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Numerical Simulation and Analysis of Flow in Cavity of High-Pressure
Common Rail

Abstract

High Pressure Common Rail is a new technology for controlling diesel engine emission
and still is in development stage in China, so it has the practical significance of studying.
Fluid dynamic characteristics of the Common Rail is an important characteristic of the
internal combustion engine and has an important effect to the internal combustion engine
power performance and fuel economy, which is shown by velocity, temperature and pressure
field. Numerical simulation is an intuitive and effective method of researching fluid dynamics.
This article uses CFD simulation software FLUENT to study relationship between the cavity
* of the High-Pressure common rail and the characteristics of flowing.

In this paper, the simplify process of the cavity model, the impact of factors and the
current researching status of the High-Pressure common-rail is analyzed. And then the
operating methods and the basic theories of FLUENT/GAMBIT software is introduced, which
is the foundation of modeling and numerical analysis.

In this article, GAMBIT2.3 is used to establish various schemes of the cavity
High-Pressure common rail and mesh the hexahedral gridding. Firstly, the characteristics of
flowing about the three limit cross-section shapes of the cavity is analyzed in numerical
analysis of FLUENT and compared to optimum cross—section shape of the common rail
cavity. Secondly, the cross-section shape of the cavity is also analyzed and compared to the
best cross-section shape of the cavity. Lastly, the fluid characteristics of the schemes of the
inlet pressure, volume and small chamfering are respectively analyzed as well as its influence
about the fluid characteristics. '

The results show that, when the largest wall angle of the High-Pressure is within 80 to 90
degree, there is a better fluid characteristic. When the largest wall angle of the model is 84
degree, it has the fluid characteristic of the best. By comparative and analysis of the various
scheme, it concludes that the inlet pressure scheme can only change the value without
affecting the flow characteristics; Larger volume scheme of common rail can improve
pressure-retaining capacity and has a small pressure loss; The small chamfering is beneficial,
but the biggest chamfer value must ensure the largest wall angle is within 80 to 90 degree.

Key words: Common rail; Cavity; FLUENT/GAMBIT; Velocity Field; Pressure Field;
Numerical Simulation

-



SO T A2 R s SO B 7

EREFA: FEXNFAAX, REAALERFNERTROAR
THFBRBHER. REF M, BXFELENIANEEMNHIT I,
AR XFEEHIAIARERELRENFRAR, FEEHABEFR
FHRRMARERALHRR. 5R—FTENRE AR5 55 #a i
HEERXPHT ARGAAFRTTHE.

EREAEZL, AARBABRXERAE.

S T A v 1A e VoL
gk R4td HH: _p0o8 % | Fl 22




REBTAFRL AR

REBTXZFAOEMNERENS

KARATRERARLRB X R RERL, ERAEE ]
AR ITERERFRATAEEIAS, ARAXRENPEN. RA
R E XA ERA LB IRAEEAK AR SRR TA, TS
KEABXHLBRBH) ARG AEEREERTRE, TURADH.
B0, REEEAHFREEPLAREARK,

ShxEE: _ HEIMHLAT N3 33 74 8TL AT
e %4 W HH: o0f % )2 A 22 H
st 432 A8 2008 % 1y Al 22 B




REBTREFRLFARI

1 it

1.1 AREFRSEX

BEEMTEE RN LS HRRBRAOBAEEZ—0 . FEE TR IR
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Fig 3.5 a family of the parallel plane parallel to XOY plane
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Fig 3.6 a family of the perpendicular to Z-Axis cross-section and the wall angle
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Fig3.7 the measured velocity of a particular point of the turbulence
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“_»y,

FRETFERE: |
a .
£+ div(pu)=0 (3.10)
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AP +div(pum) = dw[[y+—]gradw]+0 -Y,+D,+S,
K, G B TEBEREIRNMINE L N=ET, G, RHEE WL, VA
Y, REmFAP ko BHER, D, RREXTEA, o, Mo, Z kMo K33 Prantl 3,
S HS, P EXHER (F, FXFERAHS, =S, =0).

R, RRWEREN u TRTRE o HERY, 8.




KERTRKFREFMRI

Hb, S EFHRENEY, * RBALENEERYE, B4 %
JE 5004 )] o, & FLUENT #2504 0.31.

0.092y py‘o

F, = tanh[max(2

BRO~OEBRHFTEERSE 6 4 REFTHRMETu. v w. p. kHo3té6
A, B, HFEAHA.
3.2.3 EBEmEEH

ZE322FFIHE T SSThk -0 IIFHEEL, SSTk -0 BRI RN R4 R BHRAA B,
HEER, B ER R BRAER. &, NTEEAXAMNRSE, R HBIL, N
REBARS, RAMKSIEZEEANSFRENERK, IHETEMXARAEXRA
SSThk-o BEHRHE, BARAFHRAOLETR.
3.2.3.1 EREEE

KETREH, ¥ THFEAEEMNESRENIHBRAS, IFEAEENAEER L,
¥R ABRRAZ LK. WE 3.8 FiR. '

SR

Hag
WAEREE

P Iay*
3.8 BERXK=ATEHRSSHENAEE
Fig 3.8 The three-layer of the near wall region of division and velocity
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Fig4.1 the schematic diagram of the cross-section of the models
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Fig 4.11 The Vy isovel of the C rail cavity’s export
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Table 4.1 The comparison with A, B and C’s cross-section in flow fields characteristics
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