4-7)

Wi EAFMARBR=0913, R =0.834, BEHZEHEHHFRAE RIFHHL
A1%; FIER208.646, FREMEZHR N a <0.01, RPZEAEHHEATES B
B2 MAHRBENRR. NAKETUEFH, EHMERLGHRAR Q 5HHERAE
P e FOBERE H, BRIELH, XSREABKEERLIRER .

4.3 REBERFAXHEIE

RRER S HEEE-HMRA, WXRRA 23 L0 g EREDMERk, #

WA B TR AR BRI A RARIRE, 3o, HERMBEMEDHN (1.0, 42,
(0.8, 42), (0.7, 45), (0.7, 38), (0.6, 40), (0.5, 40).

BRI T BT

(a) EFFEEB) (b) RRAITX

Bl 4-7 2R +H
Fig.4-7 Test materials

B LK 6 MR A SRk E S AW LA A HATRE, REENJO0K PE B,
IS PRk TR K D RE AR E b, IS8 — M5 R AT K 1 YRR
B, WMAT 6 MEAAFAREBA KEDFERLTE 100kPa THRE. R, WREH
ERABHEXAREHARRHHEE WTR:
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K 4-10 JF s AMER KA FE L SR E

Table 4-10  Pressure compensating emitter calculated values compared with the measured values

RS )% B /mm fERE/AABRE  SHSTA/L-hT SEMIE/L R i 1%
1 1.0 42 2.693 2.45 9.92
2 0.8 42 2.403 2.24 7.28
3 0.7 45 2.258 2.04 10.7
4 0.7 38 2.018 1.91 5.65
5 0.6 40 1.993 1.79 113
6 0.5 40 1.848 1.73 6.82

304

254

154

0ne
4-8 W BT E A5 KRERT L
Fig.4-8 Calculated flow compared with the measured values

MR 4-10 KGR LAFH, EMERLH T 2 hERE RN BB TR,
XE5EimARRRRMECRAEN G R S TREARX, AR EESSIE
RIREHTE 10 %LA, WHAKKEAAAN TEOMERLRITRE —ERESE
Xo FAREMHEERRREERATEAS S A —ERRERE; Kk, &HEREESE
R id CFD AR RK M, T CFD AT H 5 ERBHRE—BK T LRE.

4.4 KB

i by, AEERBHUTER:

(1) FYERR S 8 E AAMER K Dtk RERIE M. Bl PR RR R R
K, ERLAESHERNRRFMET, BB BN, 5L R
R MR EEARERT, EESMEMERER . ka0t 2R # s
Fr BEREA B L T K. B AR E =K FIFERRR AT LR N, AR A Rt
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FE F7 4 M Sk SRS PR B e K T 9 1k B TR 1 A o

(2) FEFKRES MR, oTLUERE SR RSBk BN
AN, VAT PSSO I ) AME R Sk I A T RE

(3) ZEFTH K CFD HEMI LR B, L TIEEHE 50-350kPa uFF M, Eh
AMETE KB B A A LR A D B IR Bk, BIRSSLINIE - B ok R4k
BTG, kMM TR.

() B EAN BRI T EAFMER LA E Qo SR B MAELE 2 1816
Zous AR, SRR X B AT T RAE, PR B RV S i
R ZHTE 10 %L R
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FHE G

5.1 KBTI TE

ACTENE LR S AL KT CFD BRI R RE, IE T UUTHLM
gEip:

—., B 5K, WS TN CFD $l MRl i3 B A b i sk e i
TR ER LR RT ATt

(1) R CFX Fl ANSYS K- Ab38 & Sy 45 i kb R i R B #8519, CFD $fE
BT AR R RMEREAE 10-15%44G, WMEERTLARZMIEEAN, RIET CFD kE
JE I3 AME i Sk B AL IR K BT AT 1 ,

(2) BAEERRE T, AT WERITT R v R Y B AR R i A 38 75 3500
CFD RIBFEFE I W, X =ANF XU BE 32 W R K /NI 4 P RS B 50 RS> T LA
BRI RIB BT . X=ARRNBEAER: PMEETRSA 0.15mm, HHYE
HRGE AR R, RFAETTEX MBS .

(3) W& 8 IT R FEE 0.1-0.15mm G W EUE, CFD BEEBUSKMHRE S, HM
H8% R~ /N B — s R R Il e b PR BT R EV IR SR B CFD BB AR IR BE

T BEBR AR S O R AME TR SkoK D P R R S

(1) 33 7220 W R 9 Sk B R M T 4S80 R e o 8 Sk 7K O P R S BT AE 240
K WY BB R AR

(2) Al CFD BEMALAR 7R B B T Ik Mg ki K St ae R . @it E
FRBAEZ RV THRER A RHESETREREE X ZREEsE. MR
HOBE Xt IR ) A Sk iR A TR S A K T BRI e KRB A TE R
FAEMEHT, Wby BEEARN, BESHMEMRERIL, BB EREAR
RIERT, EESIMEERE R, BTS2 B B R 5 KR B AT KA,
et AT DA B I ) F M Sk B A MR T R

(3) BERPAINBATE—ERREGHERT, EHMERLEHRAEE Q
Stk B REEE 2 Bl Zn &Rl T 2

Q, =1.45¢+0.06H,—1.277
3R SR B A AT TRIE, AR B EES LREMREERE 10 %L
. WIRTREEIE M FEAIMER LT RE —E R SE .
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5.2 FEMAERAFBENRNS R

b W 3F I 1 FME Sk BT LA D, AN L BCH A TPRRITEEAT UM, BrElA
T —ERZEOBR, BREREAEENTT, BT HHEE— S %
AL

(1) EBYRE B Ty B R R AR, FIR SRS (R B (A Ak
T EGEE PIV WG #ATATAHT S, X3 R AMETRIE A K RA#AT 235 A
%o, DRI AR R MUK R R E K RSB B, RRIFEER T A
F MR RO R 2 18] B J3E A RO AR 3 22 2

(2) BHFMA CFD HUE R A AN 7 i 18 45 19 T X ) B g A ME2 i Sk IR 7K O
AT T7 %, LU RS IE D AMER kB8t 2. R Mg RS2 B iit, s
W= SRR T :

(3) TR FTARMEZIX T I B8 FSE A0 R o FI oy M2 Sk K ok B AR S

() GERERKRKERREIHBR, #—PHAERBE _MRAREST, FH
CFD HUEAE RN K 8 A K TR AT B 7.
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