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ABSTRACT

The main purpose of the present dissertation is to systematically study the interfacial
phenomena and phase transition in microscopic level by means of molecular dynamics
simulation (MDS).

It is well known that phase transition is a physical phenomenon which appears
frequently in engineering and the interface is a face between different phases. Generally
speaking, the thickness of the interface is about several diameters of a molecule. The
interface is so thin that it could be considered as a geometric surface without thickness.
But this thin interface has an important influence on flow, transport properties and
chemical process of the fluids nearby it. In recent years, there are many researches on
properties of the interface and transportation phenomena among phases. The exploration
of the interfacial phenomena is a remarkable field of scientific study for a long time.

By using molecular dynamics simulation, the relation between the microscopic
properties and the macroscopic properties of a system is investigated on the microscopic
scale. The microscopic picture of macroscopic phenomenon is clearly unfolded. It
makes a better grasp of the essence of a phenomenon, so that to enrich the theory and
direct the practice.

The main contributions of the present dissertation are as follows:

(DThe saturated properties of fluids were calculated to determine the correlation
between saturated temperature and saturated pressure. In which, argon, methane and
water with strong polarity were chosen as the working substances. Then, the simulated
results were compared with the calculated data by using the state equation of real gases
and the corresponding experimental values. It was proved that the molecular dynamics
simulation method was very successful and efficient for real gas to determine its
properties. Meanwhile, the validity of the existing state equations of real gas was
contrasted and verified using MD. In addition, the microscopic information was
withdrawn during the simulation according to the theory proposed by Prof. Danling
Zeng, in which the fractional Brownian function was adopted to describe the probability
density function of the molecule’s random motion. This could be indicated quantitively
the derivation degree of a perfect gas from a real gas.

@The phase equilibrium between two phases of liquid and vapor were performed
by MD. It is found that except bulk liquid and bulk vapor, there exists an anisotropic
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interfacial phase. In this section, the profiles of number density, temperature, normal
and tangential pressure tensors were studied in detailed for the fluids in the interfacial
phase. Because of the anisotropic characteristics in the interface, the effect of the
potential cutoff radius was estimated particularly on the densities of saturated vapor and
saturated liquid in the homogenous phases and on the surface tension in heterogeneous
phase. Then, the new algorithm of choosing the cutoff radius, so called “variable cutoff
radius method”, was proposed, which satisfies both the calculation of the densities of
saturated vapor and saturated liquid in the homogenous phase as well as the surface
tension in heterogeneous phase, so as to overcome the disadvantages of the uniform
cutoff radius and increase the calculation precision. Furthermore, the influence of
fluctuation phenomena on heterogeneous phase was investigated by the new method
proposed.

(®From the plane interface extended to spherical one, the microscopic process of the
evaporation and solidification for liquid droplets was analyzed and investigated on the
basis of the theory of radial distribution functions. So that the mechanisms of interface
phenomena in the phase transition would be explored in detail. Then the corresponding
macroscopic properties were derived during the simulation of microscale liquid droplets,
which will lay a solid foundation for predicting the unknown or undetermined
properties of macroscopic system.

@The effect of solid wall on the fluid molecules was investigated by MD. In the
study of interfacial properties of solid-liquid system, a modified and semi-experimental
potential function was brought out in the dissertation. In which, two parameters
coupling the intermolecular force were introduced. Firstly, the effect of coupling
parameters on the interaction potential function was analyzed. Moreover, the
mathematical model was established for the interaction between solid wall and liquid
molecules. It is found that there exists a layer with properties of both bulk solid and
bulk liquid at the same time in the vicinity of the solid wall, named “quasi-ordered
layer” by us. In the dissertation, the effect of physical parameters of liquid and solid,
respectively, on the quasi-ordered liquid layer was investigated. In addition, the
distribution of molecules, the motion of a molecule and pair distribution functions in the
quasi-ordered layer were shown in the paper, respectively, which provided a necessary
basis of microscopical analysis for the corresponding research. In order to make a whole
sight into the properties of fluids constrained in the micro and nanochannel, the
transport properties of fluids and Poiseuille flow in a nanochannel were investigated and
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compared with the corresponding macroscopic properties. In the paper, the distribution
of molecules, the change of pair distribution functions, the motion of molecules and
its trace images and frequency spectrum chart for fluid constrained in the nanochannel
were investigated in detail. Some interesting and significant results were obtained,
which provided the basis for studying the properties of the fluids in a nanochannel and
investigating the special properties, such as the size effect etc.. Based on the foregoing
study, the transport coefficient (diffusivity) of fluids in the nanochannel and the velocity
profiles were plotted for the Poeseuille flow. It was seen evidently that the simulated
results under some conditions would deviated from the N-S solution. On one hand it
shows that there exists the unnegligible difference of fluid properties between
microscopic and macroscopic scale from the viewpoint of theory, on the other hand it
could provided some references for the practical applications.

Keywords: interface phenomena, molecular dynamics simulation, cutoff radius,
algorithm, surface tension, quasi-ordered layer



EI); NS U e VA0S

Vi



B X

e 1 S |
v 13 1l
e = XI
S 1
O T T ST 1
L1 FHHIET oo 1

112 ZRTHITK TT oottt 2

1.2 S FREITTIE oo 4
L3 BEHEEIR oo 5
1.4 FREIRERDTFHEIRUEFFFEIIR .ocovoeeeeeeeeeee e 6
1.4.1 AHAE A FEHTILGIIIETT oo 7

1.4.2 S-TEATILZRIITIETEIIR oot 8

1.4.3 [E - I G BT TEIIIR oot 9
W70 a0 51 = o R 1y 11
1.5.1 VR SCHIE TETTVE oo 11

1.5.2 HIETEH I vt 1

1.5.3 B TEPIZR e 1

2 SEBRURAE P-V-T RFERI 3 F R HT I ..o 15
2.1 S FENSFRERIITEATET e 15
211 AR AR E BRI e 15

2.1.2 JUANBIARTUFTEIIARIE ..o 17

2.1.3 REEMTEIURIFEH TIE oo 19

2.1.4 FBENFTFEITETHL oot 20

2.2 L-J RAEMAS I DT I AIHAEIITIEL s 21
220 P FENITFEREANTT B TT IR oo 22

2.2.2 SIS TTFEIRTEFETTIE oo 24

2.2.3 THELE T LIIHT oot 26

2.3 FKEIHRIBBURIREI ...oooooeeeeeee et 29
2.3 L TIPAP FETL oot 29

2.3.2 BBBEBREL oo s 30

2.3.3 BHEAUTTTE: oo 30

VIl



2.3.4 JEIRITT I oo 30

2.4 SEFRSAARIIRRBI D THI TR ccoooooe e 32
241 53T EN TR TTIEIITZI oo 32
2.4.2 THRLE B L IIHT oottt 33

2.5 SERRSARREHE I BT BB EIIIE oo 35
2.8 NG o 38
3 S-BAEMMFRHER D F B ST ZREIIEIT o 41
3.1 R-BRATERHE I TFBI R T o 41
1L BRI e 42
3.1.2 - RS T30 1 A B BOR T oo 43
3.1.3 AR IIEETE ..o 47

3.2 FHR- R RO R AR I RN 47
3.2.1 ABGEIIBEILTTVE oo 48
3.2.2 AR AR TTIE (oo 50

3.3 BRETL SIS R T IAE AR .oooooceeeeeeee e 53
3.3.1 ABGEIIBEILTTVE oo 53
3.3.2 BRI B TTV25 oo 55

3.4 KA T3/ AR I AR SR R 58
B BEIIHIUR LM <o 59
342 AR I TE FE T A cooevoereeeeeeeeveeeee e es e 59
3.4.3 AR HZE S FEBEURE AR oo 60
344 AR Z IR E T30 oo 61
3.4.5 AR ITTHZ I T30 oot 62
3.4.6 - R T K FTBEIRIE IR oo 63

B.5 AN oo 65
4 GPORBTHAR S BEEIETRR TR ITEBEI .o 67
A1 BRI ATBREE ...coooeveeeeeee ettt 67
411 ARTNGI AT EULITE X oo 67
4.1.2 BRI AT ERBER R GEIIBLAE oo 69

4.2 PR FE /BRI ERBAER R IR ..o, 70
821 B BRI oot 70
4.2.2 BRI AR BUTITT B oo 71
8.2.3 BEILGE TR oo s 71

4.3 SRR RIITEII D TFINITFREIN oo 72

VIl



831 B ZIITEIT oo 73

432 BEHEE IR GITIE oo 74

4.4 PR A BEEEFER DT ITZBIN oo 80
8481 B BT oo 80

842 BEHEE R GITIE oo 81

8.5 SZIDTIETT oo 85
A5.1 TG T oo 85

452 TZIGTEFIE oo 85

453 SEIGTEART Y JEUBE coovici 86

A58 FIIGIHIR oo 88

455 FIGAE T TE I (oo 89

B8 JINEE oo 89

5 [BE-WFHEE IR 2T ST EBEIBR .o 01
5.1 BAFEBETE I BT oovvvooeveeeeeeeeseeeseeeseee e 91
5.1.1 ANAI o fEIF BIFETTZERE covvoveeeee e 92

5.1.2 AT BAEIF HIFETZER oovvovieeeeeesesse s 94

5.1.3 N[ 8 AR T INF AT BT ZEK o 97

5.1.4 AAEEHITE AT FLEIZE R oo 99

5.2 S0 E BETE IR YR ST BRI EE ..o 100
5.2.1 AN[AIZETDERF T BE TP AT ELIR covovecveeeeeee e 101

5.2.2 SAKIIATEREL coocvovvveee et 102

5.2.3 3 TIBENETE KIE T HT covooeeceeeeeeee et 107

B.2.4 FBIZRE oot 110

5.3 GKEEBR AP VEARATEETIEI oooooeoeee e 112
B.3.1 BRI oo 112

B5.3.2 BELEINAN oot 113

5.3.3 JHLE AN cvoivrevreieeieie e 114

Bl JINBE oo 115
RTINS 117
G | DO 119
- 121
Ff I oo 129



EI); NS U e VA0S



Cv
de
Dr

Af

AF

g(E)

Ks

Ly

R, m
WA
ERRE, KIK
YR
b4

PR
HE B,

kJ

5y H H#E

S F i B, N
i E dEe, k

H g,

L E HEE, K

T R 73 AT 122 52 Bk KL
FHyiE, 1Um
WA

IR 25 2L
BEKRE, m
SAHBKEE, m
AT iE, kg
JiE, kgs FEAKL
How R, Um®; 2 FIEmEes s,
1Um?; i3 BE R H

Previmn s I E, Um?
o1 H

[ & S5 K N 1) ST 14
i 1B 5 ) 1) /N IR
571, Pa

Hifi7, C

SFAFE, m

Gy F 1A Z AR, m
AT, m

G 45, KIK

IFTE], 5 KA, s

ki/K

®

iy 3

T 5ax

Xl

U (rij)

® e R ™ 8 S

- =

=

e, C
1M G Z IR R, K
HEE, k

HPE, mis

AR, m

Virial #, kJ

¥ 1 Mgy §AE x 7RI ER
=, m

o F 1R ARy TR
&, m

Iy 1 i Mo JAE 2 J7 EIER
=, m

He 7> BRI 2

fE

{1
MESH
MEZH
FrmFk /1, Nim
2ot Bkik
HA e ES
HAMGEE, k
RIKAREL
HXHRZE
y;i)ia

AR LA
%, K

;BT



EI); NS U e VA0S

Xl



1 245k

1 % i

FHH I SRR K DORES R BHABE TN — A 2R L LR, B AL
S ST R AR IRV S A e v R TS, A T VR ORI R . (E T ST
FETYIRIZ K R T, FmI R EA &R IR EMEh SR tE, R4
RO ARTAT . ARLAIERAT Y, FEFURRE S AR 10 S I RS IR
R 25 R BRAE I e AL (AR A T R R i NS 1), e 20U JR STt AT 9 05 1k A
FARRMIFBRISAR  BEAE AL AT SRR e, Rl 2 o0 13 112
AR RIS, AR 7K1 BRGR R RO I 5 Rt e 2 A 0 21
Girb A BRSOV BLSE . 8 I MU R BT 22 A0 A 48 b 5 IR AT I
REETRZIM 1 i AL R LR S AT, Sl Sl R Stk B TR 4%, R JR I (X i A
B R, I VFEREE GOR M RHE R BoR K REIRIN R 1 2 S0 B A
RN FEMPEHIA SO G 2 R L, AT a 0 [ R FF T RF 22 A R I 2K,
Fe B B AT SR U

1.1 FEERFEMK

G R R AN R A 2 180 32 T R W R A ) 24 LA 401 B et g [X T8,
(8N R T S TP Y 71T W B TR B 1 TIN L R  T T  E E  E T P e
AT AR S AT i i R T S LR AR be A, B e 450, 7 TR AR RE
ARSI S A 25, UL E S p B e AR A M B AN 2 I B
MR AT MG . o R E R EUEAE TN A b, SR 2 AP AL,
W RV SRR AR BRI, R E e R ARG EEZME. WER—
WA Z b, SR YA e B AR ARG B S B 2=, 1T PR A ) XA BT S 2 id
I FRRAT, RV -VR T T AT 9 BkoRdk sz BT OGTE . BLAE, REREA G
U RA ARSI R A ISR, s Tl SR mEER . G
MRS B 2k P A BAE VLB R S GO Ao - -9 V-l A%
FUEFERA, BefE SLIEtAE i 0 H 1, FERIFAH AU I L S5k, KE
BRIk s % N
1.1.1 AmEEs

HaEr, &M AR ARG =F. Gibbs #7%, Guggenheim A4 #H
S AR A e,

Gibbs # A1 Gibbs 7F 1878 4EFR I, ZA5 A A% o A LT A2 J LA
I, CBRAEE, NHAERR, XaiH s s E YR, SR S A



Q0T B

Guggenheim #5784 19221 b 1 55 I 4 R 5 R A ST 2 — AN — 5 JE T e
X, ErERRASE AT A . PR —ANEE A R U R AR A X
S AT R R WL I I SR R AR B A B A A

1986 4, FRIFTKAR FHEPZAR 11 T 480 S i R 02324 ) Sy i LA EL S B
GLTHRE A 5, % HE D ST J2 30 4 145 R A AH 34 49 240 02 A 27 S

Yo T A A, AT PTAR IR B8 S0 TR — AN B — 5 B 1 ST
2, REENEE BRGNS FEEKD, (BRAGFENAAZM. 2
BT TN AR BREIRS R M R TR, ME . ME TR
FEHAR R R BT 92 a2, SR IRATIXT ST e, TR s . JE
ISR SR AT FIRPE AR . 2R R T A T T RS,
WA E REIAR,
1.1.2 RME3KS

FETHI K 77 72 TR 1R 3 2 3

MR R AL GERIBIF 50 07 153 5 7208 FLTHT G T B2, 76 Gibbs B2 hoféy ST
BHRR A BEENSCEERR, RS T RIS REOMS, Rk
R R E g R A,

, =[6st
R (1)

VR T 3 A2 M 0 2 2 TR T A ) 2 T o 6 4 e
I, T3 77 020 W AR AT T SR S Ly, B,

= (12)

ESR AN SR T 5K T BT R 1 2 T3 50T i RE AN Tk
W TR R BRI BAT M R RN, RN BRI, BUEARR, ke
PR AT LI B . I X RIAE T BRI RN, R 7K 77 7E 757 A Bk
VL HIAE U b b 01 (A AR Y T A AR — MR 77, X e ) a2 A T
(R TR T NP (o VT & Sl 7 D T o T i e N2 9 e B
%y BUE RGOSR, X W S R A AR N B TREA BRI X A . TR
1 B HAe e MRER ML A, R ORI N 75 24452h, R 77 B AR A A%
TR EAM Sy, AT X NAAEA REEEE 2, BEASE AR N B T 3E N B3R
X Py, Spraching®HAy, 24— FLEMAR WA, HFHIA NS, %
RA T AR AR, Epo RHLZRX AT 5 HAM T2 I1IF Hkdk X Ao




1 245k

TR S TR B JE L 23 0 SRR S| B ee i, AT R AR DY AR N B 23 T 1) AR T X
HR T W IRIBE 22 . R, TEIRIENX A 731 AT X [ 44 AH A 350 %% 7% P 5 e
HREIBE 22 B, 55 Ep AHECRAR /N o BRI D9 E ST Ab 200 384N S = ) A AH A S #2 1)
IR, %0072 B LN B AR B0 PR L iR 2402 K THER AN T hr ]
NG ERIVE 10 12 T RX AN 71 AR b 1] 1) 5 2 2 B4R ] 0 — e
T X P2 T AE50R %, Xt R w2 E shgs Mo,

FAb, KT )55 IR T 3 B e RS 8 T Ay s IR VAL
A AR, BT RANDCE F TR R T, xS & A A A s = S, R
X SEAERMAE, BT ERATBEE, DR AR . BN
— 7, R JIFETTEE, YA B 5T AR 1 7] A 5 BT (B A

R 2 T 980 5 i PO B ) 2 B, AT HE S Young-Laplace 7 202

P, —P, =—2Hy (1.3)

ERXFIR TS P AN P, ST R HORERIE K ST y Z R AR, AR
FHIEW SR MK AT AR, R Tk A0 E T iR SRl . VF 2 ST IR AR
AL IR E SR, R E AR IK . AR 32 RIS D 2 A A 20 -
—RET], R EEENEAR KNI, A DU FERBOR AR 2 AL+ REAT
REMRIAZ B, —RRMEIKS, EAM TR EEKERBNNITRHB, M R
BN, A E A AERR, REEPGEERI K — 80 B A i .

BARFMIMBE BN ZHNH, A H AR EE, AT S RAE
FINLE NS ) 22 REah §R = 2 8 VR, IS A5 R oAR A B A b 1 32 2R K
PR, AR B 2 AT 3 O v 0 T 4 o TS A LUK R ARk A 8 ) Lk
5. SRS B ERY, o3 S 2L 2 A BRI, B DSOS B AT 4
ST TR, AT G 2R DK HEN EL AR A R 2 A
of. SRR, N TR AT RESEOUMURE 6 R IR IC, e B Se ANGOU B i
XFAEN N 7 FAT NIRRT, PR -1 - - TR i) ST N 7 5 is
B oA e BUEAR SRS BB ATTE AT T, AR I RO
Ji ¥ B T AT N SO B A& S I R R R, W R R G R R
REABATHR T, WMZRIRMEEE ), 2 /N2 DR EERESE . EHRER LR
WEFE, XSO AN OR . BRI AR OB AR A S b ) R R A
R R CRSEBR R A . SR ANIPR R, NS —GeKEE TR
ARG BAT B M RS . AR SR 0 1 80 73 S AU 5 3208 B o 8 LY
ARV T R ] - T AT ML T


javascript:;
javascript:;
javascript:;

1.2 FFEMRE

EIRI AN 1Y L M v 1) B e ] O s = o A i WSE SN 0 i b S 8-
EEREE — RN S THE, BRSMNE T %051, B s+
s, REBENS TSRS, FEd S5 2 RS AR
(e

Gy TN R R s R0 T o o L R R I 58, IRBEE B ALK
WA H B H e D B se s . KN AW HBETZ, 5Pk EaE
Fikh: —FR D TR L (R MD), —MUe SRR AR MC).
DI 2 15 25 FE & T RSO bRAE, BB Ah 7L e DL — 20 0 A OF T
TN T @GRS T 1T OB TERRENIE: OFZMFRFR
T

Monte Carlo(MC) 75724 i1 von Neumann,Ulam /% Metropolis | 142 JY -+ 4E AR 78
THE T ZUR MR B P B SR R, B R TR G i — Fh BE ML LA B
Gt sei 7%, 1953 4F Metropolis Z57E Los Alamos f¥) MANIAC 50l E5—k
SER T AR 2> TR, Monte Carlo J7 kLA BARRE : 4 T SRAREE: . B,
TREHEAR S A = BT R ) 8, & e L — MR A sl RE L R, P
KIS EEEAN T 0] @RI A, R a8 i e A Ym0 00 4 i A R v S i sk 24
ISR, BG4 ITRSE. R MC ESRE T, AL E
FPIRAS X RGE A R R 2 2k I DTk, v 1 Re 8 LA R A ALAUA IS (8] N TE R 2 &R
GEIRVRHIE, R LUt R GG I R DTBR R A S I L) . 2, BT Monte
Carlo 7530 e SR A (1) R L e T BT A 3 (R MR 2R A28, [RITTT, B ELA 0 2% i i
(038 R PEAR 5, FEFF AR ARN T B, BAUAE X4 B S5 0L A Monte Carlo J7 726k
R AL R AR A0L R 8 (RORL 1 (0 20 A LA S g, DRI G iR e Fe A kL
R ZIRIZEIRAS, EAE G E A HS I R ECEA 3 1 2R AR )

o T2 1125 (MD) 4 J572: 1 Monte Carlo(MC)FEHUBEEL 5 AN A, & A& A4L R
RABRLF (0 FNEF I T)RERFIF TG, KA EHJ12%%(4 8 MD)E &
T J1% (BT MD)XHE R A B AR 180 77 505 FEHEAT SR g R SRAF R B Aol
BRI, FIER S Y Gt T EA RGR R ROIRAS AT o v nT 3RS A
RGN WAL TR 7

5331712 (Molecular Dynamics) 4817774 A B. J. Alder F1 T. E. Wainwright $2
H, RERISK, CEAT 110 hE. N2, Bk, 51
NIVFEMPEART I 2 X T NEAEERAN T TR R, NZERE—&E
A7 et kTSR RLR A R 48 b 43 0> T AR s s 7 12, e k4%
DTFESNDARNZ M E ., BHEMEES, REEHEYHRITTE HER



1 245k

FLF IO 07 5 W 3 o 90T 31 70 2 AU 7 Yo T e ) SR 56 8 148 1) 1
P, SORDEREIGE RS SeI0 T L, B DG IR R OB, SRR BE 2 1 i
Kl . [RIEE, 38 AT DAASE RS 38 B bR PR A DA% S 36 TRk S Il T AR R I —
LefEE . 5 MC JVERFE A, MD AL v N e @, AN 2 F) AR 3E 4T
FIWr. MC A1 MD Z[8] 575 — e KX Bl 2, A 00 K ik R g R 1L, s # H
O T IR F 7R HEHE R GEBE I R f78 28 . MD b2 MC J7 VR AR A 78 T AT 711
BTG B P (52 R B A VR B B 1 050 SR TRE SR AR 1R 2 0 2 R I o AR o LAk )
PIL R BT, MD J79% AT 43 911 43 3 77 % (Equilibrium - Molecular
Dynamics) i3 F1 JE -5 4> T2 /1 224 (Non-Equilibrium Molecular Dynamics),
BP0 T30 12 SR 5 B R R I s A R N — AN RBh, X AN Bh R
AN FE ] DU E 2 (1), 0] CABESE I (] (R HERS T AR 4k, i3 & — AN
WEE. AP T3 J B 3 B T s e e 1 520, P 0 T8 7
PRSI TR S 7545 P A 3 S A D 5 S R A SR o o v

B0 30 S AT VR T LUK 4 T RUR TS S 9T, $87s 1k 2 SR DA K
BRSO T, RRFZ E LR, T SR — R o0t Fad 4 22 W
R Z FEHFE . BHEl MD 7k O R JE SO —FBCA RGATH BN, B
TRV, SRR IRIE, RIS B R R, PR AR I 5T
WEER, 2. MRIRRE . Adr R, BUREARS 2 A 8U8AE Blok )2
(IR o

1.3 ZitIEig

TEAY T8 1B e, — A5 28 T A5 B 2 T e 0045 380 1 0 0 L 15
SHEATGEE,  NTTHS ST OB R 2 RS B ek . UL, A B4
THEE AR, EARFR B A ARG 2 —, GBI R T A
VAT R R (O GEH, RREIR AR 5 LRI A R (0 i, S X Ak s 4
RSB, RIS RIS U, O WA H e SO (O G P, TR
AAEL % B T R 07 2 T AR 1 — ST S (0 A R, 77 LT L P SR 00 B 1
PP, AR R R AL T PRI 1 — S WS . H 5 3 20
ML, BT xR i G5 R T SRR g, R AT S S e M AN B 2 i,
117 L ) B3 (RO AT, RIS AR S )y 2 VR R . ST AR 2 B 2 R
T HIGE T R BB 1 T RS TR G R R T
Giit 1% .

Ze WG AN B TS5 T NG R R B YRR AR R, T AT SR X e T X ou
EHRS IR . 2GR A B A 5 A [ R T 8R 2 7T LXK 50,



EI); NS U e VA0S

N [ R RLF R 3887 AR A TR A AOOR S s T BT e i I & S ST HBE Bk 7]
AT EIE LR AE 2. MG 1 22 50 6 - 3R 24 =2 (Maxwell-Boltzmann) 7>
A (fRIFR MB 20 41) R A IR RN 53 iz Bh A 40 A, T & T Gt i 35 6652 R 37 4E
(Bose-Ehsteh) 7347 ({1 K BE 43 41) 1 %% K- 3k 3 5¢ (Fermr-Dirac) (fFi#K FD 73 47) KAtk
FLFAESRER LA, (ERT ST, BE 241 FD 4345 1 X 5 UAE T 5%
TR (Pauli) A 7 i 22 1 PR | 2481,

A 22 S GE T AR T et U5 A REAL B O T R G, FTEIE AL T R
Gt R AR AR GIRL T AL, RGN RER ST RO T RE R 2, kLT
IS A EAE A, BESRLTAE p AR T O A L A G AL

SRINT, AEVFZ I OL TR T (B A AR AN BE 200, el A PRARIR . v AR
WA TR A AR ? 1902 555 Al 2 v i B —BUR %2 QIS M SE T
W RIERCON RGNS ER, QAL TS A RISk, AT DAL 7 &
gt O] LUAEEEASfE BT [ AH LA F K R 5

RERGUHEAN BB R ATVF 2 M A BOR 5 R R G0 e — N R
KRBT, WA ZASEMEFEERFEHEANE S THRNRGSZE (R
), MTE2THERESED TR THURIELE, mED T Z AR 7
B2 EAR 7 BRaE b, TR RER B B E T B TR A AR
M EER AR — &R 7> ] AR e s . TiE, REREE sk b thir 2 o pg ml iR
WETE T4, nT PSR EE se 5 -BR 24 2 GriE R AL B

WA E RE =M OB RS, IR RZENEIEN RER. Bk &R 2R
e HAER B, BT A N FARR VS R R Ge R R %5 IR RS HRE T,
RT3 N AATR V ASAR IR ) R G R & 2%, BRI R ZR N2 d i o2 AR T,
TRRLV RS54 LR RS20 S R LA 5 1 4 R AR AR (R —
e &N ZE NS, AT LAME— b € RGNS .

1.4 FEIAR T FRUNFRIVR

F BB ) 5 BRI T L AR AR P B S A A, WREE E3E,
AR HE BIZ ARG, NURL T RAEY) BT S0R &1 5 i) A LA R 1 52
B A TR SR, 20 BB AL AR i U8 1 12 HY 3z ¥ ) T8 8 sk
s i, FUSL R AR KL B2 DR Oy AN BEAS 21 A T AH P TS50l S 9 B e Bk
Wb e gy, 3 Ak, BiE Gibbs REEWEFTHIAE, HFHHE 5 B AHE T
LA EE R B B R Btk s A IR e, P ST A A 2 A 20 B AR e ) — P
G3 I T IR A eSO, AT AR R A B T M T4 11 3 T BB R R R



1 245k

1.41 HEHPFEIMRAOAR

RN GRS R R AR S-S AR [ e IR, SR S i 45 FA A
VR AT 2. Bk, 2% 53 6 M AR i R I LT I R AE T R b g g B
A.P.Bhansali®®2§ A\ SEH] L-J 4 B8t D5 3T 0 28 A o ke FEtAT TR T, it
ST B . RSB REE . 285K . R TK 7 UL 51 2 JE B B i 1)
4K, FERREANNSE B S 2 4T T L8 Thompson S.M. B2 A SiE B ik 14 26
ik S K5 R sk Bk a - A 56 Yasuoka A1 Matsumo®® S T TIP4P #4
AE B EON K AR RZ A AR AT TR, @IS RS- 1 =S B &
BLES 2 R BT H ARG T T — P 2% T R K 28, 2l i
TEAKE)— AR B AR A B 2R SRR . AR S B RS A SRR R R 2K
RERBH = T A RIS R 264 R 2K R AR RZB02 T 8 0.05~1.
AR BRSBTS P B VRO 1 0 SRR B2, Rz /N T SR B 2504 1 0 RS
J¥ . 1997 4F Dang® R T —ANRIPE DY S AT AL K 2 TR, A iR 2
AEAE L-J $EEFN Coulomb AHEAE R Aih FH L BREOH & 550 AN/K T 10K
2.6nm, HAG 584 8 L B A B SL T R BAA R AT TR AR R B 7S 2
)55 P Ar A FL 4 SR 28 B S - A THIAE 298 KB LB R 0.32 nm, R 5K /) 55256
H—8. FHA o FEREEREERAAE, Dang A, X2 THr 5 Ak K o
F B TS5 AL AR AE B . B TSRS, TSIl K2, HERK
S S R BN BI LI 12 H 73130 1 SO VXS S R AT T IR,
B8 7 —Se A B IR 2 I 8 T R e IR OO S 2 () T Eh e
U7 VERN =4 715 L R R RIS L SO IE S8, B 5T AR ST 1 R AR 4K ]
W AL, BRES, i ocSCSR I TIPAP #4BE ek BB FIAE FH 3% 5 v 5 KL #4
T PA A T B 28 RIS AR AT T 0 F3h J15 5, 15 0 TR 5%
JE 3Kk BEAE R (20 A I MGE o0, $8oR 1 EWE oF Sm se b bR
I s ) ok s 1) B 20 ST, i HH T B A A SR SRR AT X I S . PR %
AR AR M cke . THERS TR 2 1 3h SR O -V T T
S RRHEAT THEIC, UERH T -V B SR 1 5K 1R NS R G R BT 7 (515
UL? BRI R, KA Tk 4l 1 R P (R 4l R AR S AR A %, B2 3
NI TR, R R, RS BB, A, R R S Y R
72597 301 D1 AR VR R SR S v BE T B 5 kAR ke R AT TR
WEFC, bt Tz REd, WA E. RESSH O MR AR, F S T
BEVELL 77 18] AN 137 R % R RS . SRS aE 75 . g P 21097004 N
K5 T 15T 1L R G T T AR FUAR I fania et A e i A il A2
P A S s e tE . 546, BEIWIEA HAD — 5 F AR H 5 TR AT



JEE SR I S R AT
1.42 S-RAEIRKROARIOR

- TINR I FOR, RT3 )1 5B 7 1200 - A A AT B
Bt ELHE I 7 R AR 4 B 0 X 0, LSO P R R LS R R
FEIX S JRAHDX  AS-30FE T XS = AN B I DO Bl E e, B e st 2 F
7 AR BRRAE AL G B o, VAR R Bl TR - AR S AR R B, AR
W28 R TR WA R 4. BbAP 73l Chapelal™% ATE 1977 4E 53R S,
BRI TIZRH: Nijmeijer™ 1% Az %R T AR 0 5K A,
Meckel ™45 A iz F 1% 7 1 98 7 A 07 2 40 0 S TR P 1O S 00 R4 1 T KRR AR IE 7
VX7 AT ST LG TR IS - 1987 4F Chapelal128 A\ SUfix —1%
GEIT AT RO, TR T AP v A A T B X —

BTV K L 38 AE T ] 41 H AN ST T B SEBRE O #E, Hosh i
FE TR ERE ST HHATEA, R A X EOE st fR AR w2218, S E0Ge soild #2
TEE TR EINT A . BTSN S S S IR, N TR T AR E,
FIRRA T, BB EEL RO D, A AN AR R BN, RAHRAE
250 Iifi. BEEVHENE S A IR K, R T 01 B3 ) SR,
B B A Be g AR FE B A BT n, BRI RE NG N SCER+
AN LRSS BEEEIT AR IR, R A5 B B AN SR K
BE 2 9K (H 481218 2 5.50 J5, % BT I K ) S #0 AN P A T 1 A 1 1
R W2 515 4.00 J5, M4 B 5 SRR 2 AT 5%

R-BAHENEE . Kk EE R 50— B -5 T IS0 7T A%
L, WERIEE N T REN TAE. fE0 3018, XS5 1 2 A5
WIS AT B ISR E S A R T SO R A 2 A AT T
X-y TS5 9 N AN, 00083 5010 87 52 3040 5 g R 027678,

SR ) wa
m®=@®mJ—éK%“ﬁéﬁum» (15)

Kb, p()WEKAVS B, . oy, Mz, MRN8 TF | BT j
BT o y Al 2 FFLERAR, VORI AR U A 2 S
B, < SHEMRGTFHME, py Fl e 4 BAER R SRR . fE%A R 5
b, SRRSO R LEAE X (% A FRE ), YIRS Tk R . 3]
DU RS 75 AT RRAS s 72 SR X (3 ISP X), 11 1R 28 i o



1 245k

71, WERNERCRRIEK S, RAARESRNX, REKIIERN:

1 Ns
y==>rk) (1.6)
24
/\EP7
2 2 2
1 Xi© + Y —27.
k)= k) i T Yi i y(r 1.7
=1 <; o (v )> (L7)

Andrij 1 Jose® Rl Fl 4> 7 3h 7 S ML 5 V5 AT Monte Carlo J7 3%, Xt
Lennard-Jones Jit /4 4b TS -3 P AH T IR (085 B2 v m) 5 D0 1) 2 g LK ST ok 4%
AT T Gtk s, 1938 TEAER R dh g, CURAHN K — S 5dE . IEe
BT oA A g A ST A S, AR SRR ST P . R TR R AR
A . 1999 4E Matthias! 145 A FI FH 2 1-3h J1 #0535, X6 TR R R e —
TCIRE WA TP A - A I RAT T T, Wk 7 ARIE S T B R
YRR 3 B SRR sy R ITK 1 LR JITEAR R B A o LB L4 R,
[FRE AT 15 2 SAH S RAH Z M 2 R . R 1k 5 2 B S 458 . HAh 2238t
MRS SR NS A Rk EFERI T, BARNS
TR LE, KEHEFREARR 2 mERi, EANERST EE, e RE
ZEH

FRTHTK 75 W RAE R B S - R M R B, ] e - 5 T 119 2 0
) Gt RHIE, (H R BE S BVS-TRFE T 2 — AN BEALEKTE - AR ) T 1 A Ao
RFAIE o PSR 2 3G FHE U2 K R S-S — TR, FLRE S 250 (0 7
RS AR AR Ak, FEFE S-S TR S T P o T4 B o6 o+ T4l
BB P40 T BRI 9T 1 /-0 S T B, R T S 0 TR 4 5 R T ok Sy 6
Ry K-V TR 72 R R RO 1 A ML &5 A T o
143 E-#&AFEMRHARIK

TE - S IR BB TE R, o3 3 1 5B 77 7 BRI 92 32 B4 P o7 [ 4 oy 1
FBAR > T IR R B L [ 3R T2 AR AT P R EE - 5 T 11 5 A L3
Eo Edmund Webb® R i 437 2h 12 M40 5 32 %5 [ 44 37 R ¢k 4 1 180 (K 4 A
BRI TR AT I TT, 8T ANFEI A a5 R o B RE 0, RIS
RS 3 2 4 2 R T WO B R 0 ) 2 2R 2R, T B AR s 0 AH LU ARt T 5 ) 52 e 4R
/N,

Peter A.Thomsont® %125 4 &3 iy 2 vh 2 SURIE RS AT o 1 461, 0oF ]
PIT R TG 7 FE FE B i DU 24T T IS, 1B TR B PRI T S
B, AshiE QAR A 7 RE R VR T B R TR 7 AR



EI); NS U e VA0S

A2 S iR ot 5% R Y A A [ A 3 2 T HE B HO R BE A R 1 R kAT T B AT B,
LG AR LA, SRS AN PN o DRA 6] 43 - 1B AR EL A FH RN 9 1 25 4 5
S BRI 10 F1 2 R e BT AR R . 4k, 1652 PR A 18] Y UL 5 SRR P A
2 i e,

A ] S T AR ELAE F A Esl A, B 1 SRR DA WLAIAE 71 07 I B A4
i BEWR A FAERE AR RS kA=, RIENE . 5KGHE &
AR N A WL 43115 LA 3R T () O RR S5 72 R 00 2 BV 43 1 [ A 3R 1 1)
Wb o BTS2 R fs FH 00K 2 R 22 40 4y R T el 1k R B 2 2 B v 23 1, A R T A
AT AT ZS, s T /RN . TR 245 7L T g
WP R4, SR Monte Carlo J5i, XA TE [ BE ¥ 35 W BAT AT 1.

KTHUEFZHNSRAAANZ, BATECH RSN Z 2002 4/ Ranselaer
Polytech Institute i 7t /NP8 ity — 27 SC e, FHETH 20750 /7 S BE30 05 1
WFAIE 72 0 TR, S T DL [ -0 5 T R oA it 26, Rtk —
AR FERAE N R L. BEEP o7 1 EAA R B S
FOBSOIRAE S, T ELRH A P 0 RUBE S80S 1w AR AR HH A N = B E T LA T
WFTIRN

FHh, B AOKEAR AR I THAR R PE K e, PIKEARAE R Z R L
FESTIRESAT RN T T2 N, G Bty JETE S A B B EOR SR . T L B
ERGKAL A R AR L [ BE 2 R VR R A BR S , HOME S o ARG R AR 2R
TARTE R AEAE B IR R X3, DR RO A K RS b 537 [T B 1 B4 K L 9
TRIZE K RIS J2AT AR Aok YB3 e i ot T R R 9T 3k
EHATAMAREENZE L. B TR KA RARIN THA KBRS, IR g
KR EAT 2 BRI 9T, TAE 2> T3 7 dth b, n DR H i 7t 7 kA4
AR F K FLRE R8T SR dE sk, BB TFE N R B E R R, 4> T3 )
TEWE LK AL A TS Bk 3R 7 T LA 3 T )32 1 9,

R R, ZEEMAR I, UKL RAR S A A E), (ERE
BHERARA R ZBLG 0, BAR, TR [ I A X 4R R SRR (45 H AT A
[FJ (R, T AS [) R0 A 25 A ik — 0 bR M s 1 (1) Bh A 32 B R P ™ A A
FIREM . AT IR SN K FLBE T 34 e A S8 B OB 3, (ER G T3 5 T (1 VR 4
WIBFHAZ . Somerst®UE5 3 3ot 1 He B T 5 RE A FISIE, WFFC 1 RE I 24 B U8 FH AR
PRPESR I, (B AR R PR T 5] BE T A5 00 . BitsanisP®A4 IR 7t 45 SR 2% 1]
YKL AR I G5 A B AR 2 AR I SR FE 5 . (R, ASC#E— Do 7 i
PR A [T B ) S 1) il T AR 73 (E 52 B IE TE AT

10



1 245k

1.5 KX BEN. AEMGE
1.5.1 RIRXHIMARFE

FEVFZ AR, 7073 J1 50U 2O U A RT D B s T i 5T 7 St
TH, WT RIS ARG, Fik, 496 SCRH T3 1125 B 7 8
AT LW R ORGP SR E R R TAT R, s R
AR T MAT A BB R . RATTENL S TEWITEN R A IR B A LT
(TSR IR 2«

O B I FRAN 75 A3 401 (R AH B A Re i Y

@ MAF TACEBEATRI A0, T LT A0 SR 450 T A 34 6 F 9 7 vt A
AR HORAE BB A

©® MBS TAT R, S3E MGk, oL R 2 WER, M
T 5 TR O AL ) AR 222 00 B T 78 B R AR

@ A LASEHLSEIGHT 7 LUK B S50 eI Tl IF HL AT SeIb it 7t
SE NSRS
1.5.2 B/

AR SCHIBE ST B ) 5 TR R4 T30 S 7 i U SR B AR TBE
W R AR B, MBSO R 5T Fh S AT 9 R L Bh AR
DL S TR A 3 00 S5 RO AMOUL A 3R 3 7 2 M TR0 R BBE VR N T A8 7T J2 ) 45 M 5
VERNS TR, S TARE T R L2 IR LR .

153 FEMRAS

@ SEFRSAR P-V-T ki) 73130 1 2B 5T

VEANI R T 7 F 30 S 2R R BR AN S B R, Mk T 2 F 3l S 2 sl vk
WEFLF, BLL-J WA, T T AR AER P, e T VA v
AR E S %, N TANZE AT F 7 ER SRR 7k, LUK, RIS E
FROELEE , W 5E T ABREROMRIIE 77, VF A48 RS SO EAWI & . BT TR AL
PR T TR SEPRI AT RN, SCAal st S X PR S At 4T T R,
Foks 2k 5 B SRR TR SR SRS IR TF RS R R L) AR S
WAEHAT 1 LA, WEB A3 7 A AT DL T B SEBR SR P-V-T Hefk .
AR T2 G P2 s B 0 2 0 BH BR BUVE i S SERRI A 2+ Je RN 2 B
(PR 2% BT R B B, R 20 30 ) 2 A R v = A R K B 40 T as Bl I Tl
WA, VAT T AR R WP AR 25 25 TR I I B R 7] F) 3 A 2R VCIR S TR 1
S EAER D Jo Hurst 3550 H, B B0Ai B2 2 B HR T S2BR R B FRAR AU 1
TR,

@ S-S IR LR T8 st R S geit

u

11



EI); NS U e VA0S

RS E  2r T 3 2L B A B R B TR,
5T IR TTIERE Y oy oKV B G I - S TR, T AR A
RIS RS SE R, DS ZE 0 T B J1ERE, RIS SR 1
ORHLEE N N o A BT T A RERINT =42 132 BOGHAUAAR 38 ST 4 A g A< Ak
TR A2 B DA S AR S S AR R SR T 5K T 52 e, 2 T — PR ee % [F] I 3 A2 351 50 4
FHAER S AH A AH S S EH B SR A W AR e U7 V5 - AR i B AR R, i oe
R 1 4% S8 B ABEAEL 7 v A Gt — B AR BT 1 AR AN BE [R] B 3 A2 350 S0 AH AR AT AR . AR
A8 FE UL S AR SR v R T 5K ) B SRR FE R R A, 1R TR ER R Y
TAFEE A S AR Tl J i, b 7 TiEkE I St 5
FHIEE M, B TR R

@ YK AR B[ AR 43T 30 1 S 7T

¥ KR I R 1) S T B G T T AH P i R R BBk ST AR S48, DA L Ak
W BN, WORFE M AT 7 4K 26k . A5, BB A B
AR, B AR AT R BRI N R, SR TRARIAR T T AR R 2 R YA A
g ] 3 R PR AR B A R R THIIG o MARIORU Y0 B R0 HR SR 7 A 2 P 72 WL I
FARZR T2 W2 G0 T AR R B A o DB M 4T R 28l [RIEY, SR 7K B adt
AT IR SR TR A VR T B ) R AR AR K S, RN T Bl T AR VAT
T

@ [ S AR ) 23 3 1 AR S S Se it o A

ARG T AE TR B - e tE, LR E 4R
BB, WFFT T R BE (LR BRI VR, S R -0k A AR
AREF TN T EKOR) R o FITEKOR) RE B, TR TAFR a v BIEXTHEY
SRR, 3BT SRS LR AR S RO B A A RO s T T [
PRBETH R A 93 74 P B B R s R BLAE U B TG X 40 1 B T A0 A S — M
ARG, HEARGSHS o B K EIEER) ¥ S5 HRHIER ¢ 18 - SR
BRE, WEAC T AR AR S 06 [E AT 2R T IR T2 1 R R R 2
(12> T HEAT RS SN . 5 BBERIE T2 (R FERE b, BE— 2B 50 17 U BE (R 45 5%) A [
BESARRRVE I REA, BIFAE T S5 IR ) 5 (152 R R I AR S8 N R 7 1
HUm oy A RUA A A bR LR A, LR AR S T I8 SINAFAE, 95 R
A (bulk liquid)#EAT T ELER . #RH T 0 FHO% BE A (U R4 WAi) 32 ik — [l 4
STANSETE H IR, SO H T A5 I0IE N 2 FHE A, XU AT B BT A2 1L,
Gy A2 B 0 7 (B 08 S I ()15 434, 75 21— e BT e B Y 3 2 S R I 45
W, AT S TE Y B R RAT A G T 3 B AN AN AR AN TR . A
WIF 5078 S TR A 0 5 8 1 2 A SRR Ve O BB ik — 5 6 L)) 2 R s Bh R ARk AT T

12



1 245k

WEFE, WHFC T 7REIE N IS R RCR ), ITIRAN R R EO T B AR S
FFLLARAT NS, WEFT T 9UORIEIE A st RrtE, 2t T ROEIE AL i
FEo A, ATLAB SRR MAERUUE T N-S TR AFEH . AR IS 1R
TR TR RO R R T (22 5, oSl TREIE PR At 14K 35 .

13



EI); NS U e VA0S

14



2 BRI P-V-T R 7330 1 2 BT 7T

2 SEFRFHE P-V-T $5HEH 5 RN NS EIHTR

Oy T AN IR T v A dr B A Rt A2 BE 9 WO _E BRI ) T (1 3E 3l 1
Ol AR T RGN R RS R R G R A T RIS si L, A
G ITEN Fr AR B KBRS BT S, RS 515 B/ A S BRI K&
LEESERSYE

AT EH WA T3 /AR NER IR A S AL Psy Ts [H5C
> LN R TR RSS2 A RIS 0 AR B Py Vs T Rtk HEAT
TR, PABSBEAT RS EEAN . AT MD 592 1 B AT T A o

FEARTH, WATE SRR 7 70130 1A R A A BOR, YA
L-J A Ar R CHy 01, 23 3R 001 8 F3 A U TR SE B SRS T R, 3t
L) PR AR AT e, 8IS Ar R CH, RISREGEARELES,  PRU P
FOPEAETT 5 L0 PRI AR M I BRI S5, R 73 130 A 2 il 5 i AE T
TSR PR A R AR S IR AT T 2 P D T 2w AT 1 B e B TR 28, Br
L-J i, A ULRAE BONE YL s8R Ik 1 HoO D, 78 CORmR RE L B 1Y)
ST, B MD J5ik, TR TR R AT S Sy, A5 3 T AT 7R v A
R R 2R, I 5 SLIEBET 1 EeRL, IR 7RIS R A IR R PE . A TA DO
{7 FLA -0 ik X BN E A HoO JEAT RIS HR I 5¢ R T RO TR
St 7 HRFEAG . R R IR LA AN S E R ARV TR B R .
b, ASGEVEE T R MBAUIRS R IZ K BIAF R ARRL, 2S8R 2R
‘s B IS s HE, SR 0 4ERON BAR IR 5 SEBR R H i 22 1EA T
SE BT

AT, — I E AR TR R 5 R B AT S
FE Bl SEE, O DUJE REAT AT B0 20 A 3T R 24

2.1 FFRNNFEE AR

¥ BN EERAU T i e L R GE IO T (0 1 8BRS 1) B A 7T
R, RHAGIIN 15071k, KRR AR 180 715 05 FEEAT RIS
ARG S, R B R SR E M RAT ST 345 R 40 1 2 WL R
) — A SR
211 B FRHINFEUITENETELR:
@ FrREBLAIBEE, RIS pR AL

L REAR R 2 X A 200 1A)AH B I 5 0 Bk, AEHULRE 75 B Z IR T E 75 IR

15



) N L R e A7

bELLbvivke S VATE Y R BN B a0 S W EN &5 ) NP G A LK S e =T P e L1 E R e
BRI ORHAE TR B0 1, B R AAEER . #ER. Lennard-Jones f7fE. Kihara fiz
RE. Stock Meyer RS EAL; Xt T H A0+, ARHAZ LRI E- M B AR
R, fH & (8] B AH ELAE FHAT R F BT A e ek 48 X T B TEE 1, 8
TSI\ Coulomb ff IO s 70l i o K — ELRf 5, (58 T AR B M B S MU SR A A 40
RN EPR /BN =

FEARTE R, WA R ARSI RIITAG, EH L-) WA AT T &, X 2B
L-J WAkt e, e FE, RSS2 7 A BAEH Y R A
Lennard-Jones12-6 #He AT HIIA . N T AAE R DAE R An b S, KRk
I L) Aaek s, HEMAIEAN:

u(r):{;u(r)—uLJ (r.) r<r,

r>r,

:/H\:EP’ uLJy\j I—\] %ﬁ%@i&’ i%jiﬁ

u,(r)= 4({(%)12 —(%ﬂ (2.2)

R, 1 R FIBL, 2 Ao 43 B AE RO R IR R S8R RS B8, W L)
TR o0 & 800 THFE m 1L F 00,

(2.1)

# 2.1 SR LER Lennard-Jones12-6 % bR S 405 4> 7 it &
Tab.2.1 Parameters of Lennard-Jones 12-6 potential
function and molecular weight for Argon and Methane

. (Argon) FF J5¢ (Methane)
c 3.41x10"%m 3.81x10"m
€ 1.65x10%1] 2.04x10%)
m 6.64x10%°kg 2.66x10%°kg

@ Z eIt

R BN 7R TR ERITERL T I a6 A0 BAE L, A A 5% 2SR AN R 41 46
FAER, i Verlet SEUCTR BB A ALARR R EHTH L, — AR B ZIALR, —
AL RTE— AN A8 AR AR B — LTI 2 B A . R GV SR AAE— TS
OUNANTTRERNIE, SEPR EABATE EORS A AL BEANSRAR, DR AN (8] 2 % K
ARG = SR 2R, GBI ] LU R Se T 1 e,
IRAFUF IR EE

RIUa 25 E 0 T BE T5 i WIAG A0 B BUE AR Z2 70 R 70 A RS 5 1, FlR T
JEE WU BB 7R % 22 o A BE AT LA A A o

16



2 BRI P-V-T R 7330 1 2 BT 7T

@ BT

FEI T FA AR 56425 7€ Ja v IR iz sh 72, 3EAT 70 T3 e isidtl. 3
KRB RARLASBEGERN RGN GE, I HXMRER G LA Z
—APERS . N RGUA R, AR RO MRS IR R,
F RGIME N AR, BEIRESHIEMREE, KN RECEET
ST o X BRI B ST PR B TR R Ay it TR I TR

S FEN I, RN RSy L, P TR A, AT
RS, BKE RN, H/NEIN RS 2o Al 2R GURTU A st BRI (R4 . BTt
i 8] 25K TR AR I 22 B0 34T 18 4 1 L
@ ZEWEENIE

SERRTHE 0 2 M) B B AN IS R AT AT R AU B S B B AT Y, VA
7% [A) R I SR ST 251 R v B4 21 1) (FH IR [R) T 339408 R 27T 350)
2.1.2 JLAMERRE AL

TEN 5> T 2N 1 EAE T AR R I 2 5, 3 B AR 537 30 1 A4 7 72
S i o 5 38 B ) LA A ) R 4 5 RO — A
© LI AR

N T BEH R TS IPRE, RN EJE, 729073l i, RS
()3 RO 2 BB W AE TR IS B RGN ANE BT SR, BT TS B A A
HIBRE, B TERATTRERZ, o, RS, Fr, o,
THERIFREWBRR . IR G S8 77 VR8> 43 1 306 BR ) 52 Wi 2 4 5
L. T RGEH TR SIPIRA T L % A0 I IR, A0 2R 407 (B A 43 - 40
AN R AT LI GG T I TR R TR AR o 731 HAS 2 R R R A% DU T i 3 a2 X
I I TR o

HHT, fE0 a5t &AM FE =M R R &e, Xt
PRI G 26 A RN [ BE T 2 A o 0T KRR R G RIPE B UL, R S 57 2% A
et EER . B, AR SCHEAT T 70 T3l 12, RS oh, YR
FH & 39430 5 %44 (Periodical Boundary Condition). J& i 5 414 = = I LI
2.10 JA S T2 B AZ U g Hh oAU, S AE 2 1A A S A R — AN K B o FEAR
W, OB S AN TR, AHARE T IR AN T SR B DL R A
M. 4— N FEFHOETE, EREGFH—A 07kl AR T
BEAHLE T . LR TR TR A BE R R > 1, ZAEREF 7RO &R T
MBCE T, FINEIEER T SN .. HERMR RS, B0 EREG ST
AbR, R OENND TR A= DM TEUREF P OETE, ¥
RFEFHNF OB TGS T
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O
O

.
O

O
O

2.1 JAM L R
Fig. 2.1 Periodical boundary condition

@ TR AT

FEHAT PRI B AT, 30 7R B 2 o B FH 2 ) S M) B 3k AT 8
BRI, PR E R TN BT A R SRR E S LA E R
K, EREKRIHHE IR ZE . % Lennard-Jonesl2—6 ¥ b B AT L =ML F N, KH
T Lennard-Jonesl2-6 # R IZE ¢ Ml o, LA FHITE m EAXTEHEE. %
PP R AL R (e ke NIUIRZE 2 04

* 22 YR ENLAE

Tab.2.2 Dimensionless parameters

Sanml[E1}:E) r*=rlc et u'=ule
KR L'=L/o i 0 =ps/m
[IGEA A*=Alc? K g N*=Ng*
PRFR V*=V/c* & p'=pc’le
TE T'=keT/e Kk v*=yole
P v*=v(m/e)"? fif ] t"=t(e/mc?)"?

+ f'=fole

© #rFien Ak
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T R NEBRIRE, RETRURER S, B aeTH LS T N(N-1)/2 k. Xt
FREAN I DUBR R K IR 2 5 Pl 78 10 73 TR B UL K 41, X TR E e v g
MBI, = e WAERHONE, RAH0%E TR re AR 74701
S FL TR X T2 e, F5 RGBS A SePr i Sl AT B (2N
T SEAERE 2, Bika 1 i 58S 0GS TR, #SlrE R AR T L2 8
ST R IIA ) -

SRINT, AESERRRIES T, T AR AR IAE o IS IEARERI AT, A
I I AN BT <] 228 AR LA P T 30 22 R A SRR A, X AR A Y R B
RIS N ICHAne, ik, NiZ#T KRAERIE, MHLAEHGE F

U= Nz‘fi%(r —r)+ULR( (2.3)
i=1 j=i+1
Hx e ENKERIEN
ULRézzvatJ& )Zdr~2mwj )rdr (2.4)

b, g(r) MR, B g(r) (r=l. T4, ERIFLF, L3,
Uire IT'5 A5 FFEEIF6A R,

L 12 6
U ke _ 8mp| o - _0'_3 (2.5)
N33 7

FA, XTI IE N

Pl =20 I r)rédr dL(;r( r)

~ 2@9[ Pdrdjf) (2.6)
X L-J %, JATH
167p°s( 20"  ©°
PLIE]C = 3 ( 3rcg - rCS (2.7)

XTI A AR AR IR K, BT LA AT B AR i 2525 JE KRR AR U
2.1.3 RERAVIZEVAIES 5 0E

AT T B RS RS E R RS N EAT . B SERIERTIE STR) H A
X5, EHUESE PR RE TP TR I R 2k W B R ORUIEN R 2R
(NVE), {ERIERE PR RAR 74 AR BE R RIF AL RERE MR —iEd
X P BEAT R b e RSB o (BB e 2 AR G T4 a0 20 2 8 I
(A5 R GU0A B P UG @B RZE(NVT), 7R R TR0 AR B R R T,
HFHEEANF. NRFRGHREAL, FERGE EMRIRAET IR
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A OFMEERLZ(NPT), KrE. EKAOMBEREAT. HTRAEK LS54
BORILHEE, W MEIUE AR E RGARTURSEI; @5 K44 RZE(NPH),
REERGWR T R SIMEAT . HT R SIAE IR — 2 MR, &
B — A X — RE8. #E T AN ERMREGE, ERRPIR— NS
TR RO, 38k H 5T AR SR A5 B i 7 (1) 22 WA SR A R

A PREAAR RIEH IEN R SE, T RAREE AT, B
HIJTVERZ, WA : e, Berendsen #WAM, Gaussian #isHl,
Nose-Hoover #lOM0 Hodh,  onfRifH BAT R0 AR bR k. IWAARSD /12
WA A, WA IS Fahge I BRI &E, 41 PR

V= WISkBT (2.8)
m

X, m AT HRRE, TR, k NBURESHEE. B RN
e

(2.9)
X, Ty NI TR ERIUAR R 2I0EE T, A3 1, RV R R i)
BRI IR s v, AT bR e iU S AT A BB 5 | MR R v O AR
S8 JEHIER | AR IR
RGN M FHRRTLT,
N
M) =N 1 (t)

i=1
Rt T, 23 RN R G 1) 2 W IE Bl T B I (82 3 R AR RS, FERLE R, XA
TN IFPAT T RGO PR, R R AL TR X IR L.
2.1.4 B FENB
e T3 15, R 1issh iR
d’r, ou
m. L f =———

Ydr? Y o,
K, m A R T R ERET S BIER 71, u iR (Q.2)MARER L. XT
KQ.10)U D FTFERIRAE, —REITTENARZEE. EABBWT: 4E t iz
SN E. BEMREEIHNEERE, S — R E NER G t+ At Z 147
B OHES, TRk Hodr, TR TRIRS At IS OB T SR T,
H At B/NT—N 90118 B 5K BEEVE N 984T BT e 9 s [A]

(2.10)
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BRI BB ITER S, B BHIEIA Verlet S9:MIAN Leap-Frog 44
PR erlet SVRIET ¢ RIAIGOGEL it AT 20 0 k3R e
ZIRIAL B

r(t+At)=2r(t)— r(t — At)+ At?a(t) (2.12)

b, v an Rk RIS AN L O B, At 9 [a] ] B . U IF AN R T
BEIRETH AL I A b B, (HE BEXTH S ReA M, AT I A s I B E
S

9(t)= F(t+At)—F(t — At)

2.12
2At (2.12)

X, VR FREE R R, NRQRI0)ATEH, Verlet HikTEGFM% ON N E
(r(t) r(t+At), f(t), HEEEIEEEE 5T

Leap-frog BiEX%T Verlet ByE(E 7 —i&ph, ERT t BIZIRALE . g
I 22 I 20 R T B IR N — I 2 A B

F(t+At)=r(t)+ Atv(t + %Atj (2.13)
(.1 (.1 -

v(t + EAtj = v(t —Emj +Ata(t) (2.14)
{E Leap-frog Sikrf, FAPAELHTR 20RO E r(t) s AE alt) R 25 ek

Ev(t—%mjo FEPATE RS, Q14 %MAT, BET - PDEDRKKEEE

i@+?ﬂoﬁﬁ*ﬁ¢,ﬂﬁﬁ%%w%%ﬁﬁ

V(t):%[v(t+At)+ v(t—At)] (2.15)

Leap-frog SHiE/EARE LS50 T Verlet 532

2.2 L-IRISIEMESHN D TE NFRIUWTE

FEAT R, DUEARSER e A 0 AT S BRI S B M 5 16 B
PRISEREE R, SRA T PR OB M4 TR BRI, SR
PGSR HEAT 50 T3 1L, 52 BT SR PG/ R R T R ) @
P AR A 7 RS LR TP G 6 S R R HRR ) R, REPRR S i
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HRK A 2 AR

TS5 BT T . LA
2.2.1 FFRNNIFERBITERE
@ B R gL

TS 2R 43 51 R 2040 T IR 22 J5 T4 T PR A AR 7RI A e,
K EAARR Oxyz, 2 TAEWIUGI 2RV SR T, B2 T4 0 7 7
SAHER TR A, RGBS 0, 0, 0)db. BUNETE x. y Ml z =AY
KJEHE, #A L, B Lx=Ly=Lz=L. WK 2.2 iR, NHEEIE R &9 &
2 AR BT, TER LSRR B RN . BE =AY

K22 # e rEE
Fig.2.2 Sketch of simulation geometry

] b 35 R R B TR A, TR RIA B SP AS FR EEARK AR (6], R T 48
LK B S B BLAOURT ), AT AR, SRR 22 s i h 0 A ok 45 7 T IR T
VIGRTREE . [RINF, AR BB B EMA R, BB SAH 71 R EE B4R
K, I HEEME K RSTHER, oS, I ReEF4% R= 550,
I Z AW AR 4 A BEAE R AFE IR EARTREL Y, 5T EEIECh
N=1372, HHEZEK t'=0.01, B TABRA RS BRI EIE R, RGUEBT1E 1
(AR X R, SOBOR P AT AS IO R 2 T3y T8l i520, SR JE LA 12 Ji 4y 1380
B HAT G . SRR RAEIEAT 5330 ) S B 2 R FH 0146 25 A 43
3 2.3 F13K 2.4 s, R LB G KR TR, e RS0, T 5 A 2 FE A
S HRMIS THENAX, Ui FRIEAH:
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|j:('fj3 (2.16)

*® 2.3 MG UBAIAR R TG 51 (N=1372)
Table.2.3 Initial conditions of molecular dynamics
simulation for saturated vapor of Argon

™ pv* L
0.753 0.00445 67.55
0.837 0.01089 50.13
0.920 0.01985 41.04
1.004 0.0357 33.75
1.088 0.0611 28.21
1.171 0.1055 23.51

R 2.4 MG SRR A R85 5% 1F(N=1372)
Table.2.4 Initial conditions of molecular dynamics
simulation for saturated vapor of Methane

™ pv* L
0.711 0.0022 85.44
0.744 0.00333 74.41
0.812 0.00676 58.77
0.879 0.01238 48.03
0.947 0.0211 40.21
1,015 0.03408 34.27

@ EIitHEAN
ARFTRRD, X FEARSAE, BT 72 WA AR, Bk SR R
FEHIREA R X TRAMA G B AR R, AT o T
p=nk,T (2.17)
K n ARG THERE, ke NPURKEEHEE, T ARSEMEE.
LR, BT TS50 T2 aEEE TR, EHETRRE,
EAREAH R SRR EESIREA S, Lz & a0 7R EAEH - £ 1987
%, Allen Al Tildesley #& i, 737 I8 EAT A ELAE I S& b U (BGBAE),  FLE 7]
LLE I PR R AR 15 2
p=nk,T +\\I/—V (2.18)

AV AT, WX
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WY, (2.19)

i o

XK T i M j 2 IABEER, fi A5+ 1M Z RIRER T,
222 SEREFEXHERE

T X T B T FREINE R T R A A — DR LR, ARG T W
B AL LR SRS 2 P-R R RS S E 7.
O HASARE TR

FE G N SEPR RS TR AR/, AT TS B AR SRS Ol

RHTREFR, AT EARASE, HT T MEEMEER, KR 5ERAK
PR EREE) . WA . HEAMRIRES TR ST :

ov=RT (2.20)

SV RIS, RVRER, SRR E S, T NRGRE.
N TIET 5540 T30 A 2B Tr AT Lo, BT b 2 s g 2 P O
3
P = pRT (2.21)
BT TR AU, KA RPN TR, 07 e, JfiE T i
A ER AT

P* = p'T' R (2.22)
KB
é:R*:Rgl (2.23)

E X RONTEENSAEE, WA:
P*=p'RT" (2.24)

QLR AMARE T FE A

PAR SRR ADIRS 71, RAEBE SUE D T AR, SR s 1 ]
b S I (YR A <o P i = AL P10 ey T e N (1B TR R /N e RES IR R SO A
HHAFRAGHBEAER T, X[ RE S 2 MF GRS IRE T

SRS TR BRI I AR LR 5], AH BT B A R YEAE FL/R i (Van der
Waals) - 7£ 1873 ik B3] 7 XM mA o+ S A AR FS, /R TE4
TEAE TL/R WRRES T FE  YEAE LR B #2 M2 - A A 54y 1 A 5
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o, SINTHASSEFEA R a f b X EAE SRS T EHTEIE, a
b ARG FSE P MT A%, ATHPMT e, MalEPmrMp. v, T K
WHAEFE, HT Y RAE SRR A RN, e R s
R HECEE R TR

VAR TR C & R 100 24F 1, HAg i) se e AR P BB Y 22 5475
S A PR AR TR . H ATE SEBR A TH R A AR 21072 B 1) = 3
F 405 77 F2 R-K(Redlich-Kwong) 77 2,  R-K-S(Redlich-Kwong-Soave) 77 £ ,
P-R(Peng-Robinson) 77 F£#f & FH I ATA= B R 1

ARICIEFE P-R R HEMF S py vy TR, HEFRZ: P-R TR
—MEEE A TR TR TR, 5HERN ZEHEA 5 LR URIR
BREARLL, AR Rl X B SRS B A

P-R 75 % ) B Al 2 tn 1A

RT a(l) (2.25)

=D “v(v+b)+b(v—b)
Horh:
a(T)=a(T (T, ) (2.26a)
b(T)=b(T,) (2.26b)
a(T,)=0.45724R°T_/P, (2.26¢)
b(T,)=0.07780RT,/P, (2.26d)
2% =1+k(1-T°) (2.26¢)
k = 0.37464 +1.54226—0.26992»* (2.26f)

AL, b T, o P HIRREL 1T a AT, Py o BURIRER . [FFE, 3RAT1%(2.25).
(2.26) v LUHHAT T R A AL BE :
a’(T.)=0.45724R"’T.”* /P (2.27a)

c

b*(T,)=0.07780R"T," /P (2.27b)

0.5
o™ =1+ k[l—(:rr—*j ] (2.27¢)
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wz%- (2.28)
Yo,
E X VONTEENIE, P-RITEXHLENKIEARRN:
¢=RT*— a () (2.29)

V' —b" v'(v'+b’)+b’ (v —b)
B, ORI BEAR A BB L R 3R

25 P-RITFEPGE. HOBEHRH  H 0
Table.2.5 Parameters of P-R equation for Argon and Methane

Ar CH,
T. K 150.8 190.6
P atm 48.1 43.4
® -0.004 0.008
k 0.3685 0.3870
R 1.0025 1.0015
P 0.1157 0.1192
T. 1.246 1.289
b* 0.8399 0.8425
a 6.166 6.393

223 ITEER R
@ HRIE it s R

K T30 A5, IR (2.18). (2.19) 1T LAFE 3 i &SR L As A1)
RRMMAIE S, 2.6, £ 2.7 7 MD UL R4 T3 J1 27 - A2 51
AR S T BB B MR R Sl R PeP-RITUR I UM R B 1 S/
k. MR —HECEL IR RRE P-R 7R (2.29) it 5 AT KA
[N 45 1E TR 5005 21 M A IR A

WL T R SIS B AT 2R T EL B A 2.6, AR R i 2% 55
U 3.2,
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2.6 TR BT T B 0 S S SRR AR R B
Tab.2.6 The comparison of pressures of the saturated vapor between
computational date and experimental date at different temperature of Ar

*

T 0.753 0.837 0.920 1.004 1.088
S 0.0032 0.0084 0.016 0.029 0.048
MD 0.00315 0.00836 0.0156 0.0286 0.0486
P-R 0.00323 0.00841 0.01602 0.0291 0.0485

0.05
- —o— Exp. /
0.04 —%— MD
—e— P-R
0.03
o
0.02 /Q/
0.01 /@/
0.00 F/ . . . . . .
0.75 0.80 0.85 0.90 0.95 1.00 1.05 1.10
T*

K 2.3 @EAEANFERE FRMAE S

Fig.2.3 Pressure of the saturated vapor at different temperature of Ar

FEUHZ: £ 26, B 2.3 F, WRIGESNE BN R E SISl
N Cook ISE BRI BNFER], 5 =410 M B th R A RS
F T RER G A .

HE A 1 4 T 5 SR TR S 545 B RN Z8 VR R D I bR LR 2.7, AH B (1 f 28 ¢
AU 2.3,

R 2.7 WA R SN B v R S SERAE B EE
Table 2.7. The comparison of pressures of the saturated vapor between
computational date and experimental date at different temperature of CH,

T 0.711 0.744 0.812 0.879 0.947 1.015
S 0.00153 0.0024 0.0052 0.00998 0.0174 0.0282
MD 0.00148 0.00237 0.0051 0.00992 0.0175 0.0278
P-R 0.00154 0.00243 0.0053 0.00992 0.0173 0.0280
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0.030 ‘

—o— Exp. ﬁ
0.025 —%— MD

1 —eo—P-R /
0.020
P* ] /ﬁ/
0.015
0.010 /@/
0.005 @/

0.000 T T . . . .
0.70 0.75 0.80 0.85 0.90 0.95 1.00 1.05

K 2.4 HUGEAEAN FITELEE T AT A

Fig.2.4 Pressure of the saturated vapor at different temperature of CH,

3R 2.7, B 2.4 vh, FGERY S EEATRL A 289U 70 I AU ol H Rt HE i
TEPETE L (AT FM) 2001 AERUIG LR BB S KRN R, 5 F4%dE
Rl A2 EL AT R B 22 A5 2 e AL A [ 771
@ 4R

R 287 R 2.9 B TR = AAS R B TR 7 i T S ORT A R v A
JE 775 AN (4 S8 I A LE AR R 22

* 2.8 WA FNR AT R AR S S0 B A AN 1R 2 (%)
Table 2.8 The relative error (%)of pressures of the saturated vapor between
computational date and experimental date at different temperature of Ar

T 0.753 0.837 0.9203 1.0039 1.088
MD 1.56 0.47 2.5 1.38 1.25
P-R 0.94 0.12 0.125 0.34 1.04

2.9 WA R AT B9 v B4 5 SERE AR N R 22 (%)
Table 2.9 The relative error (%)of pressures of the saturated vapor between
computational date and experimental date at different temperature of CH,

T 0.7102 0.744 0.812 0.879 0.947 1.015
MD 3.26 1.25 1.92 0.60 0.58 1.42
P-R 0.65 1.25 1.92 0.60 0.58 0.71
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M 2.8, £ 2.9 W LIEH:

KH 730 1A 7 E R R SEPR SRS TR P-R TR B X 1R %
BEARFAY, HALL P-R ARG RAI R ZE RN, HIRO8 MD i B
AR ZE XA 3%, [RItk, MD J5yknT LT L-J SRR A 34 7 22455
PETHEL

2.3 JKHIEFNS B AVIER

fEEFh, ASCIEA L) BREO, BRI T LD SR R
S8 sebr b, RECARAKERR RS, MHES T, Fk
Al B A = REATTR NI LIRS

T, ASCCLIRM A K A, E BRI R R RN B B (K 4 F
FUF 2> T30 15 B 7 i SR VAN g, F4 3 5 H 0 520 B 1R 4T EL A

T KGR S, SIS E T3 7 S B SS S 00 IE A AR AR R b i
TR RERT . BF AU $th T 2 K IOME IS Besi Ry, fnn SPC 191, spCE (61
TIP4p M2k fA7pix iR, TIPAP R AT 5T /K I ER AL 2P R Bl ey
I 2 S P B — oK (L AR
2.3.1 TIP4P 1% E!

TIPAP e Y phy PUANZE [R)— P11 b A BV A B R, TUAT R 2R 4 P
e B oMM MEEAET, Hf o NEARTHIRT, MAHHERT L. Ko
FHIZAS ST A T T B A ZUR T H 0 A B8 SR T 1 B TR0 O S 1.5em [ H
TG M L

co

K 2.5 /K TIPAP A Rets Uiy J 1A ¥ 2
Fig.2.5 Geometry of TIP4P models for water
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2.3.2 BEERH
TIP4P {7 GERR T 1A RE R B 20 -

= = £ &.q7qf oo ) (00
UWW (rlj’Q“Qj):zz aﬁl +4800[( rOOJ - Sl (230)
a BT

f 00 r-OO

b, AU —BU KR BAEN, 28 =004 Lennard-Jones fEH . Horp, R
bR WW 27K 70 TR A EAE AT, 00 ok oy 7 &R TR EAE A r
I L i Rl [ o O T SR O 7 S 1757 el 11 el IR DA D
qf T i K a AER BRI E: P 0T 0 o R FRAN T 1 BAE R
Z IR e Mo 2> BINBEER B L) BEE 0 Re M ~F 25, H
RESH T3 2.10 .

% 210 TIPAP RN RES L
Table 2.10 Parameters of TIP4P potential function
ZHOH (9 rou(A)  tou(A)  0o(A)  solke(K)  do(e) qu (€)
104.52 0.9575 0.15 3.154 78.020 -1.04 0.52

2.3.3 &I E

H TR F RS s BEA o) A8, HBR %S L REmE AR, ¥
G ZH 500 AN 43R5 o 4% THI O ST T ks (FCCYHES, AU I 1 AT =LA
BN T RG-S B 4% 45 7 W T Maxwell 23 ARTRAE, K146 fd B 3 AE
T BRSO, RS A = AN R R T A R & . RN AR R
Hoh i F A E R O KARER, IR RS, VB RICR F T R B35kt kAT
Ab3E . HEFE Lennard-Jones 1 FH UK FHERFEE AT, AT 1 A2 O BN S K fl)— 2
WA, ~FEhizs) R Leap-frog 5 S BCK M, 1 20 5 F2 00 2K FH RCRL DY B AR
5. WRIZPKHEL 0.001, #HfILEE4T 7 200000 22, Hf 10000 2 H PAE R GeEaT-F
15, FH 100000 & H AGe i34,
2.3.4 EEAITE

IKRNZEF5rF, TIPAP R A S HAE W 73 Ab B . R4 Irving-Kirkwood
AR, WIS 7T HAF R, BjskeER N5

o =—%[g“mivf‘vf + e figb} (231)

X, BTN R sh AL N TR, 58 I 41 IR F F15 R
MoTike. mov v AR i R RO RS, f, WA T ER T L
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W11, PER T 7 BT T BE DA IS 705 SO )ik s s,
D= % tr(c) (2.32)

FIH 22 20(2.31) F1(2.32) %417 3 51 24 303.15K . 323.15 K. 343.15 K., 363.15 K.
373.15 K.473.15 K #1573.15 K [7KAE &AM BE T WAL J1 6T 1 408 ) 545
PEEE, SERFIER 200 b NT IR, ERPIIH T HANEE N A ) r L
. 2 pu, WRM L BEBEENLENIE S, ¢=3154x10"m, o=
78.02X10%' K. p,,, IE B FHE (TR ) Mook #ERE.

R 2.11 ANIRN BN M g B SRR RN S5 £ 1 B
Table 2.11. The comparison of pressures of the saturated vapor between
computational date and experimental date at different temperature of water

T(K) 303.15 323.15 343.15 363.15 373.15 473.15 573.15

p;,,D 0.0001238 0.0003617 0.000909 0.002041 0.002947 0.04225 0.248848

Puo (MPa)  0.004248 0.012412  0.031193 0.070039 0.101121 1.449851  8.53954

Pexp (MPa)  0.0042451  0.0123446  0.031178 0.070121 0.101325  1.55366  8.58308

2.6 /KAEA AL T BV 77 i) s B fE AN T SR Plon =

10

*  Experimental value 7
8 4 O  Simulation value
6 -
g 4-
S
=
gy o
oy €r ¥y XY
2 T T T T T T T T T T T
300 350 400 450 500 550 600
T(K)

K 2.6 KAEEAFHERE T AL /)

Fig.2.6 Pressures of the saturated vapor at different temperature of water

MK 2.11 A 2.6 WTLVE M R 73 77 # U ik S s AR R K
A S8R SR AR EL, PR . Bk WTRAMS 1458 MD J7ikH Tim ik
AR AT AR RS R 2R T AR AT

31



) N L R e A7

2.4 LERSMAARIIIEN ST FIHFERI

2T, FATE T L0 ARG F R i I AR K A T RS 2SI
VRN 7 B L AR A o E I R B S BRI AR AR F A R A, e T 1
BEAUL 7 VR e A T SRR AR B AN S5 AR R R ER, X R — W,
YRR R S AN AR 2 — X R e, WRNE R — B, AR . YRR
MBEZ W EATHE, AT R ABEAESAER, LSk P-R HREMST
BIPFERE =R, THREAM P REREK, WEMESEK R RORES, #F
MBS (R G 7)1
241 TFRNNFEEIUTT AR KN

AR 5T 30 1 AT E R GRS A SRR 2R . B AR,
BRI HIAK 2 f5. 4 £, 8 5T EMSE(RGE IR, HEAARR STk
KT TR

Jiik— TEWASARREL AL b, B SIE Z Bor K — A, BE
Lz=2Lx=2Ly=2L, SEIUATRY K 2 % RIEN Z 5. X o7 rigK—f, /D
fif Lz=Lx=2Ly=2L, SEIUARY K 4 fiF; FEIEN Z S, X A, Y Hh07 1) [E]
WK —f5, BIM# Lz=Lx=Ly=2L, SCBUARY K 8 f5. TEBMS KR4 RE, %
BHEAT 2 i TR B IR B P RS, ARG UL 12 1T 5B i AT i ek
BEMSENGT

i AR BB AN S — R 00 07 AT AL, ORI SR AR K 2
5 415, 8f%)E, BRMYIGFMA(RMARNEE ., BRI EET
IR . 6 2.12 FIH T GUSAETRE T =1.088 44 1, B HIHI 46 461 3% 2.13
FIH T RREEIRE T =1.015 24 F, BEBYIH&G Rh B ERKE L'ma
K (2.16) 1 3 H -

* 212 G HCRES HIBAE R Y46 5% 1F(N=1372)
Table 2.12 Initial conditions of molecular dynamics
simulation for super-heated vapor of Argon

V' IVO p* L"
1 0.0611 28.21
2 0.0306 33.54
4 0.0153 44.78
8 0.0076 56.42
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*® 213 WU BOPES A R )48 5 1F(N=1372)
Table 2.13 Initial conditions of molecular dynamics
simulation for super-heated vapor of Methane

VIV p* L
1 0.03408 34.27
2 0.01704 43.18
4 0.00852 54.40
8 0.00426 68.54

242 TTEER RS
@O 54
B, BEASOR R R R AR SR, R RN AR SRS T R (2.24) 5K,

A CATHSRAS BIEAR FNR RS . AR LA E T, SRR B SR
H;58 )5, BRSNS E VR SL bk, R TCEN W HCE A5 SR S ARAS P-R
FFER(2.29)5, THE TS RIEAFRLE . ARABZIK LA T, SRR
HMESIENE; Ba, RAS TSNP, PR (2.18). (2.19)7 LIS
FIASFIWI 4R 26 A TSR AR R GRS E ST R 2,14, & 2.15 430051 H

GRS T =1.088 Al LR EIRE T"=1.015 FI%HE T, KA Bk =Fo5ikit
B V'=V0". 2V0'. 4V0'. 8VO I Kyt #SE /1.

% 2.14 SR FERRM E i SR BB H (T =1.088)
Table 2.14. The comparison of pressure of the super-heated vapor
at different volume ratio of expansion for Ar(T =1.088)

V'IVO HARS AR P-R MD1 MD2
1 0.0666 0.0485 0.0490 0.0487
2 0.0333 0.0285 0.0291 0.0288
4 0.0167 0.0154 0.0154 0.0159
8 0.0083 0.0080 0.0082 0.0083

% 2.15 HBEA FABUAK H 3 B AU i SR E (T =1.015)
Table 2.15. The comparison of pressures of the super-heated vapor
at different volume ratio of expansion for CH,(T =1.015)

V'IVO HARS AR P-R MD1 MD2
1 0.0346 0.0280 0.0284 0.0276
2 0.0173 0.0156 0.0161 0.0158
4 0.0087 0.0082 0.0083 0.0086
8 0.0043 0.0042 0.0043 0.0044
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Fig.2.7 Pressures of the super-heated vapor at different volume ratio of expansion for Ar
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Fig.2.8 Pressures of the super-heated vapor at different volume ratio of expansion forCH,
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@R b

F 2,16, £ 2.17 43RBT R A A SRR 30 )1 E L J7E(MDL,
MD2) 153 g SR R ot (14 #2870 5 S SO R o (93 R AR 0 IR SR 3R
FECROAERT R 2 . TRE VLA A2 . BT o = G AR H e 1) A8 U 77 SE BB 2L
W, ETHEMEF, FATE R SZPRAAR P-R 5 FETHRE & AR H b it #4 %
SIEJMEEAZ BERT . N BT BT DU H, ERARE T, P-R T
FETHR S S F R AR I S S REMZA R 3%; fELEEah b, A
— BRI RS PORAS, TR P-R AR R AR R e i i R SR
HE2Z M, wESHE—DEN, Wik, B P-R FREE RGN i 4 %
SENEBRSAESEILI0E, AHEA EIRREE . ATT1,

#* 2,16 GAAEANFIZIK EE T ) 0 SAE 5 SR IR AT 1% 22 (%)
Tab.2.16 The relative error (%)of pressure of the super-heated
vapor at different volume ratio of expansion for Ar(T =1.088)

V'IVO 1 2 4 8
AR S A 37.3 16.8 8.4 3.75
MD1 0.71 3.21 1.22 2.38
MD2 0.41 1.05 2.60 3.75

F 2.17 WHAEAFIRZIK B R 0 0 SE 5 S B AR XS 1% 22 (%)
Tab. 2.17 The relative error (%)of pressure of the super-heated vapor
at different volume ratio of expansion for CH4(T =1.015)

V'IVO 1 2 4 8
AR S A 23.57 12.34 6.10 2.38
MD1 1.43 3.21 1.22 2.38
MD2 1.43 1.28 4.88 4.76

M 2.16. £ 2.17 A LLE H -

1)K H 5> 730 15RO R BRSSO R e i AR 5 H P-R e
P8 AaLt, S5Rear, HAXHRZR AT 5%,

2) K FHERAR A A A T B A SR B B )t FA 28 U ) 5 SR AE AR L, AR
ZEBN, HEEE I LD I O, H 5 SIS R AH LU AR X R 22180 8N, 24
KR T 8 J5, AT AEGEX Fke, HAEN RZEA B 5%, 7] LUK AR
AR BB SR BN R P-V-T R

2.5 SEFRSAFFERN D B B s oh iR
I\ T 795 4 R £ ST DL 5 DL R S AN
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N a e =2 VAT

@ St L-J ik, fEHESERR SRR P-V-T H5ik B, MD 5k iS 8 BA &
AR, HEUMES S AT P-RARS TS EEEA 2 Bk, MD 77 n] A
?LJ%%@@%*mmﬁﬁﬁﬁﬁﬁo

@ HEESMAEA, BT R THEKEBRAEE, AFEH T B SRk
(%ﬁmbMM@@ﬂ%ﬁiﬁ@ﬁ%ﬁ%ﬂﬁ%ﬁﬁﬁ%ﬂﬁ%%@ﬂﬁﬁﬁ%,
K FH AR SRR R TSI R ZE K

@ bR AR BRI (RSP SRR LA KT 8 5 AR AL N i1
FEEE), AT DL AR B AR ST o B S PR AU 1) P-VAT Rtk

iz IR, AT DAREX PP R T A B AR . SR A TR ARSI,
bR T, AR T, Rk, SER AR AR AR 2 O [E A,
MAARAERAVIRES N RIS, BEAE B LOR 0, SRR TR AG,  RTERAIG, 5k
B R  BEAR S A 25 6N

10T 8 15T EIRATIE v DA E & ERX PG, DLE KRS
P B0 0TE HUR 26 I8 SO PP R S5 REAT TR NI TE, WP B A
Mendelbrot K £ B8 B A 5 BB Tk 2 43 $oAi iz sh M0 200y s B3k — 2D 4
2 B B e ﬁﬁﬁﬁ%iﬁm%ﬁ%%ﬂ%iﬂ%%ﬁffuﬁ MWMW
KR T LA SHEASA S ERZENRE, Ko RERiEH T2 e
BNFIRAS AT LUR NI T -

B, bRAE RIS ENE —ALERE, RFHA R X YRR, e

@© B X()iESE, HEMEZRY 1 2 X(0)=0;

@ XMERE 0 & h>0, M 38 & 2 BB RE, J7 28 h BIIERS /340, B X(t+h)
—X(6)~N(0, h), HAH 71 R ECN -

Pt +h)- X 0] X} =L jjwexp[_ ;_;]du (233)
1oL 2 B O
pxt)= ﬁeﬁl (2.34)
@ # 0<ti<ty...<tm, DIRBIEE X(t)-X(t1), ..., X(tm)-X(tmo )M LIRS,
B AT, B X B EQONE, T
5a"=E(X)=["x*p(x)ax (2.35)

HAR, Mendelbrot £ 1968 £F, KA1 Wiz 1A < HIRY K2 0 HiAi iz 5l
I LR E X

36



2 BRI P-V-T R 7330 1 2 BT 7T

A BRI B R B R, R XA -

O R X()ELE, HUMEZ N 12 X(0)=0;

@ JHMEE 0 & h>0, (rEsH B LRMENE, 720 0 54, B X(t+h)
—X()~N(0, h?"), HAm R HHN:

Pﬂxﬁ+h)—xﬁﬂsx}:__izﬁjla@(—g%;qmj (2.36)

R R AN

w(x,t)= g (2.37)

27Zh2H

@ #5 0<t<ty<...<tm, PIAEIEE X(t2)-X(t)s ..., X(tm)-X(tm-o)F K.
XH, HE(O, 1)FRAN Hurst 5% 24 H£1/2 B, DL ERIFENIEFERD E SN BiAm
Blizzl, X H=1/2 i, WSO EARRZ ). FTRLEY], 4 0<H<1 i, DLk
(1) 78 AT AT

MO ERE AT, FMG I 7 Hee H i Rt

D=3-H (2.38)
X, H A Hurst F840, 3 aslgedi. v, 488 D A—m L, wHa s 8L
BN 5, BEHGH oy Ron @ SR P 4E R, T 0BG 5 W FH R FE B RS
BN 52 AR P e G 70 % A F) R

FERS L, AR A B o ﬁﬂkﬁ$#kk?¥@*MEﬁ SR g s
X T Fiash B 5 HRHERSERRAE, Radh a1 SRk Rz 3
F LU 73 E51 B R U 265 FE R BOR A S

AR, Ha3E H DR B SRR S X 1R 20 AT R 4K

P{X (t+h)- X (t)]< x VF_TFII [ 2kWHJmJ (2.39)
L 1N 2 2 55 R AN -

f(x,t) = (2.40)

1 X2
szqﬁ*am(_ZkW“J
Hrb, % X P8R E, TEN

E{X (t+h)- X(Q)F |= 62 = kh*" (2.41)

A, h ORI ke H 23R8 ReE R BONTEE  AlRYE R i 3 i &
BHAE, BT IZB I EE — 5T T NSRRI, 53— 75 T Al T SR USRI H
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W b 2O b = B 4045 -
In6? =2H Inh+Ink (2.42)

XKE, f5E ZB K AFEHH AT Ins® —Inh (< Rk, EXEALFRING? —Inh k-
MR MR R AN 2H, MEMN S ErERERTZ Inh .

TR T, Ak X 175 2 AT B BAR Y S E B0 1 25 SRk 15,
2B (i A 4E 55 ONE 2 T Eh S S B A R I B, SR B %
DTG, BB T SEBRAAR Ar ANFEIEEE R Hurst F8EURI > 4E50 D ASCR A
FIRER T T @ SAEIRE T =1.088 AH B AEIRE T =1.015 &M T, A
V'=V0". 2V0'. 4V0'. 8VO I [ Hurst 550 A1/r 4%t D, % 2.18 5l T AR K
EL @& Hurst 850 H F4r 504E %0 D

F* 2.18 GAEAFAFZAK LI Hurst #8530 H & 2 4% D(T*=1.088)
Table 2.18 The Hurst exponential H and fractional dimensionality D at
different volume ratios of expansion for Ar(T =1.088)

VIVO© 1 2 4 8
H 0.5155 0.5126 0.5098 0.5073
D 2.4845 2.4874 2.4902 2.4927

£ 219 I H TSR MK LE T F e RS Hurst $848 H A1 B04E % D

* 2.19 FEAEAFEAFEZAK Lt Hurst #5850 H J 744 D(T*=1.015)
Table 2.19 The Hurst exponential H and fractional dimensionality D at
different volume ratios of expansion for CH4(T =1.015)

VIVO© 1 2 4 8
H 0.5125 0.5106 0.5098 0.5068
D 2.4875 2.4894 2.4902 2.4932
MFE 218, 2.19 A LIEH, TLwAEAEE FE, Hao%4E% D M Hurst &5

W H 5 EREIKOTEE A K. & /mﬂ H‘&%%ﬂtlﬁtjﬁ TSATHBERY Hurst i‘a
OB E BAR SRR Hurst $5%0 0.5, Bk, K70 Hofi Blis sh i1 mT Lt ik
oA i 2 AR AR AR

2.6 &5
AT, FEAE T ZANTAE:

38



2 BRI P-V-T R 7330 1 2 BT 7T

@i X A L-0 FAAEEAT 701230 1 SRR SE PR SR ) P-V-T RpIETHERE, 3.
g haiie: M MD T3k a3 81— R A2 Ble A R 5 P-R SEFR ik
WETTRETHE R L) WARR) P-V-T Fpik LU &, RIE, MD J5iEH T L
PR AR S AN TR RS T R o AL AT AT

@A T B F AT 1) L-0 AR HEAT TR S ETHEAL , R R B4
NG, AR LRE ISR 2 s itk 7 7K R A ZE ik 5, a5 RS SeieE
WG R AT, 2B T AT SR B A AT A L R R . R S
MBRELRAL Y, BT SEA RO — R R 7 ik DA sE B IR AN 2 i
AT RER) T2

iz FHKs F 20 KA B e B Dy i S SE B A 73 1 e LU 32 3 A M = %5 T2 R 4
FIEE, RIS T R R KB 2 TIesi MR E R, 1A
H SR TONT R e PR RIR 25 S IR I K 21U AS [F] (1 I8 AOIRES R I $dis D K&
Hurst $5% H, EBISERIZIK AR LEROR, S ORT R e ) Hurst i il 22w 2 AR
SARE Hurst 48450 0.5, 7T BUF 23 047 W12 Sh AT IR 52 B Ui 12 BEAR AR O R
£

MAZ RIS H o130 /1 A AU TS s ik Dy T i AR A, BLE
ST AT 1 UKL —#f, MD 5 e v KRB B 2 B0 T, AN &5
K& ENH MD T F LR K04, 15305 2 BA R TREE HEER.
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3 AR O E R 0 30 ) 2 AL 7T

3 S-SR AV S TR SR

WK 7 T30 1 A BT R BIR KRR A e, SUER & — DM IE SR stk
HIEET A, iEMH2 TR B U - R, il 4k, BEE
Gibbs ZREZRIIN T, AR R IHES 1A 17 (1 70 5 A5 4DL 450 AR O o FR) e s 2 1) = 481
[49,50]

G A FEARE LS. BT A ARRE, 2 E TE I TR,
RT3 A 22085 T 4 FLARAR A — AN B 1 JLART TR0, (LI 2 — Vv ) 7 1 £
FAAE, R SR R s e . A d R AR T RS, B an 2K R AR R
FAmic B . VAR AR I RS A T i v s ma 2 B 1, e ) ox
T AR R R O FE B R, R B AN

AR () H R MR B4 B 780 7152073 DL LR - i 2 9 i,
KRG, AT R YRR, R TR A IR R
I 2B Rk A M A 2 AT S, AFE R 7 — Mo Ak b
PRFRUR S TR Sttt R, BUS TR RCR

K 03180 1 SRS TR R B A A AT L0 i BRI R R R A & 7y
R DX 3. B, R - R AL S U X O X ARV (X A6
=S B 0 DX AT, G T 3R AT, BRI 1 A SRS AR Y
RITUR, W R B B R AP B, UMK 2R N TR A 3 TR TR AR
HIPIAH R S

FEAS B 0L, K38 FH A A 20 B ST JE AR N 73 81 g A A5 5 120 AR
B AV R T B A A . AU Ok . SR TR R R AR
Z 8 KA EAT I T

3.1 S-#A BN S T hERUMAR X
ARSCHAT AR T FC, A28 DL L-d AR e 3Eat, X L-J Wik, o F i
A0 j TE] A ELAE FH A e B 3R s .

U (rij) = 45|:[2J —(g] :| (31)
Fij Fij

X, e ARRESH, o WRESH, #e 5 B ARRAEBAH G B 2 (G A b
KPS HO R 2.1), r o3RRS .
iz Ff| Lennard-Jones % ek H3AT 70 13 T 5540, SR ELA 4445 & Oxyz,
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K31 B RS
Fig.3.1 Sketch of simulation geometry

FEWIEE I ZI1R AR A T HARAR, 43 DA G327 S (FCCYR A s A fE KA L 1Y
IE M, HOTERA@O0, 0, 0)4b. Bl REH, REURHIEN RS,
By 78N « BV AHREET RFFAZE, AW RO A2 AT 5 . #R
WEAE X y TR Lx=Ly=L, N T ORUEZW B ZE ], BUE 2 J7 [ K
Lz=3L(WI& 3.1). AHAAE =ANT7 [A) EHR FH A SR 5264

TSN T30 S A e b, ot CRASHAAR 28 %4 3 2 T ) B0 A
NI, P/ SRR AR 22, A L-012-6 kA R2b S e Mo,
PA K 73 m O RSARAR S PR IR 2E — 3R 2.1 BHAT O R AL AL B
3.1.1 HEARK

FEHEAT 70 T80 1A, 73 B e AL SR AR 2570 1 BB 3 7 1%
dr;
F =j§iF(rij)= miTzIJ i—12...N (3.2)

f3Hh, A L-d ik, BUBRITAE S R 1 IR LA A D R () A

F ()=~ 290)

drij
piakol
=1 5 i G ) | =R (33)
or; >R

AR SRS ) £ 24 5 SR TSR -TRURE 1 A 28 STAR AP A AR L P ATRAA TR 2
JEE VA K AR £ 21 R B T8 5K 7 AL AR LG Y 2 05 1A P AT T -y P30 N
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MU AT B G, AR I TRCE

Ny
pk)= "+~ 34
Vo, (3.4)
f£— 2 k PR L N XA
T(k)=< 3N 2:““’> (3.5)
k 1=1
FHHE AR SR RE R R AT YIRSy B 2R T 5K 70
p (0= o7 = (5B e
sl I J rij
1 X; +y; ,
pr (k) = (p(K)K T ——<Z WL (, )> (3.7)
Vg (i.J) 2rij
1 (k )XU + ylj 22Ij
7(k)_ LxLy <(§) 2 v ( )> (38)
y-—-—-§Z7(k) (3.9)

X (3.4)B.7)F: p(k) N K VA KD TR, T(k) R K VA HEE, pyk). pr(k)
A K UL FRERIR RIS, n A KU W0 F45G Vios T s,
X(B8)H y k) AFEK VT BRIRE TR ST, Xy vy 7y for 3 5 M j 2 Il4E
Xy Yy Z A A r FIFEE, Va=LxLyLz/Ns A—/ NI A HIEFR, U 3R o0t r
158, HEI)ITERLE, < SAHIEMRLGSG-FIME. ARz, Wi Al j
WD FHAEE KV AN, MR R AHEF— DM FTEK YN,
TTE AN TTRRA—F
3.1.2 S-RFEFFE S FoS1FE P A E AR C) @

iz FHATTH 70 1 30 DA 70, A TR S —I I A RS AT 70130 1%
B, BT AW AH RAEMRRRYE, Sh T i8IS 5130 1 AL VR R s S -
ST AN GIORR 1, 8 S X 50 43— 20 ) S RLA0h 45 SR 1) 3 S R A o ) i
®o
@ FEAL 53T BRI [ 7]

RG> T8 5) & &8 7 B, BILARSG 25 2T 500 L AT LLs T ZE K R 4t
RRADAEST TR SRR AR, 43 HUOAS A2 7 Sk P R 26807 DU mT DA 3 et 3 B 5 3 3 9 2% R
#ho Bk, MIEIR E3F, BRGNS THI 2D I TR R, HSERR B, AL
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EI0; NS U e VA0S

1 FHOL D, 7 FSEE R R s 2 ok, e, o7z e T
BLE IR SE, PR 7 SA BRI R IR, /N3 RN AR BOKS A SR K 1)
TWHARZE: Rz, BEUS FRWIHEERZ 8L, BNRAN S THEZ, B3F
TR I T Eh 1, (BRI RIS S0, B2 S i LT 250 i s
M.Meckel %R 4 T2 N=1372, I [A] 25 K At*=0.002 X S -3 St R T 7400 1
BN AN, UEIAS IR AR S R B AT R B TR AN [F Y, TR SIAHEEA
F) P47 A 7% 10000~20000 73F30) /3230, M AE AR50 50 Kk SIS Bir 75 BB 1) J0) 22K
182 . Scott™™=E N\ XL 3T BORUBLLLIN (8] (0] BU3EAT T REEMIREFE, % 3.1 72 Scott
S5 N B 73— HBORTARSE R0 B [ 328 LA

R 3.1 AL R IL BTN P 0 1]

Tab.3.1 Equilibration time of simulation system

RE T  RGEHDTEN IR EPAG R E]

7200 6000
0.8 24000 6000
69350 6000
14400 11000
0.9
40000 10000
14400 16500
1.0
48000 14400

VE: IR BT R R B A 4> T8 S5
D B 1B PR t* = 0.006.

MR 3.1 PRI LS R T LLE H, RGUARPHEET RS Tl 152 MA %
IR TR, R B R R, o THE R AS T, &
SRR, RGUE BT 0 Tl b A%

AT FIT - AR SR BIE R AT RIEL AT 2B, -RARSE M
T, O R AP A BT, 1L AP, RGENEEES; 2,
TR, REATBERINS): 3. APPET A, RGN &AL S HAH5E
N T AW T8 A B R T, RGN IA B E, f E AW RSt
IRER . -SRI AT 201 5L S R A3 A S5 AT et
BT EN IR R GUE BT SR DXCRTBOAR X ) 7 5 BN A DR RF AR,
BV 2R e ) o3 AT AN s A3 93 A B AR _EAS FEREIN Ta] i) AR A T A2 AL o
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3 AR O E R 0 30 ) 2 AL 7T

AR SO0 N TR (B A2 gk AT 7 % 8 7E, NRIIHE T AR
W12 R"=5.0, B[P KA*=0.001 &, A[FFH N 247 10000 4138 11220
TRV AR A GHENLUN T IE, CPU: PIV: NAF 256M)ATE RS -AH T
i B 75 05> T8 11550

* 3.2 A7 2 TSR 1A
Tab.3.2 The computer time of variable molecular number

STHN 10000 HHFERI(YE) AT RGN FE )

1000 31 300000
2000 120 200000
3000 243 10000
4000 483 50000
5000 792 30000

M 3.1\ £ 3.2 v LLE M THEFRFER 713 71 5%22(10000 22), 40T AN,
THEFERT AR RE, 2> FH0UN 1000 F 5000, 305 £, HHFFER UM 31 4%k
B 792 435k, BN 25 £ X TR RS- TR SR Bl i, BT
g n, BRI, A 1000 A FTRE ) 30 55D B 5000 N TR R 3 7
o LREU ERE, ARCHE: B0 T80 N BEEbREN: 1000<N<5000, HX
N>1000, &A | RIEEMRGAH BORK A ReakWr12, B N<5000 W2 81t
BT S PR, 247074 N>5000 Ji5, 11508 IR0l B i e ik P AT 2
I % 30*1000/N J5 7> T3 /12508 AL, UL 12 J3 050§ 80 J1 0 347 #3013
ST
@ Hilbr=FA2 R

B, BP0 I 3 R 2 B LU B FE AN B BRI, TR
STEED, BRI LS RT3, BrRL, AR E S
PN, AU1E 2.50 ith, (HRME T ENIEEEE AR, s 7H0Z
PR AR SR, e M R R T AR A BT n, A SO T & RIRE R S 1) SR
A e 6] 7374 N=4000, T *=0.753 @17 A RT3 24 T 15 730 S,
Hrh— SRR R =25, B— G H#EkEER =5.0, HlLERER:

(2) SERCEIRERIREL T B, AT AR R BT BEATLRE ) A e ok i = A2 A/
[T SR LFER 1) 10%;

(b) & FHA R AT A2, -T2 WS E (3 S0 A A R S R A

45



H PR 22 g e

B FE AR S TR R T 7K 1) Gk 25 A 2R K

BRI, EREAT 20T 30 75T, o] DUAS 25 R AT 42 B O T H BT LB AU,
S TR A, (LA 25 2 FE AR T 21 A28 11 Jk UK < -3 T 431 3 0 4 gL 45 TR (1§,
XL A L AT B AT
@ KERIE

BB KRR IE, 22 T W AR I BT, 2 TR AR AR 07E >R ™
I AN e W AN T B 17 SR ) — A 1 7 %

KRR E 1 3 B R A2 R A0 A R 2 g (r) 1> R =1, B X450 H AL IE AR &
I, ARSI, BT R g(r) (=R =1 F 3 A B (AT 7E Y 2
PHRVRAR . AR RIS R R AR IR S AT s RN, TEOE) . BRIk, R
T P41 5380 71 AR KRR TR T VERCR AN B {2, M.Meckel 45 ASHCFEAZ IE
TR TR ST 2 T3 D R SO AT TR AL, R 33 FIH T
M.Mecke &5 AR L-J S G AEAS [F)iR B2 AN [F BT A2 2640 1, R KFERIE(LRC)
EANE KA IE (without LRC) AT EE

#* 3.3 R KEAIE(LRC) 5 AR A KA IE (without LRC) Y ELAL
Tab.3.3 The comparison of simulation results of LRC and without LRC

* * *

T R LRC PL v

0.70 2.5 no LRC 0.7861 0.00784
0.70 2.5 LRC 0.8154 0.00484
0.70 5.0 no LRC 0.8360 0.00194
0.70 5.0 LRC 0.8375 0.00201
0.85 2.5 no LRC 0.6956 0.03025
0.85 2.5 LRC 0.7391 0.01653
0.85 5.0 no LRC 0.7659 0.01041
0.85 5.0 LRC 0.7698 0.00977

SIMTAR 3.3 FTLLAIL: A AR BN, SRATAREZIE, 35 S0 HT R A <
VLRI B DL R AR SI IR SR TSR A A RO B o, B SEIR(E AL, D087
TEBRMRE MW EORE (8% R™>5 J5), RIERTE 5 Ak,
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3 AR O E R 0 30 ) 2 AL 7T
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Tab.3.4 The simulation results of the density of
saturated vapor/liquid and the surface tension

R’ Py Py v
2.5 0.7840 0.01144 0.5396
3.0 0.8125 0.00663 0.6183
3.5 0.8251 0.00460 0.7167
4.0 0.8345 0.00415 0.7683
45 0.8391 0.00371 0.8174
55 0.8416 0.00337 0.8393
6.5 0.8446 0.00330 0.8482
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Tab.3.5 The simulation results of the density of saturated vapor/liquid
and the surface tension

*

AL ey, Y
R K E LI {E SEE
0.8210 0.00445 0.8353
2.5 0.8108 0.005115 0.7992
3.0 0.8169 0.004718 0.8255
35 0.8205 0.004525 0.8319

4.0 0.8225 0.004393 0.8405
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Tab.3.6 The simulation results of the density of saturated vapor/liquid
and the surface tension (before improvement)

* * *

inpsZ PL Pv Y
40000 0.8267 0.00241 1.0060
80000 0.8310 0.00238 0.9450
120000 0.8288 0.00242 0.9625
160000 0.8299 0.00239 0.9417
200000 0.8270 0.00238 0.9987
240000 0.8310 0.00240 0.9615
“EME 0.8291 0.002397 0.9693
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Fig.3.6 The simulation results of the surface tension (before improvement)
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Tab.3.7 The simulation results of the density of saturated vapor/liquid

and the surface tension (after improvement)

* * *

I 2 PL oy Y
40000 0.8258 0.00236 1.0225
80000 0.8231 0.00231 0.9822
120000 0.8245 0.00239 0.9920
160000 0.8271 0.00241 0.9850
200000 0.8311 0.00242 0.9988
240000 0.8313 0.00238 0.9793
FHME 0.8272 0.00238 0.9899
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Fig.3.7 The simulation results of the surface tension (after improvement)
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Fig.3.8 The comparison of simulation results of the surface tension
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Tab.3.8 Truncated radii of potential energy in molecular dynamics simulation
systems for Argon

*

T R
0.753 4.0
0.837 4.2
0.920 4.4
1.004 4.6
1.088 4.8
1.171 5.0
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Tab.3.9Truncated radii of potential energy in molecular dynamics simulation
systems for Methane

*

T R
0.704 4.0
0.751 4.2
0.839 4.4
0.921 4.6
1.002 4.8
1.089 5.0
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Table3.10 Initial simulation conditions of Argon

T pi* L*

0.753 0.821 13.56
0.837 0.782 13.78
0.920 0.740 14.04
1.004 0.692 14.36
1.088 0.635 14.77

R 311 B AR AR R A AR A A

Table3.11 Initial simulation conditions of Methane

T pr* L*

0.704 0.833 13.50
0.751 0.789 13.74
0.839 0.768 13.87
0.879 0.730 14.10
0.920 0.684 14.41
1.002 0.640 14.74
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K et J5 s vk, AT T R AEIRE T "= 0.753,0.837,0.920,1.004,
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Fig.3.9 Density distributions of liquid-vapor in equilibrium state
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Tab.3.12 The change of thickness of the layer of interface vs temperature
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Tab.3.12 The comparison of date of surface tension between the
simulation and the experiment and reference of Ar

IR FEAE ERME SEERME MIXHRZE HDRRE

™ y1* 12* ¥ m n2
0.753 0.841 0.806 0.836 0.006 0.043
0.837 0.674 0.690 0.664 0.015 0.023
0.920 0.513 0.503 0.500 0.026 0.026
1.004 0.346 0.340 0.349 0.009 0.018
1.088 0.223 0.217 0.211 0.057 0.028
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Tab. 3.13 The comparison of date of surface tension between the
simulation and the experiment and reference of CH,4
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T Y1 Y2 Y m n2
0.72 0.990 0.981 1.013 0.023 0.009
0.751 0.976 0.969 0.997 0.021 0.007
0.839 0.801 0.817 0.806 0.006 0.019
0.921 0.637 0.645 0.634 0.005 0.012
1.002 0.475 0.470 0.471 0.008 0.011
1.089 0.310 0.304 0.306 0.0013 0.020
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Fig. 4.10 Configurations at the different temperatures for condensation of liquid droplet
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Table 5.1 Simulation results of the different values of o and f

B RS @) (b) ) (d) ©) (f)
a 1.0 05 0.15 05 05 0.5
A 1.0 1.0 1.0 0.5 0.3 0.1
5 3.55 3.45 3.33 3.95 4.45 4.85
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Fig. 5.4 Different crystal plane and atoms arrangement
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Fig. 5.6 Comparison of averaged layer density profiles with different type of solid wall
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Fig. 5.7 Scheme of the simulation system with two solid walls
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Fig. 5.9 Comparison of pair distribution functions between confined fluid and bulk fluid
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