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Abstract

Constrained nonlinear programming has been widely used in economy
& finance, engineering control, technical physics, logistics & transshipment,
computer science, biochemical construction and many other fields. Recently,
with development of theory research and computer technology, some effective
algorithms with less time complexity, good stability and convergence have been
tried to solve nonlinear programming. Among them, interior point method won
most attentions. The basic idea of interior point method is to select an initial
point in feasible region and then iterate along the central path till reaching
the optimal point. However, many difficulties occur while researching, testing,
convergent proofing the algorithm for solving nonlinear programming.

Firstly, for problem with many constraints, how to find an initial feasible
point is a research topic. In linear programming, researchers present several
strategies to overcome this difficulty, see infeasible-interior-point method, such
as, take a full Newton step at any iteration. Within the framework of conic
optimization, a possible remedy of the problem is to embed the primal and
dual formulations of the problem into a single self-dual model, which then
has an easy available initial feasible solution. However these strategies are
not effective for nonlinear programming. Secondly, due to unsatisfactory of
orthogonality condition, how to proof convergence of path-following algorithm
is still a topic.

The major work is to integrate interior point method with inner-outer
penalty functions for solving constrained nonlinear programming. In light of
difficulties mentioned above, our work includes two parts. Firstly, incorporate
an auxiliary variable which is driven to zero by penalization and then construct
a new problem equal to original one. Due to this auxiliary variable, the problem
of initialization is circumvented. The corresponding KKT conditions as well as

penalized interior point algorithm are given subsequently. We design an inner
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algorithm based on Wolf conditions and proof convergence of outer and inner
algorithms respectively. Results of the numerical experiment are reported to
show the algorithm is practical and effective. Secondly, based on the work
done before, we propose modificd KKT conditions as well as long-step path
following algorithm. Formula assumption is described and then the algorithm
is proved to be convergent. Results of the numerical experiment are reported
to show the algorithm is practical and effective.

The paper consists of four chapters. In chapter one and two, we describe
the basic concept and development history of interior point method. Some
classic interior point methods are presented there, where logarithm barrier
function method and primal-dual path following method are introduced in
details. In chapter three, we design a penalized interior point algorithm based
on line search conditions and present convergent theorems. A penalized interior
point algorithm based on path following method is given in chapter four while
several convergent theorems are proved there. Numerical results are reported

to show algorithms are practical and effective respectively.

Key Words. Constrained Nonlinear Programming; Penalty Function
Method; Interior Point Method; Newton Equation; KKT Conditions.
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§2.1 W mEZXE I
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BEAEM)47, Bk, 2FEHNLF YR EHAE, X E R
ATH=ZAEEE-—IMEHENONE.
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B AE19674 H B ¥ #Dikin[7, 20) 8% ¥ £ R B T X M F %, 3 F19744
BEHTREBYILH. EHYXETHE 2Banes® AB KA R &L H
B BAAT BT & o 19854 , Barnes [8]FnVanderrei[21]% A i 48 5 % % &
Fti gt sk, 2l T19874Adler9)F R M 5 —H WA AR Y %, BT E
EHRERNERAGABRAR K, BT HKEZH B &AL A
¥k

B o 8 T BE % 2 hGonzagal4, 28] fYe 5 Todd[27, 29]% 42 1 th & F
PEATHRANELBLATRAME-NBEBRTHRE, HEARKK
AO(vnL). # % F & 1 H R #k # & 4 Tanabe[30]. Giiler[31]fnKojima% [32].
ME e AE, REWKarmarkar R K R R A S @ R R T H 3 W2
EHEHOTENERARNBREREFEARBTHANERL LN
B, BAROANBRERANSEFRREFE. F—F @, RERL
BELRRL, SRFTANTECHER TREMBEERENRS, B
SRTERELRZANER. LA REENBEERSERE
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RERBKRARK, BAEOERIAGER, PREBZUARENG
ANBIRE- N AR P EL (KRB BH) R#fFT. M BHK
THREANEXRFE-—MPRKAREUNRBERER S RTRSE. XA
~AELHERAEEREARBE AL BARTRRD, B 7 &M
BMEEHITHEARE,

§2.2 X EIERF R B

NEEBRERE LRI ARFELIBARNEAE, |

min T
i@ (2.2.1)
st. gi(z) =20, i=12,...,m

AWz = (T,22..,%) . JIAMNEERBERLELERNEALEHRADT
R4 K F A E A
min f(z) — Z In g;(x) (2.2.2)

=1

itqja ”k;‘%—/?\liﬁﬁﬁﬁ, ﬂﬁ/-tk>0$u
Jim i =0

EERA-—FPBTARBR, A—BRAP & R fE(2.22)R
ARAAR, FEH-RFATHRRETQ22)M M, @

Hi
im =
k—so0 gi(x*)

X ENR X Fou(a®)ih &R 8 B % &Ko

MNEBERERENATEARARNEE, TAERAY X X E
FABABE WHEKIEXEERERE, EERIABALER
BHRE. TEIANRA,

by (2.2.3)
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Gill%[11] (1986) £ E X K EA IR AN A TAHAR, BX g
THREHRXG &N FE:
min ¢'z

st. Az=b (2.2.4)

>0

itq:)AeRmxn(mSn)°
£ 1w\ R
min f(:::)=cT:1:—u§:1nxj
=1 (2.2.5)
st. Az=1b
RERMEAARIATRERS S, TXEFRIR, T ARAR
BERERE, BRMUARA AV ALELAE. A XL EA L K48
Gl AR R A B H RS A A B, MQ22)BBEEE RN

L(T, mp)=c'z— /l,ihl.’b'j — T (Az — b) (2.2.6)
=1
RARNME, FHAR Az BIEAE, §
VL =c—puDle—ATn =0
VoL =-Az+b=0

(2.2.7)

BE, AVADREXANARTER A bz (= 12,....n) ¢ A
B, ean M T EBHIOEF W E.
& MR F #Newtonik, REBHF) R M THERRER
I
F(zFY) = F(z*) 4+ VT F(a*) Az + %(Azk)TVQF(a:")Aa:"
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A i BT oRWAMN, BEHASF =" —oF, R @ KAEAF
MLIowRME, REABEASHENADPERFEEHARNE, BT
RETHX%:

—V2F(z¥)Az* = VT F(z*) (2.2.8)

E&E, X ERAFHNewtonF ) (RETFTHEFE).
xf 1] B (2.2.5) 5 AiNewtonk (R AT ARE THE). Yk
R i RAZE =bly £ 4, T—RBETWRREHA

k+1

T =zF + app ' (229)

B4t FNewton#¥ ZF M E, XBaRENZELHATFEN S KE ¥4,
Hppfoally it & & A L AzF+! = bFuF(z*+1) < F(z*),
MELREEPERGRETHEF R B E(, Am)T, Bk 1#(2.2.8)7)

MR AN
B c—puDle— ATn
0

-uD7? AT PB
[ A 0 ] lA?f
—uD2pg + ATng =c—puD e
Apg =0
HE, XREmp=n+AnpR A BiNewton? B F Mps LB B REK X
E. D)5 ¥ frNewtondd & % ) HNewtonF W . HAE - RETAH &

Gk O
HEEE—ATH

(2.2.10)

ps=( 2 ) [DATns ~ (D~ pe)]
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FRE-A, RUTK YN BHRE X ErpfoNewtontd £ 7 Wps K

7p = (AD?*AT)'AD(Dc — pe) (2.2.11)
pp=-— ( D )TB (2.2.12)

o
rg = [[ — DAT(AD?AT) "' AD](Dc — pe) (2.2.13)

ATHERMA-_FRENAKRRRAZE &
min || De — pe — DA x| (2.2.14)

HE, LE||gR0T):IZE.
ATEMBEBERENEETE ST
% b % Huofo # B A2® = bfuzd > OBy 2 % 7 47 4

begin
k=0
z =20

ji= g
while ||7|| > e or p> ¢,
do

= pp
D :=diag(zy,z2,...,%,)
g:= Dc— pe
m:= (AD*AT)"'ADg
n:=c-Aln

r:=Dn— pe
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e l
p: p Dr

— : _:‘1"¢-1 0
o =7 min {—'~ | p; <0}

¥

=gk 4 ap
k:=k+1
end do

end

XTHEE, FALRKEMURA.

1) &% TATH

EHRBECHRSE T R, Ha > 0fA =bo INMBRET R
HAERBEC2OVIIHATE RS, A “FHAR™ FR“AM %
RAB. WRABA &, WAAXA

(P) min Tz + MT,q
st. Az+ (b— Az%)zp4 =0 (2.2.15)

2720, x’n+120

AW, ME—AHK. ZHFANRBT M Az =2 2011 =1, £ F2°K
HEEE, BFMES A, BRBREFAERLATHAHE, WL AT =0,
B Y RL(2.2.15) 89 3% R AR Bt R (2.2.4) 89 5 48 #

) FkEHa Lk E

Amrls, TUAREFHFTAUNEAGTELINAES
BRWS K EMEAFF R REET AR Ha:

. —zk1
= min { —Z—
1<j<n pPj

p; < 0} (2.2.16)

AW, 7<1(L K% Y0.9952 FTEH ).
3)4 K W
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RE@E|r) <efop > OTHAEREN. EwmE 42 — KA

ﬁuminﬁjﬁﬁﬁd\o
TERRAEN B BERE KL

BlEMRE B2 e RY), HEBBAQ24)H M BEATE N

(P) max b7y
st. ATy+z=c

220

IR EERESK, LEHAETEY
max F(y) =bTy+uj2:1n(cj —ajy)
AY, yREMANEFl. LARRE—REAHRA
b— pAG e =0

A¥,GRuxnxt A EH, HTE Rz =c—aly.
[ A B A Newtonik (£ W(228)R), T 4

VF(y) =b— pAG e
V?F(y) = —uAG~2AT
# B 8 M Ay wNewtondy i, WA
PAG2ATAy =b— pAG e

B
Ay = L(AG2AT) b~ (AG2AT) ' AG e

(2.2.17)

(2.2.18)

(2.2.19)

(2.2.20)

QP F_FEFTREABERGBAFL, THE AN R KR

4 1 .
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ATHEAEERELGRE TR, &7 HAE2217)5 3 A
IXRES, FFRAR

(P) max b7y + Mym41
st. ATy+ (AT + 2° — Q) Ymy1 = ¢ (2.2.21)

z 20, ym+lSO

XEFENRBTIARAY =, Ym1=-1, MERH KW E &Ko
ERGIB#AEMBATIEE, 2AHHEWRRAHTE. Hh T #

% B A8 5l 3, Lustigh if 7 (Az, Ay, Az)B R ¥ @ Jr ix(14], oA

ERATAAREANIH#S), hoeEFENEFTERNSR.

§2.3 JFE-X BT RIRE

%4 540 %2 R B % B A Megiddo[12) feRenegar([22]% A . Ff i
JE-3¢ 18 B 42 B ¥ # (primal-dual path following method), ##Megiddo(1986)#y
R, LR LR EE-3 B % & % & (primal-dual log barrier method),
CRSTHEERB KNG FA225), BARR S Hu> 0 A —B
mRE, XM RAEHTA RSt K{x()le >0 Ry — £ BB K
W #, 3 (central trajectory), Hpu — OBtz(u)By & BB A & F A& & &R
f# o

Kojima% % 7 (1987)[13, 23]32 i ¥ & ¥ & % - 2 & MonteirofnAdler[24,
WIUR AT RE(4, 26| HEBETH Pk, rHHRELY
# HOn:L) &R 2 HOML)K K REH W AT
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ARREEE, FRUTHREN R F Aot 5 ] &

(P) min Iz
st. Az=b (2.3.22)

>0

(D)  max by
st. ATy+z=c (2.3.23)
220
REARmM X nfE Mk, bfc Bl R AmfmBE @ &, :RABHAF WA K
W EENE W E)
MYBEAD) G #AHEFE K, WAL N

0 max bTy+uilnzj
5=1 (2.3.24)
st. ATy+z2=c
R¥, kARBEK(>0) ERsAQI2)G AR KA HA Y B R
B, AW e @RAY

L(z,y,z,p) =bTy+pY Inz; — 2T (ATy + 2z — ¢) (2.3.25)
i=1

F-RRAEEH, DEI A e yfzth —H R BV E, FEATHS

B4
DGe—pe =0

Az—b =0 (2.3.26)

ATy+z—c =0
Ry, DGR A A A AT Az Z AR, BRTERITHER
PDG'5GDH AR —ZK. 3R EXNEFRX, 2N RAEWEHN
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i BEENTAELY, T AP A O0WBRRRANN®E
¢ 3/ S

BL(Az, Ay, Az)% FNewtonif Z 7 B, # £228)R, K(2.3.260)R T
BHMTHFE4A:

-G 0 -D Az DGe — pe
-A 0 0 Ay | = 0
0 -AT -I Az 0

GAx + DAz = pe— DGe
AAz =0 (2.3.27)
ATAy+Az =0
RZFEABEROTHES BT

Ay =—(ADGAT)"1AG 1 v(p)
Az =—-ATAy (2.3.28)
Az =G 'w(p) - DG'Az
R ¥, v(u) = pe — DGe
(23.28)H 2 B F k7T AN A
Az =[G™'— DG 'AT(ADG-'AT) 1 AG-][ue — DGe]
Ay = —[(ADG'AT)"'AG '][ue — DGe] (2.3.29)
Az =[AT(ADGAT)'AG~![ue — DGe]
AW, v(n) = pe— DGe
RETEN TN, TREINI KSR, WTEFHERAK.
#ZMonteirofrAdler4| R B W K EZ W FE I BRI kS Ha=1, HHETFNA—
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SEHTHHER ML R &8, B X # H % K8 . £Mcshane% [26]4%
AN EREER MY BEHNEZAXATRBS KSR, B
o*t = oF 4 ok Ak
Y+ = ok 4 ok Ayt (2.3.30)
2K = 2k 4+ ok A2k
REABFEBREEZRA K.
ZREEARNEENRE, " BN PKEEWEE, TUET AR
HERBTREE A RENG N ERAE (FTH) I RAF K,
2 Rl e, frap, B

_ . T '
ap = lréljxéln{————ij |Az; < 0} (2.3.31a)
~ . —Zj )
ap = 121]'l£n{—zj |Az; < 0} (2.3.31b)

#WERS Kapfrap A A — R EH(<DRIARAF K, |

ap =70, (2.3.32a)

aD='y&D (2332b) |
xt R A7 &t ik 7 2 18 47 4 3 R, TRy = 0.95%; T x4(2.3.28) 8 E-x{ &
EWItE, T2 A58 28 FKN, o< 1Map <KW E£# T
By =09995. 5 — /MR RE, Y3 E F & T AT @ofe x5 F AT AT
RyGz k9, ThHKAKABERRE, JE2326)8 % = X % U Fo
FoAEKBEARNy, TEERHXBERY

Fzx—bly=2"z (2.3.33)

ZRAMTHAR @y, )RR, FRERBTLHENERAM Y L
BE.
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LB RERELFEMRX

ARABLRIBPIHBERBRYZE . AdF T ELRER G X B
BB, #(23.30)%1(2.3.29), 3# & & 2T = (F)TA+ ()T, B
dk+l = (Tgh+l — pTyk+l
= (Tzk — bTyk) + ok [(yF)T A + (2%)T|Az* — afbT Ayk
RN(2.3.28)F Az FuAF, 3# % & B|AAz =0, (2F)TG™' = €T, De = zF,
. % & 4% 3|

#5 = 8+ ol — ()72 + (0 - )" Byt
B Fd = ()T, B ERY
A+ = d* 4 ak[np — d¥] + (o — ok )BT Ay* (2.3.34)
T Rdaf=oh=0crmt, &
d** = d* + o [np — d¥

XHREp<Lm, #EEZRERERY. Blk— BB =pE0<p<
1o T Yok Aobm, #EERBRNOBERR—FRL.

HE, 23204 4 AWH AR X TR B &R EARFH PR, T
FEWHARRZRRASR, BHEAABER. ARPFO X%, 2%
BAS k. RAUEBSKAERTHH T %

¥ FRE T/, Lustight H £ A T K By Fym 2 5 3R
A EEE, FEMER MR A R AN, R T
R 1] L :

min ¢z + MyTnp1
st. Az +dpzpy1 =b
P (2.3.35)
dpT + Tni2 = Mp

T Z 01 Tnt1;, Tag2 2 0

18



ERREM LA B

o 3 ) 218 1F A

max b7y + Mpymn
st. ATy+dpym1+z=c
Ty + zp41 = M, (2.3.36)
Ym+1 + 42 = 0

z2 Oa Zn4ly  Zn42 Z 0

R ¥,d, =b-A2°, dp = ATy +20—c; X EM,FoMp R R AW E %, 2°, y°F020 %
HERWESR K. B A2, = Uy, = -1, M B4 & T(2.3.35)%2(2.3.36) 8y
—HHZIAR B TFTMPMpRES AW EHR, A LW FEEN KK
B AR E] R(2.3.22)F0(2.3.23) B R MR, B Azapr =0 Frymyy =0.
ERTREHEWT:
% W & 48 AT #a®, " Fn 20

begin

k=0

d:=100c

z* = :v“, 2k = zo, yk = yO

while d > ¢

do

pr=pxg
D := diag(z%,z%,--- | zk)
G = diag(zf, 25, -+ , 2})
Ay := —(ADG 1AT)'AG~!(ue — DGe)
Az = -ATAy

Az =G 'v(p) — DG 1Az

19



EEREFREFMIL XL

Find a,, ap
okl = ok 4 ok Azt
YL = gk Ayt
25 = 2K 4 ok Ak
d = (zF+1)T 6+
k=k+1

end do

end

§2.4 FATHARER.

LtENBRHERARREEHNFTFERA - NMUBNBTATR, T
MEBEGFEEBARR, —~AERERFEEANTARAAAFTERLER
DAEW. X, ~FEITUNBAIAATIREEMATIARN AL XA
B, BHERXCARURE F—FdE, HEEXAXTTAARE %,
XA EECHW A EEARLIR—BRWE-XNBEREREL. EETHE
Bwrm, AR RSB BT B &y K(3, 5 33], B4 %% 2 E-xt
BHhREREELDBENAERYE. WA EZ — ¥ F, Ye. ToddfaMisunol19944
AxTHAE“FREXBEE" B F %33, ©EEFERLER
B —NMEH AT AREBAZAFREABEARAN R TTRSE
B, KRR B 5 FE RGBT R LR P A SRS #

EXRFSFFHTHR, LEAAEABHEANERB R KM
—BE-RNARORANE. TENTHAEHANTE, —F @, &
fHE AR, B4 ¥ E MR, Luo, Sturm FuZhang[36]® H T — A
BB EANE R, JosSturmfrSeDuMisk /7 T X W R & K E MK, A

20



FBREMEEARX

AT EHABWRKB TR E. Z—FE, SRAXERY
5 W # 48 14 7] B, AndersenfYe[34, 35] A Xu. HungfYe[38]% F & H# # X
MAZET - BEABAPRIABL, RET —LFEK 8 XE &
A#AE, i L, AndersenfrYed® h #y 7k B4t E LA B A X E A
A, BEREA M. Fd b FHEELABANGELY, R XA Y
FEZRWERABPFE-—BRTRENRZ,

3| 720044, Zhang(39]xt R A R F R ARG R A M AR H — A
BEWRETER, WERFABYAFERARBAIBAK, EAE
8 %A B, % & NesterovfuNemiroviskie H # & th ¥ B 74 & 3
RB7NZRTOARN P UHEEAAROER. FEATHRERNEN S
RAA RO ER, BLEXBHAFANESIZR AN, T
X—X A E R REHNO(rlogy), R, thAXRHAMHK, e> 0%
FEWHARE B ARBKELAHRAR, KA TZFERTAT
0\ A K [40].

21



ElEXEB LR

FZE LRE&REENMTASER

BAHEINETUES, T ORI AR A F R, 04747
ROBBEOHBRENRAT, AERSAZAL OB HRAE A
SGERARBE-—BAAARFLUEARNEE, FTLEXHRFH
BHR AXH, ENEAX—BRBEETHE, HRHETBIIAHEB

XE, MERNANENEERTRTRE — %A

§3.1 PFERKKTEH

T, RNFRAADTHAN 4 KR AP A
(P)  min f(z)

st. gi(z) <0,i=1,--- ,m.

ﬂ:q” @ﬁf,g,‘!m—’R,’i=1,"',m%:&?&ﬁﬂﬁﬂﬁo
GIANE Bz, (31.1)M & &K

(P)  min f(z)
st. zo—gi(z) 20,i=1,--- m.

iL‘Q=0

(312)F X BB H & K

m

L(w) = f(z) - yzo — 3 2i(x0 — g:(z))

i=1

(3.1.1)

(3.1.2)

(3.1.3)

Edw=(Z,9,2)",2=(znz)T ER'xR"Eh XX &, yc R'fuz € R"%
ARERXAFEL%E XY K MLagrange® F. A 4 0 b Fl A HK-K- T4 % #

22



EHRREFLZEMARX

b
Yolw) = To =10 (3.1.4)
GZe 0

G=(x0o—91(), - ,T0o— gm(2))T 20,2 = (21,-** ,2m)" 20 (3.1.5)

0 1 m 1
-y - %
Vf@)] [0} =1 [—Vw@)}

V() + g:lz,Vgi(x) Vf(z) + Vg(z)Tz

®w

[ v.L
A2

VTgi(x)
Vy(z) = : ,Z =diag(z1,- - , Zm),
VT gu(2)
G= diag(xo - gl(x)7 crryTo — gm(x))T1e = (1’ ceey l)T € R™
EEAARERKAENLEY, RAMN Y &K ANewtonik k R # L
RKKTA#% X, §
VzL(w) 0
Ty =0}, g(z)>0, and 2z>0 (3.1.7)
0

GZe - pe

Hbp>0R MK £X %R T, Newtonikt X 7 Wdy = (dz,dy, d;)"

23



EBXREMEEMBX

RAWTHA
0 0 -1 —€f —y—2Te
0 H 0 Vg(z) i Vf(z)+ Vg(z)=
10 o o | Zo
| 2 -VTg(z)z 0 G GZe — pe

HYEEHRV, L(w)X R H L MUE.

§3.2 WA HEZE
¥4, SINEH % FKQSI,p): R - R
Q1) = f(z) — p f:l log(zo — i(x)) + 228, 1 >0 (3.2.8)

g9, G5 Hu>08— BTN EH. TUFD, YuhRELES D
B, I RE(3.2.8)18 4 0% 4 F B I H(3.1.2). [ AR (3.2.8)8 & E B 4b M &
B R

vQ(z ﬂ) 0 i :r:o—slli(:c) +1 2zo 0 (3 2 g)
, = — l_[ - = V%
Vf(:c) i=1 | — Vi@ B 0

To—g:(x)
By
_“g:l e ta2t0 =0 (3.2.10)
Vf(x)+u§% =0 (3.2.11)
=M T
20 p(g7")Te =0 (3.2.12)
Vf(z)+pVg(z)Tgt =0 (3.2.13)

24



ElRREBLEMBX

£

__1( 1 1 )T

g =4 PRI °

zp — g1(x) To — gm(x)
RMANFTAEHEEz=pG'ec Rfay = —2Te, LRFET

B h
VzL(w)

0
Ywp)=| zo+8y |=1|0 (3.2.14)
GZe — pe 0

#H§>0,2>0,—L<y<l,

EXE, EMNEX£5C214)40 B AKKTA#, HRX— 4
# 8 Rw(p) = (F(n),y(w),2(1)" € R™! x R' x R™# 4 W % HKKT XK.
Gp ] 08, wp)ih RK-K-TH # .

RE, EMEXALELNESR
&P
HIRO. Ae > 0,70 = (29,2°) € R* #% Bl > 1‘22’,‘,,%(10)’ M,>0, %k:=
0, # % {ue}, e 1 0. N
ST Rl <e, B
FR2. FR— R K HH Ry, m)ll < Mepgo
PR3 Ak=k+1% a5 KL

BETXAHHEFH R E

EE31BEVEGEEE LG LS, (PF)RFIAFRG. I
H{} AR, B{w}e R 5% RKKTH #(3.1.4), (3.1.5).

WERR B R A7 I R (2F) > 00, P B2 Mo

ke

gk — 2
k

2

Hi—-1
<
=M

25



ElREBR L EMB

B A
A
J#i ~1

E
2

< Mc,uk—l

()

FhE, Bh{z*} A R.n
RMEXFHCLU)R AN RER T RELS, HRE— £ #
WO AR AW R RE R
AT FE B> 0% T uh oy 8 4 09 1 5% 57 R th K, &A1 A Newtony
ERHFARMB Ady=(dz,dy,d,)" R T ] B #:

N(w)dy = —y(w, 1) (3.2.15)

B Wd; = (dgp, d)o H H(3.2.14)

—y—2zTe
V;EL(’LU)
Vf(z) +Vg(z)T2
Y(w, p) = | zo+ Ly | =
- To+ 5y
GZe — pe _
GZe — pe |
T4 _
0 0 -1 —€T
0 H 0 V
N(w) = 9(=)
1 0 g 0
z =Vg(z)Tz 0 G

HRV o L(w) 2k 3 21 L1 . -ﬂ YH =V, Lw), Nw) ;%'-;7(211, p) % Fwhly Jacobian &
3

TEHIIELHTC215)TREXN> A4,

51 3.2.1 4w £1THz + H - Vg(2)G'Vg(r)TZR E R EH,
AN(w)iE ¥ Fo
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ElEREMEEAMAL

R EREA TR

ﬁq’(vmovvmyvyavz)ERlanlemeo ﬂu—ﬁfﬁ‘

(32THz+ H - Vg(z)G'Vg(2)TZ) v, =0
v, =1,
1

Ugg = 53Uz

v, = =Vg(z) " THu,

MR T v, =0, BlAVe,=0,v,=0, v, =0, Bif.m
Newtoni#k W X AZ R F RT 5 K&

wht = wk + tid e

R bty REE N TR R 5 RQ(Z, W)W T .

§3.3 LKW ERE X

ERE—Mp>om, FTRIT-MEIRABBKKTAH 2B
WS EE, HLERNLY kKNewtonZ R B H#THE. ERARXEA
WTHA:

whtl = wk + tpd e (3.3.16)

EPUBRB TENBHREETERA AN,
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LW R¥EH L E AL

EXE, RN A WolfeA kN &E TN, 3t — fu, FIA
T A R K Mty

Q(T* + trdze, 1) < Q(ZF, ) + 1t VQT d (3.3.17a)

VQ(Z* + trdge, ) Tdzx > ¢, VQT dzr (3.3.17b)

EHF0<eg <<,

AL BEREREE, B XA EELS IANMFETUFE N K EIPH
M RAEE (BREZIPHE ). ERAXELBNIRE K
HIPW B Moy A8 3 B o
HiELS
$I0. 4w e R xR XR™u>0, HE >00<e<ea <1, k=0, |
ST w R v m) lI<e, #1E.
$ B2, §(3.2.15)it £ & K F fd,.

SRS KM, EZHR

Q(E* + trdze, ui) < Q(FF, i) + 1tx VQT dzw

VQ(-’i'k + tkdi-k, ﬂak)T Z CQVQZ'djk

with0<c<o<lHYP0<c<e <1,
¥ B4,

Wt = wk + tid,,x

T Ak:=k+1, #¥H $ R,
ATEREZLSH LR H, TBELTREK.
g
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b KEM 200X

1. & F$%zTHz +H-Vg(z)G 'Vg(z)"TZE EZE ¥ .

2. VQ#EQ L RLipschitz £ S 8, B, & — M ¥ HL > 0/ VQ(w, 1) -
VQ@,p)l| < Lilw - @, %t B # Hw,d € Qs

T & % KLSH kSR HE .

B 3.2 wREK, B#S, 0(2)i=1L.. mRAZRELTRSG. B
R ELSHE £ 85 R IRA FNwi s £ % £OA . 2 A F{w}E S H —
ARE, B{w'} HEETREYABRBHKKTE .,

WERR B BB de, B HQE )EQH RA F 0. % & 2 4R A #Newtonik
K R M2 THeA H-Vg(2)G'Vy(z) 28, W ERfRgi(z),i=1,...,mHY
EHE,

& X

o =VvQTd
€08 Ok = [5Guldoel (3.3.18)

#(3.3.17h), (3.3.16) 7 &
(VQr+1 = VQi)Tdzx > (e — 1)V Qi dz
X W FLipschitz%& #, W #
(VQki1 — VQi)Tdgr < tiLldzx]|?

getaWAIAXERX, T/

th> —— —E T
ST (da?

BEA T2 RRAWolfed 4 8 % — R(33.172) %, &

1 - ¢ (VQTdz)?
L idaf?

Qi1 SQr—
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il REMLEMR

HE3B)WEX, AWM TXER
Qua < Qi — ccos” 6] V Qi
b, c=a(l-o)/l. EFHRATFEFHFARER M, B
Quir < Qo—c i cos? ;]| VQ, |2 (3.3.19)

EBAHQA TRM, NQo— QR EMER K, 25 & thk.
fA(3.3.190 &

o0
3" cos? 0k || VQx||? < 00 (3-3.20)
k=0
!
082 04| VQ12 = 0 (3.3.21)

HeosOuly B X 7 Jn, F A& E¥ RKoER

cosbp, >8>0, for all k

Btk B(3.3.21)K 5 45 1
Jim |IVQ]| =0

ETRLUERNS BN BET . BRAF - MEHNEH
HKKT Zwht % &

Ny (@, )l < Meps
(BEPHE —_F)o M Wit EAR N

_ |y (W, )|l s
Hk41 = max ( M, A

RPO< M. <M, My>1. EAXHEERFRARYT, RIONEM, =
4, My =105, M, = 3,
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I PN B AP
§3.4 HEH B

AW THHL, RNOMNRT —LHEHEA, ZREAULRYEW
HERTITW. HEW.

1.
(P) min f(z) = 100(z, — 22)* + (1 — 1,)?
st. gi(z)=—-z;-22<0
gao(z) = —22 -2, <0
—-05<2, <05
19 <1

WO R B R K

Q(Z,p) =

DIl

1 log(zo — g()) + 573

= f(z) — log(wo — (=21 — 73)) — plog(zo — (—2% — 72)) — pulog(zo — (—0.5 — 1))
—plog(zo — (—0.5 + 21)) — plog(zo — (~1+ 25)) + .23

X A .’Z;‘O = (9.9999997E — 10, 0.5000000, 0.5000000),c = 1E — 05

F1 A H& RS
2R F R z* Q(E*, k) J{E0) Kk Yw)
0 9.9999997E-10,0.5000000,0.5000000 6.500000 6.500000 9.9999997E-8 0.2500000
1 7.0000000E-10,0.5000000,0.2750000 | 0.3125001 | 0.3125000 | 2.5000004E-08 | 2.5000004E-02
2 1.0111600E-09,0.5000000,0.2525000 | 0.2506256 | 0.2506250 | 6.2500010E-09 | 2.4999869E-03
3 1.1389349E-08,0.5000000,0.2502500 | 0.2500064 | 0.2500063 | 1.5625002E-09 | 2.5001052E-04
4 3.9522856E-09,0.5000000,0.2500250 | 0.2500001 | 0.2500001 | 3.9062506E-10 | 2.5001265E-05
5 1.0981988E-09,0.5000000,0.2500025 | 0.2500000 | 0.2500000 | 9.7656265E-11 | 2.5023062E-06

BMERITH, Y2455 #&RE, %3] Kot =
¥ & % 8 f(x2) = 0.2500000, #* & 3| %

£ 18 %0.25,
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ElEREWMEFEHRX

Bi2.
(P) min f(z) = (2, — 2)* + (21 — 22,)°
st. gx)=12-2,<0
P R R R KA
Q(Z, 1) = f(z) — p X7 log(zo — 9(2)) + 42§ = f(2) — plog(zo — (23 — 72) +

X Kz = (4.9999999E — 03, 1.000000, 1.000000),& = 1E — 05

F2 4% R4%
*R PR * QU me) | f(z%) o yw)
1.0000000E-02,1.000000,1.000000 2.007908 2.000000 0.2000000 0.7199850

1.0451545E-03,0.9900161,0.9817969 | 1.990646 | 1.982330 | 5.0000001E-02 | 5.1898486E-03
1.0806412E-03,0.9808956,0.9636081 | 1.976677 | 1.968040 | 1.2500000E-02 | 6.5903723E-04

1.1300817E-03,0.9630076,0.9285494 | 1.958725 | 1.949543 | 3.1250000E-03 | 5.1537370E-05

Wl = o

1.1586071E-03,0.9460912,0.8960579 | 1.952797 | 1.949465 | 7.8125000E-04 | 8.2657667E-06

bR i, Y2 B4F %R E, B 8 Az = (11586071 E—03,0.9460912, 0.8960579) B
& B BB S (2]) = 1949465, 3 & B % [ Bty 5% 0 A% 4 4 (0.945,0.894), %
1 % 1.94,
$13.
(P)  min f(z)=(z1—2)*+ (22~ 1)?
st. g(z)=z1+12-2<0
B EYERT&RN
Q(z, p) = f(z) — 312, log(zo — 9(2)) + 73
= f(z) — plog(zo — (1 + 72 — 2)) + 12}
5 XA 46 K: o = (1.0000000E — 06,1.000000, 1.000000),¢ = 1E — 05

3 4t # R2p
#RFP R z* Q(zF, px) f(z%) By Y(w)
0 1.0000000E-06,1.000000,1.000000 1.000014 1.000000 1.0000000E-06 0.7094432
1 5.5330622E-07,1.451487,0.5485129 | 0.5047206 | 0.5047075 | 2.5000000E-07 | 6.8861194E-02
2 5.0376644E-07,1.495310,0.5046899 | 0.5000446 | 0.5000445 | 6.2500000E-08 | 5.6593649E-07
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EBRETLFMRI

B&R3T o, ¥ 2325 % R)E, 7 5 Az = (5.0376644E—07,1.495310, 0.5046899) B
# & B f(x3) = 0.5000445, 3 & | % 7] B B & 46 AR K K (1.5,0.5), &£
18 40.5.
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EREFHLFEMR

FNE HGEAXTHRENTAREE

EAEY, BN - XAGKNARATE——RERKLE—
—EFEUANTHERETHRIN. AR —HEHREHL YW
PRESHAEXBAH, TXNMEHE-—BROFEUEANTER -
REHKE BhEAZEY, ENFARFEELIABH R ERIR
THERLEBROAR, FRBIHEFHXRLTEFARLFEX A
Bo RAWAH T

§4.1 KKT&

W, HFRETH A KA R A:
(P)  min f(z)

(4.1.1)
st. gi(zx)<0,i=1,---,m.
%‘;Fa f’gi:Rﬂ_) R,i=1,"' ,m%ikﬁﬁqﬁé?o
HNK Ero, W(AL1)E BK:
(P)  min f(2)
st. zpg—gi(z) >0,i=1,--- ,m. (4.1.2)
Ty = 0
EXERFEGHHEYEE & HK:
| L(w) = f(@) — yz0— 3 24(20 — 5:(a)) (4.1.3)

i=1
iq’vwz(jay’z)T:i':(xﬂ’z)TGRlxR’l%y&i&‘E’ yGlet’ZGR"Q‘
AREANMTEAARAE VBRI RTFHE. B ERAE
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B KKT R 48 # % # 4 :
VzL(w) 0
To =10 (4.1.4)
GZe 0
i

g=(z0—g1(z), 20— 9m(2))" 20, z2=(21,--,2a)7 20 (415)

[ v,,L 0 1] = 1
VzL(w) = = -y -2 %
Vf(z) 0 =1 -Vyi(z)

| VL
-y _m'g % _ —y — zTe
i Vi(z)+ Z: zVgi(x) Vf(z) + Vg(z)Tz

(4.1.6)
VT gi(z)
Vy(z) = 2 yZ = diag(z1, "+, Zm),
V7 gm(z)

G = diag(z, —a(z),--- ,20 — gm(2)), e=(1,...,1)T € R™

%E’ Xﬂ-KKT%# 3l)\"/ﬁﬁ\\3ﬂ.’.§fﬁs = (51,32;"' 1Sm)Ta AW%EU(AII‘Q%
AN EHBA:

_ - N
T 0

° = (4.1.7)
g—s 0
SZe 0

# *(31 Z) >0, S = diag(sla 82, ,Sm)O
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Ll REM LA

EEHFERELEFY, RATEF X ANewtonix % X # F RKKT4 #
% R, 7 4NewtonJy # ¥ ## I } Newton# & ¥ ] Aw = (AZ, As, Ay, Az)T,
H

[ 0 0 0 -1 - 11 Az ] [ —y—2zTe
0 H 0 0 V() Az Vf(z)+ Vg(z)z
1 0 0 o 0 As | =— T
e —Vg(z) —e O 0 Ay Jg—s
| 0 0 Z 0 S Az | S5Ze |
(4.1.8)

HPEBHE TV, Lw)REHEUE.

842 WIEREBEHE X

R R, PUOBBCEARXELTPHEF LR EENAE,
REH-—XFEBTAEARSABIE. FAE % >0, WEA
B(ZrySryYry2) ECHTHEI T FRAFTRM:

M-
V:L(w) 0
Ty 0

r(w) = = , §>0, UK z2>0 (4.2.9)
Gg—s 0
SZe—rTe | 0

AXW, ?21”%1:1%%1#(429)7@1%IE%KKT%# HKKT# #(4.1.7)4
b, B—WEHNEFTRE-—FTFIASH, £EXRRZLUILNFE=
AAPREIREAHRART ERszRBENERTHRAMEN £ 4.
B(42.9)T & X ¥ X £

C= {(i'rrsﬂyn ZT)IT > 0}
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Yris vt FE A, £HA29% M FALT). MBS0, C U T
F— K, WAXAL B ANRR A Bk, HEPCHEH X
WMy EBRNRET —ARIERMORE, DEERAREFART
UREsHzENGERBHBATE, BETUNEF Az XRBREILF U
HAWARTHAE, XRERNIATRS “BH”.

HTHREEFHNBE, RNAABREHoc0,]) At EE
%amwﬁgha=%wzxmmﬁTmﬁﬁwﬂﬁw%=wﬁ
JNewtoni® % K ##(4.2.9), B %

0 0 0 -1 —¢T W [ Axgy -1 [ —y—2Te
0 H 0 0 Vyg(z) Az Vf(z) + Vg(r)z
Nw)Aw= | 1 0 0 o0 0 As | =— Zo
e —Vg(z) —e 0 0 Ay g-—s
i 0 0 Z 0 S 11 Az | i SZe —ope
(4.2.10)

HPEEHE TV L(w)k K& HE

Ysiz;th £ N9 B HF Fourd, Newtonik R F 1(AZ, As, Ay, Az)
) B (Zous Sous Yous 2on) €Co K Z, WUAL)RFH AR W B L & #H
B % EKKTA B(41.7)8 & .

BTARGINELHT —MI210)TRE K2 K 4.

I 4.21 wREKH+V(2)TS 1 ZVg(z) R E X 0, B4 KN (w)E
F Fo
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WERR &k 7 B A
(0 0 0 -1 - | [ u)
0 H 0 0 Vg(x) Ug
1 0 0 0 0 v, | =0
e —Vg(z) —-e O 0 Uy
o 0o z 0 S |\u)

H P (v, Vzy Vsy Uy, v:) € R* X R* X R® x R* x R™s W A

H+Vg(x)TS71ZVg(z) v:=0
T

vy =—e'v,
Uy =0
v, = —Vg(z)v,

v, = ~Vy(z) T Hu,

HBiE ey, =0, Blhv, =0, v,=0,v =0, v, =0 BHETXR
B(AZ,As, Ay, A2)T, Bil.m

BERBAZEREFFANBRAAET - PEEPOR
BCHEHA, EBAFEXLFPBBEERERAK RN B H T #
AERERTRAFARBNLR, ENERERARTHEES
M REFT—FFAENEAEmELRRL K.

RREBEEW - N EARDAAEREZATHERR LGN
B, EHBREEEP, AES 5B Y TRANANEENAE. k-
ooft, e THEE, Bk R K@, 05 5)E Y # RKKTHK #(4L7).

HEXBHook F K BN _(7)

Noo() ={(Z,8,y,2) € F|sszi >y M BrAH i=12,...,n}
(4.2.11)
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Hhy e (0,1, F° = {(z,59,2)ls > 0} #HE— KRFEAN (VF,
Wiz AR BELREKXTFuEG /W ER. EEXAARREFENN,
BvRETEMN, No(VREETHRF = {(T,5,9,2)|s > 0}F 8§ kA
AR, XE, RIMNKy=10"%

TEANEW X RB2RELE, BTEXAT—ABHI 2
WRBN () (& TE), BARARFHTHAYE. BH4210)7
XBREEI®, PRkl ZREZR KE TN (B EARME.

Sl — B X

(Z*(a), s¥ (@), ¥ (a), 2 (a)) = (ZF, 8%, 1/, 2F) + a(AZ*, Ask, AyF, AZF)

(4.2.11a)
() = s5()"2(a) /n
(4.2.11b)
AREKEZE
0. % e >0, 7,0 €(0,1), Ra®Kaf > max(g;(2?)), ° = g°, y°Fu2;
SBL W R|r(w)l| <e, #1;
H 2. §(4.2.10) K B # & F 1Az, Ask, Ayk, AzF);
TR KRB Ao RakE K H[O1K, BH

(#*(a), 8*(), (@), (@) € Nooo(7)

T R4

(4,441,441, 2247) = (ah(a), 5¥(@), #4(0), 24()

BW|5. Ak:=k+1, %5 Bl
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§4.3 WStk o R

TEHSEHUANEERRA LRI ANt ¥ ENF 5 EA31)—
— W[48], H F v ki W 5 #(4.3.2), B HAGAz, i=12,....nH & F
RELF REAQDBE Tou i  — M THEURERE R T S BT H
BNt E. dRBANIR 2R Ug M. A TEHE LN RS,
% i TR &
R i%

1. £ MH +Vg(2)TS'ZVg(z)E &
2. FE R0<AsTAz<(1—0)sTz &
5138 4.3.1 Biku. vEEEHA A, BAUTv>0, R4
1UVell < 273w+ v|)?

*

U = diag(u1, uz, . . ., u), V = diag(vy, va,...,0,)
5| 4.3.2 40 R(7(a), $*(a), y* (), 25 (0) € Noe(7), 7B 4
|ASAZe|| < 27321 + 1/y)np

P HBRER %R
AsTAz>0 (4.3.12)

(4.2.10) % & — T W & 2 B KA (S2)™/?, #AD=_S52Z"12, % 3|

D 'As+ DAz = (SZ) V*(~SZe + ape) (4.3.13)
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B A (D'As)T(DAzZ) = AsTAz > 0, 4u = D'As, v = DAz, W 3|
#(4.3.1)%
|ASAZe|| = ||(D1As)(DAz)el|
< 2732|D'As + DAz|? W5l # (43.1)
=2732|(S2)V*(-SZe + ope)|? B (4.3.13)
FRARUEEFXRARsTz=np, eTe=n, &
IASAZe|| < 2-%2(sT2 — 20peTe + 022 z 1]
<27%%sTz —20ueTe + o WG B sz >yp
<271 20 + Zlnp
< 2721+ 1/v)np
Bif.m

EE 41 L2 H k5 8yHo, WELE—AE X (0, 1) E

e < (1= 0 - (4.3.14)
PR #9k >0
WEPR F & R
(Z¥(a), s*(0), ¥ (a), (@) € Nooo(r)  for all o € 0,22y ]2 2]
(4.3.15)
B Ao (01K F Mot R AH, Hruli THETUE K
ay > 232y 2 e (4.3.16)
B 5 E(432)k, HEEHI=12,...,n,
|AsEAZE| < ||ASKAZFe|ly < 2732(1 + 1/7)nuy (4.3.17)
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F| 1 (4.2.10) (4.3.17)F0 % & Rsk2F >

H(@)ek(a) = (sk +aAsh) (e +an)
= sk2F + a(sFAZF + 2FAsK) + 0?AsFAZF
> skzk(1 — a) + aopuy, — o®|AsFAZE
> (1 — @) + oy — a®2732(1 + 1/y)npy
Bmk BSEAZ: + ZFAsk = —SkZ%e + oppe (HA2.10) K B — T X 48)
W&, AR 4317 Foue () Z X, BR/
pe(@) = (1—a(l - o))+ LAskAZ
< (1-a(l - 0))ue + L|Ask Az
< (1=l — 0))ux + 27321 + 1/7)
AT HRSAEYE £
si(0)2f(0) > ypu(e)

WA
Y(1—a)mtaop—a®272(1+1/7)np > y((1—a(1=0)) 22732 (141 /) 1)

¥#E ERX
aop(l =) 2?2732 (n + )1 +1/7)

22 1-4
a$n+7071+7
PUB KA RL RINENW T Bady BUE K B (4.3.15) 8, (25(a), v* (@), *(@), 2(a)) #
RN_ (W B LM £ H. EXREHNFXRRE, SR A B FLF R
REFATEFALAKNUABAEIRT, HAVEIRTFHBRRERE
T2i(a) > 0. X B 4 3t fi A kA >0, WA HH H A Kok 4 %
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W EEA, F(@),s(a), v (), *(a)) € FOo B $(4.3.15)4F iF , 4k W %
i (4.3.16).

BTRETAEZLS 2R, S Hu THE. $H(4.3.17). (4.3.16), (4.2.10) 1
w"E—fTURBRE, &

Hirr = s"(a)T2*(ax)/n
= [(s*)T2% + ai((s*)T AzF + (5)T AsF) + a2 (As*)TAZ*] /n
= pr + ar(—(s5)T2¥ /n + o) + A2 (As®)TAZ /n

(
(—(s*)
< (1= ox(1 = 0))psx + a}(1 — 0) €L
(1-0)
(

(4.3.18)

+ag(1 = 0))p

=(1- ol — o)1 —0))
Toa(l-a)R—AMXxFol ZRKMEH, FUAEEESLEH K EEE
W, BRI RMEERE SR ARLKE . ZU3B)FIHIA#HRFEiITE
¢

=(l1-o(l—0o

2% 1
7 4

=(1-o)min{ox(l—ax)} HP o€ [n+707m

'/f%’i‘[o.

§4.4 HEFEDH

EnTHHEL, KNART - BHEHH, FREAUNLREY
HERTAH. AEH.
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il REM AR

1.
(P)

s.t.

a(z)=-1;—12<0

o) =—22 -2, <0

-05<z; <05

$2S1

F X A4k K 2° = (1E—05,0.5,0.5); s° = (0.7500100,0.7500100, 9.9999997 E—

06, 1.000010,

min f(z) = 100(a — 23)? + (1 - 2,

0.5000100); 3° = 1.0; 2° = (1.0,1.0,1.0,1.0,1.0); o = 0.5; ¢ = 1E — 08.

F1 3t % RY
#RP R z* f(@F) uk r(w*)
0 (9.9999997E-06,0.5000000,0.5000000) 6.500000 | 6.0001C04E-04 3.820576
1 (1.0000002E-06,0.4955080,0.2736015) | 0.3333232 | 6.3562758E-05 1.238662
2 (1.0000004E-07,0.4978577,0.2506172) | 0.2529059 | 1.0320035E-05 |  0.2167492
3 (1.0000007E-08,0.4995730,0.2498444) | 0.2504346 | 1.0498230E-06 | 2.43340GOE-02
4 (1.0000010E-09,0.4999518,0.2499787) | 0.2500483 | 1.0494578E-07 | 2.4822732E-03
5 (1.0000012E-10,0.4999951,0.2499978) | 0.2500049 | 1.0493346E-08 | 2.4882317E-04
6 (1.0000015E-11,0.4999995,0.2499998) | 0.2500005 | 1.0468115E-09 | 2.4862107E-05
7 (1.0000017E-12,0.4999999,0.2500000) | 0.2500001 | 1.0706392E-10 | 2.4913159E-06
8 (1.0000019E-13,0.5000000,0.2500000) | 0.2500000 | 9.5142817E-12 | 2.7764307E-07
9 (1.0000022E-14,0.5000000,0.2500000) | 0.2500000 | 9.5142839E-13 | 7.7662126E-09

BxRIT R, Y2395 X R, % 2 Kz = (0.5000000,0.2500000) H
¥ & %K 18 f(zg) = 0.2500000, #F & 2 % i A 8 & t£ & 4(0.5,0.25), & 1k

1 40.25,
$12.
(P)

st. g(z)=22—2,<0
EX WA 1°=(1,0,0); s° = 1.0; o = 1.0; 2° = (2.0); 0 = 0.5;

€e=1F - 06.
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il RERLFEH LI

%2 3 % K65
2RI B z* §(z%) yu* r(w*)
0 (1.000000,0.0000000E+-00,0.0000000E+00) | 16.00000 | 2.0000001E-03 2.612066
1 (0.1000000,0.5633932,0.4058072) 4.321046 | 2.2473413E-04 1.060262
2 (1.0000006E-03,0.8354847,0.9962838) 3.177837 | 1.3856229E-05 | 1.4947158E-02
3 (1.0000008E-04,0.9105619,0.9153758) 2.255422 | 3.1786121E-07 | 4.1167527E-03
4 (1.0000011E-05,0.9393997,0.8971907) 1.996333 | 5.0372124E-09 | 6.3856736E-04
5 (1.0000012E-06,0.9446525,0.8947638) 1.954271 | 8.0987284E-11 | 7.4648298E-05
6 (1.0000015E-07,0.9452673,0.8944804) 1.949388 | 3.2067162E-12 | 1.7406819E-07

k2T, Y2 d6ME KRG, & 2 Kah = (0.9452673,0.8044804) H
A B B Sf(xf) = 1.949388, & & B % IF] A A & R & 4(0.945,0.894), *
1% #1.94,
Bi3.
min f(z) = (z; — 2)2 + (z2 — 1)?
st. gi(z)=2}-1,<0

@r)=z+2,—2<0

XM & 3= (1E - 05,0.5,0.5); s° = (0.2500100, 1.000010); 3° =
1.0; 2% = (1.0,1.0); 0 = 0.5; ¢ = 1E — 07.

=3 &£ % R10¥

ERPR ' z* f(&%) ik r(w*)
0 (9.9999997E-06,0.5000000,0.5000000) | 2.500000 | 6.2501006E-04 2.374507
1 (1.0000002E-06,0.8978315,0.8010017) | 1.254376 | 1.1068108E-04 |  0.4671720
2 (1.0000004E-07,0.9822894,0.9587578) | 1.037436 | 1.9406780E-05 | 7.0330746E-02
3 (1.0000007E-08,0.9969561,0.9931979) | 1.006143 | 3.0959800E-06 | 1.4664013E-02
4 (1.0000010E-09,0.9996504,0.9992228) | 1.000700 | 3.5033440E-07 | 1.7573243E-03
5 (1.0000012E-10,0.9999644,0.9099210) | 1.000071 | 3.5591224E-08 | 1.7975713E-04
6 (1.0000015E-11,0.9999964,0.9999921) | 1.000007 | 3.5763579E-00 | 1.8019182E-05
7 (1.0000017E-12,0.9999996,0.9999992) | 1.000001 | 3.5762920E-10 | 1.8137798E-06

8 | (1.0000019E-13,0.9999999,0.9999999) | 1.000000 | 5.9604724E-11 | 1.7206375E-07

9 | (1.0000022E-14,1.000000,1.000000) | 1.000000 | 6.6613388E-18 | 4.8666983E-08

10 | (1.0000024E-15,1.000000,1.000000) | 1.000000 | 6.2912643E-19 | 4.8666983E-08
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B R3T o, Y2105 %R )5, % 3 K, = (1.000000,1.000000) H
5 & B f(x3) = 1.000000. # & 2] % F] & # & tt #F #(1.0,1.0), &b HE
Al
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FhE HLLE5RE

ERETEEAB XY, RNATAAAEERB A RELS
MAFEEFTHREFAUT. EELRHHARS B 2o b, 4
MM EEEERBERE AN A RN EARE, ALY T
BAFWERER, R TRRAER, AARNATTRIFE MK
HRB AERIHAKEERRE, RNFREGRBEAE B L
HR THM BTG, REFRBERAE—BFE LA

(D3 — B X REH LA, BaSH AR AN S KEBA
HEMERRDBHR, XW, RANARKERS S AR M.
EHW. RAWH AL MM ERAPHARK. REFRLCLR
Aty 3 — 7, "warm start” B 8 4 & 0 4 K BE 5 R H[5T], 3 b
BASFHA RN —AFEBS.
 QEARHERPIEZATHESE, FUA A AR
FRUAXFETS, YEERRMN, ARSHEEEEL B A
R REXR-AREEAERAEE T AR, B, AR
i ABFCSH % AN AR R TR P HEEH KWW 0 % HEKDBS, £
BREFEREL—XAANBERNER, FFAAE R,

REWmM, AREAMFAN RBARER LAY — X4 K
d%, LARRANAAFIETUESAMFRAAES X R
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