
南京Ih6IU人学钡I{iJ『究生学位论文 论文摘要

论文摘要

I／0系统的性能决定着服务器，工作站等网络中心设备的整体表现。而PC服务器和传

统的工作站的I／O体系源于单用户的PC台式机，而不是为处理大吞吐量任务的专用服务

器而设计的，一旦成为网络中心设备后，数据传输量大大增加，因而I／0数据传输经常会

成为整个系统的瓶颈。智能输入／输出技术(Intelligent I／0，简称120)即是为了解决这一

问题而提出的一种可靠、廉价的解决方案。120智能输入／输出技术把任务分配给智能I／0

系统，在这些子系统中，专用的I／O处理器将负责中断处理、缓冲存取以及数据传输等烦

琐任务，这样系统的吞吐能力就得到了提高，服务器的主处理器也能被解放出来去处理更

为重要的任务。因此，依据120技术规范实现的PC服务器在硬件规模不变的情况下能处

理更多的任务，作为中小型网络核心的低端PC服务器可以从中获得更多的性能提高。

本课题研究目前已经广泛应用于各种中小型网络核心的低端PC服务器和工作站的

120通信协议及其实现，主要侧重它的协议规范和具体实现。

本论文按照以下顺序介绍120协议以及它在某项目中的具体实现：

首先，介绍PCI总线，因为120到目前为止主要是基于PCI总线，而且本文相关的实

现部分也是以PCI总线为基础的，同时PCI也是当前使用最为广泛的局部总线，所以有必

要做相关说明。

其次，作为本文的重点，介绍120技术出现的背景，从它的协议看它的优势和对以往

I／0技术的改进，并结合后续将要介绍的具体实现，说明120协议中定义的消息通信过程。

在介绍120通信环境的同时，也结合本课题介绍了120规范是如何基于PCI总线的，两者

是如何结合在一起实现L20通信的。

最后，介绍120协议在我所做项目中的具体实现，使我们对120有更清晰的理解。主

要介绍本项目实现的总体情况，并结合项目所使用的具体硬件环境详细介绍120通信的实

现，且对比了我们的实现与120规范间的区别。

关键词：120，PCI，I／0

南京{|I|ilb人学顺I：{iJ『宄生学位论文 ABSTRACT

ABSTRACT

The throughput of the Input／Output system determine the network equipment’S throughput，

such as network server and WOrkstation Troditional design of servers and workstations are

derived from Personal Computer,which is accessed by only one people，not intended to process

huge throughput，SO，once these equipment become a center of the network，data transfer of the

Input／Output system will become bottleneck of the system．Intelligent Input／Output(120)

protocol has been handed in to solve this problem，and it is a reliable．120 technology assign data

processing to intelligent YO subsystem In the subsystem，dedicated processor will process the

incoming interrupt，buffer access，data transfer and SO on，in this way,the throughput of the entire

system will be improved greatly and the main processor of the server can do many more

important work．

In this paper,it focuses on 120 communication protocol and its implementation in a

project．Because 120 protocol has been mostly implemented on the PCI(Peripheral Component

Interconnect)bus，SO first，it gives you the impression ofthe PCI bus．Secondly,it will introduce the

120 protocol and its Advantages，and it also tells you the combination of the PCI bus and 120

protoc01．At last，it introduces how 1220 protocol has been implemented in our project，it

introduces you a entire implementation of 120 communication，the implementation is based on

the hardware and sot：}ware of our project、SO there are soIne differences between this

implementation and the t20 protocol，the differences are introduced at the end ofthis paper．

Keywords： Intelligent FO，Peripheral Component Interconnect，Input／Output

南京邮电大学

硕士学位论文摘要

学科、专业： 工学通信与信息系统
研究方向： 网络技术与应用

作 者：三旦堕级研究生 王守林 指导教师塑尘￡

题 目：基于PCI的120通信

英文题目：Communication on the PCI—based intelligent I／0

platform

主题词：120 PCI I／O

Keywords： Intelligent I／O Peripheral Component Interconnect

Input／Output

南京邮电大学学位论文独创性声明

r 851066

本人声明所呈交的学位论文是我个人在导师指导下进行的研究

工作及取得的研究成果。尽我所知，除了文中特别加以标注和致谢的

地方外，论文中不包含其他人已经发表或撰写过的研究成果，也不包

含为获得南京邮电大学或其它教育机构的学位或证书而使用过的材

料。与我一同工作的同志对本研究所做的任何贡献均已在论文中作了

明确的说明并表示了谢意。

研究生签名：衅日期：出，≯
南京邮电大学学位论文使用授权声明

南京邮电大学、中国科学技术信息研究所、国家图书馆有权保留

本人所送交学位论文的复印件和电子文档，可以采用影印、缩印或其

他复制手段保存论文。本人电子文档的内容和纸质论文的内容楣一

致。除在保密期内的保密论文外，允许论文被查阅和借阅，可以公布

(包括刊登)论文的全部或部分内容。论文的公布(包括刊登)授权

南京邮电大学研究生部办理。

研究生签名：琳导师签名 日期：趣!￡!生12／

南京||||flU人学坝l’叫f兜生学位论文 前言

前言

要实现不同的应用和功能，任何一个微处理器都要与一定数量的部件和外围设备连

接，但如果将各部件和每一种外围设备都分别用一组线路与CPU直接连接，那么连线将会

错综复杂，甚至难以实现。为了简化硬件电路设计、简化系统结构，常用一组线路，配置

以适当的接口电路，与各部件和外围设备连接，这组共用的连接线路被称为总线。采用总

线结构便于部件和设备的扩充，尤其是制定了统一的总线标准，更容易使不同设备问实现

互连。

I／0系统的性能决定着服务器，工作站等网络中心设备的整体表现，而通常I／0系统又

是通过总线将外围设备与系统互连起来的，所以提高系统的I／0性能离不开一个性能优越

的总线。总线通常是一个硬件连接标准，但是一个完整的系统是由硬件和软件协调工作的，

所以要想提高系统的整体性能，需要将一个性能优越的总线和一个能够充分发挥该总线特

点的软件模型结合，形成系统高效的运行环境。智能输入／输出技术(Intelligent I／0，简称

120)不但针对目前典型的硬件环境提出了扩展建议，而且提出了一个基于典型系统的软

件分层模型，通过软硬件两方面的改进，极大的提高I／0系统的性能。

本文讨论基于PCI总线的120通信及其在一个具体环境中的实现，共分为四章，具体

安排如下：

第一章， 介绍总线概念，总线发展回顾。

第二章， 详细介绍PCI总线，分析讨论它的特点以及PCI总线上驱动的特点和共性。

第三章， 详细介绍120通信规范，分析制定该规范的初衷，分析它相对于以往的I／O

通信的改进。在介绍120通信环境的同时，结合本课题介绍120规范是如

何基于PCI总线的，两者是如何结合在一起实现120通信的。

第四章， 具体阐述在我所做的路由器项目中，使用120通信协议的考虑和具体的实

现。主要介绍本项目实现的总体情况，并结合项目所使用的具体硬件环境

详细介绍120通信的实现，且对比了我们的实现与120规范间的区别。

结束语，对全文进行总结。

南京蚺；IU人学娥l‘研究生学位论文 第一章总线及jE发疑

第一章总线及其发展

1．1总线出现的背景

任何一种外罔没有挂接设备的微处理器都是没有价值的，因为它什么都不能做，对我

们毫无用处。所以必须在微处理器周围挂接上适应各种不同应用的设备，但如果单纯的将

各部件或外围设备都分别用一组线路与CPU直接连接，那么连线将会错综复杂，很多控制

功能甚至难以实现，而且也不方便整个系统的标准化。采用总线结构便于部件和设备的扩

充，尤其制定了统一的总线标准更容易使不同设备间实现互连。

总线的出现基于以下的一些要求：

1．模块化，计算机部件要具有通用性，应能尽量适应不同系统与不同用户的需求，设

计必须模块化。

2．外设的多样性，计算机部件产品模块供应出现多元化。

3，兼容性，模块之间的联接关系要标准化，使模块具有通用性，有利于不同系统之问

的兼容。

4．标准化，模块设计必须基于一种大多数厂商认可的模块联接关系，即一种总线标准，

这样／j‘能推广。

1．2总线及其分类

1．2．1总线定义和分类

总线是按一定的传输规则组织起来的信号线集合，它是模块间传输信息的公共通道，

计算机各部件间通过它可进行各种数据和命令的传送。总线是为了简化硬件电路设计、简

化系统结构所使用的一组线路，并且配置以适当的接口电路，将CPU和各部件及外围设备

进行连接。

总线按其所承担的功能可分为三种类型：

1． 数据总线(Data Bus)：其功能是传输数据和指令信息。

2． 地址总线(Address Bus)：其功能是传输内存或I／O设备地址。

3． 控制总线(Control Bus)：其功能是给出总线周期类型、I／O操作完成的时刻、DMA

周期、中断等有关控制信号。

总线按其相对于CPU和其它外围芯片的位置通常可以分为内部总线和外部总线：

1． 内部总线是微处理器片上内部各外围芯片与微处理器之间的总线，用于芯片一级

南京1|ll；f也人学坝I．斜究生学位论史 第一章总线及J‘发联

的互连。直观地可以理解为，存CPU内部，寄存器之间和算术逻辑部件ALu与控制部件

之叫传输数据所用的总线。

2 外部总线是微机和外部设备之间的总线，微机作为一种设备，通过该总线和其他

殴备进行信息与数据交换，用于设备一级的互连。直观地可以理解为，是指CPU与内存

RAM、ROM和输入／输出设备接口之间进行通讯的通路。

另外，从广义上随，计算机通信方式可以分为并行通信和串行通信，相应的通信总线被

称为并行总线和串行总线。并行通信速度快、实时性好，但由于占用的信号线多，封装成

本较高，且不适于小型化产品；而串行通信速率虽低，但在数据通信吞吐量不是很大的微

处理电路中则显得更加简易、方便、灵活。

1．2．2总线的基本概念

上文中提到总线是按一定的传输规则组织起来的信号线集合，为了更好地描述总线上

的相关传输规则，定义了以下术语：

1．总线周期：是通过总线完成一次内存读写操作或完成～次输入，输出设备的读写操作所

必须的时间。通常由地址时间和数据时间组成。

a) 地址时间：用于CPU向内存或I／0设备送地址到地址总线的时间。

b) 数据时间：用于CPU向内存或I／O设备送数据的时间。

2．总线的等待状态：若设备的读写速度慢，不能在一个总线的数掘时间完成读写操作，

必须再增加一到几个数据时问，这段时间称总线的等待状态。

3．总线周期分类：依据具体操作的性质，可把一个总线周期分为内存读周期、内存写周

期、I／O读周期和I／O写周期。依据数据传输方式。可以把一个总线周期分为正常总线周期

和BURST总线周期。

a) 正常总线周期(normal bus cycle)：若每次数据传输都要用地址时问和数据时间组

成的完整的总线周期来完成读写，则称这种总线周期为正常总线周期。

b) BURST总线周期(burstmode)：若给出一次地址信息(一个地址时间)后，接着

用连续多个数据时间依次传输多个数据，则称这种运行方式为总线的突发传输方式，又称

BURST总线周期

4总线仲裁：出于总线在某个具体时刻只能由一个设备占用，所以当总线上连接多个设

备时，必须有分配总线控制权的机构(总线仲裁器)。一次总线操作中通常会涉及以下几

个设备：

南京I||ffI乜又学硕f‘研究生学位论文 镍一幸总线及jI笈艟

a1 总线主设备(bus master)：首先发起总线操作并肩动传输过程，即申请总线使用权并

发出命令控制总线运行的一方称为总线主设备。

b、 总线从设备(bus slave)：响应由主设备发出的命令并执行读写操作的设备称为总线

从设备。

c1 总线仲裁器(bus arbiter)：当有多个总线主设备都发出申请总线的请求时，能决定哪

一个中请者能耿得总线的使用权的专用部件称为总线仲裁器。

5数据传送控制(总线通信控制)：即同步问题，常用的有同步和异步通信两种方式。

a1 同步通信：是指在总线上传送数据时，通信双方使用同一个时钟信号进行同步，

该时钟称为总线时钟。

b) 异步通信：是指在总线上传送数据时，允许通信双方各自使用自己的时钟信号，

采用“应答方式”(握手方式)解决数据传输过程中的时间配合问题，而不是共同使用同

一个日、】钟。

上述术语将有助于我们理解下文中的PCI总线规范。

1．2．3总线发展介绍

随着微电子技术和计算机技术的发展，总线技术也在不断地发展和完善，使计算机总

线技术种类繁多，各具特色。下面仅对在微机发展中，各种应用较为广泛的总线加以介绍。

1．2．3．1内部总线

1．12C总线

12C(Inter-IC)总线十多年前由Philips公司推出，是近年来在微电子通信控制领域广

泛采用的一种新型总线标准。它是同步通信的一种特殊形式，具有接V1线少，控制方式简

化，器件封装尺寸小，通信速率较高等优点。在主从通信中，可以有多个12C总线器件同

时接到12C总线上，通过地址来识别通信对象。

2．SPI总线

串行外围设备接口SPI(serialperipheral interface)总线技术是Motorola公司推出的一

利一同步串行接口。Motorola公司生产的绝大多数MCU(微控制器)都配有SPI硬件接VI，

如68系列MCU。SPl总线是一种三线同步总线，因其硬件功能很强，所以，与SPI有关

的软件就相当简单，使CPU有更多的时间处理其他事务。

3．SCI总线

串行通信接口SCI(serial communication interface)也是由Motorola公司推出的。它是

一种通用异步通信接口UART，与MCS一51的异步通信功能基本相同。

堕塞l业!叁堂塑!：!!塑生堂竺鲨苎

1．2．3．2外部总线

第一章总线发)e发腱

1．ISA总线

[SA(industrial standard architecture)总线标准是IBM公司1984年为推出PC／AT机而

建立的系统总线标准，所以也叫AT总线。它是对XT总线的扩展，以适应8／16位数掘总

线要求。它在80286至80486时代应用非常广泛，以至于现在奔腾机中还保留有ISA总线

插槽。ISA总线有98只引脚。

2 EISA总线

EISA总线是1988年由Compaq等9家公司联合推出的总线标准。它是在ISA总线的

基础一卜使用双层插座，在原来ISA总线的98条信号线上又增加了98条信号线，也就是在

两条ISA信号线之间添加一条EISA信号线。在实用中，EISA总线完全兼容ISA总线信号。

3．VESA总线

VESA(video electronics standard association)总线是1992年由60家附件卡制造商联

合推出的一种局部总线，简称为VL(VESAlocal bus)总线。它的推出为微机系统总线体系

结构的革新奠定了基础。该总线系统考虑到CPU与主存和Cache的直接相连，通常把这部

分总线称为CPU总线或主总线，其他设备通过VL总线与CPU总线相连，所以VL总线

被称为局部总线。它定义了32位数据线，且可通过扩展槽扩展到64位，使用33MHz时

钟频率，最大传输率达t32MB／s，可与CPU同步工作。是一种高速、高效的局部总线，可

支持386SX、386DX、486SX、486Dx及奔腾微处理器。

4．PCI总线

PCI(peripheral componentinterconnect)总线是当前最流行的总线之一，它是由／ntel

公司推出的一种局部总线。它定义了32位数据总线，且可扩展为64位。PCI总线主板插

槽的体积比原ISA总线插槽还小，其功能比VESA、ISA有极大的改善，支持突发读写操

作，33MHz、32bit总线最大传输速率可达132MB／s，可同时支持多组外围设备，支持PCI

--PCI桥，大大提高了系统的可扩展性。PCI局部总线不能兼容现有的ISA、EISA、MCA

(micro channel architecture)总线，但它不依赖于处理器，是基于奔腾等新一代微处理器

而发展的总线。关于PCI的详细介绍见第二章。

5．PCI．X总线

这是目前服务器网卡经常采用的总线接口，它与原来的PCI相比在YO速度方面提高

了一倍，比PCI接口具有更快的数据传输速度(2．0版本最高可达到266MB／s的传输速率)。

PCI-X总线接口的网卡一般为32位总线宽度，也有的是用64位数据宽度的。

6 PCIExpress总线

南京邮}U人学碳十{ij}究生学位论文 筇一章总线技其发腱

PCI Express采用了点对点串行连接，比起PCI以及更早期的计算机总线的共享并行架

构，每个设备都有自己的专用连接，不需要向整个总线请求带宽，而且可以把数据传输率

提高到～个很高的水平，达到FCI所不能提供的高带宽。相对于传统FCI总线在单一时间

周期内只能实现单向传输，PCI Express的双单工连接能提供更高的传输速率和质量，它们

之问的差异跟半双工和全双工类似。

PcI Express的接口根据总线位宽不同而有所差异，包括x1、x4、x8以及X16(X2

模式将用于内部接口而非插槽模式)几种模式。P(IExpress也支持高阶电源管理，支持热

插拔，支持数掘同步传输，为优先传输数据进行带宽优化。

7．RS，232．c总线

RS一232．C是美国电子工业协会EIA(Electronic IndustryAssociation)制定的一种串行

物理接口标准。RS是英文”推荐标准”的缩写，232为标识号，C表示修改次数。RS．232一C

总线标准设有25条信号线，包括一个主通道和一个辅助通道，在多数情况下主要使用主

通道，列于一般双工通信，仅需几条信号线就可实现，如一条发送线、一条接收线及一条

地线。RS一232．-C标准规定的数据传输速率为每秒50、55、100、150、300、600、1200、

2400、4800、9600、19200波特。RS．232-C标准规定，驱动器允许有250呻F的电容负载，

通信距离将受此电容限制，例如，采用150pF／m的通信电缆时，最大通信距离为15m；若

每米电缆的电容量减小，通信距离可以增加。传输距离短的另一原因是Rs一232属单端信

号传送，存在共地噪声和不能抑制共模干扰等问题，因此一般用于2Crn以内的通信。

8．USB总线

通用串行总线USB(universal serial bus)是由／nlel、Compaq、Di鲥tal、IBM、Microsoft、

NEC、NorthernTekcorn等7家世界著名的计算机和通信公司共同推出的一种新型接口标

准。它基于通用连接技术，实现外设的简单快速连接，达到方便用户、降低成本、扩展PC

连接外设范围的目的。它可以为外设提供电源，而不像普通的使用串、并口的设备需要单

独的供电系统。另外，快速是USB技术的突出特点之一。USBl．1标准的最高传输率可达

12Mbps，比串口快100倍，比并口快近10倍，而且USB还能支持多媒体；而USB2．0标

准的传输速率可以高达480Mbps。

9．IEEEt394总线

1EEE 1394是为了增强外部多媒体设备与电脑连接性能而设计的高速串行总线，传输

速率可以达到4CCMbps，利用[EEl394技术我们可以轻易地把电脑和摄像机，高速硬盘，

音响设备等设备中存储的数据倒入到PC电脑中。它具有两种数据传输模式：同步

(Isochonous)传输与非同步(Asynchronous)传输，同步传输模式可确保某～连线的频宽，对

南京|f||jlU人掌fi!；!．1．州，E生学位论文 笫一章总线及』C发胜

f即时影像而吉+这是相当重要的。因为影音数据都有时间上的限制，无法接受过久的延迟。

IEEE 1394支持热插拔，可以自动侦测设备的加入与移出动作，并对系统做重新整合，

无须人工干预。

南京lIllilU凡学颤l：IOl究生学位论文 瓠二奇PCI总线

第二章PCI总线

第·章介绍了计算机总线的定义、类别、发展情况和目前流行的几种总线标准。本章

将具体介绍本文重点关注的PCI总线。从1992年创立规范至今，PCI总线己成为事实上的

计算机工业总线标准。这主要归功于PCI本身的很多独创性的优点。下面将分节介绍PCI

总线出现的背景，PCI总线优势，并结合它的各种优点详细介绍与我们设计、实现PCI总

线和设备驱动相关的内容。

2．1 PCI总线的提出

1992年以前，PC机中流行的是ISA总线(8／16bit的系统总线，最大传输速率仅为

8MB／s)，该总线是以IBM的PC／AT总线为基础发展起来的工业标准总线。在386出现后，

随着CPU频率的提升，ISA总线速度就成了整个系统性能的瓶颈，影响CPU效率。伴随

着CPU频率的大幅提升和各种应用对I／O性能要求的提高，为了提高PC机的整体性能，

1992年，hJlteI在发布486处理器的同时，提出了32bit数据位宽的PCI(PeripheralComponent

interconnect，周边组件互连)总线。

最早提出的PCI总线工作在33Mttz频率之下，传输带宽达到133MB／s(33MHz

432bit／8)，比ISA总线有了极大的改善，基本上满足了当时处理器的发展需要。随着对更

高性能的要求，1993年提出了数据位宽为64bit的PCI总线，后来又提出把PCI总线的

工作频率提升到66MHz。目前广泛采用的是32bit、33MHz的PCI总线。PCI总线是独

立于CPU的系统总线，采用了独特的中问缓冲器设计，可将声卡、网卡、硬盘控制器等

高速的外围设备直接挂在CPU总线上，使得CPU的性能得到充分的发挥。

2．2 PCI总线

PCI总线是一种不依赖于某个具体处理器的局部总线。从结构上看，PCI为CPU提供

了一一级设备扩展总线，并由一个桥接电路实现对这一层的管理，实现CPU和外部设备之间

的接口以协调数据的传送。管理器提供了信号缓冲，使之能支持10种外设，并能在高时

钟频率下保持高性能。

相对于ISA这些早期总线来说，PCI总线有很多优点，比如，工作频率提高，总线带

宽提高并适应了CPU总线的要求，‘即插即用’功能，中断共享等；另外PCI总线具有严格

的标准和规范，这就保证了它具有良好的兼容性，符合PCI规范的扩展卡可插入任何PCI

系统可靠地工作：PCI总线可以提供高数据传送速率(132MB／s)或(264MB／s)；PCI总

南京邮lU人学坝I：叫究生学位论文 第二章PCI总线

线与CPU无关，与时钟频率亦无关，可适用于各种平台，支持多处理器和并发工作；PCI

总线还具有良好的扩展性，通过PCI-PCI桥路，可进行多级扩展。

PCI总线的自动配置功能使其应用更为简单、方便。由于该总线标准为元件和插件分

配了相府的配旨寄存器，刑于某个系统只要有嵌入的自动配置软件，就可以在系统加电时

白动配霄PCI总线上的设备，为用户提供了极大的方便，以上特点使得PCI总线成为目前

PC机上最通用的一种总线。

2．2．1基本概念

从数掘宽度上看，PCI总线有32bit、64bit之分；从总线工作频率上看，有33MHz、

66MHz两种。目前流行的是32bit位宽，工作在33MHz频率下的PCI总线(32bit*33MHz)。

改良的PCI系统—pCI．x，带宽最高可以达到64bit*133MHz，这样就可以得到超过1GB／s

的数据传输速率。如果没有特殊说明，以下的讨论以32bit+33MHz为例。

不同于ISA总线，PCI总线的地址总线与数据总线是分时复用的，这样做的优点是可

以节省援插件的管脚数。在进行数据传输时，由一个PCI设备作为发起者(主控，Initiator

或Master)，而另一个PCI设备作为目标(从设备，Target或Slave)。总线上的所有时序

的产生与控制，都由Master发起。由于PCI总线在同一时刻只能供一对设备完成传输，所

以当一个PCI总线上挂接多个PCI设备时，就要求有一个仲裁者(Arbiter)来决定谁有权

力拿到总线的主控权。PCI规范中有专门关于总线仲裁的说明和定义。

作为一个总线标准，引脚功能及操作时序是非常重要的，下面以PCI基本读操作时序

为例院明PCI操作的时序要求，首先介绍32bit位宽的PCI总线管脚分类：

1．系统控制：

1)CLK：时钟信号线，提供PCI操作时钟，除了RST#、INTA#、INTB#、INTc#和

INTD#之外的PCI操作信号都是在CLK信号的上升沿采样，它由外部时钟源提供。

2)RsT抖：复位信号线，该信号可以和CLK时钟信号异步。

2．传输控制：

1)FRAME#：Cycle Frame，由PCI操作主控设备发出，标志操作开始与结束。

2)IRDY#：InitiatorReady，表示PCI主控设备可以完成当前操作。

3)TRDY#：Target Ready，表示PCI从设备可以完成当前操作。TRDY#和IRDY#同

时生效表明后续的数据传输可以进行。

4)DEVSEL#：Device Select，当某个从设备发现自己被寻址时置低应答。

5)IDSEL：Initialization Device Select，在配置空间读写时作为片选信号线。

堕皇!!!!!l!叁兰塑1．![垄竺兰竺堡苎 塑三!!旦璺丝

61 STOP#：从设备主动结束传输数据的信号。

3．地址与数据总线：

11 AD[31：01：地址／数据分时复用总线。

2)C／BE#[3：01：Bus Command and Byte Enable，命今／字节使能信号。当地址信号有

效时，这四个信号线定义的是Bus Command；当数据信号有效时，这四个信号线定义的是

Byte Enable。

31 PAR：奇偶校验信号。

4．仲裁信号：

1、aZQ#：Request，主设备用来向仲裁器请求总线使用权的信号。

21 GNT#：Grant，仲裁器允许主设备得到总线使用权的信号。

5．错误报告：

1 1 PERR#：Parity Error，数据奇偶校验错。

21 SERR#：System Error，系统奇偶校验错。

c“八n n厂、n n n．n。r
l 叠 j ■ 罩 母 7 B 孽
，

： ： ： ： ： ：

F黻㈣一{弋； { i { { {厂—■一。譬”F阳㈣⋯．i⋯、i j { { }Z⋯⋯：⋯⋯～舅⋯
； i { { i i ； { ；^口_量鳗酰曹文通四【王X受冒Cj遁匠∑皤：
； i ； ； i { } } ；c糟口：蠹《受汇二E：西j==E=互二j=X譬_

I襄D撑⋯．：⋯⋯．

T鞋时●⋯。j⋯⋯

0EVSFAJ⋯：⋯⋯㈥小—蕊瓣—'+—萌群—》·—菰掰—争
肼{^翥蓐 辫自鹕￡似{^S￡ 翔{^S￡

《—————叫—————————敝惑t张～啦；^e鞯。I+——————————————牛

图1 PCI基本读操作时序

上图是PCI基本读操作时序，当PCI总线进行操作时，发起者(Master)先置REQ#，当

得到仲裁器(Arbiter)的许可时(GNw)，会将FRAME#置低，并在AD总线上放置Slave地

址，同时C／BE#放置命令信号，说明接下来的传输类型。所有PCI总线上设各都需对此地

址译码，被选中的设备要置DEVSEL样以声明自己被选中。然后当IRDY#-与TRDY}≠都置低

南束IEIlf,t3人学坝lⅢ，E生学位论文 笫一章PCI总线

时，可以传输数据。当Master数据传输结束前，将FRAME#置高以标明只剩最后一组数据

要传输，并在传完数据后放开IRDY#以释放总线控制权。

这早我们可以看出，PCI总线的传输是很高效的，发出一组地址后，理想状态下可以

连续发数据，峰值速率为132MB／s。实际上，目|j{『台式机支持33MHz*32hit标准PCI的桥

芯片一般可以做到IOOMB／s的连续传输。

2．2．2 Pcl总线优点

PCI总线之所以能够迅速的取代ISA成为流行，而且到目前为止还是应用得最广的总

线标准，它的以下几大优点功不可没：

1．PCI总线的实现独立于具体CPU类型(不同类型的CPU都可以实现PCI标准)，

且PCI总线与CPU时钟频率无关，可适用于各种平台，支持多处理器。通常系统中实现

PCI总线标准有两种方式：

1)通过挂接在CPU上的桥芯片实现PCI控制器，进而实现PCI总线功能。

2)通过CPU上集成的PCI总线控制器实现PCI总线功能。

2．PCI总线具有良好的扩展性，通过PCI—PCI桥路，可进行多级扩展，详见下文蜕

明。

3． 自动配置，‘即插即用’功能，详见下文说明。

4 中断共享，PCI规范定义了四条中断引脚(1NTA存、INTB#、INTC#．和州TD≠})，

设备制造商可以根据产品特点任意组合这些中断引脚形成一个中断线引到系统中断控制

器或者CPU，参见下文Interrupt Pin说明。

下面将着重介绍“即插即用”和可扩展性。

2．2．2．1自动配置

所谓“即插即用”，是指当PCI设备插入系统时，系统会自动对该设备所需资源进行

分配，如基地址、中断号等，并自动寻找相应的驱动程序。而不象旧的ISA板卡，需要进

行复杂的手动配置。

实际的实现远比说起来要复杂。为了实现“即插即用”功能，在所有PCI设备中(除

了直接挂接在CPU上的主桥，其上实现PCI控制器)，必须包含一组寄存器，叫“配置空

问(Configuration Space)”。PCI规范中将配置空间大小定义为256字节，且将它分为预定

义头(Predefined header region)和与设备相关的部分(Device dependent region)。

预定义头部分定义的是设备标识和设备控制相关的寄存器。预定义头部分又可分为两

个部分，前面16字节和剩余字节。之所以分成这两部分是由于，前面16字节对于所有PCI

南京||『IjlU人学坝}：州，t生学位论文 铝二章PCI总线

设备具有相同的定义，而后面剩余字节定义的寄存器格式，不同的设备可能实现情况不同，

它们是利用HeaderType域(偏移为Ox0E)进行区分。下面将介绍我们通常所用的配置空

间结构(HeaderType=Ox00)：

Devlce ID Vondor lID

8tatus Command

Class Code Revlslon『口

BIST Header Latency Cache LIno

Type TInner SIze

Base Address Registers

Cardbus C S poInter

Subsystem ID Subsystem Vendor ID

Expansion ROM Base Address

Rss6rvod CapaNlltles
Pointer

Reselved

Max Lat MIn Gnt Intermpt Interrupt
PIn Line

00h

04h

08h

OCh

10h

14h

18h

1Ch

20h

24h

28h

2Ch

30h

34h

38轴

3C|1

图2 PCI配置空间定义(Type：OOh)

下面介绍常用的几个域，其它域的详细说明参见PCI规范。

Base Address Register：系统分配给PCI设备的FO映射空间或Memory空间基地址。

上电时，系统的初始化代码(通常是存放在ROM或EEPROM中的启动代码)将按照PCI

规范配置PCI设备的I／O映射空间、Mem映射空间等寄存器，使系统运行后能够正常访问

PCI设备，同时也方便后续启动代码为整个系统分配地址空间。PCI设备占用的空间分配

完成后t操作系统将记录PCI设备占用空间的情况，这样就不必手工设置开关来分配内存

或基地址了。后续系统将根据这个空间来访问PCI设备的相关寄存器。

Interrupt Pin：该域的值分别对应INTA#、1NTB#、1NTC#和INTD#中的一个。PCI标

准中同一个PCI设备中可以包含多个具有不同功能的PCI子设备，所以当一个PC]设备是

南京Ihll}12,人学坝I。研究生学位论文 第一章PCI总线

多功能发备时，可以把不同的中断引脚分配给不同的子设备；对于单功能的PCI设备只使

用rNl’A#引脚。

Interrupt Line：上电时，系统的初始化代码将为PCI设备分配一个系统中断线，用于

PCI设备向系统发出中断请求。驱动和操作系统通常根据这个域为PCI设备挂接中断处理

程序并知道中断优先级的分配。刺于中断线的分配通常是根据系统中断的整体分配情况而

定，如果系统中只有固定个数的PCI设备，则系统的初始化代码通常会分配一个固定的中

断线，而不需要扫描PCI设备，这样可以节省系统初始化时间。

2．2．2．2扩展性

通常，PCI设备挂接在一个PCI桥上(通常PCI桥是由系统桥实现的一一个PCI控制器)，

PCI的可扩展性主要表现在两个方面：

1．PCI桥既可以直接挂在CPU总线上，又可以挂在上一级的PCI桥上。

2 PCI规范在配霞空间定义了很多可扩展字段，允许厂商根据具体需要扩展自己的系

统，完善相关功能。

以上两个优点使得系统厂商有更大的自由空间来定制自己的系统，也是PCI总线迅速

流行的一’个重要原因。下面就从上面的两个方面具体介绍。

PCI总线作为CPU总线的扩展，通常直接挂在CPU总线上，但是如果系统中有很多

PCI设备时，由于总线驱动能力有限，可能一级PCI桥已经不能够满足要求，此时就可以

利用PCI--PCI桥扩展PCI总线，这样可以挂接更多的设备，而不会引起总线共享上的问

题。

当挂接的PCI设备功能非常丰富或者该PCI设备需要额外的初始化时，PCI配置空间

也提供了相关的支持。这就是Expansion ROM Base Address字段，它可以指向扩展ROM

的基地址，使得ROM中的扩展程序可以执行，实现设备的扩展功能；而且，配置空间也

实现了Capability Pointer域用于配置空间的扩展。

南柬rllgIU人单州I．硼究生学化论史 第三市120通赏；I__!范

第三章120通信规范

出7--CPU丰频速度越来越快，I／O速度就成为系统{生能提升的瓶颈，而且很多高端应

州场合剥FO通信要水越束越高，传统I／O已经不能满足垂求，120怫议就足在这样的背景

下出现的。该协议最仞是由hatel的一个开发小组升发，后来随着Microsoft等很多公司的

加入，绍成了一个升发组织120 SIG(／20 Special Interest Group)。120并没有在I／O通信

总线上有本质的创新，它的目标是基于目前流行的总线，提供一种可靠而且廉价的提高I／O

通信散率的方式。它的目的是提高服务器、工作站等的UO通信性能，为缓解目前大型计

算机系统的I／O瓶颈问题提供一种可行的方案。12．O SIG于1997年提出了120 v1．5规范，

并成功应用于各种服务器、工作站等大型系统，／20是一个独立于具体物理总线的通信协

议，目前主要基于PCI总线。

3．1设计初衷及其优点

120结构规范描述了个开放的在网络系统环境F开发设备驱动的絮构。这个架构独

立于操作系统(Os)、处理器和系统I／O总线。谈规范努力使FO驱动开发标准化，并使得

设备驱动能在不同11|勺处理器3F台上运行。

当前高端网络和存储技术的趋势是：将很多功能推向下层，由驱动实现，同时又要求

驸动的高效率。为了满足这些要求，硬件厂商开始生产包含一些智能的产品，’Eil']包含自

己的UO控制器，用来专门处理YO事务，比如存储中的RAID控制器和网络中的ATM控

制器．。

在硬件级加入智能有很多好处。使用专门的处理器完成FO事务碱少了列CPU资源的

消耗，它将I／O中断交给能够更高效处理YO事务的处理器完成，而这些／／O中断以前都

是由主CPU完成处理的(这将扣断主CPU上的其他应用程序的运行)。120规范不只是向

硬件中加入智能，它的目标是标准化[dO智能平台，使其具有以下优势：

l精简的驱动接口。目前硬件厂商针对每个硬件必颂提供多个驱动，不同驱动_L作

存不同的Os F．OS和硬件厂商都需要测试不同版本的驱动。120的目标是使Os厂商针

对每一类设备只需要提供一个驱动，而且只需要提供Os部分的驱动。硬件厂商也是一样，

只需要提供硬件部分的驱动，并_日针对一种设备H需要一个版本的驱动。这就使得硬件和

0s厂商都能够专注自己部分的开发，使其更加优化，120规范提供它们之问的标准接rA。

2扩展的经济性。除了为120设备提供系统接口外，T20规范还为I／O子系统定义了

个操作环境。这个努力使得系统提供商可以建立一个UO平台能够支持非120设缶，这

一个操作环境。这个努力使得系统提供商可以建立一个uO平台能够支持非120设备，这

南京ll_|5l也人学坝l研究生学位论文 始二争120通亿姚池

就提供了比较经济的可扩展性。当然单个的I／O设备肯定比一个I／O处理器便宜，但是，

多个FO设备在同一个I／O平台下运行就可以建立一个经济的智能解决方案。

3，驱动的分层结构。为了实现精简的驱动接口，方便驱动和OS丌发人员完成软件开

发，120规范将原有驱动实现的功能进行分层，详细说明见下面120通信规范的具体介绍。

4．120协议是基于目前已经存在的总线标准，不需要额外定义规范，方便硬件J_商实

现120产品。

3．2基本概念

120结构定义了创建设各驱动的环境，这些驱动功能上被分成了驻留在主机操作系统

中的与主机操作系统相关的部分和驻留在120子系统中的与120通信相关的部分。120规

范中描述的通信模型是基于消息传递协议(roessage-passing protoc01)的，这个仂、议和网络

中的面向连接的通信方式类似(TCP握手)。具体的传输层提供I／O子系统的硬件抽象，

使得消息传递独立于硬件系统。

这一节总体描述设备驱动并且解释它的分层结构(达到独立于硬件平台的目的)。然

后介绍消息传输层，它使得分层成为可能。从驱动的角度看，介绍了下面两种接口：

1．将驱动分层所产生的接口

2．提供分层的各单元之『白j通信的消息层接口

3．2．1硬件结构

120操作是针对一个包括单主机、单个智能I／O子系统(这个系统又包括多个1f／O处理

器)的系统进行优化的。主机是指一个或多个应用处理器和它们运行所需的相关资源，这

些处理器允许统～的OS。下图是一个典型的120系统的硬件结构，一个主机实体和多个

嵌入式I／O处理实体。我们下面涉及的嵌入式b'O处理实体都被称作IOP(I／0 Platform，

专门用来处理I／O操作，由处理器、内存和I／0设备组成)。

塑皇!!!!!l!叁堂型!!：!!!!：塑竺堂丝堡兰——————笙三鎏兰旦旦塑堕!!坚

图3 120典型硬件结构

系统I／O适配器可以从系统总线访问，所以可以由IOP或主机控制。这种适配器可以

直接安装在主板上也可以以卡的形式插在主板上。以前的系统I／O适配器通常是由运行在

主机上的驱动控制的，IOP要想控制它的话，必须做额外的工作，起码要使中断信号连接

到IOP上。为此，设置一个专用的I／O适配器(Private I／O adapter)和lOP绑定，直接由

IOP管理，Private I]O adapter对于主机来说是看不见的。

本文将要说明120通信在一个具体项目中的实现，其硬件结构与120规范的定义有所

区别。本课题中主处理器(MainProcessor，简称MP)侧软硬件环境对应于120规范中的

主机实体，从处理器(Bridge Processor，简称BP)侧软硬件环境对应于120规范中的lOP。

详细介绍可以参见第四章。

3．2．2驱动分层模型

将驱动分成不同层，并且在它们之间定义标准的消息传递接口就可以将它们从实现上

分丌。币同的层可以运行在不同的处理器上甚至可以运行在不同的OS下。卜图说明了驱

动的分层结构，

南京IIIl{，U人学砸h脏究生学位论史 第三章120通信舰托

oS，NoS

oSM

MeSsaging“jyer

HDM

I∞PlatRⅫTi

图4 120驱动分层模型

驱动分层后使得原来的整个系统分成了两块：

1． 操作系统相关模块(OS—Specific module，简称OSM)，通常是由OS厂商提供这

个模块，这个模块通常也不包括硬件相关的代码。

2． 设备驱动模块(Device driver module，简称DDM)。这一层为I／O适配器和挂在

它下面的设备提供接口，通常是硬件厂商提供这个模块，不包含OS相关的代码。上图中

的HDM加上一些中间服务软件构成DDM，下文中无特殊说明均用DDM表示HDM和这

些中间软件构成的整体。

通过消息层(Message layer)，OSM可以和任何一个DDM通信，也就是说，～个OSM

可以和多个DDM同时通信。

本文主要讨论基于i20的通信，所以将重点介绍IOP(工，0 Platform)和消息层的消息

传递机制。120目前主要用于基于PCI总线环境的各种应用，本课题实现的120通信也基

于PCI总线，所以本文默认情况是针对PCI环境下的120通信。

3．3通信原理

120规范制定的目标是使主机和IOP、各IOP之间的通信标准化，且提高通信效率。

而要想高效的传递消息必须指定消息的存储介质和传递的一般流程。下面将具体介绍120

规定的内存访问方式和利用这些内存存放消息时的消息传递机制。

3．3．1通信环境

为了更加清晰的描述120通信环境，我们将120的各种应用抽象成一．个通用的应用坏

境120 segment(通常由一个主机和多个IOP组成)，下图是[20 segment内部各组件之间

塑皇!!!!!!!苎兰竺．I：坐型竺兰丝堡兰

的关系图：

第三章120通信规弛

图5 120 Segment示例

3．3．1．1 I／0设备域

I／O适配器A和B直接被Host OS控制，而I／O适配器G和H挂在系统总线上但是

被IOP2控制．以上四个适配器都可以在系统总线上直接寻址：而FO适配器C和D可以

在IOPl的局部总线上直接访问，I／0适配器D和G下面还挂接了通过它们自己的本地总

线访问的设备。除了适配器A和B以外的其他适配器都由IOP控制，都会被登记在120

配置表中，并且被抽象成各种服务，在Host或其他IOP看来它们只提供不同的服务，IOP

只为Host或其它IOP提供服务接口。

3．3．1．2地址域

典型的系统是由一个Host和一个IOP或多个lOP构成的。每个IOP包含并管理了独

立于其他lOP的、它自己本地的内存和I／O系统。Host和lOP所看到的内存是不同的：Host

认为系统内存和适配器的内部空间是同一地址域，而IOP的地址域就是它自己本地总线的

空间，不能直接访问系统空间。所以TOp必须将本地的一部分内存映射到系统空间，Host

／j能通过系统空间访问IOP的内存，这部分内存叫做物理共享内存(我们在后续实现中将

用到120规范的这部分内容)。首先，介绍一下典型120系统中的三类内存。

三类内存：

1．系统内存：这段内存空间只能通过系统总线访问，所以只能通过系统内存地址指

。18．

南京|II|jlU人学{『li!I：li)l：究生学位论文 第三章120垴侪删托

定相应的内存位置。IOP可以使用DMA机制在系统内存和自己的本地内存I’日J传递数据。

2，lOP私有内存：这段内存只能通过IOP的本地总线进行访问，所以只能通过本地地

址指定相应的内存位置。

3．共享内存：这是一段IOP的本地内存，但是它既可以通过系统总线访问，也可以

通过本地总线访问，每个内存位置都对应一个系统总线地址和～个本地总线地址(比如：

我们后续实现中在Host本地内存中划分的一段Agent和Host共享内存)。

由于很多模块运行在lOP本地，所以lOP必须提供本地地址和系统地址的相豆转换机

制，也即地址翻译。

3．3．1_3地址翻译单元

共享内存是IOP本地的一段内存，但是系统可以通过地址翻译单元ATU(Address

Translation Unit)访问。ATU映射IOP本地的一段内存到系统内存域中，所以相应系统内

存的访问将被翻泽成对该段IOP本地内存的访问。这种翻译机制使得每个IOP有自己独立

于系统空间的地址分空间，但是其他IOP和系统仍然能够访问它的一段本地内存空间(共

享内存)。ATU就是实现将lOP的一段内存映射到系统空间，在系统看来这段空间就是系

统空间的一部分。ATU转换示意图：

图6内存地址空间翻译

ATU并不将系统内存空间映射到IOP本地内存空间，也就是说，IOP不能通过访问自

己的空川达到传递数据给系统的目的(而系统可以，通过ATU)，所以IOP必须提供将数

据从本地内存(或本地设备)传递到系统内存的机制(通常是DMA)，而反方向可以通过

共享内存实现，当然也可以通过该机制实现。从系统的角度看，共享内存是系统可以直接

ffj．京llJlllU人学坝1：t01：究生学位论史 第三章120通信规范

访问的IOP物理内存的一部分；从lOP角度看，共享内存是系统和其他IOP可以访问的本

地内存的一部分。对于每个IOP来说，共享内存的本地地址和系统地址的差值是个常数，

加或减这个差值后就是相应的本地地址或系统地址。

在本课题中，考虑到具体软硬件环境，我们在从处理器侧(TOP侧)内存空间中划分

一段箸苎洲作为主从处理器间通信的共享空问，所以本课题实现中系统内存是主处理器侧内

存空间，共享内存是在从处理器侧划分出来的那部分内存，IOP私有内存就是从处理器侧

除了共享内存以外的内存空叫。

本课题实现中，从处理器侧的桥芯片将作为通信的ATU(下文中提到ATU指的就是

从处理器侧的桥芯片)，所以这是单向地址翻译，此时从处理器直接访问共享内存(就像

访问它的其它本地内存一样)，而主处理器通过PCI总线空间访问共享内存。当主处理器

通过PCI访问共享内存时，ATU(具体是桥中的PCI控制器)作为PCI从设备，所以此时

主处理器发出的访问地址将由ATU进行地址译码决定访问哪个设备(通常可以访问内存和

桥上挂接的各种设备)，通过通信初始化阶段的配置，此时ATU将地址译码到共享内存，

这样就实现了规范中的地址翻译。

3．3．2两种传递方式

图7显示了数据在模块问传递时的两种方式：推(pushing)和拉(pulling)。

System

Memory

图7数据传递机制

1．Pushing和pulling的主要区别是：pushing是发送方主动将本地的数据送到接收方

的映射的系统空间，对方直接访问自己的本地空间；pulling是接收方将发送方的映射的系

商京|If|ffU人学坝J：10I究生学位论文 笫三章120通信规此

统空『白j中的数据取到本地，发送方只需将数据放在其本地的共享空间就行了。

2 Node A用pushing方式将存放在本地内存中的数据移到’“‘段系统内存中，山丁这

段系统内存是NodeB的本地内存映射的一段空间，所以NodeB可以直接访问这些数据。

3。Node B用pulling方式将数据从一段系统内存空间(映射到NodeA的～段本地空

问)移到本地空间。

4．对于入队列Inboundmessage queue来说，IOP在自己的本地内存空间分配消息空间

MFA(Message Frame Area，用于存放消息)，Host或者其他IOP将自己本地的数据拷贝

(pushing)到这些MFA。对于出队列Outbound message queue来说，Host在系统内存空

l划分配MFA，lOP将本地数据拷贝到MFA。在我们后续的实现中，由于只有一个IOP(120

Host)，且只在IOP中分配了共享内存，在120 Agent系统内存中并没有与这部分共享内存

对应的内存空间，所以在后续实现中，对于Inboundmessagequeue来说，120Host在自己

的本地内存空间分配MFA，120Agent将自己本地的数据拷贝到这些MFA。对于Outbound

message queue来说，120 Agent将本地数据拷贝到120 Host在自己的本地内存空间分配

MFA(通过A2"U)。

5 本课题实现的120通信使用的是pushing方式。主处理器将待发送消息拷贝到共享

内存，然后通过硬件机制通知从处理器去处理；从处理器在共享内存中准备好消息后，通

过硬件机制通知主处理器处理。这里提到的硬件机制可以参见第四章说明。

3．3．3环境配置

在使用120进行消息通信前必须将120通信的基本环境准备好，所以下面我们将说明

120环境初始化和相关配置。

3．3．3．1 120系统初始化

120环境的配置和初始化目的是提供一个供上层OSM调用完成配置和初始化120环

境的标准接口。每个IOP负责其本身的初始化并为Host向其发送消息初始化好它的入队

列。Host负责启动系统中的所有IOP并将它们添加到系统配置表中，接着初始化自己的出

队列，然后Host将为每个lOP提供系统中存在的所有IOP列表和它们的入队列的物理位

置。当一个IOP想与另外一个IOP通信时，它可以将连接请求消息发送到该lOP的入队列

中，连接请求和回复将使得两个IOP能够建立起直接通信的通道。

通常Host启动后，将下载系统所有IOP的可执行代码并运行，然后发送初始化消息

给每个IOP进行下一步初始化。

南求邮{U人学坝I：fiJI究生学位论文

3．3．3．2 lOP初始化

IOP初始化辛要是为DDM和各模块间(本地DDM间

各IOP的DDM阳J)的通信提供运行环境。

第三章120通信_I!{!范

OSM与各lOP的DDM问，

IOP下载完自己的运行环境后，将下载并初始化DDM。每个DDM都会有一张模块描

述符表，该表描述了该DDM和挂在它下面的设备列表，使用这些信息lOP可以决定是否

有必要下载并初始化该DDM。

lOP需要扫描本地的物理适配器并装载和初始化相应的DDM(DDM创建并管理120

设备)，建立一张逻辑配置表，这个配置表既可以扫描硬件建立，也可以lOP软件的配置

数据结构建立。DDM将调用IOP的登记函数把它所管理的设备属性和入口函数登记到lOP

的逻辑配置表中。逻辑配置表是为了后续lOP削通信和OSM与lOP f"J通信作准备的，通

过它可以查到每个lOP下的可用的服务。

IOP初始化主要包括DDM安装和初始化，下面将分别介绍。

1．DDM安装：与DDM相关的所有数据都是存放在IOP本地永久存储介质中，包括

DDM可执行代码、模块描述符表和模块参数表，其中模块参数表可能在DDM运行过程中

被修改，所以必须在随时保存更新。

2．DDM初始化：lOP初始化DDM时，将该DDM的模块参数表作为参数传给DDM

初始化代码。初始化时，DDM将自己作为设备登记到lOP上，在登记的同时，IOP将为

该DDM创建一个事件队列(event queue)并分配一个目标标识符TID(Target Identifier，

是I／O设备以及DDM在消息传递过程中的逻辑地址，它标识一个I／O设备或某个消息发

送主体)给该DDM，当某个消息的目的TID域的值等于该TID时，该消息将发送到这个

事件队列中。IOP将扫描扩展总线上的设备，如果某个设备登记在该DDM的描述符表中，

lOP将通知该DDM初始化这个设备并创建120设备，然后在lOP中登记这个120设备。

其问DDM将给每个设备分配TIE)并在lOP中登记，所以最终IOP将知道它可以管理的所

有120设备列表，这些信息全部登记在IOP的逻辑配置表中。

3．3．4通信过程

lOP初始化完成后，我们就可以利用初始化建立起来的基本环境进行120消息通信了，

120通信主要分为Host与各IOP间通信和各IOP问的通信，下面将分别介绍。

3．3．4．1建立lOP间连接

主机(Host)通过发送～个消息给IOP来初始化IOP间的连接(peer conneetion)，该

消息分配一个在远端IOP登记的t／O设备的设备号绘本地的DDM，进而本地lOP将这个

．2’一

m京||||j}U人学埘!I：t口l究生学位论文 第三章120通倩垭范

设备挂接到本地DDM(本讨论中也叫：用户DDM)。

每个120设备登记时，IOP都会给每个设备分配一个TID，这个TID就成了操作这个

设备的句柄(handle)。设各的TID只在IOP的本地有效，在DDM能够给处于另#b-个IOP

上的设备发消息前，收发设备的TID必须已经建立起来了，这样请求和响应才会正确的到

达对方。下面是lOP建立连接的过程：

1．本地lOP给远端需要通信的设备分配本地的TID，本地的DDM使用这个TID柬

区分不同的远端设备。

2．本地lOP创建带有建立连接所需信息的连接请求消息并发送给目标IOP的消息处

理器(messenger)。该消息包含本地设备的TID，目标IOP将记住这个TID，以便回复消

息时将该TIE)替换到目标地址(Target Address)域中。

3．日标lOP将验证连接的合法性并回复源IOP。

至此，lOP问连接建立。

上面是建立连接的大概过程，总之，两个IOP要想能够互相通信，必须通过消息建立

连接，使得双方知道通信对端的是哪个IOP管理下的哪个I／0设备，在120系统中是用T1D

来区分不同的IOP、IOP中不同的DDM和主机OSM的。TID或者是全局的(10P可执行

程序和主机的OSM是固定分配的TID)或者是双方在发消息过程中带给对方的。

DDM只认识本地TID，因为TID不是整个系统唯～的(可能存在重复)，IOP发送消

息时需要将源地址(Initiator Address)和目标地址(Target Address)域转换成目标lOP定

义的TID。也就是说，所有发送的消息中这两个域表示的是目标IOP定义的TID，发送之

前都需要进行转换。

下图是两个IOP通信时的消息通信过程：

Request
tlitator=A’f Initatof：87 Initator=97

图8 IOP间消息通信示例

南京|||IflU大学坝Jj研究生学位论文 第三章120通信规范

值为0，I的TID分别保留给IOP可执行程序(IOP executive)和主机的OSM。因为

主机OSM预先分配了全主机唯一的TID，所以在IOP和主机间通信时别名TLD(主机上

并lOP拥有的设备都可以分配的TID，可以重复，所以称“别名TID”，以前说的设备TID

都是别名TID：而这罩IOP和主机的TID是全主机唯一的，不存在重复)就不需要了。当

然处于同一个IOP内的不同设备i目j通信也就不需要别名TID，因为它们间的通信只是IOP

奉地事务，／1：存在重复的TID。

3．3．4．2消息传递

当通信双方的IOP建立连接后，双方都可以收发消息，消息发送是异步非阻塞的。

1．主机与某个DDM通信的过程：

a)OSM建立请求并调用主机的消息服务，通知其想要通信的目标lOP。

b1主机的消息例程通过读目标IOP的inbotmdmessageport从IOP的空闲列表中获得

一个空闲的MFA。

C1主机将消息放入MFA，并通过将MFA地址写入lOP的Inbound port来通知IOP处

理消息。

d)IOP将检查请求消息的TargetAddress域，将消息传给相应的DDM。

e1 DDM处理完后将MFA释放，IOP就会将该MFA重新放回到空闲队列中(freelist)。

n如果需要回复，DDM将建立一个回复消息，将请求消息中的initiator address、target

address和rmitiatorContext域填入回复消息中并调用本地的消息服务。

g)IOP消息服务发现Initiator Address值为001h(Host OSM)将从主机空闲MFA中

分配一个，将消息拷贝到MFA指定的地址中并将消息存放地址放入自己的outbound

message queue中。

h)主机通过读IOP的outbound message port获得回复消息，并根据消息中的Initiator

Context域分发消息。

i)当OSM处理完回复消息并释放MFA后，主机消息例程将通过写MFA地址到IOP

的outbound messageport回收该MFA给IOP。

2 lOP问通信过程：

a)源DDM建立请求消息并将本地lOP定义的别名TID放入TargetAddress域，再调

用本地消息服务。

b)源IOP将检查TargetAddress决定目标IOP和目标DDM对应的目标IOP实际定义

的TID，并用实际的TID替换当前的TargetAddress。

c)源lOP将查找Initiator Address，找到目标IOP定义的源DDM对应的目标IOP实

．24，

南京lII|fl也大学艘I‘封f究生学位论文 第三章[20通信规范

际定义的别名T[D，并将它放入InitiatorAddress。

d1源lOP通过读目标lOP的inbound message port获得一个空闲MFA并将消息放入

其指定的空间中，然后写inboundmessageport通知目标IOP处理消息a

e)目标IOP将检查请求消息的TargetAddress域，将消息传给相应的DDM。

n目标DDM释放MFA，IOP将其返回给空闲队列。

g)当需要回复时，目标DDM将组织一个InitiatorAddress、TargetAddress和Initiator

Context域和请求消息中对应域完全一样的回复消息并调用它的本地消息服务。

h)源lOP将检查回复中InitiatorAddress域(不是001h，它已经分配给主机的OSM)。

i)目标lOP检查回复消息中的Initiator Address域，并使用源IOP定义的TID替换

Initiator Address。

j)目标lOP检查回复消息中的TargetAddress域，并使用源lOP定义的TID替换Target

Address。

k1目标lOP通过读源lOP的inboundmessageport获得一个空闲的MFA，将回复消息

放入MFA指定的空间中并通过写inboundmessageport通知源lOP处理该消息。

1)源IOP将检查回复消息的Initiator Context域并把该消息传给相应的DDM。

说明：

1 InitiatorAddress：发送消息的DDM定义在接收IOP本地的TID。

2．TargetAddress：接收消息的DDM定义在接收IOP本地的TID。

3．Initiator Context：接收lOP为本地多个DDM定义的不同的标识符，以区分消息是

发送给哪个DDM的。

4．主机的操作系统发出I／O请求。

5．OSM接收请求并将其转换成可寻址到目标DDM的消息，并激活通信层发送消息。

6．主机消息例程通过将消息拷贝到目标IOP的空闲消息队列而将消息排队。

7．目标IOP将消息放入对应DDM的事务队列(evenlqueue)。DDM处理该消息。

8．处理完消息后，DDM将建立一个回复消息，将请求消息的相关域内容拷贝到回复

消息中，并调用消息服务发送。

9，lOP消息服务将回复消息拷贝到主机消息例程的队列buffer(也就是lOP的

outbound queue)中排队等待处理。

10．IOP通知主机消息例程准备处理，驱动将消息传给Os处理。

南京1101IUA学倾『刈l究生学位论文 第旧章120通f，i实现

第四章120通信实现

上面分别介绍了PCI和120通信的规范，规范是一个框架，由于两个规范在制定时都

考虑了可扩展性和适应性问题，所以也就给厂商相应的自主设计空问。本章介绍的120通

信实现来源于本人在实习期间所做的某型号路由器项目(考虑到保密，本文中将不提及该

路由器具体型号)，是基于具体厂商产品之上的驱动实现，因而可能与规范内容有一些不

一致，但是这是在规范允许范围内的。

4．1本课题情况介绍

随着hltemet业务迅速发展，网络数据流量急剧增加，骨干层和汇聚层的路由器的转

发性能成为网络业务发展的瓶颈。因此，转发性能和可管理性是路由器能否适应市场需求

的关键因素。该型号路由器市场定位主要针对城域网、金融网、政府网、军网，以填充该

公司路由器产品线提供接入和边缘层的产品空白，可覆盖Cisc075xx系列以下的大部分路

由器组网应用，提供各类业务和协议实现平台。为了能在成本允许前提下尽量提高系统的

性能，该型号路由器采用了双MIPS CPU架构，其中一个MIPS处理器称为主处理器(Main

Processor，简称MP)，它是系统的控制管理和协议处理的核心；另一个MIPS处理器称为

桥处理器(Bridge Processor，简称BP)，作为主处理器的代理，完成主处理器对桥处理

器侧设备和资源的控制和管理，它们之间通过桥芯片GT64120上自带的PCI总线进行通信。

出于在路出器运行中有大量控制管理信息在BP、MP间传递，所以MP、BP问的可靠通信

将非常重要。

下文主要说明此项目中使用的基于PCI总线的120通信的原理，设计与实现。

4．1．1本项目的总体情况

NT；b便后续内容展开，先介绍该型号路由器产品的总体情况。下图是该产品机架的

主控板硬件结构图：

南京|lll}IU人学颁{研究生学位论文 第四章i20通信实现

图9系统主控板硬件结构图

为了保证系统最多可以支持4个网络处理模块，采用两套高速MIPS处理器RM7065A

(PMC公司)实现中央处理系统。RM7065A内部主频为400MHz，内嵌t6Kl：·yte的指令

Cache、16Kbyte数据Cach及256Kbyte的二级Cache。MIPS CPU通过主机桥GT64120A

与其它外部设备(如SDRAM、Boot ROM等)相连，两套MIPS CPU之间的通信也通过

GT64120A的PCI接口实现。两个CPU通过PCI组成一个对称双CPU处理系统，运行协

议处理软件和系统控制管理软件；其中主处理器MP是系统的控制管理和协议处理的核心；

桥处理器BP作为主处理器的桥，代理主处理器控制管理相应的模块。另外，选择MIPSCPU

作为系统中央处理器的一个主要原因是MIPS总线与本系统选择的网络处理器模块之间可

以无缝连接，大大降低系统的硬件成本和开发难度。

作为CPU桥芯片的GT64120是专门与MIPS处理器配合使用的控制器芯片，可以支

持各种64bitsMIPS总线接口，同时内嵌了SDRAM控制器、DMA控制器及两个32bit或

一个64bitPCI接口。两个MIPS控制器通信时，即可通过主PCI接口的[20单元操作。

南京邮l乜人学坝I‘1ij|究生学位论文 第四章120通信实现

系统提供两条PCI总线，一条PCI总线上连接两个处理器的主机桥用作处理器之间的

通信(这就是本文将要介绍和实现的部分)；另一条PCI总线连接两个处理器的主机桥以

及两个PCI网卡，两个网卡分别实现主备中央处理系统之间的通信和系统的外部专用网管

接口，其中主备中央控制系统通信的网卡可以使用本公司产品线申请的专利技术在两个处

理器之间动态切换；系统正常运行时主备通信网卡被中央处理系统的MP使用，在主备中

央控制系统之问交换数据。系统开发人员可以使用网卡切换命令将其切换给BP使用，通

过网卡调试BP上的软件。

中央处理系统可以配置128M／256M／512M字节的内存，512K字节的BOOTROM，64M

字节的FLASH内存；提供4个网络处理模块接口。

4．2通信模块描述

处理器(MP／BP)间120通信模块是通过基于PCI的120通信机制实现的。这里的120通

信机制主要依靠120消息单元实现。120消息单元是为多处理器间通信提供的一种硬件技

术，通过120进行通信可以在只使120 Hostl拘存而不使N／20 Agentl拘存资源的前提

下，保证通信的效率和可靠性。

4．2．{120通信原理

本模块是为该型号路由器主控板的双MIPS CPU通信所设计的。通信的硬件基础由

CPU所连接的系统控制器GT64120支持的基于PCI的／20通信机制提供。两个MIPS CPU

分别命名为MP(主控处理器)和BP(桥接处理器)。

MP作为120通信的120Agent，通过InboundQueue向MIPSBP发消息，通过Outbound

Queue接收来自MIPS BP的消息。MIPS BP作为120通信的120 Host，需要从自己内存空

fBJ中划分出～’个固定的部分用于存放Inbound Messages(发自／20 Agent的消息)与

Outbound Messages(发向／20Agent的消息)。通过操作／20中断以及120寄存器进行通信。

在本课题实现中，120Host侧和120Agent内存具体分配情况如下(总体是静态分配，

但是各段内存内部是动态分配的)：

南京||||jlU人学坝I‘彬『究生学位论文 第pU章120通信实现

ROS Memory(158M)

MP／BP通信的共享内存(2M)

RESERⅥ!D for 120(32M)

BSP Memory(64M)

图10 BP侧内存空间分配

-29．

0x8仃m忭

sysMemRosTop

Ox86200000

sysMemConlnlTop

sysMemRosBottom

0x86000000

sysMemI 20Top

sysMemCommBottom

Ox84000000

sysMeml20Bottom

0x80000000

LOCAL_MEM_BASE

ADDR

南京||【I；lU人学顺13tJ[-Jt生学位论文 第Uq章120通信实现

0xc0000000

10 Space

保留

IQl

IQ2

Cached Mem

Uncached Mem

PCI0 Memo Space

PCI0 10 Space

GT64120内部寄存器+CS2

CSO，CS l，CS3

Bootrom+保留

保留

PCI0 Meml

PCIl』em0
PCIl Io

PCIl Meml

保留

0x00000000

Ox40000000

Ox60000000

0x80000000

Oxa0000000

0xc0000000

Oxc2000000

Oxc4000000

Oxcc000000

0xcfc00000—

0xcfc80000

Oxd0000000

Oxe0000000

0xe8000000

0xe8800000

Oxe9000000

Oxe9800000

0xff唧髓

肝0xe4000000一Oxe6000000，BP 0xa40000000—0xa6000000作为120 FIFO空间

图1l MP侧内存空间分配

另外由于GT64120的120有这样的访问要求：PCI Agent访问BP GT64120的120寄

存器的基地址是由PCI0 sos[1：o]基地址寄存器所指定的，该空间前4K被定向到120寄存

器，后面的才是SDRAM。

由于上述原因，MIPS MP为了访问120寄存器以及120的MFA，需要将这部分空间

映射到MP可访问的虚拟地址空间内。所以在MIPS MP建立TLB(Translation Lookaside

Buffer，虚拟地址到物理地址快速转换表缓存)表时，还应考虑这部分空间。设计上将这

部分空间定义到PCI0 Memoryl上，大小为128Mbytes(其中120 MFA空间为0xE4000000～

0xE6000000，大小为32Mbytes)。120保留内存大小包括4个120队列以及所有的MFA。

同时将PCI0 scs[1：o】基地址寄存器值设置为PCI0 MemoErl的基地址。

南京揶IU人学倾l刈f究生学位论文 第四章120通信实现

注：

1．120 Host：在本课题实现中指的是MIPS BP侧处理器。

2 120Agent：在本课题实现中指的是MIPS MP侧处理器。

3．BSP Memory：是保留给Vxworks的代码段、BSS段、数据段和可分配内存段。

4．MP／BP通信共享内存：主要用来在线升级BP{NBOOTROMH,寸存放BP侧BOOTROM

代码。

5 ROS Memory：是提供本项目的操作系统使用的，主要是为各种应用提供可以动态

申请和释放的内存空间。

6 RESERVED for 120就是提供给120通信时存放消息(MF：message frame)的。

4．2．1．1 120寄存器

GT64120为实现120提供了下面的寄存器(见图12)。这些寄存器的访问方式为：PCI

方(MP通过PCI访问，120 Agent)通过PCI0 Memoryl空间基地址寄存器指定的前4k字

节空间进行访问。CPU(BP侧CPU，120 Host)通过CPU internal space base寄存器的偏

移量进行访问。120是通过硬件使能打开的，如果／20被关闭，从PCI方相应地址处读出

的为120Host SDRAM中的内容。

GT64120提供的120寄存器访问方式在MIPS下增加了编程的复杂度，120 Agent需

通过TLB表将120 Host的SDRAM映射到可访问的虚拟地址。而120 Host也需要将120

的空间建立在SDRAM的非Cache虚拟地址下。

南京l|}|{IU人学坝1：t01究生学位论殳 蝤叫章120通信实现

IzO Register
PCI SIDEl CPU 8ide2

Inbound Message Register 0 0xlO 0xlcl0

Inbound Message Register 1 0x14 0xlcl4

Outbound Message Register 0 0x18 0xlct8

Outbound Message Register 1 OxIc Ox|lclc

Inbound Doorbell Register Ox20 0xlc20

Inbound tnterrupt Cause Register 0x24 0xlc24

inbound Inter[upt Mask Register Ox28 Oxlc28

Outbound Doorbell Register 0x2c 0xlc2c

Outbound Interrupt Cause Register 0x30 Oxlc39

Outbound Interrupt Mask Register 0x34 0xle34

Inbound Queue P酣Virtual Register 0x40 0xlc40

Outbound Queue Po『t Virtual Register 0x44 0xlc44

Queue Control Register 0x50 0xlc50

Queue Base Address Register 0x54 0xle54

Inbound Free Head Pointer Register 0x60 Oxlc60

Inbound Free Tail Pointer Register Dx64 0x1064

Inbound Post Head Pointer Register 0x68 0)clc68

Inbound Post Tail Pointer Register 0x6c 0xlc6c

Outbound Free Head Pointer Register Ox70 0xlc70

Outbound Free Tail Pointer Register 0x74 0xlc74

Outbound Post Head Pointer Register 0x78 Oxlc78

Outbound Post Tail Pointer Register 0x7c 0xtc7c

Reserved 0x80t04K

图12 120寄存器歹0表

GT64120提供的寄存器按功能可分为如下几类：

消息寄存器

消息寄存器(message register)接收和发送短消息，不需要通过内存来传递数据。当

进行写操作时，消息寄存器会向PCI总线触发一次中断，也就是可以将中断线直接连到

MIPSCPU上或者是连接到GT6412，0从而间接产生中断。有两种类型的messageregisters：

1．,x．gXyUN息寄存器(Inbound messages register)：由120Agent通过GT64120向120

Host的GT64120发送消息。

2．出队列消息寄存器(0utbound messages register)：Fh 120 Host GT64120向120 Agent

GT64120发送消息。

m京||||fIU凡学坝㈨¨究生学位论史 第pU章120通信实现

八队列消息(Inbound message)的中断状态记录在Inbound Interrupt Cause寄存器中。

出队列消息(Outboundmessage)的中断状态记录在OutboundInterruptCause寄存器

中。

GT64120有两个入队列消息寄存器IMR(Inbound Message registers0，Inbound Message

registersl)。当120 Agent完成对[MR写操作时，便会在120 Host的入队列中断状态寄存

器IISR(Inbound Interrupt Status register)中产生一个可屏蔽的中断请求。如果中断未被

屏蔽，那么120 Host CPU便会收到一个中断请求。CPU可以通过向IISR的入消息中断位

写1来清该中断。中断可以通过入队列中断屏蔽寄存器IIMR(Inbound Interrupt Mask

register)相应的屏蔽位屏蔽。

GT64120有两个出队列消息寄存器OMR(Outbound Message registers0．Outbound

Message registersl)。当120Host完成对OMR写操作时，便会在出队列消息中断状态寄存

器OISR(Outbound Interrupt Status register)中产生一个可屏蔽的中断。如果中断未被屏

蔽，120Agent便会收到一个中断请求。该中断可以由120Agent向OISR的出消息中断位

写入1来清除。该中断还可以通过出队列中断屏蔽寄存器OIMR(Outbound Interrupt Mask

register)中相应的屏蔽位屏蔽。

Doorbell寄存器

GT64120使用Doorbell寄存器在PCI和CPU总线上产生中断请求。共有两种类型的

doorbell寄存器。

l Inbound doorbells：由120Agent向120 Host请求中断服务。

2 Outbound doorbells．．由120 Host向120Agent请求中断服务。

120 Host处理器通过设置出门铃寄存器ODR(Outbound Doorbell register)产生一个中

断请求。该中断可以通过设置出队列中断屏蔽寄存器OIMR(Outbound Interrupt Mask

register)屏蔽，但是屏蔽该中断并不能阻止ODR相应的中断位设置。120 Agent通过向

ODR相应位写1来清除该中断。

120Agent总线可以通过设置入队列门铃寄存器IDR(InboundDoorbell register)向120

Host产生一个中断请求。中断可以通过设置入队列中断屏蔽寄存器IIMR(Inbound Interrupt

Mask register)屏蔽，但屏蔽该中断不能阻止IDR的中断请求置位。120 Host通过向IDR

相应位写l来清除该中断。

环形队列操作寄存器

环形队列是120消息传递机制的核心部分，也是消息MU(Messaging Unit)功能最强

堂皇些!!叁兰塑l型塑兰堂些堡苎； 丝!!皇!!竺望堕壅塑

的部分。赴MU中共有四个坏形队列：入空闲队列(Inbound Free queue)、入消息队列

(Inbound Post queue)、出空闲队列(Outbound Free queue)和出消息队列(Outbound Post

a。eue)。所以相应的有管理这四个队列的寄存器(详细定义可以参见上文的120寄存器定

义)，每个队列分别有一个头指针(Head Pointer)和一个尾指针(Tail Pointer)寄存器，分

别管理这个队列的头尾指针。

在本课题实现中，针对这几个寄存器的操作方式，120 Host直接通过桥的CPU内部寄

存器基地址(CPU Internal Space Base)+寄存器偏移的方式访问，而120 Agent是通过

入队列虚端口寄存器(Inbound Queue Port Virtual Register)和出队列虚端口寄存器

(Outbound Queue PortVirtual Register)分别访问入空闲队列、入消息队列、出空闲队列和

出消息队列。

120 Agent对Inbound Queue Port virtual Register的读操作最终转换成对Inbound Free

Queue Tail Pointer的读操作，对Inbound Queue Port Virtual Register的写操作最终转换成对

Inbound Post Queue Head Pointer的写操作。

120 Agent对Outbound Queue Port Virtual Register的读操作最终转换成对Outbound

Post Queue Tail Pointer的读操作，对Outbound Queue Port Virtual Register的写操作最终转

换成对Outbound Free Queue Head Pointer的写操作。

4．2．1．2 120环形队列

消息的传递有两条路径：一是Inboundqueue用于120Host接收从120 Agent发过来的

消息，另一条Outbound queue是用于120 Host向120Agent发送消息。每一个队列都由⋯

对FIFO实现。Inbound queue和Outbound queue都是由free FIFO和post FIFO组成。

两个八队列分别为：Inbound Posts message queue和Inbound Free message queue。

Inbound Posts message queue用来存放120 Agent发送给120 Host处理的消息。而Inbound

Free message queue用来存放／20 Host处理完之后的消息(由120 Agent向120 Host发送的

消息)。

两个入队列的用法为：120Agent向120Host的Inboundpostmessage queue队列发送

Inbound messages，而120 Host处理之后返回释放的消息存在Inbound free message queue

队列。处理过程如下：

1．120 Agent发送一个Inbound message。

2 120 Host接收并处理该消息。

3．处理完成后，120 Host将该消息返回到Inbound flee queue中，通知120 Agent已经

完成消息处理。

南京『IlIllU人学坝I‘坝，￡生学位论文 第叫章120通馈实蜣

两个Outbound message queue的用法为： 120 Host向120 Agent的Outbound post

message queue队列发送Outbound messages，而120 Agent处理之后返回释放的消息存在

Outbound free message queue队列。处理过程如下：

1 120 Host发送一个Outbound message。

2．120 Agent接收并处理该消息。

3．处理完成后，120 Agent将该消息返回到Outbound free queue中，通知120 Host已

经完成消息处理。

可以看出Outbound message queue消息处理过程基本上是八队列消息处理的逆过程。

环形队列位于SDRAM中分配的数据存储区内。每个队列项为32-bit长。环形队列的

空间大小为4K(16Kbytes)～256K项(1024bytes)旭就是内存分配大小为64Kbytes～

1Mbytes。四个队列空问大小必须相同，并且必须连续。队列基地址和空间大小分别通过

队列基地址寄存器QBAR(QueueBaseAddress register)和队列控制寄存器(QueueControl

register)设置。

每个队列基地址都是基于QBAR和队列空间大小，具体如下表

oueue Starting Address

InbOUFId FFee oBAR

lnbound Post oBAR+oueue Size

图13环形队列基地址定义

以上四个队列的每个队列都有～个头指针(head pointer)和一个尾指针(tail Dointer)

进行消息空f日J的定位，这些指针的值是相对于QBAa的偏移且都存放在GT64120的内部

寄存器中。对队列的写操作使用的是头指针，对队列的读操作使用的是尾指针。头尾指针

是由软件或硬件自动更新的，具体可以参考下面章节的说明。120消息传递可以用下面的

图示说明：

南京IhlliU人学删lj{17f究生学位论文 第¨章120通信实1见

Inbound Queue

PCI

Wnte

PCI

read

pCl

wdte

PCI

read

Incremented by

T一64120

Local SW

0utbound Free Head

Pointer(Ox7m

0ntbound Free Tail

Pointer(0x74)

，『 M／PSCPU

翻fetches post outbound
message here，

then incrrement the

tail pointer

MIPSCPU

writes free outboun，

／ message here，

Incrremente／d／6y
血ell incrrement the

,It Local炒 head pointer

|0ntbound Outbound Post Head

}PostQueue
hcremented H，．Pointer(0x78)

GT．64L20
7

Outbound Post Tail

Pointet(0x7C)

Incremented by

Inbound Post Head

Pointer(Ox68)

Inbound Post Tail

Pointer(Ox6C)

MIPSCPU

fetches post inbound

message here，
then incrrement the

tail pointer

MIPSCPU

writes free inbounc

ncrrementea b∥
message here，
then incrmment the

．L⋯oc．a1 sw，／ head pointer

Inbound ／ hbound Free Head

Free Queue PoitIter(Ox6∞

Inbound Free Tail

_ Pointer(0x64)

GT一64120

图14环形队列示意图

GT64120 120 Circular Queue有两个入队列(Inbound Queue)，分别是入消息队列

(InboundPostQueue)和入空闲队列(InboundFreeQueue)。

．36．

市京ihllIU人学fl!；{Ij州究生学位论文 第叫章120通信实现

Inbound Free Queue中存放可供120 Agent使用的Inbound flee messages。120 Host将

释放的free messages放在队列头部，而120 Agent则从队列尾部取出flee messages。队列

的头指针由i20 Host的软件来更新，而尾指针是在120 Agent取出一个新的flee message

时山GT64120硬件自动更新(如果不发生错误时，错误情况见下面说明)。

由于硬件实现上的原因，120Agent访问Inbound queue和Outbound queue分别是通过

Inbound Queue Port virtual register和Outbound Queue Port virtual register间接访问的。通过

Inbound Queue Port virtual register，120 Agent向Inbound Queue Port发出读操作时：

1．如果Inbound Free Queue不空(可以通过头指针和尾指针是否相等判别)，那么

QBAR+Inbound FreeTailpointer指向的数据返回。

2如果队列为空(头尾指针相同)，那么将返回OxFFFFFFFF(错误条件)。

Inbound Post Queue存放120 Agent发送给120 Host的消息。120 Host从该队列的尾部

取出消息进行处理。120Agent发送的消息置于队列的头部。尾指针由120 Host软件更新。

发送一条新的消息后，头指针由GT64120自动更新。如果Inbound Post Queue满，则120

Agent想要继续往里面写时，将导致PCI的RETRY操作，直到有队列有空间为止。

向IQe(Inbound Queue Port)做的PCI写入会传递到QBAR+Inbound Post头指针所

指向的位景。写操作完成后，GT64120将Inbound Post Head Pointer加4字节(1个字)；

头指针将指向下一个可用的Inbound消息指针。同时，还会向120 Host发送一个中断表示

新的消息需要处理。

Outbound Queue

GT64120 120 Circular Queue有两个出队列(Outbound Queue)，分别是出消息队列

(Outbound Post Queue)和出空闲队列(Outbound Free Queue)。

Outbound Post Queue用于120 Host向120 Agent发送消息。当120 Agent向Outbound

Queue Port发出读操作时，可能出现如下情况：

1．如果Outbound Post Queue不空(可以通过头指针和尾指针是否相等判别)，那么

QBAR+Outbound Pos Tail pointer指向的数据返回。

2如果队列为空(头尾指针相同)，那么将返回0xFFFFFFFF。

Outbound Free Queue存放120 Agent发送给120 Host的处理完消息。120 Host从该队

列的尾部取出消息进行处理。120 Agent发送的消息置于队列的头部。尾指针由120 Host

软件更新。发送一条新的消息后，头指针由GT64120自动更新。如果Outbound Free Queue

满，且120Agent继续往早面写时，将导致PCI的RETRY操作，直到有队列有空间为止。

南京J||J；}b大学坝}‘{口f究生学位论文 第pq章120通信实现

4．2．1．3本课题Circular Queue设计实现

根据／20规范并结合本系统的特点，将环形队列设计如下

oxA4020000}

0x l F00"2048*2

0xA4020000十

0xl F00+2048

QBAR=0xA4000000

Outbound

Message Frame
A。rea

_ ^

Inbound

Message Frame
Alea

_ ^

boundoutbound
● 、’

Free Queue

oul‘bound

1

Outbound

Post Queue

。o圳|bound

Inbound

Post Queue

lnbound f

Inbound
●
Inbound

Free Queue

Inbound

图15环形队列空间分配

我们在120初始化时完成以上环形队列空问和MFA(Message Frame Area)空间的初

始化，具体步骤如下：

1．初始化环形队列的基地址和每个队列空间的大小，并将如上图所示的各队列的指

针写入相应的寄存器中。

2．将MFA空间划分成大小为2048bytes的0x3E00个buffer分别作为Inbound和

南柬IIIII,L人学坝I li}|究生学位论文 第V-q章120通信实现

Outbound消息空间，并初始化Inbound／Outbound Flee Queue Tail Pointer所指空帕J，方便后

续发送消息。

注意：我们为每个环形队列分配32Kbytes空间(也就是8K条指针)，通常情况下，

我们需要分别分配8K个MFA给Inbound queue和Outbound queue。但是根据我们产品空

问分配情况和MP、BP通信特点，在空问分配时并没有将分配8K个MFA给Inbound queue

和Outbound queue，只是分别分配了OxlF00个MFA。之所以分配OxlF00个MFA，首先

是出于我们根据系统空间分配，只分配了32M空间作为120通信空间，但是如果分配8K

个MFA的话，将超出32M空间，加上对于分配OxlF00个MFA时120通信带宽和可靠性

的测试，得出这样分配是可以满足我们系统要求的。

4．3通信模块设计

4．3．1运行环境

本模块设计基于WindRiver的Tornado集成开发环境，采用C语言开发实现。本模块

属于VxWorks的BSP(Board Support Package，板级支持包)范畴，但是最终将编译链接

进VxWorks映象中运行。

出于本模块的实现是基于VxWorks操作系统，所以下面的很多内容涉及到具体

VxWorks操作系统的一些特性，我们用到的特性在此加以说明：

1．信号量：是进程间通信的重要机制，是互斥和同步的主要手段，在VxWorks中提

供二进制信号量、互斥信号量和计数信号量．下面我们着重介绍前两种：

1) 二进制信号量：是VxWorks中最快最通用的信号量，适用于进程间同步(此

时信号量可作为任务等待的一个状态或事件，本文中semln和semOut就是这样使用的)

和互斥。二进制需要的系统开销最小，因而特别适用于高性能的场合。关于二进制信号量

的创建、使用、删除等内容可参见VxWorks相关文档。

2) 互斥信号量：是一种解决内在互斥问题的特殊的二进制信号量，它包括优先

级翻转、删除安全等高级特性。互斥信号量与二进制信号量的主要区别在于它仅用于互斥，

它仅能由获取(semTake)它的任务释放，而且它不能在中断处理程序中释放。所以下文

中信号量semApp定义为互斥信号量。

2中断处理程序和任务：在VxWorks系统中，为了提高中断处理速度，所有的中断

处理程序共用一个独立于其它任务的上下文和中断堆栈，且由于中断处理优先级高，所以

在编写中断处理程序时首先要求中断处理程序尽量简短(如果确实需要做大量处理工作可

以交由任务级进程来做)，其次要求不使用导致调用者阻塞的函数(比如：printf，malloc

南京Il||5l也人学坝¨Uf究生学位论文 第叫章120通信实现

和semT娃e等)。下文叙述的120通信实现中，我们是通过信号量在中断处理程序和消息

处理任务问通信的，此时信号量作为消息处理任务等待的一个事件。

4．3．2 120通信设计实现

本课题的120通信实现中，主要包括120通信初始化、消息发送、消息接收处理进程

相关代码的实现。

4．3．2．1 120通信初始化

120通信初始化是在真『F进行120通信前做的一些准备工作，主要是搭建120通信所

需的基本环境。

120 Host的120相关初始化包括：

1关闭所有中断(包括Doorbell，message register，message queue等)，这是由于此

时整个120子系统还没有初始化，不能正常处理这些中断。

2．在内存中为MessageFrame以及4个Queue分配空间(MessageFrame必须32位对

齐，队列的起始地址以1M字节对齐)。

3．初始化Inbound Free Queue和Outbound Free Queue的各项为相应的MFA。

4．初始化120中断服务程序、任务以及相关的信号量。

5使能120。

6．打丌120的Inbound Post Queue中断和Doorbell中断。

流程如下图：

南京岍I也人学坝J研究生学位论文 销叫章120通信实现

1 2 O通信初始化

L—，—一———一
创建应用程序互

斥信号量

、J，
创建二进制信号量

s e m 0 u t和 s e m J n

、■
禁 【r D O O r b e 11

中 断

—r

禁止M s g中断

—r
禁止循环

队列 中 断

0，

禁止O u tb 0 u n d空

闲 队列溢 出 中 断

。

配置I 2 O的F I F O

、L

初始化消息空间

—r

初始化I n b O u n d和
)tl t b o u n d消息队列地址

、‘r

启动1 n b o u n d消息

处理任务

、■

打开I 2 0中断

J，
挂中断服务程序

r／一初始化结柬—、
＼＼～—／

图16 120 Host 120通信初始化流程图

120 Agent的120初始化包括：

1．初始化120中断服务程序、任务以及相关的信号量。

2．打开120的Inbound Post Queue中断和Doorbell中断。

流程如下图：

南京||||5lU人学{l!j{Jj研究生学位论文 笫列章120通信实现

I 2 o通信初始化

L～一—1一一————J创建麻州程序互

斥信 号 量

1一，r
创建二进制信号量

s e m O u t和s c m I n

o
禁 止D O O r b e 1 l

中 断

、0

禁止M 8 g中断

、l，
禁止循环

队 列 中 断

4,-

禁止O u t b O U 12 d空

闲 队列溢 出 中 断

、上r
启 动O U t b O u n d消

息处理任务

、‘r

打开l 2 O中断

’一r
挂中断服-务程序

6- 初始化结康 -5
、～ ／

图17 120 Agent 120通信初始化流程图

4．3．2．2 MP消息发送实现说明

为了防止多任务发送导致120通信异常，建立一个任务信号量sernApp。另外，当一

方发送完消息后为了确保消息发送成功，建立了一个通知接收消息的信号量semin，当一

方处理完一条消息后，通过semOut通知对方有空闲空间。具体发送过程如下：

1．发送程序首先获取该任务信号量。如果获取成功，说明此时没有其他进程使用120

发消息，则进入发送过程。注意此处针对不同的消息类型，获取信号量时会有不同的处理

过程．是为了各种消息的不同要求，详见消息发送章节叙述。

2．使能消息寄存器中断(message registerinterrupt)，防止在发送消息时获取不到空闲

MFA(MessageFrameArea)，此时针对高优先级消息，本地将等待对方释放MFA，而对方

南京邮『U人学坝|+研究生学位论文 第删章120通信实现

释放MFA后是通过message register interrupt通知本地已经有空闲MFA使用，详见消息发

送章节叙述

3．从Inbound Free queue中取得一个空MFA的指针。会导致三种结果：获取成功、

队歹0空以及120不正常。

4．如果120不『F常，则释放任务信号量，返回消息发送错误。(这+点如果120初始

化iF确．将不会出现)

5．如果获取成功，则将待发送的消息拷贝到该指针所指向的MFA中，并通过将该指

针写到inbound Post queue中，通知对方有消息需要处理(这里包括将指针地址转换为PCI

Memory空间地址并加以判断)。

6．如果Inbound Free queue为空，则根据不同的消息类型进行处理。如果是高优先级

消息，我们将一直获取Free queue不空的信号量(由对方在处理完一条消息后，触发一次

message interrupt，中断服务程序读出中断状态寄存器值为message interrupt时释放该信号

量(semOut))；如果是普通消息，我们将释放semApp并返回，即不再继续发送该消息。

如果获取仍旧不正常，说明120不正常，释放任务信号量semApp后，返回发送消息错。

4．3．2．3 BP消息发送实现说明

BP和MP消息发送过程类似，主要不同在于MP侧在获取MFA后需要对它的『F确性

进行判断，防止地址没有正确转换。

和MP一样，BP为了防止多任务发送导致120通信异常，也建立一个任务信号量

semApp。另外，当一方发送完消息后为了确保消息发送成功，建立了一个通知接收消息的

信号量semin，当一方处理完一条消息后，通过semOut通知对方有空闲空间。具体发送过

程如下：

1 发送程序首先获取该任务信号量semApp。如果获取成功，说明此时没有其他进程

使用120发消息，则进入发送过程。注意此处针对不同的消息类型，获取信号量时会有不

I司的处理过程，是为了各种消息的不同要求，详见消息发送章节叙述。

2．使能message register interrupt，防止在发送消息时获取不到空闲MFA，此时针对高

优先缴消息，本地将等待对方释放MFA，而对方释放MFA后是通过message register

interrupt通知本地已经有空闲MFA使用，详见消息发送章节叙述

3．从OutboundFreequeue中取得一个空MFA的指针。会导致三种结果：获取成功、

队列空以及120不正常。

4．如果120不『F常，则释放任务信号量，返回消息发送错误。(这一点如果120初始

化币确，将不会出现)

．．43．

南京|l||f1U凡学坝卜圳究生学位论文 笫四章120通情实现

5如果获墩成功，则将待发送的消息拷贝到该指针所指向的MFA中，并通过将该指

针写到Outbound Post queue中，通知对方有消息需要处理。

6如果Outbound Free queue为空，则根据不同的消息类型进行处理。如果是高优先

级消息，我们将一直获取Free queue不空的信号量(由对方在处理完一条消息后，触发一

次message interrupt，中断服务程序读出中断状态寄存器值为message interrupt时释放该

信号量(semOut))；如果是普通消息，我们将释放semApp并返回，即不再继续发送该消

息。如果获取仍旧不正常，说明120不正常，释放任务信号量后，返回发送消息错。

120 Host和120 Agent发送消息的公共流程图如下：

{消息发送流程J
L～，／一——、J

。。，一，．一iii；；嘉亨＼
、、、、。量靛啦t／／’＼V／

／7———————、
f失败返同)
、、、．——————．．一一／j

失败

奁

。。嗜嚣嚣}--，队列窄l堡堡堡兰苎l
失败’

<≮≯＼>＼／7

这一步其

实是等待

对方埔知

队列不空

图18发送消息的公共流程图

4．3．2．4 MP消息接收实现说明

120消息的接收涉及到120接收中断处理程序以及为了优化消息处理生成的120接收

任务。

MIPS MP(120 Agent)120中断处理程序的处理过程如下：

多逮枘
<

南京IhllIU人学钡I：t01。究牛学位论文 第Uq章120通信实现

读取出队列中断状态寄存器(OutboundInterruptCauseRegister)和出队列中断屏蔽寄

存器(OutboundInterruptMaskRegister)，并从中获取当前中断类型。有两种类型的中断需

要处理：

1 message register interrupt，由于我{fINN Message register收发信息，所以如果产生

该类中断，表示BP侧成功处理了一条消息(表明有空闲的MFA供MP分配使用)，发送

队列肯定未满，所以释放信号量通知当前因未拿到该信号量而等待(PEND)的进程继续

执行下去，后续过程即是MP的发送消息过程。

2，Outbound post queue中断，通知接收消息任务收消息并处理消息。MP的处理过程

如下：

1)中断处理程序处理：Disable FIFO outbound post queue interrupt，防』E处理中断过程

中又有新的outbound post queue interrupt(也就是有新的outbound消息)产生，影响前面

消息的处理(所以在每条消息处理完成后需注意及时将FIFO outbound post queue interrupt

打丌)；同时释放semIn信号量，使中断处理任务得以继续执行。

2)中断处理任务进程：获取存放消息的MFA指针，如果获取成功，则将该指针由

BP侧内存空间地址转换为MP可见的PCIMemory空间地址，并判断地址是否合法，以便

MP读取并处理该消息；将该消息上送给上层程序处理；将收到的消息的指针写入outbound

fleequeueheadpointer，即释放该消息空间，以便BP使用；il!i过inboundmessage register0

产生中断通知BP侧MP侧已经处理完一条消息；最后打开outboundpost queueinterrupt，

方便消息中断上报处理。

4．3．2．5 BP消息接收实现说明

MIPS BP(120 Host)120中断处理程序的处理过程如下(MP与之类似)：

读取Inbound Interrupt Cause Register和Inbound Interrupt Mask Register。并从中获取当

前中断类型。有两种类型的中断需要处理：

1 message register interrupt，由于我们不用Message register收发信息，所以如果产生

该类中断，表示MP侧成功处理了一条消息，发送队列肯定未满，所以送信号量通知当前

因未拿到该信号量而PEND的进程继续执行下去。(因为MP每处理完一条消息都向BP触

发一次message register中断)。

2．Inbound post queue中断，通知接收消息任务收消息并处理消息。BP侧的处理过程

如下：

1) 中断处理程序处理：Disable FIFO inbound post queue interrupt，防止处理中断

过程中又有新的inbound post queue interrupt产生，影响前面消息的处理(所以在每条消息

．45．

塑皇业!!叁兰塑l：塑壅生堂丝堡苎 笙!!至!!竺望堕窒些

处理完成后需注意及时将FIFO inbound post queue interrupt打开)；同时释放semIn信号量，

使中断处理任务得以继续执行。

21 中断处理任务进程：获取存放消息的MFA指针，如果获取成功，则将该消息

上送给卜层程序处理；将收到的消息的指针写入inbound flee queue head pointer，即释放该

消息空间，以便MP使用；通过outboundmessage register 0产生中断通知BP侧MP侧已

经处理完一条消息；最后打-丌inboundpost queueinterrupt，方便消息中断上报处理。

120 Host和120Agent消息接收中断处理程序公共流程如下：

厂————]
鬯!竺竺!型

中

图19中断处理程序公共流程图

120 Host和120Agent消息接收的处理任务公共流程如下

南京iItllIU人学顺l。州究生学位论文 筛四章120通信实现

队列不为空

图20消息接收的处理任务公共流程图

4．4 120通信的可靠性和效率

本产品中120通信通道是MP和BP通信的唯一手段，且MP和BP间有大量的数据需

要传递，所以120通信的效率问题就尤为突出，而且本产品定位于电信级路由器产品，所

以可靠性也是非常重要的。针对以上要求，在本产品中为了提高120通信效率和可靠性，

我们做了如下设计：

1．使用缓冲区方式，且消息发送方在完成消息发送后，并不等待对方处理状态提前

返网。也即，我们在BP侧(120Host)内存中划分出一段空间专门用于MP和BP间的120

通信，由于可以根据需要的大小分配每块缓冲区的大小(与message register方式相比性能

有大幅提高，每次message register中断只能传递4bytes数据，是远远不能够满足要求的)，

南京⋯fU人学1Ⅲ!HHl究生学位论文 第叫章120通信实现

所以能够保证一次发送过程可以发送长度很长的消息(甚至是多个短消息的组合)，提高

了消息传递效率。之所以消息发送后不需要等待对方处理状态返回，是由于我们在BP侧

划分的内存空f、日J是MP和BP共享的，MP通过PCI的memory空问访问这段空间(详见第

三章ATU既明)，这是由硬件地址翻译机制保证的，所以可以确保消息已经正确发送，不

需要等待返回的状态。

2定义不同的消息类型，确保性能和可靠性达到要求。根据消息的不同性质和传递

要求，我们定义了紧急消息类型、可靠消息类型、普通消息类型等，前两种类型消息是高

优先级消息，后一种是低优先级消息。在发送消息时，我们将根据不同的消息类型做相应

的处理，保证高优先级消息能够可靠传递，低优先级消息在120通道忙的情况下有可能没

有正常传递。由于120通信带宽有限(出于CPU处理能力和PCI带宽的限制)，这一点确

保了性能和可靠性。

3采用中断处理程序和消息处理任务结合方式处理消息接收过程，在中断处理程序

中只完成中断类型的判断、清中断和关中断工作，其它工作交给低优先级的消息处理任务

处理。由于中断处理程序具有较高的优先级，如果在其中执行时间很长的话，将影响其它

进程执行，所以考虑到整体性能，我们在消息处理任务中对消息做进一步的处理，这样做

减少了接收消息过程CPU的占用率，提高CPU利用率和路由器整体性能。

4．采用多进程访问120控制，保证了多进程访问120时的可靠性。为了确保120通

信的可靠性，每个使用120发送消息的进程在发送消息前都必须获取发送互斥信号量

semApp，该信号量在初始化时完成创建，用于使用120发送消息的进程问的互斥，这样就

保证了多进程访问120时的可靠性。

通过对120通信的长时间测试(CPU在仅有120消息处理进程运行的情况下收发消

息)，我们所做的120通信设计是可以达到系统对双CPU间通信要求的。

4．5数据结构和内部函数

4．5，1数据结构说明

以下是120模块中定义的重要数据结构：

产定义消息相关属性，作为收发消息时不同处理的依据+／

typedef struct tagl20MSG

{

short MsgLen； 产消息长度(消息头长+数据长)+／

堕皇⋯!!!叁兰塑!：竺丛生堂堡垦兰—型里一些旦塑堕!!!里
char Version； 产消息结构的版本 +／

char Type； ／+消息类型：可靠消息，紧急消息，普通消息+／

)120MSG；

严FIFO状态，用于初始化FIFO，提供FIFO基地址和每个FIFO的大小+／

typedef struct——fifo—．stat

{ unsigned long qsz；p每个FIFO的大小+／

unsigned long qba；p提供FIFO基地址+／

}FIFOSTAT；

p按照Outbound Interrupt Cause register相应位定义如下结构，

用于中断处理*／

typedef struct——i20——om——stat

{

UINT rsvd：28；产reserved，保留位4／

UINT opqi：1： 产Outbound post queue interrupt+／

UINT odi ：1： 产Outbound doorbell interrupt+／

UINT omli：1：产Outbound message_l interrupt+／

U1NT omoi：1：产Outbound message_0 interrupt 4／

}1200MSTAT；

／牟按照InboundInterruptCause register相应位定义如下结构，

用于中断处理+／

typedef struet——i20—．im——star

{

U1NT rsvdO：26；p reserved，保留位+／

UINT ofoi：1：p Outbound flee queue overflow interrupt+／

UINT ipqi：l：产Inbound post queue interrupt‘／

uINT rsvdl：1：产reserved，保留位+／

UINT idi ：1：p Inbound doorbell interrpt 4／

UINT imli：1：产Inbound message_l interrupt‘／

UINT imoi：1：p Inbound message_0 interrupt+／

}120IMSTAT；

p 120通信处理过程中，返回值定义，用于判断返回状态+，

typedef enum——i20——status

{

．49

南京邮电人学琐I憎}究生学位论文 第¨章120通信实聪

120SUCCESS=0， 尸操作成功返回4／

120INVALID， 产非法操作+／

120MSGINVALID，严需要发送的消息不合法+／

120DBINVALID， 产Doorbell不正常+／

120QUEINVALID，芦获取MFA空间时，不『F常4／

120QUEEMPTK 产没有空闲的MFA供使用+／

120QUEFULL， 严所有MFA都被占用+／

}120STATUS；

／+定义浚结构区分MP侧和BP侧操作+／

typedef enllm—location

{

IOP=0， 产indicate the 120 Host(=BP)operation+／

REMOTE， 产indicate the 120 Agent(=MP)operation+／

}LOCATION；

4．5．2全局变量说明

本模块中定义的全局变量主要用于调试目的，BP侧定义了如下全局变量：

UINT32 i20MsgAllocEmpty=O；／牢暂时无法获取空闲MFA次数+／

UINT32 i20MsgAlloeSuc=0；产成功分配空闲MFA数+／

UINT32 bpMsgRecvNum=O；产BP侧接收到的消息数+，

U1NT32 bpMsg／'ostNum=O； 产BP侧发送的消息数+／

UINT32 bpMsgExceedMaxSize=0；／8 BP侧发送的长度超出范围的消息数4／

MP侧定义了如下全局变量：

UINT32 i20MsgAUocEmpty=O；p暂时无法获取空闲MFA次数+／

UINT32 i20MsgAllocSuc=O； p成功分配空闲MFA数8／

UINT32 mpMsgRecvNum=0；p MP侧接收到的消息数4／

UINT32 mpMs驴ostNum=O； p MP侧发送的消息数+／

U1NT32 mpMsgExceedMaxSize=O；严MP侧发送长度超出范围的消息数+／

4．5．3函数说明

下面将就120通信处理中几个关键函数做出说明：

● 原型：void 120Init(LOCATION loc、

一50

南泉lIlIlIU，L=学坝小Ⅲ究生学位论文 第H章120通信实观

说明：完成120初始化

参数：Loc：区分是MP还是BP操作

返回值：无

· 原型：120STATUS 120FIFOlnit(QUEUE SIZE SZ，U1NT qba)

晚明：完成[20FIFO(MFA空间)初始化

参数：SZ：每个FIFO空间大小

Qba．-FIFO空间的基地址

返回值：120STATUS(具体可参见上面数据结构定义)

· 原型：void 120HostlSR(void)

晚明：120 Host中断处理程序

参数：无

返回值：无

● 原型：void 120HostTask(void)

说明：120Host接收消息处理任务入口程序

参数：无

返回值：无

· 原型：void 120AgentISR(void)

说明：120Agent中断处理程序

参数：无

返回值：无

· 原型：void 120AgentTask(void)

说明：120Agent接收消息处理任务入口程序

参数：无

返回值：无

· 原型：STATUS 120PostMsg(LOCATION loc，void+pData)

说明：120消息发送程序

参数：loc：区分是MP侧还是BP侧操作

pData：上层需要发送的消息指针

返回值：STATUS(OK：发送成功；ERROR：发送失败)

· 原型：120STATUS 120FIFOAlloc(LOCATION loc，void+*pMsg)

说明：发送消息时，FIFO(MFA)分配函数，也就是获取空闲MFA

南,9iNlU人学坝l。州宄生学位论义 笫叫章120通信实脱

参数：loc：区分是MP侧还是BP侧操作

pMsg：inbound／Outbound free queue tail pointer寄存器值

返回值：120STATUS(具体可参见上面数据结构定义)

● 原型：120STATUS 120FIFOFree(LOCATION loc，void+pMsg)

说明：消启、处理完之后，释放MFA空岫J，方便对方发送消息时使用

参数：loc：区分是MP侧还是BP侧操作

pMsg：Inbound／Outbound free queue head pointer寄存器值

返网值：120STATUS(具体可参见上面数据结构定义)

● 原型：120STATUS 120FIFOPost(LOCATION loe，void 8pMsg)

说明：通知对方有消息需要处理

参数：loc：区分是MP侧还是BP侧操作

pMsg：写入Inbound／Outbomld post queue head pointer寄存器值

返回值：120STATUS(具体可参见上面数据结构定义)

· 原型：120STATUS 120FIFOGet(LOCATION loc，void”pMsg)

说明：获取对方发送过来的消息指针

参数：loc：区分是MP侧还是BP侧操作

pMsg：Inbound／Outbound post queue tail pointer寄存器值

返回值：120STATUS(具体可参见上面数据结构定义)

4．6 120规范与本文实现

上文中分别说明了120规范和一个120通信过程的具体实现，可以看出它们是有区别

的。本文120通信实现和120规范最主要的不同在于以下几个方面：

1．120规范中每个lOP都有自己的入队列，主机在自己内存中分配Outbound message

queue；而在我们的实现中将Inbound message queue和Outbound message queue都在120

Host的内存中分配。

2．120规范中，消息通信过程中，消息队列指针更新是由通信双方软件完成的：而在

我们的实现中，由于桥芯片提供了硬件指针更新维护功能，所以我们将120 Agent侧的所

有消息指针更新工作全部交给硬件完成，这样也相应的提高了120Agent侧CPU的效率。

3 120规范中，定义了IOP间的通信和Host与各lOP删的通信：我们实现中的环境

比较简单，只有两个通信实体，所以我们可以认为系统中只存在一个IOP，是IOP和Host

阳J的通信，本实现中可以认为120 Host是IOP，120 Agent是协议中的Host。

南京||||fIU人学坝fⅢ究生学位论文 第叫章120通信实现

4．120规范中，还有大量关于OSM和OSM与DDMf．J消息传递的说明：由于我们的

实现是基于VxWorks操作系统的，所以OSM和消息传递部分主要由VxWorks操作系统实

现，我们在实现中并没有多加关注。

5 120规范中，定义了120驱动的分层结构并作为120的一个重要优点；但是我们这

罩是在VxWorks操作系统环境下实现的，所以[20驱动的分层结构并不明显。我们在实现

时，将供上层调用完成120初始化和发送消息的代码放在一起形成一个API文件；将具体

操作硬件部分放在一起形成一个底层驱动文件。如果需要划分的话我们这部分实现的代码

可以认为是120规范中说明的DDM层。

6．120规范中，对具体硬件和软件系统如何实现120通信并没有严格的规定，而我们

的实现是基于具体硬件和VxWorks操作系统的，所以在更多的是根据特定的硬件和操作系

统来优化我们的代码和整个120的通信效率。

7．120规范中，并没有对120通信所基于的底层硬件作出具体规定，但是鉴予PCI

总线的很多优点，目前120通信规范的实现多数是基于PCI总线的，本课题实现的120通

信也是基于PCI总线。本项目硬件通过PCI总线实现了120规范定义的地址域划分、地址

翻译和pushing方式的120消息传递功能。

南京邮『U人学{哦l：{叶节t生学位论文 结束语

结束语

本文介绍了计算机中总线的由来、发展，并重点介绍了与本文相关的PCI总线规范，

随后介绍了120规范(主要是基于PCI的)和实现，后面两部分是本文的重点部分。

其巾第二章重点介绍了PCI相对于过去总线的两个独特优点：软件自动配置和扩展性，

并逐一展丌说明。第三章结合120规范，重点介绍120规范设计的初衷和优点、120硬件

环境、120规范建议的驱动分层结构、120环境初始化与配置和120消息传递的典型过程。

第四章重点介绍在一个路由器项目中，针对具体的硬件环境并结合120规范，我们所实现

的120通信代码。由于是具体实现，所以我们也介绍了相应的软硬件环境和实现中对120

通信可靠性和通信效率的考虑，并且对比了120规范和我们这个具体实现之间的异同。同

时也介绍了本实现中主要的数据结构和函数。

本文是基于目前成熟的PCI总线上的120通信实现，这是一个具体实现性的课题，所

以关注的是成熟性，对目前比较新的总线规范涉及不多。当然目前成熟的标准也会有其缺

点和不足，随着技术的进步和各种应用的需求，总线和基于总线之上的通信协议也将不断

的向前发展，不断会有全新的标准出现替代老的标准，并且将广泛应用于各种系统中。

对于本文我所做的工作包括：

1 结合PCI总线规范介绍PCI总线及其优点，从PCI设备驱动实现的角度介绍了PCI

的自动配置和可扩展性，并且对其中关键部分进行了详细说明。其中关于PCI设

备配置空间的说明也方便读者理解120和PCI的结合。

2 结合本课题实现部分理解120规范，在介绍120规范的同时，说明了120规范与

PCT总线规范是如何结合的，当120通信基于PCI总线时，PCI总线实现了哪些

120规范规定的功能。

3．120通信在本课题中的实现是我所做的主要工作，结合本课题实现的具体软硬件

环境，实现MP和BP间的120通信，包括以下几个方面：

1)利用硬件提供的PCI总线实现地址翻译和给对方发出中断等功能，实现120

规范定义的共享内存(本课题在BP内存中实现)，并使得MP可以通过PCI

总线访问共享内存。

2)结合MIPS CPU和系统实现的特点调整整个系统的空问分配，为PCI总线分

配合适的Memory空间以访问BP侧的共享内存。

3)根据MIPS CPU和VxWorks操作系统对中断的具体要求，将消息处理和中断

处理分开实现120通信中断的快速处理。

南京邮『U人学坝I!{!JI究生学位论文 结束语

4)本课题实现的是120通信的底层驱动部分，为上层消息传递提供API接口，

所以必须考虑整个系统的多任务特点，所以必须考虑到多个进程同时发送消

息时120通信的互斥处理。

51为了提高系统高优先级消息传递的可靠性，本课题定义了多利，消息类型，在

实现中将针对不同的消息类型完成消息传递。

6)本课题是实现性课题，所以对于实现的代码在系统中的调试和性能测试将尤

为重要，在调试中我们模拟了多任务、多优先级消息的高速收发(双方CPU

只有处理消息和收发消息的进程在运行，这样可以测试出高速收发情况下是

否有收发不正常)，并且进行了长时间的测试，结果说明我的实现是可以满

足实际环境要求的。

120通信是本课题实现中重要的组成部分，对于系统整体性能和稳定性都至关重要，

虽然我们做了很多优化，但是具体实现中可能还有不足，希望能够提出改进建议，以进一

步提高系统的设计水平。

南京邮lU人学坝㈠叭宄生学位论文 数蒯

致谢

首先要向我的导师郑少仁教授致以最衷心的感谢!感谢他在我近三年的研究生学习过

程中对我的指导和帮助。从我论文的选题、研究方案的确定、资料的收集、论文的书写和

审阅，每一点一滴的进展都有郑教授付出的心血和汗水。郑教授治学严谨、待人宽厚、心

胸丌阑、处事达观，他在为人上的表率将使我终身受益。同时还要感谢我的师母顾朝霞老

师，感谢她在近三年的学习生活中在各方面给我的关心和教导。

衷心感谢田畅教授、张磊副教授在学习和工作上的关心帮助，还有赵志峰、罗和谭两

位师兄在学习和工作上的帮助。

衷心感谢我的所有老师、同学和朋友在学习、生活各方面的关心和帮助，感谢在实习

期间的领导和同事在工作上的帮助，他们使我有了一个宽松和谐的工作环境，使论文得以

顺利完成。

感谢我的父亲和母亲，他们含辛茹苦把我抚养长大，并竭尽所能为我创造宽松的学习

环境。我的每一步成长都凝结了他们的汗水、鼓励和关怀。

最后r我要向所有的评审老师和参加答辩的老师在百忙之中抽出时间评阅论文和参加

我的答辩表示衷心的感谢!

南京m∽U^掌坝1j圳’℃生学位论文 参看义献

参考文献

1．Galileo Technology、Inc．System Controller For RM526X／527X／7000 CPUs．

Datasheet Revision 1 1，JAN 10，2001

2 PMC-Sierra，lnc．RM70007”FamilyUserManual，Issuel，，May2001

3 The 120 Special Interest Group，Intelligent I／O(120)Architecture Specification．Draft

Revision 1．5，March 1997

4．The PCI Special Interest Group，PCI Local Bus Specification，

Revision 2．2，December 1 8，1 998

5．路山器项目组，处理器间通信软件设计方案，2004．9

6．Wind River System Inc，BSP Reference，2001

7．Wind River System Inc，GNU Make，2001

8．Wind River System Inc，Tornado API Guide，2001

9．路由器项目组，通用路由器系统方案，2003．12

10路由器项目组，主控单板硬件设计说明，2003．12

1 1．Wind River System Inc，Tornado BSP Trmning Workshop，

Version 1．0,2，April 1 998

1 2．Wind River System Inc，Tomado APIReference，2001

13．Wind River System Inc，Tornado User’s Guide，2001

14 Philips Semiconductors，THE 1 2C—BUS SPECIFlCATION，

VERSl0N 2 l，JANUARY 2000

1 5．Wind River System Inc，TrueFFS for Tornado Programmer’s Guide，2001

16路由器项目组，通用路由器系统原理，2004．8

17．WindRiver SystemInc，VxWorksNetworkProgrammer’sGuide，2001

18 Wind River System Inc，VxWorks Programmer’s Guide，2001

1 9 Wind River System Inc，VxWorks Reference Manual，2001

20 Wind River System Inc，Tornado Device Driver Workshop，

Version 3．0，February 1999

21．Richard Herveille，12C—Master Core Specification，Rev．0．3，March 2001

22．Intel Corporation，PC SDRAM Serial Presence Detect(SPD)Specification

REV【S【ON 1．2A，Decemher 1997

57

	封面
	文摘
	英文文摘
	论文说明：主题词
	南京邮电大学学位论文独创性声明及南京邮电大学学位论文使用授权声明
	前言
	第一章总线及其发展
	第二章PCI总线
	第三章I2O通信规范
	第四章I2O通信实现
	4.1本课题情况介绍
	4.2通信模块描述
	4.3通信模块设计
	4.4 I2O通信的可靠性和效率
	4.5数据结构和内部函数
	4.6 I2O规范与本文实现

	结束语
	致谢
	参考文献

