
摘要

典型的楼宇集成管理系统需要将智能建筑内实现各种功能的子系统和现

场设备互连，通过资源的共享和信息的综合实现整个楼宇的统一协调管理运

营。而在实际的集成工作中，各子系统往往由不同生产厂家提供，在应用程

序接口、通信协议、数据库结构等方面存在的异构情况，因此计算机监控系

统软件需要开发的设备通信驱动程序就越来越多，这样严重影响了各子系统

的开放性和互操作性，为整体楼宇系统集成方案的制定和实施带来了很大的

障碍。

而基于COM／DCOM技术的OPC提供了一个统一的标准，不同厂商只要

遵循OPC标准就可以实现软硬件的互操作。OPC采用了CLIENT／SERVER

模式，针对硬件设备的驱动程序由硬件厂商完成，提供具有同意OPC接口的

SERVER程序；软件厂商按照OPC标准访问SERVER程序，即可实现与硬
件设备的通信。

本文首先研究了OPC技术、ATL、及IDL语言；然后深入研究了OPC DA

2．05a规范；随后研究了基于VISUAL C++6．0动态模板库(ATL)的楼宇子

系统OPC服务器以及基于VISUAL BASIC客户应用程序的详细开发流程，

并撰写了相应的DEMO程序；最后研究了OPC在智能楼宇中的应用实例。

研究表明，基于CLIENT／SERVER模式的OPC技术将软硬件厂商区分开
来：硬件厂商熟悉自己的硬件设备，因而设备驱动程序性能更可靠；软件厂

商可以减少复杂的设备驱动程序呶哥发周期，只需遵循OPC标准就可以实现

与硬件设备的通信，因此只用专注各子系统功能的完善。这样进一步提高了

各子系统的互操作性，进而提高了各子系统的开放性并为系统集成提供了方

便。

关键词：OPC，COM，智能楼字，系统集成，开放性

Abstract

A typical building integration management system needs the interlinkage

between the subsystem and the field device．It implements the consolidate

management of the whole building through the share of the resource and the

integration of the information．But each subsystem may be provided by different

manufacturers in the practical integration，and then the different structures may

exist in the application procedure，communication protocol and the database．So

the drivers of the equipments needed to be designed become more and more in

the computer monitor system software．It badly reduces the opening and the

interoperability of each subsystem，and then blocks the establishment and the

implement of the whole building system integration precept．

At the same time，the OPC provides a uniform interface standard based on

COM／DCOM technique．And the interoperabihty between the software and the

hardware啪easily be realized among different vendors while just needs tO follow
the OPC standard．The OPC adopts the modes of CLIENT／SERVER：the

manufacturer provides the driver of the equipment and the standard 0PC server

code；the software vendor accesses the Server by the OPC standard and then the

communication with the equipment can be easily realized．

This paper first introduces the OPC technique，ATL and mL language，and
then lucubrales the OPC DA 2．05a specification．At last the detailed development

flow of oPC server based on Visual C++6．0 and the client application based on

Ⅵsual Basic is studied．at the same time the demo code has been written．

The study indicates that the OPC based on CI．ⅢNT，SERVER mode

separates the responsibility between the software and hardware manufacturers．

The hardware manufacturer is more familiar with their equipments．SO the driver

written by them is more dependable．While the software manufacturer can take no

care of the device driver,SO they c粗just pay attention to the perfection of the

subsystem function．As a result，the interoperability between each subsystem and

device is further improved and then opening of each subsystem is also improved．So

the system integration bP．A：0mcs very convenient．

Key words：OPC，COM，Intelligent Building,System Integration，Opening

Ⅱ

独创性声明

本人声明，所呈交的论文是本人在导师指导下进行的研究工作及取得的研

究成果。尽我所知，除了文中特别加以标注和致谢的地方外，论文中不包含其

他人已经发表或撰写过的研究成果，也不包含为获得武汉理工大学或其它教育

机构的学位或证书而使用过的材料。与我一同工作的同志对本研究所做的任何

贡献均已在论文中作了明确的说明并表示了谢意。

签名：五迎日期：坦】查：[

关于论文使用授权的说明

本人完全了解武汉理工大学有关保留、使用学位论文的规定，即学校有权

保留、送交论文的复印件，允许论文被查阅和借阅；学校可以公布论文的全部

或部分内容，可以采用影印、缩印或其他复制手段保存论文。

(保密的论文在解密后应遵守此规定)

签名：垂盟导师签名，莹壶日期：尘趔

武汉理工大学硕士学位论文

第1章绪论

1．1课题研究的背景与意义

智能楼字融计算机(Computer)、通讯自动化(Communication Automation)、

自动控铝1](ControlAutomation)和Ic卡(IntelligentCard)技术为一体，是数字化、

网络化和信息化结合的产物。智能楼宇由自动控制系统、通信自动化系统和

办公自动化系统通过综合布线和计算机网络有机集成I¨。

在传统的控制系统中，智能设备与控制软件之间的信息传递是通过驱动

程序来实现的，即任何上位监控软件在使用某种硬件设备时都需要开发专用

的驱动程序，如图1-1所示。因此在系统集成过程中存在着严重障碍：各子

系统之问难以实现开放的、无缝隙的连接f2j。

图1-1基于驱动程序的数据访问方式

为了解决上述问题，硬件制造商们一直试图开发出一种可以被任何客户

使用的“万能I／0驱动”程序。但是由于客户端协议不一致，这项工作至今没

有取得成功。与此同时，OPC(OLE For Progress Contr01)和现场总线标准

的制定正好为上述问题的解决开辟了新的道路。采用OPC标准后，针对硬件

的驱动程序不再由软件开发商开发，而是由硬件开发商根据硬件的特征提供

统一的OPC接口程序。由于硬件开发商更熟悉自己的硬件特性，从而能够最

大限度地挖掘硬件的潜力，提高驱动程序的性能和可靠性【31。

武汉理工大学硕士学位论文

基于OPC标准的数据访问方式如图1．2所示。采用OPC标准后，由硬

件开发商提供统一的OPC接口程序，从而避免了重复开发驱动程序，因此大

大降低了开发经费和开发周期。OPC规范采用标准的CLIENT／SERVER模型，

其实质是在硬件供应商和软件供应商之间建立统一的规范，只要遵循这套规

范，数据交互对两者来说都是透明的。硬件供应商无需考虑应用程序的多种

需求和传输协议，软件开发商也无需了解硬件的实质和操作过程。这样客户

端应用程序可以灵活而有效地与设备之间读写数据。

图1．2基于OPC规范的数据访问方式

1．2课题的国内外动态

目前，在国外，特别是欧美以及亚洲的日本，OPC技术已成为智能楼宇领

域非常重要的一部分，这为不同厂家提供的设备和系统的数据访问提供了统一

的平台，这样不仅减少了系统开发和升级的成本，而且更加提供了通信的安全

系数。

OPC技术作为一项工业标准在国内仍处于推广和初步应用阶段，近年来引

起了广泛的关注。不少高等院校、研究机构和制造厂商都展开了对OPC技术的

研究和应用。一些公司如北京华控公司也加入了OPC基金会，成为其成员单位。

在应用方面，沈阳自动化研究所在开发新一代分布式控制系统时就采用了OPC

技术，实现了上层应用软件通过OPC服务器访问现场设备信息的功能，同时还

开发了OPC软件包和相应的控件。现在不少自动化仪表制造厂商在提供硬件的

同时也提供相应OPC服务器。一些国内工控软件公司也充分利用OPC技术增

强和扩展其软件功能，例如北京亚控公司从组态王5．1版本开始支持OPC技术。

遗憾的是OPC在智能楼宇中的应用还尚未得到重视，而且OPC服务器

2

武汉理工大学硕士学位论文

的开发在国内也处于起步阶段，所以本文对OPC在智能楼宇中应用的研究及

OPC服务器开发的介绍很有必要。

1．3课题研究的主要内容和拟解决的关键技术

(1)本课题研究的主要内容包括以下几个部分：

①智能楼宇系统的集成，重点研究通过现场总线进行智能楼宇系统集成的

方法；

②OPC协议，重点研究数据访问规范(OPC DataAccess)；

③OPC服务器开发；

④OPC客户端应用程序开发。

(2)本课题拟解决的关键技术：

①智能楼宇信息管理系统体系结构的建立；

②OPCDA服务器的开发；

③OPC客户端应用程序的开发。

3

武汉理工大学硕士学位论文

第2章智能楼宇及相关技术背景

智能楼宇(Intelligent Building)是信息科学和计算机应用科学的必然产

物。智能楼宇随着科技的发展不断完善，一般认为是利用系统集成的方法，

将计算机技术、通信技术、信息技术和建筑艺术有机地结合起来，来完成对

设备的自动监控、信息资源的有效管理和使用者的信息服务及建筑的优化组

合。智能楼宇采用电子信息技术对建筑大楼的设备进行自动监控，对信息资

源进行管理和对用户提供信息服务，可以大大提高大厦的管理效益和最大限

度地降低大厦的各种运行费用。

2．1智能楼宇概况

一个典型的楼宇自动化系统包括智能化的空调系统、热力系统、变配电

系统、给排水系统、通风系统、环境检测系统、消防报警系统、安全防范系

统、电梯系统、停车场管理系统等。不同类型的智能楼宇中智能化系统的总

体结构不尽相同，但其核心功能、系统是相同的。智能系统所用的主要设备

通常放置在智能化建筑环境内的系统集成中心，它通过综合布线或现场总线

与各种终端设备相联接，感知建筑内各个空间中的信息及变化，并通过计算

机处理给出相应的对策，再通过通信终端或控制终端(f-j禁、开关、阀门等)

给出相应的反应，使整幢大楼系统处于动态实时监控状态，实现高度智能化。

智能楼宇从1984年出现至今经过短短20年的发展，从最初的小规模简单

对象控制、分散管理控制、人工信息传递信息到现在的一体化集成时代和网络

时代，主要经历了以下几个阶段【4】：

(1)1980-1985年：单一功能专用系统时代，各子系统独立运转；

(2)1985．1990年：多功能系统时代，予系统数减少，部分系统集成：

(3)1990．1995年：系统集成时代，将集中控制变为分散控制；

(4)1995年至今：一体化集成时代，利用现场总线技术将所有的子系统集

成为一个网络系统。

目前国内楼宇监控系统大都采用集散式控制与通讯技术，即使用系统机为

4

武汉理工大学硕士学位论文

上位机、单片机为核心的仪器作为下位机以及以RS．232或RS-485串行通讯总

线作为系统链接。监控系统通过现场安装的传感器、控制器或相应的变送器和

执行机构对各种被监控对象进行自动检测和控制。这种系统虽然可以满足大多

数用户的要求，但由于下位机的工作完全由上位机控制，上位机一旦出现故障，

整个系统将失控瘫痪，因此可靠性较差，而且又无统一标准，所以系统的可靠

性、维修性、互换性以及可扩充性均难以达到理想效果和规范要求。

随着我国经济的发展，对大厦智能化的要求越来越高，需要监控的对象种

类繁多，因此必须使用具有统一规范、组建灵活、高可靠性、良好的扩展性和

维护性的方式来组建系统，现场总线和OPC技术正好满足了这个要求15]。

2．2现场总线技术

(1)现场总线概念

现场总线基金会(F毋定义：现场总线是一种用于智能化现场仪表和自动化

系统的开放式、数字化、双向传输、多分支结构的通信网络。它是用于过程自

动化和制造自动化最底层的现场设备或现场仪表互连的通信网络，是现场通信

网络与控制系统的集成。现场总线技术的关键标志是能支持双向、多变量和总

线式的全数字通信。

现场总线系统是计算机控制系统与通讯技术结合的产物，是新一代全数字、

全分散和全开放的现场控制系统。其中，现场是指工作环境处于生产设备的一

侧；现场设备、仪表是指位于生产现场的各种传感器、驱动器和执行器等设备；

总线是指传送信息的公共路径，这些遵守相同联接规范的设备通过“公共路径”

联接为系统，并实现相互操作．因此，现场总线是面向工厂底层自动化及信息

集成的数字化网络技术，人们把基于这项技术的自动化系统称为基于现场总线

的控制系统。现场总线技术的核心是它的通信协议，它必须依据国际标准化组

织的计算机网络开放系统互连基本参考模型osI(opcn System Intercormection)

来制定，它是一种开放的七层网络协议标准，但多数现场总线技术只使用其中

的一、二和七层协谢6】。
(2)现场总线发展现状

目前主要有四种现场总线在我国得到较为广泛的推广和应用，它们是

PROmus、FF、CAN和LonWorks。机械部正在大力推广PROFIBUS，成立

5

武汉理工大学硕士学位论文

了PROFIBUS用户协会[71。以各地仪表集团为基础，成立了中国仪器仪表行业

协会现场总线专业委员会(CFFC)，已经成为FF的成员之一，冶金部自动化院

于1995年、北京华控公司于1996年也加入了FF。中国自动化协会正在力推

CAN总线。而LonWorks技术目前已成功地应用在我国的电力、楼宇自动化等

许多行业，其中航天部五零二所北京康拓公司、电力部南京自动化院等单位都

在积极地进行研究开发【8lo

在众多的总线中较受欢迎的应属LonWorks。由于LonWorks技术完善、使

用方便灵活、开发周期短、实用性强，从它问世起就受到了众多计算机制造商、

仪表公司等的认可和支持。迄今己有4000多家生产商使用了LonWorks技术，

并已安装了500多万个节点唧。并且已有很多家公司正在生产LonWorks产品或

将其产品纳入LonWorks网络，如Honeywell将LonWorks技术用于楼宇控制系

统，Cisco公司已有LonWorks与TCP／IP协议的llI产品。Echelon公司于1995

年底在中国成立了代表处，旨在推广LON的应用。短短几年，已广泛地应用于

电力系统综合自动化、船舶、楼宇自动化等诸多领域，足以证明ION的强大实

力和受欢迎程度。1998年底中国计算机学会工控专业委员会为推广LON而成

立了分委员会，建设部也建立了Lon Works的用户协作网。这些现象代表了国

内工控界对LonWorks技术发展潜力和前景的群体认可，证明LON是一种最有

希望的现场总纠10l。

2．3 OPC技术分析

2．3．1 OPC技术背景：COM技术

(1)OPC技术产生背景

OPC规范以组件对象模型和分布式组件对象模型(COM／DcOM)技术为

基础，采用客户、服务器模式，定义了一组COM对象及其接口规范(11】。OPC

规范定义了客户程序与服务器程序进行交互的方法，但并没有规定具体的实现，

OPC服务器可由不同供应商提供，其代码决定了服务器访问物理设备的方式、

数据处理等细节。但这些对OPC客户程序来说都是透明的，只需要遵循相同的

规范或方法就能读取服务器中的数据【121。

通过COM接口，OPC客户程序可以和一个或多个提供商的OPC服务器连

6

武汉理工大学硕士学位论文

接。同时一个OPC服务器也可以同多个客户程序相连，形成多对多的关系。任

何支持OPC的产品都可以无缝地实现系统集成。由于OPC技术基于DCOM，

所以客户程序和服务器可以分布在不同的主机上。形成网络化的监控系统【131。

(2)COM技术简介及特点

COM(Component Objm Model)即组件对象模型，是微软公司为了计算

机工业的软件生产更符合人类的行为方式而开发的一种新的软件开发技术【14】。

在COM构架下，可以开发出各种各样的功能专一的组件，然后将它们按照需

要组合起来，构成复杂的应用系统。由此带来的好处是多方面的：可以将系统

中的组件用新的替换掉，以便随时进行系统的升级和定制；可以在多个应用系

统中重复利用同一个组件：可以方便地将应用系统扩展到网络环境下；COM与

语言，平台无关的特性使所有的程序员均可充分发挥自己的才智与专长编写组

件模块等嘲。COM是开发软件组件的一种方法．组件实际上是一些小的二进

制可执行程序，它们可以给应用程序，操作系统以及其他组件提供服务。开发

自定义的COM组件就如同开发动态的，面向对象的API(Application

Programming Interface)。多个COM对象可以连接起来形成应用程序或组件系

统。组件可以在运行时刻，在不被重新链接或编译应用程序的情况下被卸下或

替换掉1161。

COM所含的概念并不止是在Microsoft Wmdows操作系统下才有效。COM

并不是一个大的API，它实际上像结构化编程及面向对象编程方法那样，也是

一种编程方法【171。主要技术特点如下：

①二进制特性

接口规范并不建立在任何编程语言的基础上，而是规定了二进制一级的标

准。任何语言只要有足够的数据表达能力，它就可以对接口进行描述，从而可

以用于与组件程序有关的应用开发。

②接口不变性

接口是客户程序和组件对象之间的桥梁，接口如果经常发生变化，客户程

序和组件程序也要跟着变化，这对于应用系统的开发非常不利，也不符合组件

化程序设计的思想。因此，接口应该保持不变，只要客户程序和组件程序都按

照既定的接口设计进行开发，则可以保证两者独立开发结束后，它们之间的协

作运行能力能达到预期的效果㈣。

③继承性(扩展性)

7

武汉理工大学硕士学位论文

COM接1：3具有不变性，但不变性并不意味着接口不再发展，随着应用系统

和组件程序的发展，接口也需要发展。COM的接口继承不同于类继承，类继承

不仅是说明继承，也是实现继承。而接口继承只是说明继承，即派生的接口只

继承了基接口的成员函数说明，没有继承基接口成员函数的实现，因为接口定

义不包括函数实现部分【19】。

④多态性

COM对象具有多态性，其多态性通过COM接口体现。多态性使得客户程

序可以用统一的方法处理不同的对象，甚至是不同类型的对象，只要它们实现

了同样的接口。如果几个不同的COM对象实现了同一个接口，则客户程序可

以用同样的代码调用这些COM对象。

(3)COM组件的分类

COM组件按照代码模块的结构和代码模块与客户进程问的关系可以分为：

进程内组件、进程外组件、远程组件三种。

①进程内组件

进程内组件使用COM创建并且以动态链接库(DLL)的方式执行，运行

时动态地装入到客户的进程空间中，和客户应用程序运行在同一进程空间中，

所以进程内组件程序运行速度快、效率高。进程内组件不是一个完全可以执行

的应用程序(EⅫ)，所以进程内组件只能用在一个调用环境中，不能作为一个
独立的应用程序执行。图2=1给出了进程内组件的逻辑结构f捌．

。

图2-1进程内组件的逻辑结构

②进程外组件

．进程外组件是基于COM创建，但是以可执行程序的方式来执行。这种组

件之所以称为进程外组件是因为：它们每次运行时都是在自己的地址空间中，

并通过一种特定的远程过程调用(LRPC)和调用程序进行通信‘2”。图3．2给出

8

武汉理工大学硕士学位论文

了进程外组件的逻辑关系结构。COM通过本地过程调用LPC(Local Process

Call)实现了不同进程间的通信。RPC标准是在开放软件基金会OSF(Open

Software Foundation)分布式计算环境DCE(Distribute Compute Environment)

RPC规范中定义的，它使得不同机器上的进程可以使用各种网络传输技术进行

通信阎。
。

图2-2进程外组件的逻辑关系图

③远程组件

客户调用远程组件是通过网络来实现的，远程组件总是运行在另外一个进

程中，远程组件可以以EXE或DLL的形式封装。当以DLL形式封装时，在远

程组件的计算机上需要一个代理进程。由这种组件组成的系统可以被分为几个

部分，其中每个组件都可运行在不同的计算机上。图3-3给出了远程组件的逻

辑关系结构【纠。

图2-3远程组件的逻辑关系图

(4)接口描述语言(IDL)及COM组件的接口

COM规范在开放软件基金会分布式计算环境远程程序调用接口描述语言

9

武汉理工大学硕士学位论文

(Open Software Foundation Distributed Computing Environment Remote

Procedure Call Interface Description Language)的基础上，进一步扩展形成了

COM IDL。接口描述语言提供了一种不依赖于任何语言的接口描述方法。因此，

它可以成为组件程序和客户端程序之间的共同语言l刎。

由于IDL是-f-]专门的语言，限于篇幅，本文未对其进行详细的阐述，仅

以一个利用IDL语言定义的接口实例来作简要说明。

【

UUID(31884AD0-06A7·llD3—9858-0080c8E11F14)，

Helpstring("This is a video interface"),

l ，／注释

Interface IVideo：IUnknown

{

HRESULTGetSingnalValue(【out,retval]long’plRetval)；

’

上面代码中，前四行用来注释，分别采用了UUID和Helpslring属性来注

释；interface是一个关键词，用来定义接口，该接口由IUnknown派生而得到：

HRESULT是函数的返回类型，它由32个字节组成，用来表示函数操作的成功

或失败以及具体的信息代码；[out,retval]表示输出的参数是retval类型。

按照COM规范，COM对象和接口必须被唯一地表示。两者都由一个128

位的全局唯一标识符GUID来标识，GUID用随机方法产生，可以保证全球范

围内的唯一性。对象标识符称为CLSID，接口标识符称为liD。当一个客户要

使用一个COM对象时，它首先通过CLSID来创建COM对象，再由BD获得

COM对象的一个接口指针，该接口指针指向接口的实现代码(接口的方法和属

性)，通过接口指针，客户调用COM对象所提供的服务。从这个过程中可以看

出，客户与COM对象只通过接口打交道，对象对于客户来说只是一组接口。

COM对象的相关接口如图2-4所示【25】。

武汉理工大学硕士学位论文

自定Y．A接口

自定义B接口

IUnknown接口

自定义C接口

图2-4COM基本对象图

图2-4中描述的COM对象的接口有两种：一种是COM对象自有的接口

IUknown，一种是COM对象自定义的接口(如A、B、C接口)。

IUknown接口是COM对象必须支持的一个接口，是COM对象最基本的接

口。当一个客户引用COM对象时，首先获得的就是指向该接口的指针，利用

这个指针客户可以调用存在于IUknown接口中的AddRef Release和

QueryInterface方法1261。

COM接口是包含一个函数指针数组和一个指向这个数组的指针的内存结

构。客户程序用一个指向接口数据结构的指针来调用接口成员函数。如图3．5

所示，接口指针实际上又指向另一个指针，这第二个指针指向一组函数，称为

接口函数表，接口函数表中每一项为4个字节长的函数指针，每个函数指针与

对象的具体实现连接起来。通过这种方式，客户只要获得了接口指针，就可以

调用到对象的实际功能。

接口函数表

函数指针1 ---t

函数指针2 ——●

l接口指针H接口函数表指针I- 对象实现
函数指针3 —．．

——●

图2-5对象的接口指针示意图

因为接口被用于组件程序和客户程序之间的通信桥梁，所以接口应该具有

接口不变性。组件对象一经定义，其接口定义就确定下来。具体说，接口的虚

函数表vtable是确定的，因此接口的成员函数个数是不变的，而且成员函数的

先后顺序也是不变的；对于每个成员函数来说，其参数和返回值也是确定的【明。

11

武汉理工大学硕士学位论文

当组件被创建以后，客户程序将从组件中得到一个接口指针。以后，组件

与客户的一切调用都是通过这个接口指针来实现的。

COM规范使用IDL来定义接口，所有的接口都是直接或间接地从

IUnknown接口继承而来。其原因在于IUnknown接口提供了两个非常重要的特

性：生存期控制和接口查询。

C5)COM组件应用的关键技术：包容与聚合

包容和聚合实际上是一个组件使用另外一个组件的技术，即重用性。对于

这两个组件，分别称为外部组件和内部组件。在包容的情况下，外部组件将包

含内部组件；而在聚合的情况下，则称外部组件聚合内部组件。

在COM中，包容是在接口级完成的，如图2-6所示．外部组件包含指向内

图2-6对象包容示意图

部组件接口的指针。此时外部组件只是内部组件的一个客户，它将使用内部组

件的接口实现它自己的接口。外部组件也可以通过将调用转发给内部组件的方

法重新实现内部组件所支持的某个接口。并且外部组件还可以在内部组件代码

的前后加上一些代码以对接口进行改造。

Iunknocn

图2-7对象聚合示意图

聚合是包容的一个特例，如图2-7所示。当一个外部组件聚合了某个内部

武汉理工大学硕士学位论文

组件的一个接口时，它并不像包容那样重新实现此接口并明确的调用请求转发

给内部组件。相反，外部组件将直接把内部组件的接口指针返回给客户。使用

此种方式，外部组件将无需重新实现并转发接口中的所有函数。当外部组件将

内部组件的接口指针返回给客户之后，客户就可以直接同内部组件打交道了。

但此时客户不应该知道它是在和两个不同的组件交互，否则无法满足封装的要

求。为此内部组件实际上要实现两个IUnknown接口，一个称为非代理未知接

口(IUnknown)，将按通常的方式实现内部组件的IUnknown接口。另一个称为

代理未知接口，负责把IUnknown成员函数的调用转发给内部组件的位置接口

或转发给自己的非代理未知接口。

2．3．20PC规范

按照功能的不同，OPC基金会发布的OPC规范分为以下几类：

(1)OPC数据访问规范(oPC DA,OPC DataAccess)：完成对现场设备在线

数据的存取。

(2)OPC报警和事件规范(oPC AE,OPC Alarm&Event Access)：提供了当

现场特定的事件和报警条件发生时OPC客户程序可从服务器程序得到通报的

机制。，

(3)OPC历史数据访问规范(OPC HDA,OPC Historical Data Access)：提供

一种通用的历史数据引擎，可以向感兴趣的用户和客户程序提供额外的数据信

息。

(4)OPC批处理规范(oPC Batch)：提供了一种存取实时批量数据和设备信

息的方法。

(5)OPC安全规范(OPC Security)；提供了重要的现场数据，如果这些参数

被误修改将会产生无法预料的后果，因此需要防止未授权的操作，OPC安全性

规范就提供了这样一种专门的机制来保护这些敏感数据。

虽然OPC各规范都有着自己的特性和不同的要求，但其基础和核心都是

COM技术。只要按照COM的开发流程，并遵循OPC对应的规范，都能开发

出可靠的OPC服务器。本文主要是设计OPC DA服务器，所以下面将重点分析

OPC DA2．05a规范。

OPC DA2．05a规范是OPC基金会最初制定的一个工业标准，其重点是对现

场设备的在线数据进行存取。该规范分为定制接口规范和自动化接口规范两部

13

武汉理工大学硕士学位论文

分，两种接口完成的功能类似，本论文只介绍定制接口规范的基本对象和接口

功能。

OPC DA2．05a规范描述了由OPC服务器实现的OPC COM对象及相应接

口。规范指出一个OPC客户程序可以连接到一个或多个由不同厂家提供的OPC

服务器程序，而多个OPC客户程序也可以连接到一个OPC服务器程序上，服

务器所要访问的设备、数据源、数据名及服务器程序如何进行数据的访问由厂

商提供的代码决定。

图2-80PCDA服务器主要对象的接口关系

OPC数据存取服务器主要由服务器对象、组对象和项对象组成，如图3．8

所示．OPC服务器对象维护有关服务器的信息，并作为OPC组对象的包容器，

可动态地创建或释放组对象；组对象除了维护自身有关的信息外，还提供包容

和逻辑组织OPC项对象的机制：OPC项对象则维护OPC服务器中与数据有关

的信息，但它并不是数据源，仅仅是指向数据源连接。OPC客户程序不能通过

定制接口直接访问OPC项对象，因为OPC项对象没有引出接口，所有对OPC

项对象的访问都是通过OPC组对象来完成的。

组对象可分为公有组和私有组(或局部组)。公有组用于多个客户程序的共

享，私有组只用于一个客户程序。对于一个公用组有一些特定的可选接口完成

特定的功能。每一个组对象中，客户可以定义一个或多个项对象。

与OPC项相关的信息有值(Value)，品质(Quality)和时间邮戳(TuneStamp)，

值是VARIANT类型，品质表征了项的内在属性，时间邮戳指明了项值所对应

的时间。OPC规范只规定了COM接口的名称和接口向OPC客户程序提供的行

为，但没有规定如何去实现它，OPC服务器组件仅提供OPC对象接口并管理

14

武汉理工大学硕士学位论文

这些接口。

OPC规范中为OPC服务器规定了两套接口：定制接(Custom Interface)和

自动化接N(Automation Interface)．其中定制接I：1是OPC服务器必须提供的，

而自动化接口是可选的。OPC客户既可以使用支持COM的定制接口，也可以

使用自动化接口。定制接口只支持用c／C++等高级语言编写的客户应用，自动

化接口则支持更上层的应用，如Visual Basic以及Delphi等应用程序，如图2．9

所示。

0Pc服务器

l客户应C4用+程序I：；iii—百歪页《：
0Pc组

w客户,g应吲用ph程i序|(’昴万百耐 oPc项l 矧燃客户应用程序 N⋯⋯⋯y。

图2-9 OPC两种接口示意图

2．3．3 OPC DA2．05a规范的对象与各接口定义程序

(1)OPC服务器对象及其接口定义程序

OPC服务器对象是OPC服务器向外暴露的基本对象，其结构模型如图2．10

所示。主要接口如下：

0Poc锄I慷口
OPCServer接口

IOPCItemProgerties接口

[0PcSenrerPIlblicGroup接口]

[OPCBro-seServerAddressSpace接口]

[OPCPersistFile接口]

OPCConnectionPointContainer接口

标准0Pc服

务器对象

隧

图2．10标准OPC服务器对象结构模型

Unkno棚

武汉理工大学硕士学位论文

·IUnknown

·10PCCommon

·IOPCServer

·lOPCServerPublicGroups(可选)

·IOPCBrowseServerAddressSpace(可选)

。·IPersistFile(可选)

‘IOPCItemProperties

·IConnectionPointContainer

本课题从实用化和工程化的角度，仅实现了OPC服务器对象的四个必选接

口：IConnectionPointContainer、lOPCCommon、IOPCItemProperties、IOPCServer·

这四个接口都是由IUnknown这个基接口派生出来的。详细的OPC服务器对象

的接口定义程序见附录I。

①IUnlmown接口

此接口是所有COM对象必须实现的最基本接口，它是其它接口的基接口，

主要用于组件对象的生命周期管理。

②IOPCCommon接口

此接口可以被应用于各种类型的服务器，他们共享这个接口的设计。该接

口的功能分别由下面5个成员函数提供：

SetLocalelD：设置服务器的区域位置；

GetLocalelD：查询服务器的区域位置；

QueryAvailableLoc址eIDs：查询可用的服务器区域位置；

GctErrorString：返回错误信息；

SetClientName：注册客户端名称。

③IOPCServer接口

这是OPC服务器对象的主接口，它可完成对组对象的动态创建以及对其进

行管理。该接口的功能由以下6个成员函数提供：

AddGroup：创建一个组对象，并返回客户请求的接口指针，其参数反映了

组对象创建时的状态，这是组对象暴露给客户程序的唯一途径；

GetErrorString：获取当前LocalclD下的指定错误码的文字描述；

GetGroupByName：通过组名获得一个已有私有组对象的接口指针，从而与

之建立连接。它主要用于当相应组对象的接口指针都被释放后重新与之建立连

武汉理工大学硕士学位论文

接(当然如果此组对象已从内存中删除除外)；

GetStatus：返回服务器对象当前状态信息，如服务器运行状态，组对象的

数目，版本号，厂商信息，以及当前时间和前次数据刷新时间等等。客户可对

GetStatus方法进行周期性调用来确定服务器是否连接和可用；

RemoveGroup：删除不再使用的组对象。当所有的组对象接口都释放后客

户再调用此函数，使相应组对象在内存中彻底删除。但它不能用于公共组对象；

CreateGroupEnumerator：创建一个可列举当前服务器对象内的组对象的枚

举器。可以列举组对象的名称，也可以列举指向组对象的IUnknown接口的指

针。枚举器也是一个COM对象，它实现了相应类型枚举接口，如IEnumString

和lEnumUnknown接口，OPC服务器对它的实现进行了简化，由相应接口函数

来创建它的对象，由客户程序来释放它。

④IOPCItemProperties接口

服务器对象上的此接口主要提供了相对于IOPCShutdown出接口连接点的

访问支持。IOPCShutdown出接口用于当服务器主动与客户程序断开连接时对客

户程序进行通知。OPC2．0服务器必须支持此接口。它的实现与一般连接点对

象的实现相同。其功能由以下两个成员函数提供：

EnumConnectionPoints：建立一个OPC服务器对象和客户程序之间所有支

持的连接点的枚举器，此时一般只有一个IOPCShutdown出接口，当然如果需

要，服务器开发者可以定义自己的回调函数；

FindConnectionPoint：查找OPC服务器对象和客户程序之间的特定的连接

点，一般为对应IOPCShutdown出接口的连接点。

⑤IConnemionPointContainer接口

此接口用于浏览与rIEilO(用于标识一个特定的项1相关的属性，也可读取

这些属性当前的值。之所以设计本接口是因为许多ITEMID与其它像代表工程

单位范围或对象描述或报警状态的1TEMID相关联。使用此接口可以方便的浏

览、定位和读取与特定ITEMID相关的信息，可以在不创建OPC组对象的情况

下读取。该接口的功能由以下3个成员函数提供：

OueryAvailableProperties：可返回与特定ITEMID相关的属性ID(用于标识

属性)列表及其描述。此列表对于特定的ItemlD是“相对”稳定的，它会受相应系

统配置改变的影响。

GetltemProperties：可返回与特定ITEMID相关的属性ID的当前值。

17

武汉理工大学硕士学位论文

LookupItemIDs：可返回与特定ITEMID相关的属性Ⅲ对应的ITEMIDs列

表，即此方法的目的是看哪些属性ID可以成为OPC项，可以通过OPC组对象

添加到OPC项列表中。服务器应允许多数或所有项对象的属性被转换成特定

ltemID。

(2)OPC组对象及其接口定义程序

OPC组对象结构模型如图2-11所示，提供的接口如下。

·IUnlmown

‘lOPCItemMgt

‘IOPCGroupStateMgt

。IOPCPublicGroupStateMgt(可选)

’IOPCSynclO

‘IOPCAsyncl02

·IConne虻--tionPointContainer

·IEnumOPCItemAttfibutes

IOPCItemMgt接口

IOPCGroupStateggt接口

[OPCServerPublicGroup接口]

IOPCSynclO接Q

IOPCAsyncl02接口

OPC：c_=ormectionPointContainer接口

IEnumOPCItemAttributes接口

l

标准OPC组
对象

l
图2．11标准OPC组对象模型

Unknown接口

①IOPCItemMgt接口

此接口的功能是允许客户添加和删除项对象并可控制项对象的行为。

Addltems：向组对象中添加一个或多个项对象。可添加相同的数据项两次，

但每一个项对象的ServerHandle(项服务器句柄)唯一。

Validateltems：判断数据项能否被合法的添加，不会对组对象造成任何影响。

武汉理工大学硕士学位论文

Removeltems：从组对象中删除项对象。从组对象中添加和删除项对象并不

影响服务器和物理设备地址空间的数据项，它仅说明了客户是否关心那些数据

项。

SetActiveState：设置项对象的激活标志。

SetClientHandles：改变项对象的客户句柄。一般来讲，客户程序在添加项

对象时就设置了客户句柄，在以后不会改变它。

SetDatatypes：改变项对象要求的数据类型。

CreateEnumerator：在组对象内创建一个可以列举项对象的枚举器。

②lOPCGroupStateMgt接口

此接口允许客户程序管理组对象的所有状态。最基本的是改变组对象的更

新率和活动状态。

GetState：获得组对象的当前属性状态，如更新率，激活状态，组名，时区，

死区，语言标识，客户句柄和服务器句柄等。

SetState：客户可设置组对象不同属性的状态，可改变的属性可从其参数知

道。

SetName：设置私有组对象的名称，名字必须唯一。

CloneGroup：使用唯一组名建立某一组对象的另一个副本。新的组对象为

私有的。组对象和项对象的几乎所有属性被复制，但新组完全独立于旧的组对

象。此方法的主要应用是建立一个可以被客户修改的公共组对象的私有复制。

③lOPCSynclO接El

此接口允许客户对服务器执行同步读写操作。

Read：同步读取组对象内的项的值、品质和时间邮戳等信息。可以从内存

(CHCI矩)6e读取，也可以从设备内直接读取。只有组对象和项对象都处于激活

状态时，才可从内存内读取数据。从设备内读取数据不受组对象和项对象的激

活状态的影响。一般情况从缓存中读数据将完成得很快，从设备中读取要花很

长时间，从设备读取数据可能会妨碍其它客户操作的执行，所以在大多数情况

下客户应从内存中读数据，从设备中读用于特殊的情况如诊断。

Write：对组对象中的项进行同步写操作，值最终被写到设备中，此方法在

保证设备真正的接受或拒绝数据后才可返回。写操作不受组对象或项对象的活

动状态的影响。设备写操作要花很长时问，建议多数情况下客户程序应进行异

步写而不是同步写。

武汉理工大学硕士学位论文

④IOPCAsyncl02接口

此接口允许客户对服务器执行异步读写操作，操作被排队等候，函数立即

返回。每项操作被看作一个事务，并被分配一个事务m，当操作完成时，客户

IOPCDataCallback接口的回调将执行。回调中的信息指出了事务m和操作结

果。

对于异步Read，Write和Refresh任意一项操作，相应操作的所有结果都应

被IOPCDataCallback接口的相应方法的一次回调返回。

一个服务器必须能为每种类型的操作排队等候至少一个事务。所有成功启

动的操作都应该被完成，如果超时发生时，服务器应在回调中返回错误。

Read：从组对象内异步读取项的值，IOPCDataCallback：：OnReadComplete

结果通过回调方法返回。

Wdte：对组对象内的项进行写操作。IOPCDataCallback：：OnWriteComplete

回调方法返回结果。

Refresh2：强制对组对象内的所有活动项调用IOnDataChange回调。从功能

上讲，它与对组对象内所有活动项的读操作完成的效果一样。

Cancel2：请求服务器取消一个正在进行的事务处理。一般来讲，如果操作

成功，IOPCDataCallback：：OnCancelComplete将发生。

SetEnable：可控制IOPCDataCallback：：OnDataChange方法的操作，通过输

入参数为FALSE，可禁止事务m为0的OnDataChange回调(不禁止Refresh对

OnDataChangc的调用1。

GetEnable：获取当前的回调允许值。

⑨IConnectionPointContainer接口

数据存取规范2．0组对象必须实现此接口，与服务器对象的此接口的唯一

区别是管理的出接口不一样，组对象管理的出接口是IOPCDataCallback接口，

可使客户与服务器连接并进行最有效的数据传送。其接口方法的行为只是将服

务器对象的IOPCShutdown接口换成IOPCDataCallback接口即可，可参考服务

器对象的实现。

⑥IEnumOPCItemAttributes接口

IEnumOPCItemAttributes接口允许客户找出组对象内的项以及项的相关属

性(以项属性结构作为枚举对象)，它不是组对象实现的一个接口，只能通过

IOPCItemMgt：：CreateEnumerator方法创建相应枚举器的实例，不可通过接口查

20

武汉理工大学硕士学位论文

询获得。其接口方法与普通枚举接口方法功能相同。

Next：获取枚举器的后11个项属性结构对象。

Skip：跳过后n个项属性结构对象。

Reset：使枚举器返回到第一个项属性结构对象处。

Clone：创建枚举器第二个副本。新枚举器与当前枚举器的状态相同。

武汉理工大学硕士学位论文

第3章基于OPC DA2．05a规范的OPC DA

服务器设计

本章利用Visual c++ATL以一个实例来说明具体的开发COM组件步骤，

随后开发了基于OPC DA2．05a规范的OPC DA服务器。

3．1开发OPC服务器的动态模板库(ATL)

3．1．1ATL简介

自从1993年Microsoft首次公布了COM技术以后，Windows平台上的开

发模式发生了巨大的变化，以COM为基础的一系列软件组件化技术将Windows

编程带入了组件化时代。但COM开发技术的难度和烦琐的细节令人望而却步，

COM编程一度被视为一种高不可攀的技术，．开发人员希望能够有一种方便快

捷的COM开发工具，提高开发效率，更好地利用这项技术。

针对这种情况，Microsoft公司在推出COM SDK以后，为简化COM编程，

提高开发效率，采取了许多方案，特别是在MFC(Microsoft Foundation Class)

中加入了对COM和OLE的支持。但是随着Internet的发展，分布式的组件技

术要求COM组件能够在网络上传输，而又尽量节约宝贵的网络带宽资源。采

用MFC开发的COM组件由于种种限制不能很好地满足这种需求，因此

Microsoft在1995年又推出了一种全新的COM开发工具ATL。

ATL是ActiveXTemplateLibrary的缩写，它是一套C++模板库．使用ATL

能够快速地开发出高效、简洁的代码(Effective and Slim code)，同时对COM

组件的开发提供最大限度的代码自动生成以及可视化支持。为了方便使用，从

Microsoft Visual c++5．0版本开始，Microsoft把ATL集成到Visual c++开发环

境中。1998年9月推出的Visual Studio 6．0集成了ATL 3．0版本。目前，ATL

已经成为Microsoft标准开发工具中的一个重要成员，主要具有以下特点：

(1)ATL的基本目标就是使COM应用开发尽可能地自动化，这个基本目

武汉理工大学硕士学位论文

标就决定了ATL只面向COM开发提供支持。目标的明确使ATL对COM技术

的支持达到淋漓尽致的地步。对COM开发的任何一个环节和过程，ATL都提

供支持，并将与COM开发相关的众多工具集成到一个统一的编程环境中。对

于COM／ActiveX的各种应用，ATL也都提供了完善的Wizard支持。所有这些

都极大地方便了开发者的使用，使开发者能够把注意力集中在与应用本身相关

的逻辑上。

(2)ATL因其采用了特定的基本实现技术，摆脱了大量冗余代码，使用

ATL开发出来的COM应用的代码简练高效。ATL在实现上尽可能采用优化技

术，甚至在其内部提供了所有C伦++开发的程序所必须具有的C启动代码的替

代部分。同时ATL产生的代码在运行时不需要依赖于类似MFC程序所需要的

庞大的代码模块，包含在最终模块中的功能是用户认为最基本和最必须的。这

些措施使采用ATL开发的COM组件(包括ActiveX Contr01)可以在网络环境下

实现应用的分布式组件结构。

(3)ATL的各个版本对Microsoft的基于COM的各种新的组件技术如

MTS、ASP等都有很好的支持，ATL对新技术的反应速度大大快于MFC。ATL

已经成为Microsoft支持coM应用开发的主要开发工具，因此COM技术方面

的新进展在很短的时间内都会在ATL中得到反映。这使开发者使用ATL进行

COM编程可以得到直接使用COM SDK编程同样的灵活性和强大的功能。

3．1．2,ATL开发COM组件的实现

本节以一个COM组件的开发实例来说明基于VISUAL C++6．0ATL开发组

件的步骤，本实例的组件只有一个方法和一个属性：方法为发出嘟嘟的响声，

属性为响声的次数。

(1)利用ATL应用程序向导创建应用程序

从Visual Studio菜单中选择File．>New，选中Projects选项，然后选择

ATLCOMAppWizard，输入工程名和保存的路径，如图3-1所示。

武汉理工大学硕士学位论文

图3-1利用ATL应用程序向导创建工程界面

点击OK，然后选择组件的服务类型为进程内组件：动态连接库∞u0，如

图3-2所示。

图3-2ATL应用程序向导创建工程的类型选择界面

武汉理工大学硕士学位论文

(2)工程源文件说明

经过ATL应用程序向导创建得到的应用程序仅仅是一个程序框架，生成的

文件如下：

一个全局成员：CComModulc Module；

一个包含着最初的类型库的说明文件：BcepCntMod．idl；

一个．def文件：

一个．rc资源文件；

一个包含着资源D定义的头文件；

Stdafx．h和Stdafx．cpp文件。

可以看出，与MFC应用程序唯一不同的就是多了一个后缀为．im的文件。

每一个ATL T程都有一个与工程同名的IDL文件，此文件记录了该工程所用到

的COM接口或COM对象的定义。ATL应用程序向导可以自动维护此IDL文

件，同时我们也可以手动地修改此文件来加入需要的COM接口的IDL定义，

在3．2节创建OPC DA服务器的时候就将手动修改自动生成的IDL文件来加入

OPC的一系列接口。

(3)添加组件对象

最简单的添加组件对象的方法是通过ATL Object Wizard。从Insert菜单下

选择p删ATLObject．．．，将出现如图3-3所示的对话框。

图3-3 ATL添加组件对象向导

武汉理工大学硕士学位论文

选择Simple Object，单击Next，在Names页的ShortName字段输入组件的名

称BeepCnt。其它的7个编辑框的内容将自动生成，如图34所示。

图3．4 ATL添加组件对象的属性向导(1)

单击Attributes页，出现如图3．5的对话框。Threading Model选项选择

Apartment，表示这个对象可以被一个或多个线程调用。Interface选项选择Dual，

表示创建的接口为双重接口：既支持自动化接口又支持自定义接口。Aggregation

选项选择Yes，表示组件支持聚合，并且该聚合功能由ATL自动完成。

ISupportErrorInfo表示创建支持将错误信息返回给客户的接口，本例不选择该功

能。Connection PoinIs选项表示通过对象的类导出而启用对象的连接点，本例不

选择该功能。Free-Threaded Marshaller选项表示支持创建自由线程封送拆收器

对象，以有效地在同一进程中的两个线程之间封送指针，本例不选择该功能。

--·-tttrihttti I
rYhasact俺Model----1 r l删a∞⋯——’一^∞Ie∞6∞⋯～——{
{广警19k l；带璺uaI i l带抽
{带辫璃蛹翮|{r§鼢 {；r拦o
r lloth |{ l，r口啼 |
|广西 |{
P s呷刚ls呷呻畦noIIrfo 广Flee Ttweaded t4a*heCef

P S岬∞^0曾n睇如n|B暗tl

l堕i取消

武汉理工大学硕士学位论文

创建完成后的组件对象支持双接口(自动化接口和自定义接口)、聚合和多

线程访问。现在工程中又多了三个ATL向导创建的文件．-beepcnt．reg、beepcnt．cpp

和beepcnt．h。

beepcnt．reg包含了ATL处理的代码的源脚本，大部分是为了COM组件运

行时能够找到组件的注册入口。

beepcnt．cpp文件基本是空的，因为该组件对象还没有添加任何属性和方法，

所有添加的对象属性和方法都将在beepcnt．cpp文件中实现。

beepcnt．h文件实现了对象类的定义：

class ATL—NO—VTABLE CBccpCnt：

public CComObjectRootEx<CComSingl【eThreadModel>，

public CComCoClass<CBeepCnt,&CI_SID_BeepCnt>，

public IDispatchlmpl<IBeepCnt,&IID_IBeepCnt,&LIBID_BEEPCNTMODI．a'b>

{

public：

CBeepCutO

{

’

DECLARE_REGISTRY_RESOURCEID(IDR_BEEPCNT)

DECLARE_PROTECT FINAL CONSTRUCT0

BEGIN_COM_MAP(CBeepCnt)

COM INTERFACE_ENTRY(IBeepCnt)

COM_INTERFACE_ENTRY(IDispatch)

END_COM_MAP0

／／IBeepCnt

public：

’；

可以看出，CBe地pCnt类是由三个类派生出来的：CComObjectRootEx操作

了组件的引用记数；CComCoClass用来定义该对象的默认类工厂和聚合模型：

IDispatchlmpl提供了一个双重接口IBeepCnt，接口D是IID_IBeepCnt，支持

自动化接口和自定义接口。

(4)添加组件对象的属性和方法

武汉理工大学硕士学位论文

上面生成的组件对象是一个空对象，下面为该对象添加属性和方法。从

ClassView中右击lbeepCnt接13，选择“ADDMethod⋯”，出现如图3-6所示的

对话框。

图3-6为组件对象添加方法

在Return Type选择返回类型为HRESULT，方法名选项Method Name填

Beep，参数选项Parametct晤为空，单击OK，完成Beep方法的添加。ATL向导

会把所有Beep方法的定义代码自动添加到BeepCnt．cpp和BeepCnt．h文件中。

添加组件属性的方法同上：右击IbeepCnt接口，选择“Add Property⋯”，

出现如图3．7所示的对话框，选择合适的返回类型和属性的类型，输入属性的

名称，单击OK即完成组件属性的添加。

武汉理工大学硕士学位论文

图3-7为组件对象添加属性

完成对组件方法和属性的添加后，ATL向导向讪文件添加了方法和属性

的定义。在BeepCnt．h中添加了对三个新函数的声明，BeepCnt．cpp文件添加了

这三个函数的框架。在这三个函数的框架里面分别添加一些代码：设置计数器、

获得计数器、发出所设置数的嘟嘟声。添加代码后的函数如下：

sTDMEl_HODIMP CBeepCnt：：BeeP0 ，／发出所设置数的嘟嘟声

{

for血“=O；i《cBeeps；i++) ／／cBeeps是定义的全局变

量

MessagcBecp((UINT)·1)；

return s_．OK

’

STDMETHODIMP CBeepCnt：：get_Count(10ng。pVaO臌得计数器
{

武汉理工大学硕士学位论文

。pVal=cBeeps；

return S_OK；

)

sTDM删0DIMP CBeepCnt：：put_Count(10ng newVall，／设置计数器
{

cBceps=newVal；

return S_OK；

)

(5)测试组件

添加完组件的属性和方法后，就完成了对组件的创建。下面用Visual Basic

来实现对该组件功能的测试。

首先在Visual Basic中引用BeepCntMod，如图3-8所示。

鼬r棚|abIe References：

Ityin．1 Buic For klmliestiottz 熊
l够Vi“．1 B“ic mtimt objects tad procedure国
l谚yis,aLl．Buic objects·臣d■roc·h·t
}一OLE Automttion 。l照飘籍溅鞠豳溅固匿圈嚣曝——■_ 、⋯l
I j IAS Ht]．pea"c明Coapoaent 1 0 T即t Librtry 、 i+羹
13 I^s啪璐Frotoc#]．I．0 Type LibrtO" 。
IJ^口ob“ 一priorH
I口Acrobat Access 2．0 Type Library ，

。

I曩Aerobet 9istintr
‘

●l
13Acrobat TebCtl，tmee I．0 Type Libraa-y—o
K l^口obat■·比qt也'eⅡToolbtr／Ftvorites 1．t

。

Ij^盯。工州ell=er 1．0 Type ubr·rr ：越

rlk：tive璐Tn·Librw 一
燮5

I《奄⋯⋯一。勰h‰M。斜鬣蒌溺 ；黧l

图3-8 Visual Basic引用组件BeepCntMod

然后在Visual Basic中新建一个工程，创建一个如图3-9所示的对话框，

Visual Basic生成的代码修改后如下：

一一一
一

武汉理工大学硕士学位论文

Dim BeeperCntAs BeepCnt

Private Sub Beep_Click0

Textl=BeeperCnt

BeeperCnt．Bccp

EndSub

Private Sub Set_Click0

BeI七pcrCnt=Val(Tcxtl)

Tcxtl=BeeperCnt

EndSub

Private Sub Form_Load0

Set BeeperCnt=New BeepCnt

Textl=BeeperCnt

EndSIlb

⋯～⋯w⋯I⋯●一“⋯一#。《
测试BeepCnlMod组件界面

钿un：num：bsetting甜厂二
SeiCoulNumber‘| “u—F'|

图3-9测试BeepCntMod组件的界面

运行这个程序，将听到嘟嘟声，而且响声的次数由count字段设置。

3．2 OPC DA服务器的设计与实现

3．2．1 OPC DA服务器的整体结构

OPC服务器首先建立类厂，通过类厂，客户程序可以创建OPC服务器。

武汉理工大学硕士学位论文

客户程序通过OPC服务器的名字找到OPC服务器在注册表的信息，然后调用

CoCreatelnstance()在服务器中创建一个OPCServcr。通过OPCServer的接口来

实现一系列的功能，如创建Group，获得服务器状态等。创建Group对象后，

通过Group的接口来实现一系列的功能，如添加Item，删除Item等。图3·10

详细说明了对OPC服务器进行访问时的流程【25】。

图3．10 OPC服务器的整体结构图

武汉理工大学硕士学位论文

3．2．2基于同步通信的OPC DA服务器的编程实现

(1)利用ATL应用程序创建OPCDA服务器程序

打开VC++6．0开发环境，选择ATLCOMAppWizard，同3．1．2节利用ATL

创建组件的方法类似，选择目录D：＼OPCDA和填写工程名OPCDA，现在的IDL

文件如下：

／／OPCDA．idI：IDL source for OPCDA．dU

l瞰fde will be processed by the MIDLtool to
／／produce the type library(OPCDA．flb)and marshalling code．

import'oaldl．idl”；

import"ocidl．idl”；

【

uuid(gDB24EAC·-C452-477B··8870-87F51F3330D),

version(1．o)，

helpstring(“OPCDA 1．0 Type Ubrary')

】

library OPCDALib

{

importUb('‘stdole32．tlb飞

importlib("stdole2．tlb’，)；

)；

打开按照OPCDA2．05a规范定义的IDL文件，并将该文件关于OPCDA接

口定义的内容复制到本工程中的IDL文件的最前面，然后在工程的最后处对

library OPCDALib修改如下：

library OPCDALib

{

importlib(”stdole32．rib”)；

impoaHb(”stdole2．rib”)；

interface IOPCServer；

interface IOPCServerPublicGroups；

interface IOPCBrowseServerAddressSpace；

武汉理工大学硕士学位论文

interface IOPCGroupStateMgt；

interface IOPCPublicGroupStateMgt；

interface IOPCSynclO；

interface IOPCAsynclO；

interface IOPCItemMgt；

interface IEnumOPCItemAttributes；

interface IOPCDataCallback；

interface IOPCAsyncl02；

interface IOPCItemProperties；

}；

这样修改的目的是为了将OPC规范中定义的接口全部引入到我们所创建

的工程中，编译后即引入了OPC规范中定义的所有接口。

(2)创建Server和Group对象

创建Server和Group对象的方法同3．1．2节．对象名分别为TestServer和

TestGroup，它们都是由标准的OPC Server和Group对象所派生。

(3)为TestServer和TestGroup对象添加方法

为对象添加方法的详细步骤同3．1．2节。两个对象的所有接口方法都应严格

按照OPC DA 2．05a规范的定义来实现。下面仅给出TestServer对象的

IOPCServer接口的方法添加后的定义：

STDMETHODIMP AddGroup(

LPCWSTR szNamc,

BOOL bActive,

DWORD dwRequestedUpdateRate,

OPCHANDI．E hClientGroup,

LONG ‘pTuneBias。

FLOAT ’pPercentDeadband,

DWORD dwLCID，

OPCHANDLE ‘phServerGroup,

DWORD +pRevisedUpdateRate,

REFIID riid，

LPUNKNOWN 。ppUnk)；

武汉理工大学硕士学位论文

STDMETHODIMP GetErrorString(

HRESULT dwError,

LCm dwLocale．

LPWSTR 。ppString)；

STDMETHODIMP GetGroupByName(

LPCWSTR szName，

REFIID fli t,

LPUNKNOWN ‘ppUnk)；

STDMETHODIMP GetStatus(

OPCSERVERSTATUS”ppSetverStatus)；

STDMETHODIMP RemoveGroup(

OPCHANDLE hServerGroup,

BOOL bForce)；

STDMETHODIMP CreateGroupEnumeratm(

OPCENUMSCOPE dwScopc，

REFIID |i谴

LPUNKNOWN ‘ppUnk)；

添加完TestServer和TestGroup对象的所有方法后，重新编译工程，在Class

Veiw中将看到TestServer和TestGroup对象，双击各对象的接口将出现该接口

的所有方法。如图3．11所示。

武汉理工大学硕士学位论文

图3．11添加完对象的所有方法后的Class View

3．2．3 OPC DA服务器类的实现

现在虽然生成了TestServer和TestGroup对象的框架，但还没有实现

TestServer对TestGroup接口的访问，也没有实现对TestServer和TestGroup对

象的管理。本节将实现这两个功能。

(1)TestServer对象对TestGroup对象接口的聚合

在OPC DA服务器程序中，只有一个CLSID定义，这表示客户应用程序在

访问服务器时只需要创建一个Server对象，Group对象的接口是通过对Server

对象的创建来实现的。COM组件的可重用性包括包容和聚合，本文选择聚合来

实现Server对象对Group对象接口的支持，如图3．12所示。

武汉理工大学硕士学位论文

图3-12 Server对象对Group对象的聚合示意图

在TestServer．h文件对TestServer类的定义处添加如下代码来定义Server对

象对Group接口的聚合以及定义在创建Server对象时创建Group对象。

BEGIN_COM夸_MAP(CTestServer)

COM_INTERFACE_ENTRY(IOPCServer)

COM_INTERFACE_ENTRY_AGGREGATE(IID_IOPCItemMgt,m pms) ，

COM INTERFACE_ENTRY_AGGREGATE(HD_IOPCAsyncl02，m_pms)

COM_INTERFACE_ENTRY_AGGREGATE(IID_IOPCGroupStateMgt,

m_pms)

END COM_MAP()

CComObject<CTestGroup>’m_pms[10]；

HRESULT FinalConstruct()

{

HRESULT hr：

foKint j--O；j<lO；j++)

{

hr=CComObject<CTestOroup>：：Createlnstance(&m_pms[j])；

if(FAILED(hr))retum hr；

m_pms[j]->g_seqnum-=j；

m pms[j]·>m_Parent=this；

'

return hr；

}

HRESULT FinalRelease()

武汉理工大学硕士学位论文

{

for(intj=0；j<10；j++)

m_pms[j]->Release()；

returll S_OK；

，

下面对以上程序做以下说明：

COM INTERFACE ENTRY ， 是 的宏，用来．AGGREGATE(1IDPUNK)ATL

定义要聚合的对象接口，IDD表示GUID，PUNK代表IUknown指针。该宏共

被调用三次，分别实现TestServer对象对TestGroup对象的三个主要接121：

IOPCItemMgt、IOPCAsyncl02、IOPCGroupStateMgt的聚合。

CComObjeet<CTestCaoup>‘m_pms[10]定义了10个Group对象指针，同时

也表示每个客户最多只能建立10个Group对象。

FinalConstruct(1函数用来实现创建聚合对象，这个函数在CTestServer类初

始化时调用，并通过调用CreateInstance来创建聚合的对象Group，由于我们定

义了最大十个组对象，因此程序中循环的次数为十次。

FinalRelease(1函数用来实现聚合对象的释放，同时释放]Uknown指针，该

函数在Cl'estserver析构时调用，在次函数中释放了通过FinalConstruct()创建的

Group对象。

(2)新建类来管理对象

按照前面的功能设计，同时为了遵循OPCDA规范，下面建立几个类来管

理TestServer、TestGroup和Item。设计思路如下；

XXXSefvcr类作为TestServer对象的容器，用来管理Server对象，并负责

各个Server对象数据的刷新。

XXXGroup类作为TestGroup对象的容器，用来管理Group对象，并负责

各个Group对象数据的刷新和对XXXItem类的管理；检查异步读写通知；检查

数据刷新；检查是否回调等。

XXXItem类作为Item的容器，用来管理Item以及Item值的仿真实现等。

这三个类分别在XXXServer．h、XXXGroup．h和XXXItem．h三个文件中定

义。三个文件内容和注释详见附录Ⅱ、附录m和附录Ⅳ。同时三个类所定义

的函数分别在XXXServer．cpp、XXXGroup．cpp和XXXltem．cpp一：个文件中实现，

所有函数只要严格遵循OPC DA 2．05a规范都将很容易实现，限于篇幅，本文将

38

武汉理工大学硕士学位论文

不列出这些文件。

3．3 OPC DA服务器的异步通信实现

对于一个全面交互过程来说，同步通信往往不能满足要求。在异步读取数

据时，OPC服务器主动和客户应用程序通信，此时，OPC服务器提供出接口，

这些出接口由客户程序实现，并将接口指针通知OPC服务器对象，然后OPC

服务器对象就利用此接口指针与客户程序进行通信。客户程序实现这些接口的

对象被称为接收器(Sink，对OPC客户程序来说，其接收器至少要实现IUnknown

和IOPCDataCallBack接口)。对客户程序来说，可以通过常规方式调用OPC服

务器接口，也可以通过接收器接收OPC服务器发送的通知和事件。

异步通信就是通过COM机制中的连接点来实现的。可连接对象通过

IConncctionPointContainer接口管理所有的出接口。对应与每一个出接口，可连

接点对象又管理了连接点对象。为了使用连接点(IConnectionPointContaincr和

IConnectionPoint接口)，客户程序必须创建一个对象支持IUknown和

IConnectionPoint接口，客户程序会传递一个指针给IUknown接口去激活服务器

的连接点，可连接对象的基本结构如图3．13所示。

IUnkno霸a

图3．13连接对象的基本结构图

IConncctionPoint接口有两个重要的方法Advise和Unadvise。客户(接收

器)可以通过调用连接的点对象的IConnectionPoint：：Advise来建立连接。通过

Advise建立连接后，源对象(在此对应于OPC组对象)就可以激发事件或者向

客户发出请求。对OPC组对象来说，客户调用异步读写操作或者组对象项成员

的数据发生变化时，组对象就对客户程序发出事件，例如OnDataChangc等。

当客户需要取消连接时，调用带有同样连接标识的Unadvise即可。

武汉理工大学硕士学位论文

在OPC DA2．05a规范中定义了IOPCAsyncl02、IConnectionPointerContainer

和IOPCDataCallBack接口(该接口用于客户端)来支持对OPC服务器数据进

行异步读写操作。为了实现异步通信功能，对3．2节OPC服务器同步通信程序

的TestServer．h文件中的CTestGroup定义作如下修改：

BEGIN_COM_MAP(CTestGroup)

COM_INTERFACE_ENTRY(IConnectionPointCoutainer)

COM_INTERFACE_ENTRY(IOPCItemMgt)

COM_INTERFACE_ENTRY(IOPCGroupStateMgt)

COM_INTERFACE_ENTRY(IOPCAsyncl02)

END COM_MAP()

BEGIN_CONNECTION_POINT_MAP(CTestGroup)价忝加的代码

CONNECTION_POINT_ENTRY(IID_IOPCDataCalIback)

END_CONNECTION POINT_MAP()

添加的代码是一个宏，这个宏用来通知IConnectionPointerContaineT：只有

一个连接点HI)IOPCDataCallback，也就是IOPCDataCallback接口．如果需要

更多的连接点接口，就需要添加更多的CONNECTION_POINT_ENTRY(1宏。

下面为IOPCDataCallback接口添加方法，对3．2节OPC服务器同步通信程

序的TestServer．h文件中的CrestGroup定义修改如下；

classATL—NO—VTABLE CTestGroup：

public CComObjectRootEx<CComSing]IeThreadModel>，

public IConnectionPointContainerImpl<CTestGroup>，

public IConncctionPointImpl<CTcstGroup, &IID_IOPCDataCallback,

CComDynamicUnkArray>，

public IDispatchlmpl<lOPCItemMgt, &11D_IOPCItemMgt,

&LIBID OPCDALib> ，／添加的代码

同时加入以下宏和函数定义：

BEGIN CONNECTION_POINT MAP(CrestGroup)

CONNECTION_POINT ENTRY(IID_IOPCDataCalIback)

END CONNECTION_POINT_MAP0
STDMETHODIMP OnDataChangc(

DWORD dwTransid，

40

茎堡望三奎兰堡主兰垡堡苎

OPCHANDLE hGro叩，

HREsULThrMasterquality,

HRESULT hrMastererror,

DWORD dwCount,

CIPCHANDLE’phClientItems．

VARIANT‘pvValues,

WORD+pwOualities，

FILETIME‘pftTnneStamps，

HRESULT+pErrors

)； ，／数据发生变化事件函数定义

sTDM咂THoDIMP OnReadComplete(

DWoRD dwTransid,

OPCHANDLE hGroup,

BRESULThrMasterquality,

HRESUUr hrM硒tercrrOf．

DWORD dwCount，

0PCHANDI卫’phClientltems，

、确RIANT’pvValues,

WORD’pwQualities,

FILETIME‘pftTimeStamps，

HREsULT’pExtors

)；／／读事件完成函数定义

STDMETHODIMP OnWriteComplete(

DWORD dwTransid,

OPCHANDLE hGroup,

HRESUlJhrMastererr,

DWORD dwCount,

0PCH^NDLE+pClienthandles,

HRESULT o pErrors

)； ／／写事件完成函数定义

s1卫MFmODIMP OnCancelComplete(

41

武汉理工大学硕士学位论文

DWORD dwTransid,

OPCHANDLE hGroup

)；^任阪消事件完成定义

限于篇幅，本文不列出这些函数的具体实现。修改完成后的程序即可实现

对OPC DA服务器的异步读写操作。

3．4 OPC服务器的注册

根据OPC服务器支持的规范版本，OPC服务器在注册表中的信息也不一

样。OPC基金会规定OPC DA 2．0规范的服务器在注册表中的信息为：

{63D5F432-CFE4-11D1-B2c8一D060083BAlFB，，在开发OPC DA服务器的时候

需要将其类别信息注册到系统中。

本文开发的OPC DA服务器的注册文件OPCDA．reg如下：

[HKEY_CLASSES_ROOT、CLSID＼{7C13259A-74FD-4064-818F-C639E4858

llB}klmplemented Categoriesl

【HKEY_CLASSES_ROOT、CLSID＼{7C13259A-74FD-4064-818F-C639E4858

llB}klmplemented Categories＼{63D5F432·CFE4-11D1-B2C8-0060083BAIFB}】

其中{7C13259A-74FD-4064-818F-C639E485811B}为系统为本服务器的自

动生成的UUID，{63D5F432-CFE4-11D1．B2C8-006(083BAlFB}表示是基于

OPC DA2．0规范的OPC DA服务器。

武汉理工大学硕士学位论文

第4章基于同步通信的OPC客户端应用程序设计

OPC客户端应用程序开发分为两类：基于自动化接口和自定义接口。本章

仅研究了基于自动化接口的OPC客户端应用程序开发。

4．1客户端接口

4．1．1 IOPCDataCallback接口

为支持此连接点，客户必须创建一个既支持IUnknown又支持

IOPCDataCallback的接受器对象。客户向服务器IConnectionPoint的Advise方

法传递IUnknown接口建立连接，然后服务器调用其QucryInterface方法获得

IOPCDataCallback接口指针。接口指针可在组对象的数据变化时或

IOPCAsyncl02接口被调用时用到。

OnDataChange：当组对象的数据改变时和Refresh方法调用时服务器调用

此方法通知客户进行数据处理。

OnReadComplete：当IOPCAsyncl02接I：1异步读完成时服务器调用此方法

通知客户进行数据处理。

OnWriteComplete：当IOPCAsyncl02接口异步写完成时服务器调用此方法

通知客户进行数据处理。

OnCancelComplete：当IOPCAsyncl02接口异步取消操作完成时服务器调

用此方法通知客户进行相关处理。

4．1．2 IOPCShutdown接口

为支持此连接点，客户必须创建一个既支持IUnknown又支持

IOPCShutdown的接受器对象。服务器获得IOPCShutdown接口指针的方法与

IOPCDataCallback出接口相同。接口的ShutdownRequest方法在服务器需要切

断连接时调用，客户应该用UnAdvise取消所有连接，移除所有组，并释放所有

接口。当一个客户程序与多个OPC服务器相连时应该保存相对于每个对象的独

武汉理工大学硕士学位论文

立的ShutdownRequest回调，这样每个服务器可以独立的切断服务。

4．2基于同步通信的OPC客户端应用程序设计流程

采用自动化接口的客户应用程序相对于自定义接口的用户程序较简单，因

此本文仅简要介绍基于自动化接口和同步通信的客户端应用程序开发步骤【28l。

(1)注册OPC服务器

利用AⅡ。创建的oPC服务器，编译通过后，只要运行工程就自动完成了

对OPC服务器在系统中的注册。于是，只要符合OPC标准的客户应用程序都

可以访问来自任何生产厂商的OPC服务器程序。

(2)安装自动化接口服务

要保证系统目录下有文件：OPCDAAum．ml，该文件可以从OPC基金会官

方网站(www．opcfoundation．org)下载。在VB环境下可以通过Projcct的菜单

References来引用“OPCAutomati∞2．o”，这样就可以使用自动化接口．

(3)连接OPC服务器 ·

首先判断OPC服务器对象是否创建，如果没有则先创建一个OPC服务器

对象；然后再判断OPC服务器对象是否处于连接状态，如果未连接，则调用

Connect方法建立连接。与服务器建立好连接后就可以使用其属性如

ScrverState、StartTtme、CurrentTlme、OPCGroups等来获取服务器的状态、启

动时间、当前时间、组对象等信息。

(4)添加OPC组和OPC项

添加组之前首先判断组聚合是否存在，如果不存在，则创建一个组聚合对

象，然后判断该组是否已经存在。在添加项前，先判断项是否已经存在，如果

不存在则创建一个项聚合对象，然后就可以调用项聚合的AddItems方法添加项

【四】。

(5)同步谢写服务器数据
同步方式对OPC服务器提出数据访问请求后一直等待服务器的应答，实时

性强，因此适合智能楼宇对实时性的苛刻要求。

(6)断开OPC服务器

在断开OPC服务器前，必须先从下到上进行释放工作，即先释放项集合中

的项，然后释放项集合；清空组集合中的组，然后释放组集合嗍；判断OPC服

武汉理工大学硕士学位论文

务器对象的状态，如果处于连接状态，则先断开连接，然后释放OPC服务器对

象【311。

4．3基于VB的OPC客户端同步应用程序设计

本文设计的OPC客户端应用程序是以iFox3．5数据库为服务器，为方便

起见，数据库中仅有两个字段：浮点型的模拟量和日期【32l。程序开发的遵循

4．1节的流程。首先在VB6．0中新建工程，创建如图4．1所示的框体：

图4．1 OPC客户端同步应用程序界面

从Project的子菜单Preferences中引用OLE Automation和OPC Automation

Wrapper 2．0，如图4-2所示【33l。

武汉理工大学硕士学位论文

图4-2引用OPCAutomation Wrapper 2．0动态连接库

在程序开始处首先声明OPC对象如下：

Dim WithEvent ServerObj As OPCServer

Dim WithEvent GroupObj As OPCGroup

Dim ltemObj As OPCItem

下面仅对按钮触发的事件做详细的介绍。

“启动客户端程序”按钮单击后完成以下功能：创建一个OPC服务器对象、

连接服务器、添加组对象、为组对象添加项，详细程序如下所示。

“读OPC服务器”按钮单击后通过ItemObj对象的Read方法来获得服务器

的数据，详细程序如下所示【卅。

“读OPC服务器”按钮单击后GroupObj对象的SyncWrlte方法完成对服务器

进行写操作。

“停止客户端程序”按钮单击后，依次完成对ItemObj和GroupObj对象的

释放， 然后通过ServerObj对象的Disconnect方法断开与服务器的连接，最

后释放ServerObj对到351。
以上四个按钮触发的事件在进行任何一个操作出错时，都会根据错误代

码弹出具体的错误提示对话框，详细代码见附录II。

武汉理工大学硕士学位论文

第5章基于OPC技术的智能楼宇监控系统设计

楼宇系统集成工程涉及的子系统主要包括楼控、消防、考勤门禁、紧急广

播、保安监控和停车场系统等。本章主要研究了OPC服务器在楼宇消防系统中

的运用，集成软件采用霍尼韦尔m∞eywcll)公司的EBI(Enterprise Buildings

Integrator)，通过EBI主控界面来控制消防系统的CAN节点设备闭。

5．1系统框架结构

现有住宅小区需安装消防设备，在这里将各个烟雾传感器作为CAN节点，

连接成一个小区内部CAN网络，服务器作为CAN的另一节点，通过cAN—

USB网关挂接在CAN总线上，可以方便地实现对节点的监控。网络拓扑结构

如图5-1所示。

Pc

EBI监控软件
(oPC客户)

消防系统
OPC服务器

剪
I CAN-USBM关J
I CAN：馘0 l

I
l

I l I I I
I烟雾监控点1I I烟雾监控点2l I烟雾监控点3l i烟雾监控点4I
CANg点I I J cAN节点2 I cAN节点3 f cAN节点4 l“

图5-1系统结构框图

武汉理工大学硕士学位论文

在服务器节点端，这里采用OPC接口，屏蔽了底层的细节，提供统一的通

用接口。这样可以提高系统的兼容性，极大地提高软件开发效率。同时利用该

服务器的OPC接口可以方便的与其他网络进行对接，实现信息的交互，例如可

以接入Interact来实现网络的远程监控。

5．2系统硬件实现

(1)监控子节点设计

烟雾传感器采用深圳市易佳杰电子科技有限公司的NIS-09C，该传感器提

供三根接线：VCC、GND和烟雾报警输出信号。输出信号在正常工作状态为高

电平，当烟雾传感器所采集的烟雾浓度超过预定的阈值时，输出信号为低电平，

此时触发C8051F236的中断，CAN节点向PC监控软件发送烟雾报警信号。

微控制器采用CYGNAL公司的C8051F236，CAN总线接口使用PhiUps公

司的独立CAN线控制器SJAl000，并由光耦6N137进行总线隔离， CAN总

线收发器采用MCP2551。监控子节点的硬件框图如图5．2所示。

图5．2监控子节点硬件框图

(2)CAN-USB网关设计

CAN．USB网关的硬件电路和监控子节点大致相同，只增加了CAN-USB转

换电路，如图5-3所示。

武汉理工大学硕士学位论文

rUWH

图5．3 CAN．USB网关硬件图

USB接口器件为PDIUSBDl2，它是Philips公司的一种性能优化的USB器

件。它支持本地的DMA传输，完全符合USBl．1版的规范，同时集成了SIE(串

行接口引擎)、FIFO存储器、收发器以及电压调整器。其主端点的双缓冲配置

增加了数据吞吐量并轻松实现实时数据传输。

5．3系统软件实现

系统的软件设计分为下位机软件和上位机软件设计。下位机软件设计包括

监控节点和CAN．USB网关软件；上位机软件包括消防系统的OPC服务器开发

和EBI软件设计。

5．3．1下位机软件实现

(1)监控节点软件设计

监控节点软件主要包括两个中断服务程序：烟雾量超过预定阈值的中断

(矾TO)和CAN数据接收中断。在INT0中断服务程序里向主机发送烟雾超过

预定阙值的报警信号。CAN数据接收中断服务程序流程图如图5-4所示。

49

武汉理工大学硕士学位论文

图5-4 CAN数据接收中断服务程序流程图

(2)网关软件设计

网关软件设计主要包括PDIUSBDl2的中断服务程序和端点10uT处理程序。

在PDIUSBDl2的中断服务程序，用PDlUSBDl2的端点1和端点2进行上位计

算机与微控制器之问的命令和数据的传输。端点1和端点2设置成模式0，其中端

点1进行命令的传输和应答，端点2用于数据的传输。用USB总线进行数据传输时。

必须定义一个数据传输的协议，否则主机和设备方就不同步，因为USB设备数据的

发送是主机提出请求后再进行的，当主机没有发送玳令牌时，设备是不会发送数

据的，而不管设备的数据是否写入PDIUSBDl2器件的缓冲区。端点1接收上位机

发送过来的命令，这些命令就是主机与设备共同协商好的命令字，程序对命令

进行判断，如果是要求发送数据，则向端点2的玳索引写入数据。等待下次端点

2的INN来，所写入的数据即可被上位机接收。PDIUSBDl2的中断服务程序流程

图如图5．5所示。

武汉理工大学硕士学位论文

图5．5 PDIUSBDl2的中断服务程序

端点1为OUT端点，主要用来配置CAN节点控制器SJAl000传输的波特

率和通过CAN-USB网关向监控节点发送开始、停止监控的命令。端点1 OUT

处理程序流程图如图5-6所示。

图5．6端点10UT处理流程图

51

武汉理工大学硕士学位论文

5．32 PC端软件实现

(1)消防控制系统的OPC DA服务器开发

通过深入分析消防控制系统的USB驱动程序，利用MicrosoftⅥsual C++6．0

的ATL开发了本系统的OPCDA服务器。在IOPCSyncIO接口的Read和Write

方法实现对USB数据的读和写，包括启动、终止各监控节点和读取烟雾报警信

号的数据。OPC DA服务器的具体开发步骤见本文第3章。

(2)主机端应用软件EBI

作为业界领先的企业级楼宇集成管理软件，EBI为用户提供了一种高效、

可靠、灵活的集成软件开发平台。EBI软件平台主要包括：Quick Builder、Display

Builder／HMI Web Display Builder和Station。

利用Quick Bufld盯进行工程组态是整个开发过程的重点，下面对EBI中

OPC Client接口的通道、控制器和点的配置中的关键问题进行说明网。

①通道组态。定义对应于子系统通道的OPC DAServer，正确配置各通道

的如下参数：

HostName：连接的OPC Server所在的计算机名称，若Server与EBI平台

安装在同一机器，则此处为Local Host。

Pro#D：OPC Server程序在系统中的注册名称，由于OPCDA方式是基于

COM／DCOM技术，所以只有OPC Server在操作系统中注册后，OPC客户端才

能够查询并连接到此OPC服务器冈。

②控制器组态。OPC类型的控制器在概念上表示一个OPC组。根据实际

工程的需要可以将服务器中的数据项进行适当的分组，以组的方式管理各个项。

③点组态。点的组态是将所需要的oPC项与EBI数据库中数据点相映射

的过程。”Sourc七Address”(源地址)和”DestAddress”(目的地址)的设置是点

组态过程中的关键，其格式为：ControlleNameOPCItemName[DataFoanat]，其中，

Con仃ofleName为控制器名称，OPCItemName为OPC服务器中项名称，

IData】№mat】为数据格式139】。

按照上述方法完成组态配置，加载本OPC服务器的进程如图5-7所示。

武汉理工大学硕士学位论文

图5-7加载消防系统OPC服务器的进程图

创建EBI主控界面如图5-8所示，在References中引用已加载的消防系统

的OPC DA服务器，即可完成对各监控节点，本实例仅监控4个节点。

武汉理工大学硕士学位论文

图5．8 EBI主控界面

启动监控系统，可以点击按钮独立控制每个监控节点的开关，当烟雾传感

器输出的数据超过预定的阈值时，节点对应的按钮上面的黑色将交为红色，并

闪烁。

5．4系统测试结果分析

本系统采用的传感器报警时的烟雾浓度为30％(误差为5％)，测试时，将

监控节点放在一个密封性好的盒子，然后慢慢向盒子里释放烟雾，当烟雾传感

器输出低电平时(烟雾浓度超过阈值)，监控系统对应的黑色立即变为红色，并

不断闪烁以表示警告。

通过测试，由于采用了OPC技术和与OPC兼容性比较好的客户端应用软

件EBI，系统的响应时间快，而且在下位机的硬件升级时，主机端的监控软件

不用升级，体现了OPC技术的优点，本系统达到了预定的目的I删。

武汉理工大学硕士学位论文

6．1总结

第6章总结与展望

本文对OPC规范进行了深入的分析，深入研究了接口描述语言，详

细研究了OPC服务器和客户端应用程序的开发工具，并基于Visual

C++ATL和Visual Basic成功开发了OPC DA服务器以及OPC客户端应用

程序，最后对OPC在智能楼宇消防监控系统的应用进行了研究【4I】。

采用OPC技术后，由硬件开发商针对产品提供统一的OPC接口程序，

应用程序端不需要了解硬件的实质和操作过程，直接调用OPC接口即可完成

与设备之间的数据传输与控制，因此避免了重复开发驱动程序，大大降低了

开发周期和开发经费。

本课题的研究成果基本达到了预定的目标：对楼宇子系统开发对应的

OPC服务器，使各子系统具有较理想的开放性，并为系统集成和升级提供了

方便．

6．2展望

本课题仅研究了Ol'C规范中最重要的OPC DA服务器和客户端应用程

序的开发，基于其它四个规范的服务器开发还有待研究；同时基于OPC服务

器的智能楼宇远程监控的实时性和安全性还有待研究。

武汉理工大学硕士学位论文

参考文献

【1】唐小艳，陈立定，曾明．基于OPC技术的智能建筑系统集成的研究．安徽建筑工业学

院学报，2004，4：38-40

【2】李蕾，戴瑜兴．OPC数据存取服务器的实现．湖南工程学院学报，．2005，2：19-22

【3】王红爱．OPC CLIENT／SERVER开发方向研究：【硕士学位论文】．北京化工大学，2004

【41张小军．基于LonWorks技术的楼宇自控系统及其集成研究：【硕士学位论文】．哈尔

滨理工大学，2003

15】吴由平，马旭东．OPC技术及其在智能楼宇系统集成中的应用．自动化技术，2006，3：

90。92

【6】苗雷，冯济缨．基于现场总线的OPC接口技术的研究．贵州工业大学学报，2004，6：

3m32

【7】刘庚．oPc及其在工业控制中的应用研究：【硕士学位论文】．河海大学，2005

【8】周鸣，曲凌．基于OPC技术的楼字自动化系统集成．煤炭工程，2005，11：78-80

【91吕勇。李友荣，王志刚等．基于OPC技术的设备远程监测与诊断系统．计算机管理与

控制一体化，2005，6：65-67

【10】李德华．基于LonWorks现场总线的楼宇自动化系统的研究及实现：【硕士学位论文】．广
东工业大学，2002

。

11l】崔丽丽，徐进学．基于Oi'C技术的客户端数据采集软件包设计．沈阳工业大学学报，

20D5，5：553．555

【12】Schickhuber,Gerald McCarthy．Dmtn'buted fleldtms and control network systems．Oliver

Source：Compu血g＆Conm31 EngineeringJournal,v8，nl，Feb，1997,#1-32

【13】张英．基于LonWorks技术的楼宇自控系统及其集成研究： 【硕士学位论文J．重庆大

学，2005

【141刘快．基于OPC技术的实时控制系统研究与应用：【硕士学位论文】．浙江大学，2004

【15】姚晓伟，陈在平，尹迅雷．基于OPC技术的现场总线系统集成研究．天津理工大学

学报，2005。4：12-14
。

【16】侯春生．OPC技术在现场总线控制系统中的应用：【硕士学位论文】．大连铁道学院，

2005

【17】张奇智，曹永灿．基于OPC技术网络控制系统仿真平台．信号与系统，2005，8：142-144

武汉理工大学硕士学位论文

【18】李冬辉，贾巍．基于OPC协议的智能建筑信息集成系统的设计．低压电器，2005，6．

22-25

【19】袁德平．OPC技术在PROFIBUS现场总线中的研究与应用：【硕士学位论文】．西南交

通大学，2001

[201王海瑞，钟家玉．用Delphi开发OI'C客户端工具的方法研究．微计算机信息，2004,6：
28-29

【21】赵菁晶．智能楼宇监控系统软件平台设计与开发：【硕士毕业论文】．北京工业大学，

2003

【22】李石兵，王大林．智能建筑一体化集成系统中LonWorks OPC服务器的开发．智能建

筑与城市信息，2005，7：105．107

[23】OPCFoundation．OPCDataAccessCustomInterfaceSpecification．Vemion2．04．2000，09

阱】阳宪惠．现场总线技术及其应用．北京：清华大学出版社，200I

【25】朱耀春．OPC数据存取服务器的开发与研究：【硕士学位论文】．华北电力大学，2003

【26】刘国平，柳林林，刘利云．基于OPC服务器自动化接口的客户端程序的设计．自动

化技术与应用，2005，9：33-35

[271 Holley．OPC unites industrial automation systems．Industrial Communications and Buses,

1997,pll-17

【28】刘莉．用VB编写OPC客户端程序的方法．工业控制计算机，2005，5：5-6

【29】李之明，高玉琢．Delphi7组件经典解析．北京：中国铁道出版社，2003

[30l徐尔贵，丁雷．V'mual Basic教程．北京：清华大学出版社，2003

[3U Neitzel,Lce．OPC unified architecture internals．Technical Conference and Emerging

Technologies Conference-Technical Papers Collection,2004，p1051—1063

f321 Cauthiez,Laurent Conrard．Ficidbuses and their influence OI!dependability．Conference

Record-IEEE Instrumentation andMeasmt Technology COlifercll∞,V1，2003，pS3-s8
[33】Lifang,Wangxiaoquan．Research and application of in-vehicle CANbus evaluation platform．

Chincsc High Technology LeHers,v15，nl，January,2005，p58-61

【34l Anon．CAN intcdace．Elektron,v21，n6，June，2004，p38．40

[35]Pinho．Luis Migue．Reliable Real．1Rm Communication in CAN Networks．IEEE
Transact／om On Computers，v52，n12，December,2003，p1594-1607

p6J Thomas Nolin,MikaeL ReaI-time server-based communication with CAN．IEEE

Transactions Oil Industrial Informatics，V 1，n 3，August,2005，p192-200

【37】李鑫，吴爱国，何熠．基于OPC技术楼宇系统集成的研究与实现．低压电器，2005，

8．1舢16

武汉理工大学硕士学位论文

[381 Slngh，Manjit．Building low-cost intelligent budding components with Controller Area

Network(cAN)bus．IEEE Region 10 International Conference on Electrical and Electronic

Technology,2001，p466-468

【39】Shengwei Wang，Zhengyuan Xu．1nvestigafion oll intenigent buHding standard

communication protocols and application of IT technologies．Automation in ConsUuction,v13，

n5 SPEC．ISS．，September,2004，p607-619

[40】Sheble,Nichohs．OPC force decision．Source：InTech,v52,nlO,0c岫2005，p110
[41】zhi Wang,1日anran Wang．Research and implementation of field bus interoperability．

Proceedings of the World Congress on Intelligent Control and Automation(WCICA),v5，2伽，
p3605—3610

武汉理工大学硕士学位论文

致谢

经过三年的学习，我的学位论文最终得以顺利完成。在三年的学习生活中，

我要感谢的人很多，感谢他们在物质和精神上对我的支持。

感谢我的导师黄涛教授，忠心地感谢他在学习和生活中对我的帮助。导师

活跃的学术思想，清晰的学术思路，严谨的治学态度，平易近人的学者风范，

使我深受启迪和教育。导师对课题研究中的大力支持和悉心指导，使我受益匪

浅。

感谢武汉理工大学智能信息系统研究所廖传书和卢珞先老师在项目研究以

及论文撰写过程中给予我的关心和指导，以及所有师兄弟们对我的帮助。

感谢宁波诺依克电子有限公司黄金火教授在实习期间对我的指导。

感谢我的父母含辛茹苦地把我培养到现在，特别是在我母亲病重时仍然坚

持让我完成学业，他们的养育之恩让我感动终生!感谢学习期间我的弟弟、弟

妹以及我的未婚妻陈艳丽对我经济上的资助和精神上的鼓励。

感谢室友钟明、刘建伟、李新军等在我生活窘迫的时候对我的资助和鼓励。

最后谨向所有支持和关心我的人们致以最诚挚的感谢!

武汉理工大学硕士学位论文

攻读硕士学位期间发表的学术论文

【1】黄涛，王小辉．2．443射频的CAN总线汽车故障诊断仪．单片机与嵌入式应用

研究，2007年，第2期

【2】黄涛，王小辉．基于车载环境的两种改进型LPC特征参数识别方法的研究．

计算机应用研究，2007年9月刊

武汉理工大学硕士学位论文

附录I遵循OPCDA2．05a规范的接口定义程序OPCDA．idl

，，0PCDA．mL

import”oaidl．idl”：

typedefenum tagOPCDATASOURCE{
OPC DS CACHE=1．

OPC DS DEⅥCE’0PCDA【)峪OURCE：

typedefenum tagOPCBROWSETYPE{
OPC BRANCH=1．

OPC_LEAF，

OPC ETYPE；

typedefenum tagOPCNAMESPACETYPE{
0PC NS HmRARCHIAI，=1．

OPC NS FLAT，OPa删ES雕LcE．rYPE；
typedefenum tagOPCBROWSEDIRECTION{

OPC_BROWSE UP=1，

OPC_BROWSE_DOWN，
OPCBROWSEDIRECTION；
／，”NCllE”the 1．0 IDLcontained all error forAC(=ESSRlGHTS．

，／They should not have been an ENUM．

||1heY should have been two mask bits as noted here．

cpp_quotc("枷efine OPC_READABLE 1”)
cpp_quote(”#define OPC_WRITEABLE 2”1

typedef enum tagOPCEUTYPE{
OPC NOENUM=0．

OPC_ANALOG,

OPC ENUM匣RA【ED，0PCEl椰E：
typedef enum tagOPCSE]R：VER研E舡E{

OPC S1=f^矾rS RUNNING=1．

0PC S1=c^TUS FAILED．

OPC Sm气TUS NoCONFIG

OPC Sm^TUS SUSPENDED,

0PC S1：棚yS 11EST’0PCSERVERslCATE；
typedef enum tagOPCENUMSCOPE{OPC_ENUM_PRlVATE_CONNECTIONS
=1，

0PC ENUM PUBUC CONNECnONS．

OPC ENUM ALL CONNEC兀ONS．

0PC ENUM PRI、硝咂．

武汉理工大学硕士学位论文

0PC ENUM PUBLIC

OPC ENUM ALL，OPCENUMSCoPE；

typedefDWORD 0PCHANDIJ§：

typedcf struct tagOPCGROUPHEADER{
DWORD dwSize；

DWORD dwltemCount；

0PCHANDLE hClientGroup；

DWORD dwTransactionlD；

HRESUIT hrStatus；

，OPCGROUPHEADER；

typedef struct tagOPCITEMHEADERl{
0PCHANDLE hClient；

DWORD dwValueoffset；

WORD wQuality；

WORD WReserved；

F1I E1rIME flTtmeStampltem；

’0PCnEM旺ADERl；
typedefstmct tagOPCITEMHEADER2{

0PCHANDI正hClient；

DWORD dwValueOffset；

WORD wQuality；

WORD wReserved；

l OPCnEMH呦ER2；
typedef struct tagOPCGROUPHEADERWRITE{

DWORD dwltemCount；

oPCHANDI正hCIientGroup；

DWORD dwTransactionlD；

HRESUIT hrStatus；

’OPCGROUPHEADERWRITE；

typedef struct tagOPCITEMHEADERWRITE{
OPCHANDLE haicnt；
HRESUlT dwError；

1 OPCITEMHEADERWRITE；

typedef struct tagOPCITEMSTATE{
oPCHANDI。E hClient；

F1I E1n也ffnmeStamp；
WORD wQuality；

WORD wReserved；

VARU岍 vDataValue；

’OPCⅡEMSl=c^TE：

武汉理工大学硕士学位论文

typedef struct tagOPCSERVERSTATUS{
FII E1rIME fiStartThne；

FII E11ME fiCurrentTnne；

FⅡE11[~IE flLastUodateTime；

0PCSERVERSl：c气珏dwServerState；
DWORD dwGroupCount；

DWORD dwB锄dWidth；
WORD wMajorVersion；
WORD wMinorVersion；

WORD wBuildNumber,

WORD wReserved；

【string】LPWSTR szVendorInfo；
'OPCSERVERS咖IS；
typedef struct tagOPCITEMDEF{
【string] IjPwslR szAccessPath；

【string]LPWSTR szRemID；

B00L bActive：

0PCHANDI正hClient；

DWORD dwBlobSize；

【size__is(dwBlobSize)】 BYrE ‘pBlob；

VA]KryPE vtRequestedData蛳；
WORD wReserved；

’OPCITEMDEF；

typedef struct tagoPcrrEMAYrSmⅥEs{
【string]LPWSTR szAccessPath；

[saing]LPWSTR szltemlD；

BOOL bActive；

OPCHANDLE hClient；

0PCHANDLE hServer,

DWORD dwAccessRights；

DWORD dwBlobSize；

【size_is(dwBlobSize)】BYTE ‘pmob；

ⅥU玎1’PE vtRequestedDataType,

VAJ阳n俾E vtCanonicalDataType；

OPCeIrll．PE dwEUType；

、硝RI^蚤rr v即hfo：
’OPCⅡEM瑚rrRmI玎ES；

typedef struct tagOPCITEMRESULT{
OPCHANDLE hServer；

、狐I【rYPE vtCanonicalDataType；

WORD
wRcserved；

DWORD如，AccI潞Rights；
DWORD dwBlobSize；

[size_is(dwBlobSize)] BYTE ’pmob；

}OPCITEMRESULT；
／／*’’’·‘‘’···‘}·’，····································

／／OPC Quality flags

||

／／Masks for extracting quality subfields

／／(note'status’mask also includes'Ouali∥bi曲

cpp_quote("#define OPC_QUALITY MASK

cpp_quote("#defme OPC_STATUS MASK

cpp_quote(“#define OPC_LIMIT MASK
||Values for QUALITY_MASK bit field

cpp_quote(“#define OPC_OUALrrY．BAD

cpp_quote(”#define oPc 0u岍uNcE砌’AⅨ
cpp_quote(”#define OPC_0UALrrY GOOD
／／STATUS MASK Values for Ouality=BAD

OxCO”)

0xFC。)
0=棚B1

0x00”)

功【40’

0xC0”)

cpp_quotc(”#define OPC OUALlTY CONFIG_ERROR O暂04-1

cpp_quote(”#define OPC_QUALITY_NOT_CONNECrED 0x08-1
cpp_quote("#defme OPC_QUALITY_DEVICE_FAILURE 0xoc一1
cpp_quote(”#define OPC_OUALITY_SENSOR_FAILURE 0x10一l
cpp_quote(”#define OPC OUALITY LAST KNOWN 0x14—1

cpp_quote(”#define OPC OUALITY COMM_FAILURE 0x18一、

q,p_qnote(”#define OPC OUAI．XrY—OUT—OF—SERVICE 0xlC")
／／STATUS_MASK Values for(Il】ality=UNCERTAIN

cpp_quote(”#-define OPC QUALITY LAST_USABLE 0x44—1

c'pp_quote(”#define OPC_OUALITY__SENSOR ’_CAL 0xS0"

cpp_quote("#define OPC_OUALITY_F．GU_EXCEEDED 0x54—1
cpp_quote(”#define OPC_QUALITY_SUB NORMAL 0x58—1
／／STATUS_MASK Values for 0ualjty=GOOD

cpp_quote(”#define OPC_QUALrⅣ_LOCAL OVERRIDE 0xD8—1

／／Values for L／m／t Bi饿eld

cpp_quote(”#define OPC LIMIT OK 0x00一'

cpp_quote(”#define OPC_LIMIT_LOW 0x01—1

cpp_quote("#deflne OPC LIMIT HIGH Ox02D
cpp_quote(”#define OPC_LIMrr CONST Ox03—1

／，+··。。。
。

／／Interface Definitions

武汉理工大学硕士学位论文

，／¨¨¨¨’¨¨’‘¨‘¨¨‘¨¨’¨¨．．¨¨¨¨¨‘‘‘‘¨¨

【

obj壶t,

uuid(39c13a4d-011e-1ld0-9675-0020afd8adb3),

pointer_default(unique)

】
interface K)PCServcr：IUnknown

{

HRESULTAddOroup(

【in，string]LPCWSTR szName，

【in] BOOL bActive,

【in】DWORD dwRequestedUpdateRate，

【in】 OPCHANDLE hClientCffoup，

[unique，in]LONG ‘pT'nneBias，

【unique，inl FLOAT ‘pPercentDeadband,

【in]DWORD dwLCID，

[out】 OPCHANDLE ‘phServerGroup，

[out】DWORD ‘pRevisedUpdateRate,

叫 REFIID riid,

[out，iid_is(riid)]LPUNKNOWN ‘ppUnk

)．
HRESULTGetErrorString(

陋】HRESULT dwError,

【in】LCID dwLocale,

【out,string]LPWSTR ’ppString

)；
HRESULT GetGroupByName(

【in’string]LPCWSTR szName，

叫 REFIID riid，

[ouL iid_is(riid)】LPUNKNOWN’ppUnk

)．
HRESULT OetStatus(

[out]OPCSERVERSTATUS。‘ppServerStatus

)；
HRFesULT RemoveGroup(

【in】OPCHANDLE hServerGroup，

【in】BOOL bForce

)；

HRESULT CreateGroupEnumerator(

[in】OPCENUMSCOPE dwScope，

武汉理工大学硕士学位论文

【in】REFIID did，

[out,iid_is(riid)]LPUNKNOWN。ppUnk

)．

}
／／’‘‘‘‘’’’o’‘‘+’’‘’‘o‘’’·+++++’+’’’‘‘’’’‘’‘++’’’’’’‘’‘

【

o坷ea,

uuid(39c13a4e-011e-11d0-9675-0020afd8adb3)，

pointer_default(unique)

】
interface IOPCServerPublicGroups：IUnknown

{
HRESULTGetPublicGroupByName(

阻stfing]LPCWSTR szSame，

【in】 REFIID riid,

【out,iid_is(riid)】LPUNKNOWN‘ppUak

)；
I-IRESULTRemovePublicGroup(

【缸】OPCHANDLE hServetGroup，

【叫BOOL bForce

)．

'
／／‘‘‘‘’’‘’‘‘‘’‘’’‘’‘’‘’。‘’‘‘‘‘‘‘’。‘’‘‘‘‘’‘’‘‘‘‘‘‘’’+’’

【

oMect,

uuid(39c13a4f-011e-11dO-9675-0020afd8adb3)，

pointer default(unique)

】
interface IOPCBrowseServerAddressSpace：IUnknown

{
HRESULT oIleryOrganization(

【oat] OPCNAMESPACETYPE’pNameSpaceType

)；
HRESULT ChangeBrowsePosition(

【in】 OPCBROWSEDIRECTION dwBrowseDirection,

【in’string]LPCWSTR szStdng

)；
HRESULT BrowseOPChemlDs(

【in】 OPCBROWSETYPE dwBrowseHlterType，

【in，string]LPCWSTR szFntercfitefia，

武汉理工大学硕士学位论文

叫
【in】

【out】

)．

、，ARrYPE

DWORD

IJENUMSTR玎qG

HRESULT GetltemlD(

【inl LPWSTR

【out,string]LPWSTR

)；
HRESULT BrowseAccessPaths(

阻string]LPCWSTR
【out】LPENUMSTRING
)．

vtDataTypeFilter,

dwAccessRightsFilter,

‘ppIEnumString

szltemDataID，
o szltemlD

s2ItemID，

’ppIEnumString

'

／／‘¨¨．．¨¨‘‘¨．．¨¨¨‘¨¨¨’‘‘¨¨¨‘¨¨¨¨¨¨

【

object,

nmd(39c13aSO-011e-11dO-9675-0020afdSadb3),

pointer_default(unique)

】
interface IOPCGroupStateMgt：IUnknown

{
HRESULTOetState(

[out]DWORD +pUpdateRate,

[out] BOOL ’pAcfive,

【out，string]LPWSTR ’ppName，

[out]LONG ‘pTtmeBias，

【outl FLOAT ‘pPercentDeadband，

【out】DWORD ‘p／LID,

[out】 OPCHANDLE ‘phClientGroup，

【oat] OPCHANDLE ’phServerGroup

)．
HRESULT setState(

[unique，in】DWORD ‘pRequestedUpdateRate，

【out]DWORD ’pRevisedUpdateRate，

【unique，蜘 BOOL ‘pAcfive，

[unique，in]LONG 。pTimeBias，

[unique，埘 FLOAT ‘pPercentDeadband,

【unique,in]DWORD ’pLCID，

[unique，in] OPCHANDLE ’phClientGroup

)；

武汉理工大学硕士学位论文

HRESULT SetName(

【in’string]LPCWSTR szName

)．
HRESULT CloneGroup(

【in,string]LPCWSTR szName，

[in】 REFIID riid,

【ollI，iid_is(riid)】LPUNKNOWN’ppUnk

)．

}
／，’’‘’’’’’’’‘‘’’。’‘‘’‘‘‘’’’’’‘‘’‘‘’’‘’’‘’‘‘‘‘’’‘’‘‘‘。‘

【

object,

uuid(39c13a51-011e-lld0-9675-0020afd8adb3),

pointer_default(unique)

】
interface IOPCPublicGroupStateMgt：IUnknown

{
HRESULT GetState(

【out】BOOL。pPublic

)；
HRESULTMoveToPubHc(
void

)；

}
／／‘”””””””””””””‘‘””””””””””“‘

【

oblect,

uuid(39c13a52旬11e．11d0-9675-0020afd8adb3)，

pointer_default(unique)

】
intefface IOPCSynclO：IUnknown

{
HRESULT Read(

【in] OPCDATASOURCE dwSource，

【in]DWORD dwOount,

阻size_is(dwCount)l OPCHANDLE ’phServer,

[out,size_is(，dwCount)】 OPCITEMSTATE “ppltemVaines，

[out,sizejs(，dwCount)]HRESL,'LT ”ppErrors

)；

HRESULTWrit“

武汉理工大学硕士学位论文

[in】DWORD

阻Si7．2．is(dwCount)]0PCHANDLE
【in,size is(dwCount)】 VARIANT

【out,size is(,dwCount)】HRESULT

)；

dwCount,

’phServer,

‘pltemValues,

‘’ppErrors

}
／／”“””‘””””””””””‘””””””+“”””’

【

object,

uuid(39c13a53-011e—lld0-9675-0020afd8adb3),

pointer defauh(unique)

1
interface IOPCAsyncIO：IUnknown

{

HRESULTRead(

刚DWORD dwConnection,

【叫 OPCDATASOURCE dwSonrce，

陋】DWORD dwConnt,

阻size_is(dwCount)] OPCHANDLE ‘phServer,

【0ut]DWORD ’pTransactionID，

[out,size_is(,dwCount)]HRESULT ‘‘ppErrors

)；

HRESULTWrite(

【训DWORD dwComtection,

【叫DWORD dwCount,

【in,size is(dwCount)] OPCHANDLE ’phServer,

阻size_is(dwCount)] VARIANT ‘phemV址ues,

【oat]DWORD +pTransactionlD,

【0et,size_is(，dwCount)]HRESULT ’+ppErrots

)．

HRESULT Refresh(

【叫DWORD dwConnection,

【咖OPCDATASOURCE dwSoufce,
[out】DWORD ‘pTransactionID

)；

HRESULT Cancel(

陋】DWORD dwTransactionID

)．

}
／／¨¨¨‘．．¨¨¨¨¨¨¨¨’¨’+¨¨¨++．．¨¨¨¨¨¨

武汉理工大学硕士学位论文

【

o坷ect,

uuid(39c13a54-01le-1ld0—9675-0020afd8adb3)，

pointer_default(unique)

】
interface IOPCItemMgt：IUnknown

{

HRESULTAddItems(

【in】DWORD dwCount,

阻size_is(dwCount)] OPCITEMDEF ‘pltomArray,

[out,size_is(，dwCount)】 OPCITEMRESULT “ppAddResults,

[out，siztj虬dwfoun0】HRESULT “ppErrors

)；

HRESULTValidateltems(

【in】DWORD dwCount,

【in,size_is(dwCount)] oPCrrEMDEF 。pltemAn-ay,

【in】 BOOL bBlobUpdate，

【out,size is(，dwCount)] OPCITEMRF邑sULT “ppValidationResults,

[out,si=is(,dwCount)]HRESULT 。‘ppErrors

)．
HRESULTRemoveltems(

叫DWORD dwCount，

阻si=_is(awCount)] OPCHANDLE ’phServer,

【0ut，si∞is(，dwCount)】HRESULT ”ppErrom

)．

HRESULT SetAcfiveState(

【刈DWORD dwCotmt,

【in，size_is(dwCount)] OPCHANDLE ’phServe‘

【in】 BOOL bActive,

[out,size_is(，dwCount)1 HRESULT ”ppErrors

)；
]-g王】ESULT SetClientHandles(

刚DWORD dwCotmt,

【in，size_is(dwCount)] OPCHANDLE ‘phServer,

【in，size_is(dwCount)】 OPCHANDLE ‘phClient,

【out,size_is(，dwCount)】HRESULT ”ppErrors

)；
HRESULT SetDatatypes(

[in】DWORD dwCount，

[in，size_is(dwCount)】 OPCHANDLE ’phServer,

武汉理工大学硕士学位论文

【in，size is(dwCount)】

【out，size is(,dwCount)】

)；

HRESULT CreateEnumerator(

陋】
[out,iid_is(riid)】

)．

Ⅵ^RrYPE

HRES仉T

REFlm

LPI小璀NOWN

’pRequestedDatatypes,

”ppErrors

did,

’ppUnk

'
，，”””””””””””””””””””“””””””

【

o巧ect,

uuid(39c13a55-011e-11d0-9675-0020afd8adb3),

pointer_default(unique)

】
interface IEnumOPCI把mAttributes：IUnknown

{
HRESULT Next(

【缸】ULONG celt,

[out,size_is(,‘pceltFetched)]oPcrI'EMATI'RIBUTES’‘ppltemArray,

【out】ULONG’pceltFetched

)．
HRESULT Skip(

陋1 ULONG celt

)；
HRESULT Rese“
VOid

)．
HRESULT Clone(

[out】IEnmnOPCItemAttdbutes”ppEnumltemAttfibutes

)；

}
／／DataAccess V2．0 additions

f

object,

uuid(39c13a70-011e·11d0-9675-0020afd8adb3)，

pointer_default(unique)

】
interface IoPCDataCallback：IUnknown

{
HRESULT OnDataChange(

武汉理工大学硕士学位论文

陋】
【in】

【in】

【in】

陋】
阻size is(dwCotmt)]
【in,size is(dwCount)l

【in,size_is(dwcoum)]

【in，size__is(dwCotmt)]

【in,size_is(dwCnunt)]

DWORD

OPCHANDI卫

HRESUIT

HRESUIT

DWoRD

0PCHANDI甩

Ⅵ气RlANT

WORD

F】LEnM匣

HRBSUIT

dwTransid．

hGroup，

hrMasterquality,

hrMastererror,

dwCount,

+phClientRems，

‘p、，V址u髂，

’pw(halRics，

+pftT'maeStamps，

。pErrors

)；

HRESULTOnReadComplete(

【in]DWORD dwTransid,

【in] OPCHANDLE hGroup，

刚HRESULT hrMasterquality,

【in]HRESULT hrMastererror,

[in】DWORD dwConnt,

阻size_is(dwCount)l OPCHANDLE ‘phClientltems，
【in,size_is(dwcount)] VARIANT ’pvValues,

[in，SiZe is(dwCoullt)] WORD ‘pwOuatities,

阻size_is(dwCount)]FILETIME ‘pftTimeStamln,

阻size_is(dwCoLmt)]HRESULT ‘pErrors

)；
HRESULTOnWriteComplete(

刚DWORD dwTransid,

[in】 OPCHANDLE hGroup,

刚HRESULT hrMastererr,

剐DWORD dwCount,

阻size_is(dwCmunt)] OPCHANDLE ‘pClienthandles，
阻size_is(d,虻ount)]HRESULT 。pErrors

)；
HRESULTOnCan∞lComplete(

叫DWORD dwTransid,

刚 OPCHANDLE hGroup

)．

}

旷””。”””‘”””“””””””””””””’”””

【

object,

uuid(39c13a71-011e一11d0-9675-0020afd8adb3)，

武汉理工大学硕士学位论文

pointer_default(unique)

】
interface IOPCAsyncl02：IUnknown

{
HRESULTRead(

DWORD dwCount,

OPCHANDLE ‘phServer,

DWORD dwTransactionlD，

DWORD ’pdwCancelID，

HRESULT 。。ppErrors

DWORD dwCount,

OPCHANDLE ‘phServer,

VARIANT ‘pItemValues，

DWORD dwTransactionlD，

DWORD 。pdwCancellD,

HRF己SULT ‘‘ppErmrs

OPCDATASOURCE dwSourcc,

DWORD dwTransactionlD，

DWORD ’帅cclID
HREsULT can∞12(

刚DWORD
)；
HRESULTSetEnable(

【叫 BOOL

)；
HRESULTGctEnable(

[out】 BOOL

)．

}

／／‘¨¨．．¨¨¨¨¨¨¨‘+¨¨+¨¨．．¨¨¨¨’¨¨¨¨’

【

object,

uuid(39c13a72-011e-1ld0-9675-0020afd8adb3),

pointer_default(unique)

l

一
。一一
一一
，一一
，

川弛硐眦呲；母埘弛沁叫哪呲；B训刈叫；

刚阻刚Ⅲ重．x|童叫阻．呈叫Ⅲ眦x哦刚M
m
x

武汉理工大学硕士学位论文

interface IOPCItemProperties：IUl3known

{
HRESULTOueryAvailableProperfies(

【in】LPWSTR szltemlD,

[out]DWORD +pdwCount，

[out,size_is(,+pdwCmmt)]DWORD ’‘ppPropert)’IDs,

Iout,size_is(,*pdwCount)]LPWSTR ”ppDescription&

[out,size is(,’pdwCount)1 VARTYPE ”ppvtDataTypes

)．

HRESULTGetltemProperties(

刚LPWSTR szltemlD，

[in】DWORD dwCount,

【in,size_is(dwC,ount)]DWORD ‘pdwPropertylDs，

[out，size_is(，dwCount)] VARIANT ”ppvDam,

[out，size_is(,dwCount)]HRESULT “ppErrors

)．
HRESULTLookupltcmIDs(

陋1 LPWSTR szItemID，

【inl DWORD dwCount,

阻size is(dwCount)]DWORD ’pdwPropertyIDs，

[out,string,size_is(,dwCount)]LPWSTR‘‘pps72qewltemlDs,

[out,size_is(，dwCount)】HRESULT ”ppErrors

)．

'

l ，

uuid(9DB24EAC-C452-477B-SB70-871F51F3330D)，

version(1．o)’

helpstring(”OPCmA 1．0"I卯e Library”)
】

library OPCDAIAb

{

nnportlib(”stdole32．tlb”)；

tmportlib(”stdole2．tlb”)；
interface IOPCServer；

interface IOPCServerPublicGroups；

interface IOPCBrowseServerAddressspace；

interface IOPCGroupStateMgt；

interface IOPCPublicGroupStateMgt；

interface IOPCSyncIO；

interface IOPCAsyncIO；

武汉理工大学硕士学位论文

interface IOPCItcmMgt；

interface IEnumOPCItemAttributes；

interface IOPCDataCallback；

interface IOPCAsyncl02；

interface IOPCItemProperties；

【

uuid(7C13259A-74FD-4064-818F-C639E485811B)，

helpstring(”TestServer Class”)

】
coclass TestSoiver

{

【default】interface IOPCServer；

}；

武汉理工大学硕士学位论文

附录Ⅱ基于VB的OPC客户端同步应用程序

Option Expficit

Option Base l

Dim期thEvents ServerObj As OPCServef ，尉象定义
DimWithEvents GroupObj As OPCGroup
Dim ItemObjAs OPCItem

Private Sub Command Start CllclO

Dim outTextAs String

On Error Go，ro ErrorI-Iandlor

Command Start．Enabled=False
Command Read．Enabled=True
Command 1Wfite．Enabled=’nllc
Command Exit．Enabled=True
OutToxt=”连接OPC服务器”

Sct ServerObj=New OPCServer

ServerObj．Connect rMatrikon．OPC．Simulation'9
OutText=”添加组。

Set G∞upo场=ServerObj．OPCGroups．Add(”MyO胁oup”)
ontText=”为组添加Item”
Set ItemObj=OroupObj．OPCItems．AddItem(”Random．Ream。，1)

ExitSub
ErrorHandler：

MsgBox Err．Description+Chr(13)+一
OutText,vbCriticaL”ERRoR。

EndSub

Private Sub Command Read Oick0
Dim OutTextAsString

Dim myValueAs Variant

Dim myQnalRyAs Variant

Dim my'rimeStamp As、I；Iriant

on Error GoTo ErrorHandler
OutText=”读ITEM值”

ltemObj．Read OPCDevice，myV址ue，myQnality,myTimeStamp
Edit ReadV址=myV址ue

Edit_ReadQu=GetChmlityText(myQnality)
Edit ReadlS=myTtmeStamp

ExitSub

武汉理工大学硕士学位论文

ErrorHandler：

MsgBox Err．Description+Chr03)4-一
OutText，vbCrifical，”ERROR”

EndSub

Private Sub Command Write Click0

Dim OutTextAs String

DimServerhandles(1)As Long

Dim MyV址ue“1)As Variant

Dim MyErrors0 As Long

OutText=”写值。

On Error GoTb ErrorHandler

Sewerhandles(1)=ItemObj．ServerHandle

MyW咧D=Edit WriteVal
GroupObj．SyncWrlte 1，Serverhandles，MyⅧ嘲，MyEffo疆
Edit_WriteRes=ServerObj．GetErrorStrlng(MyErrors(1))
ExitSub

ErrorHandler：

MsgBox Err．Description 4-Chr(13)4-一
OntText,vbCritical．”ERROR”

EndSub

Private Sub Command Exit．Click0
Dim OntTe】【tAS String
On Error G01b ErrorHandler
Command Start．Enabled=True
Command Read．Enabled=False

Command硒晡te．Enabled=Fid∞
Command Exit．Enabled=Fal∞
OutText=”删除对象”

SetltemObj=Nothing

ServerObj．OPCGroups．RemoveAll

SetGfo唧lobj=Nothing

ServerObj。Disconnect
SetServerObj=Nothing
ExitSub

ErrorHandler：

MsgBox En．Descr／pfion+chr(13)+一
OutText．vbCritical。”ERROR”

EndSub

Private Function GetOnalityText(Quality)AS String
Select Case Quality

武汉理工大学硕士学位论文

Case 0： GetOualityText=”BAD”

Case 64： OetQualityText=”UNCERI：A】N”

Case 192： GetQualityText=”GOOD”

Case 8： OetOualityText=”NaT CONNECTED”

Case 13： GetOualityText=。DEVICE FAⅡURE。

Case 16： GetOualityText=‘SENSOR I'AⅡURE”

casc 20： GetQualityText=’L柳KNOWN。
Case 24： OetOualityText；”c0MM FAⅡI琅E”

Case 28： GetC’IIadityText=。oUT OF跚三IWK冕。

Case 132： GetOualityText=。I．AST USABI卫。

Case 144： GetQualityText=。SENSOR CAI，

Case 148： Ge0QualityText置。EGU EXCEEDED”

Case 152： GetOualityText=”SUB NORMAI。

Case 216： GetOuality'rext=”LOCAL OVERrdDE”

Case Else： OetOualityText=”UNKNOWN ERROR。

End Select

End Function

	封面
	文摘
	英文文摘
	声明
	第1章绪论
	1.1课题研究的背景与意义
	1.2课题的国内外动态
	1.3课题研究的主要内容和拟解决的关键技术

	第2章智能楼宇及相关技术背景
	2.1智能楼宇概况
	2.2现场总线技术
	2.3 OPC技术分析
	2.3.1 OPC技术背景：COM技术
	2.3.2 OPC规范
	2.3.3 OPC DA2.05a规范的对象与各接口定义程序

	第3章基于OPC DA 2.05a规范的OPC DA服务器设计
	3.1开发OPC服务器的动态模板库(ATL)
	3.1.1 ATL简介
	3.1.2 ATL开发COM组件的实现

	3.2 OPC DA服务器的设计与实现
	3.2.1 OPC DA服务器的整体结构
	3.2.2基于同步通信的OPC DA服务器的编程实现
	3.2.3 OPC DA服务器类的实现

	3.3 OPC DA服务器的异步通信实现
	3.4 OPC服务器的注册

	第4章基于同步通信的OPC客户端应用程序设计
	4.1客户端接口
	4.1.1 IOPCDataCallback接口
	4.1.2 IOPCShutdown接口

	4.2基于同步通信的OPC客户端应用程序设计流程
	4.3基于VB的OPC客户端同步应用程序设计

	第5章基于OPC技术的智能楼宇监控系统设计
	5.1系统框架结构
	5.2系统硬件实现
	5.3系统软件实现
	5.3.1下位机软件实现
	5.3.2 PC端软件实现

	5.4系统测试结果分析

	第6章总结与展望
	6.1总结
	6.2展望

	参考文献
	致谢
	攻读硕士学位期间发表的学术论文
	附录

