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a b s t r a c t

A new second-generation wavelet (SGW)-based finite element method is proposed for
solving partial differential equations (PDEs). An important property of SGWs is that they
can be custom designed by selecting appropriate lifting coefficients depending on the
application. As a typical problem of SGW algorithm, the calculation of the connection
coefficients is described, based on the equivalent filters of SGWs. The formulation of
SGW-based finite element equations is derived and a multiscale lifting algorithm for the
SGW-based finite elementmethod is developed. Numerical examples demonstrate that the
proposed method is an accurate and effective tool for the solution of PDEs, especially ones
with singularities.

© 2012 Elsevier Ltd. All rights reserved.

1. Introduction

In recent years, wavelet methods have been developed as a new powerful tool for mathematical analysis and
engineering computation since the multiresolution properties and various basis functions of wavelets can lead to
fast, hierarchical and accurate algorithms. The current wavelet-based numerical algorithms include wavelet–Galerkin
[1,2], wavelet–collocation [3,4], wavelet–finite element [5,6] type, etc. As a general numerical method, the wavelet-based
finite elementmethod adopts scaling andwavelet functions instead of traditional polynomial interpolation. Since traditional
wavelets are constructed from scaled and shifted versions of a single mother wavelet on a regularly spaced grid over a
theoretically infinite or periodic domain, traditional wavelets cannot be constructed on complicated, irregularly spaced
meshes, which are commonly encountered in the finite element method.

The second-generation wavelets (SGWs) based on a lifting scheme [7] were introduced to eliminate the restrictions and
deficiencies of traditional wavelets. The lifting scheme provides users withmuch flexibility for building different SGWbases
with prediction and update coefficients for engineering problems depending on the applications. In the recent applications
of the SGW method in engineering computations, different kinds of wavelets have been designed for grid interpolation
and multiscale computation [8–10]. A typical problem in the numerical analysis of wavelet methods is the calculation of
the connection coefficient of SGWs, which is an integral of products of wavelet scaling functions or derivative operators
associated with these. However, for SGWs lacking explicit function expressions, traditional numerical integrals such as
Gauss integrals cannot provide the desirable precision. In the last few decades, the computation of connection coefficients
of wavelets without explicit function expressions has been receiving much attention. The algorithms for computing the
connection coefficients on unbounded domains or periodic boundary conditionswere developed by Cohen, Dahmen, Beylkin
et al. [11–13], in order to solve partial differential equations. To apply the wavelet method to the solution of finite domain
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Fig. 1. Second-generation wavelet transform: (a) decomposition; (b) reconstruction.

problems, connection coefficients with integral form on the intervals [0, x] and [0, 2j] were respectively presented by
Monasse and Lin et al. [14,15].With the development ofwaveletmethods for generalmathematical or engineering problems,
connection coefficients with integral form on the interval [0, 1] were proposed by Ko, Chen, Ma et al. [16–18], to improve
the efficiency and accuracy of the multiscale computation.

In this work, the relation between lifting coefficients and wavelet filters is described, based on the second-generation
wavelet transform (SGWT). The connection coefficients on the interval [0, 1] are calculated efficiently, based on the
equivalent filters of SGWs. The SGW-based finite element equations are formulated in order to calculate all kinds of stiffness
matrices and load vectors that are necessary for higher-dimensional mathematical problems. A multiscale lifting algorithm
for the SGW-based finite elementmethod is also presented. Some numerical examples with high gradients and singularities
are presented to verify the accuracy and efficiency of the proposed method.

2. The second-generation wavelet transform

A lifting scheme was presented by Sweldens in order to custom design a new family of SGWs. Fig. 1 shows the
decomposition and reconstruction of the SGWT. Consider a signal: X = {xk, k ∈ Z} , k = 1, 2, . . . , L. The approximation
signal


sj+1(k)


of X at scale j + 1 is split into two disjoint sets, namely even indexed samples


sj(2k)


and odd indexed

samples

sj(2k + 1)


. Then, a predictor is used to predict the odd indexed samples


sj(2k + 1)


with N neighbors of the

even indexed samples at scale j, and N is determined as the required number of vanishing moments of the underlying
wavelet function. The errors in prediction are defined as the detail signal at scale j in the form

dj(k) = sj+1(2k + 1) −

N
m=1

p(m)sj+1(2m + k − N), k = 1, 2, . . . , L/2, m = 1, 2, . . . ,N (1)

where p(m) is a prediction coefficient and P = [p(1), . . . , p(N)] denotes the predictor for detail signal calculation. Then a
number Ñ of detail signals dj(k) obtained from Eq. (1) are adopted to update the even indexed samples


sj(2k)


, and the

approximation signal

sj(k)


is

sj(k) = sj+1(2k) −

Ñ
n=1

u(n)dj(n + k − Ñ/2 − 1), k = 1, 2, . . . , L/2, n = 1, 2, . . . , Ñ (2)

where u(n) is an update coefficient and U =


u(1), . . . , u(Ñ)

T
, denotes the updater for the approximation signal

calculation. The underlying wavelet of the wavelet transform via the lifting scheme can be denoted as (N, Ñ). Fig. 2 shows
an SGW with the predictor order N = 4 and the updater order Ñ = 4. Rearranging Eqs. (1) and (2), we find the relation
between dj(k) and sj+1(k), sj(k) and sj+1(k) as follows:

dj(k) =


l

g(2k − l)sj+1(l) (3)

sj(k) =


l

h(2k − l)sj+1(l) (4)

where g(2k − l) is an equivalent high-pass filter coefficient of the SGWT, the high-pass filter is
g = {gk, −N + 1 ≤ k ≤ N − 1, k ∈ Z} (5)

where g(2k − 1) = −p(k) and g(2k) = δ(k − N/2) for k = 1, 2, . . . ,N , and δ(k) is the Dirac function; h(2k − l) is the
equivalent low-pass filter coefficient of SGWT, the low-pass filter is

h =


hk, −N − Ñ + 2 ≤ k ≤ N + Ñ − 2


(6)

where h(2k − 1) = δ(k − z) −
Ñ

m=1 p(m)u(k − m + 1) for k = 1, 2, . . . , Ñ and z = (N + Ñ)/2; h(2k) = u(k) for
k = 1, 2, . . . , Ñ . On the basis of the flexible design of the prediction and update coefficients, we can calculate the wavelet
filters and define SGWs according to the application.
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Fig. 2. Second-generation wavelet: (a) scaling functions SGW(4); (b) wavelet functions SGW(4, 4).

3. Connection coefficients

Since the wavelet numerical method can be viewed as a method in which the approximating function is defined by use
of a multiresolution technique, the computation of connection coefficients is based on the multiresolution analysis of the
wavelets and scaling functions. While using the scaling function of SGW as a test function for the finite element method, we
would obtain two typical connection coefficients on the interval [0, 1] for forming stiffness matrices and load vectors [5,18],
such as

Λ
j,a,b
N,k,l =


+∞

−∞

χ[0,1](ξ)φ
(a)
j,k φ

(b)
j,k dξ (7)

Rj,c
N,k =


+∞

−∞

χ[0,1](ξ)ξ cφj,kdξ (8)

where χ[0,1](ξ) =


1 0 ≤ ξ ≤ 1
0 otherwise , which satisfies a simple two-scale relation

χ[0,1]


1
2
ξ


= χ[0,1] (ξ) + χ[1,2] (ξ) = χ[0,1] (ξ) + χ[0,1] (ξ − 1) . (9)

On the basis of the multiresolution analysis of SGWs [7], the scaling function φj,k ⊂ L2(R) at level j and j+ 1 satisfies the
two-scale relation

φj,k =


l

λj,k,lφj+1,l, (10)

where λj,k,l denote the low-pass filters of SGWs relating the filters in the SGWT with λj(1 − k) = (−1)kgj(k). By using the
two-scale relation of Eqs. (9) and (10), the connection coefficient matrix can be derived as

(2m+n−1G − I)Λj,m,n
N = 0 (11)

where G is the coefficient matrix, I an identity matrix,

G =


s,t

(λs−2kλt−2l + λs−2k+2jλt−2l+2j) (12)

where −(2N − 1) ≤ k, l ≤ 2j
− 1, and Λ

j,m,n
N denotes the (2j

+ 2N − 1) × (2j
+ 2N − 1) stiffness matrix. Eq. (7) cannot be

determined uniquely through the homogeneous equation (11), so independent inhomogeneous equations are required for
a unique solution as follows:

q!
(q − m)!

w!

(w − n)!
2

q + w − m − n + 1
= 2j(m+n)


k,l

Cq
j,kC

w
j,lΛ

j,m,n
N,k,l (13)

where Cq
j,k =


xq, φj,k


. For the computation of the connection coefficients of load vectors, the multiresolution analysis of the

SGWs will derive the following equation:

(2m+1I − B)Rj,m
N,k =


i

λi−2k+2j

m
s=1


m
s


Rm−s
N,i (14)

where −(2N − 1) ≤ k ≤ 2j
− 1, B =


i,k


λi−2k + λi−2k+2j


.
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4. The SGW-based finite element method

Consider a boundary value problem. Suppose that a spatial domain Ω ∈ R2 has a Lipschitz boundary Γ̄ = Γ̄ D ∪ Γ̄ N
where Γ̄ D and Γ̄ N are the Dirichlet and Neumann boundaries, respectively. The boundary value problem consists of finding
the solution u that satisfies

Lu := −(Au′)′ + bu′
+ cu = f in Ω (15)

u = 0 on Γ̄ D (16)

σu = t on Γ̄ N (17)

where L is in principle a second-order differential operator and σ is the boundary operator. The data are assumed to
be sufficiently smooth, i.e. A, b, c, f and t are sufficiently regular functions. For a variational formulation of Eq. (13), we
introduce the bilinear form as

a(u, v) :=


Ω

A(x)u′(x)v′(x) + b(x)u′(x)v(x) + c(x)u(x)v(x)dx (18)

l(v) :=


Ω

f (x)vdx. (19)

If the unknown field function u is interpolated using the SGWs, the field function can be

u(ξ) = ΦNae (20)

where ξ is the nondimensional element coordinate with 0 ≤ ξ ≤ 1. ΦN =


φ

j
N,−2N+1(ξ), φ

j
N,−2N(ξ), . . . , φ

j
N,2j−1

(ξ)


is the row vector combined by the second-generation scaling functions for order N at the scale j, and ae
=

ajN,−2N+1, a
j
N,−2N , . . . , ajN,2j−1

T
is the column vector of coefficients. Since the elemental nodal solution ue and scaling

function coefficients ae have the relation

ue
= Reae (21)

where Re
=


ΦT (ξ1)Φ

T (ξ2) · · · ΦT (ξn+1)
T , the field function can be written as

u(ξ) = ΦN(Re)−1ue
= ΦNT eue (22)

where the transformation matrix T e
= (Re)−1.

Substituting Eqs. (18) and (19) with Eq. (22), we obtain

K e
=

 1

0


A(ξ)(T e)T

dΦT

dξ
dΦ
dξ

T e
+ b(ξ)(T e)T

dΦT

dξ
ΦT e

+ c(ξ)(T e)TΦTΦT e

dξ (23)

Pe
= le

 1

0
f (ξ)(T e)TΦTdξ . (24)

Therefore, solving equations by the SGW-based finite element method can be represented as

K eue
= Pe (25)

where the boundary condition can be treated as in the traditional finite element method.

5. The multiscale lifting algorithm

The multiresolution analysis property of SGWs is the foundation of the multiscale lifting numerical algorithm, which
approximates the exact solution of the problems analyzed at high convergence rate. The key ingredients of the multiscale
lifting algorithm are a reliable error estimation and lifting algorithm, which are described in this section.

5.1. Error estimation

Given an SGW-based finite element solution uj and the exact solution u of the problems analyzed, the error estimation e
is defined as

e =
u − uj


∞

= max
Ω

u(x) − uj(x)
 . (26)



Y. Wang et al. / Applied Mathematics Letters ( ) – 5

a b

Fig. 3. Convergence of the SGW-based finite element solution with the number of levels: (a) Example 1; (b) Example 2.

Ref. [19] proves that the functionu(x) in space L2(R) canbe approximatedwith theprojectionuj(x) inVj and theprojection
can capture all the details of the initial function u(x) as the scale j gets larger (i.e. as j → +∞), such as

lim
j→∞

u − uj
 = 0. (27)

Since the exact solution u cannot always be found for PDEs, we use a simple two-level error estimate in the form

e′
= max

Ω

uj+1(x) − uj(x)
 (28)

where uj+1 and uj in the neighbor approximate space, j + 1 and j.

5.2. The multiscale lifting algorithm

Given an initial mesh on Ω and a threshold value ε, the multiscale lifting algorithm for the SGW-based finite element
method is summarized as follows:

(1) Select second-generation wavelets of order N for an approximate space Vj.
(2) Compute the SGW-based finite element solution and the two-level error estimation e′.
(3) If e′

≤ ε, stop and give the answer.
(4) Lift the approximate space Vj to Vj+1 and construct the new solving domain Ωj+1; go to step (2).

6. Numerical examples

We present numerical experiments with high gradient and singularity to demonstrate the efficiency and accuracy of the
SGW-based finite element method compared to those for FEM.

Example 1. Consider a typical problem with high gradient as follows:

− u′′
= f , x ∈ [0, 1] (29)

with the boundary condition u(x)|x=0,1 = 0; the right-hand function is f = 560x6 − 200x3 and the exact solution
u(x) = 10x5(1 − x3).

An SGW-based finite element with order N = 2, 4, 6 and the multiscale lifting algorithm are used to solve this problem.
Fig. 3(a) shows the convergence of the SGW-based finite element solution with the number of levels. Table 1 illustrates the
comparison of the SGW-based finite element solution at each scale and the finite element solution. It can be observed that
the solution by the SGW with higher order will lead to a faster convergence rate or smaller error estimation. Due to the
multiresolution analysis of the SGW, the solution approximates the exact solution of the problem with high convergence
rate using the dynamic lifting of the solution scale. Compared to the ten cubic finite elements (FEs), SGW(6) has shown its
priority of convergence when the solution scale j = 4. It can be derived that the SGWwith order N = 2, 4 will give random
accurate results when the scale is lifted to higher numbers. Therefore, the SGW-based finite elementmethod is very suitable
for this problem with high gradient.

Example 2. Consider a PDE with singularities on the boundary as follows:

αu′′(x) − u(x) = 1 x ∈ [0, 1] (30)

with the parameterα = −0.01, the boundary conditionu(x)|x=0,1 = 0, and the exact solutionu(x) = −x− 1
−1+e1/α

+
ex/α

−1+e1/α
.
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Table 1
Convergence of the SGW-based finite element solution at each scale and the finite element solution.

Type Space
V0 V1 V2 V3 V4

N = 2 1.5521 1.2891 0.8176 0.3587 0.1227
N = 4 0.6423 0.2081 0.1124 0.0106 0.0017
N = 6 0.1360 0.0622 0.0065 0.0009 0.0002
10 cubic FEs 0.0006

Table 2
Convergence of the SGW-based finite element solution at each scale and the finite element solution.

Type Space
V0 V1 V2 V3 V4

N = 2 12.0000 0.8742 0.7581 0.6332 0.4953
N = 4 2.2467 0.7240 0.4227 0.2218 0.1203
N = 6 0.1817 0.1249 0.0794 0.0376 0.0125
10 cubic FEs 0.1084

This problem can be solved using one SGW-based finite element with order N = 2, 4, 6 and the multiscale lifting
algorithm. Fig. 3(b) compares the convergence of the SGW-based finite element solution with the number of levels while
Table 2 shows the comparison of the SGW-based finite element solution at each scale and the finite element solution. It can
seen that the multiscale computation of the singular problem using SGW(6) gives accurate results as compared with the
other SGW finite elements and ten cubic FEs. Hence, the SGW-based finite element method is also suitable for the high-
precision solution of singular problems.

7. Conclusions

A SGW-based finite element method is developed for solving PDEs efficiently. The advantage of SGWs over traditional
wavelets is the flexible construction by selecting appropriate prediction and update coefficients according to the problems
analyzed. According to the two-scale equations and normalization conditions of the SGWs, the connection coefficients on
the interval are computed accurately, based on the equivalent filters. The numerical results verify the efficiency of the
proposed method and the method can be applied to a wide range of PDEs and engineering problems efficiently, such as
multidimensional or nonlinear equations, etc.
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