
•以傅里叶变换为基础的频域分析方法的优点在于：它

给出的结果有着清楚的物理意义 ，但也有不足之处，

傅里叶变换只能处理符合狄利克雷条件的信号，而有

些信号是不满足绝对可积条件的，因而其信号的分析

受到限制； 

 

•另外在求时域响应时运用傅里叶反变换对频率进行的

无穷积分求解困难。 
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为了解决对不符合狄氏条件信号的分析，第三章

中引入了广义函数理论去解释傅里叶变换，同时，

还可利用本章要讨论的拉氏变换法扩大信号变换

的范围。 

•优点： 

求解比较简单，特别是对系统的微分方程进

行变换时，初始条件被自动计入，因此应用

更为普遍。 

•缺点： 

物理概念不如傅氏变换那样清楚。 



本章内容及学习方法 

       本章首先由傅氏变换引出拉氏变换，然后对拉氏正

变换、拉氏反变换及拉氏变换的性质进行讨论。 

       本章重点在于，以拉氏变换为工具对系统进行复频

域分析。 

       最后介绍系统函数以及H(s)零极点概念，并根据他

们的分布研究系统特性，分析频率响应，还要简略介绍

系统稳定性问题。 

       注意与傅氏变换的对比，便于理解与记忆。  



从傅里叶变换到拉普拉斯变换 

拉氏变换的收敛 

一些常用函数的拉氏变换 

§ 4.2 拉普拉斯变换的定义、 
收敛域 

主要内容 



一．从傅里叶变换到拉普拉斯变换 
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2．拉氏逆变换 
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3．拉氏变换对 

起因信号：考虑到实际信号都是有
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二．拉氏变换的收敛 
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例题及说明 
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三．一些常用函数的拉氏变换 
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§ 4.3 拉普拉斯变换的基本 
性质 

主要内容 
线性                       原函数微分 

原函数积分  延时（时域平移） 

s域平移  尺度变换 

初值   终值 

卷积   对s域微分 

对s域积分 



一．线性 
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二．原函数微分 
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电感元件的s域模型 
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三．原函数的积分 
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电容元件的s域模型 
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四．延时（时域平移） 
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时移特性、例题 
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用时移性质求单边信号抽样后的拉氏变换 
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五．s域平移 
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例4-3-3 
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六．尺度变换 

时移和标度变换都有时: 
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例4-3-4 
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终值存在的条件: 
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九．卷积 
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十．对s微分 
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十一．对s积分 
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§ 4.4 拉普拉斯逆变换 

主要内容 
由象函数求原函数的三种方法 

部分分式法求拉氏逆变换 

两种特殊情况 



一．由象函数求原函数的三种方法 

(1)部分分式法 

(2)利用留数定理——围线积分法 

(3)数值计算方法——利用计算机 



二．F(s)的一般形式 
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ai,bi为实数，m,n为正整数。       , 为有理真分式当 sFnm 
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分解 

零点 

极点 

 0)(0)(  sFsA因为

   的零点称为的根是 sFsAzzzz m ,0,, 321 

   的极点称为的根是 sFsBpppp n ,0,, 321 

  )(0)( sFsB因为



三．拉氏逆变换的过程 

 的极点找出 sF

 展成部分分式将 sF

 tf查拉氏变换表求



四．部分分式展开法(m<n) 

1.第一种情况：单阶实数极点 

 ,, 321 为不同的实数根npppp 
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 展开为部分分式即可将求出 sFkkkk n ,,, 321 

2. 第二种情况：极点为共轭复数 

3.第三种情况：有重根存在 



第一种情况：单阶实数极点 
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(3)逆变换 

求系数 



如何求系数k1, k2, k3``````？ 
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第二种情况：极点为共轭复数 
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3. 第三种情况：有重根存在 
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为重根最高次系数为单根系数 31 ,kk

如何求k2 ? 



如何求k2? 设法使部分分式只保留k2，其他分式为0 
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逆变换 
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一般情况 
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五．F(s)两种特殊情况 

的非有理式含 s
e


非真分式—— 化为真分式＋多项式 



1.非真分式——真分式＋多项式 
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2.含e-s的非有理式 
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