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Mechanical Performance and Concurrent Optimization of Ultra-Light
Material and Structure

Abstract

As the rapid development of science and technology, conventional solid metals have
become inadequate to satisfy the needs of practical applications, People are constantly
secking new materials with some fascinating properties: light, stiff and multifunctional. To
achieve this goal, mechanics researchers have developed several innovative structured
materials by controlling the configuration of material microstructures, including honeycomb,
foam and truss-like material. These materials are very promising for their superior mechanical
-properties and multifunctional capabilities.

The ultra-light materials investigated herein all have periodic microstructures. The
existence of microstructure on one hand makes it very convenient to predict material
properties, for which, Homogenization theory and Representative Volume Element (RVE)
method are two mainstream methods. But if we take into account random imperfections
induced during manufacturing process and subsequent practical applications, the prediction of
equivalent properties could become very time-consuming, For this reason, there is interest in
finding a new methodology which exhibits more efficiency over traditional ones. On the other
hand, however, the existence of microstructure also increase the difficulty of elasto-plastic
analysis of structures constructed of ultra-light materials, since complex internal configuration
requires much more time and computing resources. So it is of great importance to develop a
more efficient analytical algorithm, especially in the case that this analysis is for optimization
/ reliability solution. In the aspect of structure / material concurrent optimization, existing
methods always lead to non-uniform microstructures in the macro-scale, which poses
insurmountable manufacturing difficulties. Thus it is- desirable to have a concurrent
optimization scheme considering manufacturing factors. Addressing these problems, the study
of this thesis can be divided into three main parts:

L. In predicting equivalent properties of materials with imperfections, Monte Carlo
simulation is adopted based on the Homogenization theory and the Representative Volume
Element method. We have compared different boundary conditions, and discussed the size
effect and the influence of different cell selections. To improve the efficiency of computation
and refine the results under Dirichlet boundary condition, it is proposed a Representative
Volume Element computation based on energy equivalence of inner cells, and therefore better
results could be achieved with relatively smatler RVE.
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2. For the clasto-plastic analysis of structures composed of truss-like materials, we first
simplify the unit cell as a truss model, and then present a two-scale analysis based on the
numerical homogenization. The original problem is thereby transformed to two interrelated
problems in two scales: a nonlinear elastic continuum computation in macro-scale and several
elasto-plastic analyses of small-scale truss systems in micro-scale. The proposed method is
verified to have the same precision but iess used time.

3. To address the manufacturing difficulty in existing structure / material optimization,
this thesis presents a new concurrent topology optimization scheme to simultaneously achieve
the optimum structure and optimum material microstructure. Microstructure is assumed to be
uniform in macro-scale to meet manufacturing requirements. Design variables in both scales
are independently defined and then integrated into one system with the help of
homogenization theory. Penalization approaches are adopted in both scales to ensure clear
topologies, i.e. SIMP (Solid Isotropic Material with Penalization) in micro-scale and PAMP
(Porous Anisotropic Material with Penalization) in macro-scale. Further, it is proposed
another concurrent optimization scheme based on substructure. The size effect and advantages
for manufacturing are discussed.

Key Words: Ultra-Light Material; Microstructure; Homogenization; Representative
Volume Element; Topology Optimization
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Fig. 0.1 Four representations of ultra-light materials:
(a) Foam; {(b) Honeycomb; (c) Truss-like material, (d) Linear cellular material
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B, X TRAFERITR RSN ARID A TRARETENITE.
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Fig. 2.2 RVEM-based Monte Carlo Simulation

2.2 FEIARFHHME LR

TR, ARG R A E ARG TIOR, &ER K
FREATHIER: T Neumann i) A Dirichlet A M KM TRELETI KA, REE
BIERMMAR £, B, hTREEWFELERER, XERLRTEZN
BB F 33 RM R S R R aRD Y, et RO g oM.

MBLREIER, URP R ER DB RS SR, AR AR
FEGER, RERERTE. FLE, BTHENEEERTHRORNE, —H15 e
EHSR. Wt 2GR R R 44 TAVHERE L FRE T L.

TEHE T BER SRR £ TRV E SRR TR SRR,
HF XRFPIDSL NSNS, ST —RERMMLH, Dirichlet 115744t Neumann
BAEMET. Fih, XX FEEEEREEILR &M Dirichlet 1 F£14.

2.2.1 BERHIMER

EEBWE 23 FIRHBEMN, L=1, p=0075, H=1. BTFREATENNS
A BH R EFCAB N R, Bt ESHEnmax RELX, FUUXBEKR
THEBBRTEAN. BAMENGEEREE =210X10°GPa, W 4 =03. &HE
KA B 30% BT RERERIEE 0 E' =210X 10° GPa. W 23 RN B T AR HETHE
B, BB XREHET: BT WA L FEEREM4, TRT I M RREEYA.
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Fig. 2.3 Computational made} for in-plane properties of honeycomb
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LR “+-D, ~r-p, -4-0,
5 Bxie’ NS Cell 1] wndder periodic bounderies
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Fig. 2.4 Mean value of effective modules for cel! TI under different boundaries
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Fig. 2.5 Mean value of effective modules for different cells under Dirichlet boundaries
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B 2.4 B/R T BT I 23R A Dirichlet i M A MM RS R, ATLER,

(). BERATRBATHER, AFFEETN TR, HEFHHTHRE. Xk
B: Dirichlet & f 44 T MG REKMTHITRRATHRAD, BAFRERN, FRAT
WEHEATELR Zhut® 36, JSIME 00 7 2 2E SRR B ALY A 0 30 3 o e B B RS
BHRERN.

(2). REEG R LR T Dirichlet ARG R, MESG T REBFTHITUE
Ay EMERE. Bk, REFERENN, BMELR&M4ERBHNL B R
£ F Dirichlet i1 R &4

B 2.5 BRTIFARMI Cell [ Cell I, ¥F /A Dirichlet 5 &EHNEE, 7
LIRE: REIMGREES ARG THANTHBERATRTUNER, PR
| ERBMNEREE, BHEE.

RAVEHE BT B AT SRR # 4 B L H 7 4 (WA FUMG 1o 85k 5 5 T B LR R 1019
o, BBRETNANBERVKEERSR. ETXF, RINESMIXLERBL HHENERE.,

2.2.2 PERREITIEIE L

1 SRR, AR 4 TERERNELEREBTETREBTAAN.

HRRTRBTRRATHOAD, RRTFRINNGLALGETSEHFEADES. X
FHREEME, RENEZMABETES, BEKLREE SR RTNHRX—FS,
i R 5RFBTIELMIR. T Dirichlet H1 Neumann iR &M, FERNHRENR
YA LUBRINASE, BREE—ERHEED. XBASEENEESEELE
ARHEK (AENERGEERSRE), TEFRYH., RRERESRE L, &
BTREFGER—RRE. TR, MEESE NP LB,
HE B R £ CATEERAR AT REATRAMTHLR. BREE%LR
FEXMTHAEMEEIERELEBY, RERERMN.

2. MFHENLEA R, R3IEA R & EAAET Dirichlet 744

3. 28 Dirichlet 11 74 fFt, [ 2438 6 I 630 R FE7E B BRI

75 1 FIPRTE 1T ¥95R A Dirichlet 445, SRBENRK, —HNHBAXIRE
JC1ZEI R BB, BT Dirichlet 43T R4 SUHEIN T BB B AE, M
TERERE T AR L EHOFNEER. Bk, FRAEMUANNAEHAKHBHS
BER EEEWNTEAOER. BOXHELN—BMELARTRNERIALER
MR, AMERLSER TEAER. TXRBGERABRBTERSNHNE
1R TC T i Be R R ) T30 57 R R AU R B A R
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2.3 ZRRAMATERFUNRRETE

d E3CH AT LIE E): Dirichlet 4314 R M 7 EAFRHEHAR, BHA
BARBNES R AR AHNSREERR. WAATHIABFNER THEEL
BAEUFEBFRRT, FRZREREM®N . REFEIXAH/MEH, Dirchlet &
HE £ A SR B 00 OB R, BANA B ATE R MNES TR ATIR
T, ABRAUTHELER. HEBPMIRRATERTRIRAARETT RBINER,
MR ERE,

RFEETEMRERNE T AR R A EERAERAREAURNLFER A
TMRHF —EREaHE. MRBMNEN TN RBIFIM RN, REERELRITNGS
R

FRADRTERFRNARETENELTRR LE 2.6): ERTE ST
HER AT E RS NEMEERL: MESTERSIRFEEN, ZREHR
BOGERIRTE, TRERATFTRRSIPONEIET. N TRMTE, hIINEBR
BB TTREN. N TEMIBEANE, THLEFRRNLRFHATER, |
RAMTF “EEFERE”, KHURFHRE R U ERTE—2RE LN, A
MAABRTERTELH BRNLREE, FURBRELR.

FES HATENAHFREEM BB HE NBEER, #—PRIERENY
it

2.3.1 BRTFHEMSMHOZHRBRE

ZRE 27 BinRRRNAT, MR E=210X10° GPa, TWERR T 9%:
Ar=0.05,A=0.4, A;=0.04, A;=0.06, As=0.12, Ac=0.08.

Standard RVEM
—

RVE : Energy equivalance

RVEM with inner cells
—_——

RVE
Analysis under Direchiet bovmdaries Inner cells : Epergy equivalance

26 ZENTRTERSHARETE
Fig. 2.6 RVEM with inner cells
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AEUBER. TTUES: AUHEA R A0S REERBRETIORNAFE, DFEE
RE%M:ﬁ&IMMMtmﬁFmﬁﬂﬁﬁﬁﬁ%iWHKﬁﬁﬁﬁﬁﬁﬁﬂﬂ%%
R RABERRGTEE, WEERRIMIREAT, BRSRBETELT AR
MRS R,

TRABRAEESUNRARETENIATUHRE T HENE. Bhahn
Dirichlet 4R T, AT BARFHLREETEEBRANRREL, K0
BRIEAK. RASSEER, HRUBBERE LRI HBAGRRG T EEEEIR
BRNGR, EFLRDOTHHER.

B 28 (b) & TEERRGTEERERRETAMN N 15X 15, BlhAHRTE
KDRER, HBPMBTENY 15X15 HUEANRRREETE. THUEH, WER
BRTENNESE D, DRAFFNERESUEENNERTHINGE, AAERERE
TRBEBA T MR,

_ e F e

Cell RVE: 6x6, Iuner cells:2x2
27 REATEMAHNHR

Fig. 2.7 Material with truss micro-structure

5.5%10% "
3.030x1071 Standard RVEM_,,
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g A = - RVEM under periodic boundaries 85 msa™
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Fig. 2.8 Numerical results
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BERER 3 PROMEREIGER. I THRAKEFHER, HEEBERS 3000
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t T oD —k .é Py —a=D —~e—D_—4—D
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Fig. 2.9 Comparison of improved RVEM and standard RVEM under Dirichlet boundaries
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Fig. 2.10 Comparison of improved RVEM and RVEM under periodic boundaries
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REHEE, MRTEZSHES (RE 2.5 EEEHRT . SodMkms R
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2.3.3 /g

ZHARRTERERNARAETTE, T Dirichlet 4 R&M4MRREKTH, T
X ARBTESERESN. FEE4A T Dirichlet 5 &4 802 B RIST B4 B A%
o FEELAANSERITARNMNER RIS T RALF LSRR RTEER T
ZREPW. BEEPRNEIEM NS ERPIRY. IHEERARSHARET
FERAAEREEEPRANRATHAR, NTEHERE T HHEMR. Go%RiHE
RNLRALR, HETUFRNE FRERNEAEER RSN SRR, #—
B TAETT DU BIESEAD R BB . Rttt BB 5.

2.4 &t

ZENFRARIRMBHESAMNSRERTRNE, it e T ARG AEMRT
ZRNEW, BITUTS®:

(). SHERAEHRS, FRRMELR 4 FRARATE, $RALIHIE
EEMKPEE. BEATRRATHA, SREFLTEE.

(2). RBHAR &3 AT Dirichlet 325 %44, {8 Dirichlet 3115 & fF B BUAER
g, ME, SEHE—MORET, RSP R A AR T 5705 R R B4 RS
Bk AR v 49 TR B X F Dirichlet i 5 444 .

(3). SRAFFE Dirichlet T A&AET, 44 %A AL BB NRT, Mk
TR T4 RO BMAR R K.

% T I3 Dirichlet A FMEH HERNKBRAEEFENES, FERET%
RA KT RS RRAETIE . SRR AR ORTAR, SRS
AR FERGER, EAMREERTHE THE TR, AN MM
KESE, NTSKT Dirichlet BAFATRGLNRA. BERFIRE T FENER
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WL . X — AL TR N Bh A, 5— 40 T8 AT 8 R R,
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3.1 BT EES SME B 2T IR R SR Bt o 4R

B 3.1 HinNiBaRE™. ETHRESSUNREERETEERBY ARE: &
MREFEERERBEN, BERM x - x BRRETREHAEET, 8£EY
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Fig. 3.1 A structure composed of ultra-light material
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L ZRRE: ENEMEATRNERERATH - EREERE(G.2)-349). =
BEYEREE: EUNGHERU, FUANHE, ERNEE, HHENSHERD, &
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[V.n: E(x)d = fn-Tate+ [-tdr (3.2)
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1 10d(x,2")
r: E(x))dr=0 4
!! ([mf S 1 I (3-4)

MREXMRELESELESN R, TURAENESESEEIH. ER,
ATHBEEEANRE S, SEMRERDEICHEMXR)ET L RBAN, MAS
BEEFHTR (ARTHEDECHERR MRS LSRR ukefEsl. Eus
Frit R MM A EE BRI AN LI EMNNEE . JEL Y R#F A Newton-Raphson
B, TREMEN SRR, MNAPERCH.

2 WALRE: HEMRRERREIFEGRAECHNELNZE T, HiEs b
R AR T IR R BB AR (3.5)-(3. 7). BOR ST IR A BTG BT A4
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(2000 =Q, -, (3.9)

A3 8)F(3.9)5 BB IL T HF i) L) Re AT ) —HE B SRR R ik, Kb

cc 88 2es
(3.10)
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| - s &
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A
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M AELR K AR R P A Newton-Raphson 1548, j MM Newton-Raphson #£4%5
165, SEE T8 j MEAEINNAHERIC N . BOSERSBFEES,

Zb BUH—ZbT J+Zbr a;: ‘b, Aui’ =0 (3.13)
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&

Bea AR 3 R(3.8)H1(3.9) AT LLAE 3.
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(3.18)

RED EHIMERSUESTSMBERRENE, 6RE MRS RS ERT
R CRATIOMEE, LA 4 ARRTHBNKENER, b, SECIDPRL.
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RIS AR AR S48, RAEZIERET R AR, M R RTAR,
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Fig. 3.2 Flowchart for elasto-plastic analysis of stru¢tures with truss-like materials
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1 t’_: ] z All2)=0.06
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B 3.3 BHTEMEE RN R

(2) EREH AL REA, 0) ABERMGE. RTHEER
Fig. 3.3 A cantilever composed of truss-like material:
(a) Macro-structure and boundary conditions; (b) Micro-structure composed of bars

EREBR-AWE 33 @FRNEBR, BKL=1m, ®b=04m. ROMGTE
FEEXGEMREAHTEMLENRE, BREXMERENERIT0E 33 0
e BTN AEETERER MIER, HHIIESRRMLRRTER, Bl
BERRTREEBHAN. SHARANNE, nELREEHAE, 2RRTRREGT
RIEER R G R M. MR AR R R TR M K BESh A (LA R, BtERTER
HR E, =210%10°Pa LT AR E_=90*10° Pa,, BRI o, =6*10'Pa,. EWE
RANGEAS AR TEE, MRS LR 34, FEBEAN 10X8: HRHL2RAHF
BT,

3.2.1 WAME TR HMEMPE

HAZREA AN F, =10°N AEAKELR, EF ANSYS HEERHHE 3.3 0)
BMAMBMEFEN. B 3.5 48, HERREHE 20 X8 B R B IHA A,
FESEEFLATEREERMN, BERERASHLAE 33 OPHEREH—B.
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34 BEMEHIHR
Fig. 3.4 FE discretization of the macro-structure
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Fig. 3.5 Computational model for ANSYS
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F31 AFSHMBILEE (10-3m)

Tab. 3.1 Comparison of displacement results at node 4 (10-3 m)

Mesh/Cells Number of Freedoms u 4 Time (5)
) 10x38 {9 Gauss points) 554 474874 -0.74711 6
Ho:?;:;: Ztlion 10x8 {4 Gauss ponts} 554 475008 -0.75476 4
10x8 [RVE I} 554 4,74994  -0.75384 8
300x120 217682 4.71321 -0.71349 268
Complete computation 200x80 97122 469672  -0.70508 60
by ANSYS 100x40 24562 4.64474  -0.68055 24
50x20 6282 4.53891  -0.63139 10

F 31T T RAVE RF ANSYS HE I KRREMTE A SEALH 4 R FURMFER (%
PLYESE: Pentium 2.4G; 768M M) KithE. HP RVEINRFAEFN A 3.3 (0B
AHRBEARRETHRES R RENEHRTRTSENME, BRAE 31
ATAEE]: vHE 4R BT A BT S 4 B AU AR ITTREET T4 R mR .
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Fig. 3.6 Error curves of the displacement results
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FNARKABREGR: F—ERATFAT S BHARBRANA: ESHRES
TR, REEFER—KF L, B 3740 THA 3 TSR KNH LR,

(@) )
B 3.7 TR A A
(2) MENSLLER; (b) ERREHANSYSE R
Fig. 3.7 Stress distribution of bar 3
(a) by Homogenization; (b} by ANSYS

3.2.2 EHRARYSEKIE

3.5 MERMRUTERRY, M52 WBHEFELHRREER TR, K,
SMETRATLUNN FLEEHT —SRRNAS . ZRTRNITERELNE R E
Bm? ZEE 3.8 PHRFRITRS, WAANCBERAEENLRRE 32, 7
LLEZ, BMMNBRSN TEROEWBR . ETHERAE, ERMERMEEREE
Wit V& B AT BRI E, RAERERE A ER, EHRRFERENATEL.

£l
B ————
—
T | . R
T | ] i L
MESH 1 MESH 11

B 3.8 BRI
Fig. 3.8 Different FE meshes of macro-structure

#3272 ARMB TR A O BICRBRER LY

Tab. 3.2 Comparison of displacement results at node A and time consumption using different meshes

The number of Elements  The numberof Nodes  # (10°m ) v (10°m)  Time(s)

MESH | 27 80 4.74735 -0.74619 4
MESH I1 257 72 4.74479 -0.72493 3
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3.2.3 MnENRRMm
THEARERMNBNERNEDE, 23EXZAKEE: f:.F,=10°N, f,:F, =0,
i F,=-3*10N, FFME. RITOBESE (AoHE 108, 9 FHTA) 7 ANSYS

LEREMNSR (A% E 20080 & 100X40) FHENE 3.3. WULHEH, BTHME
B R BB R AR 7 BT LA T O M d b 3 i 2 i ik i

®33 FRAMBHETH S A BUBLR (10°m)
Tab. 3.3 Displacement results atnode .4 under different loading histories

A fi=>h ind ind.

u v u v u v
Numerical Homogenization [Mesh: 10x8] 4.76866 -0.78911 1.13816 -0.31924 -0.68633 -0.05872
Complete computation [Cells: 200%x80]  4.69675 -0.70508 1.09675 -0.24334 -0.70853 -0.03723
Complete computation [Cells: 100x40]  4.64472 -0.68055 1.07522 -0,22773 -0.71480 -0.05511

3. 2. 4 TEIHN#EER1E o ie BE

B 3.9 B T =RARNMREE Ry (0=1,2,3), H9HEHBRESHBBLRH
BREEF, =8x10'N, F,=2x10°N. AR FEREEDTUFETEX=FNEHT
WREHRE, #E5EREFEERETIR, SR04 HR. TUEE, &
RmBBREEHT ARNEHWE, 5 ANSYS i HHLI &% R 48T

§x107 1x10°
B 39 A RREES
Fig. 3.9 Different loading routine

#34 FEMBBET A AUBZERER (10°m)
Tab. 3.4 Comparison of displacement results atnode 4 under different loading routines

Ry R R
) Vv u v i v

Numerical Homogenization [Mesh: 10x8] 229257 199857 255988 1.66562 2.30635 105173
Complete computation [Cells; 200x80] 228073 1.96047 254053 1.64277 229435 1.91326
Completz computation {Cells: 100x40] 227041 1.91683 252265 161314 228345 1.87161
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3.2.5 WiREREMEITit

HFSaEERETRARERMIBE, SHEESHMOT R R AT LM R
Rt 5 M G H R HE RN R ENE RS NEE. THITSE—EHFERT, &
i ERANERERNE.

£ 31 REREMHT, RAGIME 10X8 RIUATHET SHCh 9 HBHLERELY
EXNRUNEEER, W A8 HB A BE LN %,
A 3.10 44 THHXT ANSYS & RET IR EBEITEH x 77 0 it b 3x

L. FTLVER, WRLSUKREMENEHE, BALREHPRAE 5 F ALk
250 4, thERR x A LA 20 1, RESHEXIIHEER,

EEMBED, EREHHNBRARENRDREMILETANRL:5=10:4, &
LSBT AARARELNR (DEREHREKREMRNREHETE), TE—Eit
HRENERT, THREHNERPMTRLBENR/ EREE. NERTLED, o
i LR 8D R M B R X HFHENEE, B R EE R EERNRENYE
MBAREFRLKSHREE. MREREIETHy, BADRERITRMEILE 6%,
EMERRIR D RE, ERBERS FR LS RYERTER 20~50,

)

= K (= Cmesie]
.
B

54 .\\

0

20
Nuenber of RVE in x direction

B 3.10 vH80M BEBE SRR 45 Hx 77 B RSB 3T B R

Fig. 3.10 Evolution of result error with respect to the number of cells in x, direction

#3135 AAKREEHIFABEEN T RETHARYEH
Tab. 3.5 The number of cells needed to achieve the required precision for structures with different aspect ratios

Errorof u is set 6% Error of v is set 8%
b(m) — - — —
xp direction x1 direction X, direction x direction

02 58 290 41 205
03 51 170 45 155
04 44 110 40 100
0.5 35 75 35 7%

06 30 50 30 50

0.3 24 30 24 30
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Magnify the realistic
b, Structure in this area

301 HRBERKERR
Fig. 3.11 A trapezoidal cantilever with a hole
3.3 HEHME2

WO I EREARE A RERS Y, TRERATUEENE S TR M EERA,
Rifi, ATENERTREPERANERLR, RERTERRKTENE. 0E 3.1 Fix
WA BLKERR, AFLOARN DT E, RREAEEIFETESE, XEMHRETEA
—RE L.

B LSBT TN b=06m, b,=04m, b,=03m, L=1m, r=0.1m,
F,=2x10°N/m, FINZBE 330b)MNMNEH. FRARESS4 TSR0 RE R
R (ERARILTRBE 4664, N\T SVAFETHE 1440), 3FHH ANSYS HHE G
KERRTARGH R E 56448, AT H 149378) FEH 4, (k=1,...,6) TR B HE.
AE 3.6 TTUEE], ETRESSUMNBBENRERTREBERETHWENEE
AR e R B B AN .

F# 3.6 FRGEY R BMLEREHNLE

Tab. 3.6 Comparison of displacement results at six nodes

u(10”m ) v (10°m )
Node Numerical Complete computation Numerical Complete computation
Homogenization by ANSYS Homogenization by ANSYS
A, 29.4941 30.2951 -115.1365 -118.0423
Ay -27.5953 -27.9469 -115.4792 -117.9859
As $.9804 1.0646 -32.0511 -33.1470
Ay 3.7350 3.9490 -18.8130 -19.3373
As 0.1967 0.1988 -6.0368 -6.0879

As -2.7283 -2.6876 -18.8407 -15.3510
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3.4 #it

ARG T ETHESIUHRTRA RS URBIE I E TS B TFHGEBED
KA. BRTURAEREEE: RRERUBRZRBEIN T, H— A0l
HRARGN G AR B ERAN — N EIESA R IR AR — 8/
REWNBBERETTRE, EBERIRERENITRTIFEREBRARK.

ETULERBIRE, MTHHE TRAT R E S 2 378/ 2 maf RS i
BTHREMMN. 5 ANSYS it HIRREM RS EEREHRIRE LY
BRMB &S AT, ARMRESERE SR EOUTERERRRRE, BN
MRS AR ERRRE TR FARNERAHE: FEELENABIAR
MBBEFHEE, AR TREENAR: FETUNHFLRACERATRE Y
ARG RRBYEEL
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RIEBT KFWI SRR

4 EEBHEERRE W EHRIMIL

FHRABI KRB SR EE, BRTRE, REATRMLL. AX TR
Rk, IWIMULBEMR A L EiGinth, BRARRER X LMBHR . B,
PRUEARBA T HER AR /AR — R M 2 ERNE LT
R. B2, NAEMRIMAEESANSEREATAIEN. BEEANRERT,
EAEREEHERT —ENERE. BTIEEENTFE, HEETRE—ERRHMAL
SR~ EEITH.

FEHFRAABEBHNUTHEANEE: 1 S/ E—ERLeS, N THEEE
ET 2R EAMEMSATERRE, GBI REEFAETHIE. 2. At
Kl ERERAANBN R BANERE, RS HEHRELHE
o WTREEMNE, RGN T HsmfEssia R, 25R5E THRTH
BRI, M7 R BRI R e N R e T — AT RE i S R .

4.1 BT HHUHBEEINERMIL

BRI SE TR SIMP kRS ERIN A R AR AT RE
BRI st AEZBREENF"E-A i, FRIBH T RSN ISR
BXBREE, BRNFEEETY, BRaxP] deptize, aEFATEA
HLNEZ EMEERAST R, ZERA, A4S0 BERRITERRARERE
W, B — AR B RS THRRIRA.

EIRE M SRR — AR, RSN S R R R AR
31594 . Rodrigues F1O7E 2002 3R 1L T SH/ATR R BB 775k BT RS TRI
RS ERRmIN R B R REL, BAREE FERBENSR. HAE
4.1() FIRERRE, MEREHNRAR—H, EENLEAY “BETRE-57 NE
BarAi. SRR SR BIRREERE R NG, ERENE LAFERY KRR
. EESYIE 410003 T T RITRE R LU 2 b BRI 8 T 9 A AR B
REBALAE, AT HEEFANEE, BRERAH THRREH S SHRBIA.

FHARE R SR EE A RE LN RE MBI — SM R R R
R&ti. HTRAEMALEREFRR Y, RITERRETHERGER, FUE
BT MBS WS~ FRDE RIS FEANRE Bt RRE— ML
BR, EFRESERITAIZ MW, XM BRI KB TA RN R R
R TR BT LU B 45 E M RE SR A AR R ML 65 0 H AORORPR B S R 1 3102 4244,
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(a) BEMRALH

(2) Hierarchical optimization %)

M EE IS BRIESE
(b) HAEERRAN
(b) Optimization with two classes of design variables!*"
B 4.1 XMER

Fig. 4.1 Results of references

Parawrs anisotrapic mauterial

\mm\. reFisation

Mgy

Hade mareria/

k T 4 el celf
- X

Lt

B 42 ZRRESTARARNEH

Fig. 4.2 A structure composed of porous anisotropic material
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4.1.1 BME#R

B 42 IR E— AR AR SAMEHARRNSE, AR s
MEREARE-R. ZEIETEHRTES, RIS EAFRIMTEORS: — R
BHFEBAME, F— P REEE. ZEHRRASEHT AR NERS S %S,
& EAES AR ANRMNSERZ AR b XA ATEENRE
iR a (MARRNTFRERT, BRERER .

BMNW BT THEIME 42 iR “&K-A” #wit, WHE “B-57 Hifs 2
BR-A" ®it, BEBNERELSE “KE” CIHRHENEE) Hy—#., X
BEET AR

L WO miAEY “RE” HE? WEFR, “RE” SRR L EHE
ERBEMAEERN SN . FTURITN—AEE EFRREMR N — B AME RGBT
(7T ¥ XA RS s AT gt

2. EMRE: MEGA “KE” MBL? ZARBBLHEE T A EER R
LG “RE” ZHAE BB KHELEE.

EFAREHTLUAEAS JRIMU R RS, A TERBRSW, BIEE
EEMNEEB—MALER P, HhE XFHEMTRHER. i8R i
i P(X) iR R T TR ERRE oY) . BRSNS Q B2 EF, 1
BRI 85 AN

Minimize: C = [F-UdQ (4.1
[
P [paa
Constraint I: ¢ = V@ <¢ (4.2)
Joar  _
Constraint II 1 p™* =L = M 4.3)
Constraint Il : 0 <5<P<l, 0<5<px<l 4.4)

RECRFEMTNE, BHEBFRE: URTENER, XE—MEBTHAIRE
LEERENRHY,

AR TEXTREENEE  DTHEME s, XEREATREAHEOERRS
BT —AER. REVRERRIRQNWER. BTRATEAME, cHMEXAE
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HEFHEHEHRNHRMT SR

HMERBAMMUREA —LX5, BAZEAE T EARRMENEE ™ . ¥F
ERERE, o™ BT WERMNIMEES, o™ £ 051 ZEM—I 8.

Y T EX T SRR ER o™ STRRE M TS UMBHE T ZHR

H, RATXEME S & 025 0.6 28, JAUTALTARE T ZAMRGHT &,
TR E R AT T 34 T4 5 B At
HAKREHMNEY), ERURAELNESAHEERTUETAER

[pda -
Y T (4.5)

PAM Vm Ty

' ¢
AERNENRFERRELSAHEHNERE, AL MIARBEMT — L8,
TR ER; R— M, MBEMRRE LARESHME, BaEEcy

M (EREEEAMBAME , BALRRELAMEER (FH) SEARITE
BEAHR (R HRERRWD, ZRERREMNARSREE.

BRI EWARELMERERAARET — M, ZESR—IMHALEN
FREET 0 8.

Base material with FPorous anisotropic material
elastic moduius D°  with effective modulus DY

S

DY = pmD° D =p*. ¥
Solid Isotropic Porous Anisotropic
Material Penalization Maierial Penafization

43 ETEITER RO BT
Fig. 4.3 Penalization-based concurrent optimization with two class design variables

4.1.2 BEENMRELE

A TRERBTE, BARENHNRE LN RIS AT LT E 43
R, BERR QBN N ETHERY R Hn MRIT. §ABITLHHH
B—ABOLE 01 ZIMEELE: ERRELEi(i=12, N)BRTHEENP,,
HURELEE (=12 n)STRTHEE S p .
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AT REMERET, BIOXAENENERESTHEREN. MUREL MAR
HuBATIH R G540 3R ML % FE ¥ SIMP (Solid Isotropic Material with Penalization) 7
®. BREGHHERESND®, BABEMER o HAKBETRT N

D¥ = p*.D* 4.6)

RH o BRENRIREE.

RMEEURE, SAMERHESREEA—ERERRANN, RHBEA SIMP ¥R
HER. Ihl, aTREHMRTERTHRIMEAER, TAREREREHIHIT
A, BEZ MRS EORTRERER RN, B, REEXRE FRED L3
JEH LT SIMP, {H 2 PAMP (Porous Anisotropic Material with Penalization) [f4 8
NEE. MRGESAREEZAMENERD”, BAFEHENPHAHEDY TRRN

D* =pa.p* A7

EHEEGPRITEES, ERERE LNRETRNRELBEMEED N, B
REGH — SRR R BN ARG . b T RS R B 2 3 sk
AL, BEAEHTEHRE: N TERREENERAERP, 3 TENHE,
HTARGRTEERERERARYISS, X8, RNBIA—LFRAF ey xH0
{18 BRI AR

Constraint IV : y = th Py —P) <y 4.8)

BEmBRRE, [ RAELNELRMGKE CEBRTENME) . y £
GRENLAE, BRIVSEREES P BHEH—HhE,
4.1.3 GHMSTMYERR

EEERML, Hﬁ%ﬁﬂiﬁ#ﬂﬁﬁﬁ%ﬁ%ﬂkﬁﬁ%&‘]—iﬁ RiE@.1), BT
mHEm, MEMAMFREERY ETUARBRERAYC. B, TEXETES
HaregE, KARTFISH

K-U=F 4.9)
K = [B"-D*.BdQ (4.10)
n

RBEKEREHERIEER, BRNTABERE, UNFSLURMBU NS HF S
ME, ENHEELETEEET RENERRR. DYEENFEEN DY HEXK.
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D REZ MM S HREEE, ERFFH I RERFEESHAS. —HEE
RETHHRAKEHBR, H-FHEXREHITFHXRBEE. DY KIiFETL
BRERGRUITTENH N LHER: Bk, SEBERTHENERE LR &4RT
BRERARS S, HHTEETH.

k-u= b7 -D*dY (a.11)
¥
k= jbf D" .bd¥ 4.12)
Y

REk RMEHBNIEER, wRRENTR, bRNRABER, SIFRESKE
BEYT RANERER. DY EXNE46). EH, HERTE EHNASBHSHIER

L
lY

REIFTZRABE—1 (x3) MRAER, |¥|ERFHER,

(4.6-(4.13)5ERR T X TEMHT, BRETENETRU. BT, RIOIBLECH
LA R E KRR T U AT B AR R

— AP ERAIBERASHIBREENE S — PRI, — M ERRE
R WFEE, CLARERBNAETHRER. £NA—LETEERRENFFIS
tE3 % (SLP, Sequential Linear Programming) /%5 — 4% (SQP, Sequential
Quadratic Programming) B, SEMEXARAGS T EREHTEXNE. BCEFHRTF,
BB THRESHRER.

D" =— [P (I-b-u)d¥ (4.13)

a( [B" D BdQY)
E__f:[ﬂ. L3 .U
o, = oP, '

d( {B"-P*-D" -BdQ)

N
=_ T._ 8 .
;é;‘lr fﬂ{. Ijr

=-U]- [B"-a-P* D .BdQ., (4.14)
o}

-2
P

i

T J'BT.PI“.D”.BG’Q.U’
o,

_aC
P
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B( j B - D' .BdQ)

_a_C'___ i T aKr U ___ZUT Q .U
&, S op, = op, ’ (4.15)

--Y P (jB"-iam—-Bdn)

r=t g

RECREBIATRINEME, D XT p, 115 H0T LA sy M 8

= _j(l b )’“-w(l b-w)dY
oy o (4.16)
= ap™ J‘(I—b-u,.) ‘D*-(I-b-u,)dY

Y,

Zit, RIMCLHBHTHMMTHRERBRTESE. THRIMES MR
B, RFEXBIRHOMFIXMKER.

et

ERHE s=0
REmmE X
X&ErHp,

)

SR
(P F 4R ER XY)

L REHT - U

- HATHIFRNM C
2. SN o
3. METAE

ac,,
4. BUERM > (a)

B 44 FHRE
Fig. 4.4 Flow chant
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4.1.4 MAWB 1 £F7, M Hy iR
HHEM 45 A0 MBB B, —rERERMBHMTE B—HEHR=4
B, A7 HEWH. BRARIEEIIZS SRS S RATIE B iR

FAE, EEETNARLER—RE: sM ™ RECHER TR BRR, Ty
AR B LB RS

B s SR BESH P=1000, FHEBANE - METER—MEBTE.
EAEMEG RN E=2.1x10°, ARENv=03. JLARTHBR: L=4Hk=1,
ARRIAROEMER, FUSENYEES I TER. dTFhE, RO HE
SRR (BRRERER) 08 HE. B EMR Y 50X25, TMeE
aRKE R 25%25, HXRANTSEERT. BAEERER DOT thih288) SQP &k,

BT IHL ARG, HARAREN =01, o 0.4 MMy HITRAE.
W 4.1 Fim, WRAEMEKAREERHRAERREA, KBRS SR MLk
Fih, BRI AN EA. BRI, S FHRR S ERT — SRR
SEE, RALGHET LA B I A0IR I LSRG H AR, (2R, BEEESHAKER
B, BN BBMHEE. HWHTEAEE. AFERNIFNSER. Pmy=2 1,
IR 40 25 AR LM, YRR FRAR AR RSB

THEREy =4, MELEFHEERL . R42WERET. BENEIEANE
RIERALBAR. SPEBERE R ERARNLG =025 B, MR ERE
45 EEME 4.6 @ TN ABRTHAL, X2— A RIFER 28 RHRTE
AW, £=0.075 B, AN 45 HERUE 46 OFI THEART, XAKE—
A SRR B B . XL B T RATR I R R0 HB B T i iy
GR. Mo RMNBMEMR LM ; HRBTEL, KRGS ZAMNTH
B MER. ERNNEFSE, RENTEEEMNEETRIFOERS, XELE
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P= 10001 Micro destgn domain
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4.5 MBB #
Fig. 4.5 MBB beam
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() Triangular cell (b) Mixed cell
4.6 RIEEEMENFERWER

Fig. 4.6 Two microstructures for Linear Cellular Material**

ENER RS RITRISH N E SRR B R E Y AAROHE, BRE
ST MM MBESER, FTERINS O B ~0.12, BEAERIILLI—ES %

FHTHMULE R, 0% 43 FiF, BANS B TR MIRERNE, &
AN E SR ARE TERE. REWHTRIE, ERARRRENS AN
WAL R R B TR (ENEH BB TR EE N TRE AAIRIE.

4.1.5 MERF 2

EAERR, BROGEILL R (B 4755 2 RAMEE RH sy, H—
SRTERIR LR E D AR TS, SHIRER, £0ln—as s
5, JWIRTL, a=l fib@EA—BAREHER, AREED, o 74K

$0.1, 04714,
CLLLl
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47L R
Fig. 4,7 A L-shaped beam
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Fig. 4.8 A decomposition of the L-shaped beam
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ERIERNYAEE, ZURE LMEEREANS 1, TR REEEREH
MAFRRSHEZLR,. AT, ERXUERS—HEREHEX LR—1 5 BHRIML
W8, I LEERE—NMRFMAT, ETUMRNINE 4.8 FR=1#4%. ¥TB
Mo, BERNELAY, TESBx FANEER, NIRRT LB MERIRTE
RoRFRAN x HEER, REBAUNSN, WA BS, MEWHRIMN y FHERN
LB, BURBR—NTE. BETHRNE—HBER, INFELABBER—4H
BEREXE, MERPNRITEARERNERE A Bo0NNAIRE, HREEMZ B
BB RE. HRRR, BHHFERREFNXREUEEDR. ZXMERT, AR
BZHEMNELREAETEET. REAZETUEMRNY A ¥ B ZHHERL, o
CA ASRBHATIAY. RIOERBT AWM EERER: A1=0, B BHAREE, ABHEE
Bfef; A=, BN ERNBT, A=2803, BEIEFHRNTES. TER)
BRI REE AT RET THER.

EHERRRBFHMRBMEEBRLRNE 44 XBEABBY DY /DI RFEH
EHBERN T W L0, B DL (CEBEYP p,g=1,23) R ERERENITRN T
. MNERTLUET: WEANERR, B HIWNEMNRE, x FRREERNELA, &
BHhWEFRIER, ROAREHEBOESE TR x TR ERE. X—%87 1
HRAMTIER —B, B—RRIETAEHEE T4 3.

4.1.6 &g

AT REABUE RES MR BRSNS, RIRH T — MRRIRALR
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L SHEXTAARTER, EARMRELORIHERT.

2. RAmMUEAR, MEUATREIMGERE, ATITLBREHEENASE
B fAF O BE I

3. R TRBEWR, SIAT PAMP JTEfEEN Ext & B RS AAEETER,
T4&480 SIMP AR B TR B R E iRt h.

4. B REMRITRERN—MRLTEFEhRARE, B3 THENSHER,

5. ROVFERBAEHMSWERURE LB —, B TReA — SR H LEH
THRWMEYE, BRILTHRASIE LM ERBRRIIAL,
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#4.1 Ty LR
Tab. 4.1 Results for varying ;

M1

s ¢ ; Compliance  Microstructural topology
0.12 0.4 2 7515
0.12 0.4 3 5673
0.12 0.4 4 3676
0.12 04 8 7077
012 04 N/A 7583
#a42 Tl MGER
Tab. 4.2 Results for varying E
E g—M Compliance Structural topology Microstructural topology
23
o SO U
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Tab. 4.3 Results for varying gm

< ;_M—f Compliance Structural topology Microstructural topology
012 02 8880 L F N
N
] .
R A4ALERBBHR
Tab. 4.4 Results of the L-shaped beam design
E ;TE A Compliance D,’f /Dg Structural topology Microstructural topology
01 04 O 43012 0.55 u K @
i .
0.1 04 I 56958 1.38 E q @
. AN Y WY
61 04 2 64345 1.08 E F e
01 04 3 76590 1.27 b : - - o
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4.2 BT FHAMNERDEHRIMIL

MFEHRT, AMANEREEAE - MEBMRTRKIRARE RHR, &
FFHEBDZRANRABIRASRIATEIE N BT TERIE Cheng SR MR T
REAE AOHR 1M ARAL A AR Chellappa %R H AR FH A HSEMNRIMAL. WE 49
Fim. RELERUNETERS TRIENOEUAHE, EHATFThsm.

(a)
49 XWMER: (a) ETHERHRU™, () BFFRREHTREY
Fig. 4.9 Results of reference: (a) Featured-based design*”), (b) Optimization with finite-sized features™!

ATHNAI— A REHE S BEREN . RAVF BRI 1 BA 3 A S5
k. REMENE 410 Fir: $8MUGHEABBERM TR, NS T
WRIMEITRERE, BERMONAFHANEL, RENFERFEH N TRELEFTHR
Wit BER ER—ANEMRE EHRLEE, ERITRANTCEEFRE: 5—58
BN LM, BIGRTEMESANRMES 5. ERNOUENS, XHS
MR TAERFINRIFM . Bk, RAVRZAZET FEMMBEHR R, RARIE
RETF, WRBIRAHY T EEZERMM, TUBERNGRL: HTEREELR
BT RIENSH, PIMFR, ZHENRTERINTURANE TS, kBt
BMTEFRG TR BEBLHERTUEAEAEH, BRTLMEEERE.

BINEL WIS T ETHIUMREHRRLR . 8T8 SRR
TEHR TR, BT SRS THBLE M AL TN 5 3R T45 I (8T o ME B I B
TRTHRME, SRETEAIRTR T RS REN. AT PHEEFEHE
RAAERRTH, RS RS ART U REE AHEFR T RS R,

A single binck A structure composed with duplicate biocks

- [

M 4.10 BT FLEHMBER
Fig_4.10 Two-scale design based on substructure
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Fig. 4.11 Basic idea for the substructure-based concurrent design

4.2.1 XIMiTEE

BEHRURBENENN R RERURBRM, RIETRNELRFEA QBN
&, WTEHE SN ATERELSANM . BEEAEXHER % 8
—HRTEHANRTER p,(j =12,..m), FARNER, B4R TFHORNEEE
BP(i=12,...n), RAEAKE, BHARRHTUSHAWNRRR). §—4F4
MREFRN N ERTRAAHRNYURRTER p, . RTZ, SRR TR p, 3
BHRIT n MIBERDFHEPHET, TTERRITERP, WSS M FEH R
FRTHER, tmi. REERDT

Minimize: C = jF-UdQ (4.17)
el
22PpY, _
Constraint I E—E—V————Sg {4.18)
Constraint II: 6<5<P, <1, 0<d<p <l : {4.19)

RECRREMFIRYE, WRREFEM: FRIN: URTENTR, TE—MiB
FHAMRELEERRAERSR.

R EXT SRR THEME, RER L OMEHERAREET -4
W XEV ERHBQNER, My, RRTEMFE jMATHER, IR TE—AF
HUNNNATHE N, 4R Il AFLEFERADRET AR, X258
—IRESENEFZET 0 HH.

GRS RLUFFIR

K-U=F (4.20)



KEET AP FART

K= [B"-D-Bd2=Y" 3 [B'-D,,-BdQ (4.21)
Q g,
D, =P p;-D* 4.22)

HPD,, REIRTEMES j T RTHAEHE, T2 RE. T EXRH
MREERRA TR (SIMP) MEFEAMEERNXRREN, o« RETEYE, D°
REGHHNER, BATENRETE: BTRNBETEEXE, FEMEXET
RN, RAGREUTAFPHRES L.

aC T oK T T D
— U2 yg=- U, (1B -— BdQ)-U
P, aP, Z; " (n{ BP, )
=—“'P74'ZUJT.1'( IBT"’:'DH'B"’Q)'UJJ

i

ﬂu 5

(4.23)

ac 7K D

= U= U=- T . T .Bd)-U

3, %, 221, (niB 0, “24)

== p"- 3 Uj,-( [B7-Pf-D”-BdQ)-U,

¥ n”
4.2.2 WENH
FHEERE 45 Fiafi MBB £, JUIRTRAFEHEARE. B 412 87T ARY

REMHTRTFEHEATEHHRUGER. B c RREMAETEE LR, BIAE
B, ZEFET 015, 0.25, 035 =ZFFH: nRRRHEMINET TFEHLY, X
BERT 2% N4 FHMWELSL: mRFR—NFEANMNRTHE, XEECh 400, CY
REFRT AR RAE, BARRENIERTIE. X B0 R ILAT

() 5=025,n=8,m=400,C=791.94
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g by

03] ¢=0.25n=32,m=400,C = 786.14

(@ £=035n=32,m=400,C =483.40

a WA
L. P
A4 N
(&) §=025n=32,m=400,C =222546, 75 BB &L
B 4.2 UER
Fig. 4.12 Resulting topology

L QMR FEHNBETR. BANTFEHIMATFERRIIET —ERH,
TURLTFEHE AR HEEETETYSUNMERANER. NHRDE Lk
&, BETHEHREHCOSERRMAE, ZRGTFRAERIIRETERNR:ZMR.

2. (a) (c) (DREEMH LEENIEM. HERK, BEMENGOATRTNS
HRIE. XTRMERT, REEREWEREFETENE, DHHBERIERK,
ERMRELBIFEH. B, HWEBETIEEERN, ESHMARELEBRBTIH
Bz TEY,

3. @FMEMRUTES—H, ORAPEXVPRUNFERHERLTE, Te)F
ARMRERBIMEERTEMRBERNRA TS XA FENERERTEAS
, BRARTENMENNED R, REEN, RNFZ/INEEER.

4.2.3 &%

AVRH T ET FHUNBRDRRIR T

L BNEXTRARHERNHRETEMEINFER I, 3+ EHHREL
B R — MU R E AT R R . BUEE SIS M T MR B,

2. REX—RII TR ERRNTUR— A AR HE A ERIE A M
HIERE, AREFET —ENHE.

-48-



REHTAREH AR

3. A WHZEBINBESARTUANR L ETHIUNARBRARLE RN
REZRRGR. HhTHEUEISIAERTHHER ISR, ML ERR
FRRBH LR
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ARSI R MR S R A R, FR T LUTHS. %k
BENLER MR R S D R TR B M RS AN R R . DU
— A ET RS AAT BRI R R ETFEHNREH RN RTZ, 4
g inT

1. MNBER A FES TR B BTN R 7R 2E 80 R BERU%, AN 4 R B2
RETHE KGN —MERE. BRELREERT Dirichlet 1 5%&. 18 Dirichlet
BAFAHERAATE R, KA Dirichlet R £ 4, SR AEEERGENR
T RS ER=ELBEANER, HERNR2SSFEHLLRT,

2. Rl T HEBAEHRTHERSHNARE TS A F R 8 H %N B
AR ARTEEN FRRLERNER, SRrERNSEFERTHEHETHR,
[RGB KRBT, W86 T Dirichlet 1R £ 4L RAME A, X—H
U TERAFAAEMEHNBEMEERT N AR TINS5
R

3. Sl T ETHENDUAIHTEI G HR P 8 Bl — A
MR AN A BB T BN — N EE S A r dE 0 B0 15 4 0 — 4 /D MG
ZRAFIH RN BT R, BB ERIERREENTRTERRE T ENE, 5
RemEBBREN T EERLERY: EEREHRARE L2 HS H L3 —E K F
B, FRCRES AR A RRM IR RN E, £ERTFEARKIGTASE
BLEHEARE: BES R T RA R r o M T RS Ve S e R 3R B TR Ak
TR Y |

4. BT DI MEH AR S AR NSHRHRRL TR ROSSENT
FTRE LB, FREERE— MR T RN, Fer ol A a s
AR EASNRRR R . ATRATEMUER MEHTERRYETHE,
MR BB S M SN R S S AS S NEZE M. BiL5 A SIMP. PAMP FIBK
HR, ERMRELHBET RSN RN R, RITEEBEMNMEHTEETR
B —H, WRRTTE SRR LN TR, (B R SE
KT ERRBSIAR . BERPEIRIE T HEOE R TN, RAET R T 4%
HRNHW. ROVEATREWAT, BAMEHRINBHIRE, KEREET %
HIZRPPRHIT LR, T ELBUA MK Sl 7 SRt 0 2 SR A ST TRt 4 T (R,
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5. Rl TET FHEMRBREMRAL ST 7 R BATE X T R AR B R B4 AR
THEWRIPNTERIAN, FHREERR —MRORE R ITIRIRAE, HEESSH
THANGE R EA. BEBANERTUEBNETIETHSLNFEEH AR
R, BATEANSIAZETERGHUNLRRYT, ML EHRTERRER D
Mo dbsh, E—E it R RITRT LA — A S S BRI 3 2 4T 8
EHE, SEFEERRT —ENTE.

ALFAARTY RERFEAEETN. $RETEARLRT, REBTHNER
RBT R REME R ERE R, BB , ERS K BN R LA
THRIZERENLRBLIE (. #F. HEES) HRE, XEHEETT. FEXL
FERBRAHRER T,
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