
摘 要

约束非线性规划在经济金融、工程控制、技术物理、物流配送、

计算机科学及生物工程等各个领域有着广泛的应用。近年来，随着理

论研究的深入和计算机技术的普及和发展，人们开始尝试把一些计

算复杂度小、稳定性好、收敛性强的算法拓展到求解非线性规划问

题。其中，内点算法的研究尤为引入注目。内点算法的基本思想是从

问题可行域中的某一点出发，沿着中心路径进行搜索，直达问题的最

优解。不过，内点算法在非线性规划中的实际研究、证明和测试中还

是遇到了许多的障碍。

首先，对于具有大规模约束的问题，如何寻找一个初始的可行点

是内点法中研究的课题。在线性规划问题中，我们可以采用一些非

可行内点算法的技巧，例如在某一步迭代过程中选取全牛顿步长等

等。研究表明，在锥优化模型中，可以通过引入自对偶嵌入模型来克

服初始点选取的困难。但这些技巧不适用于一般的非线性规划问题。

其次，在路径跟踪内点算法中，由于正交性条件的不满足，如何证明

算法的收敛性，也是要进行探索的问题。

本文主要的工作是结合内外罚函数给出了求解约束非线性规划

的内点方法。针对上的问题，我们作了以下二方面的工作，一、通过

引入辅助变量来构造原问题的等价问题，从而克服了初始点选取的

难题。然后，给出相应的KKT条件和罚内点算法，并采用Wolf条件设

计了一个可调的内嵌算法，进一步证明了算法的收敛性，数值试验也

说明了新给出的算法是可行的、有效的。二、在前工作的基础上，构

造修正的KKT条件，给出了大步长路径跟踪内点算法，通过添加关系



不等式条件，给出并证明路径跟踪算法的收敛性定理，相应的数值算

饲也说明了新给出的算法是可行的、有效的。

本文结构共分为四章，在第一及第二章，我们简单介绍了内点算

法基本概念、发展历史及分类，并对对数障碍函数法和原对偶一路径

跟踪法的思想作了较详细的介绍。第三章，给出了线搜索下的罚内点

算法，并证明了算法的收敛性，第四章，给出了大步长路径跟踪内点

算法，并证明了算法的全局收敛性。相应的数值算例也说明了新给出

的算法是可行的、有效的。

关键词：约束非线性规划；罚函数方法；内点法；牛顿方程；KKT条-

件
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III

Constrained nonlinear programming has been widely used in economy

&finance，engineering control，technical paysics，logistics＆transshipment，

computer science，biochemical construction and many other fields．Recently,

with development of theory research and computer technology,some effective

algorithms with less time complexity,good stability and convergence have been

tried to solve nonlinear programming．Among them，interior point method won

most attentions．The basic idea of interior point method iS to select an initial

point in feasible region and then iterate along the central path till reaching

the optimal point．However，many difficulties occur while researching，testing，

convergent proofing the algorithm for solving nonlinear programming．

Firstly,for problem with many constraints，how to find an initial feasible

point is a research topic．In linear programming，researchers present several

strategies to ovcrconle this(1itfi(。ulty，SCC infl、}Lsit)lc-intcrior-i)oint method，SIR·h

as，take a full Newton step at any iteration．Within the framework of conic

optimization，a possible remedy of the problem is to embed the primal and

dual formulations of the problem into a single self-dual model，which then

has an easy available initial feasible solution．However these strategies are

not effective for nonlinear programming．Secondly,due to unsatisfactory of

orthogonality condition，how to proof convergence of path～following algorithm

is still a topic．

The major work is to integrate interior point method with inner-outer

penalty functions for solving constrained nonlinear programming．In light of

difficulties mentioned above，our work includes two parts．Firstly,incorporate

an auxiliary variable which is driven to zero by penalization and then construct

anew problem equal to original one．Due to this auxiliary variable，the problem

of initialization is circumvented．The corresponding KKT conditions as well as

penalized interior point algorithm are given subsequently．We design an inner
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algorithm based on Wolf conditions and proof convergence of outer and inner

algorithms respectively．Results of the numerical experiment are reported to

show the algorithm is practical and effective．Secondly，based on the work

done 1)eh)re．we I)ropose modified KKT conditions嬲well as long—step path

following algorithm．Formula assumption is described and then the algorithm

is proved to be convergent．Results of the numerical experiment are reported

to show the algorithm is practical and effective．

The paper consists of four chapters．In chapter one and two，we describe

the basic concept and development history of interior point method．Some

classic interior point methods are presented there，where logarithm barrier

function method and primal—dual path following method are introduced in

details．In chapter three，we design a penalized interior point algorithm based

on line search conditions and present convergent theorems．A penalized interior

point algorithm based on path following method is given in chapter four while

several convergent theorems are proved there．Numerical results are reported

to show algorithms are practical and effective respectively．

Key Words． Constrained Nonlinear Programming；Penalty Function
Method；Interior Point Method；Newton Equation；KKT Conditions．
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第一章 绪论

非线性规划是20世纪50年代才开始形成的一门新兴学科，现已成

为运筹学的一个重要分支，它在工程、管理、经济、科研、军事等方

面都有广泛的应用，为最优设计提供了有力的工具。1951年H．W．库恩

和A．W．塔克发表的关于最优性条件(后来称为库恩一塔克条件)的论文

是非线性规划正式诞生的一个重要标志。在20世纪50年代还得出了可

分离规划和二次规划的多种解法，它们大都是以G．B．丹齐克提出的解

线性规划的单纯形法为基础的。50年代末N60年代末出现了许多解非

线性规划问题的有效的算法，70年代、80年代又得到进一步的发展。

随着研究的深入，人们开始尝试把一些成熟的、有效的线性规划

算法拓展到求解非线性规划问题。其中内点算法的研究最引入注目。

内点算法的提出最初是为了克服单纯性算法的缺陷。单纯性算法的

时间复杂度是指数形式的，在运用计算机编程调试时，每一步迭代必

然导致内存需要存贮大量的数据，因此在求解一些大规模的问题时

就显得效率不高。这个缺陷促使人们迫切寻找到一种新的、更行之有

效的算法，对此人们作了很多的尝试也得到了一些结果。

1979年，苏联学者哈奇扬提出了第一个多项式算法一椭球算法11】，

并证明了计算复杂性是0(n4L)，这引起了人们极大的热情，对算法复

杂度理论产生了巨大的影响。但是该法在实际上并没有如期所希望

的那样在计算速度上超过单纯形法。原因主要有二：一是迭代次数仍

然很多；二是不便应用稀疏矩阵技术，每次迭代的计算比单纯形法慢

很多。

1984年，N．Karmarkar提出了线性规划的一种新的多项式算法[2】，Karm
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arkar算法不仅比椭球算法具有更优越的计算复杂度，而且在实际计

算中也可以与单纯形法相媲美，尤其对大规模问题更显其高效性。与

单纯形算法沿着可行区域的边界寻优不同，Karmarkar算法是建立在

单纯形结构之上的，它是从初始内点出发，沿着最速下降方向，从可

行区域内部逐渐走向最优解，因此Karmarkar算法又被称为内点算法。

自从Karmarkar划时代的论文发表以来，内点算法一直是数学规

划领域一个非常活跃的研究方向。很多研究者在Karmarkar法的基础

上对算法作了各种修正或改进。首先的改进包括各种问题形式的列

出；起始可行解的计算；近似最速下降投影方向的计算以及的带稀疏

性矩阵的方程组的解算；每步跌代的目标函数下界的计算；以及每步

跌代时为加快收敛的参数a的选择等。这方面已发表的文章很多，典

型的可举出『5，61等等。

另一方面，从理论上的不同方面发展了作为Karmarkar法的变种

的其他内点法。在这些方法中，值得提出的有【7】和[8】等人发展的原

仿射比例调节法和Adler[9，101等人提出的对偶仿射比例调节法等。此

外，1986年Gill[1lI等人第一次把原来用于非线性规划的对数障碍函数

法应用于线性规划，并且证明了对数障碍函数法和Karmarkar投影法是

等价的，以后的研究进一步表明了Karmarkar法实际上是广义对数障碍

函数法的一个特殊情形。此后Megiddo，Kojima，Lustig和Mehrotra等人

又提出了原．对偶路径跟踪对数障碍函数法，以及”极限可行方向"原一对

偶路径跟踪法，全面收敛不可行内点算法和Mehrotra预计改正等改进

方法[121一[151，这些方法都是很有效的，计算复杂性达到0(佗3￡)。类似

的方法还有Gonzaga和Ye等提出势函数下降法[4，16，1 7】。他们方法优点

是采用大步长，并且也证明了计算复杂性也达到0(n3己)。

在Karmarkar法提出后，在对内点法的实际编程并与单纯形法的

2
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优秀商用软件对比方面，开始直接按Karmarkar法编程的测试并未表明

他的明显优越性。1986年Adler等人应用Karmarkar法变种的所谓对偶仿

射法编程，并对DavidGay所收集的约50个问题的NETLIB问题集与单纯

形法商用软件Minos4．0进行了对比测试。对比表明，对较大型问题来

说，内点法要明显的优于单纯形法【9，11】。1992年Lustig[181等人用原一对

偶路径跟踪法并采用一系列的改进技术进行了编程，并与比MINOS系

统快2．10倍的最新单纯形法商用软件IBM OSLRelease2[19]进行了对比测

试，对比的问题是比NETLIB问题大得多的8个(几千几万行和几万几

十万列)的大问题。结果表明，除了一个问题特殊之外，对其他问题

内点法比单纯形法快2．5-20倍。更为壮观的是，用原一对偶有效地解决

了大至99533(行)×117117(列)和270796x30396的两个大问题，而这种

大问题单纯形法是从未涉足过的。

内点算法区别其他算法的一个特性是由算法产生的迭代点都是

向最优点”迈进了一大步，从不走任何弯路”。它不是围绕着可行区域

的边界寻找最优点，而是在可行域内部迭代，因此当他到达可行域的

边界时就说明已经到达了最优点。

内点算法的诸多优点都吸引着人们把它拓展到求解其他的问

题，包括非线性规划问题。1994年，Nesterov和Nemirovski提出了self-

concordant障碍理论[37】，它是把内点算法思想拓展到求解一般凸最

优化问题的理论基础。在此理论基础上，内点算法被应用于有效地解

决一类的凸优化问题。现在，内点算法的思想已被广泛的应用于研究

和求解非线性规划问题[481一[56】，不过，内点算法在非线性规划中的实

际研究、证明和测试中还是遇到了许多的障碍。

由于内点算法的特性保证由一个初始可行点产生的一系列迭代点

都是严格可行的，因此选择一个初始的可行点就显得尤为重要。但对于

3
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一般的大规模问题，一个可行的初始点并不是容易得到的。为此人们也

作了大量的研究工作，希望来克服这一难题。1994年，Ye，Y．，Todd，Mizuno提

出了求解线性规划的自对偶嵌入方法[33】，解决了寻找初始可行点的

困难且保证嵌入问题有最优解，并可利用任何内点算法来求解，从

而也得到了原问题的最优解。对一般的线性规划问题也可采用一些

非可行内点算法的技巧，例如在某一步迭代过程中选取全牛顿步长

等等。到了2000年，Luo，Z．Q，Sturm，。I．F．和Zhang，S．提出了把自对偶嵌

入技术推广到SDP及更一般锥优化问题[36】，从而使初始化难题得到解

决。2004年，Zhang，S．提出了解决凸规划的一个新自对偶嵌入技术[39】。

该方法的思想是先把凸规划转化为等价的锥优化问题，然后运用自

对偶嵌入技术来解决由此产生的锥优化模型。其优点是初始化难题

得到了克服。不过这些方法并不适用于一般的非线性规划问题，因

此，关于求解非线性规划问题的初始化难题也成为了一个重要的研

究课题。

作为内点算法独有的特征，中心路径在算法中扮演着重要的角

色，因而路经跟踪算法也就成为了内点算法中一个重要的组成部分。

路经跟踪算法的思想是使每一步产生的迭代点均落在中心路径周围

的一个带状区域，直至问题的最优解。在该算法的收敛性证明中，要

求迭代方向相互正交。这一条件在一般的线性规划问题中自然成立。

但对于非线性的问题，就不一定满足了。这也成为了该算法能普遍有

效地应用于求解非线性规划问题的一大障碍。

本文主要是结合内外罚函数给出了求解约束非线性规划的内点

方法。针对上述提到的两个问题，作了以下二方面的工作，一、通

过引入辅助变量，构造原问题的等价问题，并在罚内点算法的设计

中，使辅助变量逐步被”罚”为零，从而克服了初始点选取的困难。然

4
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后，给出了相应的KKT条件、在牛顿法的基础上，设计了一个罚内点

算法，并证明了所给算法是收敛的。同时结合线搜索在Wolf条件下设

计了可调的内嵌算法，来修正牛顿步。进一步证明了该算法的全局收

敛性，数值试验说明了所给算法是可行的、有效的。二、在前工作的

基础上，构造修正的KKT条件，然后通过调节迭代参数，控制每一步

的迭代都落在中心路径的一个较宽泛的带状区域内，从而设计出大

步长路径跟踪内点算法。通过添加关系不等式条件，证明了算法的收

敛性。相应的数值算例也说明了新给出的算法是可行的、有效的。

5
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第二章 几类经典的内点算法

在本章中，我们将主要介绍几类经典的内点算法，它们分别是

·Karmarkar算法

·仿射比例调节法

·对数障碍函数法

·原一对偶路径跟踪法

·势函数下降法

这些算法都是用以求解线性规划问题。通过对这些算法的研究和分

析，掌握各类算法的思想和优缺点，从而为后面两章中运用内点算法

求解非线性规划问题的研究打下基础。

§2．1 内点算法简介

在非线规划问题中，对数障碍函数法和原一对偶路径跟踪法应用

得最为广泛[41】-[47】，因此，会后面的几节中作详细的介绍，这里就对

剩下的三个算法作一个简单的介绍。

Karmarkar算法：1984年，在美国贝尔实验室工作的数学家Karmarkar提

出了一个多项式算法一--Karmarkar算法，他的时间复杂度是o(n3’5L)，

而且声称他比单纯刑法更为有效。在当时，Karmarkar的名字和Karmarkar的

算法被刊登在纽约时代杂志的头版，尽管当时他的主张受到同行许

多专家学者的质疑。今天看来，Karmarkar显然开创了线性规划的一个

6
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新领域一一内点算法。在此之后，Karmarkar算法得到不断地改进。线

性规划、凸二次规划的内点算法相继问世。已经证实，如果通过好的

程序来实现内点算法，包括最初的Karmarkar算法，的确可以得到比单

纯形法更好的效果。特别是对于含几千个以上变量的大规模问题，他

的收敛性态完全优越于单纯形法。更令人吃惊的是，在实际计算中发

现内点算法的迭代次数几乎与问题的规模无关，这一事实也是内点

算法在理论尤其是实践中引人注目的重要因素。

仿射比例调节法：是Karmarkar法中变换方法。它是用一个仿射变

换DilX代替投影变换，以投影目标函数替代势函数，把坐标系的正挂

限(而不是单纯形)映射到自身，把每次跌代的变量值z七变换成与各

坐标面等距的e。

早在1967年苏联学者Dikin[7，20]就首先提出了这种方法，并于1974年

给出了收敛性的证明。但他的这些工作直SJ]Barnes等人再次研究该法

后被人们所发现。1985年，Barnes[8】和Vanderrei[21]等人详细研究称为

原仿射法，到了1987年Adler[9]等提出另一种仿射比例调节法，由于它

实际上是从原问题的对偶问题出发，因而被称之为对偶放射比例调

节法。

势函数下降法：是Gonzaga[4，2s]和Ye与Todd[27，291等提出的基于

势函数下降的原势函数下降法和原一对偶势函数下降法，其迭代次数

为o(何L)。在这方面作出贡献的还有Tanabe[30]、G／21er[31]和Kojima等[32]。

从历史的角度，最早 Karmarkar原算法就是用势函数进行推导的[2】。

这种早期的方法对随后发展的路径跟踪方法提供了有用的理论上的

透视，因此很自然的激起人们继续研究这类方法。另一方面，就路径

跟踪法来说，实际所用的方法已消除了很多对路径跟踪的限制，因此

导致了理论与实践之间的变样。而势函数法正好能把理论与实践更

7
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紧密地联系起来，因为诸如搜索方向的选择，步长的确定以及它们的

分析都可依据一个确定的势函数(或优势函数)来进行。这个势函数

可作为测度来衡量一个点的质量以及指示怎样对他进行改进。采用

一个适当的算法在每次迭代都使该势函数尽可能减少，因而导致相

应算法的计算复杂性。

§2．2对数障碍函数法

对数障碍函数法首先是引进解非线性规划问题，即

min m)
(2．2．1)2

s．t．gi(x)≥0， i=1，2⋯．，仇

式中，z=(z1，z2，⋯，zn)丁。引用对数障碍函数把上面问题转换为如下

形式的非约束条件问题：

minf(x)一肌∑lngi(x) (2．2．22)
i=1

式中，肌是一个障碍参数，且有，‘南>o和

．1im，‰=0

算法是从一严格可行点出发，以一迭代形式选取，z南和使(2．2．2)式

为最小的矿，产生的一系列可行点z南收敛于(2．2．2)的解，而

_jcl。im。。仇#(zk酉-Ai
(2．2．3)

_jc—oo肌(z拧J
、 ’

这里九是关于吼(z七)的最优拉格朗日乘数。

对数障碍函数法应用于线性规划问题，可从原问题形式或对偶

问题形式出发。前者称为原对数障碍函数法，后者称为对偶对数障碍

函数法。下面分别论述。

8
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Gill等[1l】(1986)把原对数障碍函数法应用于线性规划，且考虑如

下标准形式的线性规划问题：

式中，A∈舻跏(m≤扎)。

把上面问题转换成

min cTx

s．t．Ax=b

X≥0

(2．2．4)

min f(x)=crx—p∑ln％
j=l (2．2．5)

s．t．Ax=b

这里是对非负约束引用了障碍参数p，而对等式约束，由于不能用障

碍交换处理，因此仍以约束条件形式直接处理。对这些等式约束条件

引进相应的拉格朗日乘数列向量丌，则(2．2．5)的拉格朗日武为

求其最小值，条件为其对X和丌的偏导数为零，即

(2．2．6)

V=L=c—pD一1e—AT丌=O
(2．2．7)

V丌L=一Ax+b=0

注意，式中用D代表其对角线元素分别#7xj(J=1，2⋯．，礼)的对角方

阵，e为n个元素都为1的几维列向量。

非线性规划中f均Newton法，是把函数F(z)按如下的泰勒级数展

开：

F(z七十1)=F(z七)+VTF(z七)Ax七-F去(△z七)TV2F(z七)Ax七

9
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其中略去高于二次的近似，增量为ax七=Xk+1一X七。求该函数在ax七方

向上的最小值，是该函数Ax七的每个分量求导数后并令其为零，因而

得出下7'1关系：

一V2F(x七)ax七=VTF(x七) (2．2．8)

注意，这里取Ax血为Newton方向(最速下降方向)。

对问题(2．2．5)应用Newton法(即可行点最速下降法)。如当前的迭

代点矿满足A扩=6的条件，下一次估计的最优解为

z七+1=z七+QpB (2．2．9)

即处于Newton搜索方向上，这里a是某个适当的大于零的步长参数，

且pB和Q的计算必须保证A矿+1=6和F(x七+1)<F(x七)。

对应上述拉格朗日式的最速下降方向是向量(m，△7r)丁，因此按(2．2．8)列

出的方程组为

[一公一『}：][竺]=[c—p。_：e—A丁丌]
即

一#D-2p_B+AT7r且 2

c—pD一1e(2．2．10、

注意，这里7rB=7r+△7rB是相应Newton搜索方向pB的拉格朗日乘数变

量。以后单称Newton搜索方向为Newton方向。右边第二项是可行性条

件所致。

由上面第一式可知

船=(罟)IDAT丌B一(Dc—pe)】

10
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其中

考虑第二式，得出拉格朗日乘数变量丌B和Newton搜索方向pB为

7rB=(AD2Ar)～AD(Dc—pc)

阳=一(石D)rB

rB=[，一DA丁(AD2AT)一1AD](Dc—pe)

为下列最小二乘法问题的最优残差向量

min lIDc一肛e—DA丁7r
7r

注意，这里№II表示(ur秒)；之意。

关于原对数障碍函数法的算法可总结如下：

给出参数∥o和满足Axo=6和zo>o的起始可行解

begin

k：=0

X：=X0

，l：=，‘0

while lIrlI>￡or p>E“

do

p：=P肛

D：=diag(xl，X2，⋯，z，1)

g：=Dc一弘e

丌：=(AD2A丁)一1ADg

77：=C—A丁7r

r：=Dq—pe

11
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P：=一pi
Dr

一1，噻{字I功<o)
z缸+．1：=z七+Qp

k：=k+l

end do

end

关于算法，还有几点应加以说明。

1)起始可行解

算法是假定已有起始可行点zo，且Xo>0和Axo=b。这个假定可通

过在原问题(2．2．4)中引进入X-交量列，并用。两阶段”法或“大M。法

来处理。如果用后者方法，则问题变为

(P) min cTx+Mx几+1

s．t．Ax+(b—Axo)z几+1=b (2．2．15)

X≥0，X几+1≥0

式中，M是一大数。该问题的起始可行解为z=Xo，zn+1=1，其中zo为

任意值，由于M足够大，因此假定I；1题具有可行解，则必有Xn+1=0，

即问题(2．2．15)的最优解就是(2．2．4)的最优解。

2)步长参数Q的选择

为加快收敛，可以在保证不破坏可行性的条件下适当加大每步

迭代的步长。这可在每步迭代时按下式找到口：

Q=7瑰<字I殇<。) 亿2邶，

式中，7<1(经验表明o．995是可取的)。

3)结束准则

12
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残差向量⋯l≤￡和肌_07作为结束准则。但p七变化到一最小

值pmin时不再减小。

下面再论述对偶对数障碍函数法。

引进松弛变量z(z∈形)，对原问题(2．2．4)的对偶问题可写为

(P) max bTy

s．t．ATY+z=c (2．2．17)

引用对数障碍函数，上问题可写为

z>0

maxF(可)=6丁可+p暑1n(勺一n和) (2．2．18)

式中，aj是矩阵A的第j列。上式最优的一阶条件式为

b一#AG_1e=0 (2．2．19)

式中，G是n×n对角矩阵，其元素是乃=勺一巧秒。

同样应用Newton)去(参见(2．2．8)式)，可知

因此

VF(y)=b一#AG一1e

V2F(y)=一#AG一2A丁

若直接用Ay表示Newton方向，则有

#AG一2A丁Ay=b一#AG一1e

△可=去(AG。2AT)～b一(AG一2A丁)一1AG一1e (2．2．20)

(2．2．20)中第二项表示找出对偶空间的解析中心，而第一项则是求最

优解的。

13
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关于对偶对数障碍函数的起始可行点，也可对问题(2．2．17)引进人

工变量列，使问题为

(P) max bTy+M‰+1

s．t． ATY+(ArYo+Zo—c)‰+1=c (2．2．21)

Z≥0，‰+1≤0

这里问题的起始可行解为可=Yo，Ym+1=-1，M是足够大的正数。

显然引进大数M和人工变量，会给计算带来很大的不便。为了避

免它们的引进，Lustig提出了(Ax，Ay，Az)极限方向的方法[14】，此外有

各种不可行内点法的引进[13】，将会在后面的章节中再作介绍。

§2．3原一对偶路径跟踪法

最早分别提出路径跟踪法的确"Megiddo[12]和Renegar[22]等人。所谓

原一对偶路径跟踪法(primal—dual path following method)，按A—Iegiddo(1986)的

论述，实际上就是原一对偶障碍函数法(primal—dual log barrier method)，

它包含了对数障碍函数的问题(2．2．5)，且在障碍参数p>0时有惟一的

最优解，这个惟一的最优解所构成的曲线{z(，z)Ip>o)称为一条路径或

中心轨迹(central trajectory)，当肛_0时z(p)的极限即为原问题的最优

解。

Kojima等最早(1987)[13，23】提出收敛的算法。之后Monteiro和Adler[24，

25】以及其他研究者【14，26】对算法都作了进一步的改进，使计算复杂性

达到0(礼§L)迭代和全部O(n3三)次算术运算的水平。

14
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为讨论其算法，考虑如下标准形式的原问题和对偶问题对：

(P) min crz

s．t．Ax=b (2．3。22)

X≥0

(D) max bTy

s．t．A丁Y+Z=c (2．3．23)

z≥0

这里A是tit×n矩阵，6和c分别是为m和n维向量，z是对偶问题中加入的

松弛变量(n维向量)。

对对偶问题(D)引进对数障碍函数，则问题转换为

n

bTy+p∑In zy
J=1 (2．3．24)

A丁Y一-Z=C

式中，p为障碍参数(p>o)。显然z为(2．3．24)的约束条件的拉格朗日乘

数，因此相应的拉格朗日函数为

L(础石，z)=6T可+，‘暑1n勿一z丁(AT可+名一c) (2．3．25)

第一阶最优性条件，即其分别对Z、秒和z的一阶导数为零，导致下列方

程组：

DGe一弘e=0

Ax—b=0 (2．3．26)

ATY+z—C=0

式中，D牙vC,分别为对角元xj和乃的三角矩阵，因此下面的计算式

中DG-1与G-1D的结果一致。注意上式的后两式，分别是通常的原问

15
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[三；一兰r-D]Ax]=r。Gi pe]
GAx+DAz=肛e—DGe

AAx：=0

ATAy士Az=0

解该方程组得出按如下计算步骤地式子：

Ay=一(ADG_1A丁)-1AG-1vOL)

Az=一A丁Ay

Ax=G_1u(p)一DG-1△z

式中，u(p)=re—DGe

(2．3．28)的全显示表示式则为

△z=【G～一DG-1A丁(ADG-1A丁)_1AG-1】[pe—DGe】

Ay=-[(ADG．1A丁)-1AG-1弘e—DGe】

Az=[AT(ADG-1AT)_1AG_1】【pe—DGe】

(2．3．27)

(2．3．28)

(2．3．29)

式中，u(p)=tie—DGe

根据计算的方向，考虑适当的步长参数Q，则可写出迭代公式。

Monteiro和Adler[24] 出的算法中每步取步长参数a=1，且由于从一
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步到下步迭代时p的减少缓慢，因此这种算法收敛慢。在Mcshane等[26】提

出分别对原f．1题空间和对偶问题空间采用不同的步长参数，即

z七+1=X七+Q：△矿

Y七十1=Y七+CYkDAy七 (2．3．30)

Z七+1=Z詹+akoAz南

这里处理方法被证实很有效。

该算法有两个直接的优点，一是对步长参数的选择，可以首先找

出迭代时可能使某个％或某个乃分别变成负值(不可行)的最大步长，

分别为a口和aD，即

嘞5 1m垡innl、f孟IAzj<o> (2．3．31a)

a。2 1m班inn{麦I△乃<o) (2·3·31b)

进而考虑步长Olp和QD为用一定常数7(<1)乘这个最大步长，即

Qp
2
70，p

QD=，yaD

(2．3．32a)

(2．3．32b)

对原仿射法何对偶仿射法来说，可取，y=o．95等；而对(2．3．28)的原一对偶

法的计算，由于合有参数p，经验表明，在Ogp≤1和及D≤1的条件下可

取，y=0．9995。另一个优点是，对当前原问题可行解z和对偶问题可行

解可与z来说，可知精确的对偶间隙值，即把(2．3．26)的第三式乘以z丁和

第二式转置后再乘PLY，可直接导出对偶间隙为

，z—bTy=xTz (2．3．33)

这说明对可行点(z，Y，z)来说，每次迭代都可给出它们与最优解的接近

程度。

17



上海大学硕士学位论文

为说明迭代过程中对偶间隙的变化。用扩表示第k次迭代的对偶

间隙，由(2．3．30)和(2．3．29)，并注意至ljcT=(yk)丁A+(少)T，因此

dk+1=crx¨1一矿矿+1

=(cTx七一bTy七)+口pk【(可知)丁A+(名k)T]Ax七一Q岛6丁△秒七

代入(2．3．28)中的△z七和Az七，并考虑NAAx=0，(Zk)71G-1=e丁，De=z七，

化简后得到

扩+1=扩+《hp一(少)丁矿】+(a；一Q各)矿△矿

由于扩=(Zk)丁X七，因此上武为

d七+1=d七4-Q；【np—d七】+(a；一口易)矿△矿 (2·3·34)

可见当晖k=a易=OLk时，有

驴十1=d詹+O／k[7Ⅲ一d七】

这时只要肛<譬时，对偶空隙总是递减的。因此一般取∥七=p譬(o<P<

1)。而当Q；≠o岛时，对偶空隙递减的情况不一定成立。

注意，(2．3．29)中含有(p)的项是表示找出迭代点z蠡和Z南的中心，而

不含(p)的项是表示求最优解，即缩小对偶空隙。对求中心来说，允许

较大步长。这表明障碍参数法要优于仿射方法。

关于起始可行解，Lustig提出把人工变量X什1和‰+1分别引入原问

题和对偶问题，并且相互增加相应的附加约束条件，构成如下的增广

原问题：

min，z+Mpxn+1

s·t·Az+彩z舛1～
(2．3．35)

dTDX--I-Xn+2=MD

X≥0， zn+】，Xn+2≥0

18
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和增广对偶问题：

max bTy+％‰+1
s．t．ATY+dDym+1+Z=C

啄秒+Zn+1=

掣h+1+乙件2=0

Z≥0，磊l+1，‰+2≥0

(2．3．36)

式中，由=b-Axo，dD=ATYo+少-c；这里Mp和％是很大的正数，Xo，yO和zo是
任意的起始点。再令％0+1=1和蛾+1=-1，则它们构成了(2．3．35)和(2．3．36)的

一组其实可行解。由于％和MD是足够大的正数，故上两问题的最优

解即分别为问题(2．3．22)和(2．3．23)的最优解，且有Xn+1=0和Ym+l=0．

因此可总结算法如下：

给出起始可行解。o，yO和Zo
‘

begin

k：=0

d：=100e

矿：=Xo，Z七：=Zo，Y七：=Yo

while d>￡

do

∥=P×罢

D：=aiag(x}，zl，⋯，z：)

G：=diag(z}，zg，⋯，兹)

Ay：=-(ADG_1AT)-1AG-1(pe—DGe)

Az：=一ATAy

Ax：=G_1u(肛)一DG-1Az

19
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Find
Qp，OlD

z¨1：=z七-t-Q；△≯

Y七十1：=Y七+Q乞△圹

Z七+1：=z七+Q乞△≯

d：=(xk+1)丁z七十1

k：=k+1

end do

pTld

§2．4不可行的内点算法

上面介绍的各种内点算法均需要有一个初始的严格可行解，而

对多数实际问题来说，一开始就能提供便利的可行起始点的情况是很

少有的。这时，一方面可以通过引入人工变量和人工约束的办法来解

决，但计算起来会有累计误差。另一方面，直接采用不可行内点算法。

这方面已有的方法基本上是一般的原一对偶路径跟踪法。在基于势函

数的方面，已有用原势函数下降法的方法f3，5，33]，但都没有达到原一对

偶路径跟踪法那样的有效性。而从另一方面，Ye、Todd和Misun011994年

发表了构建“齐次自对偶问题”的方法【33】，它把原问题及其对偶问

题的一个已知的不可行起始点变为齐次自对偶问题的严格可行起始

点，从该齐次自对偶问题的解又可得出原问题和其对偶问题的解。

后来许多学者进行研究，把这种自对偶嵌入的思想拓展到求解

一些更一般的约束凸优化问题。主要的工作有两个方面，一方面，对

凸椎优化问题，包括半正定规划，Luo，Sturm和Zhang[36]提出了一个

自对偶潜入模型。JosSturm和SeDuMi进行了相关的算法数值测试，用

20
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这种方法有效的求解了对称椎优化问题。另一方面，对具有不等式约

束的椎优化问题，Andersen和Ye[34，35]从Xu、Hung和Ye[38】关于线性规划

问题建立的一些基本模型中得到启发，提出了一些不同的自对偶嵌

入模型。实际上，Andersen和Ye提出的方法是针对非线性规划的互补

问题，因此更具一般性。不过由于非线性规划的非线性，使得这种方

法在实际的迭代过程中产生一些不可避免的误差。

到了2004年，Zhang[391对具有不等式约束的椎优化问题提出一个

特定的椎方程式，即把原问题中的不等式约束转化为椎约束，运用自

对偶嵌入技术以，结合Nesterov和Nemiroviski提出的自协调障碍函数理

论[37]克服了凸规划中初始点选取的困难。并证明了如果原问题的约

束均为二次凸函数，那么自对偶嵌入问题的障碍函数是自协调的。而

这一类问题的时间复杂度为D(∥log÷)，其中，r为约束的个数，E>o是

需要的算法精度。通过对大量数值算例的测试，表明了该方法是可行

的、有效的[40】o

21
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第三章 结合线搜索的罚内点算法

通过前面的介绍可以看出，对于凸规划和椎优化问题，初始可行

点的难题已被较好的解决了，现在很多入尝试把自对偶嵌入技术继

续拓展到求解更一般的有约束非线性规划问题，不过还未有最新的

进展。本文中，我们也对这一难题作了研究，并提出了通过引入辅助

变量，构造原问题的等价问题从而来克服这一难题。

§3．1障碍KKT条件

首先，我们考虑具有如下形式的约束最优化问题

(P) min，(z)

s．t．仇(z)≤0，i=1，⋯，m．
(3．1．1)

其中，函数，，gi：形一R，i=1，⋯，m是二次连续可微的。

引入变量X0，(3．1．1)则变成

(P) min，(z)

s．t．zo—gi(x)≥0，i=1，⋯，m． (3．1．2)

XO=0

对(3．1．2)定义拉格朗日函数

m

L(w)=f(x)一yxo一∑Zi(XO—gi(X)) (3．1．3)
i----1

其中叫=@，Y，z)T，牙=(Xo，z)r∈R1×Rn是决定变量，Y∈R1和Z∈舻分

别是等式和不等式约束Lagrange乘子。那么如上问题的K—K—T条件就
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是

％(叫)三

0

0

0

(3．1．4)

雪=(zo—gl(z)，⋯，zo—gin(X))T≥0，Z=(Z1，⋯，zm)T≥0 (3．1．5)

眦㈤=㈦=№卜”1蓥乞kz)]
=kVf(x藿zi乞Vgi(x，|-[Vf(x纛vg(z)Tz]=1 名。 I=I

F⋯
l

I )+∑ )I I )+ Tz I
L i=1 J

一 一

Vg(z)=

V丁91(z)

VT鳊(z)

，Z=diag(zl，⋯，‰)，

0=diag(xo—ga(z)，⋯，zo一‰(z))T，e=(1，⋯，1)丁∈Rm

在运用内点法求解的过程中，我们普遍采用Newton法来求解上

述KKT条件等式，即

0

0

0

，雪(z)>0，and Z>0 (3．1．7)

其中p>o是罚参数。在这种情况下，Newton迭代方向九=(如，也，也)T

23



上海大学硕士学位论文

具有如下形式

0 0

0 日

1 0

Z—VTg(x)z

-1 _eT

0 Vg(z)

0 0

0 G

比=一

其中矩阵日是V。zL(叫)或是其近似值。

§3．2内点算法

．——Y．——zTe

Vf(x)+Vg(z)z

首先，引入障碍法函数Q(牙，肛)：R¨1一R1

X0

GZe—pe

Q(峦，p)=，(z)一扛E1 Zog(z。一所(z))+i1
Xu2，p≥o (3·2·8)

其中，罚参数肛>o是一给定的的常数。可以看到，当肛的取值足够小

时，问题(3．2．8)便近似等价于原问题(3．1．2)。问题(3．2．8)的必要最优性条

件是

即

l 0

VQ(零，弘)=l
I Vf(x)

等价于

H 2小慨2∽
一p∑不丽1+去2zo 2 o
2=l

Vf(x)+p￡端=0)+p∑羰=
l=1

警一u(O。)re=0

Vf(x)+l,vg(x)T耍。1=0

24
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(3．2．13)
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；

一m∑渊



上海大学硕士学位论文

其中

矿=(d南，⋯，i南)T。
我们引入两个辅助变量z=pG一1e∈舻和y=一zTc，上述问题可

转化为

7(Ⅲ，肛)=

V孟L(w)

XO+鸶可

GZe—pe

0

0

0

(3．2．14)

其中雪>0，z>0，一五1≤Y≤丢。
在这里，我们定义条件(3．2．14)为障碍罚KKT条件，满足这一条

件的点叫(p)=(牙(肛)，可(p)，z(p))r∈形+1 X R1 X Rm称为障碍罚KKT点。

当p’【0时，训(肛)满足K—K—T条件。

现在，我们定义内点算法的框架

算法IP

步骤o．令E>0，牙o=(z3，护)∈R”+1满足zo>，婴眵仇(一)，尬>0，当尼：=
1气0～，n

o，给定{p七)，使肛七上o。

步骤1．如果1170(w知)0≤E，停止。

步骤2．寻找一内点舻+1使其满足117(w七十1，∥七)I|≤尥肛南。

步骤3．令k：=k+1转向步骤1。

接下来给出算法的收敛性定理

定理3．1假设伽七是由算法产生的点列，{砂)和{矿)是有界的。则

有{z七)有界，且{矿)的聚点满足删T条件p．J．钏，p．j．纠。

证明假设存在i使得(棼)_∞，由步骤2可知

I乏芋I<尥镑
25
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l掣牛锗

法来进行求解。令九=(如，也，也)T是如下问题的解：

Ⅳ(叫)九=一，y(叫，p) (3．2．15)

可得

，y(钳，，p)=

V牙L(w)

XO+等y

GZe一弘e

N(w)=

0 0

Q H

1 0

Z—V9(z)TZ

．——Y．—-zTe

V．厂(z)+V夕(z)TZ

XO+等可

GZe—pe

-1 _eT

0 Vg(x)

鸶0

0 G

H1弱7．Vzz三(伽)或其近似值。且当H=VzzL(w)时，N(w)是7(彬，肛)关于叫的。Jacobian矩

阵。

下面的引理给出了(3．2．15)可解得充分条件。

引理3．2．1如果{名T日z+日一V9(z)0—1V夕(z)rz是正定矩阵，那

么Ⅳ(叫)非奇异。

26
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证明考虑等式方程

／ ＼

m，mVx0。
⋯Vy

其中(vxo，Vx，％，V：)∈R1 X舻×R1 X Rm。则可得

(1ZTHz+H—V夕(z)0—1vg(x)丁Z)vx=0

％2叱

％。=j％

V：=一Vg(x)一T日％

由假设可知％=0，因此有uz。=0，V可=0，Vz=0。得证。-

Newton法的基本迭代步骤可写成：

W七+1=W七+tkdⅢk

其中如的取值是为了保证障碍罚函数Q(互，p)值的下降。

§3．3线搜索算法

当给定一个p>o时，为了设计一个能寻找到障碍KKT点的全局

收敛算法，有必要对全步长Newton迭代过程进行修正。迭代公式具有

如下形式：

W七十1=W知+tkdwk (3．3．16)

其Ctk就是由下面介绍的线搜索方法来确定的。

27
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在这里，我们用Woile#书件来作为线搜索准则。对一点叫七，利用

如下公式求解t七：

Q(孟七+tkd牙t，p)茎Q(孟七，p)+catkVQTdik

VQ(e七+￡七如k，p)T如t≥C2VQTd孟t

(3．3．17a)

(3．3．17b)

其中0<Cl<c2<1。

现给出线搜索算法，定义为算法LS。这个算法可以看作为算法IP的

一个内嵌算法(参见算法IP的第二步)。注意到这里给出的￡’是与算

法IP中的尬，‰相对应。

算法LS

步骤0．令020∈口+1 X R1×Rm，p>0，且6-7>0,0<Cl<C2<1，k=0。

步骤1．如果||7(u七，p七)II≤￡7，停止。

步骤2．由(3．2．15)计算迭代方向du。

步骤3．求解￡岛，使之满足

Q(牙七+如如k，∥七)≤Q(2七，p七)+CltkVQTd孟t

VQ(牙七十tk如k，p七)T≥c2VQ'id孟k

with 0<Cl<c2<1其eeo<C1<C2<1。

步骤4．

W七+1=W詹+tkdwk

步骤5．令k：=k+1，转向步骤1。

为了证明算法LS的全局收敛性，需要如下假设。

假设
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1．矩阵iz?Hz+日一V夕(z)G一1V夕(z)71z是正定的。

2．VQ在Q上是Lipschitz连续的，即，存在一个常数L>o信1得IIVQ(w，弘)一

VQ(面，肛)I|≤／llw一面1j，对所有的枷，面∈Q。

下面给出算法LS的收敛性证明。

定理3．2由假设，函数．厂，吼(z)，i=1⋯．，m是二次连续可微的。假

定算法￡妒生的无限序列{仞七)仍在紧集Q内。那么序列{铆七>至少有一
个聚点，且<叫南)的任意聚点均为障碍罚KKZ最。

证明由假设知，函数Q(于，，t)在Q内是有界的。注意到当采用拟Newton法

来求解矩阵三z丁Hz+H-Vg(x)C,一1Vg(x)丁z时，则要求，及俄(z)，i=1⋯．，仇的

连续性。

定义

c删南=器 (3．3．18)

由(3．3．171))，(3．3．16)可得

(VQ％+1一VQk)T如t≥(c2—1)VQ丢d砂

又由于Lipschitz条件，则有

(VQk+l—VQk)Td孟*≤tk￡II如*112

结合上面两个关系式，可得

驼字器
把这个不等式代zkWolfe4k件的第一式(3．3．17a)中，有

Qk+l”c·半嘴铲
29
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由(3．3．18)的定义，有如下关系式

Qk+1≤Qk—CCOS2 Ok|lVQ七112

其中，C=c1(1一c2)／L。把下标小于等于k的所有表达式相加，得
00

Qk+l≤Qo—c∑COS2 OjlIVQJll2 (3．3．19)
j=o

因为Q有下界的，则Qo—Q南+t是某个正常数，对所有的k。

代x(3．3．19)即有
oo

∑COS2刚V饥112<∞ (3．3．20)

则

COS2 0k[[VQ七[12_0

cosOk 定义可知，存在正常数6使得

因此由(3．3．21)容易得出

COSOk≥6>0，for all k

，lim llVQ南II=0
／g---,oo

(3．3．21)

接下来给出障碍罚参数肌的修正方法。假设现有一个精确的障碍

罚KKT点叫七+1满足

fl，y(训惫+1，p七)0≤^磊p七

(算法IP的第二步)。则p知+1的计算公式为

胁t=max(学，瓮)
其中0<尥<埤，％>1。在本文的算法程序调试中，我们取嗨=
4，％=106，尬=3。
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§3．4数值算例

在如下的部分，我们测试了一些数值算例，结果表明以上提出的

算法是可行的、有效的。

例1．

(P) rain f(x)=100(x2一z；)2+(1一X1)2

s．t．gl(x)=--Xl—z；≤0

夕2(z)=一z；一X2≤0

-0．5≤Xl≤0．5

z2≤1

该问题的障碍罚函数为

Q(牙，p)=，(z)一p∑墨llog(xo一9(z))+lpx；

=f(x)一#log(xo一(--X1一z；))一ltlog(xo一(一X；一x2))一Itlog(xo一(一0．5一X1))

一#log(xo一(-o．5+z1))一#log(xo一(-1+z2))+lX：

定义初始点：X0=(9．9999997E一10，o．5000000，o．5000000)，E=1E一05

迭代步骤 孟k Q(孟‘，pk) ，(妒) pk 7(w)

0 9．9999997E-10，0．5000000，0．5000000 6．500000 6．500000 9．9999997E．8 0．2500000

1 7．0000000E-IO，0．5000000，0．2750000 0．3125001 0．3125000 2．5000004E一08 2．5000004E．02

2 1．0111600E一09，0．5000000，0．2525000 0．2506256 0．2506250 6．2500010E．09 2．4999869E．03

3 1．1389349E-08，0．5000000，0．2502500 0．2500064 0．2500063 1．5625002E一09 2．5001052E-04

4 3．9522856E-09，0．5000000，0．2500250 0．2500001 O．2500001 3．9062506E一10 2．5001265E．05

5 1．0981988Fr09，0．5000000，0．2500025 0．2500000 0．2500()00 9．7656265811 2．5023062E．06

由表17知，当经过5步迭代后，得到点z；=(1．0981988E-09，0．5000000，0．2500025)目

标函数值‘厂(z；)=0．2500000。注意到该问题的最优解点为(0．5，0．25)，最

优值为0．25。
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例2．

(P) min／(x)=(Xl一2)4+(Xl一222)2

s．t．g(x)=z}一X2≤0

该问题的障碍罚函数为

Q(孟，p)=，(z)一p∑銎，log(xo一9(z))+去z3=，(z)一,u log(xo一(z；一x2)+丢z3

定义初始点：X0=(4．9999999E一03，1．000000，1．000000)，g=1E—05

迭代步骤 砂 Q(e2，p≈) ，(孟奄) p知 7(w)

0 1．0000000E-02，1．000000，1．000000 2．007908 2．000000 0．2000000 0．7199850

1 1．0451545E,-03，0．9900161，0．9817969 1．990646 1．982330 5．000000lE一02 5．1898486E．03

2 1．0806412803，0．9808956，0．9636081 1．976677 1．968040 1．2500000l■02 6．5903723E-04

3 1．1300817803，0．9630076，0．9285494 1．958725 1．949543 3．1250000E一03 5．1537370E．05

4 1．1586071E-03，0．9460912，0．8960579 1．952797 1．949465 7．8125000B．04 8．2657667E．06

由表2可知，当经过4步迭代后，得到点X4‘=(1．1586071E-03，o．9460912，0．8960579)目

标函数值f(x*4)=1．949465。注意到该问题的最优解点为(o．945，o．894)，最

优值为1．94。

例3．

(P) rain f(x)=(Xl一2)2+(X2—1)2

s．t．g(x)：Xl+X2—2≤0

该问题的障碍罚函数为

Q(孟，p)=／(x)一p∑墨1 log(xo一9(z))+五1 X2u

=，(z)一#log(xo一(Xl+X2—2))+三z3

定义初始点：X0=(1．0000000E一06，1．000000，1．000000)，g-=1E一05

迭代步骤 铲 Q忙‘，pk) ，(妒) p知 7(w)

0 1．0000000E一06，1．000000，1．000000 1．000014 1．000000 1．0000000E．06 0．7094432

1 5．5330622E-07，1．451487，0．5485129 0．5047206 0．5047075 2．5000000E一07 6．8861 194E．02

2 5．0376644E-07，1．495310，0．5046899 0．5000446 O．5000445 6．2500000E．08 5．6593649E．07

32
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由表3可知，当经过2步迭代后，得到点z；=(5．0376644E一07，1．495310，0．5046899)目

标函数值．厂(z；)=0．5000445。注意到该问题的最优解点为(1．5，0．5)，最优

值为0．5。
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第四章 结合大步路径的罚内点算法

在本章中，我们将对一类具体的内点算法一一路径跟踪算法一

一在非线性规划中的应用进行研究分析。在这一算法的收敛性证明

中需要运用正交性条件，而这个条件在一般的非线性规划问题不一

定得到满足。因此在本章中，我们不仅需要通过引入辅助变量来克服

初始点选取的难题，还要通过构造新的关系不等式来绕开正交性难

题。具体的分析如下：

§4．1 KKT条件U 。’’‘o

首先，考虑如下的约束优化问题：

(P) min y(x)

s．t．gi(x)≤0，i=1，⋯，m．
(4．1．1)

其中，，，gi：彤一R，i=1，⋯，m是二次连续可微的。

引入变量zo，则(4．1．1)变成：

(P) min，(z)

s．t．zo—gi(x)≥0，i=1，⋯，m． (4．1．2)

XO=0

定义上述问题的拉格朗日函数：

m

L(w)=，(z)一yxo一∑Zi(XO一虢(z)) (4．1．3)
t=1

其中，W=(孟，Y，z)T，牙=(zo，z)r∈R1×舻是决定变量，Y∈R1和Z∈Rn分

别是等式和不等式约束对应的拉格朗日乘子向量。因此上述问题
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的KKT最优性条件为：

其中

一叫1
l-麦e J

0

0

0

雪=(Xo一夕1(z)，⋯，XO一鲕(z))丁≥0， Z=(Z1，⋯，‰)T≥0

(4．1．4)

(4．1．5)

眦㈤=㈦=‰卜”i苎=1兹kz)]
=I慧嘶，I-_y--zTelVf(x Vf(x矿z]～l t— l— l

I m l l

1 )+∑忍V吼(z)l r)Tz I
l i=1 l

一

。

(4．1．6)

I V丁91(z)I

Vg(x)=I ；‘ I，Z=diag(zl，⋯，‰)，

I V丁gm(x)l

G=diag(xo一夕1(z)，⋯ ，zo—gin(x))，e=(1，．+．．，1)丁∈Rm

现在，对KKT条件引入一个松弛变量s=(s1，82，⋯，sm)r，从而得到(4．1．4)的

一个等价形式：

V孟L(w)

XO

g‘——S

sZe

其中(s，Z)≥0，S=diag(sl，82，⋯，sm)。

35

0

0

0

O

(4．1．7)
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在实际求解过程中，我们通常采用Newton法来求解上述KKT条件

等式，那／ANewton方程的解即为Newton迭代方向△Ⅲ=(△孟，As，Ay，Az)丁，

有

0 0 0 —1

0 日 0 0

1 0 0 0

e—V9(z)一e 0

0 0 Z 0

△zo

Az

As

Ay

Az

其中矩阵H等于VzzL(叫)或其近似值。

§4．2路径跟踪算法

．——y．——zTe

Vf(x)+Vg(x)z

2；0

g’‘—8

SZe

(4．1．8)

众所周知，中心路径C在内点算法中扮演着非常重要的角色，

他是由一类严格可行点组成的弧形轨迹。若有参数7一>0，则每个

点(面r，8r，坍，zr)∈C均可通过下列方程式进行求解：

r(w1三

V牙L(w)

Z0

g—s

SZe．．．Te

，s>0， 以及Z>0 (4．2．9)

本文中，我们称上述条件(4．2．9)为修正的KKT条件。-与KKT条件(4．1．7)相

比，唯一的差别在于最后一行中引入参数7一，其实就是把(4．1．7)中第三

行中的互补条件换成了要求s；zi乘积值对任意下标i均相等的条件。

由(4．2．9)可定义中心路径

c={(牙下，8下，姗，磊)17->o]．

r

砧

吧烈0

0

S

—

V
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当7．趋进于零时，条件(4．2．9)15价于(4．1．7)。如果当丁J o，C收敛于

某一点时，那么该点必为原问题的最优点。因此，沿着中心路径搜索

的方法给我们提供了一条找到最优解的途径，沿着这条途径不仅可

以保证s的Z各个分量都严格大于零，还可以使所有8{施的乘积值几乎以

相同的速率下降到零，这就使我们少走了很多。弯路”。

为了描述搜索方向的偏差，我们引入中心参数盯∈[0，1)和对偶参
礼 一

数肛，由p=击∑8iZi=—sTfz的定义知p衡量了8iZi乘积的均值。令丁=art并

用Newton法来求解(4．2．9)，即得

N(w)Aw=

0 0 0

0 日 0

1 0 0

e—V9(2)一e

0 0 Z

-1 --eT

0 Vg(x)

0 O

O 0

0 S

△zo

△z

As

Ay

AZ

．——Y．—．zTe

Vf(x)+vg(x)z

X0

雪一8

SZe———afire

(4．2．10)

其中矩阵日等于Vz。L(伽)或其近似值。

8iZi的各个分量均等于盯，￡时，Newton迭代方向(△孟，As，Ay，Az)指

向点(牙仃p，8口p，蜘p，Zap)∈C。反之，由(4．1．8)求得的迭代方向则是直接指

向满足KKT条件(4．1．7)的点。

接下来的引理给出了一个(4．2．10)可解的充分条件。

引理4．2．1如果矩阵H+Vg(x)TS一1zV9(z)是正定的，则矩阵N(w)非

奇异。
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证明考虑方程式

O 0 0

O 日 O

1 0 0

e-Vg(x1一e

0 0 Z

-1 --eT

0 Vg(x)

0 0

0 0

0 S

=0

其中(Vx。，％，Vs，vy，V：)∈R1 X形×矽X R1×Rm。则有

日+V9(z)丁S一1ZVg(x)％=0

Vy 2一e丁％

vxo=0

Vs=-Vg(x)v=

Vz=一V9(z)一T日％

由假设知％=0，因此％。=0，Vs=0，V掣=0，V：=0。由此可求

得(△牙，As，Ay，△z)丁，得证。_

路径跟踪算法要求每步产生的迭代点均落于一个包含中心路

径C的区域内，且沿着这条中心路径搜索至原问题的最优解。为了避

免迭代点过于接近非负区域的边界，我们要求每次迭代中的搜索方

向必须使下一步产生的点列更加接近最优点。

最优性算法的一个要点是如何在搜索空间中衡量满足条件的

点，在路径跟踪算法中，对偶参数p担当了这个重要的角色。当k—

oo时，地下降至零，因此迭代点(牙％，8七，Y七，Zk)逐步满足KKT条件(4．1．7)。

现定义单边oo范数区龇∞(，y)
Az_∞(，y)={(孟，8，Y，Z)∈声ls{磊≥7肛 对所有的i=1，2⋯．，佗)

(4．2．11)

咖

影

伽

咖

仍
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其中7∈(0，1】，P={(牙，s，Y，z)Is>o)。若存在一点落在Ⅳ_oo(7)中，

则SiZi的每个分量必定大于p与，y的乘积。其实这个约束是非常松的，

当^／趋近于零时，肛oo(7)就包含可行域厂={(牙，s，Y，z)Is≥o)中的大部

分点，这里，我们取7=10～。

下面介绍的大步长路径跟踪算法，由于它采用了一个较为广泛

的区域肛oo(，y)(对一y趋于零)，因此具有良好的实用性。通过(4．2．10)可

求得搜索方向，步长Q七则是保证迭代点落于肌∞(7)的最大取值。
给出一些定义：

(牙南(a)，s七(o)，y局(Q)，z七(Q))=(牙七，8七，Y知，z奄)+a(△牙后，As七，△矿，△z后)

(4．2．1la)

p惫(Or)=8k(Q)TZ七(口)／佗

(4．2．1lb)

大步长算法

步骤o．给定g>0，7，仃∈(0，1)，取一及z8>max(gi(护))，80=矿，yO和zo；

步骤1．如果IIr(w惫)Il≤￡，停止；

步骤2．由(4．2．10)求得搜索方向(A2七，As詹，Ay七，Az七)；

步骤3．取最大值a詹使得n在区间[o，1】内，且有

(碧七(a)，s詹(Q)，芗七(a)，z岛(Q))∈A￡oo(，y)

步骤4．

(牙辩+1，s奄+1，Y七+1，z奄+1)=(圣膏(o)，；南(Q)，可奄(口)，z南(Q))

步骤5．令k：=k+1，转步骤1。
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§4．3收敛性分析

下面给出几个定理来说明上述算法的收敛性。首先介绍引理(4．3．1)一

一见[48】，并用它来证明引理(4．3．2)，给出AgiAzi，i=1，2⋯．，n向量乘

积的边界。定理(4．1)给出了O／k的一个下确界以及迭代过程中参数p下降

量的估计值。由定理(4．1)印得全局收敛性。为了证明算法的收敛性，

给出如下假设

假设

1．矩阵日+vg(x)TS一1zV9(z)正定

2．不等式o≤AsTAz≤(1一盯)sTZ成立

其中

引理4．3．1假设让、谩任意两个礼维向量，且有UrV≥0。那么

UVelI≤2-3／2II饥+vii2

U=diag(ul，112，⋯，“n)， V=diag(vl，V2，⋯，％)

引理4．3．2如果(铲(Q)，8k(Q)，yk(Q)，≯(Q)∈Aw_∞(，y)，那么

lIASAZelI≤2-3／2(1+1／1)礼肛

证明由假设易得

AsTAz≥0 (4．3．12)

(4．2．10)的最后一行两边分别乘以(Sz)一112，并令D=S1／2Z一1／2，得到

D一1As+DAz=(SZ)一1t2(一SZe+ape) (4．3．13)
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因为(D_1As)T(DAz)=AsT△z≥0，令U=D～As，u=DAz，由引

理(4．3．1)得

ASAZe[1=lI(D。As)(DAz)e

≤2-3／2liD一1As+DAzI[2

=2-3／2II(Sz)一1／2(一SZe+ope)112

利用欧拉范数和关系式srZ=礼p，eTe=n，有

ASAZe[I≤2-3／2【sTz一2apeTe+a2#2∑
f=1

≤2-3／2[8T名一2a#eTe+盯2，12杀】

≤2-3／2[1—2a+譬】n肛

≤2-3／2(1+1／7)n#

得证。·

由引理(4．3．1)

由(4．3．13)

因为SiZi≥7p

定理4．1给定算法参数7和|丁，则存在一个常数石∈(0，1)使得

对所有的k≥0

证明首先考虑

∥七十1≤(1—6)p七

(牙七(Q)，s七(n)，秒七(Q)，z七(Q))∈At_oo(一y)

(4．3．14)

，Dr凸ff Q∈[o，2372，y幂南】
(4．3．15)

因为a七是【o，1】区间内n的最大值，那么n七的下确界可以写成

Q岛≥23／27幕南

由引理(4．3．2)知，对任意的i=1，2⋯．，n，有

△s；△z乒l≤fIzXS七AZ南el|2≤2-3／2(1+1／7)nu七

41
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利用(4．2．10)、(4．3．17)和关系式s：z?≥，y肛七

s?(Q)眷(Q) =(sik+口△s；)(z?+Q△z?)

=sik白k+Q(s；△z；+露△s?)+012△s；△母

≥Ski zk(1一OL)+Qo'ttk—012l△s；△z：

≥7(1一n)，‰+Q仃，‰一a22—3／2(1+1／7)np七

累加方程驴Az南+Z七As七=一酽Z七e+盯肌e(由(4．2．10)1均最后一行求得)

的n个分量，利用(4．3．17)和肌、∥七(Q))的定义，即得

p七(a)=(1一Q(1一仃))p七+譬△s?△管

≤(1一Q(1一盯))p詹+譬l△s；△棼

≤(1一口(1一盯))肛七+a22—3／2(1+1／30#k

为了满足邻近性条件

则有

s?(n)z?(“) ≥，yp七(乜)

4f(1--a)Itk+aCr#k—n22—3／2(1+1／，y)几p七≥一y((1一Q(1一盯))弘七+Q22—3／2(1+1／，y)p七)

整理上式

当

aCt#k(1一，y)2 a22—3／2(n+，y)p七(1+1／3,)

23／2 1一，y

Q≤而叫鬲n十一y l十1

邻近性条件成立。我们证明了当Q的取值范围为(4．3．15)时，(砂(Q)，yk(Q)，8k(Q)，z詹(a))满

足肛∞(7)的邻近性条件。在本章的开头就提到，露(Q)是对应第k不迭

代后第i个不等式约束的拉格朗日乘子，拉格朗日乘子的性质保证

了砖(Q)>0。又因为对所有的k有纵>0，则容易得出对任意Q在给定
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的区域内，有(砂(Q)，8k(Q)，yk(n)，Zk(Q))∈尹。因此(4．3．15)得证，继而得

出(4．3．16)。

接下来估计在第七步迭代中，参数肛的下降量。由(4．3．17)、(4．3．16)、(4．2．10)N

最后一行以及假设，得

pk+1 =8k(Q南)TZ知(Qk)／礼

=[(驴)TZ七十口七((s七)TAz七十(z詹)TAs七)+Q；(△s七)TAz七]／n

=2 p七+Q七(——(s忌)rzk／n+t丁，z七)+a七2 L厶jJk)丁△z七／n
(4．3．18)

≤(1一口七(1一盯))p七+Q2(1一仃)掣 、7

=(1一ak(1一盯)+ct2(1一盯))p岛

=(1一ak(1一n七)(1一盯))p七

可知Q(1一Q)是一个关于Q的二次凹函数，所以在任意给定的区间范围

内，函数的最小值在区间的端点处取到。在(4．3．18)中引入替代估计参

数

t!『=(1-a)min‰(1-ak))其中Q矧筹盯7而1--3'’1】
得证。-

§4．4数值算例

在如下的部分，我们测试了一些数值算例，结果表明以上提出的

算法是可行的、有效的。
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例1．

(P) min f(x)=100(X2一z；)2+(1一：E1)2

s．t．gl(X)=--Xl—z；≤0

92(X)=一z；一X2 S 0

-0．5≤z1≤0．5

X2≤1

定义初始点：牙o=(1E一05，0．5，o．5)；80=(0．7500100，0．7500100，9．9999997E一

06，1．000010，

o．5000100)；Yo=1．0；zo=(1．0，1．0，1．0，1．0，1．0)；盯=o．5；￡=1E—08．

表1共迭代9步
迭代步骤 妒 f(x‘) 1矿 r(w‘)

O (9．9999997E-06，0．5000000，0．5000000) 6．500000 6．0001004E．04 3．820576

1 (1．0000002E-06，0．4955080，0．2736015) 0．3333232 6．3562758E一05 1．238662

2 (1．0000004E-07，0．4978577，0．2506172) 0．2529059 1．0329035E．05 0．2167492

3 (1．0000007E-08，0．4995730，0．2498444) O．2504346 1．0498230l■06 2．4334069E．02

4 (1．0000010E一09，0．4999518，0．2499787) 0．2500483 1．0494578E．07 2．4822732E．03

5 (1．0000012E-10，0．4999951，0．2499978) 0．2500049 1．0493346E—08 2．488231 7E一04

6 (1．0000015E-11,0．4999995，0．2499998) 0．2500005 1．0468115E一09 2．4862107E．05

7 (1．0000017E-12，0．4999999，0．2500000) 0．2500001 1．0706392E一10 2．4913159E．06

8 (1．0000019E-13，0．5000000，0．2500000) 0．2500000 9．5142817812 2．7764307E一07

9 (1．0000022E-14，0．5000000，0．2500000) 0．2500000 9．5142839E．13 7．7662126E．09

由表17知，当经过9步迭代后，得到点z；=(0．5000000，o．2500000)目

标函数值．厂(z；)=0．2500000。注意到该问题的最优点为(o．5，o．25)，最优

值为0．25。

例2．

(P) min f(x)=(Xl一2)4+(Xl一2x2)2

s．t．g(x)=z；一X2≤0

定义初始点：牙o=(1，0，o)；so=1．o；Yo=1．o；zo=(2．o)；仃=o．5；

￡=lE一06．
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迭代步骤 孟k ，(孟k) 一yp七 r(w‘)

O (1．000000，0．0000000E+00，0．0000000E+00) 16．00000 2．0000001 E一03 2．612066

1 (o．1000000，0．5633932，0．4058072) 4．321046 2．2473413E一04 1．060262

2 (1．0000006E-03，0．8354847，0．9962838) 3．177837 1．3856229E一05 1．4947158E■02

3 (1．0000008E-04，0．9105619，0．9153758) 2．255422 3．1786121E一07 4．1 167527E一03

4 (1．000001IE一05，0．9393997，0．8971907) 1．996333 5．0372124E一09 6．3856736E．04

5 (1．0000012E-06，0．9446525，0．8947638) 1．954271 8．09872S4811 7．4648298E；05

6 (1．0000015E-07，0．9452673，0．8944804) 1．949388 3．2067162812 1．7406819E．07

由表2可知，当经过6部迭代后，得到点z；=(O．9452673，0．8944804)目

标函数值，(z；)=1．949388。注意到该问题的最优点为(0．945，0．894)，最

优值为1．94。

例3．

(P) min f(x)=(z1—2)2+(X2—1)2

s．t．gl(x)=X；一X2≤0

92(x)=Xl+X2—2≤0

定义初始点：牙o=(1E一05，0．5，o．5)；80=(o．2500100，1．000010)；Yo=

1．o；zo=(1．0，1．o)；仃=o．5；E=-1E一07．

迭代步骤 孟知 ，(砂) 1矿 r("。)

O (9．9999997E-06，0．5000000，0．5000000) 2．500000 6．2501006804 2．374507

1 (1．0000002E-06，0．8978315，0．8010017) 1．254376 1．1968108E．04 O．4671720

2 (1．0000004E一07，0．9822894，0．9587578) 1．037436 1．9406780E一05 7．0330746E一02

3 (1．0000007E-08，0．9969561，0．9931979) 1．006143 3．0959800E一06 1．4664013E—02

4 (1．0000010E一09，0．9996504，0．9992228) 1．000700 3．5033440E—07 1．7573243E—03

5 (1．0000012FrlO，0．9999644，0．9999210) 1．0()0071 3．5591224E一08 1．7975713E—04

6 (1．0000015E-11，0．9999964，0．9999921) 1．000007 3．5763579E一09 1．8019182E—05

7 (1．0000017E-12，0．9999996，O．9999992) 1．o()1)001 3．5762929810 1．8137798E．06

8 (1．0000019E-13，0．9999999，0．9999999) 1．000000 5．9604724E一11 1．7206375B．07

9 (1．0000022E-14，1．OO0000，1．000000) 1．000000 6．6613388B．18 4．8666983E．08

10 (1．0000024E-15，1．000000，1．000000) 1．000000 6．2912643E．19 4．8666983E．08

45



上海大学硕士学位论文

由表39知，当经过10步迭代后，得到点z；o=(1．000000，1．000000)目

标函数值，(z：o)=1．000000。注意到该问题的最优解为(1．0，1．o)，最优值

为1。
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第五章 结论与展望

在这篇硕士学位论文中，我们对于用内点算法求解约束非线性

规划问题进行了研究和创新。在充分吸取前人优秀思想的基础上，针

对内点算法在求解非线性规划问题时遇到的两个难题，分别给出了

两个新的算法思想，设计了不同算法，并对他们进行了较为丰富的数

值试验。从理论分析及数值结果来看，我们所提出的这两个算法都是

有效、可行的。然而，这些算法还是都有着一些不足之处：

(1)对一些大规模的实际问题，往往会出现原问题的约束条件个

数增加或是减少的情况，这时，原本的迭代数据就会显得毫无价值。

重新的、反复的计算会增加计算成本和时间成本。很多研究者已经发

现的这一问题，”warm start”思想也在近年来被逐步提出[57]，这也将

成为今后对内点法的一个研究趋势。

(2)在算法的迭代中主要运用了牛顿方程，不过对一些大规模的

非线性规划问题而言，当接近最优解时，两阶导数矩阵往往会出现

“病态’。其实这一现象在无约束优化算法中也出现过。因此，有提

出用BFGS方法来拟合迭代过程中所需要计算的两阶导数矩阵[58】，不

过这类方法只适合一类具有凸性要求的函数，并不具有普遍性。

尽管如此，内点算法仍不失为求解约束非线性规划的一类有效

途径，上面所提到的各种问题可以通过其他手段来改进与发展。
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