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{两 要

本文对地震子波估计和反褶积的理论方法进行了研究。在常规的地震子波估

计和反褶积的处理中，通常假设地震子波是最小相位，反射系数为白噪的。这些

假设条件及其对应的方法在实际应用中效果一般较好，但不能保证假设条件总是

正确的。而基于高阶统计的地震子波估计恰恰能够消除对地震子波的最小相位假

设和反射系数的白噪假设，并为进一步求解反射系数，实现反褶积奠定基础。本

文就是在前人研究的基础上，研究和实现基于高阶统计量的非最小相位的地震子

波估计的方法，并进一步探讨了反射系数的求取。同时，创造性的将独立分量分

析(ICA)算法应用于地震资料的反褶积处理中，实现了地震子波和反射系数的

同时求取。主要完成了以下工作：

1．在无噪声假设条件下，实现了最小相位地震子波估计及地震反褶积。

2．在无噪声假设条件下，利用高阶谱(双谱)估计出非最小相位地震子波。

然后，结合同态反褶积方法的思想求出了反射系数。

3．在无噪声假设条件下，利用地震记录时间延迟矩阵和地震子波带状褶积矩

阵，将地震褶积模型转化为一般线性混合ICA模型，采用FastlCA算法，将带状

性质作为先验信息，实现所谓的带状ICA算法(B．ICA)，得到个数与子波算子

长度相等的多个反射系数序列估计和子波序列估计，最后利用褶积模型提供的附

加信息优选出最佳的反射系数和地震子波。

4．在无噪声的条件下，结合同态反褶积思想，将地震记录由时域变换到复倒

谱域，使地震褶积模型变换为一般线性混合ICA模型，再利用FastlCA算法将地

震子波和反射系数分离，最后将分离的地震子波和反射系数再反变换到时域，得

到相应的地震子波和反射系数。

模型数据和实际二维地震道数值算例表明：对于统计性反褶积，在不对反射

系数作高斯白噪假设和不对子波作最小相位假设的所谓“全盲’’条件下，本文介

绍的基于ICA的两种反褶积方法可以较好解决地震盲反褶积问题，是基于二阶

统计特性的地震信号统计性反褶积方法的提升，具有可行性和应用前景。
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High—order statistics based realization of seismic relecticity and

wavelet

Abstract

Both the wavelet estimation and the seistoic deconvolution are studied in this

paper．The wavelet estimation and seismic deconvolution al'e always based on the

assumpsition of Guassality and whiten noise to relecticity and minimum phase to the

seismic wavelet．It commonly has a good effect in the practical application，but it

call’t be sure that these assumpsitions aye always accurate．However,the wavelet

estimation based on the High-order statistic Can eliminate the assumpsition of

Guassality and whiten noise to relecticity and minimum phase to the seismic wavelet．

Furthermore,the relecticity Can be separated．Then the seismic deconvolution Can be

achieved．The paper studies the non—minimum phase seismic wavelet estimation and

seismic deconvolution based on the production of fore people．At the same time，

applying independent component anaysis to the blind deconvolution of seismic data in

a creative way．Completed primarily below work：

1．Neglecting noise，achieves the minimum phase seismic wavelet estimation and

seismic deconvolution．

2．Neglecting noise，applying bispectrum to recover the no minimum wavelet,
and then applying the homomorphic deconvolution method to realize the

deconvolution to obtain the relecticity．

3．Neglecting noise，making use of time lagged version matrix of convolved

signal and seismic wavelet banded eonvolving mixture matrix to construct a basic

ICA model．By applying FastlCAalgorithm，and combining the banded property as a

prior information，giving rised to a banded ICA algorithm(B—ICA)，more reflectivity

series are produces弱many as the dimension of the seismic wavelet filter,and finally

one best independent component Can be extracted from the candinate solutions by

additionalinforrnation from the seismic convolution model．

4．Neglecting noise,changing the seismic record舶m time realm to complex

cepstrum realm to transfonn me conlnlon seismic model to the basic ICA model．By

applying the FastlCA algorithm，separating the the seismic wavelet and reflectivity

and changing the result back to the time realm．

The model and real seismic data mumerical examples all shows that the

stasticstical deconvolution based on ICA Can inverse blindly the wavelet and the

lI
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reflectivity at the sallle time with no assumpsition of Guassality and whiten noise to

relecticity,and 110 minimum phase to seismic wavelet．The algorithms based on ICA

rcfcred here can slove the seismic signals blind dcconvolution effectively and worth

doing more rescarchs．

Key Words：wavelet estimation；sdsmic deeonvolution；releetieity；high—order

statistics；independent component analysis．
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1前言

1．1选题依据

在通常的地震反褶积处理中，二阶统计量(如相关函数、功率谱等)作为主要

的处理手段。但是二阶统计量本身存在很多的不足：一方面功率谱估计的过程中，

如果把随机过程作为不同分量的组合体，就必须假设各谐波分量互不相关，然后

估计各个频率成分的分布，这样各个频率分量的相位关系受到抑制。因此，该方

法只对线性系统有效。此外，相关函数与功率谱中所包含的信息只能完整的描述

一个己知均值的高斯过程，其应用取决于信号的高斯性假设。另一方面，自相关

与功率谱只能提供研究信号的振幅信息，而不能提供其相位信息。另外，自相关

与功率谱估计技术处理许多问题的前提是假设所观测噪声是高斯白噪声。因此，

不能处理非高斯信号。总之，基于二阶统计量的地震子波估计和反褶积的方法在

应用时，不能保证对地震子波和反射系数所作的假设总是正确的，因此引入高阶

统计量这一新的数学工具。

高阶统计量方法是近几年国内外信号处理领域内的一个前沿课题。高阶统计

量广泛应用于所有需要考虑非高斯性、非最小相位、有色噪声、非线性或循环平

稳性的各类问题中。高阶统计量与二阶统计量(自相关函数)相比具有三方面显

著的优点【1‘31：(1)高阶累积量具有对高斯有色噪声恒为零的特点，可用于提取高

斯有色噪声中的非高斯信号：(2)高阶累积量含有系统的相位信息，可用于非最小

相位系统辨识：(3)高阶统计量可用于检测和描述系统的非线性。而且，基于高阶

统计的非最小相位子波估计，无论是从理论方法还是实际的应用中都取得了比较

好的效果，显示了一定的优越性。而在此基础上再进行进一步的研究，为实现地

震反褶积奠定了基础。

起源于盲源分离(B1ind Source Separation)或盲信号分离(Blind Signal

Separation)的独立分量分析(Independent Component Analysis，ICA)基于高阶

统计特性，是盲源分离技术近年来的一项重要进展。它可以仅在信号统计行独立

而不对反射系数和子波增加任何假设的条件下进行地震反演，为解决地震反射系

数和地震子波的求解问题提供了一条重要途径。
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1．2地震子波估计和反褶积方法研究现状

1．2．1地震子波估计方法研究现状

提取地震子波的方法包括两类，第一类是确定性子波提取方法，第二类是统

计性子波的提取方法。确定性子波提取方法，如维纳滤波、谱除法、广义线性反

演等，是利用测井资料首先计算出反射系数序列，然后结合井旁地震道由褶积理

论求出地震子波。第二类统计子波提取的方法，如自相关的多道统计、同态反褶

积、以及利用高阶累积量估算子波的方法等。

子波提取的两类方法各有其优缺点。确定性子波提取方法的优点是不需要对

反射系数序列的分布作任何假设，能得到较为准确的子波，缺点是需要利用测井

资料；统计方法的优点是不需要测井信息，也可以得到子波的估计，但是往往需

对反射系数与地震子波作出假设(地下反射率是具有白噪声谱的随机序列，地震

子波是时不变和最小相位的)，其假设条件与实际情况的吻合程度对提取子波的

精确程度有很大的影响。在上述假设条件下，地震记录道的自相关就相当于地震

子波自相关的一个估计，即地震子波的振幅谱是已知的。在此基础上：若给出子

波是最小相位、零相位或最大相位的假设，则该方法可提取出较为准确的地震子

波。但是实际当中地震子波是一种接近最小相位的混合相位子波，因此使用该方

法并不能得到准确的结果。子波估算的另一类统计性方法是同态反褶积方法，从

复赛谱域中分离子波【41。

整体上来说，前期提出的子波提取的方法只得到地震子波准确的振幅谱信

息，后期才有一些学者进一步提出确定子波相位的方法。

刘金俊提出了一种提取子波相位的方法【5】。该方法利用最小相位子波振幅谱

的自然对数与相位谱之间的希尔伯特变换关系，经Z变换求得相同振幅谱不同相

位谱的一系列的各个子波，通过扫描的方法在最大方差模准则下确定子波。

Camboi s和Stoffa利用对数／付氏域的表面连续相位展开来求取子波f酗。子波的

相位谱是变化缓慢的，只在少数点有剧烈变化，而反射系数和噪音的相位谱是变

化剧烈的均值近于零的杂乱无章的曲线，因而可用地震道各点的平均相位来代替

子波的平均相位，从而求得近似的子波。此方法的假设条件是：平均反射系数是

白噪的；平均子波是最小相位的。Lazear提出混合相位子波估计的指数衰减法【71。

2



基十商阶统计实现地震反射系数和了．波估计

但是，此方法只在有时窗起点取在地震道开始前时才是有效的，而实际中做到这

一点很难，并且根本无法判断方法是否失败。

累积量的提出最早可以追溯到19世纪80年代，丹麦统计学家Thiele最早

对累积量函数进行研究。到1984年Shiryaev将前人的研究概括为统计理论之后，

累积量逐渐被广泛应用；而高阶谱的应用到了20世纪90年代初才开始发展起来。

将高阶统计用于提取子波则是Lazearl993年提出的，这才真正意义上抛弃了对

子波最小相位的假设【8】。此类方法假设地层反射系数是三阶或四阶平稳的、零均

值、非高斯、独立同分布的随机序列，噪声为正态随机序列(可以是有色的，也

可以是白色的，但与信号不相关)，Lazear通过将某一给定的初始子波的高阶累

积量与地震记录的高阶累积量在最小平方准则下拟合并利用最速下降法来估计

非最小相位子波。最速下降法是线性拟合方法，这种方法有两个缺点：第一，所

得的结果受给定的初值影响很大，并有和初值相像的趋势；第二，结果可能陷入

局部极值。第一个缺点隐含了如果初值给得不恰当，所得结果可能会有较大误差，

这是拟合方法难以避免的。但是，试验验证当给定的初始子波为位于零点的脉冲

时，则可以得到较为满意的结果。为了减小第二个结果的误差，VeliS和Ulrych

【9】(1996)提出了一种非线性拟合方法：模拟退火法。该方法有效地避免了结果陷

入局部极小的可能。Ulrych和Velis等提出用一个多维的锥形函数去圆滑累积

量估计，然后再利用模拟退火法提取子波，将结果与利用倒谱迭加方法提取的子

波比较，发现两种方法的结果具有很好的一致性【lo】。但是模拟退火法求解也有它

自身的缺点，如控制参数的选择比较困难(通常需要通过多次实验来确定)，并且

运算时间长。因此，尹成等提出通过求解高阶累积量矩阵方程法来提取子波【l¨。

该方法将地震模型定义为平稳的非高斯的滑动平均模型，由此推导出矩阵方程求

解子波。梁光河提出将高阶累积量方法与确定性方法结合起来进行子波提取。具

体做法是先用确定性方法得到较可靠的井旁道子波，然后用这个子波作为初始子

波，利用模拟退火法通过累积量拟合的方法提取子波【41。

上述各种方法都是在时间域利用高阶累积量提取子波。在频率域应用的有谢

桂生等提出的由地震记录的双谱(地震记录三阶累积量的二维付氏变换)求得子

波的相位谱【12】，同时利用分形的原理求得子波的振幅谱，由振幅谱和相位谱通过

反付氏变换求得时间域的子波。
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1．2．2地震反褶积方法研究现状

地震反褶积方法分为：确定性反褶积和统计性反褶积。确定性反褶积方法主

要是利用测井资料计算出反射系数序列，或者利用测井资料和地震道联合提取出

一个恒定的地震子波，并以计算出的地震子波或者反射系数为已知条件来进行反

褶积。这种方法的优点是不需要对反射系数序列的分布或是子波的相位作任何假

设，就能得到较为准确的反褶积结果：缺点是需要利用测井资料，这就大大限制

了其应用。统计性反褶积方法是利用地震记录来估计地震子波，然后作子波反褶

积。分为两类：一是常规的基于二阶统计学(SOS)方法的统计性反褶积：一是

基于高阶统计学(HOS)方法的统计性反褶积。基于二阶统计学方法的反褶积的

优点是不需要测井资料，但往往要对反射系数和地震子波作出一定的假设，例如

假设地震子波是是不变和最小相位的，地震反射系数是白噪的随机序列。

长期以来，人们一直尝试抛开这些假设，来实现地震的盲反褶积。例如同态

反褶积。A．V．Oppenheim[13】(1965)首先提出了用同态反褶积来分离地震子波和反

射系数，同态变换是一非线性变换，对地震子波不做最小相位假设，利用对数谱

平均提取子波直接分离出地震子波和反射系数序列【14】。其假设前提是：子波部分

比较光滑(以低频为主)，而反射系数部分则很不光滑(以高频为主)。在复赛谱上，

子波主要分布在数值较低的区域，反射系数主要分布在数值较高的区域，这样在

复赛谱上就能将两者分开。但实际上两者是有部分重合的，为此国内外许多学者

提出利用多时窗随机叠加的方法来提高估算精度【4】。在解决地震信号处理方面，

国内外的一些学者也进行了研究。R．W．Sehafer[15】提出了相位曲线展开法，但该

方法比较复杂，而且由于用此法展开的相位曲线不规则，在最后分离出的反射系

数中会产生明显的附加噪音。P．L．Stoffa[16,17】等人还提出了先求相位曲线的微分值

而后积分的方法，将z变换对数谱展开成泰勒级数。俞寿朋【18】对子波相位的展开

进行了探讨，周兴元【14】为克服实际数据相位展开的问题，提出了统计同态反褶积

方法。另有一些文献中也提出了各种改进的同态反褶积的方法【19珈1。

信号处理界和地震界已经有大量文章研究在不对子波相位和反射系数的分

布作假设的条件下进行地震反褶积，并给出了很多有效的方法，但大多是基于二

阶统计量【211。而基于高阶统计学方法的反褶积能够直接反演出子波的相位，与以

往的常规反褶积相比，不需要对地震子波和反射系数作最小相位和白噪假设，能

4
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够实现所谓真正的盲反褶积。

Wiggins(1978)提出的最小熵反褶积(Minimum Entropy Deconvolution，

MED)方法提供了最有价值的方法【221，仅对反射系数要求为“简单特征的稀疏

尖脉冲”，进而寻求与地震道一致的大的尖脉冲具有最小数目，也就是引入目标

函数，把反褶积结果的简单程度归结为数值大小的比较，即在最小熵(最大确定

性、简单性)条件下寻优。Donoho(1981)发展了Wig百ns方法【231，并给出了一

般解释，以后由于高阶谱估计理论研究的发展以及地震勘探反褶积实际应用的需

要，促进了最小熵反褶积的深入研究，得出了较为有效的算法与更为明确的解释。

最小熵反褶积对反射系数采用方差最大准则(四阶累量——峰度)，并且要求反

射系数是非高斯分布的，对地震子波没有相位假设，属高阶统计学方法。

鉴于盲分离与盲反褶积方法的渊源联系，可根据基于高阶统计学盲源分离方

法一独立分量分析(independent components analysis，ICA)导出的一种实现地震
盲反褶积的方法来同时实现地震反射系数和子波估计，是对最小熵反褶积方法的

扩展和提升。

独立分量分析是针对语音分离问题发展的一种盲信号分离技术，已成为信号

处理中的一个研究热点，在语音识别、图像识别、通讯、医学和地震信号处理等

领域倍受关注【241，现已经被广泛地应用在很多领域中。刘喜武和陆文凯等在国内

率先将独立分量分析方法引入地球物理领域，提出了利用独立分量分析进行地震

信号去噪【25’261、实现地震台站接收到的转换波和多次波的分离【271和解决多次波

自适应相减等问题【28】。针对时间延迟的盲信号分离，即所谓的盲反褶积问题，文

献[29]提出用ICA实现同态反褶积(盲反褶积)的方法，地震信号反褶积可以借

鉴。文献[21]中曾提出了一种用ICA方法进行地震信号盲反褶积的思路。2003年

在日本召开的“独立分量分析与盲信号分离”年会上，Kaplan与Ulrych给出用ICA

实现地震盲反褶积的初步方法。

1．3本文的基本研究思路和研究内容

本文研究基于高阶统计的地震子波估计和反褶积的方法，基本的研究思路为：

研究时间域的反褶积，利用高阶谱估计出非最小相位的地震子波并进一步求出反

射系数。利用基于高阶统计的盲分离方法——独立变量分析(ICA)来实现地震

5



基于高阶统计实现地震反射系数和子波估计

子波和反射系数的同时求取。本文的主要研究内容：

①传统的地震反褶积方法研究与数值实现

②基于高阶统计的子波估计及反射系数的求取。

③基于独立变量分析的子波估计和反射系数的同时求取。

1．4主要创新点

①在时间域无噪条件下，应用独立变量分析(ICA)算法实现了地震盲反褶

积，同时实现了地震反射系数和子波的求解。

②在无噪条件下，实现了基于独立变量分析(ICA)的同态反褶积，同时实

现了地震反射系数和子波的求解。

1．5理论意义和实际应用价值

基于高阶统计的地震子波估计和地震反褶积方法能够摆脱对地震子波最小

相位和反射系数是白噪的假设的束缚，使地震子波估计和地震反褶积的结果更符

合实际情况，具有重要的理论意义和实际应用价值。
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基十高阶统计实现地震反射系数和了波估计

2地震反褶积和子波估计

2．1最小平方反褶积

提高地震记录的分辨率，关键要尽可能地消除地震子波的影响，即把拉长的

地震子波尽量变成一个较窄的脉冲，这就是反褶积‘301要解决的问题。

2．1．1最小平方滤波

由于激发脉冲经过大地地层滤波后接收到的不再是一个脉冲，而是一个拉长

了的子波，这样每道地震记录就是一些不同到达时间和不同幅度的波形叠加，从

而模糊了各反射系数界面的到达时间和反射系数的大小。如果能找到一个反滤波

因子(反子波因子)a，，使子波岛变成一个窄脉冲4。即

口f幸勿=4 (2-1)

但是，当子波包的频谱B(国)有零点时，满足式(2—1)的口，使不存在的，即

要使包经过褶积后精确地等于谚是不可能的。于是有

at奉包≈4 (2-2)

设误差为￡，则

E=(at幸6f一4) (2—3)

要求在任何时间，误差￡都要小。由于式(2．3)右边的差值可正、可负，因此每

个时刻差值之和最小反映不出总误差的大小，所以用每个时刻差的平方和最小来

反映总误差最小，即用

Q=∑s；--E(q木包一巧)2=min(2-4)

来衡量式(2．3)的近似度。所谓最小平方滤波就是找出滤波因子at，使误差能量

Q达到最小Qmino

用数学模型来表达就是：已知输入信号‘(可认为是子波2j1)，要求设计的

滤波器(滤波因子)向(可认为是反滤波因子a，)使得实际输出Y，=‘幸噍与期

望输出(已知)乙(不限于谚)的误差平方和Q=∑(只一z，)2一∑s；为最小(Qm；。)。
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显然，当实际输出与期望输出完全一致时，即Ea=只--Zt=0(‰=0)，此

时把已知信号‘通过滤波因子曩作用后精确地转化为另一个已知信号zr，所以有

t·鬼"-Zt，在频率域上有x(缈)日(彩)=z(缈)。

2．1．2最小平方滤波因子的求解

求滤波因子鬼，要使其误差平方和达到最小Qm，也就是要求实际输出Yt与

期望输出Zt尽量接近。接近的标准采用最小平方准则，其中Q是依赖于滤波因子

鬼，即为I的多元函数，实际上是求多元函数的极值，即求

Q=∑#=∑I∑见k-z,12
／ 、

t t＼f ／

(2．5)

对每一个曩的偏导数，并令其为零所满足的方程署=o(t-o，±l，±2，⋯)，具

簟2藻墨-z,翻·：0 ㈦6，

=l∑2l∑I‘一， I一∑乙‘一，I=

设胁+1长度的滤波因子为

JIr-(h嘞，舡嘶+。，⋯，红吨+肼)
仿照式(2-7)可得

8
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皋十高阶统计实现地震反射系数和了波估计

一m0+m

∑h rx．(I—f)=o(m(1=-mo，一m。+1,---,一聊。+m) (2-10)

T=--m0

式(2—10)就是式(2-9)中的曩要满足的方程。由于自相关函数是对称的，即

乞(，)=r(-1)，因此式(2—10)可写成如下矩阵形式

o(0)

o(1)

k(1)

名(0)

k(m)

o(m-1)

名(m)r(m-1)⋯ 名(o)

舡。。

垃m0+l

舡％+。

2．1．3最小平方反褶积(脉冲反褶积)原理

0(一聊。)

o(一％+1)
；

o(一％+优)

(2．11)

最小平方反褶积是最小平方滤波的一个特例。前提是假设反射系数序列，；为

一白噪序列，地震子波包为最小相位的。最小平方反褶积的数学模型为：已知输

入信号为子波包=(6b，6l，⋯，吃)，要求设计的滤波因子口，=(口咄，口嘞+．，⋯，口飞+。)

使得实际输出只=at幸包=∑以，包一，与期望输出(已知)吐(一个短脉冲)之间
T2--m0

的误差平方和Q=∑(q掌岛一Z)2=∑#为最小，即要求口r使误差平方和绋达

到最小值‰。
由式(2-10)可知a，必须满足方程

一m0+m

∑arrbb(1-r)=么(m，=-m0，．m。+1，．．·，一脚。+聊 (2—12)

f2-rtl0

写成矩阵形式为

‰(0)

‰(1)

‰(1)

‰(0)

‰(m)

‰(m-1)

‰(聊)r。b(m-1)⋯ ‰(o)

口一％

口一m0+l

口一m。+册

‰(一％)

‰(一％+1)

‰(一％+聊)

(2．13)

当取短脉冲z=巧=【1。,，tf-≠-o。 ，有‰(，)=军z+，6，=莩4+，6r=6．，，因此式
(2．13)变为
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‰(o) rbb(1) ⋯

rbb(1) ‰(o) ⋯

i ； ⋯

‰(m)rbb(m-1)⋯

r6b(m)

‰(m-1)

r。s(o)

口-％

a-mo+l

a-too+m

‰

‰一。

‰一。

(2．14)

式(2-14)即为通常所说的最小平方反褶积方程。

反射系数序列，：为一白噪序列时，可推出地震记录的自相关函数，曩(，)等于

地震子波6r的自相关函数‰(，)。地震子波6f为最小相位的，其反子波(反滤波

因子)q存在，且为物理可实现的(即当f<O时，at=0)，也是最小相位的。因

此，在做最小平方反褶积时，可设计所+l长度的反子波口f为at=(口o，at，⋯，a。)，

式(2—14)中取mo=0，由于地震子波为物理可实现的，所以有bo≠0，

6-。=b_2=⋯=6-．=0，因此式(2-14)变为

rss(o)

rss(1)

‰(m)

rss(1) ⋯

‰(o) ⋯

； ⋯

rbb(m-1)⋯

上式两边同除‰得

rss(o)

rbb(1)

rss(1)

rss(o)

‰(册)

r66(,n-1)

‰(o)

rbb(m)

rbb(m-1)

‰(历)r蚰(m-I)⋯ ‰(o)

口o

q
●

：

am

a、|b、

aI／bo

nm慨

60

0

：
●

O

(2-15)

(2．16)

由式(2—15)和式(2-16)可知，用(ao，aa，⋯，am)进行滤波和用

(ao／bo，a，lbo，⋯，a．／to)进行滤波，除差一常数60外效果是相同的，因此不妨设

60=1，则上述方程为

‰(o) rss(1) ⋯ rbb(m)

rss(1) ‰(o) ⋯ r拍(m-1)
● ● ●

● ● ⋯ ●

● ● ●

‰(册)r蚰(m-1)⋯ ‰(o)

‰

q
●

：

口肘

(2-17)

由式(2-17)知，当地震子波6，的为最小相位时，求反滤波因子口f时不必知道地

震子波6f的数值大小，只要知道地震子波6r的自相关函数‰(，)即可。由

10
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‰(，)=o(，)，只要求得地震记录‘的自相关函数名(，)，就可由式(2·17)求得

反子波at，进而求出反射系数，：。

2．2最大熵反褶积

最大熵反褶积【3l】也叫伯格反褶积。1967年伯格(Burg)[32】首先把熵的概念

应用到谱分析上，提出最大熵谱分析方法和一套提高谱分析的分辨率的计算方

法。1975年以后，该方法应用到地震反褶积中，提出了最大熵反褶积方法。Burg

最大熵谱分析利用最大熵准则，根据时窗内的数据预测时窗外的数据，从而提高

自相关计算的精度。所谓的最大熵就是假设时窗外的数据具有最大随机性。最大

熵反褶积方法逐一用时窗内的数据计算出自相关的零滞后值，然后根据最大熵外

推出其它滞后值的自相关值，从而解决反褶积问题。最大熵法在计算过程中应用

了正向和反向预测误差功率最小的条件，计算出的正向预测误差就是预测步长为

1的预测反褶积，也就是最小二乘脉冲反褶积的输出，为反射系数。

2．2．1最大熵反褶积原理

最大熵反褶积的基本思想：假设数据时窗以外的数据具有最大的随机性。不

确定性最大，即信息量熵最大。然后在熵最大约束条件下由时窗的自相关值外推

时窗外的自相关值。Burg从预测误差滤波的概念出发，使向前预测误差和向后

预测误差的功率的平均值最小，从而建立由信号数据序列本身出发，使得在已知

M—l阶向前预测误差和向后预测误差后，可以递推得到M阶向前预测误差和向

后预测误差，直到需要的阶数为止，其中向前预测误差就是最大熵反褶积结果。

2．2．1．1利用最大熵条件外推自相关序列

对于一个M维的高斯分布有

p(jcl，恐⋯h)：[(2万)了M(det％)jI】_lP—jIJ7‰★

其中，p(‘，t⋯％)为联合概率密度函数。

(2．18)
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R|iI，=

k(0)
k(1)

r盯(1)
k(0)

k(M-1)r盯(M-2)

k(M—1)

k(M一2)

k(0)

(2·19)

其炳为：

H M=log[(2a'e)u／6(det RM)P6]

：了M l。g(2石P)+i导l。g(det』。)
‘2·2。’

要使熵达到最大，只需det‰达到最大。％为正定的，熵只存在正的极值。

而拙‰具有如下的性质：(1)det％≥0；(2)det％是关于名(M)的二次函数，

且(o(M))2前面的系数是负值。因此当k(o)，k(1)⋯r。(M-1)已知时，可以通

过对最大熵求极值得到名(M)。这时的dot如+。是k(膨)的二次函数，

0) o(1) ⋯

1) 乞(o) ⋯

● ●

● ●

M)k(M—1)⋯

令糟Or=(M-0，得、‘

)-v—q

o(1)

k(2)

o(M)名(M—1)⋯ ，曩(1)

由此可以求出o(M)，依此类推。这样每步按照最大熵原则外推后一个自相关序

列的值，可以外推到多个，得到很长的自相关序列，可大大提高功率谱的分辨率。

2．2．1．2 Levinson递推

对于零均值高斯分布随机信号‘(刀=l，⋯N)，其M阶自回归模型(AR

(M))为：

M

‘=一∑％．，毛一。+巳， n=l，2⋯N (2—23)

^llI

12

拦；州

2220=
力力

一

一

似∽；

o

o

●

●

●●

吣D

o

k；
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可进一步写成：

^，

y口。x ： (224e )乙％，m‘一m
2
n

L2-24 J

m=J

其中：％．。=1，巳：预测误差，就是一阶预测反褶积结果，当口=1时也叫脉冲

反褶积。展开式(2．24)得

即

x
n七aM．1Xn一1+aM．2

x q一2+⋯n M．M xn—M
2 e
n

两端同乘以‘一。后取数学期望得：

，；(后)+％'lk(后一1)+⋯+(k，M名(七一^力=o

k(1) k(0) ⋯o(M一1)

名(2) o(1) ⋯o(M一2)

o(M+1)o(M)

1

aM．I

aM．JiI， =圈
同理，式(2．25)两边同乘以毛，取数学期望后得

名(0)+％，。k(1)+⋯+％Mk(∽=昂

联立式(2．27)与式(2．28)得

名(0) k(1) ⋯k(M)

k(1) o(0) ⋯k(M一1)
● ● ●

●

● ● ● ●

● ● ● ●

乞(M)o(M-1)⋯ o(o)

①当M=o时，昂=k(0)；

②当⋯，她。一掣，

l

aM．i

aM，M

匕
0

：
●

0

日=k(o)(1一lali|2)=昂(1一Ialll2)；

(2．25)

(2-26)

(2-27)

(2．28)

(2-29)

L：垒盟±坐盟(爹当M=2时，得1n：．：尘盘』旦瓣：q。+口挖q。’昱2日(1--a2212)。
依此类推，可得递推公式：
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昂=k

aMM
2

(0)

一(k(M)+
}

。，。r．(M-m)l
}
M=1，2⋯ (2．30)

4肘．研=aJ|l，一I．m+口^，，||l，a^，一I．|IIf一_ m=l，2，⋯M—I

昂=匕一。(1一I几12)
其中：初值为昂--r=(O)；％．。=1，％，。m>M)=0，％．JI，口几。

由式(2-30)可知，只要知道M—l阶所有系数aM-l,m m-o，l，⋯，M一1)和

几(当前阶)，就可递推出aM．，(m=0,1，⋯，M)，式(2-30)即为Levinson递推

公式。

2．2．1．3 Burg算法

利用Burg算法【33】计算几既不需要计算全部的预测误差系数，又能保证结果

是稳定的，即I几I=I％朋I<1。取向前预测误差和向后预测误差功率的平均值最

小，即式

～=吾兰～阿I(M川)12+障：’12)M=1，2⋯ (2-31)

其中：删为向前预测误差，啦’为向后预测误差，可由下式求得。

I职)=∑％棚昂。 M=l,2⋯

{ 一M 材
(2-32)

I e(bM，)．∑％胪。靠。=∑am朋靠Ⅳ+，M=l,2⋯

Burg算法具体的算法如下：

①当膨=o时， 昂2 k(o)5专善‘2；

②当肘：。时，q=三薹N(1弓匕12+le2：J2)=三薹[I熹口-，。玉，。12+I圭q，。‘一-+。12]；
=昙兰(”岛舶12+1靠。+一毛12)

③由要：o得，P。=-2Z％‘一。／∑(Xn2+工R_i2)，又由式(2-29)，可得
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毛=P!!：}^．=％所以胪一2丕N P蹦譬一。／薹((P埘+(龆)2)；
同理：令霎丛：0，可得

oPM

砌=_2∑N eM!M-Jle一(M-．I’／兰((班叫)2[(M-I’)2) (2．33)

月=M+l ， 月=M+l、 ／

Burg算法递推时直接从原始数据出发，求满足要求得滤波器(1，％，I，⋯％．M)，

而无需计算自相关值，只要从该数据序列得自身出发，按照向前、向后预测误差

功率平均值最小原理确定误差滤波器，而对数据序列以外的数据不作任何假设，

减少了误差，提高了精度。

把e川(M’和尤’表达式中的口肼埘用Levinson递推公式式代入得

∥f川,n=EaM，。毛咱=器1’+几器’
m=0

e巩!M。’=∑％’JI，，‘一。=％(M扩-。I’+砌彬?‘’

在Burg反褶积算法中，当求得M一1阶向前和向后预测误差后，由式(2-33)

可求得耽；由式(2·34)可以递推求得M阶向前和向后预测误差，而向前预测

误差的结果，也就是最小相位信号反褶积输出的结果。

2．2．2最大熵子波反褶积的实现步骤

在地震记录中，当子波为最小相位时，其向前预测误差即为最大熵反褶积的

结果，其分辨率较高，但信噪比低，处理效果不理想。在最大熵反褶积的基础上，

进行最大熵子波反褶积，假设反射系数为一白噪序列时，将反射系数(向前预测

误差)作为初值，用反射系数与地震记录作相关，提取地震子波‰(f)=玉簟吼=匆，

再用多道统计平均方法，求出最终子波，并使其最小相位化。对子波进行整形，

再做确定性子波反褶积，求反射系数。

具体步骤【34】：

①计算出所有阶的向前和向后预测误差，得到反褶积输出结果；

②地震子波为最小相位时，向前预测误差为反射系数序列，用反射系数与

地震记录做相关，提取最小相位单道地震子波；

15
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⑨多道统计平均求子波，并对子波进行最小相位化整形；

④将整形的最小相位多道平均子波作为确定性子波实施反褶积。

2．3同态反褶积

同态反滤波不同于前面所讲过的最小平方反滤波或预测反滤波方法，它不需

要假设地震子波的最小相位延迟性质，也不需要假设反射系数的自噪声性质，利

用对数谱平均提取子波直接分离出地震子波和反射系数序列【35】。同态反褶积【36l

的假设前提是：子波部分比较光滑(以低频为主)，而反射系数部分则很不光滑(以

高频为主)。在复赛谱上，子波主要分布在数值较低的区域，反射系数主要分布

在数值较高的区域，这样在复赛谱上就能将两者分开。

2．3．1同态反褶积原理

地震记录z(f)是由地震子波6(f)和反射系数，．(f)褶积形成，即

z(f)=6(f)·，(f)，将其变换到频率域得x(缈)=曰(彩)R(国)。

两边取对数得

llIx(国)=ln召(缈)+lIl尺(彩) (2-35)

其中，lIlx(缈)、ln曰(功)和ln尺(国)分别表示地震记录z(f)、地震子波6(f)和反

射系数，．(f)频谱的对数，分别叫做工(f)、6(f)和，．(f)的对数谱，并分别用X-(o,)、

台(彩)和晨(缈)表示，式可以(2．35)可以写为j(国)=台(国)十爻(缈)，将其反变换

回时间域得

量(f)=占(，)+声(f) (2-36)

其中，占(f)和声(f)分别是地震子波6(f)和反射系数，-(f)的对数谱序列。

式(2-36)表明地震记录的对数谱序列量(f)是地震子波对数谱序列g(／)和反

射系数对数谱序列声(f)之和。而地震子波对数谱序列占(f)和反射系数对数谱序列

声(f)是分布在时间轴的不同位置上，因此它们在一定程度上是彼此分离的。

在这里可设计带通滤波器对地震记录的对数谱序列量(f)进行时间域滤波计

算出地震子波对数谱序列占(f)和反射系数对数谱序列声(f)，在分别对占(，)和声(f)

16
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进行傅立叶变换，求出其对数谱，取指数后再进行逆傅立叶变换，即可得到地震

刊ib(t)和反射系数r(f)。

2．3．2希尔伯特变换子波反褶积

希尔伯特变换子波反褶积p，j方法的基本思想：在地震记录薯=包木‘中，设反

射系数rt是一白噪序列的，由此可推得地震记录的自相关等于子波自相关即

名(f)=‰(f)，且地震子波的功率谱可用地震记录的功率谱代替，即

IB(缈)I=Ix(国)l。若地震子波勿为最小相位的，其z变换B(z)可表示为

即)=如n=O=唧B删酬笔d缈]⋯I I· 仫37，

由于B(z)是自小相位的，所以在单位圆内既无零点也无极点，因此log口(z)

可展成幂级数，即

雪(z)=logB(z)=芴1 E1。g阶～)1 e讪-洄一+zzd彩=薹吃九¨(2-38)
由于

_e-i。+Z：—车一1：1+2yoo P咖z一(2-39)
e1。一z 1一e脚z 鲁

将式(2．38)代入式(2-39)得

雪(z)=芴1 E109I刀(缈)p彩+--妻￡砉109}曰(国)P⋯d∞×z” (2-4。)

比较式(2．38)和式(2．40)得

由于logIB(∞)I为实偶数，因此磊、反是实数。

当z—}e一国时，B(国)=曰(z)l：；r。=IB(缈)lP彬‘⋯，由式x(缈)=曰(∞)R(缈)得

雪(国)=109B(缈)=logI口(功)I+矽(缈)

：磊+艺驴胁
汜42’
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把式(2．42)分成实部和虚部得

loglB(o')l：瓦+宝反cos脚

≯(功)=一妻反sinnco
(243)

由希尔伯特变换可知109IB(缈)l—翌啼≯(缈)。

另外，可以推出由吃求乜的递推公式

I 60-eh

卜熹扣·叫蠢(n+l-m)‰
‘2圳

利用式(2=41)由振幅谱p(国)I或logf曰@)I求得最(刀=o’J’．I··)，再利用式(2掣)

求得最小相位地震子波包；(bo，6I，⋯，％+．，⋯)。

得到地震子波后，进而可求出反子波1霾'-7 a。。由地震子波求反子波可以在

时间域中求，也可以在频率域中求。

①在时间域上欲求地震子波瓯的反子波因子％，只要使巳·包=瓦，写成矩

阵形式

‰(o)⋯‰(刀)

‰(以)⋯‰(o)

％

口l
●

：

a月

解上述托布里兹矩阵即可得反子波因子q=(％，口I，⋯，q)。

(2_45)

②在频率域上，已知最小相位地震子波谱B(国)后，欲求反子波谱彳(国)，只

要使彳(力)B(彩)=1，即

彳(缈)。南(2-46)
求出彳(缈)后，经逆傅立叶变换后即可得反子波因子q=00，q，⋯，q)。

求得反子波an后，将其与地震记录‘褶积，即an·‘=q·吃·‘=‘，即可

得到反射系数r。
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2．4子波估计

2．4．1地震子波

2．4．1．1地震子波的概念

地震子波是一段具有确定起始时间和有限能量有限延续长度的信号，它是地

震记录中地震波的基本单元。一般认为，地震震源激发时所产生的地震波仅是一

个延续时间极短的尖脉冲，随着尖脉冲在粘弹性介质中传播，尖脉冲的高频成分

很快衰减，频率变低，波形随之增长，变成了一个具有有限频带宽度和一定延续

时间的地震子波。一个地震子波一般有二至三个相位的延续长度，大约有lOOms

左右。由于地震波是以地震子波的形式在地下传播，从而降低了地震勘探的分辨

率。求取地震子波对地震记录作反滤波处理，可提高地震勘探的分辨率。

2．4．1．2地震子波的数学模型

实际的地震子波是一个很复杂的问题。为了研究的方便，需要对地震子波进

行模拟。目前普遍认为雷克提出的地震子波数学模型具有广泛的代表性，即雷克

子波。最小相位子波的数学模型为

b(t)=e”，sin2zfi (2-47)

式中：f为子波的主频，口=2f2 lIl(M)为子波衰减系数，M=l，，ll／m：l为最

大波峰值m。与最大波谷％之比。

将地震子波6(f)用傅立叶变换求其频谱为B(缈)，则有

召(缈)=I占(缈)k叫司(2-48)

其中，IB(∞){为子波的振幅谱，缈(彩)为子波的相位谱。像任何一个波函数

一样，该波函数的特征均可用它的振幅谱和相位谱描述。对于复杂多变的子波，

其变化最频繁的是波形的衰减形式和延续度。因此，一般地震子波具有比较稳定

的振幅谱，但有变化较大的相位谱。如果取∥(彩)=一矽(彩)，称∥(国)为相位延迟

谱。对具有相同振幅谱的子波，根据其相位延迟谱的不同可分成最小相位子波、

最大相位子波和混合相位子波。三种相位子波的波形和能量特征是：最小相位子
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波的能量主要集中在前部，最大相位子波的能量主要集中在后部，而混合相位子

波的能量主要集中在中部。三种相位地震子波如图2．1所示。实际中的地震子波

主要是最小相位子波和混合相位子波。

t t t

(a) (b) (c)

图2．1最小相位子波(a)，混合相位子波㈣和最大相位子波(c)

2．4．2基于二阶谱因式分解提取最小相位地震子波的几种方法

谱因式分解【38】是从谱所对应的无穷多个时间函数中选找一个最小相位时间

函数的一种方法，可用于最小相位子波的估计。

2．4．2．1求根法

具有相同自相关函数和谱的时间函数具有多重性。(60，A)的谱是

共轭的时间翻转函数(瓦，瓦)的z变换E(z)=石+瓦z，其谱为

耳(三)耳(z)=(五+鲁](岛+％z)
：警+(辐+6l瓦)+6l瓦z

设子波口(z)=60+6Iz+如z2，因式分解的形式为

B(z)=62(zl—z)(Z2一Z)

其谱为

(2-49)

(2．50)

(2-51)

一％

‰

一弘瀛引一纠慨

+

+

一‰

‰一乙kr盟z

=

=

●一Z
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尺(z)=百(三]B(z)+匠岛(互一三)(z。一z)(乏一三)(z：一z)(2-52)
要使尺(z)保持不变，可用幅值为1的任何复数去乘么都是可以的。

式 的左边能分解成形如(乏一三)(互一z)因式的乘积。(z,-z)的ea(2-52)式 的左边能分解成形如L乏一壶j(互一z)因式的乘积。
间函数是(五，-1)，并且它的复共轭时间函数反转为(-1，乏)。这样，式(2—51’

中的任何因子(Zf—z)可以用(一l+乏z)来代替。将式(2-51)推广到一般情况，

可有Ⅳ个因子[(互一z)，i=1，2，⋯⋯，N]。通过颠倒因子的次序可组成zⅣ个不同

的子波，而这些子波具有的谱相同。因子(互一z)表示zf是B(z)和R(z)的根。

在复平面上，若B(z)有根Zf，则Zj也必定是尺(z)的根。此外，R(z)还有根夕乞。

用％替代某个根Zf只改变B(z)，而不改变R(z)。用根毖替代根互的运算

可记为男’(z)=三乏专B(z)。按定义，R(z)的根是方程月(z)=。的解。如果
R(z)乘以z‘Ⅳ(设尺(z)的最高次幂为N)，那么ZUR(Z)是一个多项式，zf必是

ZⅣ尺(z)=o的解。求多项式的根虽然比较麻烦，但是已有标准的求法。方程的

根全部求出后，先要检查一下这些根是否如乙和夕乏成对出现。如果不成对，
则说明尺(z)并不是一个真的谱。如果成对，则对应于单位圆内的每一零点，在

单位圆外就必然有一个零点。若子波是最小相位的，只需将单位圆外的全部根收

集起来，构造成一个子波召(z)，即B(z)=‰(Z-Z。)(Z-Z：)⋯⋯(z一乙)。

求根法的价值在于，它体现了提取最小相位子波的一些基本原则：

①每一个谱具有一个最小相位子波，且除开一个幅值为1的复标量因子的

区别之外，是唯一的。

②对任意一个谱，相应有无穷多个时间函数。

③并非所有函数都是某一函数的自相关函数。

2l
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2．4．2．2陶布里兹法

1／B(z)--彳(z)。按照以下方法计算可得到彳(z)。

昨脚(珈z)-鬻 协53，

R(z)彳(z)=否(三)=瓦+薹+⋯(2-54)
可利用等式两端同幂项系数相等的关系来求彳(z)。例如，令彳(z)是三项多

项式口。+alZ+a222，在式(2-54)中Z。的系数为roao+r_I口I+c2口2=瓦，z1的系

数是r,ao+roaI+￡la2=0，Z2的系数是吒口o+，i口l+roa2=0。

[蔓葛蓦][董]=[季] c 2-55，

记口t’=al／ao，又由j(z)否(z)=l，可知瓦2％瓦。式(2-55)的等号两边除
以ao，得到最一般形式

睢捌=㈢ ㈦56，

这三个方程中含有三个未知数西，《，v。为了使式(2-56)便于应用解标准联

立方程组的程序求解，应对等式两边的列向量除以V。解此方程得到ao，幅值为

2．4．2．3怀特尔指数一对数法

用怀特尔指数一对数法作谱因式分解，只需把一个幂级数代入另一个幂级数

中。给定某一自相关函数，；，则

R(z)=⋯+￡Iz叫+％+rlZ+rzZ2+⋯ (2-57)
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看在单位圆上lRl>2，则除以一个比例因子。把这个幂级数代入由对数展开

的幂级数中，得

v(z)--h1R(z)

：(R-1)一掣+学⋯0<R<2(2-58)
=⋯+“一IZ一1+‰+％Z+u222+⋯

舍去【，(z)中的负次幂，剩余部分记为u+，oP u+(z)=iUo+“。z+u222+⋯，

把它代入由指数展开的幂级数里

讹)彰+(Z)=1∥+筚+蝉+．．． (2-59)
、7

2 1 31

所要求的最小相位子波便是B(z)，它的谱正好是R(z)。

R(z)=eh矗‘z’

=唧(≥+萋-I‰z‘+警+车‰z‘]
=唧(≥+萎-1“。厶k]叫(iUo+苹‰z‘) c 2—6。，

=expIU+(三)]唧[叭z)]
=否(珈z)

把尺(z)因式分解成所要求的共轭对，只要证明B(z)=e矿(z’确实是最小相

位就行了。已知条件是：U+(z)有限，且u+(z)不包括z．1的幂。通过以下两种

方法可以证明。一种方法是指明v(z)的虚部在单位圆上，是曰(z)的相位角。

要证明B(z)是最小相位，只须说明口(z)不因z环绕单位圆转上若干圈(2n"的

若干倍)而随之增大。对最小相位来说，其相位必须以2x为周期。显然，相位

UI sino+u2 sin20)+⋯一定满足这个条件。第二种方法中，要指出在某一点Zo要

使召(z)=Pu+‘z’为零的唯一情况是u+(zo)等于—∞，即u+ Zo不收敛。但这在

单位圆内不可能发生，因为rs(z)的对数级数在单位圆上绝对收敛，这就意味着，

U+(z)在单位圆内收敛(有限)。由于曰(z)在单位圆内不可能有零点，所以它
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一定是最小相位的子波。

2．4．2．4柯尔莫廓洛夫方法

从时间函数或Z变换x(z)=xo+五z+⋯出发，令Xk表示该时间函数的变

换，即，在单位圆上取几个点(Ij}=o，l，⋯⋯，刀)，计算出x(z)的值。

墨=冠五=P碰乓)=P％ (2．61)

在其指数部分上加、减一待定函数以，上式变为

R=叫三(u训H圭(以圳]=巨盈(2-62)
只要选定一个合适的以，保证B(k)为最小相位即可。在怀特尔方法中，

矿(z)最突出的性质是有限，且在忙02．前时间函数％为零。因此，需要选定的

么能使饥+碱变换到时间域，使其时间函数“?对于负时间为零。这里可借助希

尔伯特变换来达到。

2．5地震反褶积与子波估计数值算例

2．5．1模拟算例

图2—2(a)为非高斯分布的随机反射系数(30阶样点，采样率2ms)，图2．2(b)是
模型地震子波，取300个样点作为褶积算子，图2．2(C)是反射系数和子波褶积得到

的模拟地震记录(也取300个样点)。

(a) (b) (c)

图2·2随机反射系数(a)，模型地震子波(b)和模拟地震记录(c)

①最小平方反褶积数值算例

图2·3为利用最小平方反褶积方法得到的地震子波(a)和反射系数(b)。
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《。㈨I例～矿。～。。。 孽o j
t t

(a) (b)

图2．3最小平方反褶积方法得到的反射系数(a)，地震子波(b)

②最大熵子波反褶积数值算例

图2·4为利用最大熵子波反褶积方法得到的地震子波(a)和反射系数(b)。

t t

(a) (b)

图24最大熵子波反褶积方法得到的反射系数(a)，地震子波(b)

③希尔伯特子波反褶积数值算例

图2·5为希尔伯特子波反褶积方法得到的地震子波(a)和反射系数(b)。

图2．5希尔伯特子波反褶积方法得到的反射系数(a)，地震子波(b)

由以上模拟数值算例可知，常规反褶积方法在地震子波是最小相位，反射系

数为白噪的假设条件下能够较好的解决地震反褶积问题，实现地震子波和反射系

数的求取。通过模拟算例的比较，最大熵反褶积方法所得到的地震子波和反射系

数相对较好。

④基于二阶谱因式分解提取地震子波的数值算例

，

帖



基于高阶统计实现地震反射系数和子波估计

图2-6(a)为利用柯尔莫廓洛夫方法估计的地震子波，通过图2-6(b)@。

(a) ㈣

臣f12-6柯尔莫廓洛夫方法估计的地震子波(a)，(b)为与模拟的地震子波的对比

2．5．2实际二维剖面算例

图2．7为一64道，每道256个样点，采样率2ms的实际二维地震数据。图

2-8是利用最小二乘反褶积法求出的地震子波剖面(a)和反射系数剖面(b)，图2-9

是利用最大熵子波反褶积法求出的地震子波剖面(a)和反射系数剖面(b)，图2．10

是利用希尔伯特变换子波反褶积法求出地震子波剖面(a)和反射系数剖面(b)。

1．1

1．2

1．3

1．4

1．5

0 1 0 20 30 40 50 60
Trace N0．

图2．7实际二维地震道

①最小平方反褶积方法
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仂
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1．1

1．2

1．3

1．4

1．5

1．1

1．2

1．3

1．4

1．5

0 1 0 30 40 50 60

Trace N0．

(a)

0 1 0 20 30 40 50 60
Trace N0．

Co)

图2．8最小二乘反褶积方法求出的地震子波剖面(a)和反射系数剖面(b)

②最大熵子波反褶积数值算例

、-；I_r，、f．-■r
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∞
≥

1．1

1．2

(b)

图2．9最大熵子波反褶积方法求出的地震子波剖面(a)和反射系数剖面嘞

③希尔伯特子波反褶积数值算例
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图2．10希尔伯特子波反褶积方法求出的地震子波剖面(a)和反射系数剖面(b)
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3基于高阶统计量实现非最,J,tH位子波和反射系数估计

3．1高阶统计量方法的理论基础

非高斯信号处理是信号理论的一个新领域，与传统信号处理不同，非高斯信

号处理使用高阶统计量作为主要分析工具，高阶累积量【39,40】作为一种高阶统计

量，其应用引起了人们广泛的兴趣，尤其是近几年来，其迅速发展使大量新的重

要理论结果涌现，可以帮助人们去解决很多实际问题。

3．1．1特征函数

定义①：设随机变量善的分布函数为F(x)，其特征函数为

①(国)=￡扩扭(J) (3-1)

特征函数①(国)在原点有最大值，即

l①(缈)I≤lo(o)I=1 (3．2)

利用概率论中的公式：

E{g(孝)}=￡g(x)卵(x) (3-3)

可得到特征函数一般形式

①(缈)=E{∥)(3-4)

特别地，当孝为连续随机变量，S(x)为概率密度，则式(3-1)变为

①(缈)=￡厂(x)扭(工) (3．5)

由傅立叶变换可以得到

饰)2石1 E①(国)e-JeJx砌(3-6)

令随机变量孝的分布函数为磊=名(x)，且①f(缈)=E{∥}为特征函数。设

，7=口孝+6，贝0有

①。(缈)=∥①f(ago) (3．7)
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进一步，若石，乞，．．．，磊为独立的随机变量，且孝=卣+⋯+鼻，则

中f(缈)=n①岳(缈) (3·8)

即独立(有界的)随机变量之和的特征函数等于它们的特征函数之积。

若F(x)和G(x)是具有相同特征函数的分布函数，即对于所有石∈R，

￡P胁卵(z)=￡P胁aG(工)

则有F(x)兰G(x)

(3．9)

定义②：i．-2x=【五，⋯，以】7是一随机向量，Rro=【q，⋯，q】2，则随机向量

z的特征函数定义为

①(％一，q)=Ep啪+．．．+碱’} (3．10)

关于随机向量，有如下结论：随机向量x=Ixl，．一，以】7的各个分量彼此独

立的充分条件是，其特征函数是各分量的特征函数之积，即

E{P“q而+．‘‘他以’}=兀t,l E{P厕局)，(q，⋯q)∈R (3—11)

3．1．2高阶统计量的定义

高阶统计量，也即二阶以上的统计量，一般包括高阶矩、高阶累积量以及它

们的谱，此外，还有循环累积量，倒高阶累积量谱⋯倒多谱等139,41’421，目前高阶

统计量应用研究主要集中在三阶累积量、四阶累积量及相应的高阶谱(双谱和三

阶谱)方面。

3．1．2．1高阶矩和高阶累计量的定义

特征函数方法是概率论和数理统计的主要分析工具之一，因此，首先从特征

函数入手，给出高阶矩和高阶累积量的定义。

根据特征函数的定义①中的式(3-1)，令s=．，缈，并记①(缈)为①(s)，则有

随机变量X的特征函数为

①(s)=￡e“dF(x)=E{ed) (3．12)
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对上式求七次导数得：①‘(o)=E{x‘∥)。因此，

mk=E{z‘}=西‘(j)b (3-13)

—l
马瓦

mk=(一∥西‘(缈)k (3-14)

即①(s)在原点的七阶导数等于x的七阶矩％。因此常将①(s)或①(缈)称为

X的矩生成函数(又叫第一特征函数)。

甲(J)=hl①(s) (3-15)

或甲(s)被称为X的累积量生成函数(又叫第二特征函数)。随机变量x的七阶

累积量生成函数、王，(s)的七阶导数在原点的值，即

q=掣b(3-16)
由式(3-12)得0(0)-1，从而有甲(o)=o。因此，我们将、王，(J)以Taylor级数展

开得

甲(s)=qJ+三c2“⋯+击q^⋯ (3-17)

另一方面，由于o(s)=，‘¨，所以有

①70)=甲’(s e‘¨，①’(s)={甲。(s)+[甲’(s)]2 e‘j’

令s=0，得

m7(o)=、王，’(o)=玛，①。(o)={甲。(o)+[甲’(o)]2}=鸭 (3—18)

比较式(3．16)和式(3．18)可知，

q=玛，乞=m2-m； (3-19)

推广到随机向量的高阶矩和高阶累积量的定义，令x=【五，．．．，t】7’为一随机

向量。对其特征函数①(q，⋯，q)=E{eXp[歹(q五+⋯+q置)]}求，．=^+⋯+以

次佩可得裂吖E陋晕黼I+．¨+训}。若令垆一q-0，
则1-式可得

32
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％儿=E叭刖制7裂卜嘲卸(3-20)
该式是随机向量[五，．．．，五】的，．阶矩的定义。

类似的， 【XI，．．．，Xk】的r阶累积量可用其累积量生成函数

甲(q，⋯，略)=lIl①(q 9Q**9q)定义，即

CyI'"Yk=(M7裂k刚：(一／)，静fq一。略却 ‘3-21’

可以证明，偏导数螽①x(q，⋯，q)存在且连续。因此，如果将
①x(q，⋯，嗥)展开成Taylor级数，则有

吲"训--”Z．+儿如舞¨．．捌⋯钟小I”)(3-22)
其中，H=圳+．．·+蚓。

另外，①x(q，⋯，q)是连续的，且①x 09··90)=l，因而该函数在零点的某

个邻域}彩l<6内不为零。在该邻域内，偏导数蠡ha c,x(q，⋯，q)存在
且连续，其中lIlz表示对数的主值。因此，我们可用Taylor公式将hl①石(q，⋯，q)

展开成

h①J(q，⋯，嗥)-，．+毛s。第三≥，⋯，“钟⋯嘴+。(蚓”)(3-23)
为使式(3-22)和式(3-23)的表达简化，引入符号：V=(u，⋯，K)为一向量，

其分量是非负整数，令V!=VI!⋯u!，11，I=M+⋯+唯，国”=叫卜．．钟，并令

Cv=Cv．．．一，％和m，=m～⋯，u。带入式(3-22)和式(3—23)，分别将其简化为

中(功)2而Y Jv!m／o”+o(、．I彩f“) (3-24)

h①(缈)2荟鲁∥+。(⋯ (3-25，
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即随机变量【五，．．．，五】的V=(Vl，⋯，唯)阶矩和累积量有可分别定义为矩生成函数

和累积量生成函数的Taylor级数展开中缈”项的系数。

当取vJ=⋯=屹=l，可得到最常见的七阶矩和七阶累积量，分别记为：

mk=玛，．1=morn(X,，⋯，五) (3-26)

q=钆．，l=c伽(五，⋯，五) (3-27)

随机过程的高阶矩和高阶累积量：

设{x(疗)}为零均值的七阶平稳随机过程，则该过程的后阶矩，％(‘，⋯，以一，)定

义为：

mh(『1，⋯，“一．)=朋眇m{工(刀)，x(拧+f1)，⋯，X(n+Tk一，)) (3—28)

k阶累积量ch(■，⋯，o一。)定义为：

ck(‘，⋯，t一．)=c硼唧{工(刀)，z(万+‘)，⋯，x(以+q一．)} (3—29)

对于一个零均值的平稳随机过程{x(刀)}，其高阶累积量也可定义为

ch(％⋯，％)=E的)，工(拧十一)，⋯，J(斛％))’ (3．30)

一E{g(刀)g(刀+‘)⋯g(以+q一。)}

g(刀)是与{工(n)}具有相同功率谱密度的高斯过程。

3．1．2．2高阶矩谱和高阶累计量谱的定义

信号的功率谱密度定义为其自相关函数的傅立叶变换。类似的，我们可引出

对应于高阶矩和高阶累积量的谱的定义【43】。假设我们所考虑的信号为离散随机信

号。

高阶矩谱定义：设高阶矩‰(q，⋯，气一。)是绝对可和的，即

∑⋯∑I‰(”·，t一。)I<oo (3-31)

fl‘—” “一I。Ⅷ

则k阶矩谱定义为k阶矩的k一1维离散傅立叶变换，即

虬(％．．阼。)=f妻l=--e。⋯fk兰‰(”·^。)唧[一茗I qq] c 3抛，
一I=—∞ L jl J

高阶累计量谱定义：设高阶累计量ch(‘，⋯，气一。)是绝对可和的：
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∑⋯∑1％(_，⋯，I"k一。)I<oo (3-33)

fl
2—o “．12—o

则k阶累积量谱定义为k阶累积量的k一1维离散傅立叶变换，即

吮(o)l，⋯，％)=∑⋯∑％(％⋯⋯rk)expI一／∑qt l (3-34)k-I

∞ ∞ I

fI=—o 1一I；—∞ L f2I J

高阶矩、高阶累积量及高阶矩谱和高阶累积量谱是主要的四种高阶统计

量。最常用的高阶谱是三阶谱

或(q，哆)=∑∑c3，(1，吃)P√(帅坳砭’ (3-35)

fI=一∞72=—∞

和四阶谱

正(q，哆，q)=∑∑∑c4,2"I，r2，r3)e一鹏懒砭蝴’ (3·36)

f121f221 r321

三阶谱又叫双谱，四阶谱又叫三谱。

对于一个离散时间的确定性信号(能量信号和周期信号)，我们将其双谱和三

谱定义如下：

①令{z(甩))，n=0，±1，±2，⋯是一个具有有限能量的确定性信号，则其傅立

叶变换、能量谱、双谱和三谱分别定义如下：

傅立叶变换x(o))--∑x(k)e一7破 (3-37)

k=--”

能量谱e(彩)=x(缈)x‘(彩)

双谱 E(q，哆)=x(q)x(q)x’(q+哆)

(3．38)

(3．39)

三谱 正(q，哆，鸭)=x(劬)x(哆)x(q)x’(q+哆+皑) (3-40)

②令{x(，z))是一周期性信号，其周期为N，即x(疗)=x(以+Ⅳ)，则其傅立

叶变换、能量谱、双谱和三谱分别定义如下：

F。嘶e序列x(国)：∑N-Ix(k)e-j簪mk，国：o，l，⋯，Ⅳ一1 (3．41)

能量谱
e(缈)=万1 x(国)x’(缈)

双谱 曰，(q，q)=专x(劬)x(吐)x’(q+哆)

35

(3．42)

(3．43)
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三谱 ￡(q，哆，q)=专x(q)x(哆)x(q)x’(国。+吐+q)(3-44)

3．1．2．3高阶倒谱的定义

设X(n)为某一确定性信号或随机信号，贝0其倒谱定义为

j(刀)=F叫[1Ilx(功)](3-45)

其中，F。1(·)表示傅立叶逆变换，x(国)为x(n)经傅立叶变换后的值，即

石(缈)=Ix(缈)lexp[却(彩)](3-46)
Pan和Nikias[441将类似的思想应用于高阶谱，引出了高阶倒谱(倒多谱)的

概念。以三阶谱(双谱)

岛，(毛，乞)=乃，x(毛)x(z2)x(彳1乏1)(3-47)

为例，先取对数是，(而，毛)=ln墨，(而，乞)，再取是，(刁，乞)的z逆变换，就得到倒

双谱

S(历，刀)=z‘1[hl墨，(zI，z2)](3-48)
类似的，可以定义更高阶的倒多谱。

3．1．3高阶矩和高阶累积量的转换关系

令x=【五，．．．，五】r为一随机向量，E{l五r}≤∞，i=1，2，⋯，七，以≥1，则对于满

足I叫≤刀的’，=(嵋je··9吃)，高阶矩和高阶累积量之间存在下列转换关系：

％2∥互-五1煮‰密c(叫 c3圳

％=和磊k譬捌‰垂肌(卅 ㈤5。，

其中， ∑ 表示在非负整数向量旯‘P’的全部有序集合(12(p’I>0，且其

和为’，)内求和。

式(3-49)和式(3-50)描述了高阶矩和高阶累积量之间的转换关系，但不

够简洁。为此，引入如下符号。令x=【x⋯．．，以】7’为一随机向量，L={1，2，⋯，七}
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为其指示符集。若，∈L，则令一表示其指示符属于集合，的X的各分量组成

的向量。设向量z(J)=(石，⋯，厄)，且当f∈，时，石=1；当i仨，时，石=0。这

些向量是与集合，￡L一一对应的，因此可得，，lⅣ(I)=m(xz‘，))，Cx(，)=出‘，))。换言

之，朋J(，)和气(，)就是x的子向量一的矩和累积量。

根据集合分割的定义，集合，的分割是满足U。Ip=，条件的无交连非空集合

‘的无序组合。据此，可忖z尔价里胃--矩Z厶k．式(简称c—M公式)

聊x(J)=∑兀cx(1p) (3-51)

U≥。‘2，户1

和矩一累积量公式(简称M—C公式)

q(，)：∑(一1)纠(g—1)!丌q豫(，P)(3-52)
U二l，，=， 舻1

式中∑ 表示在，的所有分割(1≤g≤Ⅳ(，))内求和。
U0。‘=7

根据式(3—49)和式(3-50)，对于一个零均值的平稳随机过程{石(刀)}，可以

从M—C公式中得出以下关系式：

q--E{x(玎)工(甩+r))=足(f) (3-53)

c3，-E{x(刀)工(甩+f1)工(玎+乃)) (3·54)

c4，兰E{x(，z)工(刀+r。)x(咒+f2)x(刀+乃))
一足(『1)墨(f：一毛)一疋(吒)B(乃一‘) (3-55)

一置(乇)疋(‘一乇)

3．1．4高斯过程的高阶矩和高阶累积量

先考虑单个高斯随机变量的情况。对于一个零均值的高斯随机变量

x_N(O，盯2)，仃2>0，其特征函数(矩生成函数)由①f(缈)=em2’m2矿给定。因此，

累积量生成函数为甲f(功)=一0)20"2,由累积量定义，累积量cf为甲f(缈)的Tayl。r

级数展开式中国7项的系数，又因为、壬，；(缈)是自变量∞的二次函数，故显然有
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I cI 2 o2啊
{c2=盯2=m2 (3-56)

【q暑o，k>3
利用式(3-56)和C—M公式(3-51)，可得高阶矩的一般表达式

叫蚪&舡．1)一艨 ㈤57，

下面来考虑刀维随机向量x-[x,，．．．，以】r。设其均值向量为

口=【q，⋯，％】7，协方差矩阵为

R=

，il ，i2

吒l 吃2

‘I ‘2

⋯，i。

⋯吃．
●

●

●

⋯，肼

(3·58)

是非负定的，其中kI<佃，且

勺=E{(置一q)(t一吩)}，i，j=l州2一，刀 (3-59)

我们定义随机向量X是高斯或正态分布的，则其特征函数具有形如

①(缈)=P归‰·V2矿砌 (3—60)

其中，国=【q，⋯，q】7。

由上述定义可知，高斯随机向量x的累积量生成函数为

甲(国)=111①(缈)=．J设r缈一_．t ojrR功
‘

(3．61)
_ ● ^ _

=／∑q哆一去∑∑吩哆哆

根据累积量定义式(3-29)，随机变量【五，⋯，以】的(VJ，⋯，唯)阶累积量可计

算如下：

(1)当r--"1时，即M，⋯，咋中某个值取1(设K=1)，而其它值取零，此时

‰¨。=(一_，)掣k～。=q=层㈣(3-62)
(2)当r：2时，分两种情况。
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情况1：v(f=1，2，⋯，刀)中近u取2，其余取零。此时

‰：¨。=(一∥掣k一％=E陋q)2}(3-63)
情况2：v(江1，2，⋯，刀)中近V和吩取I，其余取零。此时

c矗．．。。m．。。。．．。=(一／)20a2qva(缈缈，)，I嘶一．；％：。=勺 (3．64)

=E{(_一嘎)(一一哆)}，f≠／

(3)当r≥3时，此时甲(缈)是自变量q的二次多项式，故、王，(∞)关于自变量的

三阶及更高阶的偏导数等于零，从而有

cq⋯％-0，r>3
(3-65)

对于零均值的高斯随机过程{x(以))，令

而=x(，1)，x2=x(甩+q)，⋯，xk=工(以+靠一1)

由随机过程高阶累积量定义式(3—29)知，{J(刀)}的各阶累积量为

el，=E{x(刀)}_o
巴，(f)=E{x(，z)x(玎+f))=，．(f) (3—66)

％(一，⋯，吒一。)兰o，k≥3

利用式(3-66)和C—M公式(3-51)不难推知，只有奇数阶的高阶矩才等于

零，而偶数阶的高阶矩不等于零，即

聊。h，⋯，L)i--o，七≥3导曹妻擎(3-67)
％II，⋯'气．I≠u，尼≥4且为偶数

3．1．5高阶矩和高阶累积量的性质

高阶累积量有许多重要的性质， f=面介缁～些常用的性质。

性质1：设乃(汪l，⋯，七)为常数，五(f=1，⋯，k)为随机变量，则

伽所(^五，⋯，以五)：f血乃]c“聊(五，⋯，鼍)
性质2：累积量关于它们的变元是对称的，即

伽聊(五，⋯，五)=伽，，z(■，⋯，■)
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其中，(】i，⋯，‘)是(1，⋯，．j})的一种排列。

性质3：累积量相对于其变元具有可加性，即

c堋(Xo+to，乙，⋯，乙)=删聊(K，zI，⋯，乙)+础所(K，Zl，⋯，乙) (3-70)

这一性质意味着，和的累积量等于累积量之和。

性质4：若口是常数，则

cure(at+Zn，⋯，乙)=口teum(Zn，⋯，乙) (3-71)

性质5：两个随机变量{五)与{Z)，f=l，⋯，七独立，则

甜聊(五+X，⋯，以+耳)=铡聊(五，⋯，五)+姗(X⋯，K) (3-72)

性质6-七个随机变量{五}，i=1，⋯，k的一个子集同其它部分独立，则

c姗(五，⋯，五)=0 (3—73)

在实际中，我们使用高阶累积量，而不是高阶矩作为时间序列分析的数学工

具(虽然零均值随机过程的三阶矩和三阶累积量是等价的)，主要原因：

①理论上，使用高阶累积量可避免高斯有色观测噪声的影响，而高阶矩却

不能。

②其次，同白噪声的协方差函数是冲激函数，其谱是平坦的直线一样，高

阶白噪声的高阶累计量是多维冲激函数，该噪声的多谱是多维平坦的。

这使得我们很容易建立非高斯信号与线性系统传递函数之间的关系。但

是，高阶白噪声的高阶矩及其谱却无此优点。

⑨考虑矩问题解的唯一性问题。更确切的说，令F和G是具有相同矩的分

布函数，即

￡r扭(J)=￡，扣(工) 刀≥o,II Ez， (3-74)

但F和G有不同的概率密度分布。与此相反，累积量问题的解具有唯

一性，因为特征函数唯一确定一概率密度。

④两个统计量独立的随机过程的累积量等于各个随机过程的累积量之和，

而该结论对于高阶矩却不成立。正是这一性质使累积量非常适合作为一

种算子来使用。
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3．2高阶谱非最小相位子波提取方法及在反褶积中的应用

3．2．1基于高阶谱的地震子波估计方法的提出

子波恢复技术作为地震资料处理的重要课题，一直受到普遍关注。子波估计

的质量直接影响到资料处理的质量【451。在过去的常规地震资料处理中，子波反褶

积是通过地震记录的自协方差或自相关函数来完成的，但是自相关函数对于相位

是盲目的，它只适合于最小相位子波。于是为了适应反褶积的要求，不得不提出

最小相位子波的假设，所以以往的子波求取方法也都是以此种假设为前提的。而

事实上，无论是陆上的还是海上的地震记录，地震子波都是混合相位的【461，因此

在此种假设前提下得到的地震子波就会失真。随着高阶统计量概念的引入及其在

地震勘探方面的应用【4 71，使得彻底摆脱最小相位子波的假设成为可能。地震信号

的高阶谱既包含有信号的振幅谱，也含有信号的相位谱。利用这一特征，在不假

设地震子波相位的前提下，直接从地震记录的高阶谱中恢复地震子波的振幅谱和

相位谱，重构地震子波，从而得到更符合实际情况的地震子波【4引。

3．2．2基于高阶谱的地震子波估计方法的研究思路

基于高阶谱估计地震子波的基本思路如图3．1。

读入地震记录

上
计算高阶谱．／＼▲

I地震记录的高阶振幅谱 地震记录的高阶相位谱

0 0

子波的振幅谱 子波的相位谱

图3．1基于高阶谱地震子波估计流程图
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3．2．3基于高阶谱的地震子波估计方法原理

高阶统计信号重构理论分为频率域中的相位重构和幅值重构两部分。设

工(后)是一零均值实平稳随机过程，则该过程的三阶累积量为

c3(‘，吒)=E{x(七)工(七+‘)x(七+吒)} (3-75)

其傅立叶变换

G(q，哆)：艺艺c3(‘，％)e一“q1+啦勺)

2荟善，三x(七)x(七十『I)工(七+咖叫啪蝇俐 (3-76)

=∑工(七+‘)e一硒‘“1’∑x(J|}+t)e一心‘％’∑x(k)e一“q+吻弘
rI=—∞ f2-—∞ 七=—∞

=x(q)x(哆)x’(q+哆)=IC3(q，哆)Ie一州q'唧’

称之为x(k)的双谱(三阶谱)。双谱具有以下对称性，即G(q，呸)=G(哆，q)。

由式(3．76)可得三阶谱的相位谱和振幅谱，分别为：

伊(q，吐)=矽(q)+矿(哆)一≯(q+哆) (3—77)

Ic3(q，哆)I=Ix(国。)lIx(哆)IIx(q+哆)l (3-78)

其中：矿(缈)和lx(缈)1分别为x(k)的相位谱和振幅谱。

3．2．3．1基于高阶谱的子波相位谱估计

3．2．3．1．1基于双谱的子波相位谱估计

方法①：BMU算法14列。

相位重构法最早是由Brilling一50】提出的，它通过双谱相位缈(q，哆)递推出信

号相位矽沏)，其出发点是下面的关系式

缈(国)2去[2r伊(A)d五一r‘≯(五，国一五)dz】 (3-79)

为了便于运算和提高计算精度，Matsuoka和Ulrych[51】推导了上式的离散形式。

砌，=击陪∽一如州，] ㈤㈣
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在双谱的相位谱公式(3—77)缈(q，％)=≯(q)+矽(吐)一矽(q+哆)中，

q，(COl，co：)为双谱的相位谱，在区域q+哆=国内对上式求和，则有

∑缈(q，呸)=∑【矽(缈。)+≯(哆)一矽(q+哆)】

进一步在q=【0，国】内求和，并令国：=缈一q，可得
tO 脚

∑缈(q，co-co,)=∑【矽(q)+矽(国一q)一矽(缈)】
oh=O 酗=0

为方便计算，令△国=1，q=f，哆=_，，∞=，2，则

打 ^

∑烈f，n-i)=∑№)+矽(刀一f)】一(玎+1)矽(，1)
i=0 i=O

注意到

n 月

∑[矽(f)+≯(，l—f)】=2∑矽(f)
i=0 i=0

所以

(3．81)

(3．82)

(3．83)

(3．84)

一 月一l

Z々o(i，n-i)=2∑㈣一(力一1)矽(，1) (3—85)
i=0 i=0

为了将上式变为递推形式，Brillingert501，Rosenblatt[521和ulrych【531提出下面的

BMU算法。

s(以)=∑北n-i) 刀=1州2一，N (3-86)
i=0

取初值矽(O)=0以及

加，=窆n=2酱+等 (3．87)

式中，矽(Ⅳ)的值难以确定，这里可以根据双谱相位妒(O，O)的值来确定取0或万。

船，=击陪沪咖)]脚^⋯，Ⅳ ㈤8引

方法②：Lii．Rosenblatt算法

式(3—77)中， O)n=国，哆=Aco，并取极限，则有
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lim竺!竺：垒竺!：lim
△m—十o A·妙 △珊—÷o

妒(缈)+≯(△缈)一≯(缈+△国)
A缈

：nm二[翌!竺±全竺!二翌!竺!]
A国·o △国

：hIIl丝【垒竺!二地!
蛔--}0 A国

=一≯’(缈)+矽’(o)

其中，妒’(缈)代表导数老。由于≯(∞)=f妒’(A)d允，固由式(3-89)得
“矽7(旯)一们)M=≯(缈)一倒

其中，c=≯’(o)。因此

≯(缈)=肛≯’(允)一们)M+彻
由式(3-90)和式(3-91)可得

m)_-f慨[掣卜彻

(3．89)

(3．90)

(3·91)

(3-92)

下面推导未知常数c的计算公式。令矽(万)=切，并将国=石代入式(3-92)

中，则

c=牡f慨[掣H (3-93)

现在，将式(3-92)和式(3．93)变为所需要的离散形式。由于伊(国，o)=0，

所以慨[掣卜可删u)憾假拙乩(3-92)弑(3-93)
即变为

n-I

≯(以)=-Z缈(f，1)+cnzt／N, 刀=l，2，⋯，N
i=O

c=私m挑·)]
其中，矽(^r)=喊肋。

(3．94)

(3．95)

另一方面，由式(3-77)可的伊(f，1)=妒(f)+≯(1)一矽(f+1)，应用代入法易证

明，式(3．94)中的求和项为
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∑驴(i，1)=妒(o)+n妒(1)一伊(甩)或
i=0

H-l

缈(，z)=一∑妒(，，1)+缈(o)+，z伊(1)

(3．96)

于是，可取初值矽(o)=0，而另外一个初值缈(1)则可在式(3-96)中利用

≯(Ⅳ)=o或后万求得。

方法③：最4,-乘法【4引。

以上两种求相位谱的算法都是递推算法。递推算法的优点是计算简单，其主

要缺点是在递推过程中存在误差传递。下面介绍的最dx-乘算法则可以避免递推

法中误差传递的缺点。

在式(3-77)中，令q=1，2，⋯，N／2，哆=(01，q+l，⋯，N-(oI，则有下列方

程

缈(1，1)=2≯(1)一≯(2)

缈(1，2)=≯(1)+≯(2)一妒(3)

伊(1，N一1)=≯(1)+矽(Ⅳ一1)一≯(Ⅳ)

伊(2，2)=2矽(2)一≯(4)

伊(2，N一2)=矽(2)+痧(Ⅳ一2)一矽(Ⅳ)

矿(Ⅳ／2，Ⅳ／2)=2矽(N／2)一痧(Ⅳ)

以上公式可写为矩阵形式

AO=∥

其中：

A=

2—1 0 O 0⋯0 0

1 1—1 0 0⋯O O

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

l O O O 0⋯1一l

0 2 0 0-1⋯0 O

0 1 1 O一1⋯O 0

●●●●●●●●●●●●●●●●●●●●●-●●●●●●●●●●●●●●

0 0 0 0 0⋯O 1
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巾=[伊(1)，缈(2)，⋯，伊(Ⅳ)]

y=[夕(1，1)，⋯矽(1，N-1)，矿(2，2)，⋯矽(2，N一2)，⋯#(N／2，N／2)]

如果Ⅳ为偶数，则彳为[(Ⅳ／2)2×Ⅳ]维，彳为满秩矩阵，由此可得伊的最小二乘
解为

①=(彳r∥彳r杪 (3·99)

与前两种算法不同，最小二乘法是利用双谱的对称性，使用了三角区仞。≥呸，

q+哆s万内的所有唯一值的双谱值。

方法④：DFT算法

假定已知双谱的样本估计B(2础／Ⅳ，2zk／N)，七=o，1，2，⋯，N-1。在式(3—77)

中令q=q=03，则有

2妒(国)一≯(2国)=伊(彩) (3-100)

其中，q，(to)=argB(co，缈)。上式的离散形式是

2≯(以)一妒(2疗)=妒(万) (3·101)

式中，缈(刀)=矽(缈)，≯(以)=≯(国)，且国=2zn／N a令伊(以)和矽(胛)的N点DFT分

别为、王，(后)和①(尼)。由式(3—101)有，

2荟N-I吣)唧(／争)一芝k=0吣)e：xp(j--等被)
=荟N-I吣)唧(／和)

(3．102)

基于上式，Dianat和RaghuveerIs4]发展了一种由、王，(尼)先恢复①(忌)，再恢复

≯(刀)的方法。其原理是比较式(3—102)两边的系数。当七为奇数时

①(七)=j1甲(七)
(3—103)

这是因为，：i戈(3-102)左边exp 2z-刀)项的系数为2①(1)，它是第一求和项的

系数，因为第二求和项不含exp(-，等刀)项，右边同一复数项的系数为甲(1)。由
此可以证明式(3．103)对所有奇数的七均为真。
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k为偶数的情况比较复杂。假定N是2的整数幂，即N=2M。对于任何偶数

的k，式(3．102)的第二求和项都有两个系数，结果为

2①(七)一m(冬)一①(譬+冬)=甲(七)(3-104)
式(3．103)和式(3．104)一起给出了Ⅳ个方程(七=0，1，2，⋯，N一1)，它们共含

有Ⅳ个未知数①(o)，①(1)，⋯，O(N-1)。求解此方程即可获得这些未知相位。

3．2．3．1．2基于三谱的子波相位谱估计

前面介绍的基于双谱的子波相位谱估计的方法对于对称分布的非高斯信号

显然是不适用的，因为其双谱恒等于零。下面介绍基于三谱的子波相位谱估计，

三谱MU算法【551。

零均值实平稳随机过程x(七)的三谱可以定义为

r(03,，吐，q)=x(q)x(哆)x(皑)×x’(q+哆+鸭) (3-105)

其中，x(国)是由x(k)经傅立叶变换得到的，式(3-105)又可以表示为

T(03,，032，03,)-r(03,，032，鸭)l×exp[jq，(03,，哆，033)] (3-106)

和

彳(缈)=1．r(国)lexp[／矽(国)] (3—107)

所以由式(3．105)、式(3—106)和(3．107)得

伊(q，哆，鸭)=矽(q)+≯(仍)+≯(q)(3-108)
一≯(031+哆+q)

利用上述基本方程，可得到递推的连续形式

≯(国)=爿r(国一2)0(2)d2一盯一o,(,t,v,co-砌)删司 (3．109)

和离散形式

≯(刀)=石了赤[3荟n-I(托一七+t)≯(七)一窆k=O艺I=0伊(k,l,n-k-I)](3-1 10)
_rz=2，3，⋯，Ⅳ

这就构成了三谱域内求解子波相位谱的MU递推算法【241，算法的初始值为
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矽(o)=o和

加)=差错+掣一N。v-l#(。)
其中

Q(捍)={∑[伊(‘刀一f，o)+伊(f，o，刀一f)+伊(o，f，刀一f)]

(3．111)

(3．112)

而≯(Ⅳ)则可以根据妒(o，0，0)的值取为。或万。这种算法使用了所有的三谱值。

3．2．3．2基于高阶谱的子波振幅谱估计

3．2．3．2．1基于双谱的子波振幅谱估计

方法①：递推算法【柚】

由式(3．78)两边取对数可得：

lIllx(国。+哆)I=lIlIG(q，哆)I-lIlIx(q)|_lIlIx(哆)I (3-113)

对上式做变量替换，即令q+092=f，C02=．『，国l=i-j，得到下面的离散表达

式：

ln J x(o J=In I C；O一／，J)I—ln l x(i一／)f—ln l x(／)I

在上式中，当取i=O，j『=0时，可得：

lll I x(o)I=In l G(O，o)l／3

当取江l，J=0时，有In I x0)I=【In I q(1，o)卜lIl I x(0)I]／2，

的I x(o)l和I X(1)I。

当江刀时，J=1,2，⋯，刀-1存在以下公式：

(3．114)

(3．115)

由此可计算振幅谱

lnlX(刀)J-InIC芋(刀一1，1)l—lIllX(n—1)I—111Ix0)l

lIlIx(刀)I-InIC；(咒一2，2)l—lIlIX(n一2)I—lnIx(2)l
； (3．116)● 、_- ，

111 l X(n)I：=In I C}(2，n一2)I—lll I X(2)I—lIl I X(n-2)I

hlIX(n)l=InlC；(1，以一1)l—hIX(1)I—lIlIX(n-1)I

上式即为计算l x(n)I的递推公式，由双谱的对称性可知，该式前后对应位置的两

式相同，即仅有n／2个独立公式。取独立公式计算hl l X(n)I的平均值，即可求



取{Z仞)f。按照该递推公式的计算规律，取，=2,3，⋯，N时，可得子波振幅谱的

估计值J X(f)I(其中f=O，1，⋯，Ⅳ)。

方法②：最小二乘法[55】。

在式(3．78)中，令

尼=q，，=哆，尼=·，2，⋯，筹，，=足，尼+·，⋯，警一七
j(尼)乩(1x(七)1)

G(尼)=hl(Ic3(七，列)
将式(3．117)带入式(3-78)中，可得

(3．117)

岛@，J『)=启(七)+j(七)+j(，)+j(七+，) (3．118)

因此，e(尼，，)可以表示为贾(|j})的线性组合，即

否=瓜 (3．119)

其中占是(Ⅳ2／16)×1的向量，舅是(Ⅳ／2)×1的向量，彳为(Ⅳ2／16)×(Ⅳ／2)的矩阵，
并且

蚕=[e(1，1)，己(1，2)，⋯，e(1，孚一1)，岛(2，2)，⋯，己(孚，孚)]

j=[j(1)，j(2)，⋯，宕(警)]7’
以式(3—1 19)等号右边系数为元素，七，，为脚标构造阵彳

A=

2 l

1 1

l 0

： ：
● ●

0 2

： ：

O O

1 0

l l

： ：
●

●

O l

： ：

⋯O

⋯0

⋯O

⋯ ：
●

⋯0

⋯ l

于是司以通过最小二乘法计算出孑

孟=(彳r彳)～么r否

最后，Iz@)f可由j(七)利用

防@)f=exp[j(尼)]，k=l，2，⋯，譬
和

I石(尼)I=Jx(Ⅳ一后)j，k-T”+1，⋯，N一1

(3-120)

(3．121)

(3．122)

(3．123)

(3．124)

(3—125)
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求出。

而Ix(o)f的值可以这样确定：计算每次实现的样本均值，然后对每次实现的

样本均值再求平均。

方法③：DFT法。

在式(3．118)中令k=，=甩，则得

2j(刀)+j(2以)=雪(万) (3-126)

其中，雪(忍)=雪(刀，刀)。定义j(疗)和雪(刀)的Ⅳ点DFT分别为j(七)和百(七)，于

是，由式(3．126)得

2蓑j(咖印(／等础)+艺k=Oj(后)唧(-，等刀刁tIo ＼ 』V ／ ＼ 』V ／

=篓耶)唧(／等础)
Dianat[54l和Raghuvee4521提出了求取振幅谱的DFl算法。步骤如下：

步骤1：计算

j(七)=三否(七) (七为奇数)
步骤2：计算

牙(七)=三[否(七)一j(鲁)一牙(妻+警)]c生2为奇数，
步骤3：对∥27(，=2，3，⋯，M-1)为奇数的所有七值重复步骤2。

步骤4：确定j(。)=三[否(。)一j(警)]
步骤5：利用离散傅立叶反变换(IDFT)计算信号的振幅谱

x(靠)=exp{／OFT[g(k)])

3．2．3．2．2基于倒双谱的子波振幅谱估计【49】

(3．127)

(3．128)

(3．129)

(3．130)

由式(3．78)两边取对数可得：

lIlIC3(q，哆)|-lllIx(q+哆)I+1Illx(q)I+lnlx(哆)l (3一131)

两边求平方可得
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hIfn吲x％(co哆,)I蔓端吲囊酬： ㈦m，
2+ln Jx(哆)J2一lIljx(q+哆)J2

另外根据文献[56]，有

In X(o,)2=F{厶(删，o)} (3．133)

式中，F代表傅立叶变换，F一代表傅立叶逆变换，上式中，

厶(m，挖)=

』，-1{hllC3(q，哆)12～lnIx(q+国：)14) 聊≠o (3—134)

【0 ，，l：0

定义

dI(m,n)=2，~1{h1Ix(q+哆)I) (3．135)

则可以证明

4(鸭。)={言勺』。’：：：二吕(3-136)
式中，气(o)为倒功率谱在原点的值。由于吐(肌，o)为常数，所以它只影响lz(彩){2

的大小。h1卜(缈)2 I可以通过下式计算

h1[口lx(缈)21]=，{九(朋，o)1 (3．137)

式中，口为一正的常数，而九(m，疗)由下式给出

叱(朋，行)：F一1{lIl JC3(q，呸)12}m刘 (3．138)

L0 聊=0

3．2．4基于高阶谱(双谱)的地震子波估计

①对地震记录z(疗)的三阶统计量进行二维傅立叶正变换，得到其双谱的振幅谱

lC3(q，q)I和相位谱9(q，q)。利用双谱的振幅谱lG(q，哆)|和相位谱

矿(q，％)分别求取地震子波的振幅谱l渺(国)I和相位谱矽(彩)。

②由①得到的地震子波的振幅谱l缈(∞)I和相位谱矽(功)，通过傅立叶反变换，即
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可得到地震子波w(t)。

3．2．5基于高阶谱(双谱)地震反褶积

利用双谱估计出地震子波后，寻求进一步求解反射系数的方法。结合同态反

褶积方法思想将地震子波w(f)和地震记录x(以)转换到复倒谱域，在复倒谱域求

出反射系数，然后转换回时间域得到反射系数尸(f)。

3．3数值算例

3．3．1模拟算例

图3．2(a)为产生的非高斯分布的随机反射系数(196个样点，采样率2ms)，图

3-2(b)是地震子波模型，取30个样点作为褶积算子，图3·2(c)是反射系数和子波褶

积得到的模拟地震记录(也取1 96个样点)。

(a) (b) 【c)

图3．2随机反射系数(a)，地震子波模型嘞和模拟地震记录(c)

图3-3(a)和图3．3(b)为双谱估计出的地震子波的振幅谱和相位谱。图3-4(a)

为采用的双谱估计得到的地震子波，图3-4(b)为双谱估计得到的地震子波与地震

子波模型的对比图。通过图3-4(b)n-]以看出基于高阶统计的双谱估计能够利用比

较少的地震记录估计出比较精确的非最小相位的地震子波。图3-4(c)是利用双谱

求出的子波结合同态反褶积思想求出的反射系数。
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O．06

O．05

0．04

O．03

O．02

0．01

O

60

4

2

0

—4

60

0 0

(a)

0 0

(b)

图3-3双谱求出的地震子波振幅谱(a)和相位谱(b)
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(a) (b) (c)

图3_4双谱估计出的地震子波(a)，双谱估计出的地震子波与已知地震子波模型的对比(b)，

结合同态反褶积思想求出的反射系数(c)

3．3．2实际二维剖面算例

图3·5(a)为一64道，每道有256个样点，采样率为2ms的实际二维地震数

据剖面。图3-5(b)采用双谱法估计的地震子波剖面，图3-5(c)为结合同态反褶积

方法求出反射系数剖面。

Trace NO．

(a)



1．1

1．2

1．3

1．4

1．5

1．1

1．2

1．3

1．4

1．5

熏

基于高阶统计实现地震反射系数和了波估计

fr

_：；

0

“
；{
“
f；
_：{
舛

P’

I J

0 1 0 20 30 40 50 60

Trace NO．

(b)

0 1 0 20 30 40 50 60

Trace NO．

(c)

图3—5实际二维地震道(a)，地震子波剖面(b)和相应反射系数剖面(c)
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4基于独立变量分析同时实现地震反射系数和子波估计

4．1独立变量分析问题描述

独立变量分析L"J(ICA)方法是近二十年来逐渐发展起来的一种高效盲信号

分离方法。它最早是用来解决“鸡尾酒会’’问题的【5引。然而，随着研究的深入，

人们发现它的原理在特征提取[24,59,60】、图像处理【6l】、生物医学信号处理【621、通信

系统【63】、金融【641、语音信号处理【65】、雷达和声纳【删和地震信号处理【671等信号处

理方面有着广泛的应用。ICA随之受到了越来越多的关注，很多种在分离能力、

内存需求和计算量等方面有不同优点的ICA算法己被提出，目前ICA已成为盲

信号处理，人工神经网络等研究领域中的一个研究热点。本章主要介绍了ICA

的基本概念、数学模型及实现原理，并介绍快速ICA(FastlCA)的相关原理及

其在地震盲反褶积中的应用。

ICA问题的一个典型例子是考虑在一个房间里有三个人聊天的情形(人数可

以任意)，用三支麦克风在房间不同的位置记录下了房间里的说话声，令岛(t)，

s：(f)和屯(f)分别表示两人说出的语音信号，五(f)，X2(t)和为(f)分别表示三支

麦克风记录下的信号。由于每一支麦克风都同时记录下三人的声音，所以很显然．

有如下表达式：

五(f)=^。而(t)+hl：屯(f)+^，而(f)
艺(f)=J12，而(f)+％：s2(t)+h23邑(f)
屯(f)=呜。而(f)+呜2s2(t)+h3，岛(f)

(4-1)

其中，％(f，J=1，2，3)是加权系数，它取决于麦克风位置与说话者之间的距离。

这种仅由记录信号‘(t)(称为观测信号、混合信号或传感器信号)来估计原始

信号■(t)(称为源信号)的问题就是所谓的“鸡尾酒会’’问题(Cocktail．Party

Problem)，其信号混合模型如图4．1所示。

为简单起见，暂时忽略时延、非线性等因素的影响，仅考虑最简单的混合系

统——线性瞬时混合系统。如果已知混合参数鹿，，求解的问题就相当简单，只需

对式(4-1)的线性系统求逆即可。然而，通常％和‘(f)均未知，它们对求解系
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统而言是“盲”的，所以问题相当棘手。解决该问题的可行方案就是依据源信号

s，t)的某些统计特性(或信息)对％和s，(f)进行估计。研究表明，只要三个源

NNs。(t)、s2(f)和5，(f)统计独立，便可利用一些盲处理算法从混合信号中恢复

出源信号。ICA正是为了处理这种与“鸡尾酒会”问题有密切联系的相关问题而

提出的【68】。

l n号说话者
，、

Z ∑

源信号

图4．1“鸡尾酒会”问题模型

4．2独立变量分析的定义及其线性模型

n号麦克风l
，，、

Z ∑

观测信号I

i发X=(xI，x2，⋯，‰)7’为聊维零均值随机观测向量，它由力个未知的零均值独

立源信号s=(‘，s：，⋯，J。)r线性混合而成的，忽略时间下标f，并假设每个混合信

号玉都是一随机变量，而不是时间信号。每个观测值‘(t)，为该随机变量的一

次抽样。这种线性混合模型可表示为：

x=册=∑啊，j=l一2．．，以 (4—2)

J=l

式中，H=[啊，％，⋯，吃】为mxn阶满秩源信号混合矩阵：乃为混合矩阵的，z维列

向量。式(4-2)可写成矩阵形式，即
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刚1．氆翻 (4_3)

式中，每个混合信号‘(f)(扛l，．．．，所)都可以是一随机信号，其每个观测值五(f)

是在f时刻对随机信号‘的一次抽样。由式(4．3)看出，f时刻的各观测数据‘(f)

是由f时刻各独立源信号_(f)的值经过不同的％线性加权得到的。式(4-2)就是

ICA的信号混合模型。

4．3独立变量分析的假设和约束条件及解混模型

在式(4-2)中，由于独立分量s，不能被直接观测到，具有隐藏特性，因此也

称为“隐藏变量"(Latent Variables)。由于混合矩阵日也是未知矩阵，ICA问题

唯一可利用的信息只有观测到的传感器检测信号X。若无任何其它可利用信息，

仅由x估计出S和H，ICA问题必为多解。为使ICA问题有确定的解，就必须

有一些符合工程应用的假设和约束条件。

①未知源信号独立性要求

针对ICA具体模型，未知源信号间相互独立，即要求：

p(s)=兀A(s) (“)
i=1

上式中，P，(墨)为各个分量的概率密度(pdf)，p(s)为源信号的联合概率密度。

②结果的幅度和符号存在不确定性

由于在X=HS中，日和S未知，如果将S中任一分量s，扩大口倍，只需将日

中相应的混合系数乘以1／口，上式仍成立。因此，在观测信号幅度不变的前提下，

源信号的幅度存在不确定性。同样道理，在观测信号符号不变的前提下，源信号

的符号同样存在不确定性。

③分离结果的排序存在不确定性

由与月和S未知，式(4-2)中独立分量的顺序可以调换。在式(4-2)中插

入一个置换矩阵P和它的逆矩阵，1，得到X=HP．p-1S，将HP-1看成新的混合

矩阵，则P1S中的各分量便成为新的已调换顺序的独立源s，。这表明ICA的分

离结果在排序上存在不确定性。但一般来说，幅度、符号和排序的不确定性不会

Sg
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对ICA的应用产生太大影响。

④只允许一个源信号s，的概率密度函数是高斯函数。

这是由于高斯型信号源的线性组合仍是高斯型，而相对于高斯型信号来说，

其目标函数为零，这将使ICA算法无法逐一分离出各高斯型信号，但其中的非

高斯信号却可以分离出来。

⑤信号源数目应小于或等于观测信号道数目，即／'／≤m。

⑥时延和褶积效应

在许多实际应用环境中，如对混合语音的忙分离问题(鸡尾酒会问题)，还

需要考虑语音信号在传播过程中的时延问题，另外墙壁或其它物体对语音的反射

也会形成褶积效应。因此麦克风接收的混合语音信号是不同声源的时延褶积混

合。

⑦求解ICA问题，需对各个源信号的pdf有一些先验知识。

为了在混合矩阵H和源信号S均未知的情况下，仅利用传感器检测到的信号

X(简称传感器信号或混合信号)和ICA的假设条件，尽可能真实地分离出源

信号s，可构建一个分离矩阵(或称解混矩阵)W=(％)⋯，那么混合信号x经

分离矩阵∥变换后，得到n维输出列向量y=【乃，Y2，．．．，圯】7。这样，ICA问题的

求解(或解混模型)就可以表示为

Y=WX=WHS=GS (4．5)

式中，G为全局传输矩阵(或全局系统矩阵)。若能使G=I(，为nxn阶单位矩

阵)，则】，=S，从而达到了分离(恢复或估计)源信号的目的。

4．4独立变量分析算法的性能指标

求解ICA问题有很多种方法，为了评价每种算法的性能，通常采用相应的

性能指树691，下面给出比较精确检验解混算法性能的两种指标。

①相似系数：相似系数是描述估计信号与源信号相似性的参数，定义为

乞吲训=协小足)l／ (4．6)

Yi----cS，(c为常数)时，乞=1；当咒与_相互独立时，乞=o。由式(4-6)

可知，相似系数抵消了盲源分离结果在幅值上存在的差异，从而避免了幅值尺度

59



基于高阶统计实现地震反射系数和了波估计

不确定性的影响。当相似系数构成的相似系数矩阵每行每列都有且仅有一个元素

接近于1，其它元素都接近于0，则可以认为分离算法效果较为理想。

②性能指数(Performance Index，PI)：定义为

丹=赤韶(端一·H盟maxj]gj，[一·]) ㈤7，

式中，岛为全局传输矩阵G的元素；max，goI表示G的第f行元素绝对值中的最

大值；max，g∥l表示G的第f列元素绝对值中的最大值。分离出的信号】，与源信

号S波形完全相同时，PI=0。实际当PI达到lo．2时说明该算法分离性能已相当

4．5独立变量分析的实现原理

ICA处理过程实际上使分离出的独立分量最大程度地逐步逼近各个源信号，

即建立目标函数【70】以寻优来实现逼近。因此，ICA包括两个主要方面：建立目标

函数(优化判据)和寻优算法。目标函数可以是对比函数(Contrast Function，

首先由ECommon提出[71】)、代价函数(Cost Funtion)、目标函数(Objective

Function)、损失函数(Loss Function，有时是代价函数的瞬时表示形式，即在线

取值)以及风险函数(Risk Function，有时表示目标函数或损失函数的数学期望)

等，这几种函数紧密相关，甚至可以互相替代，但某些情况下它们仍有区别。

4．5．1互信息最小化目标函数

KL散度(Kullback．Leibler)是统计独立性的参数，它与信息墒表示的互信

息量相当，常常互用。ICA的目的是使输出信号r(t)各分量尽可能独立，KL散

度(或互信息量)自然可作为度量参数。针对ICA问题的特点和假设条件，一

个很自然的想法就是采用KL散度或互信息量作为ICA目标函数，使输出信号

r(t1的互信息量最小化就成为ICA的目标。

设z和Y都为以维列向量，其概率密度函数分别是见(x)和p，(】，)，它们的

相互独立性可以用KL散度来衡量。KL散度定义如下
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研以砒(y)]=』以)lo《搿卜 ㈤8，

式中，P，(Y)也称为参考分布。

KL散度的主要性质是

KEP，(X)Py(Y)]>O (4-9)

Px(X)、P，(Y)二者越不相似，KL值越大。当且仅当px(X)=P，(Y)时，式(4—9)

取等号。

设刀维输出列向量】，的联合概率密度函数为Py(Y)，它的各个分量咒的概率

密度函数为Pi(咒)，i=I，2，．．．，刀。可以用Py(Y)和兀Pi(Y，)之间的KL散度来衡

量】，各分量之间的统计独立性。输出y各分量间的统计独立性。输出y各分量间

巾)：伽)nK I圳]：p，(Y)log，(y)=l岛(】，)1只(yf)|=』B(
L ．i=1 J 矿

B(y)

兀Pi(Y，)
扭l

dy (4．10)

可以看出，，(J，)=o、乃(y)=兀Pi(Yi)与Y的各分量统计独立这三种表述完全

等价。显然，，(y)可以作为一种目标函数(或对比函数)。目标函数』(y)最小化

就可以减小Y中各个分量的依存性，，(】，)=o时各分量达到互相独立。

也可以用度量信息量的熵作为目标函数，根据联合熵与互信息量的关系，有

日(y)=H(y。)+日(少：4-⋯H(以)一I(Y) (4-11)

式中，H(y，)为输出的边缘熵。最大联合熵日(】，)包含最大化边缘熵和最小化互

信息量两项内容。选择熵作为目标函数是因为熵是随机变量无序性的度量以及信

息量大小(不确定信息的多少)的测度。y各分量的统计独立性越高，则相应】，

的熵越大，所含信息也越多。

4．5．2信息传输最大化或负熵最大化目标函数

在信噪比较高的情况下，输入与输出之间互信息量的最大化(信息传输最大
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化)意味着输入与输出之间的信息冗余量达到最小，这样就使得各输出之间的互

信息量最小化了，从而各输出分量互相统计独立。由互信息量的定义式(4．10)

可知，j(xI】，)是系统输出y和输入x的互信息量表达式，当两者的冗余信息最

小时，，(J阿)达到最大值。

负熵是从熵的概念中引申而来的，输出】，的负熵定义为

，(】，)=日(‘)一z(r) (4-12)

式中，乓是与】，方差相同的高斯随机向量。

负熵的特点是它对y的任意线性变换不变，而且总是非负的，只有当y是高

斯分布时才为零。基于这一特点，负熵是一个很好的目标函数。令系统的输出负

熵(Negentropy)最大化也能导致信号的分离。可以证明，负熵与互信息量的关

系为

。
I． 兀G

巾)=巾)一善以(乃)+互log如(4-13)
式中，C为l，的协方差矩阵；C／t为矩阵的对角元素。当y的各分量不相关时，

式(4．13)右边第三项为零，可将其简化为

，(y)=／(y)一∑‘(y，)
i=i

(4．14)

由此式不难看出，最小化输出信号】，各分量之间的互信息量J(】，)等价于最大化

各分量的负熵和∑以(只)。因此基于负熵的目标函数可以写为
i=l

p(】，)=∑‘(乃)
，=l

(4-15)

需指出，以后各章常J(或P)表示目标函数或损失函数，而风险函数或代价函

数则常用R表示。

4．5．3独立变量分析的最大似然目标函数

最大似然估计(MLE)的目标就是由观测数据样本估计样本的真实概率密度，

具有诸如一致性、方差最小及全局最优等优点。应用最大似然估计实现ICA就

是比较自然的选择，但该方法的缺点是需要输入信号概率密度分布函数的先验知
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识。

设A(x)是对观测向量x的概率密度见(x)的估计，源信号的概率密度函

数为P，(S)，根据线性变换下两个pdf相等的关系，观测数据x的概率密度函数

的估计允(x)与源信号概率密度函数以(S)满足

地)=留 ㈤16)

对于给定的源信号混合模型X=HS，观测数据X的似然函数定义为

L(日)=E{l。g霞(x))=』以(x)l。gp,(H_1x)批一l。gIdet HI (4-17)

它是混合矩阵H的函数，分离矩阵矿=H。1时，对数似然函数为

￡(形)≈寺善{109见(肠)}+log[detIV[(4-18)
式中。行为独立同分布观测数据的样本数。

4．6数据的预处理

一般情况下，所获得的数据都具有相关性，所以通常都要求对数据进行初步

的白化或球化处理，因为白化处理可去除各观测信号之间的相关性，从而简化了

后续独立分量的提取过程。通常情况下，数据进行白化处理与不对数据进行白化

处理相比，算法的收敛性较好。

若一零均值的随机向量z=(zI，．一，Z肘)7’满足E{ZZ 7’}=，，其中：I为单位矩
阵，我们称这个向量为白化向量。白化的本质为去相关，这同主分量分析的目标

是一样的。在ICA中，对于零均值的独立源信号s(f)=[墨(f)，．．．，乱(f)]7各分量

必然是不相关的，即：

E{S，S．i}=E∽}E{s，}=o，当f≠_， (4—19)

为避免尺度的不确定性，可对独立源信号进行能量归一化处理，则归一化后各分

量的自相关函数满足

E{g}=l，Vi (4-20)

式(4．19)和式(4．20)同时成立，等价于源信号的自协方差矩阵

eov(S)=I (4．21)
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对任意多维信号施加一个线性变换使其变为白化信号的处理过程称为白化处理

(whiting)或归一化解相关，相应的变换矩阵称为白化矩阵。若Q为观测信号xO)

的白化矩阵，则

j(f)=凹(f)(4-22)

式中，牙(f)是白化后的混合信号，于是cov(j)=』。将x=册代入(4-22)并

令G=QH(G为全局混合矩阵)，得

X(t)=QHS(t)=GS(t)(4-23)

由于线性变换G所连接的j(f)和s(f)是两个随机向量，因而矩阵G一定是正交

阵。如果把j(f)看做新的观测信号，那么白化就是使原来的混合矩阵日简化成

一个新的正交矩阵G，即

E{厨r}=E{鲫MG}=Ge{ss7’or=GGr=，(4-24)
类似地，若分离矩阵W针对的是白化后的混合信号8(t)，分离输出Y满足

E{拶r}-，时，有

E{∥0=E{廊rWr)=WWr=， (4-25)

式(4．25)表明，数据白化后的盲分离矩阵形必然为正交矩阵。

实际上，正交变换相当于对多维矢量所在的坐标系进行一个旋转。在多维情

况下，白化后新的混合矩阵G是NxN阶正交矩阵，其自由度降为Nx(Ⅳ-1)／2，

所以说白化使得ICA问题的工作量几乎减少了一半。

白化这种常规的方法作为ICA的预处理可以有效地降低问题的复杂度，而

且算法简单，用传统的PCA就可完成。用PCA对观测信号进行白化的预处理使

得原来所求的解混合矩阵退化成一个正交阵，减少了ICA的工作量。此外，PCA

本身具有降维功能，当观测信号的个数大于源信号个数时，经过白化可以自动将

观测信号数目降到与源信号维数相同。

4．7快速I CA(Fast l CA)算法

FastlCA[72】算法，又称固定点(Fixed．Point)算法，是由芬兰赫尔辛基大学

Aapo Hyvarinen[73,74】等人提出来的，是一种快速寻优迭代算法。与普通的神经网
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络算法不同的是这种算法采用了批处理的方式，即在每一步迭代中有大量的样本

数据参与运算。但是从分布式并行处理的观点来看，该算法仍可认为是一种神经

网络算法。FastICA算法有基于峭度、基于似然最大、基于负熵最大等形式，这

里，我们介绍基于负熵最大的FastICA算法。它以负熵最大作为一个搜寻方向，

可以实现顺序地提取独立源，充分体现了投影追踪(Projection Pursuit)这种传

统线性变换的思想。此外，该算法采用了定点迭代的优化算法，使得收敛更加快

速、稳健。

因为FastICA算法以负熵最大作为一个搜寻方向，因此先讨论一下负熵判决

准则。由信息论理论可知：在所有等方差的随机变量中，高斯变量的熵最大，

因而我们可以利用熵来度量非高斯性，常用熵的修正形式，即负熵。根据中心

极限定理，若一随机变量x由许多相互独立的随机变量SiO=1,2，3，⋯Ⅳ)之和组

成，只要S，具有有限的均值和方差，则不论其为何种分布，随机变量X较墨更

接近高斯分布。换言之，Sj较x的非高斯性更强。因此，在分离过程中，可通

过对分离结果的非高斯性度量来表示分离结果间的相互独立性，当非高斯性度

量达到最大时，则表明已完成对各独立分量的分离。

负熵的定义：

N量(y)=H(y6缸)一H(Y) (4-26)

式中，‰。琊是一与Y具有相同方差的高斯随机变量，日(．)为随机变量的微分熵

H(y)=一fP，G)lgp，Gpf(4-27)
根据信息理论，在具有相同方差的随机变量中，高斯分布的随机变量具有

最大的微分熵。当】，具有高斯分布时，N。(y)=0；y的非高斯性越强，其微分

熵越小，Ⅳg p)值越大，所以N。p)可以作为随机变量y非高斯性的测度。由于

根据式(4．27)计算微分熵需要知道y的概率密度分布函数，这显然不切实际，

于是采用如下近似公式

也(y)={E[g(】，)]一S[g(y=oo。)])2 (4—28)

其中，科·】为均值运算；g(·)为非线性函数，可取g。(y)=tanh(a。Y)，或

g：(y)=yexP(-y2／2)或g，(y)=y3等非线性函数，这里，1≤口。≤2，通常我们取
a．=1。
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快速ICA学>-j规则是找一个方向以便W1 X具有最大的非高斯性。这里，非

高斯性用式(5·7—3)给出的负熵以(矿7’x)的近似值来度量，Wrx的方差约束

为1，对于白化数据而言，这等于约束矿的范数为1。FastlCA算法的推导如下。

首先，Wrx的负熵的最大近似值能通过对E{G(矽rx))进行优化来获得。根据

Kuhn-Tucker条／牛，在E{(形rx)2}=II形02=1的约束下，E{G(W7’x)}的最优值能
在满足下式的点上获得。

E{．豫(∥7’彳)}+∥形=0(4-29)

这里，∥是一个恒定值，∥=E{略题(略x)}，甄是优化后的∥值。下面
我们利用牛顿迭代法解方程(4-29)。用，表示式(4．29)左边的函数，可得F的

雅可比矩阵历(∥)如下：

JF(W)=E{XT(¨g(形rx))_∥，(4-30)
为了简化矩阵的求逆，可以近似为式(4-30)的第一项。由于数据被球化，

E{肠r-i，所以，E{XXrg’(矽rx)}≈E{尉r}E{97(矿rx)}=E{97(矽rz))，。
因而雅可比矩阵变成了对角阵，并且能比较容易地求逆。因而可以得到下面的

近似牛顿迭代公式：

W’=W一陋仁李修丁x))一∥矽】／陋k·修rx)}一∥】
W=W‘／Il形’0
(4-31)

这里，矽‘是矽的新值，∥=E妙rXg杪r硼，规格化能提高解的稳定性。简化
后就可以得到FastICA算法的迭代公式：

形‘=E{题(矿rx)}一E{g’(形rx)}矿(4-32)
W=W’／llw’0
实际中，FastICA算法中用的期望必须用它们的估计值代替。当然最好的估

计是相应的样本平均。理想情况下，所有的有效数据都应该参与计算，但这会

降低计算速度。所以通常用一部分样本的平均来估计，样本数目的多少对最后

估计的精确度有很大影响。迭代中的样本点应该分别选取，假如收敛不理想的

话，可以增加样本的数量。
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～元FastICA算法的基本步骤如下：

①对观测数据x进行中心化，使它的均值为O；

②对数据进行白化，X—Z。

③选择一个初始权矢量(随机的)矽。

④令∥‘=E{Zg∽，z)}一E台’缈丁z炒，非线性函数g的选取见前文非线性
函数的选取。

⑤令形=矽’／W‘0。
⑥假如不收敛的话，返回第④步。

收敛意味着矿的新值和老值指向同一方向，即它们的点积为1。没有必要使

向量收敛到一点，因为形和一矽指的是同一方向。

如果要估计多个分量，我们可以按如下步骤计算：

①对观测数据x进行中心化，使它的均值为O；

②对数据进行白化，X—Z；

⑨选择需要估计的分量的个数m，设迭代次数P卜1，t

④选择一个初始权矢量(随机的)形。；

⑤令％=E弦慨7’z骋一Ek·眈rz舫，非线性函数g的选取见前文；

⑥％：％一窆眈r％坊；
j=l

⑦令％=％川％』；

⑨假如矽。不收敛的话，返回第5步；

⑨令P=P+1，如果P≤小，返回第4步。

FastlCA算法和其他的ICA算法相比，有许多我们期望的特性：

①收敛速度快；

②和梯度算法不同，无须选步长参数，易于使用：

③能利用任何的非线性函数g直接找出任何非高斯分布的独立分量。而对

于其他的算法来说，概率密度函数的估计不得不首先进行，因而必须选

择非线性；

④它的性能能够通过选择适当的非线性函数g来最佳化；

⑤独立分量可被逐个估计出来，类似于做投影追踪，这在仅需要估计几个

67



基于高阶统计实现地震反射系数和子波估计

(不是全部)独立分量的情况下，能减小计算量；

⑥FastlCA算法有许多神经算法的优点：它是并行的、分布式的且计算简

单，内存要求很少。

4．8基于ICA算法同时实现地震反射系数和子波估计

应用ICA算法进行地震盲反褶积处理，对于一道地震记录来说，为了更容易

的解决问题，提取一些时间上延迟的混合信号，用它们构造一个具有多个实现的

任意向量矩阵x，又称为混合向量，是由一个未知量混合矩阵A和相应的加入时

间延迟因子的源信号向量矩阵S的乘积构成。根据褶积的性质，混合矩阵A中的非

零元素排列为带状，且这些非零元素中包含着子波h的信息。混合矩阵A中的这

个带状特性作为先验知识并入ICA的算法中便产生了一种解决盲反褶积问题的

新方法——带状ICA算法(B．ICA)。应用B．ICA算法可同时恢复出地震子波和反

射系数。

4．8．1地震盲反褶积ICA模型的建立

地震勘探中的地震记录可用褶积模型近似描述。令石(f)和JIl(f)分别表示地震

记录和地震子波，在无噪情况下，褶积过程数学模型描述为：

^，

z(f)=∑岛JIl(卜_)，
f=l

(4-33)

其中辟是地下第f个界面的反射系数，0从激发点经地下第f个界面反射到接收

点的双程旅行时。式(4-33)可以表示成褶积形式：

可以表示成褶积形式：

z(f)=p(f)·J|l(f) (4-34)

其中反射率函数p(f)=∑p,8(t-T,)。长期以来，褶积模型广泛用于描述地震信
i=l

号。顾名思义，反褶积就是褶积的逆过程，从地震记录工(f)中恢复出反射率函数

p(f)和地震子波JIl(f)。若仅从地震记录石(f)中重构出地震子波JIl(f)与反射率函数

p(t)，实际上就是一个褶积型混合信号的盲源分离问题，即所谓盲反褶积问题，

通过时间延迟可以转化为ICA模型，用ICA的方法解决
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将式(4-33)写成如F矩阵形式：

As=x

(4．35)

其中，反射系数向量为s7=(反‘)反乞)⋯从f。))包含甩个样点(n>nw)的时

间序列，而反射地震记录的长度也取，z个样点，x7’=(x(f1)x(t2)⋯x(f。))，

这样，褶积矩阵A中每个列向量包含着时间延迟后的地震子波h的信息，地震子

波算子h7’=(^(f。)Jlz(乞)⋯h(t。，))包含以w个时间样点，矩阵A是原褶积矩阵截

去后面(，1w—1)行，构成的一个咒×n阶的带状褶积矩阵，即

A=[a。J a：|．．．|a．]=N。hl N：h J．．．IN．h] (4-36)

其中褶积矩阵A的列向量a，=N，h，N，为加零算子，表示列向量a，第f个元素为

厅(‘)，第(f+1)个元素是Jlz(f2)，⋯⋯，依此类推，其余元素为零，图4—2为行数

n：100，列数刀w：20的带状矩阵A的示意图，很明显其非零元素的排列为带状。

图4．2一个带状混合矩阵，其非零元素排列为带状(n=100，nw=20)

褶积模型(4．35)可以看作ICA模型，但仅提供源信号向量S和混合信号向量

x各自的一个实现，不能充分的描述它们所对应的统计学性质，不能构成真正意

义上的ICA模型。可以重新排列信息构成信号的多次实现，满足ICA模型要求。

具体策略【75】：考虑p(f)和工(f)的时间延迟，将反射系数向量(源信号)和地震记录

向量(混合信号)扩展成随机向量(矩阵)，矩阵的每一列都是延迟后向量的一

次实现，即

s2 P—p(f)Z．-2p(f)⋯zp(t)p(f)] (4—37)
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x=l'r-'x(O z”2x(f)⋯及(f)x(f)] (4—38)

其中z为单位时间延迟算子，每次实现取刀个值，写成矩阵形式：

S 2

X2

0 p(‘)p(乞) p(乞一：)p(乙一。)
p(‘) p(乞) p(岛) p(厶一。) p(厶)

0 0 0⋯0 工(fI)
0 0 0⋯工(‘) z(乞)

0 z(f1)工(f2) x(乙一：)工(乙一。)

工(‘) 工(f2) z(f3) 工(‘一，) 石(乙)

(4．39)

(440)

则x的第／次实现，J=1，2，⋯，刀，为x的第Jf次实现与子波算子h的褶积，即

x，=h·s， (“1)
J J

从而使式(4．35)满足ICA算法的条件，可以作为ICA算法的基本模型，应用ICA

算法来实现盲反褶积，求出子波和反射系数。ICA算法能够算出矩阵s的每行的

近似值，每行中都包含了一部分反射系数的信息，但ICA算法并不能直接计算

出子波算子h，计算是出的混合信号与独立分量间的映射关系矩阵。另外，ICA

算法是依赖独立分量的统计特性进行计算，显然，s和x的最初的少数行提供很

少的非零实现，这对确定相应的随机变量统计特性作用较小。

4．8．2基于ICA算法实现地震盲反褶积的原理

ICA算法常用下列式子[73,7s1描述：

As=x，FAs；Fx=Ws=Z，Y=Bx，Y=Qz (4-42)

其中A，B，W和Q均为RX n阶的矩阵，r的选取是使z为白化矩阵，而Q的选

定是使Y的各行随机变量乃为独立的分量，对各f行随机变量只oCSi，S，是s的第

f行随机变量。另外，定义一个新的矩阵P，使得

Py=x (4_43)

其中P=【p．Ip：I．．·Ip所】，由于ICA的不确定性‘751，得到的独立分量y与s在幅度和

排序上有所差异，矩阵P和矩阵A映射作用相似(或认为相同)。这里对基本ICA

“化～

p

p

～

p

～ 0“～

O

0

—

0

O

¨

0

0

—
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算法进行改进，不再求矩阵Q的行，而是求矩阵P的列。这样可以更方便的将先

验信息应用到ICA算法中，即矩阵A的带状性质可以应用到矩阵P上，从而产

生一种新的所谓B．ICA算法并得到盲反褶积问题的解。

IcA的一般算法是求目标函数矽(qj)的最小值，即用独立分量y，=qiTz负熵[76】

测度{-J(y。))来计算，其中qj是矩阵Q的第i行，负熵定义为：

㈣叫(yf)~-訾一掣 (4．44)

式中k3(Y；)和k4(y；)分别是Y中第i个独立分量的斜度和峰度。由ICA算法可求出

矩阵Q各个行qj，而列q，和列pi的关系很容易求得。另外，独立分量y；是零均

值不相关单位方差的随机变量。

由Y=Qz得E(yy7)=E(Qzz 7’Q7)=QE(zzr)Q7’=QQ7’=I，其中，l是单位

矩阵。若QJ存在，Q。1QQT=Q一，即QT=Q～。进一步，由式(442)得，

Z=Q。1Y=QTY=Fx，于是

x=F。1QTY (4．45)

比较式(4．43)和式(4—45)可以得到矩阵P和Q的关系，P=V-1QT或QT=FP，

因此，列之间关系为q，=Fp，。认为矩阵P和矩阵A映射作用相同，则

Yf=qrz=(rp，)1 Z=(FNjh)7 Z=h7’(NiTr7’z)=hri (4．46)

其中：i=NirFTZ，N，为加零算子矩阵，使向量h映射为矩阵P的第f列，且从

i开始放置向量h第一个元素，依次类推，其它元素为零，非零元呈带状排列。N，

作为先验信息，限制混合矩阵A具有这种带限性质，也就是使矩阵P具有与A相

同已知的稀疏结构。

在式(4．46)中，i可认为是一组新的与独立分量妒对应的混合向量(总数

是刀w个)，即夕=赦，其中，豆T=[丘I|丘：l⋯I丘。]是一个甩w×r／w阶的矩阵。
式(4．46)可推广成一个新的ICA模型：

A季=i，FA§=Fi=W季=艺，萝=Bi，夕=Q艺 (4—47)

其中，6=Qf。那么，只要给定i=N。TrTz，应用ICA算法就能够求解9和岳。

夕的某向量(第i个)就是期望的独立分量(反射系数的一次实现)，而矩阵丘的

某行(第f行)就是矩阵P的某列(第i列)中的那些非零元素。也就是说，对某
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个f，满足丘。∞h。算法中的N。作为先验信息，限定求第f个独立分量(反射系数

一次实现)和混合矩阵中的a。列(子波序列)。

上述算法称为B．ICA算法，虽利用了混合矩阵结构已知的先验信息，但B—ICA

算法仍存在模糊性，即算法会产生与h维数(nw)个数一样多的独立分量，还

要对选取最佳的分量及其矩阵云中相应的的行向量。

式(4．35)将无噪地震褶积模型等价为基本ICA模型，但式(4-37)和(4．38)

中前几个向量中非零实现较少，对相应的随机变量反映不足，要对算法进行改进，

弥补所缺少的信息，然后再使用B．ICA求出与h维数(刀w)个数一样多的独立

分量和相应的子波序列，最后从这些候选解中选取最优解，得到反射系数和子波

的一个最佳近似。

使用一个近似褶积模型As≈x，

s=I z扩1p(f)z”2p(f)⋯zp(t)p(f)l (“8)

x=I z”1x(f)广2工(f)⋯zx(t)工(f)l(4 49)

其中，肌<刀。这时褶积混合矩阵并不精确，但随机变量有较多非零元素，可较

好反映随机性，满足ICA的要求。

显然给定A和s，计算x，对于元素‘(岛)在(f∈{1．·-，叫)n(_，∈{(所一1)⋯磅)范围

内结果不正确的，但是，对x的剩余部分则是正确的。因此选取适当的m，给出

式(4_49)形式的x，就可以利用B-ICA算法按真正褶积模型求出子波和反射系

数。这时IcA模型(纠7)式中矩阵丘计算对应i。Nm_nw_loTl’Tz，即应用了褶积

矩阵结构的已知信息。

本文采用改进的FastlCA算法【771，目标函数用负熵非多项式展开表示，

，(员)≈{∑旧咯(洲)2(4-50)
厶k=l

品2

--般取l=l时，近似求出J(或)，这时‘(或)=exp(-导)。

B．ICA算法求出与h(或h。)的维数一样多的反射系数和子波。但实际中地

震子波是未知的，因此简单的选择是不够的。可以通过褶积模型，计算相关系数

q，使褶积模型误差最小，来挑选最佳结果，目标函数如下，
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l；f，(q)=IIxk-c，h，幸枷 (4．51)

其中，x。／-=IX。(￡。)以(f：)⋯％(f。)]和夕，7’=[只(fI)只(f：)⋯只(f。)]分别是第七

个混合信号和第i个独立分量(反射系数)。利用最小二乘法，很容易得到极小

值点

刊k高褊 ㈤52，

而反射系数和子波的最优结果(夕．，丘．)，可用下式计算得到，

y(州=叩{少(州}，扛L⋯ c4彤，

4．8．3基于ICA算法的地震盲反褶积的数值算例

①模型数据试算

1 1． JJl
。l。 1 ．o．2-

4·4广—1砭

八 j

＼

l／——一 1

＼ ／

V {
1．“ '．∞ 1．∞
t／a

(b)

0．6一
图4．3随机反射系数(a)，模拟的非最小相位地震子波(b)和模拟地震记录(c)

图4．3(a)为产生的非高斯分布的随机反射系数(300个样点，采样率2ms)，图

4．3(b)是模拟的非最小相位地震子波，取30个样点作为褶积算子，图4．3(c)是反

射系数和子波褶积得到的模拟地震记录(也取300个样点)。

图4—3为应用B．ICA算法得到的与独立分量的数目相同的反射系数和子波(与

地震子波样点数相同)。为解决时间延迟褶积模型随机变量反映不足，选取式

(4．48)和式(4．49)中m=125<，z=300。由于ICA算法自身的模糊性【78】，B．ICA

算法得到的结果在振幅和相位上与真实结果难免有一定的出入。进一步通过求解

相关系数的极值得到最优反射系数序列和相应的地震子波，如图4．4所示。由图

44可以看出，B．ICA算法能够较为理想地同时反演反射系数和地震子波，解决盲

反褶积问题。
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图4．3应用B．ICA算法计算得到的反射系数和子波得到的30对候选结果
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图4．3应用B．ICA算法计算得到的反射系数和子波得到的30对候选结果(续1)
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图4．3应用B．ICA算法计算得到的反射系数和子波得到的30对候选结果(续2)
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图44通过B．ICA算法得到的最佳反射系数(a)和子波㈣

②实际二维地震数据试算

图4-5(a)Yg--64道、每道有256个样点的实际二维地震数据，采样率为2ms。

在图4．5(b)和图4-5(e)分别为采用B．ICA盲反褶积反演得到了反射系数剖面和地

震子波剖面，在无噪条件下，较好地实现了反射系数和地震子波同时反演的盲反

褶积(非高斯和非最小相位假设)，表明B．ICA地震盲反褶积具有一定的实用

性，值得进一步深入研究。

1．5

0 1 0 20 30 40 50 60
Trace NO．

(a)

1

1

2

3

4



皋十高阶统计实现地震反射系数和了波估计

‘疗

≥

0 1 0 20 30 40 50 60
Trace N0．

’("f,／'l／f／／fff／#t／"／t"l／ft"／'f／／Idf／／／／l f'J#"f／／l／／'"lff fff lff／Ifffff／／""1



基于高阶统计实现地震反射系数和子波估计

4．9基于I CA的同态盲反褶积

与常规的地震反褶积方法相比，同态反褶积对地震记录不作任何先验假设，

如最小相位子波与反射系数序列均匀随机分布等，因而不会产生由这些假设条件

不满足而引入的误差【79】。同态反褶积方法虽然在对地震子波不做最小相位假设，

利用对数谱平均提取子波直接分离出地震子波和反射系数【13】。但是，在用同态反

褶积方法估算出的若干个地震子波当中，如何选取一个最佳的地震子波却是比较

困难的问题。因为人工挑选不仅需要花费大量的时间，而且还需要一定的经验，

挑选的结果往往因人而异。

本文对同态反褶积方法进行了探索性改进，将基于高阶统计量的盲源分离方

法——-独立分量分析OCA)与同态反褶积相结合，将地震褶积模型从时间域变换

到复倒谱域，使褶积模型变成加法模型以满足ICA的算法模型，采用FastlCA算

法将地震子波和反射系数分离。文献[18】提出用ICA实现同态反褶积(盲反褶积)

的方法来进行语音信号的分离，地震信号的反褶积可以借鉴。

4．9．1基于ICA的同态盲反褶积的原理和步骤

地震勘探中的地震记录可用褶积模型近似描述。令x(f)表示一道地震记录

JII(f)和s(f)分别表示地震子波和反射系数，在无噪情况下，褶积过程数学模型描

述为：

x(t)=h(O*s(t) (4-54)

对式(4．54)两侧求复倒谱可得：

j(f)=^O)+jO) (4．55)

由式(4．55)可知J；；(f)和；(f)相互独立，满足了ICA算法的条件，可用ICA

算法进行分离。另外，在同一地震记录中，由于地震子波J|lO)可近似认为是不变

的，相邻的两道地震记录因地下界面的相似而大体一致，因此可以选择相邻的两

道地震道来进行研究，其复倒谱可表示为：

r ‘

I毫(f)=^(f)+奎O)
1 ．

【是(f)=JI(f)+口；(f)
(4-56)



皋十高阶统计实现地震反射系数和了波估计

其中，J；(f)为复倒谱域中的地震子波，j(f)为在复倒谱域中的平均反射系数。口为

一绝对值非常接近1的常数，这是因为相邻的两道地震记录存在着细微的差异，

但是又十分接近。需要指出的是，Fh于时域信号与其复倒谱之间的变换为非线性

变换，因此不能简单地由式(4．56)直接估计平均反射系数s(f)。根据式(4．56)，

在复倒谱域，系统的等效混合矩阵为一非奇异矩阵，因此，可以实现信号的分离。

虽然ICA算法可以恢复独立分量的波形，但分离出的信号却存在着三种不确

定性，即分离信号的顺序、幅度及相位的不确定性。在大多数情况下，由于应用

ICA算法只要求获得独立分量的波形，因此这些不确定性是可以忽略的。本文中，

应用ICA算法所解决的问题中只包含两个混合信号，因此可以不考虑分离信号

顺序的不确定性。但是，在将信号由复倒谱域变换回时域时，幅度和相位的不确

定性将直接影响到最终的盲反褶积的结果‘291。因此，在应用ICA算法进行分离

的同时还要消除复倒谱五(f)和j(f)的振幅和相位的不确定性【801。

假设经过ICA算法分离后，独立分量的向量为L=【谢。，id2]7，分离矩阵为形，

则混合矩阵：

彳玎1帏all。乏)
构造向量R=【q。，0】，恐=【o，口，：】，则有：

j。(t)=墨L

s2(t)=恐厶

(4．57)

(4．58)

ICA算法分离后的独立分量厶经过式(4)和(5)计算后所得的i(t)和s2(t)与

复倒谱石(f)和j(f)之间的幅度和相位的不确定性已完全消除，只存在着顺序上的

不确定性了。

基于ICA的同态反褶积方法实现地震盲反褶积的步骤总结如下：

①取相邻的两道地震道五(f)和jc2(t)求复倒谱毫(f)和是(t)。

②利用ICA算法对复倒谱毫(f)和是(t)进行分离。



基于高阶统计实现地震反射系数和子波估计

③采用式(4)和(5)的方法计算；I t)和j：t)，消除分离后复倒谱信号幅度和

相位的不确定性。

④将；。(f)和毒：(t)由复倒谱域反变换回时域，重构时域信号‘(t)和s：(t)。

s．(t)和s：(t)即为所求的结果，其中一个为地震子波JIl(f)，另一个则为平均

反射系数s(f)。

4．9．2基于ICA的同态反褶积的数值算例

①模型数据试算

图4—6(a)是模拟的非最小相位的地震子波JII(f)，取300个样点作为褶积算子，

图4-6(b)为产生的非高斯分布的随机反射系数s(f)(300+样A，J榭92ms)，图
4_6(c)是地震子波^(f)和反射系数s(f)褶积得到的模拟地震记录五(也取300个样

点)，图4-6(d)是取口=0．9999 I／寸，地震子波Jl(f)和反射系数J(，)·口褶积得到的模

拟地震记录恐(也取300+样点)。图4_7(a)是利用基于ICA的同态反褶积方法得到

的地震子波，图4-7(b)是利用基-于ICA的同态反褶积方法得到的反射系数。

t一

(a)

。}

j l 1 ． |{l
’： 。l’ 。f

图4-6地震子波(a)，随机反射系数(b)，模拟地震记录l(c)和模拟地震记录2(由垤五一
‘
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图4—7基于ICA的同态反褶积方法所得到的平均地震子波(a)和反射系数(b)

②实际二维地震数据试算

图4-8(a)为64道、每道有256个样点的实际二维地震数据，采样率为2ms。

图4-8(b)和(c)分别为采用基于ICA的同态反褶积方法反演得到的反射系数剖面

和地震子波剖面，在无噪条件下，较好地实现了反射系数和地震子波同时反演的

盲反褶积(非高斯和非最小相位假设)，表明基于ICA的同态反褶积方法在地

震盲反褶积的应用上具有一定的实用性，值得进一步深入研究。
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图4．8实际二维地震道(a)，求出的反射系数剖面(b)和相应的地震子波剖面(c)

本文对传统的同态反褶积方法进行算法上的改进。将无噪地震褶积模型有时

间域变换到复倒谱域，使无噪地震褶积模型满足独立变量算法(ICA)的要求，通
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过独立变量算法(ICA)将地震子波和反射系数进行分离，再将分离的结果变换回

时间域，从而获得实现地震盲反褶积的一种新方法——基于ICA的同态反褶积

算法。通过模拟和实际数据的试算和检验可以看出：当口的绝对值非常接近l时，

该算法能够同时得到地震子波和反射系数，分离效果十分明显；而对于实际的二

维地震数据来说，效果并不理想，这是由于在实际的应用中，相邻的两道地震道

的反射系数的相似程度远远达不到模拟时的条件。因此，该算法还有待进一步的

改进，值得深入研究。

87
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5结论与建议

一般情况下，常规的地震子波估计和反褶积需要在地震子波是最小相位和反

射系数是白噪的假设前提下来实现。而本文利用高阶统计的相关知识对子波估计

和地震反褶积处理进行了具体的研究，摆脱了地震子波是最小相位和反射系数是

白噪的假设条件，并且在统计独立的假设条件下，利用基于高阶统计的独立变量

分析方法实现了地震子波和反射系数的同时求取。通过上述各章的分析和论述，

可以得到以下结论：

①基于高阶统计的地震子波估计方法能够有效的提取非最小相位的子波，

而且，在此基础上结合同态反褶积思想可以进一步有效的实现地震反褶积。模拟

和实际数据的试算表明：该方法在提取非最小位子波时效果比较好，而反褶积的

结果比较差，还需要进一步的研究。

②在无噪条件下，利用带状矩阵将地震褶积模型转化为ICA模型，在统计

条件下满足独立变量算法(ICA)的要求，从而获得解决地震盲反褶积的一种新方

法一基于带状矩阵的独立变量算法(B．ICA)。通过模拟和实际数据的试算和检
验，证明了：B．ICA算法在无噪情况下能够同时计算出地震子波和反射系数，并

具有一定的实用性，值得深入研究。

③对传统的同态反褶积方法进行了算法上的改进。在无噪条件下，利用快

速独立变量算法(FastlCA)将地震子波和反射系数在复倒谱域进行分离，并通过构

造向量消除ICA算法分离的结果中固有的振幅以及相位的不确定性，最后将分

离的结果变换回时间域，得到相应的地震子波和反射系数。通过模拟和实际数据

的试算和检验，证明了：当口的绝对值非常接近l时，即两道的反射系数十分接

近时，该算法能够同时得到地震子波和反射系数，分离效果比较明显，证明该方

法具有一定的实用性，值得深入研究。

基于高阶统计的子波估计和地震反褶积，尤其是基于高阶统计的独立变量分

析作为一种新的地震资料的处理方法，其理论体系尚不完善，在地震反褶积处理

中仍存在一些实际问题需要解决。本文仅对独立变量的方法进行了研究，其实际

的应用效果有待进一步改进。

①由于ICA方法固有的模糊性问题，本文提出的B．ICA算法反演结果在幅
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度和相位上有一定的偏差，希望通过进～步的研究能够克服。

②本文的所有方法均是在无噪条件下实现的，因此在含噪条件下，如何利

用ICA算法直接反演出地震子波、反射系数和噪声是下一步研究的目标。

③本文提出的B．ICA算法虽然能同时求得地震子波和反射系数，但是还需

要通过正演模型挑选出最佳结果，如何将基于高阶统计量的子波估计结合ICA

算法，形成约束条件来实现地震盲反褶积，值得进一步研究。

④基于ICA的同态盲反褶积，由于在实际的应用中，相邻的两道地震道的

反射系数的相似程度远远达不到模拟时的条件，结果并不理想，还有进一步的改

进。
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