
摘要

f
目前，随着网络的规模不断扩大，对路由协议提出了越来越高的要求，而

现今普遍运行的RIP(Routing Information Protoc01)已不能满足这要求。因此，

就需要使用其它的路由协议。本课题正是针对这一需求，来实现OSPF(Open

Shortest Path First)协议的。y

该论文介绍了现今网络上所使用的多种路由协议，提出了RIP协议的不足，

并借此阐述了OSPF协议的优点。紧接着，以链路状态数据库为核心，层层深

入的介绍了OSPF协议的原理及工作流程。在实现部分，结合目前教研室已开

发了的路由器软件，分析了其体系结构。并以此为基础，研究了OSPF路由协

议实现的方案，利用pSOSystcm这一嵌入式实时多任务操作系统，完成并实现

了该模块的主体部分以及其中的一些子模块。经调试，该程序已能正常运行。

最后，搭建了一个测试平台，模拟实际的网络环境，编制了测试程序对已实现

的部分进行了测试，给出了测试的结果。

该工作对路由协议的研究起着非常重要的作用，对程序的进一步优化打下

了坚实的基础。

关键字：RI√P,o妊，链B；葛酝数据库，链路状慕r产告，指派路言氧，备
份指派路由器

II

Abstract

With the development of the network scale，it becomes more important to the

performance of the routing protoc01．However,the RIP protocol，which is

prevalently used in routing technology,carl not reach this developing requirement．

Hence，it needs other routing protocols．This project just aims at this need to

implement the OSPF routing protoc01．

This dissertation introduces several routing protocols which ale used in the

Internet，and discusses the deficiency of the RIP and the advantages of the OSPF．

Next，it goes gradually deep into the principle and the working flow based on the

LSDB．In the implementing chapters，I analyses the structure of the router’S

software which Was developed by 0111'lab team．And based on it,I put forward the

project of realizing the OSPF modul，and implement the main module and some of

sub·modules based on the pSOSytem．After debugging，the program Can operate

normally．At last，I make a testing platform which is used to simulate the real

network environment，test the program which had been implemented and give the

test result．

This project is very useful to the research of routing protocols．Moreover,it

construct a solid basis to the further optimization．

Keywords：RIE OSPF,LSDB，LSA，DR，BDR

III

独创性声明

本人声明所呈交的学位论文是本人在导师指导下进行的研究工作及取得的

研究成果。据我所知，除了文中特别加以标注和致谢的地方外，论文中不包含

其他人已经发表或撰写过的研究成果，也不包含为获得电子科技大学或其它教

育机构的学位或证书而使用过的材料。与我一同工作的同志对本研究所做的任

何贡献已在论文中作了明确的说明并表示谢意。

签名： !}堡七 日期：≈佃，年『2月28日

关于论文使用授权的说明

本学位论文作者完全了解电子科技大学有关保留、使用学位论文的规定，

有权保留并向国家有关部门或机构送交论文的复印件和磁盘，允许论文被查阅

和借阅。本人授权电子科技大学可以将学位论文的全部或部分内容编入有关数

据库进行检索，可以采用影印、缩印或扫描等复印手段保存、汇编学位论文。

(保密的学位论文在解密后应遵守此规定)

签名：掉导师签名：主么璺日
日期：出瑁1年J土月2艿目

电子科技大学硕士学位论文：OSPF协议的实现

引言

“我们为什么需要网络?”这是一个老师曾经问他的学生的一个问题。有

学生说：“因为我们想去更远的地方。”是的，我们能够通过网络了解发生在很

远的地方的事情。网络是信息的高速公路，它是靠作用与立交桥一样的路由器

将它连接并延伸的。路由器通过查找自己的路由表来获知该将信息往哪一条路

上送，由此可以得知，路由器需要掌握网络的路由情况，而路由器又是通过路

由协议来得到这一信息的。因此，路由协议对路由器来说是非常重要的。路由

协议的好坏会直接影响到路由器的性能。

现在，网络上普遍使用的路由协议是RIP。它是一个非常简单的路由协议，

人们对于它已做了深入的研究，并不断地对它进行改进。从产品的角度来讲，

应用它的路由器已经是很成熟的了。但是，由于它自身的一些没有办法改变的

致命弱点，限制了它适用的范围，使得它只能适用于规模较小的网络。从市场

的角度来讲，随着Intemet的发展，接入Intemet的路由器越来越多，路由负载

不断增加，网络规模不断扩大，我们需要适用于大网的路由协议，以改善网络

的性能。OSPF就是～个很好的选择。但是，由于它的复杂性，完全掌握该技

术的团体和个人还是少数。人们对于它的研究也远不如R皿那样深入，该协议

也许还有很多需要改进的地方。因此，对于我们来说，我们有必要对该路由协

议进行研究，有必要自己去设计一套具有自主知识产权的软件。

电子科技大学硕士学位论文：OSPF协议的实现

第一章Intemet上路由协议的使用现状

1．1 自治系统的划分

早期的Internet是由Arpanct及其伙伴网络如Satnet发展起来的。起初，它

连接的是研究中心的独立计算机，后来，发展到可以向局域网提供访问服务。

不过，直到20世纪80年代早期，它都仍然是一个网络。在这种情况下，所有

的路由器都采用同一网关一网关协议(GGP)来共享路由信息，路由表中包含

了Intemet上所有的IP网络项和量度值。

随着Internet的发展，接入Internet的路由器越来越多，路由负载不断增加，

路由表的大小也随着接入的网络数量的增加而增加。路由器和链路的数目越多，

就越可能出现问题。每次链路通或断，都必须重新计算整个路由表。在这种情

况下，重新计算路由表的工作量将大大的增加。为了让整个网络的路由信息一

致，还必须在网络上传送变化以后的路由信息，这将引起网络上数据流量的增

加。这是管理巨型网络所引起的一个问题：路由负载问题。此外，管理巨型网

络还会引起其他的一些问题，如：路由器种类的增加，装配在其上的软件的不

相同，将导致各自特定的GGP之间无法正常工作，进一步导致无法进行维修和

故障隔离；随着路由器数量的增加，当路由算法的新版本出现的时候，还需要

在同一时间对所有的路由器升级，这就会给路由算法新版本的推广工作带来很

大的困难。

从上面出现的一系列问题，我们可以看出，要想从根本上解决这个问题，

就必须改变“单一网络”这种模型。将Intemet划分成一系列的自治系统，每

一个自治系统由同一个机构管理下的一系列路由器和网络组成。一个自治系统

内的路由器交换网络拓扑信息，寻找最佳路径。自治系统内的网络拓扑信息不

为自治系统外的路由器所知道。自治系统之间通过专门的路由器进行连接，这

些路由器之间交换可达性信息，寻找可达路径。这样一来，可大大的减少路由

表的条数，减小网络的规模，让网络更加便于管理。

1．2 路由协议的使用

在路由器上使用的路由协议有静态路由协议和动态路由协议之分。静态路

由协议不利用网络的信息，只是按照某种固定的规则去选择路由。这样，在网

络的拓扑发生变化的时候，它不能及时的调整自己的路由信息，最多只是由操

2

电子科技大学硕士学位论文：OSPF协议的实现

怍人员偶尔对网络的状态的变化作出反应。由于它不能对网络的改变作出反映，

故一般用于网络规模不大、拓扑结构固定的网络中。其优点是简单、高效、可

靠。与之相反，动态路由协议则能根据网络拓扑的变化(比如某个网络端口不

能工作)，在一段网络路由信息汇聚的时间后，计算出新的、正确的路由，以适

应网络流量和拓扑的变化。当然，动态路由也有不能正常工作的情况，这就需

要静态路由作为它的补充。在这里我们讨论的仅是动态路由协议。

在自治系统内的路由器我们称之为内部网关，它们之间通过交换网络拓扑

信息，来寻找最佳路径。在此过程中所使用的路由协议，被称之为内部网关协

议(IGP)。常见的IGP有：ⅪP、OSPF、IORP、EIORP等。

在自治系统外的路由器我们称之为外部网关，它们之间通过交换可达性信

息，来寻找可达路径。连接两个自治系统的外部网关并不需要了解这两个自治

系统的具体的网络拓扑，只需要了解通过它可以到达哪些网络。在此过程中所

使用的路由协议，被称之为外部网关协议(EOP)。常见的EOP有：EGP、BOP、

BGP一4等。

这样的策略也很适合现在的实际情况。不同的Interact服务提供商(ISP>

根据自己的需要和管理策略，将自己管理的网络划为一个自治系统，在这个自

治系统内采用自己的路由策略来管理自己的网络。基于利益的考虑，ISP不愿

意向别人提供自己网络的详细路由信息。同时，基于网络的发展趋势，ISP之

间又必须进行互联。外部网关协议正好满足这一要求，ISP之间可以通过外部

网关协议来进行连接。

这样一来，在市场上就出现了种类和功能繁多的路由器，它们支持各种不

同的路由选择算法。有的适用于自治系统之内，有的适用于连接自治系统。

1．3 内部网关协议(IGP)

在适用于自治系统内部的路由器上，即内部网关上，目前多采用的是RIP

协议。RIP协议之所以被广泛应用，主要是由于它很简单。RIP是一种距离向

量协议。对于距离向量协议来说，它告知邻居整个网络的拓扑。RIP通过周期

性的将自己的路由表广播出去来实现这一点，这样还可以达到维护路由器之间

的相邻关系的作用。同时它也会收到别人广播的路由表，它会根据这些路由表

的内容来生成自己的路由表。当然，简单也必须要付出一定的代价：

1．对于庞大而又复杂的网络来说，RIP可能根本无法胜任。虽然在网络的

拓扑结构发生变化后，RIP会重新计算新的路由，计算到各个网络和路

电子科技大学硕士学位论文：OSPF协议的实现

由器的距离值，在这种情况下如果遇到距离值计数到无穷大等情况，计

算就变得非常缓慢，网络的收敛速度将变得相当缓慢。为了加快网络的

收敛速度，将16设置为极限值，在进行计数时，只要距离值达到了16

就认为两点之间不可达。然而，这样就将RIP限制在小网络上使用了，

因为在大网络上两点之间的距离值往往会大于16。

2．周期性的广播路由表将消耗大量的网络带宽。这个问题对于大网，尤其

是慢速链路和广域网就更加突出了。

3．在重新计算路由的过程中，路由器处于一种过渡阶段，网络上会出现大

量的广播报文，并会引起循环，从而造成网络暂时的拥塞。

4．RIP在对两点之间的距离进行量度的时候，其标准是路径上所经过的路

由器的数目(hop)，选择hop数最少的那条路径。这样就没有考虑到网

络延迟和链路状态等对两点之间传输距离的影响。

针对于RIP的不足，我们大都采用OSPF协议。OSPF是一种链路状态协议。

对于链路状态协议来说，它向整个网络告知自己的邻居信息。因此，在这个协

议中，各个网络节点不必交换通往目的站点的距离，而只需维护一张网络的“拓

扑图”，在网络拓扑结构发生变化的时候及时更新这张拓扑图。各个路由器根据

这张图分别计算到不同目的地的距离，从而生成各自的路由表。它解决了RIP

所不能解决的一些问题：

1．无hop数的限制，因此不必被限制在小网中使用。

2．每个路由器都掌握了网络的拓扑结构，各自按照拓扑结构来进行路由优

化算法，形成自己的优化路由。

3．更新报文的发送是在路由发生了变化的时候，而不是周期性的发送，故

减少了网络上的路由信息的流量，有利于带宽的有效利用。

4．支持多种度量制式，充分考虑网络延迟、链路状态和吞吐量等因素对两

点之间传输距离的影响。

5．支持具有相同量度值的多条链路之间的负载分担。

OSPF的功能很强大，这些都只是它的功能中的一部分。另一方面，它也很

复杂，因此它远不如RIP应用广泛。正是由于这个原因，现在完全掌握这个技

术的人还是少数。

目前，我们教研室正在进行路由器的研发工作，考虑到网络的发展趋势，

以及组网特点的改变和需求，OSPF应该是路由器所必须支持的基本协议之一。

在这种情况下，我们就有必要自组研究，自行开发具有自主知识产权的OSPF

电子科技大学硕士学位论文：OSPF协议的实现

软件。我所做的工作正是这其中的一部分。

电子科技大学硕士学位论文：OSPF协议的实现

第二章OSPF协议解析

在前面一章我们已经简要的介绍了一些OSPF协议的特点，现在，我们将

就其中的一些主要细节和关键技术进行一个较深入的讨论。这都将围绕着链路

状态数据库来展开。

OSPF用链路状态数据库来表述网络的拓扑结构，用加权有向图描述了路由

的评价方式，定义了几种网络类型，采用三种协议来生成和维护计算路由的相

关数据。

2．1 链路状态数据库

网络的拓扑结构在OSPF中用链路状态数据库来表述，它是OSPF协议中

关键的一个部分。在一个自治系统中，所有运行OSPF的路由器都需要维护一

个相同的链路状态数据库。其实，这个数据库就是一张有关这个自治系统拓扑

结构的图，同时它还是一张加权的图。图中每一条边都与一个权值相关联，权

值表示沿这条边所示的方向传输数据的代价。这个代价值可以是由管理员自己

配置的，也可以是从其它的路由协议中获得的。这样一来，所有路由器都了解

了整个自治系统的拓扑结构。在此基础之上，每个路由器根据这张加权图利用

Dijkstra的SPF算法来计算到每一个目的地的最短路径，从雨生成路由表。正

是由于这个原因，使得尽管路由计算是分布式的，但其计算的结果与集中式计

算出来的结果一样精确。

～个自治系统是由一系列的网络和路由器所组成的，那么，我们应该怎样

来表示这个自治系统呢?在存放这个自治系统拓扑结构的链路状态数据库中，

我们应该怎样来表示这些网络和路由器?

我们用有向图来描述一个自治系统。网络和路由器是这个图中的顶点。网

络和路由器之间以及路由器和路由器之间的关系则用图中的点和边来表示：如

果表示两个路由器的点用一条边连接起来，则表示这两个路由器通过一个点到

点的网络相连；如果一个表示路由器的点和～个表示网络的点用一条边连接起

来，则表示这个路由器有一个接口与这个网络相连。按照这样的规则，图2-1

所示的网络，就可以用图2．2所示的图来表示。其中RTA、RTB、RTC和RTD

分别表示路由器A、B、C和D，N1～N5分别表示网络l～5。每条边旁边的数

字表示这条边所对应的权值。

6

电子科技大学硕士学位论文：OSPF协议的实现

图2-1网络实例

一竺戈
1，—n厶

178．100．0．O／)

寸p
， ～ RTC

卫
N2

64．32．o／

图2-2

在图2之所示的图中，RTA、RTB和RTC与N1之间的连接示双向的，这

表示N1是一个transit网络，它为其它网络间的通信提供通路，而其它的网络

与路由器之间的连接都是单向的，对网络而言就是只有入边，而没有出边，这

表示这个网络是一个stub网络，这种网络只提供网络内的目的之间的通信，不

为其他网络间的通信提供通路。这两种网络是OSPF中典型的两种网络类型。

。V。。一竺一啪慧

电子科技大学硕士学位论文：OSPF协议的实现

前面所讨论的都是怎样用图来表示网络的拓扑结构，那么，在属于该自治

系统的所有路由器上又是怎样来存放这张图的呢?表2—1描述了链路状态数据

库的逻辑表示。

表2-1 链路状态数据库的逻辑表示

在有了这个数据库以后，各个路由器就可以根据它来生成最短树，从而计

算出自己的路由表。

2．2 生成树

每个OSPF路由器利用形成的链路状态数据库，通过Dijkstra算法，以自己

为根节点得到一个最短树。因此最短树因运行该算法的路由器不同而不同。最

短树给出了去任何目的网络和主机的整个路径，但只有下一跳地址在IP转发中

使用。

现在，我们就以RTA为例，在其上运行Dijkstra算法，得到最短树，然后

再根据这个最短树来计算出RTA的路由表。由于这个链路状态数据库只是有关

本自治系统内的，所以，得到的路由表也只是本自治系统内的路由表。只是图

2—3给出了RTA计算的最短树。表2．2则是RTA计算出来的路由表。

表2-2 RTA的路由表

电子科技大学硕士学位论文：OSPF协议的实现

』D

喱
5

N5：202．113 14．0／30 ， L N2：202．64．32．0／24

图2-3 RTA计算的最短树

从表2．1我们可以看出，在这个链路状态数据库中包含了整个自治系统所

有的网络和路由器。从表2．2可以看出，整个自治系统中所有的网络在路由表

中都有对应的表项。这样一来，当自治系统的规模扩大的时候，就会产生一些

问题：所包含的网络和路由器的数目就会增多，链路状态数据库也就会变得相

当庞大，从而超出一定的限额；利用这个链路状态数据库计算最短树的时间也

会因此而超出一定的限额；路由表的大小也会因此而超出一定的限额；当某一

条链路的状态发生了变化的时候，OSPF路由器会向自治系统中所有的路由器

通告这个变化，大量的路由更新报文会使得网络带宽的有效利用率变低，我们

又一次面对与RIP带给我们的同样的问题。为了解决这个问题，OSPF协议允

许把自治系统划分为更小的单位，我们称之为区域(area)。

2．3 区域的划分

首先我们需要说明的一个问题就是：什么是区域?在OSPF协议中允许将

连续的网络和主机组合在一起形成一个集合，再加上有接口与这个集合中的任

何一个网络相连的路由器就形成了一个区域。这样一来，我们就可以将自治系

统划分为若干个区域。每个区域独立的运行链路状态算法，区域内的网络拓扑

结构对于区域外的路由器是不可见的，同样区域外的拓扑结构对于区域内的路

由器同样是不可见的。处于同一个区域中的路由器共同维护一个相同的链路状

态数据库。这就使得位于一个AS内的路由器的链路状态数据库也不再完全相

同，不同区域的路由器具有不同的链路状态数据库。由于这个数据库中只记录

9

电子科技大学硕士学位论文：OSPF协议的实现

了该区域中的网络拓扑结构，所以链路状态数据库的大小被缩小了。这种拓扑

结构的隔离使得网络的扩散过程止步于区域的边界，从而减少了网络的流量。

这一个一个独立的区域又是怎样联系起来的呢?它们是通过接在不同区域

的路由器联系起来的。这样的路由器我们把它称之为区域边界路由器(ABR：

Area Border Router)。它们属于多个区域，在其上维护多个链路状态数据库。

为了区分不同的区域，我们对区域进行了编号，不同的区域分以不同的编

号。但是，在这里面有一个特殊的区域，它的编号必须是0。这个区域我们称

之为主干区域(Backbone Area)，它是由所有的区域边界路由器所组成的。它

负责非主干区域间的通信，因此，它必须是连续的(contiguous)，即使不是物

理上连续的，也应该通过虚拟链路的建立保证其逻辑上的连续。

这就是在一个自治系统当中我们所采取的一些改进措施，如果一个自治系

统要与其它的自治系统进行路由的交换，那又应该怎样办呢?这是通过自治系

统边界路由器(AS Border Router)来实现的。通过它将AS外的路由信息传进

自治系统内，同时也向其它AS宣告本AS的一些可达信息。

有了这样的划分之后，一个自治系统中的路由器就可以分为以下三种：

1．区域内部路由器：直连的所有网络都在一个区域的路由器。

2．区域边界路由器：与多个区域相连的路由器。它将一个区域的路由信息

汇总压缩后向主干区域发布，同样也将主干区域的路由信息向其他区域

发布。

3．AS边界路由器：负责与AS外的路由器交换路由信息的路由器。

2．4 链路状态广告及其分类

我们将路由器产生的链路状态信息称为链路状态广告(LSA；Link State

Advertisement)。链路状态数据库中存放的、路由器之间相互交换的就是一条一

条的链路状态广告。根据路由器类型的不同，它所产生的链路状态广告的类型

和内容也就不相同。

链路状态广告共分为5类，表2-3描述各种不同的LSA的详细的情况：

电子科技大学硕士学位论文：OSPF协议的实现

表2．3 OSPF LSAs

LSA类型 对该LSA的描述

类型1 所有的路由器都要生成该LSA。它描述了位于同

Router-LSAs 一区域下路由器的接口的状态，只在一个区域内扩

散。

由广播型网络和NBMA(Non-Broadcast

类型2 Multi-Access)网络中的指派路由器为该网络生成。

Network—LSAs 它描述了一个网络的情况，记录了位于该网络中的

路由器。只在一个区域内扩散。

由区域边界路由器(ABR)生成。只在与此LSA

类型3和类型4 相应的某个区域中扩散。每一个surnmary—LSA描

Summary-LSAs 述了一个区域外部但仍在AS内部的路由。类型3

描述的目的地址为网络，而类型4的目的地址为自

治系统边界路由器(ASR)。

类型5 由自治系统边界路由器生成。每个

AS．extemal．LSAs AS—external．LSA描述了一条自治系统以外的路

由。在整个自治系统中扩散。

注：指派路由器是在广播型网络和NBMA(Non．Broadcast Multi．Access)

网络上执行特殊功能的路由器。在这些网络中，接在该网络上的所有路由器之

间都需要建立邻接关系，以便相互交换链路状态信息。如果接在该网络上的路

由器数目很大，则需要建立的邻接关系的数量就很大。指派路由器的引入，网

络中的非指派路由器只需要与指派路由器建立邻接关系，非指派路由器之间并

不需要建立邻接关系，这样就使得这种类型的网络中所需要建立的邻接关系的

数量减少，从而也减小了网络的开销。为了保证该策略的可靠性，我们还引入

了备份指派路由器。平时，备份指派路由器与指派路由器和非指派路由器均保

持这邻接关系。当指派路由器发生故障的时候，它就接替指派路由器的工作。

在这里面涉及到一个LSA的区分问题。我们用与每一个LSA相对应的广

告路由器标识(RouterID)、链路状态标识(Link StateID)和链路状态类型(Link

皇兰型垫查兰堡主堂垡堡皇!Q!坚塑丛塑壅翌 一——

State Type)的组合来标识它。不同的LSA具有不同的标识。

2．5 链路状态数据库的形成与维护

我们已经讨论了链路状态数据库的内容，现在我们自然该来讨论它是怎样

形成的，以及当网络的拓扑结构发生变化的时候，它又是怎样来进行更新，从

而维护一张有关网络的最新的拓扑图。

在OSPF协议中链路状态数据库的形成与维护是通过三种协议(Hello协议、

交换协议和扩散协议)来完成的。

2．5．1 HeIIO协议

从前面的讨论，我们知道运行OSPF协议的路由器向全网告知自己的邻居

信息，当邻居状态发生变化的时候，它又会向全网通告这个变化。那么，OSPF

路由器怎么知道自己的邻居是谁，怎样检测到自己的邻居已经发生了变化?这

一切都是由Hello协议来完成的。除此之外，在前面所提到的指派路由器和备

份指派路由器的选举，也是由它来完成的。因此，我们可以从以下的几个方面

来描述Hello协议：

1．动态发现新邻居

Hello协议中规定，一个运行OSPF协议的路由器从它加入网络起，就需要

定期的向网络发送hello分组。邻居通过收到这个hello分组来发现它的存在。

而它则通过收到邻居发送的hello分组来发现自己的邻居。

2．确认邻居问的双向连接关系

邻居之间要进行进一步的操作，必须先建立双向连接。如果OSPF路由器

检测到邻居发来的hello报文的邻居列表中含有自己，说明邻居已经收到了自己

发送的hello报文，能够在网络上看见自己。此时，邻居间的双向连接关系就建

立起来了。

3．维持与邻居间的邻接关系

一个OSPF路由器通过定期(如10秒)向网络发送hello分组来告知邻居

自己的存在，同时它通过收到邻居的hello报文，来确保邻居还活着。如果一个

OSPF路由器在规定的时间内(通常为发送hello分组时间间隔的4倍，如40

秒)没有收到邻居发送的hello分组，则该路由器可以确认此邻居已经死掉了，

从而来发现拓扑结构的变化。

4．指派路由器的选举

12

电子科技大学硕士学位论文：OSPF协议的实现

对于广播型网络和NBMA(Non．Broadcast Multi—Access)网络，我们在所

有与该OSPF路由器建立了双向连接的邻居之间，通过路由器的优先级、ID

(iDentification)的比较，来选出指派路由器。其它的所有路由器需要与它交

换彼此的链路状态数据库，从而建立邻接关系。

Hello分组的发送可以以组播的形式，发给网络上的所有OSPF路由器，或

者以单播的形式发给自己的邻居。

对于选举了指派路由器的网络，在指派路由器和非指派路由器之间；对于

其它的网络，在建立了双向连接的路由器之间，都需要建立邻接关系，这就需

要随时保持链路状态数据库的一致。这个一致是通过交换协议和扩散协议来完

成的。

2．5．2交换协议

交换协议仅用于链路状态数据库的初始同步，它规定了剐建立双向连接而

又需要建立邻接关系的路由器之间的链路状态数据库怎样进行初始的交换。

在这个交换过程中，路由器双方是非对称的，一个扮演“主”的角色，另

外一个扮演“从”的角色。因此，这个过程的第一步就是“主”“从”角色的协

商。之后，进行的操作就是“主”“从”之间相互告诉对方自己的链路状态数据

库中的内容。在第二步中，“主”路由器主动发起交换过程，告知“从”路由器

自己的链路状态数据库中有什么内容，“从”路由器收到后，进行应答，并在应

答分组中带上自己的链路状态数据库的内容。此时，双方传送的是“数据库描

述分组”，这些分组只标志了各个不同的LSA，而不是对每条LSA的具体内容

进行述说。在此过程中双方都会将对方的数据库中的内容与自己的数据库中的

内容进行比较，若发现自己的数据库中没有该项记录，则将它放入一个请求链

表中，以便稍后向邻居索要该记录。自然，交换过程的第三步就是向对方发自

己的请求链表，并在收到对方请求后，将对方请求的LSA发给它。

在此过程完成后，双方链路状态数据库的内容都达到了一致，这两个路由

器之间的连接关系就建立起来了。

2．5．3扩散协议

交换协议仅仅保证了在初始时刻，邻接路由器间链路状态数据库的一致，

然而，当网络的拓扑结构发生了变化的时候，一个路由器检测到了这样的变化，

它就会修改自己的链路状态数据库的内容，为了保证链路状态数据库的一致性，

它还必须将这个变化传出去，此时，交换协议就没有办法工作了，这就需要用

电子科技大学硕士学位论文：OSPF协议的实现

其它的协议来完成。这个功能就是由扩散协议完成的。在扩散协议当中通过发

送和接收链路状态更新分组来实现。

1．链路状态更新分组的发送

当一个路由器检测到它的一个邻居的状态发生了变化的时候，会立即更新

自己的链路状态数据库中的相应记录，并将更新后的LSA装在链路状态更新分

组中发给与自己相连的其它节点。在一个链路状态更新分组中可能包含有多个

LSA，它的传送距离只有一跳(hop)。为了保证这个算法的可靠性，发送方在

发出更新报文后，必须等待接收方发来的确认。如果，发送方在规定的时间内

没有收到确认，它会以一定的时间间隔重新发送更新分组，直到收到对方的确

认为止。

2．链路状态更新分组的接收

当一个路由器收到邻居发来的链路状态更新分组后，它会采取如下的一些

措施：

(1)在数据库中搜索相应的记录；

(2)如果该记录不存在，就把它加入数据库，并广播该报文：

(3)如果该记录比自己数据库中的记录新，则替换数据库中的记录，并

广播该报文；

(4)如果数据库中的记录新，就把这个更新的记录告诉发方；

(5)如果和数据库中的记录一样，则不做任何操作。

在这里面我们涉及到比较相同的LSA的新旧问题，此时，我们是通过比较

它们的链路状态序列号(LS sequence number)、LS Age和LS Checksum来实现

的。

通过这3个协议的相互协调工作，路由器上的链路状态数据库得以形成，

并随时更新，以保证自己的链路状态数据库所描述的网络拓扑是最新的。每当

链路状态数据库发生了变化的时候，我们就必须重新生成最短树，然后根据它

重新计算出自己的路由表，以完成OSPF路由选择协议的全部功能。

电子科技大学硕士学位论文：OSPF协议的实现

第三章程序设计总体框架

接下来的工作就是要实现OSPF路由协议，完成其中所描述的功能，最终

生成路由表。

整个程序的实现是以教研室已开发了的路由器作为平台，在此基础上，加

入一个相对独立的模块来实现OSPF的功能。路由器中已有的软件为它提供基

本的通信服务以及其它的一些信息，而这个OSPF模块提供相应的接13供路由

器上的其它软件调用它。

下面，我将从整个路由器软件的开发情况、OSPF路由协议模块的细分、

OSPF模块中的数据结构以及OSPF模块怎样与整个路由器软件进行衔接等方

面来简要的介绍一下程序设计的总体框架。

3．1程序的开发环境

既然我们所开发的OSPF路由协议软件是以已有的路由器作为平台，那么，

我们首先需要了解的就是已有的路由器软件的开发环境、它的结构以及已经实

现了的功能。

路由器软件的开发和调试是采用可裁减的pSOSystem嵌入式实时多任务操

作系统。

3．1．1 pSOSystem开发环境

pSOSystem是～个高性能的实时操作系统，它提供了基于开放系统标准的

多任务环境。pSOSystem采用模块化的结构，其系统库提供了以实时多任务内

核为核心的若干组件，每一个组件提供一类服务。PSOSytem软件结构如图3·1

所示。

在这个结构中：

1．pSOS+：pSOSytem实时多任务操作系统的内核，提供任务的管理、调

度，任务间的通信、同步，内存的分配、管理等服务；

2．pNA+：TCP／IP网络管理器(TCP／IP Network Manager)，提供TCP／IP

网络服务，包括ARP、IP、ICMP、TCP／UDP等协议和标准的socket

接口：

3．pRPC+：远程进程调用库(Remote Procedure Call Library)；

电子科技大学硕士学位论文：OSPF协议的实现

⑤①①

固詈雾甲

4．pHILE+：文件系统管理器(File SystemManager)，提供本地或网络文

件的访问：

5．pRPEC+：ANSIC标准库；

6．pROBE+：提供有关调试的服务；

利用pSOSytem提供的这一系列服务，用户可以自己选择所需要的组件，

将其包含在目标代码中，通过库函数调用的方式来使用这些组件提供的服务。

使用这样的系统，我们在主机上开发应用程序，在目标机上运行可执行的

映像文件，这个映像文件包括pSOSytem软件和自己的应用程序代码。在调试

的时候，我们可以采取两种方式：直接在目标系统上调试或在开发机上进行远

程调试。当选择进行远程调试的时候，又可以根据实际情况选择通过Console

口或利用pNA+组件通过TCP／IP网络进行调试。

根据所需开发的路由器软件的特点，为了开发一套具有自主知识产权的软

件，为了更有利于今后软件的升级和优化，在实际进行路由器软件开发的时候，

我们只利用了pSOSytem系统的内核(pSOS+)和pRPEC+、pROBE+、DHILE

+，自己设计了一套TCP／IP协议栈的软件。

电子科技大学硕士学位论文：OSPF协议的实现

3．1．2路由器软件结构

整个路由器软件的体系结构如图3．2所示。

TFTP TELNET

iMIB'I酬SNMP Agent． OSPF RIP，RJP．2

善 、 r { 、 L

TCP／IP软4@ [(爿Route Table
0

抽象网络接口
善 善 善

以太网链路级驱动软件
IPPP链路级 HDLC

甚茹鼍H快速转发软件 驱动软件 驱动软件

0 善 善

局域网接口 广域网接口

图3-2路由器软件结构

叫配詈软件l

DITI设备驱动软件
I

●

Console口

1． 在这个结构中，划虚线的部分为路由器软件的核心部分。其中：

(1)局域网接口主要支持Ethernet接口，指Ethemet的接口驱动程序；

(2)广域网接口是指广域网的接口驱动程序；

它们直接与物理网卡打交道。在其上覆盖了相应的链路曾驱动软件。

(3)抽象网络接口是IP层与下面物理网络接口的抽象。该接口屏蔽了具体

的物理网络实现细节，使上层(IP)所看到的各种网络都具有完全相同

的接口。广域网、局域网在这里的接口是完全相同的。这样，当下层软

件发生变化或增加新的下层软件的时候，上层可以不做修改。

(4)TCP／IP软件包括TCP／IP协议族软件和socket接口，以此来代替

pSOSytem中提供的pNA+通信模块。

(5)位于TCP／IP软件之上的是一个SNMP(简单网络管理)的代理，管理

员可以通过它来读取路由器设备的一些参数，对设备的状态和参数进行

设置。

(6)OSPF／RIP模块利用TCP／IP软件提供的通信服务，与网络中其它的路由

皇兰型垫奎堂堡主堂垡笙苎!旦!些塑望堕塞翌 一 ．一——

器进行通信，通过计算得到一张路由表，TCP／IP软件则通过查找这张

路由表来决定一个IP数据报的转发路径。

2．位于虚线外的模块则是路由器所提供的一些服务和为了让这个路由器

正常运行而进行配置的模块。

3．1．3现有路由协议软件

路由协议的实现，构成了路Eh-1器软件上的～个重要的模块——路由模块a

从路由器的软件结构可以看出，路由模块是路由器软件中重要的一个部分，它

通过TCP／IP软件获得信息，又利用获得的信息生成路由表，从而来影响TCP／IP

软件的工作。路由模块的结构如图3。3所示。

图3-3路由模块结构

更

除路

在路由模块中我们已经实现了静态路由和附P，R】P2路由协议。它们已能相

互配合完成一定的功能。

1．静态路由是由网络管理员在路由选择前就建立的，除非网络管理员干

预，否则静态路由不会发生变化。其实现是由管理员通过配置模块设置

到路由转发表中去的，同样管理员还可以将不正确的静态路由删除。

2．对于RIP协议的实现，我们是按照RFCl059(R口)和RFCl723(她P2)

的规定来进行的。实现了RIP和RIP2的的兼容。

目前，我们所需要做的工作就是实现OSPF这种路由协议软件，以加强路

由器的路由选择功能，适应网络的迅速发展。

3．2 OSPF路由协议模块的划分

OSPF协议软件的开发，是按照RFC2328(OSPF Version2)的规定来进行

18

电子科技大学硕士学位论文：OSPF协议的实现

根据前面的分析，我们可以将整个OSPF模块划分为以下几个部分：

1．通信子块：通过它与TCPflP软件打交道，进行数据的收和发，并完成

相应的数据处理。利用TCP／IP软件提供的服务，为其它子块提供统一

的通信接口，屏蔽掉通信的具体细节。根据OSPF协议所描述的功能，

我们可以将通信予块进行进一步的细分：

(11 Hello协议子块：完成Hello协议所描述的功能。

f1．接收Hello分组，检查其中的内容，以发现新邻居的存在，判

断邻居之间应建立的状态关系以及己建立的状态是否应发生改

变，从而向邻居有限状态机发送相应的信号。检查分组中相应

的内容，发送信号给接口有限状态机；

b．根据不同的网络接口类型，以不同的形式发送Hello分组，告

知邻居自己的存在；

c． 收集邻居路由器的优先级、路由器ID等信息，以便在广播型

网络和NBMA网络上选举指派路由器和备份指派路由器。

(2)交换协议予块：完成交换协议所描述的功能。在应建立连接关系的

路由器之间，启动并完成链路状态数据库的初始同步。

(3)扩散协议予块：完成扩散协议所描述的功能。

a．接收更新分组，并将接收到的更新分组中的LSA放入链路状态

数据库中；

b．在链路状态发生变化的时候及时更新链路状态数据库的内容，

产生并发送更新分组，向自己的邻居通报这一变化；

2．指派路由器选举子块：在广播型网络和NBMA网络上根据从Hello分

组中收集到的信息，完成指派路由器和备份指派路由器的选举。

3．邻居有限状态机：标明了邻居可能的各种状态，接收其它模块发送来的

信号，实现各种状态之间的相互转换。

4．接口有限状态机：标明了接口可能的各种状态，接收其它模块发送来的

信号，实现各种状态之间的相互转换。

5．链路状态数据库：实现链路状态数据库的生成和维护。在数据库的内容

发生变化的时候，调用生成树算法，重新计算最短树，从而生成新的路

由表。

19

电子科技大学硕士学位论文：OSPF协议的实现

6．生成树算法：根据链路状态数据库的内容，按照Dijkstra算法，生成一

个以自己为根的最短树，并根据这棵树计算出路由表。

7．配置子块：用户可以通过它来控制OSPF模块。通过对OSPF模块中的

某些数据结构的配置，以保证该模块的正常运行。同时，用户还可以通

过它来了解OSPF模块运行的状态。该子块是OSPF模块中的人机接口。

按照上述的分析，我们可以用图3-4来表示个子块之间的相互关系。

网络

⋯⋯⋯一◆表示向状态机发送消息

—————’◆表示调用相应的模块

图3-4 OSPF模块的结构

注意，在图3．4中，我们并没有标出配置子块与其它各子块的相对位置以

及关系，这是因为其它子块的运行是建立在一系列已有的数据结构的基础之上，

而这些数据结构的建立以及其值的改变，均是由配置子块来完成的。

3．3主要数据结构

数据结构是OSPF协议运行的重要基础，因此，怎样将各种不同的信息进

行区分和组合，怎样合理的安排各种数据结构之间的关系就成了我们的一个重

大问题，这是在进行程序设计时首先需要考虑的问题。

首先，我们需要邻居数据结构，来存放邻居的某些信息。

其次，每个路由器上有多个接口，每个接口接在一个网络上，那么这个接

电子科技大学硕士学位论文：OSPF协议的实现

口就可能与其它路由器的某个接口成为邻居，当然这个邻居可能不止一个。这

就说明邻居关系是依存于路由器的某个接口的。

第三，一系列的网络、主机以及有接口与这些网络相连的路由器形成了一

个区域，因此，对于路由器而言，划归它属于某个区域时，应该时将它的某个

接口划归该区域。一个区域可能包含同一路由器的多个接口或不同路由器的不

同接口。

最后，我们需要一个总体的结构将这些区域联系起来。

根据上面的分析，我们就形成了一个如图3．5所示的具有层次关系的数据

结构：

图3-5 OSPF数据结构示意图

因此，在全局数据结构里面，就有4个主要的数据结构：

1．struct ospf

2．struct ospf_area

3．struct ospf_interface

4．struct ospf_neighbor

它们之间的具体关系如图3-6所示：

struct ospf是一个协议结构，在该结构中包含了运行OSPF所必需的一些整

体信息a如：路由器ID、区域链表以及在该路由器上运行OSPF协议所生成的

路由表等。一个OSPF模块只有一个structospf结构。

21

电子科技大学硕士学位论文：OSPF协议的实现

区域1 区域n

图3-6 OSPF中主要数据结构关系
struct ospf

{
uint32 router_id；p路由器ID+／

UCHARtype； 产路由器类型+／
#define OSPF NONE O

#define OSPF ABR l

#define OSPF ASBR 2

struct ospf_area’backbone；p指向主干区域的指针+／

1ist areas：

list viinks：

p区域链表+／
／+虚链路链表 ·／

struct ospf_intefface+iflist[MAX IF_NUM+2】； p接口链表数组+／

电子科技大学硕士学位论文：OSPF协议的实现

／+ extemal LSDB +／

struct ospf lsdb+extemal_lsdb；／+外部链路数据库+／
struct route_table+table；／+路由表+／

struct ospf．_area是区域结构，它描述了一个ospf区域的一些共同特征。在

一个OSPF路由器上可以有多个ospf_area数据结构，它们是由struct ospf组织

起来。

struct ospf．_area

(
uint32 area id； p区域ID+，
struct ospf’top； 产 指向该区域所属的协议数据结构’／

list ifaces；

list address_r锄ge；

属于该区域的接口链表·／
该区域的地址范围+／

UCHAR extemalrouting；／． 该区域的外部路由能力 +／

uint32 default_cost； 产stub区域的cost+／

UCHAR auth_type； ／’

union

{

)u； ／+验证数据

该区域所采用的验证类型·／

’|

p 区域内的链路状态数据库+／
struct ospf_lsdb+routerlsdb；
stmct ospf_lsdb+network lsdb；
struct ospf_lsdb+stmunary_lsdb；

／+进行SPF计算的参数+／
uint32 spf_hlodtime；

uint32 spf_delay；

struct spf+tree；

structospf_intefface是接口结构，描述了路由器的某一个接口的信息。一个

电子科技大学硕士学位论文：OSPF协议的实现

接口对应一个该结构。

struct ospf_interface

{
struct ospf+ospf；

struct ospf__area‘area；

street ospf_vl data+vl_data；
list neighbors；

uint32 ip；

uint32 netmask；

产虚链路接口数据+／
严邻居链表+／

uint32ifnum； p接口号+／

uint32mtu； P 该接口的MTU+／

im fd； p 传输数据时所用的socket+／
UCHAR priority； 产 接口的优先级+／
int status；p接口状态+／

UCHARtype； p接13类型+／
uint32 transmit p传输延迟+／_delay；
uint32 output cost；产传输一个分组的度量+／
uint32 retransmit interval；产重传时间间隔+／
uint32 hello interval；严发送Hello分组的时间间隔+／
uint32 dead interval；p检测邻居死亡的时间间隔+／

UCHAR auth_type；／+0-no authentication，1-simple authentication

uint32 d_router；严该接口所接网络上的DR+／
uint32 bd_router；／．该接口所接网络上的BDR+／
，幸自己产生的LSA+／
struct ospf lsa+network lsa—self；p network-LSA．+／

struct ospf lsa’summary lsa_self； 净summary-LSA．’}

struetospf_neighbor是邻居结构，描述了该路由器的某个邻居的信息。
stmct ospf_neighbor
f
struet ospf interface+iface；／．该邻居所属的接口 +／

UCHAR status； p 邻居状态+／
UCHAR dd_flags； ／’在DD中，该邻居是Master，Slave
uint32 dd_seqnum；|’DD薛事q号’|
p有关邻居具体信息+／
uim32 address；

电子科技大学硕士学位论文：OSPF协议的实现

uint32 netmask；

uint32 router id：

UCHAR options；

UCHAR priority；

uint32 d router；

uint32 bd router；

struct ospf_packet+last_send； ／+上一次发送的DD报文+／

／+在DD交换中所需要用到的数据+／
struct ospf_lsdb lsretransmit；

struct ospf lsdb ls__request；

struct ospf lsdb db summary；

struct ospf lsa+request_l鼬t：

}；

对于这些数据结构的详细说明见附录。

3．4 OSPF主体程序设计

在设计了程序的数据结构以后，我们开始考虑程序的主体设计。

考虑到OSPF对实时性的要求不是很强，我们在程序中采用消息队列的方

式，用两个任务(task)来完成它的功能。一个任务用于接收和处理消息

(Ospfrask)，另一个任务用于从网络上接收OSPF数据(OspfReader)。

在程序初始化的时候，我们完成如下的操作：

1．设置一个消息队列；

2．设置Ospfrask，并启动之；

3．设置一个Timer，并启动之。该Timer的调用是由系统来完成。

对于Ospfrask这个任务，其运作如图3-7所示。

对于每一个消息，我们用一个长度为4的ULONG数组来表示。这4个

ULONG字段标明了消息的类型，以及执行相应的处理所需要的参数。在这里，

共有3类消息：

1．定时器消息：系统每当定时到的时候(每1000毫秒)，就会往消息队列

中放一个定时器消息。在定时器消息的处理函数中，检查timer队列中

有没有定时到的timer，若有就执行相应的处理函数或产生相应的事件。

2． 收到OSPF报文：OspfReader在检测到有OSPF报文到来后，会往消息

皇兰型堡丕堂堡圭兰焦笙壅!旦!坚堕鲨塑壅堡 一——

队列中放一个消息，以通知OspfI'ask，由它调用相应的函数去接收并

处理新报文。

图3-7 OsptTask的处理流程

3．收到OSPF命令：系统在收到一个OSPF配置命令时，只是往消息队列

中放一个消息，告诉OspfI'ask有配置命令来了，而不对它进行具体的

操作，其执行在消息处理函数中实现。

3．5软件接口关系

OSPF模块是一个较独立的模块，它利用其它模块提供的一些接口，同时也

提供一些接口供其它模块来调用它，从而与整个软件相融合。

1．OSPF在发送和接收报文的时候，需要用到其它模块提供的接口，来使

用网络的通信服务。它所使用的是raw socket，我们用如下的接口函数

来建立这样的socket：

s=socket(AF_INET,SOCK_RAW,89)；

这里的89是0SPF协议的编号，它表明这个socket收和发的数据都是

OSPF数据。

2．接口状态机提供接口以接收从其它模块传送来的信息，如从底层协议送

来地InterfaceUp或Looplnd的指示，。

电子科技大学硕士学位论文：OSPF协议的实现

3．使用组播

OSPF分组的发送是以组播的形式来实现的，因为这样做可以实现更高

的效率。要使用组播就需要使用其它模块提供的接口函数。

在这里，首先我们需要把一个接口加入到组播地址224．0．0．5(所有OSPF

路由器)中；其次，如果该路由器为指派路由器或备份指派路由器还要把

它加入到组播地址224．0．0．6(所有指派路由器)中。其实现的过程是这样

的：

#define ALL_OSPF_ROUTER 0xe0000005(224．0．0．5)

#define ALL—DR～ROUTER 0xe0000006(224．0．0．6)

如将一个接口号为if hum的接口加入到组播地址224．0．0．5中：

MMAPREQ mma；

mma．prAddr
2 ALL_OSPFjtOUTER；

riocfl(if_num,SIOCADDMCAST，&mma)；

4．配置接口

在这一步完成之后，该接121就可以利用这个接口进行数据的收发了。

它是OSPF模块提供给外界的接口，对于它的介绍将放在下面一章。

电孑二科技大学硕士学位论文：OSPF协议的实现

第四章配置命令解析及实现

4．1配置命令的功能和作用

配置命令是OSPF模块与管理人员之间的接口。为什么需要这个接口?如

果没有这个接口，又会出现什么样的情况呢?

我们已经谈到，OSPF模块是一个相对独立的模块，那么由谁来调动它的运

行呢?当然，我们可以在路由器一开始运行的时候就启动它的运行，这样就不

需要人为的控制了，但是这样做显然少了灵活性。因此，我们还是需要配置命

令，让它来控制OSPF的运行。

OSPF模块运行起来以后，会进行区域的划分，将不同的接口划归不同的区

域，那么怎么决定一个接口究竟该属于哪个区域呢?对于区域的划分，OSPF

模块光靠自己的信息是没有办法的，这就需要管理人员进行操作。在区域划分

好之后，位于同一个区域中的接口应该共同遵循一些规则，如：应具有相同的

验证数据、应对区域的类型(是否为stub区域)达成一致等。这样的一些数据

都是OSPF模块自己没有办法得到的，因此，也必须要有管理人员的参与。

对于一个接口而言，它传送～个分组所需花费的代价、发送Hello分组的时

间间隔、重发LSA的时间间隔以及检测邻居是否还存活的时间间隔等，虽然也

可以在启动OSPF协议运行的时候载入，但是这样做同样少了灵活性。如果能

够让管理人员参与配置和管理这些参数，他们就可以根据网络的实际状态或得

到的某些信息来进行动态的调整，或者可以通过这样的手段来测试这些参数对

网络性能的影响，从而得到最佳数值。这样，我们就可以让网络工作在最佳状

态下，让它发挥其潜能。

通过前面的叙述，可以得知，为了让OSPF模块正常的工作，管理人员必

须参与对其中的参数进行配置的工作。那么，管理人员怎样知道配置的结果是

什么呢?除此之外，为了管理整个网络，管理人员必须随时了解网络的连接情

况，于是他们必须知道一个路由器有哪些邻居，而在OSPF模块运行的过程中，

邻居的发现是动态的，管理人员是通过什么样的手段来得知这些邻居的情况的

呢?同样，当他需要了解链路状态数据库以及其它一些内容的时候，他又是通

过什么样的～些方式呢?所有的这些，都可以由配置命令来完成，管理人员按

一定的格式输入命令，告诉路由器自己想要知道的内容，路由器在执行了这些

配置命令后，会将结果显示在屏幕上，以满足管理人员的请求。

电子科技大学硕士学位论文：OSPF协议的实现

4．2配置命令分类

类

通过了解各种不同的配置命令的功能和作用，我们可以将配置命令分为三

1．OSPF配置命令：通过它可以控制OSPF协议的运行与否，可以对区域

进行划分，以及对区域中的参数进行设置。这些命令这要是对struct

ospf area结构中的参数进行配置。其中包括：

(1)start：在路由器上启动OSPF协议的运行。

(2)stop：在路由器上停止OSPF协议的运行。

(3)area：设置区域中的一些参数。在该命令下还包括很多子命令：

a．authentication：在区域内起用身份验证；

b．cost：若该区域为stub区域，则设置该区域的汇总路由得默认

成本；

C．nssa：将一个区域设置成NSSA区域。这种类型的区域与stub

区域类似，唯一不同的就是在NSSA区域中，类型为3的汇总

链路状态广告会被导入，而stub区域则不会；

d．range：如果该路由器为ABR，则该命令的使用会在区域边界

统一和汇总路由，以便向外发布；

e．stub：将一个区域设置成stub区域；

￡virtual link：建立一条虚链路，以保证主干区域的全连通性。

2．OSPF接口命令：通过它可以控制OSPF协议是否运行在某个接口上，

可以对structospf_interfce结构中的参数进行设置。其中包括：

(1)authentication：配置适用于接口的纯文本身份验证的password。

(2)cost：配置在一个接口上发送一个分组的cost。

(3)dead_interval：配置邻居之间检测存活的最大时间限制，如果在这

段时间内该接口都没有收到来自邻居的Hello报文，则表示该邻居

已经Down掉。这个值若设置的过大，则会影响协议的灵敏度；若

过小，则会使网络的拓扑发生频繁的不正确的变化，从而浪费网络

带宽；

(4)hello_interval：配置该接口发送Hello报文的时间间隔；

(5)retransmit—interval：配置在该接口上重发丢失的链路状态宣告的时

电子科技大学硕士学位论文：OSPF协议的实现

间问隔；

(6)transmit_delay：配置链路状态发送延迟，即在一个接口上发送链路

状态更新报文所用的时间。

(7)priority：设置该接口的优先级，以便在广播型网络和NBMA网络

上选举指派路由器。

3．OSPF监控命令：这些命令的设置是为了方便管理人员了解网络动态变

化的情况。包括如下的内容：

(1)show ospfi显示OSPF协议整体运行的情况；

f2)showospfinterface：显示运行OSPF协议的某一接口的信息；

(3)showospfneighbor：显示某一接口的邻居的信息；

(4)show ospfdatabase：显示链路状态数据库的信息；

(5)show ospfborder：显示OSPF ABR的信息。

4．3配置命令设计

我们将配置命令设计为一个层次结构，如图4-1所示。

在图4-1中列出了所有有关OSPF配置的命令，而对于其它的命令则选取了

一部分。

由于OSPF是一种路由协议，故我们将它和RIP一起挂在对路由器进行配

置的子命令下。这也说明了OSPF配置命令是在router这一级子目录下。

在对接口进行OSPF配置的时候，需先进入对接口进行配置的一级子目录。

由于OSPF协议属于IP协议中的一种路由选择协议，故，它又应该挂在ip这

一级目录下。

采用这种层次型的配置方式，更有利于用户理解各种命令的作用，也极大

的方便了他们的使用。

电子科技大学硕士学位论文：OSPF协议的实现

configure

。ut。，{：：‘tI：stop咄{‘a三uthe。nticati。n

-d爹删
sho”睢

4．4配置命令的实现

目前，本系统的配置可以采用两种方式：

1．用户可以通过Telnet的方式登上目标机，将配置信息传送给目标机；

2．用户可以通过串口将配置信息传送给目标机。

配置信息的通信则依靠pSOS提供的DITI设备接口软件，通过它将用户送

皇±型塾奎兰堡主堂垡堡塞!Q!坚堡堡塑壅墨

来的配置信息交给系统的命令解释程序，然后调用相应的命令处理函数，以完

成配置命令的功能。

命令解释程序收到用户传来的配置信息后，它怎么知道该怎样去查找与之

相对应的命令处理函数?我们可以将命令处理函数与命令的名称对应起来，这

样命令解释程序就可以根据它们之间的对应关系来查找命令处理函数。那么，

我们应该怎样将它们对应起来呢?对应起来后，我们又应该怎样去管理这些命

令的名称呢?

首先，我们用一个数据结构struct cmds将命令的名称与命令处理函数以及

其它的一些相关信息对应起来。

struct cmdstr

(

chfir*name； p命令的名称+／

int(+func)(int argo，char+argyll，void+p)；／．命令处理函数+／
void(*helpfunc)(int argo，char+ar_g、r【】)；p帮助函数+／
short minchar；p在输入该命令名称时，所需要输入的最少字母数

^，

short argcmax；／+该命令所带参数的最大个数+／
short argcmin；，．该命令所带参数的最少个数+／
short*showmsg；p 当用户需要帮助，输入“?”时，给予的提示+／

)；

将同属于一个命令下的各个子命令组织起来，形成一个stmct cmds结构的

命令数组。命令解释程序在识别命令的时候，只需要根据用户传来的命令行参

数的第一个参数，查找相应的命令数组，找到后将剩余的参数交给下剐找到那

个子命令，或直接调用命令处理函数，或继续查找直到找到其相对应的命令处

理函数，从而执行之。例如，我们在组织OSPF配置命令的时候就采用了如下

的数据结构：

struct cmds Cnfg_Ospf_Cmds[]={

产narne funcO help

showmsg+／

do_ospf start，help_cr,

Start OSPF Task．”，

do ospf stop，help er,

Stop OSPF Task”，

do_ospf_area，help_ospf_area,

char argo

3， 2，1，

3，

1， 6，1

n

p

叭‰n‰砍

a

O

e

弓．

吲

吲

电子科技大学硕士学位论文：OSPF协议的实现

”area Config OSPF Area”，

”network”，do_ospf__network，help_ospf_network，

”network Config OSPF Network”，

”quit”，do_quit，help_or,

”quit Exit to root commands”，

6，6，

2，1，

’’no”， no_ospf,help_no_ospf, 2， 2,0，

”no Negate the command”，

0，0，0，0，0,0，

O

}；

在程序主体设计中我们谈到，配置命令的实现是在命令解析函数找到相对

应的命令处理函数后往OSPF消息队列中放一个消息，等到主体程序在读到这

个消息时才真正的执行命令处理函数。对于监控命令，我们则采取收到命令后

不往消息队列中放消息，而是直接调用主体程序中提供的命令处理函数的方式，

以此来实现命令的直接处理并让它发挥作用。

皇士型垫奎堂堡主堂焦垒茎!旦!堕堡坚塑窒里一———

第五章接口有限状态机及其实现

配置命令的执行往往会造成接口状态的改变，从而引起接口有限状态机的

执行，因此，配置命令子块和接口有限状态机予块有着密切的联系。

5．1接口的状态

一个接口一共有8种状态：

I．ISM_Down

接口的初始状态，表明该接口不可用。

2．ISM_Loopback

测试网络用的。在该状态下，接口不能获得正常的数据流量，它可以通过

发ICMP报文或一些测试比特来获得有关该接口的信息。

3．ISM_Waiting

网络接口可用后，接口状态由Down进入Waiting。在此状态下此接口不能

参加指派路由器和备份指派路由器的选举，它检查所收到的Hello分组中的DR

或BDR，以决定自己的DR或BDR。只有经过规定的时间后，或者路由器在网

络上发现了指派路由器，才能跳出该状态，参加DR和BDR的选举。

4．ISM—Point-to-Point

该状态表示网络是一个物理点到点网络或者虚链路。在这个状态下，路由

器必须和邻居建立邻接关系。

5．ISM_DR other

该状态表明该接口接在一个广播型的网络或NBMA网络上，并且在该网络

上，本路由器没有被选为DR或BDR。此时，若网络上存在DR或BDR，该接

口就会试图与之建立邻接关系。

6．ISM_Backup

在一个广播型的网络或NBMA网络上，路由器被选为备份指派路由器。此

时，它应与网络中所有的路由器建立邻接关系。

7．ISM_DR

在一个广播型的网络或NBMA网络上，路由器被选为指派路由器。此时，

它应与网络中所有的路由器建立邻接关系。

电子科技大学硕士学位论文：OSPF协议的实现

8．ISM_DependUpon

表示下一个状态不能确定。如：当邻居状态发生了变化的时候，需要进行

DR和BDR的重新选举，此时的接口就处于一个不明了的状态，只有等到计算

结果出来以后，才能确定接口的状态。

5．2 引起接口状态发生变化的事件

接口状态发生变迁可能由7种事件触发，为了整个事件集的完备性，我们

可以向接口状态有限机发送如下的8种消息：

1．NoEvent

这是一个无效事件。

2．InterfaceUp

该事件的产生是由于底层协议检测到该接13可用，这将使接口从

ISM Down状态中跳出；同时，这也有可能是SPF计算的结果，它算出该接口

应该作为虚链路的一个端点，故也会产生该事件，使该接口有效。

3．WaitTimer

该事件是由WaitTimer触发，表示接口的等待时间结束，可以参加指派路由

器的选举。

4．BackupSeen

该事件的产生是由于路由器检测到网络中存在备份指派路由器，或只有指

派路由器而没有备份指派路由器，它标志着Waiting状态的结束。我们可以通

过两种方式发现这些情况：从某个邻居处收到hello分组，声明自己为备份指派

路由器；或者从某个邻居处收到hello分组，声明自己为指派路由器，并称该网

络中没有备份指派路由器。但是，无论是哪一种方式，路由器的ID必须出现

在邻居hello分组中，这就说明该路由器已与邻居建立了双向连接。

5．NeighborChange

此事件的产生说明网络上与该路由器建立了双向连接的邻居有所变化，需

要重新选举指派路由器和备份指派路由器。该变化可能是由以下的几种事件引

起，它们都是通过检查Hello报文得到的：

(1)与一个邻居建立了双向连接；

(2)与一个邻居失去了双向连接；

(3)某个双向连接的邻居新宣称自己为指派路由器或备份指派路由器；

电子科技大学硕士学位论文：OSPF协议的实现

(4)某个双向连接的邻居不再宣称自己为指派路由器或备份指派路由

器：

(5)某个双向连接的邻居的优先级发生了变化．

6．Looplnd

该事件是由网管或底层协议发出的，指示该接口已经“Loopbacktoitself”。

7．UnLooplnd

该事件同样是由网管或底层协议发出的，指示该接口不再“Loop back to

itself”。

8． InterfaceDown

该事件是由底层协议发送的，指示该接121不再是处于活跃状态，这会使接

口的状态恢复到InterfaceDown。

5．3接口状态转移图

图5-1接口有限状态机

电子科技大学硕士学位论文：OSPF协议的实现

由于各种事件的触发，使得接13的状态在上述8种状态中变迁，那么，这

些状态之间是怎样变迁的?在发生状态变迁的时候又会有什么样的一些动作

呢?我们可以用接口状态转移图来描述它。如图5．1所示。

在图5．1中并没有显示完所有的状态转移变化，如：不论接口现今处于什

么样的状态，只要它收到InterfaceDown事件，它会将所有接口变量设为初始值，

清除掉设置在该接口上的Hello Timer或WaitTimet等定时器，同时发送硒llNbr

事件给所有与该接口相连的邻居，接着跳转到ISM_DOWN状态。

5．4 SDL状态处理描述

通过上面的分析，我们可以以任何一个状态作为初态，用SDL图来描述这

个接口有限状态机。在这里，我们以初始状态Down为例来说明这个问题。如

图5-2所示。

1
0 上 上 上

，
|

NeighborChange(Looplnd(Unlooplnd(InterfaceDown(
t ＼

I 』 j
‘

J
。

lisrn_ignore0 l l⋯m_loop ind0I I I
． ． ．I l
18m_Jgn0慑)l l

ism_int，rface_down0
1 r 1 r 0

(-sM_D。啪) IS随L蛳0(，sM且∞ (zsM且固
图5-2以ISM_Down为初态的接13状态机SDL图

37

电子科技大学硕士学位论文：OSPF协议的实现

在图5．2中，所有的函数都没有标明参数，其参数均为：(接口指针，发生

的接口事件)。其它的SDL图也可以用相同的方法画出来。

从图中我们可以看出，状态之间的迁移及应完成的动作都可以通过函数的

调用来实现，并且这些函数都具有相同的参数，因此，我们可以将这些状态和

函数用统一的形式管理起来。

5．5状态处理数据结构

对于在这里，我们利用了一个二维数组来管理接口有限状态机的一系列信

息。数组的行表示会引起接口状态发生变化的事件，数组的列表示接口的初始

状态，数组中的每个元素则表示接口在这样的初始状态下收到这样的事件会引

发的操作，以及完成这些操作后接口的新状态。因此，数组中的元素为一个含

有2个分量的结构，一个分量为处理函数，另一个分量为下一个状态。由于接

口的状态有8种，引起接口状态发生改变的事件也有8种，故接口有限状态机

实际上就是一张行为8，列为8的表。以下是该表的一部分，对该表的完整说

明见附录。

#define OSPF—ISM STATUS_MAX 8

#define OSPF—ISM EVENT_MAX 8

净Interface State Machine 4}

struct{

int(*rune)()；
int next_state；

)ISM【OSPF—ISM～STATUS_MAX][OSPUISM_EVENT_MAX]=
{

7+DOWll：+／

(ism_ignore， ISM DependUpon}，／+NoEvent ’／

{ism_interface_up， ISM DependUpon)，／+InterfaceUp +／

t ism_ignore， ISM Down、， p WaitTimer ’}

{ismignore， ISM_Down，， ／+BaekupSeen +／

{ism_ignore， ISM Down}， ／+NeighborChange+／

{ism_loop_ind， ISM Loopback)，／+LoopInd +／

{ism_ignore， ISM_Down'， ／+Unloophd +／

{ism_interface__down，ISM_Down}， ／+／nterfaceDown+／

电子科技大学硕士学位论文：OSPF协议的实现

／+DR：+／

{ism_ignore， ISM_DependUpon}，／+NoEvent +／

{isrn_ignore， ISM DR)， ／+InterfaceUp 4／

{ism_ignore， ISM_DR)， ／+WaitTimer +／

{ism_ignore， ISM_DR)， ／+BackupSeen +／

{isrn_neighborchange，ISM_DependUpon}，／+NeighborChange+／

{ism_loop_ind， ISM_Loopback)， ／+Looplnd +／

{ism_ignore， ISM_DR)， ／+UnloopInd +／

{ism_interface_down，ISM_Down}， ／4 InterfaceDown+／

)，
)；

5．6接口有限状态机主体软件框架

接口有限状态机的主体软件实际上就是对上述的表进行查询的操作。它把

发生事件的接口指针和发生的事件作为输入，根据接口指针找到相应的接口数

据结构，明确接口目前所处的状态，再将发生的事件和这一状态做为行和列的

值对二维数组ISM进行查询。那么由谁来完成这个查询的操作呢?在这里我们

通过一个函数ospf ism event0来完成这一功能。

int ospf_ism_event(struct ospf_interface+iface，int event)；

在函数体中，通过查询找到相应的下一状态和具体的处理函数，然后调用

该处理函数，并据此改变接口的状态。

接口状态机的运行是靠其它模块发来的消息触发的，因此接口有限状态机

必须提供出接口以供其它的子块调用。在这里，函数ospfism 也是接口．event()

状态机子块为其它模块提供的接口。

电子科技大学硕士学位论文：OSPF协议的实现

第六章Hello报文及其相关处理

6．1 Hello报文的格式

节。

Hello报文有着如表6-1所示的协议数据格式。该表格的每一行均为4个字

表6-1 Hello报文格式

OSPF分组报头，类型=1(指明该分组为Hello分组)
网络掩码

Hello间隔(Hello—interval) 选项 l 优先权

死亡间隔 ．Dead_interval)
指派路由器(DR)
备份指派路由器(BDR)

邻机

邻机

由于Hello报文的发送是由路由器接在特定网络上的接口完成的，故Hello

报文中每一个域的值都是在该接口设定的相应的值。其中，选项字段为可选的

路由器功能：是否具有TOS能力(T bit)，是否具有接收和发送外部路由的能

力(E bit)。若该路由器具有，则将相应的位置l。在该报文的最后，有一个邻

机列表，它记录了在这个接口上发现的所有邻居，其中的每一值都为邻居路由

器的Router ID。

6．2 Hello报文的处理

对Hello报文的处理包括两个部分：对收到的邻居发来的Hello报文进行处

理；定时向网络发送Hello报文。

6．2．1 Hello报文的接收处理

假定接口N接收到了Hello报文x，那么，对于该报文的处理应该依照如

图6一l所示的顺序。

Hello报文

电子科技大学硕士学位论文：OSPF协议的实现

4l

皇王型堡查堂堕主堂笪堡壅!Q!望垫鲨盟茎堡 一——

lNei曲。疋h姚ange驸缄口状态机
图6-1接收Hello报文后的处理流程

6．2．2 Hello报文的发送

Hello报文的发送是一个周期性的动作，为了实现它，我们在每次发送它后，

都会启动一个HelloTimer，将它的值设为按121上的Hello间隔，然后把这个Timer

放入OSPF模块的Timer队列。每当定时到的时候，所执行的操作仍然是发送

Hello报文，启动Hello Timer。这就保证了Hello报文周期性的发送。

至于Hello报文的具体发送方式，依据接口所接的网络类型的不同，其实现

方式也就不同。

1．广播型网络和物理上的点到点网络：每隔Hello间隔，以组播的形式发

送给所有的OSPF路由器(其组播地址为：224．0．0．5)。

2．虚链路：每隔Hello间隔，以单播的形式发送给虚链路的另一端。

3．点到多点网络：每隔Hello间隔，以单播的形式发送给每一个邻居。

4．NBMA网络：在这种类型的网络上，Hello报文是发送给一个邻居集合，

这个集合该怎样来确定呢?

(1)若该路由器可能成为指派路由器(该路由器的优先级大于0)，则周

期性的发送Hello分组给与自己一样可能成为DR的路由器；

(2)若该路由器不可能成为DR(该路由器的优先级小于0)，此时，如

果网络上存在DR或BDR，该路由器就应该向它周期性的发送Hello

分组；如果从一个可能成为DR的路由器处收到了Hello分组，则

应该发送Hello分组以作为相应。

(3)若该路由器本身就是DR或BDR，则周期性的发送Hello分组给该

网络上所有的路由器；

在所讨论的这些情况中，发送Hello分组的周期应取决于邻居的状态。若邻

居的状态为Down，则该周期的大小应为探询间隔(Poll Interval)，否则，该周

期的大小应为Hello间隔。

至于单播和组播的实现，已经在OSPF软件接口中描述过了，它们是通过

调用其它模块提供的接口函数来完成的。

电子科技大学硕士学位论文：OSPF协议的实现

6．3指派路由器的选举

在广播型网络和NBMA网络上，我们通过收到从邻居处发来的路由器ID

和路由器的优先级等信息，就可以完成DR和BDR的选举。而该模块的调用则

交给了接口状态机。

那么，指派路由器究竟应该怎样来选举呢?它的选举算法是这样的：在广

播型网络或NBMA网络上选择优先级最高的路由器，让它作为指派路由器。如

果最高优先级的路由器有多个，则选Router ID最大的那个路由器。

按照这样的算法，我们可以用如下的叙述来具体描绘指派路由器的选举过

程。

图6-2指派路由器选举算法的流程

电子科技大学硕士学位论文：OSPF协议的实现

假设运行指派路由器选举算法的路由器为Router X，设定一个初值为0的

计数值n，那么这个算法的主要流程如图6．2所示。

在这个选举过程中，之所以要设定一个计数值n，是为了保证计算出来的

DR和BDR不同时为RouterX。

在这个流程中，第一步：确定选举的范围，实际上就是在该接口的邻居列

表中找出邻居状态大于或等于2-Way(与该路由器建立了双向连接)，且优先级

大于0的路由器集合，设定该集合为R。

在计算BDR的时候：

1．找出R中没有申明自己为DR的路由器，设为集合R1；

2．若R1中有路由器申明自己为BDR，则选择RouterPriority最大的路由

器，最为BDR。如果优先级一样，则选择Router ID最大的路由器；

3．若没有R1中没有路由器申明自己为BDR，则在R1中选择Router

Priority最大的路由器作为BDR。如果优先级一样，则选择Router ID

最大的路由器。

至于DR的计算：

1．在R中找出申明自己为DR的路由器，选择RouterPriority最大的路由

器作为DR；如果优先级一样，则选择Router ID最大的路由器；

2．若R中没有路由器申明自己为DR，则将剐选举出来的BDR作为DR。

如果优先级一样，则选择Router ID最大的路由器。

根据计算的结果，我们可以判定接口应处于什么样的一个状态，从而可以

进一步进行下面的操作。

电子科技大学硕士学位论文：OSPF协议的实现

7．1测试内容

第七章测试

对整个程序来说，需要测试的是各个相对独立的子块能否正常的运作，子

块之间能否协调的工作，整个OSPF模块能否与路由器软件的其它模块配合起

来工作。根据这样的要求，我们需测试如下的内容：

1．配置子块的结构、配置子块能否完成其功能；

2．Hello报文的发送和接收：

3．Hello报文的处理；

4．接口状态机的运行过程及结果；

5．指派路由器选举算法是否有效。

6．配置子块、Hello协议、邻居状态机子块以及指派路由器选举算法子块

之间信息的正确传递和相互正确的调用。

7．2测试环境

在分析了测试的特点、要求以及目的的基础之上，根据程序运行的要求特

设定了以下的环境：

将两台主机同时用两种方式互联起来，一台作为目标机，另外一台作为调

试机。这两种方式分别为：通过网络，用TCP／IP协议互联；通过串口互联。在

目标机上运行路由器软件，重新编制一个测试软件，让它运行在调试机上。这

样一来，我们既可以模拟实际的网络环境，进行协议数据的收和发，同时还可

以通过串口对路由器进行配置，从而有利于测试结果的观察。

这个测试软件是在Visual c++的集成环境下完成的，其主要功能为：

1．接收Hello报文，并显示其中的内容；

2．构造一个Hello报文，在网络上进行发送。

7．3测试方案设计

在测试内容和环境的基础之上，我设计了一个测试的方案，它可以连续的

执行，完成所有测试的内容，并显示测试的结果。该方案如图7．1和图7．2所

皇王型堇盔堂堡主兰堡垒茎!旦!坚塑堡堕苎型L——————一
示。图7．1描述的是在测试机上的测试程序的工作流程，图7—2描述的是目标

机上的动作流程。

是否收到＼盟!Hello报∥
＼?／

l Yes

显示Hello报文中内容

构造一个Hello报文：

设置优先级；

声明自己为DR：

将收到的Hello报文的

源加入邻居列表

发送Hello报文

图7-1测试程序工作流程

图7-2目标机的工作流程

46

电子科技大学硕士学位论文：OSPF协议的实现

根据对协议的分析，目标机在接口上启动了OSPF后，会按照图7．3所示的

步骤工作。

7．4测试结果

产生ISM_InterfaceUp事件给接口状态机

Jr
该接口发送Hello报文，

进入ISM_Waiting状态

f
“。11‘

收到邻居发来的Hello报文，进行处理

i
产生ISM_BaekupSeen事件给接口状态机

J
在该接口上启动DR的选举

图7-3目标机应自动执行的流程

在真正运行后，我们得到了如下的结果：

1．三种命令的设置和内容。

图7-4为配置命令的设置和内容，图7-5为接口命令的设置和内容，图7-6

为监控命令的设置。

2．具体设置。

为进行测试，我们将接口的类型设为广播型的，以便进行指派路由器的选

举，同时，将该接口的优先级为3。其具体配置过程如图7．7所示。

在这样的配置之后，我们利用showospfinterface命令可以得到执行上述操

作后的结果。如图7-8所示。

接着，我们在该接口上用命令ip ospfopen来启动OSPF服务。此时，用show

ospf命令就可以观察到整个OSPF协议运转的整体情况。如图7-9所示。

电子科技大学硕士学位论文：OSPF协议的实现

图7-4配置命令的设置和内容

图7-5接121命令的设置和内容

48

电子科技大学硕士学位论文：OSPF协议的实现

图7-6监控命令的设置

图7-7具体的配置过程

49

电子科技大学硕士学位论文：OSPF协议的实现

图7-8 show ospfinterface的结果

图7-9 show ospf的始粟

50

电子科技大学硕士学位论文：OSPF协议的实现

3、目标机执行ISM_InterfaceUp事件，向网络发送Hello分组。测试机在

收到Hello报文后，将显示这一报文的内容，并回送一个Hello报文，将自己的

优先级设为1，声明自己为DR。测试机收到Hello报文后的显示如图7-10所示。

图7．10测试机收到的Hello报文的内容

4、目标机收到测试机发来的Hello报文后的反应如图7-1l所示。

目标机在收到测试机发来的Hello报文后，对该报文进行处理。根据协议的

叙述，它会建立一个新的邻居结构，同时，由于该邻居称自己为DR，因此会

产生ISM BackupSeen事件给接口有限状态机。在接121状态机中会进行DR的

选举。因为本机的优先级为3，Router ID为10．1．1．1，并没有声明白己为DR或

BDR，而邻居的优先级为l，RouterID为10．1．1．2，声明了自己为DR，故，选

举的结果应该为：

DR：10．1．1．2

BDR：10．1．1．1

从图7．11可以看出，显示的结果与协议所描述的一致。

皇王型堡奎堂堡主堂垡堡奎!竺!堕塑坚塑墨堡——一

7．5测试结论

图7-11 目标机收到Hello报文后的执行结果

在经过如上所设置的测试过程的测试以后，发现该程序：

1．配置命令结构设置正确；

2．配置命令已能正确运行并能正确的改变程序运行中参数的值；

3．接口状态机已能正确接收消息，并运转；

4．指派路由器选举子块己能正确的选出指派路由器和备份指派路由器；

5． 已能正确发送和接收Hello报文，并且能对接收到的Hello报文进行处

理：

6．各模块之间的工作已能协调的运行。

与测试的目的相符合。

由于程序的其它部分由别的同学来完成，因此，该部分程序还没有与其它

厂家的路Eh器进行联调。但是，我通过截包软件NetXray截获了Cisco路由器

所发出的Hello报文和我所编制的软件所发出的Hello报文，经过比较发现这两

个报文是一致的。这就说明了我们的Hello的报文是能够被Cisco路由器所识别

电子科技大学硕士学位论文：OSPF协议的实现

的，进而说明它们之间是可以互通的。

电子科技大学硕士学位论文：OSPF协议的实现

结论

本论文简要的介绍了OSPF路由协议，基于已有的路由器平台，研究了OSPF

协议的实现方法，并做了如下的实现，同时完成了与主程序的接口。

1．OSPF模块主体程序的设计；

2．OSPF配置命令、接口命令和监控命令的结构设计和功能实现；

3．Hello协议子块的实现；

4．接口有限状态机的实现；

5．指派路由器选举算法的实现；

最后，经过模拟网络环境的测试，发现该部分程序已能正常工作。

当然，也有不足的地方：

1．对协议的分析工作做的还不够；

2．程序的某些地方还值得去优化：

3．可以用路由器来搭建真正的网络环境，来对协议的实现进行测试等等。

4．与其它厂商的路由器还没有进行联调。

电子科技大学硕士学位论文：OSPF协议的实现

参考文献

(1)谭浩强．C程序设计．北京：清华大学出版社．1997．10～254

(2)Christian Huitem著，陶文星译．因特网路由技术．北京：清华大学
出版社，1998．75～104，122～124

(3)Douglas E．Comer著，林遥、蒋慧、杜蔚轩等译，谢希仁校．用TCP／IP

进行网际互连，第l卷：原理、协议和体系结构(第3版)．北京：电子工业
出版社，1999年．199～215

(4)Douglas E．Comer著，张娟、王海译，谢希仁校．用TCP／IP进行网

际互连，第2卷：设计、实现和内部构成(第2版)．北京：电子工业出版社，
1998年．325～377

(5)William R．Parkhurst著，潇湘工作室译．Cisco路由器OSPF设计与
实现．北京：机械工业出版社，1999年

(6)Terry Slattery，Bill Burton著，达达翻译组译．Ciseo网络高级IP路由

技术(第2版)．北京：机械工业出版社．2001．145～186

(7)J．Moy．OSPF Version2．RFC2328．1998．1也44

(8)Jim Geier．Overview of Common Routing Protocols．Wireless-Nets

Ltd．，1998

(9)OSPF Commands．http：／／www．cisco．corn，2000年

(10)Cisco—OSPF Design．http：／／www．cisco．com，2000年

电二F科技大学硕士学位论文：OSPF协议的实现

致谢

一年多以来，我顺利的完成了毕业设计的任务，为自己的硕士研究生的生

活划上了一个圆满的句号。这一切都是和108教研室的老师们和同学们的帮助

分不开的。

首先，我要感谢的是我的导师毛玉明教授。在进入研究生学习以前，我所

学到的知识都是书本上的，对于很多东西的认识很抽象，没有一个具体的概念。

是毛老师给了我机会，教我用实践的态度来对待所学的书本上的知识和所遇到

的问题，教给我学习和思考问题的方法。老师渊博的知识和深厚的专业素养帮

助我拓宽了研究问题的思路，提高了我分析问题和解决问题的能力，让我成为

了一个具有一定能力的教学和科研人员。

其次，我要感谢的是108教研室的其他老师和同学，他们不厌其烦的为我

解答问题，帮我解决我在学习和工作中所遇到的问题。

最后，要感谢家人对我的支持。正是亲人对我精神上和物质上的大力帮助

支持，我才得以顺利完成学业。

在108教研室的这～段学习和工作的经历将是我人生美好回忆的不可缺少

的一部分。

皇王型堇奎堂堡主兰垡堡奎!Q!堕堕鲨塑塞堡 一

附录

论文中所介绍的该程序中主要的数据结构structospf，structospf_area，struct

ospf__interface，struct ospf neighbor的完整描述如下所示：

struct ospf

{
uint32 routerid；

UCHAR type； ’’router type’／

#define 0SPF NONE 0

#define 0SPF ABR 1

#define 0SPF ASBR 2

struct ospf_area+backbone；

list areas； ／+area list+／

list vlinks；／+virtual link list+／

struct ospf_interfaee*iflist[MAX IF NUM+2】；／+interface list+／

UCHAR active_iface； 严This parameter show how many interfaces are

configured actine with OSPF．+／

p extemai LSDB +／

struct ospf_lsdb+extemal_lsdb；

struct route—table+table；

struet ospf_area

{
uint32 area__id； ／+area id ofthis area +／

struct ospf+top；／+the ospfstructure which this area belong to

list ifaces；／4 interfaces list which belong to this area+／

list address_range； ／+the address range ofthis area+／

UCHAR active_ifaces；／*how many interface are active in this area，i．e．the
imeerface status iS not Down．+／

电子科技大学硕士学位论文：OSPF协议的实现

UCHAR external_routing； pExternal routing capability*／

#define OSPF AREA DEFAULll O

#define OSPF AREA STUB 1

#define OSPF AREA NSSA2

UCHAR transit； 7+transit capability+／

#define OSPF TR ANSIT FAUIT O

#define OSPF TRANSIT TI砌E 1

int no summary； 7’Don’t inject summaries into stub+／

uint32 default_cost；7+Stub default cost+／

UCHAR auth type；

union

{

／+Simple Authentication．+／

UCHAR auth data fOSPF AUTH_SIMPLE_SIZE]；
／+Cryptographic Authentication．+／

struct

{
list auth_crypt；

uint32 crypt_seqnum；

}crypt；

'u；

／+LSDB including router、network、summary LSA+／
struct ospf_lsdb+router__lsdb；
street ospf_lsdb+network_lsdb；
struct ospfJsdb+sununary_lsdb；

／+spfparameters·7

uint32 spf_hlodtime；

uint32 spf__delay；

struct spf+tree；

，．Router numbers in this area*／

int abr_cotmt；

int asbr_count；

int total,count；

皇王!!垫查堂堡主堂垡堡奎!竺!堕垫坠堕壅翌——

struct ospf_interface

{
struct ospf+ospf；

struct ospf_area+area；

struct ospf_vl_data+vl data；

list neighbors；

uint32 ip；

uint32 netmask；

uint32 ifnum； ／+interface number+／

uint32 mtu；／+MTU ofthis interface+／

intfd：／+input socketfd+／

UCHAR flag；／．OSPF in this interface is on or off*／

#define OSPF—．IF——OFF 0

#define OSPF—．IF．—ON 1

UCHAR priority； ／+the priority ofthis interface 4／

UCHAR passive_interface

#define OSPF IF PASSIVE 0

#define OSPF IF ACTIVE 1

UCHAR type； p interfaee type ofthis interfaee+／

#define OSPF IF NONE 0

#def'me OSPF IF PTOP 1

#define OSPF IF PToMP 2

#define 0SPF IF NBMA 3

#define OSPF IF BROADCAST 4

#deflne OSPF IF VIRTUALLINK 5

／*time*／

uint32 transmit delay；

uint32 output cost：

uint32 retraasmit interval；

uint32 hello interval；

uint32 dead interval；
uint32 delay ack；

7+timer list+／／+there is not any initial operation+／

struct thread+t hello；

皇王型垫盔堂堡主堂堡堡壅：Q!堕型堕塑竺壁生——————一
struct thread 4t J011；

struct thread+t Wait：

struct thread+t Is ack；

struct thread+t 1S ack direct；

struct thread+t ls upd ；．event

struct thread“network lsa．self； ／+self-originated network-LSA

reflesh thread．+／

／*Authentication data+／

UCHAR auth_type；／+0一no authentication，1‘simple
authentication

UCHAR auth_simple[OSPF_AUTH_SIMPLE_SIZE]；
list auth__crypt；

uint32 crypt_seqnum；

uint32 d_router；

uint32 bd router；

p self-originated LSAs．+／

struct ospf_lsa*network—lsa—self； ／+network-LSA．+／

struct ospf_lsa*summary_lsa_self；／+summary-LSA·+／

struet ospf_neighbor

{
struct ospf_interface+iface；

UCHAR status；

UCHAR dd_flags；

}fdefine MASTER

#define SLAVE 0

pNSM status．+／

净masteror slave’|

uint32 dd_seqnum； ／+DD Sequence Number．+／

／4 Neighbor Interface Address．+／

uint32 src；

uint32 netmask；

uint32 routerid；

UCHAR options；

UCHAR priority；

uint32 d router；

uint32 bd_router；

产RouterID．+／

／+Options．+／

／+Router Priority．‘／

／+Designated Router．+／

／+Backup Designated Router．+／

电子科技大学硕士学位论文：OSPF协议的实现

)；

struct ospf_Joacket*last_send； ／+Last sent Database Description packet．

／+Last received Databse Description packet．+／

struct

{
UCHAR options；

UCHAR flags；

uint32 dd_seqnum；

}Iast_recv；

产LSA retransmit list，LSA requea list，database summary list+／

struct oSpf_lsdb lsretransmit；

struct ospf__lsdb Is_request；

struct ospfJsdb db_summary；
struct ospf_lsa+request_last；

i’timerlist★f

struct thread+t_hello_reply；

struct thread+t inactivity；
struct thread+t db desc；
struct thread+t ls req：
struct thread+t 1S upd；

struct ospf．．v1．．data

{
ULONG vl_peer； ／．Router-ID ofthe peer for VLs．+／

ULONG Vl area id： 产Transit area for this VL．·／

int format； 产area ID format+／

struct ospf imerface+v1 oi； 产Interface data Stl'ucttLre for the VL．’／

struct ospf_interface+out oi； ／．The interface to go out．+／

ULONG peer_addr； p Address used to reach the peer．+／
UCHAR flags；

}；

接口有限状态机状态处理数据结构

／+Interface State Machine·7

stmct(

6l

皇兰型垫查堂堡主兰垡堡奎三一旦垩生坠鲨堕窒里——————一
int Pfunc)()；
int n。xL8tat戢

OSPFISM_EVENT_MAX]ISM[OSPFISM STATUS =_MAX][OSP}

{

{件DependUpon：dummy state．4／，} ·￥

f ism i‘gnore， ISM_DependUpon}，

；isi l群埘e， ISM_DependUpon)，

；i小磊ore， ISM_DependUpon)，

；isin_。 ， }，_ignore ISM_DependUpon

l!s哼弘0rc- I。SsMM_DDe印pe姐nddUuppo。nlsm n；：ignore{ ， -o州1—17‘7P⋯Vr⋯J’

{{s吐sno∞： {sSMM_D。e印pe。nnddUup印onsrn n；：_ignore{l ，
10删L‘7‘’P⋯uVr⋯’’

}，
{

)，

{

，+D。own：+／

t isrn_ignore，

{ism interface_up，

{ism_ignore,

{ism_ignore，

(ism_ignore，

(ism_loop_ind，

{ism_ignore,

(ism interface_down，

，4
Loopbaek：+／

{lsm ignore，

t ism__ignore，

{ism_ignore，

{ism__ignore，

t ism__ignore，

{lsm_ignore，

{lsin_ignore，

f ism interface_down，

ISM }，_DependUpon
IsM }，_DependUpon
ISM Down}，

ISM Down)，

ISM Down}，

ISM)，_Loopback
ISM Down}，

lSM DOWll}，

ISM DependUpon}，
IsM Loopback}，
ISM Loopback}，
ISM Loopback)，
ISM Loopback)，
ISM)，_Loopback
ISM Down}，

ISM Down}，

p NoEvent

件InterfaceUp

／．W越tTimet

}／

}／

+，

p BackupSeen +／

，}NeighborChangc+／

／．Looplnd
+／

，·Unlooplnd +／

／．InterfaeeDown／

，·NoEvent +／

，．InterfaceUp +／

，‘WaitTimer ’／

，●BackupSeen +／

，+NeighborChange+／

，·Looplnd +／

，+Unlooplnd +／

『．InteffaeeDown’，

，·NoEvent ’／

，·InterfaceUp +／

7’WaitTimet ’／

，+BackupSeen +／

，·NeighborChange+／

，．LoopInd +／

I’Unlooplnd ’|

f．InterfaeeDown’，

pWaiting：+／ ．．

{ism jgnore， ISM_DependUpon}，／+NoEvent ．，+／

；ism-ignore， ISM_Waiting}， ／+InteffaceUp +!，
；ism—wait timer’ ISM DependUpon)， ／+WaitTimer

“．．

；ism_back—up seen， ISM_DependUpon)， ／+BaekupSeen
吖

皇王型垫奎兰堡主兰焦堡壅!旦!堕垫鲨塑壅望——

)，

{

ism_ignore， ISM』垤iting}，

ism_loop_ind， ISM_Loopback)

ism_ignore， ISM_Waiting)，

ism_interface_down，ISM—Down)，

，+Point—to—Poim：+／

t tsm_tgnore，

{ISm lgnore,

t ISm lgnore，

{IS加Llgnore,

{ismLlgno豫，

{ism_loop ind，

t ISm_lgnore，

{ism_interface_down，

／}DROther：+／

ISM DependUpon’，
ISM PointToPoint}，

ISM PointToPoint}，

ISM PointToPoint}，

ISM PointToPoint)，

ISM Loopback)，
ISM PointToPoint，，

ISM Down}，

ism ignore， ISM_DependUpon)，
ism ignore， ISM DROther}，

iSin ignore， ISM DROther}，
ism ignore， ISM DROther}，

ism neighbor__change，ISM DependUpon}，
ism ind， IS)，．100p． M Loopbaek

ism ignore， ISM DROther}，

ism interface down，ISM Down}，

／+Backup：+／

lsm_ignore， ISM_DependUpon)

lsm_ignore， ISM_Backup)，

lsm_ignore， ISM_Backup}，
lsm ignore， ISM_Backup)，

lsm_neighbor_change，ISM_DependUpon}，
lsm loop_ind， ISM_Loopback}，

lsm_ignore， ISM_Backup)，
1。sm interface__down，ISM_Down}，

产DR：+／

{ism_ignore，
{ism ignore，
{ism ignore，

／+NeighborChange+／

／+Looplnd +／

／+Unlooplnd +／

沣InterfaceDOWll’}

|’NoEvent ’i

，+InterfaceUp+／

pⅥ％t11mer +／

，+BackupSeen +／

／4 NeighborChange+／

，+LoopInd +／

／．Unloopind +／

件InterfaceDown’|

f’NoEvent ’|

，+InterfaceUp +／

卜Wa试tmer ’|

，+BackupSeen +／

产NeighborChange+／

净Loopind ’|

净Unlooplnd ’i

|’InterfaceDown’|

|’NoEvent ’|

净InterfaceUp ’{

产Ⅻa姐lmer ’|

净BackupSeen ’|

／‘NeighborChange+／

，+Looplnd +／

／．UnloopInd +／

l’InterfaceDown≈|

ISM_DependUpon}， ／+NoEvent +／

ISM_DR)， ／+InterfaceUp +／

ISM—DR)， ／+WaitTimer +／

电子科技大学硕士学位论文：OSPF协议的实现

ism_ignore， ISM—DR)，
ism_neighbor_change，ISM_DependUpon}

ism_loop_ind， ISM_Loopback}，

ism_ignore， ISM—DR)，

ism_interface down，ISM—Down}，

／+BackupSeen +／

／+NeighborChange+／

7+Looplnd +／

／+Unlooplnd +／

捧InterfaceDown ’f

电子科技大学硕士学位论文：OSPF协议的实现

个人简历、研究成果及获奖情况

个人简历

邓舒，女，1977年11月10日出生；

1995年～1999年，就读于电子科技大学通信与信息工程学院。1999年7

月获工学学士学位；

1999年至今，就读于电子科技大学通信与信息工程学院，攻读通信与信息

系统硕士学位。

研究成果

在读研期间，参NT本教研室路由器项目的开发工作，已完成其中DHCP

模块的设计与调试；目前正在完成其中OSPF模块的设计工作。

获奖情况

1999～2000年，被评为电子科技大学优秀学生干部：

2000～2001年，获电子科技大学一等奖学金，三星专项奖学金；同时被评

为电子科技大学优秀学生干部。

	封面
	文摘
	英文文摘
	声明
	引言
	第一章Internet上路由协议的使用现状
	1.1自治系统的划分
	1.2路由协议的使用
	1.3内部网关协议(IGP)

	第二章OSPF协议解析
	2.1链路状态数据库
	2.2生成树
	2.3区域的划分
	2.4链路状态广告及其分类
	2.5链路状态数据库的形成与维护
	2.5.1 Hello协议
	2.5.2交换协议
	2.5.3扩散协议

	第三章程序设计总体框架
	3.1程序的开发环境
	3.1.1 pSOSystem开发环境
	3.1.2路由器软件结构
	3.1.3现有路由协议软件

	3.2 OSPF路由协议模块的划分
	3.3主要数据结构
	3.4 OSPF主体程序设计
	3.5软件接口关系

	第四章配置命令解析及实现
	4.1配置命令的功能和作用
	4.2配置命令分类
	4.3配置命令设计
	4.4配置命令的实现

	第五章接口有限状态机及其实现
	5.1接口的状态
	5.2引起接口状态发生变化的事件
	5.3接口状态转移图
	5.4 SDL状态处理描述
	5.5状态处理数据结构
	5.6接口有限状态机主体软件框架

	第六章Hello报文及其相关处理
	6.1 Hello报文的格式
	6.2 Hello报文的处理
	6.2.1 Hello报文的接收处理
	6.2.2 Hello报文的发送

	6.3指派路由器的选举

	第七章测试
	7.1测试内容
	7.2测试环境
	7.3测试方案设计
	7.4测试结果
	7.5测试结论

	结论
	参考文献
	致谢
	附录
	个人简历、研究成果及获奖情况

