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ABSTRACT

Ceramic and tile industries should indispensably include a grading stage to quantify the quality of
products. Actually, human control systems are often used for grading purposes. An automatic grading
system is essential to enhance the quality control and marketing of the products. Since there generally
exist six different types of defects originating from various stages of tile manufacturing lines with distinct
textures and morphologies, many image processing techniques have been proposed for defect detection.
In this paper, a survey has been made on the pattern recognition and image processing algorithms which
have been used to detect surface defects. Each method appears to be limited for detecting some subgroup
of defects. The detection techniques may be divided into three main groups: statistical pattern
recognition, feature vector extraction and texture/image classification. The methods such as wavelet
transform, filtering, morphology and contourlet transform are more effective for pre-processing tasks.
Others including statistical methods, neural networks and model-based algorithms can be applied to
extract the surface defects. Although, statistical methods are often appropriate for identification of large
defects such as Spots, but techniques such as wavelet processing provide an acceptable response for
detection of small defects such as Pinhole. A thorough survey is made in this paper on the existing
algorithms in each subgroup. Also, the evaluation parameters are discussed including supervised and
unsupervised parameters. Using various performance parameters, different defect detection algorithms
are compared and evaluated.

© 2013 ISA. Published by Elsevier Ltd. All rights reserved.

1. Introduction

Nowadays, ceramic and tile industry represents one of the most
dynamic industries, including lots of innovations in various stages
of production and automation. However, human vision control is
still used for detection of defective products and grading and
automatic grading is not yet well established [1]. Grading is
implicitly related to the whole fabrication line because various
surface defects such as color, image pattern, crack or scratch, arc,
and bumps on the ceramic or tile originate from different stages
[1]. The main challenge of automatic grading is in the image
processing algorithms required for defect detection. Different
challenges of grading are namely various kinds of color, different
kinds of texture design, real-time processing requirement and the
vast types of defects [1]. Current grading is usually done in three
stages: first, tile arc is measured by a linear planer; then, size
difference compared to ideal size is measured by a stacker; finally,
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surface defects are identified by human vision and registered on
the product surface with fluorescent markers. This traditional and
non-automatic grading process suffers from problems such as poor
performance, non-repeatable procedure, high cost, and low speed.
Industrial and unhealthy environment of product line for huma-
nitarian personnel is another negative factor of manual grading.

The automatic grading system would result in better perfor-
mance, lower cost, and uniformity in each category of products.
The current increasing demand of tile and ceramic validates the
market need of automatic grading for higher production speeds
[2]. In modern production lines, tiles are actually classified into
five grades based on the three above mentioned evaluation
criteria, in which level five is considered as losses [3].

Up to now, various processing algorithms have been proposed
for intelligent grading. These methods can be divided into four
main categories according to the defect detection mechanism:
filtering methods, structural techniques, statistical methods, and
model-based techniques (Table 1). Filtering methods usually use
mathematical translation and filters or pattern recognition meth-
ods for defect detection. The structural approaches consist of
conventional morphological image processing and edge detection
algorithms. Model-based approaches include common image
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Table 1
Different approaches of defect detection.

Approach Processing algorithm References
Filtering methods Wavelet transform [12-18]
Countorlet transform [19-21]
Genetic algorithm [22-26]
ICA algorithm [27-30]
Neural networks [32-35]
Gabor filter [36-38]
Structural algorithms Morphology [39-47]
Edge detection [7,11,48-51]
Model based techniques Hidden Markov model [59-61]
Autoregressive model [62-65]
Statistical methods Histogram curve [66,67]
Co-occurrence matrix [68-76]
Weibull distribution [77-82]
Autocorrelation [83,84]

processing models like the Auto-Regressive (AR) and Hidden
Markov Models (HMM). In the statistical approaches, luminance
histogram is generally used for defect detection. Statistical meth-
ods are characterized by simplicity as well as low complexity [4].

Because of various chemical and mechanical processes in the
ceramic tile production line, diverse types of surface defects
appear on the final product. The defects generally have different
visual patterns which are sometimes contradictory. Therefore, the
desired grading system should include a variety of image proces-
sing algorithms to cover different types of surface faults or defects.

In this paper, the proposed algorithms for grading system in
ceramic and tile production line are discussed and evaluated in
terms of output quality and computational complexity. In Section
2, different types of surface defects appearing in the fabrication
lines of ceramic and tiles are studied. In Section 3, different defect
detection algorithms are discussed. Then, Section 4 deals with the
evaluation parameters. Firstly, available measures described for
evaluating defect detection algorithms are presented. Using qual-
ity parameters, proposed techniques are compared. Finally, the
discussions are concluded in Section 5.

2. Surface defects of ceramic and tiling

Ceramic and tile products pass various chemical and mechanical
stages through the production line. Production of ceramic tiles
comprises eight main stages: forming, drying, glazing, baking, grading,
and sorting [92] as shown in Fig. 1. Glazing defects occur in glazing
and printing stages. Defects that are associated with breaking and
cracks happen in the forming and baking stages. In contrast, edge
defects are caused more by the transmission process from glazing lines
to kiln. Also, the Pinhole defect occurs typically in kiln [3].

Accordingly, surface defects can be divided into six categories
with the following characteristics (Fig. 2) [5].

® Pinhole
Pinhole is a quality fault appearing as small holes on the
product surface. Pinhole sizes are typically less than one
millimeter. Also, the holes appear with a lumber and depres-
sion. This fault typically occurs during baking.

® Eclipse glaze
This problem originates from accumulation of a part of glaze
over a corner or part of the tile. Accumulation of glaze is usually
on a few millimeters with significant expansion in the region of
defect. This defect appears in the glazing stage by creeping and
ringing of the glaze [5].

® (Crack
The most common defect is the crack which occurs because of
fast baking procedure with rapid increase or decrease in
temperature. Cracks at the edges of the tile are mostly caused
due to increasing temperature. Cracks due to decreasing
temperature are also called air cracks or cold cracks and often
occur because of fast baking procedure in the kiln [6].

® Blob
Some patches like spot drops of water may exist on the tile
surface, and are called blob defects. It occurs if humidity is not
adjusted or a low sleep time is included before entering into
the kiln.

® Scratch
This failure occurs because of dragged color printing in some
directions. This defect is often created during the transmission
of products from glazing line to the kiln.

® Edge
Edge defects occur most commonly in the kiln but they may be
generated from other manufacturing stages [7-9].

3. Algorithms of defect detection for ceramic and tile products

For the detection of surface defects, it is required to analyze the
whole product surface. So, an image with high resolution should
be firstly captured. The system must have appropriate lighting to
obtain a suitable surface picture. According to Table 1, the defect
detection algorithms may be classified into four principal groups.
Here, the main algorithms of each group are discussed.

3.1. Filtering approaches

In the filtering approaches, mathematical transformations and
filters are generally used. In this regard, both linear and nonlinear
transforms may be used. The most important algorithms include
the Wavelet and Counterlet transform, Independent Component
Analysis (ICA) analysis, Gabor filtering and artificial neural net-
works which are discussed below.

3.1.1. Wavelet transform

According to the nature of multi-resolution analysis, wavelet
transform has been extended for many processing applications
and is sometimes known as the most powerful tool [10,11]. In
wavelet transform, two low-pass h and high-pass g filters called
father and mother functions, respectively, are used in a filter bank
way (Fig. 3) [12]. In Fig. 3, the input is an n x m image and there are
also four outputs of LL, LH, HL and HH with size (n/2) x (m/2). At
each stage, the input image is divided into four sub-images.

Wavelet transform has been used for pre-processing and
texture feature extraction [13]. In 2001, Kumar and Pang proposed
a method of defect detection based on wavelet packet. There, the
wavelet packet coefficients from a set of dominant frequency
channels containing significant information are used for the
characterization of textured images. This method is useful in very
soft texture changes [14]. In 2005, Yang et al. applied a similar
method to inspect the fabrics in textile factories for defect
classification using discriminative wavelet frames. For a better
description of the latent structure of the textile image, adaptive
wavelet frames for textile would be preferred rather than standard
ones. The challenge in this method is how to select the wavelet.
Also, the training stage is so dependent on the number of data
points [15].
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Fig. 2. Types of surface defects on the ceramic and tile products.
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Fig. 3. General realization of wavelet transform in image analysis.

3.1.2. Contourlet transform
Contourlet transformation based originally on the wavelet
transform aims to overcome the weakness of selected wavelet

Bandpass
N D 7»g2> ‘ » D >ﬁ directional
g subbands

Image D I S o Bandpass
directional

bhasid

Fig. 4. General block diagram of contourlet transform.

type [16]. Contourlet transformation exploits multi-resolution and
space-frequency curve like the Wavelet. Contourlet transform
combines pyramid laplacian with a direct two-dimensional filter-
bank (Fig. 4). The band-pass image is converted to eight sub-images
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from pyramid laplacian. This transform has good performance for
denoising and enhancing the picture [17].

In 2012, Ai et al. introduced a new method of feature extraction
based on the contourlet transform and kernel locality preserving
projections to extract sufficient and effective features from metal
surface images. In this study, the image information at certain
direction is important for the recognition of defects, and the
contourlet transform is introduced for its flexible direction setting.
The disadvantage of this method is a need for extra information of
contourlet transform. However, the total classification rates of
surface defects of continuous casting slabs and aluminum strips
are up to 93.55% and 92.5%, respectively in this work [18].

3.1.3. Genetic algorithm

Genetic algorithm can find a suboptimum solution for optimi-
zation and searching problems [19,20]. In the context of defect
detection, a statistical relationship is firstly considered to deter-
mine the pixels corresponding to surface defects. Then, the related
parameters are considered as genes and genetic algorithm opti-
mizes these parameters. Those parameters may represent thresh-
olding point or morphological method parameters [21,22].

In 2002, Zheng et al. introduced a method based on the genetic
algorithm to detect surface detects. In this algorithm, morpholo-
gical parameters have been used including base element and
thresholding points. Though, this method is very simple, but the
training stage remains a controversial challenge [23].

3.14. ICA

ICA algorithm is a basic method of source separation [24,25].
In image processing applications, the ICA algorithm generally
supposes that the input image is combined of two or more
independent images. ICA algorithm tries to find the elementary
images. In defect detection, defects are supposed to be on a
foreground mixed with background pattern. Then, ICA is used to
separate the foreground from the background [26-28].

In 2006, Tsai et al. proposed a defect detection method based
on ICA. They used a constrained ICA model for designing an
optimal filter to detect surface defects from noiseless background.
The proposed algorithm requires to have defectless pattern. Also,
the performance degrades in the presence of noise [27].

3.1.5. Artificial Neural Networks

Artificial Neural Networks (ANN) are mostly used in machine
learning and artificial intelligence [29,30]. In image processing and
defect detection systems, neural networks are used as the classi-
fier. Therefore, it is necessary to extract feature vector before
applying any image to the neural network. In defect detection,
feature vectors would be classified into two classes of defectless
and defective patterns by ANN [31]. In 2008, Suyi et al. proposed
an ANN for defect detection in textiles [32]. Neural networks
have some defects, namely, the related training process takes long
time, easily trapped in local minima, which influence the accuracy
of the algorithm. Whereas particle swarm optimization has
good search ability, but in this work the Particle Swarm Optimiza-
tion-Back-Propagation (PSO-BP) algorithm is used for the neural
network which has a fast training stage rather than the BP
algorithm.

3.1.6. Gabor filter

Gabor filters are the ones which have the same representation in
the spatial and frequency domains. These filters can be obtained from
combining an exponential and a Gaussian function as follows [33]:

2 2
x=xp) ¥ —-Yo)
0 0

G(ij):ef”[ o I ] % e~ 27X —X0)+vo(y —¥o)l 1)

where X, yo is the center of the receptive field in the spatial domain
and uo, Vo stands for the center of the filter in frequency domain. ¢
and g represent the standard deviations of the elliptical Gaussian
along x and y. Although Gabor filters are not orthogonal, they cover
complete information of the image and are able to choose a specified
frequency and direction.

In surface defect detection applications, defects may be dis-
criminated by applying Gabor filters, after a simple thresholding
can result in the defect regions [34]. Therefore, the Gabor filter is
used mostly as a pre-processing stage. In 2010, Che et al. intro-
duced a method for fabric defect detection in textile industry
based on change in the scale of the Gabor filter. Their proposed
method suffers from high computational complexity. Besides, this
method requires a reference defectless image [35].

3.2. Structural approaches

In structural methods, primary and hierarchical forms are used
for defect detection leading to an intuitive procedure and com-
prehensible computations. These approaches use morphological
operators as well as edge detection methods for defect detection.

3.2.1. Morphological methods

Morphological operators are methods for both binary and
grayscale image processing based on morphology. The output
value of each image pixel is determined with respect to the input
pixel value and its neighbors [36-38]. In all morphological
processings, structural elements are used. So, the appropriate
choice of this element is often the most important part of the
process [39]. Closing operator causes some regions of the image to
smoothen, which usually mixes the thin fracture and removes the
small holes, and fills up the track in the environment [40].

Morphological operators are usually used for improving,
smoothing, and noise reducing in defective images. Also, by using
morphological operators, edge detection in defective images is
realized [41-43].

In 2009, Yiu et al. proposed a new method based on morpho-
logical operators to detect defects in fabric texture. In this method,
Gabor wavelet was firstly used to design the base element of
morphological methods (learning phase). The algorithm works so
that the input image successively passes through opening, closing,
median filter, closing, and thresholding stages and the defect in
the output image is indentified. This method is of supervised type
and accounts for specific defects [44].

3.2.2. Edge detection algorithms

Edge is defined as a boundary between two dissimilar regions
of an image. There are many different methods for edge detection
[5]. One of the simplest methods for the edge detection is the
gradient of image [45,46]. Thresholding is the last stage in edge
detection. The edge of an image can be achieved with high
accuracy by choosing appropriate threshold [47]. Edge detection
methods are used for the detection of edge defects in the surface
defect detection and image segmentation [48]. In 2011, Salimian
and Pourghassem proposed a method for detection of edge defect
in ceramic and tile. In this method, edges are firstly detected using
the canny algorithm. Then, the angle of corners is determined by
using inner product. Finally, the corner is considered as a defective
edge if the angle is about 89-92° [9]. In 2006, Mukherjee et al.
introduced an edge density-based technique for defect detection
and an object-based coding approach has been applied for the
storage of defective ingots. For extracting the edge density, they
used the Discrete Cosine Transform (DCT). After detecting the
boundary of ingots, the defect on the ingots surface is detected by
using a texture decoder that is based on the Gaussian filter. This
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technique suffers from low speed as it requires the employment of
small blocks [49].

3.3. Model-based approaches

In model-based image processing, a model is selected to analyze
the image and the model parameters are desired unknowns. It
includes the Hidden Markov Model (HMM) [50]. In HMM, the model
can be imagined as a set of interconnected states which are
connected by a series of probability lines [51]. Other model-based
methods are limited interval [52], Autoregressive Model (AR) [53-
56], and the Fractal Model [57].

3.3.1. Hidden Markov model

Here, a unique state would be allocated to each feature. Usually
some images are used to train the HMM. To train the HMM,
algorithms such as Back-propagation, Forward-propagation, Viterbi
and Back-Forward propagation can be noted [58,59]. If Hidden
Markov Models are used for defect detection, three components of
states, vector = and state transfer matrix must be defined. Occur-
rence probability of defective or defectless state in the zero region
of image is expressed as vector x. It must be reminded that each
N x M small region of the image is considered as one state where N
and M represent the size of the region. Probability of state variation
from defective manner to defectless condition (or vice versa) is
shown by state change matrix. In 2008, Hadizadeh and Shokouhi
introduced a method of defect detection using 1-D HMM. In this
method, the input image is predicted by HMM. Then, the difference
between the model output and input image exhibits defects [49].
One of the main problems in this method is related to the
complexity of statistical computation.

3.3.2. Autoregressive model

AR models including the thresholding autoregressive model
and exponential autoregressive model [60] represent a simple
model-based methodology [61,62]. After the determination of AR
model parameters for the desired texture, the specific regions of
texture which are incompatible with the model parameters can be
considered as defect regions.

In 2010, Bu et al. presented a method based on new spectral
analysis approaches of time series for defect detection on the fabric
texture using AR spectral estimation based on the Burg-algorithm
[63]. Also, a training phase is required and non-deterministic and
statistical results are disadvantages of this method.

3.4. Statistical approaches

Statistical methods are often used in classification problems.
The main methods include histogram curve properties, fitted
Weibull, co-occurrence matrix, and autocorrelation.

3.4.1. Histogram curve

Image histogram describes the number of pixels at each lumi-
nance level in the input image. Fig. 5 illustrates a defective image and
its histogram. If an optimal threshold point in the image histogram is
considered, the defect pattern can simply be extracted by threshold-
ing [64].

In 2006, Hui-Fuang Ng proposed a thresholding scheme
applied to histogram for defect detection. This method is based
on the Otsu method and calculates the suboptimal point (Valley
emphasis) in the histogram curve for defect detection. It corre-
sponds with an easy implementation, but sometimes results in
large error (divergence) [65].

3.4.2. Co-occurrence matrix

Haralick and colleagues used adjoining matrix to study the
properties of different textures [66]. Gray Level Co-occurrence
Matrix (GLCM) has some information about relationships between
neighboring pixel values in an image which is mathematically
given as

1 ifl(p,q)=iand I(p+Ax,q+Ay) =]

2
0 otherwise @)

p=1g=1

CAX,Ay(i’j): i %{

where C is the co-occurrence matrix and I is a N x M image, Ay
and Ax are distance and direction parameters, respectively [67,68].
Co-occurrence matrix can be created in any direction and distance
for feature extraction by selecting the distance and direction
parameters. Usually the co-occurrence matrix is used in six
directions for feature extraction and defect detection [69]. But in
some cases only two directions of the co-occurrence matrix are
used for defect detection applications [70]. GLCM is used to extract
features such as entropy, contrast, angular second moment,
correlation, and inverse difference moment [71-73].

® Entropy
EN= —ZZC(i,j)log C(,j) 3)
i

Entropy is defined as the complexity of the image. The more
complexity in the texture, the greater the value of entropy.
® Contrast

CON =3 ¥ (i—j)*C(i.j) 4)
ij

Contrast of an image determines the amount of local variations.
® Angular Second Moment (ASM)

ASM =¥ ¥ (C(, 2 (5)
]

Angular second moment is a measure of image homogeneity.
Hence it is suitable for measurement and diagnosis of texture
disorders.

® Inverse Difference Moment

1 y
IDM=Y ¥ ————C, 6
;,Zw(i—j)z @.)) (6)

® Correlation

X X0 x j x Ci,J) = petty
COR=_"" (7)

242
0303

where the parameters in this equation are as follows:

= ZIXCED ®)
by =ZIXCG.D ©)
ox =X ; (i— )’ CL.J) (10)
Uy=2i:§(ifﬂy)zc(i,j) an

where yy, 1y and o, 0, are mean and variance of rows and columns
of GLCM, respectively.

In 2012, Mingde et al. proposed an algorithm based on the
Support Vector Data (SVD). In this method, two GLCMs are firstly
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Fig. 5. A defective tile pattern with its histogram: (a) histogram curve (b) defective tile surface.

created to describe the fabric texture. So an adaptive quantization is
applied to GLCMs for reducing the complexity of computing in
GLCM. Next, SVD is used for classifying as a classifier. This algorithm
is suitable for real-time applications [74]. Complex calculation to
obtain the feature vector is a disadvantage of the method whereas
using a simple linear classifier is due to accelerating classification.

3.4.3. Weibull distribution

Recent studies show that a random texture can be analyzed by
using a Weibull distribution [75]. In addition, most works show
that the image Weibull distribution has accurate results for
unsupervised image segmentation and classification. Also the
distribution has been used for visual content analysis [76,77].
Weibull probability density function is as follows [78]:

f(x)zé(ﬁy_lef(f—,)’

12
7 (12)

where g is distribution width that in fact represents image contrast,
and y is the distribution peak that represents the size of image seeds. A
Weibull distribution can fit image derived distribution. In this case,
lower amount of g parameter would result in lower image contrast.
Meanwhile, low value of parameter y is a symbol of coarse or rugged
texture in an image. Also the equation is defined for x > 0 [75]. Fig. 6
illustrates four examples. In this figure, the first column is the input
image, second column is derivation amplitude, third column is
histogram of derived image, and the fourth column is fitted distribu-
tion. In this figure, specially-selected images have been used instead of
practical tile images to better evaluate the algorithms in absence of
noise from the viewpoint of capability of defect pattern extraction.
Also, the test images are associated with specific histograms to cover
all possible situations.

For defect detection in the texture, first, the image is divided
into same pieces and the gradient amplitude is calculated for each
piece. Next, histogram of image gradient is calculated, and finally,
the last stage includes a Weibull distribution fitting to the
histogram of the image gradient. With the obtained distribution
parameters and considering them as arrays of the feature vector,
the defect can be detected by a distance scale. Fig. 7 illustrates
these stages [74]. Moreover, the expectation maximization method
can be used for calculation of distribution parameters [79,80].

In 2011 Fabian Timm and Erhardt Barth proposed a non-
parametric approach for defect detection which uses only two
features. The advantage of this method is fast clustering because it
uses only two features, but at the same time, feature vector
generation includes complex calculation such as image derivation
and distribution parameters fitting [74].

3.4.4. Autocorrelation

In fact, autocorrelation of an image represents the similarity
among image pixels. The autocorrelation method checks the correla-
tions between image pieces and patterns in image processing [81]. In
2010, Hoseini et al. exploited the autocorrelation function as a tool
for defect detection. This method has four stages. In the first step, the
original texture pattern is extracted from a defectless image (training
stage). In the second step, global defective region is described as the
difference between reference and input texture patterns. Third stage
calculates the mean of the image for decreasing high frequency
information from the image background. In the last step, the defect is
detected using thresholding [82].

4. Evaluation of defect detection methods
4.1. Evaluation criteria

Different criteria may be used to evaluate various detection
methods including error definition and percentage of defect
detection diagnosis or misdiagnosis. For calculation of error, a
measure of correct diagnosis should be considered to evaluate
different algorithms output. In this case, the defect is generally
detected by the human vision and the related pattern is defined
for evaluation purpose. Fig. 8 illustrates a defective tile image and
its defect pattern image that is created by human vision [83].

It should be reminded that the supervised evaluation method is
a subjective and relative method [84]. Parameters for the super-
vised evaluation method include Figure of Merit (FOM) [85],
Hausdorff Distance [86], and Odet's criteria (ODI and UDIn) [87].

® Figure of merit
1 card(ls) 1

max {card(l;), card(l;)} El 1+d%(i)

FOM(I.,I5) = (13)

where in this equation, d(i) is the distance between the ith
pixel of image I, and the nearest pixel from image I;. Also card
(I) is the number of pixels in image I.

Hausdorff distance

This criterion shows the distance between two sets of pixels.
Equation of this criterion is as follows:

H(I;,Is) = max {h(,Is), h(ls, It)} (14)
where
hdy, Is) = Max, ¢ j,ming, ¢ 1, [1t; = s;|l, hds, It)

= Maxy, ¢, ming, ¢ g, |Is;i — t;l| (15)
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Fig. 8. (a) Defective tile image. (b) Defect pattern extracted.

Table 2

Experimental evaluation criteria associated with different defect detection approaches.

Histogram Neural networks Morphological Gabor filter Co-occurrence matrix Wavelet
Local error 3x107* 733x 10~ 0.0017 0.0069 0.0269 0.0039
ODE 0.5 2.7 0.9987 42231 1.049 1.4448
LDE 15 17 0.002 3.2231 0.049 0.4448
FOM 0.006 0.0075 0.0061 0.0463 0.0072 0.0159
Hausdorff distance 1.4142 1.4142 1.4142 113137 22.6274 8.4853
oDI 0.704 0.6447 0.6329 0.5613 0.5305 0.2877
UDI 0.6256 0.5537 0.1247 0.5467 0.6416 0.4729
4, 0994 09925  0.9939 09028
here I, and I, represent the set of defects in the output image 9.9 :
and defect pattern respectively. This is a preferred measure of 0.97 0.9537
similarity between two images. 8:32
® Odet's criterion 0.94
The Odet's criterion includes two error criteria from diver- ' & o N N @ &
S . o & & & ° & &
gence measure, which is a popular evaluation criterion. \,;\o% &@‘ 5° < S G
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and Fig. 9. FoM criterion for different detection approaches.
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Ny 2y \ dr Lower Detection Error. This error equation is as follows:
where in these equations do(k) is the distance between kth pixel card(ls;)
LDE(It, I5) = (19)

that is detected in the algorithm output image and the nearest
pixel in the defect pattern image. Also, d,(k) is the distance
between the kth pixel that is not detected in algorithm output
image and the nearest pixel in the defect pattern image. N, is the
number of pixels that is wrongly detected as defective pixels and
N, is the number of pixels that is wrongly detected as defectless
pixels. dry is the maximum allowed distance for defects and n is a
scale factor which considers different weights for different pixels
according to the distance from the defect pattern image [88].

Also, error definition can be used as a criterion for algorithm
evaluation. For example the Over Detection Error (ODE) can be
named. The equation of this error is as follows.

card(lys)

ODEe Is) = 1) — card(ly)

(18)

where in this equation card(l;) and card(ls) are number of defect
pixels in the algorithm output image, and defect pattern image
respectively. Moreover another definition Iy, is allocated to the
number of pixels which is used in the algorithm output image as
defect pixels but not in the defect pattern image. Another error
that can be introduced as a criteria to an evaluated algorithm is the

card(ly)— card(ls)

It should be noted that in the above equation card(l;) and card(Is)
are number of defect pixels in the algorithm output image, and
defect pattern image respectively. On the other hand, another
definition Iy, is allocated to the number of pixels which is used in
the defect pattern image as defect pixels but not in the algorithm
output image.

Another type of error is the Localized Error which is in fact the
normalized number of pixels wrongly diagnosed or misdiagnosed
in the algorithm output image in comparison to the defect pattern
image. Equation of this error is as follows:

|Bo N Br| +|Fo N Fr|
|Bo| + | Fol

LE=1- (20)
where Bp and Fp denote the background and foreground area pixels
of the defect pattern image, and By and F; denote the background
and foreground area pixels in the algorithm output image [89].
FOM mostly represents experimental distance as a criterion. The
closer the FOM value is to unity, the better the output quality will be.
The Hausdorff distance may theoretically be a good measure for
representing the similarity of two sets. However, it exhibits large
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Table 3
Qualitative and quantitative comparison of different methods.
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Quantitative Qualitative
Method

Calculation time (PC) Number of multiplications Time/pixel Real time ability Performance Calculation complexity Noisy pattern
Histogram 54(ms) 512 52(ms) Very good Good Very low Good

Train phase Test phase Train phase Test phase Train phase Test phase .
Neural network 13.2(s) 112(ms) 2540 64 220(ms) 1.84(11s) Not good Good High Good
Morphology 565(ms) 0 4.64(ms) Good Good Very low Bad
Gabor 253(ms) 16 4.21(ps) Good Bad Medium Good
Co-Occurrence  5(min):39(s):19(ms) 3220 339(ms) Very bad Very bad Very high Good
Wavelet 1.242 (s) 45 20.7(ps) Not good Good High Very good

sensitivity to noise. ODI can show divergence between the over
detected defect areas in the output. Similarly, UDI demonstrates the
divergence of under detected areas from the defect pattern image.
Hausdorff distance and the Odet criteria converge to unity as well, as
the algorithms work better. These two criteria are more appropriate to
detect large defects like blob, but the Odet criterion can better detect
large defects such as cracks and edge defects. If the detected faults are
much larger than the existing ones, error measure of ODE is more
applicable. In contrast, LDE works better for the detected defects as
they are smaller than the real ones. Both ODE and LDE result to zero
for perfect detection. LE is a measure that compromises the perfor-
mances of ODE and LDE. LE is affected by both over- and under-
detection situations. It may be considered as a suitable measure for
evaluating the detection of small faults such as the Pinhole defect.
A lower LE measure exhibits better performance of defect detection.

Another evaluation category is the unsupervised ones which
are mostly used for statistical approaches. In this case, there is no
need for a-priori defect pattern image. Independence of this method
from human visual detection is its advantage in comparison to the
supervised methods. Nevertheless, statistical results without deter-
ministic value can be enumerated as their disadvantage [90]. Among
these methods, Entropy-based and Non-negative Factorization can be
named [91-93]. In the Entropy-based method, evaluation function is
based on entropy. This method uses defective and defectless regions
of entropy in output image for evaluation of the algorithm. Also,
outline entropy can be used for assigning the percentage of pixels
belonging to each region which have been wrongly detected as
defective regions. Finally, it should be reminded that there is no
explicit evaluation system for diagnosis of wrong detection. Non-
negative Factorization method is an evaluation measure between
defective and defectless regions' contrasts.

4.2. Evaluation of defect detection methods

Different methods of defect detection are now evaluated and
compared in terms of the before-mentioned performance criteria.
Table 2 illustrates all these criteria for selected detection methods.

As it may be seen, local error of histogram-based methods
is less than other methods, while the methods based on
co-occurrence matrix have the greatest local error and appear to
behave inappropriately in detecting local errors. As mentioned,
over detection error demonstrates the pixels wrongly diagnosed as
defective. Among the detection techniques, Gabor filters result in
the largest over detection error. The histogram-based methods
provide the best performance in terms of over detection error. In
the case of lower detection error, the morphological operators lead
to the lowest detection error. Gabor filters demonstrate worst
performance in terms of the lower detection error. Three criteria
of the Figure of Merit, Hausdorff distance and Odet's criteria
have also been exploited. It should be noted that the better the
algorithm performance, the closer to unity the measure of figure of
approaches (Fig. 9).

Regarding the Hausdorff distance criterion, histogram-based,
neural networks, and morphological operators exhibit the best
performances and the co-occurrence matrix show the lowest
evaluation.

In terms of the Odet's criteria, wavelet transform and morpho-
logical operators perform more efficiently.

5. Conclusion

This paper investigated different surface defect detection
methods. Each method has its own advantages and disadvantages.
Some methods have fast speed but low accuracy while other
methods are associated with high accuracy but restricted by
complex computations to a lower speed. According to the require-
ment of real-time processing and existence of different patterns in
ceramic and tile industry, high speed and high accuracy are
essential challenges to be afforded at the same time. Also, each
method can overcome detection challenges only for some special
defects. Table 3 shows a quantitative and qualitative comparison
between various methods. As it can be easily seen, the histogram-
based methods are distinguished by a very high speed. The
histogram-based methods exhibit an independence from resolu-
tion which renders them useful in real-time applications. Low
computational complexity and high efficiency are specific char-
acteristics of the histogram-based methods. Training phase
appears as a problem in methods based on neural networks, but
their speed in test phase is fairly good. Morphological techniques
and Gabor filters also appear to be acceptable candidates in real-
time applications. In contrast, the co-occurrence technique is
associated with largest computational complexity. Wavelet trans-
form also suffers from heavy computations and is not appropriate
for fast applications. In terms of robustness against noise, the best
performance may be achieved using the wavelet transform and
morphological techniques.

Therefore, it may be concluded that no general algorithm has yet
been proposed accounting for all different defect types at the same
time. So, a mixed method would be indispensable for industrial
applications. It can be seen that statistical approaches are more
suitable for detecting large defects such as blob. Some approaches
such as the wavelet transform and Gabor filter can detect small
defects like Pinhole, though they are industrially undesired due to
their computational complexity. Also, structural approaches are
suitable for detecting edge crack defects in ceramic and tiles.
Model-based approaches are associated with complex computa-
tions, but can cover a larger extent of defects and patterns.
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