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Abstract

In China, the existing problems of industrial boilers which are about more than 500
thousand units and mainly adopt the grate-fired manner are general low combustion
efficiency and high emission of pollutant. Among them, an important source of atmospheric
pollution caused by nitrogen oxides (NO) emission accounts for about 15%~20% of
amounting to NOy emission in China. Therefore, it is very important in view of the
environment protection of China to develop new combustion technology of industrial boiler
for low NOx emission.

Pyrolysis-combustion chain grate boiler invented by the Institute of Process
Engineering, Chinese Academy of Sciences, is a new-style stoker boiler. In comparison with
traditional chain grate boiler, pyrolysis-combustion chain grate boiler combined with fuel
reburning can be effectively suppressed the generation of NOy. The pyrolysis-combustion
chain grate boiler is composed of two sections including front section of pyrolysis and partial
gasification, and back section of semicoke combustion. The flammable gas produced by coal
pyrolysis and partial gasification in front section can be imported into the back fumace,
which form fuel rebumning which can reduce NOy emission from semicoke combustion on the
chain grate.

In this paper, fluid dynamics software FLUENT was used to simulate NO, emission
characteristics of pyrolysis-combustion chain grate boiler in order to provide theoretical
guidance of design. Meanwhile, the effects of parameters of fumace structure on NOy
emission were investigated. During the simulation process, back combustion furace is
selected as the calculating physical model. Methane is adopted as reburning fuel, while the
combustion of air-ethylene mixture added with N element which formed NO in combustion
process is employed to simulate the combustion of semicoke on the grate. On the other hand,
the mathematical models about furnace combustion , NO formation and reduction, are
established. Numerical simulation results show that NO concentration of furnace outlet is 178
ppm in the traditional combustion, whereas on the same combustion conditions, NO emission
of furnace outlet can be decreased to 152 ppm with reduction efficiency being 14.6%.

Forming a partial reduction zone in the furnace by pyrolysis gas rebumig is the major
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contribution for the reduction of NO,. This shows that pyrolysis-combustion technology has a
certain effect on the NO, reduction compared with the traditional combustion. For the
pyrolysis-combustion chain grate boiler, the calculation results demonstrate that improving
NO reduction efficiency by decreasing excess air ratio, increasing reburn fuel fraction and
decreasing air volume in the air plenum undemeath forepart of the traveling grate. Varying
the configuration of boiler fumace clarified that NO reduction efficiency declined with
increasing the front arch length, decreasing the front arch angle and extending the width of
the fore-and-aft arch. Nonetheless, changing the back arch angle has little effect on the NO

reduction efficiency.

Key words: chain grate boiler, fuel rebuming, pyrolysis-combustion, NOy, numerical

simulation
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RSN FHRENREMENREN OH, O M HO, S HE, XLl EA W+
HIB A E BRI R, AP RFYREANE, BSHEMARMEP
R SR R AR RR S AN T R R o

WA R AR EERFI A BEAFERSP K NO BILAA NO,, RIEEHK
MR, A RRSERIE . MR LB IS T 0% LA |k, BENMREE R, FEZKIS
Lo, MECHKBRIOBEA.
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[iE| P b e 049

EZE  WPRPREEEE N B FIRE

i

3.1 g

PIPIRER— AR BN R, A RERS. S, ARRRTRE
&, J o AT 2 N E R AL RIS LK - BE& 1T B ifii 4% /1% (CFD: Computational
Fluid Dynamics) {1 5K B MR MBEAFERLE S, NTiagbed i
BHENTRERAE, LHAXTRMKGREENEZEABRE. Smoot I3 AR
PR RN AN A RERETBRALENGR, BEERIEF=ZTHR:

BRKERSTENB: FEEPELTHER. KRENHE Gibson KLEZNIF
AL Spalding KIRIMBEER LUK Grow KIS E RATEE .

MHFEANB: L HERREAHERY. BEBFHUATFHAEL, SRR
HEAEHE— B EE. PRRIEH T KR SRR MR E A S HER T NER.
HEARBRENASER. HESERRRENASERSNR, BHERESER,
WHAR a5 LRBIRRATR H.

éﬁﬁﬁﬁlﬁ& NTERES. X— W&Eﬂ%mﬁ%ﬁﬁﬁﬁﬁﬁﬁﬁﬁ, HES
TERERARE, #ETRTHASEEN. X THRRERY. SBRRBOERBLEA
HERREAT T .

mEFR, BTRRRREENREARGRSA. BERPOEERE, B, XTFHRP
HARE R A7 3 FEAEE. NO,, B BB A0 3 AR P ZE MR AP RV FR IR AL PR P> 244 T Tk
PIRRIRERY, mT MRS RNNERR, BRAEREFRTD. 450, E~REHL
BE X, MEENSEARRBHENEG, $5R%TF 1M R NO, BRI, REER
BHEECIRIRE . T BB A, B — e SR T A RRRRAT T3
B, FWMBT—EMR. Thunman &N ZERENE SRR, KELBZREH
CFD Bkt T8, 3 5LRERHIT T3, Shin 0 Choi I T BEIKMREE,
B2 PO 3B 48 5 e 0 B AR i 4T T 3158 . Johansson SR AN B E Z4ERT
PRI A AR R BT T B0 P SR EE I TR PR B, JF SR P BB I B FLRRNRAT T
. it A R, BRLE R0 EE X KB TR R AR A B R0 8 . Yang
USATSNm i K IR BB KRR 5L, B—KE B REMEIL T Mk B 2R HR e
RS EREMTESE, FRETEUTFHFFBOTRY SRR, 8L, X
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B=% PRRERE NOx HEEEAN

TiHEEERMRELH FLIC 277 . FIR ZEFERL T BarHR B Rmestt. BKE
ERESSAKRE EE. BESENIRE LAMWHH4 FLUENT, SSBT B MR
BERE, BUERSTRYAMELE. A, &F—E%E3EERREHEE
T IRABERLS 758, Peters EB 4 T XL E ERMBEER G, HHIAME: BEEXK
KB AESENFOELNAER: KERS AREL. TR AENKEXNSEZ
A RIFHHRBER, REKE KSRGS T KK ZB 2 28R Bk A
—4Ef 1d+1d MR, HETE, ERFREERBRESERIISLCT RSB, Xk
EHHER. AFESR — R MR RGP e AT T B(E AR,
KRERBAER TEF RS EFER “ BAERY” 48, FIFH CFD &7 KE LTH%F
Rz, $ETFECORABHANBEER T E T RRRERP S ERTDE . BREHFK
%, @SESHFEABPMAKERA. SERNRE. REXHRER, EETH
Efmam. S TFERMOEMTEREERT “REKRY".

— e OR) N, ENFMBEERT, EUMHEREERBAIR NOx KERS
SRRHATRIF IR . Bk, FSCRABH T PHEAZRIESHERE, TMATHER
OB £ BE SR NO, AE R 538 B AR . 5 BB BRI BE R BB S M E R R T
FZIE, MTHKIEEBEE—REORERRE, EKRAZESZ S IGEDNPHEE
ERMREE. BN, BEERESETRMN TR, THEREERNRE NO,, FEI
AR N 222 HON, XFRE, X—RRRT RN, AR R
KBRS E AT R IE BRI PR, X B e RIS HRE A
B iR S R _E R e AL AR A S R

3.2 #HAFRSEE

3.2.1 SHiERARA

Mt R ERE R, BEREMABNAERERETE. ShEFEMRETEER.
BRIX ZKERAT# S H AR S T RATMR T EAREEHITRA. M TERER
B, FEHFBEGEEEMSRE. HBEFE. REAFENLSRETE. BEM, AT
FE4E itk iz migiamRE T

A .. ¢
axj(pu,-(#) ( ax)+b (.1)
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Bl e TR

Kb, HRELIMETR, HABE—TF 80, BoTAER. ¢ RRREERDE

B B, KES ASEBRTENEATREAN. MTC)RMREAE, TEE
MR RRNEHMEE R, SERRRHER . SRR A AT,
3.2.2 wmmesR

WA “HI” F “GM” FKRK. BENEEEEEI(DNS: Direct
Simulation of Turbulence). BS#UIRMEIFIAIRBEB(LES: Large Eddy Simulation). ZEXLR
U BN B i (Reynolds) BY¥ 7184, BETFXMEEMNAMNLIE, TR REENTTE
(RSM: Reynolds Stress Equation Model J#E R J it kst REUER

EEEN RSB BHE, ERT/NRE NS AR R AR, X
R BT ENMERR S, RS ER T SRIREERS R AR E.
BEUREIE TR 2 R— RIARERT, BRTNEINESIRENRE. 2758
B F iR f R A RN, BiEERRK. BE, EBRETEELIIR
B, FIUARTH—SRBARS. KRENRN T EEENMBERREIZREL
— K 77 . B Navier-Stokes A2 HE#RMAREREZ, X/MRERABEE A,
ZECAESERZ LBZMA. KRENEESRENERTERNITEE BN E,
HERELT B RN B .

LEHMARDRSRE RN, XERIMERRRE - KE, TARIFE.
AR TR R MR AR FORR, YOFRFRARIERES. BENS
EAMNERR T RREENANRIZHE FTRERAMNERE, BT LRE KR
WAL RS, RERBEENABEHFEOFE, X5 TEEHDSM
Differential Stress Model)FIAt% 5 #2 8% (ASM: Algebraic Stress Model). DSM #&A{#
THEXBERERRMOZM KRR, R TS, B EESEARERN. B
LLE R T el RE AT EEENTEER, BURRERHHE. EHZE—ERS.
ASM HRUH B 57 A iE IR RS, thik DSMARRY, ARMR AR BLBNHIA T it
BREBANEE, RRETZERENEENS. ERBAZS.

WU RBER E BT E N /A, TR 3INE B 5 FEEHREAIE
i Boussinesq i R, HRBARNRG.2). FEXTEENAINRE, LR
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F=E PRI NOX ISR

-

HEREHE p, . RETRGIEFE, THATHEEE, REENRTERY.

AFMER B TR LELRSER, NTRERNRN AR ZH—M. EXTER
R, HFRMREENSY: WAk MFESE e, EIINEXWT:

x=% 1(_+v_+;'7) (3.3)

T

TRBIRERE p, FTRR AL k A0 € HOBR 3L, BI:

2

=pC, K 3.5)
€

B ERARTUE S, ERHFRER D, BRI kA e HRBHTERAE 4, . REL

B, WTTAERIE =M. ARH#E k-¢ 7#2. RNG k-e /7#2. Realizable k-¢ 772, 47
# ke HIRER SR ARER TRPBR T RAZHRRMBIIRA . B/ TR,
EHMBE S BHRERNN, SFE—ERRE. RNGk-¢ 725 Realizable k-g /7
BRATHE k-e HIEMEHHER. RNG k-e BB 515 k-e HE, RENTFEZURBIE
THRRAE, LET RN, FIeT AR mR R R LS R BRI
Z. Realizable k-e R ERMIE AT EPSIANT SRENDBEEXNONE, HEeT
BRETRATL, BEkERDIAT, FEFIPFUAIZAT. ZERINHHRE
HRAX . Realizable k-e 8 A KA F &M A RLR MREEM, BFEREY
WY, FAFERRIF.
ASCHRE T B IR i LTS E RIS, EET Realizable k-g BRI, 4%
B AARR T
%@xﬁ%(pm,):(%{[ Uk]g::l+6 +G, —ps-Y, +8S, (3.6)
2

9 o)+ 2 (pa )= 2| [ s 2|28 o, —E 2
(p£)+ (pw) ax l:( +O' )aij“LPClSE /£2 K+‘/"’Z+CIEKCJEGI$+S5(3'7)

-3
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FEALKZ T L2018 X

b, C,=max[0.43,#}  n=sE | s= 55, . EERKEH, CORNET)

ANHA k fl e BBZHE. GRFBT FEEERESIROMENEETE: YnERT
4IRS xT S EFEBE KW Cf C. REH: o Mo, SRIRMBNRERF

FHEENRRY AN XEEHNEAR: C=144, C=19, 0,510, o,=12.
MHFGHRFC,, AT ke FRIAEY, EREDFRARMTHE:

1
C,=— (3.8)
M »
A, +A,£
&

KA, U'=[55,+0,0,, Qi=Q,-2,0, Q, =0+2,0, , QT ER
EHRo BR¥EZSERTH Y REKRER. HEE R A~
A.=«/goos¢,¢:§arcoos(«/gW)o

3.2.3 mRMRRE

AR EROET BKEN keg BE, TR KGN IERBEEREBU
Eddy-Break-up). fLUNEHR, BEXZERMEHEER, —HEEYS.

k-e-g MBER A EERA k- ERERIRAMIBER, BRRELATE R MR,
RIBEHMNER AR, FHRBRASHTE, REFBOITEERTARRBTE.
TN KRBEREHETERE, BiTKE LG =R AAHRTEKSINIARE R
8E:; BYBEERRBEEHIE: BHE ESCIMO B EHHEEERE . kg B
BEICEB/E) ZRRA, RHRBEHRPREDNL.

FERTEEAER R Spalding 7 1971 FF4RH M. ZA BARRITIR IEIRYE X % R ALK
SHUEMER[IUBAKREY: HERMEXFHBYEAKZRAA ERE: AALERN
BRIURT RIR SRR AR T RRERE MR EE: INABEREES RIS
REREEMERMIE . EBU MR RRR TR

| Ry =—Cop gf% (.9)
A, Cr AEMERIE 03504 27, g RMAKIEEM KNS AE. £ TUBFES
—XBUERMHAERREEH, XIATA—NUEHSRRRNE RE L%
(Arrehnius) B 3 .
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BEE  IPAREERIE NOX B R

R, 4 =—Zp’mgm, exp-E/RT) (3.10)
XEE LR R E R AR T =& Z RAERHE B /MM — M.
Ry =-min(| R, , IRs7 ) (3.11)

Spalding B2 IEK) EBU-Arrehnius 82, i+ 8 7B 18 A kG125 38 /5 T R,
GRELVYER BT RBHEHENRE TRRESNRECEENZHHER, B8
KR RZARRBEZ RS TREIMLED HENER, FIUREETREER MR
.

BERERWHEAEEYURETAMNEEER R YR TRMRE, TREEITELY
B7F2. Khalil FIFZTEN —SEEIEHT TIHHE, SRETRERE. B, #
RER BT EEN AR LHRRXEHTEI R ELRELFENER, B TH
BAERNBNFE BT EE N T ENERILES, FUERNFESG 5
.

ZH R R RN R U R B % (Arrehnius) AT B I 40, I HLBE X =R KELR,
REmAHT FMBEER. X TR YREEEPHRD P REKBHHA, TEFHH
Jiik: RRIECEARBGURIE: BRI M XBENMEZ R, ZENMOYRELM
HBREGER, BERATRERULNENBBILEE. T2 T BRERSIREEEY
2, FiUlRAREIR BT ERER H R,

F B SARIRGER, %53F T @A FREE EBU- Arthenius .
3.2.4 ESHRHRE

RBAES R AR ERUR R ERRELEN R BT EPHEHRARRANE ER
HREXNRAIE, AT RGIR DB ETT E RN A FRHRRGEH kA
BAEEFUT UM TE: #diik. X%k, Monte Carlo ¥ P-1 %,

RPEREROUVARE £, BRMFRTAHESH B EE T A ERHEH
R, EUEA BT HRIRRER MY AR, REERK, THESERMTE RS
£, ZEARHER, FRHENEL. 8TEFEENMREHOEREERNEREET
FENES, RETmtAAEN. Fiol, SRR R L EE™ Bk,

R BB AR IR & XS E i 5 R BT 2 (MBS R A M R R E K,
EREMRENRET MK, EREYREFAERK, BREE—MREME
RENFHEZEMPHSBBRESIN, RENE N TFRASHERTFEIRER, §
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(il i e g0 A D'

BIMGREREE AR EN— AR HER, BITHERBE. I XRER R E
K. FENEDEEERFERKGHEANENNE, BaNc&AH ZNA.

Monte Carlo ikthFRABRERIE, BRH M BRFEMTES BIGEG, 7T BEAE
R TTAR A ER T M TENRANER, XALBEANEERSEE, HE1
Wottk i RE RS MAEREZ W ARSI NETAIER, SIAFROZERH
K, RERBZMEENIIEMILARH KRR, AEMOTAREES EHBRRARE
BHTTRRIBH AR AN, NTidhTHEEREZERMETHESERS, RANXEE
TRABHELRT RN FRE LR, ZENRESRATFARMERK TR THE
VA RN OB R B, B EGHRES,

P-1 BRI IR R ik R R —F. ERENR P REN RERE R AR
EEXRERHN, FHHSEMS . RONBHEREE TR —ARES T,
BE ST e B PR AVHIRL 930 R R AFE TR MBS R IR R M 4. P-1 RRERBEAT
BHREHRRAS BB, LDEEEER/N, MTFEXUTRTRITERERE,
EEt, *fkENHAERESAERATRMTTHES.

AT T P-1 A EP R ENES, THEX T ZERMKFHENE.

P-1 AT HARSH AT B o KA FA:

1
3(a+0,)-Co,
AH, a NMROBREEY, o, ANMFREH R, GANFEHEE, CRNERHE

RYAY. ATHELLRTE REUTSH:

I'= 1
GB(a+0,)-Co))

q,= (3.12)

(3.13)

XPHRS AR g MR B

g, =-TVG (3.14)
RBNGHBSTRIE G WREZE TRA:

V- (I'VG)-aG+4aoT* =S, (3.15)

ZRP o RETHF-BRESEY, Sc RAPHENESET. BEA(G.149MGC.15)HE
BT R EHEP B TR R A IR
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BZR PARERE NOX REEER

~V-q, =aG-4aoT* (3.16)

3.25 NOARREEER

KT NOAERKEFER, RBRNHIBRGRTE, AR AL: BTRME
RFER CFD i+ EH SR AR,

EF NOAEMBES R P A AL BRI E J 4, B OB 508 Z B SERR AR BRI R AT,
SR NO AR PRI R AL, EEBERAFNATTRNETRENMRENE, BEEIER
R BURRER —RERE R AP, REERNEIRRMLHI(Arrehnius),
iR NO, AR SRR I E LR B B34 EEA . 8 B 70 R BRI AT LR BF ik
NO, BER. BAHLE, BRENZHEEIRNIRAMBEIIE, RELRSHRETEE
P2, KT & IuRBARR A AT 255 S0k ™,

MBI NO, AL 5B IR, MUAIA & fi¥ k¥ RN X, 1AM
Ui RAZMHEEIERA XK. Bt — &2 518 NO, £ R SRR Mmah 2Rk T
BEAEAE, B NO MATEYEE A HON. NH; - EH%E: REENBMR
Rtk R EZEHIERKIXRLRE. HERTEREA ZEARBRESGEEEN NO,
EREERNFM. KA CFD THE K S84k RNAZR T 5 4: EBU-Amehnius B8, #%
% ¥ i 3 (PDF: Probability Density Function)#i %!, XERE#R%, Hrh, PDF EHAHE
KAARRAEREK®E PDF ER, R3Be FEER 0 PDF #iiz AR,

B AT, X T4 W RE1E NO, MIBUEE L = EFI A PDF &8 4 R R BLEF K1 PDF
HRRIAFE SPR PR RO R R RT3, R IR TR s = L 2
KR % K IR BERK S AR FE SR & S BB M RAR. —HMARRZ 4, B AR
BEAREMAMERFARE, REGBRFAFEN: FHEANNCERPERRE, 43
TREAETE . PDF iz AN ERR T HRER R EORE T, TLERERR
B R R E A R EIREN LA . AR R R RSN ER A R . 7E
SEME SN HEBER S BRI .

TP B TrEEERENEETSREEK, ERHEERMER NO,. FTLA,
A EP AL RBMRRE CH XHEM N JLEN ZE-2 RS WIREA B e &
NO, HIiE IR, FEMHEIR NO, Rit# NO: R, AA#REL N BI85 A HCN, iX
BEL AU L NO 0 HON iz 7 #g:
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FAL K 24018 3

Z (PFio) + V- (p0Fy0) =¥+ (6DVEy5) + Sy, (3.17)

2 (P¥y e A+ V- (p0ly }=V-(aDTy 3+ Sy (3.18)
A, Yaor Yaon 2515 NO A1 HON MREAH, Sxor Suoy RIRMEA, BT
NO MAERNIR. X FSARMRE NO £RBR%E, FIXFKA T EH Desoete ik [z M
BN, w0 EFR:

1 Zﬁ'f’toz NO
PREIN ——— » HCN ”

N
2:3iE[ENO 2

B 3-1 3 /RAY Desoete Mk RIME TR E
Fig 3-1 Schematic diagram of extended Desoete’s global reaction model

ERER G, FEG.17). GI8)KET 4 5IA:

Suc v So wedtSucatSucn (3.19

Syo = Snoa +Syo-2 (3.20)
H, Spi, non N HCON BIERZE, Suenas Suonz & HCN BIHEEE, Snot~ Snoz2 0HIR
NO MR EFEFER.

BREMER NO WiRRIER, TEREMPELEPSRBREXBNOKEERS
NO RAE—RIIRHMUERRL. MARABHUBRBNRBEEE EED. HPXRKRE

IEA:
NO+CH, —= HCN+OH (3.21)
NO+CH HCN+O (3.22)
NO+C CN+O (3.23)
P GIEABRMREIE, NO KRR K SAERTRRA:
Ry=(ksx1+kpx;*)[CH,4])[NO] (329
Ry=koX1*%,{CH4][NO] (3.25)

HK(3.24). (.29)%, ko ke ARBLEEHY, x NERFEESFORELL, x HEA

BRUKS FROREL. BT ERREARE, FRG.19). (3.20) XM T AL HH:
d[HCN]
dt
d[No]
dt
THUHBERT NO 4 it 5% IR, SR A7 WL SLE% 10 %05 PDF M8, 763

=4x107R, (.26)

=-4x107*(R, +R;) (3:27)
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B=E P RREERRIE NOX TR

W, ZENS KL NO P HIE R MRE R -
Swo = [ [ Sy, V,)PW,V,)dV, ¥, (3.28)

A, Svo }9 NO BT R BLEE, Sno 9 NO IBET 2 B % (Arrehnius), P(V1,V2)
ROEEMEEERE. EXXHHED, V. V RREKEREE. HCN K795
ViR LR ERIE S 24,

3.3 HEITESZE

AXEBFTAYMA FLUENT RETHRARESTHENTE. ARERENLHE
WS AUT LS

(1) HEXBH R, BIRREL,

(2) BHIGENERL, ARRMSTREENRES FE;

() REDTENERKRR, HEIRPEREEEBZ AMHLXE, EERENTE

BRI Ko

TR R pekr B TS B R R A, FTLAEARSCH, EH T ERYEBEEE
R R M= AT R T BB G SFEF R R BRSO E S
ABHAL, MRAERA—NEREER: RETFRAMREER TDMA @ik B4
BRI RAR T EREFRAEABIER SIMPLE i, HitESRUTF:

() BRE—AEESA, BA, v DHIHEESBEBEPHRELEHONR:

Q) BE-AMEAF P

() WRRBHEASHEIE, Bu v

(4) RBEHBIEESTZ, Bp

(5) MR p Bt E LM

(6) FIRISUE G HIERS R LB SRS SERGRAN 4 RE, R

FAEWGS, NNERRESHWSUEBRE:
() FIRE R ERHER T EBREBSEN RN, FRABUENESER
T—EBRERTEONE EZERPR, EIRN.
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P KF R L 2R A1

FEE ARG EERIE NOHERUE M RO BUE R
4.1 HEBPNE

XA BN ARRRER PR R A 4-1 BR, G35 BRIPPE 3, Pk
3 WERBRIRE 2 N B SRR E 4 TR ERE 14, SUABE 4 L THUAP
HNARNOLEY, 5EME 1484 EEED 1S ATFERD 16 i, SURABREIT
HRANEEATENEXEE 5, EREE 5 B RIABERRPATE 17 F0FE 2
FHRIRAMNBNREAR. BRE 14 PEATREME 7 M/EH 8, fitt7 5KFEE
90°, #PHEfEHE 8 BLF AN HE 11 BRI LR, SKFEE 12°4E, PH 1 BT8R
ARE 12, RKEERFREE 13, BHRAEAROHRE 6 REEMRERE L. B
R ThERN 1LaMW, SETSEEAN 1.2, BRIERE RN 336kgh, BRETREN 2199
m’*/h.

1-kh3 11-%P5
2-FRiE 12-BRERAE
-ERE P 13-RBE
U RRE 14-BRE
5-iERER 15- L#E@N
6-4R 1 16- &N
TPt 17-Ri
8-fEH 18- 2
9-FMKX 19-iRE
10~ R BE 2

A 41 PR RE

Fig4-1 Schematic diagram of pyrolysis-combustion chain grate boiler

PR, BRTEELEANEANEREENTEXE, REHMN T
R I6-Z R B VIRGAEIUR Z R MR R EAE B NO, SRR 34 UL g
K R A AT R SR B RS

4.2 HERZINLARFEY

4.2.1 ¥E5*

miE 4-2 fw, BAMTEEKERIS AL EREARNNZE-ZRE MRS
B. XMTLHm-TRREEMER, ATRIELTERERG S EREHAE —EHHE
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BIUE  AARAGESERAPE NOx HERURS RO MUE BT

ot 3 EREAWSIAREE, Sl TEMEBER 1.5m. MERZE-ZREDHE
OBF =4, EESHH 0.725m. 0.9m. 0.9m. FHREEMRIEORE 031m, . SFHAK
WATAR, FEZEMRKEN 1.029m, BN LEHEREL. B2H 3.809m. 1.574m.
HXEMEEES, KR TR AZMEN RS =ATERE, LRMNEE
T8 A FERBIF RN EEERED, FHTRAPLEMER, RTCEH
RAg R, XA E A 5B SR SIMPLE 8i%; Xf NO A LR, KA E4H
FEHATIHE . THE &R R TE 4-3.

B4-2 pPRILFAERERY

Fig 4-2 The geometrical configuration of the furnace

M43 MRS
Fig 4-3 The computational grids of the furnace

4.2.2 HHEIAREH
HEIERES, PREREORREE ZG-FUBAY =M O #8E R RN,
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[iEl e i e A

HOBAFEERAEAND, 3#EBESOKEMRERSE: EEESIARNFR
FERERE A, BELSRELEBEGELRAEGE; BERTHZH-
TRIBEVREBREREREES), HEBRABEERERYE, SEEMRT RN
0.6; X T HEMZIERBNHE, BESBESRENTEBRE, HLA 92kegh, BR
HRER 30%: EMENLBETSERN 12, HFETIRLE 1. XHRE ERKMT
EHAIBBEMED CH 8 BH 2.3%, BEHE D ZBREN 3%, ESKEHR 18.5%.

HE AR BEMNO MFET 10°, HEXRITETF 107,

1 HHIR
Table 1 Calculation conditions

Hig#O JEEBHO WRTH) RE#HO2 EHEO3
HEZ (ny/s) 32 0.355 0.366 0.055
BEK) 1000 373 373 373

4.3 HEZRSHH
4.3.1 PREARS. RE BE. RERREERZES T

HTIHEERNEEN R BRRPREAEEZRE)NEE NO AIHEBS T Ry i
EM SR AIBCR R FEE NO HERUI &2, N Z3%- S MB R —R AT =NS8R
SIRBERI NO, ELNFET A4 RAT, Bl M m 2 8- 2 MR
BiF. esh, FHABEERNE 42 IR RREBREET, KA LRIRE
B R

BIEF, &3 NO WEREWENA: HE4MREEMREETHD NO B2
X FAESREE D NO BRI BN . Hb, BRESE R HREREN 2%
FRBEEVRERBESERZETER. SHEREHES, FAGESREHN12
B EBEIN. BEHETE: E5MEeed O NO ¥4 178 ppm.

BRUCLASE, AFM—EHELERSTRATPRATEREN A LERR. £
RS, SRR TH. FH-ZEAKKPEE(Y=04 m. y=08m. y=12 m)f
BEAHEX=0.6m. x=09m. x=12m). #P, KFHELEHNEHZAMNES, BE
HUTE XL R BT 3 () P HE B B TREE (R — B PR S, X R KRR IR S LE N e
W0 B anF B 4-4(a)F1 8 4-4(b)FiR:
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EIE AR FPE NOX B R B R

y=12m

<
Y ™ y=04m \’

X @) KPRELE

x=12m

__L\\\‘\\h____
" e

O L
X ®) BERELE
B 44 MERZRAAREELE EE
Fig4-4 Schematic diagram of positions of the different sections

between fore and back arch

B 4-S@APRAEERESfiE. NESFTLUEH, CH MESHANRE, &
B, ERERT, RETHE. ZETUERNEKREEEPRNNERNE, 37
Enig 7 BMmE 5|SHEE. oMb, R, BTRRNER, EiBE/EEM
R LREZ AR T —AERR, FRRANZKRNANREENS. H—TE, B
MIRELEAP R, 5T 8 LROMSREZN R, —HYERSHURE MR, —
BAEAERK, HRTREEEX.

ME 4-5(b)HIEE S A AT LLE HBEAMP BB EINA. K, EEHRZER
BT — %KM RBME, X228 THREWRIBEMET. EERXA, B
FREBAR K BRI, BT AR BEKPR T 4P e K I X AR SEE R NP R R
ARG B PR IR R MR LRI T, (ERIP HEE RIS Z IR R,
T BT LA 2 FEAECAP P NO BIAE Rl
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Fig4-7 Comparisons of NO concentration distribution with different excess air ratios
on the vertical sections between fore and back arch
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Fig4-8 Effects of excess air ratio on NO concentration at furnace exit and
the realized NO reduction efficiency due to reburning
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Fig4-9 Comparisons of NO concentration distribution with different reburn fuel fractions
on the vertical sections between fore and back arch
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Fig4-11 Comparisons of NO concentration distribution with different air distributions
on the vertical sections between fore and back arch
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Fig 5-3 Comparisons of CO; concentration distribution at the reburning condition
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Fig5-5 Effects of the front arch length on NO concentration at furnace exit and
the realized NO reduction efficiency due to reburning
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Fig 5-7 Comparisons of temperature distribution at the reburning condition

A =R RRT B B RIR RS LA 5.7, AR H: EAMBBEKE, SIER
BRGSO BB B, ATBEABE AW T RIS BLIAEE, KRR A UATE LRI
B, ERMA, FUSEERERXEEYRERXEBS. Fr, &ERIKH CH,
HENTE [ X f 8 B A LA A0S KT AN, — /N T 4P e IR A B X A T
R, A—HH, HERTEXKEZAKTFREE.

45



BHE PRESHSHEREE NOX B8

1IMTED
SATHER
5 0M0E-T

(a) 110°

(b) 145°
B 58 CO BN L

Fig 5-8 Comparisons of CO; concentration distribution at the reburning condition

AL f RE AL RPIRE B9 CO IRIEAM AR I N 5-8 . ATLAEH, T MLAY
KPR T RIS T 7 B R SLE R, EBMFREAS S RN, RERSREANY
it ERIX IR, XEEAPRE B #E CO, MRBERBERRAFY K. MERKH, FMMEKE
NS BT CO, & BbEAREN K 2T EY .

IBMEEDS
23155E-08
1000

(a) 110°

46



(b) 145°
B 59 NO KRR HE

Fig 5-9 Comparisons of NO concentration distribution at the reburning condition
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Fig 5-10 Effects of the front arch angle on NO concentration at furnace exit and
the realized NO reduction efficiency due to reburning
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Fig 5-11 Comparisons of CHy concentration distribution at the reburning condition

ARG EA, CHIREM A HSRME S-11 iR, ATLVEH, &M
BERIEN, AL X 6 B RAARHR BE A 38 N: CH, KB K IR EARFAE.
XFEBERENEHAMABEIEK, XA T BRRE SRR R R E 08
PR BAMANERX M CH, MBEA I, {22 A 5K A /535 4P R T EE 2 (8] 693738
WHEAEW, MTTEZ KN MREEEFM K, FTU CH KRB i X B4 £ 5 )R it 4
L2k Sl

4T RS B A BERTN R A AP R IR BE A A P 5-12, AP AT LURIR, f BERIM KA B
RARR 5 5 BLAT T VR o i AR OX VR AR D/, B 7 X 24 RSz 4 ) 4 i /i 48 2 )
BAHE. Hd, Bl KEHENE R R AR AR SRS BURIEY K, A

48



(B i = g DA &

37 ATE B (A ERIR G R SR ;[ 47 i R S (A RS B U el T AP R TOUBE 55 JR B
REE B4R, MTOER KRS Hesh, R X P IR RE 4 A 032 fo B A P AR .
#5 BE B3 Ko R R AR BE X IR SRV T AR/, SR JR X P 2 (N AR AT AR, BRILIRBERL
1o ) DX AR D o

(a) 16°

() 20°
B s-12 BEAMNHKE

Fig 5-12 Comparisons of temperature distribution at the reburning condition

(a) 16°

49



BHE PREEHESEHHPEEENOx M

IEhesm

e
SATHED
SOE0I

(b) 20°
Bl 5-13 CO, WBE A e

Fig 5-13 Comparisons of CO; concentration distribution at the reburning condition

B 5-13 B/RT CORENTILLE, S&FBHEHWIIRES, TUEEH, =/
Z5¥3H, COREENMBNARIRA R X 3 FR B0 Ja B BE AR 4P I T ¥R AT B
HRpeE R MR, HEALPR R E A BRI & BEA RAEY B0,

MO
26000604
= P

@ 16°

NO
2 EDOE-04
= 2ie e
s PEA
220053604
20TV EDL
15Q1E04
1205804

156733604
™ 1547 4E04
=1 1 L1SBEOL
12842608
o AT ]
=1 10M1E04
FBHIEE

1 ST29E-05
o £2602605
o (3008
f 15m6e08
2310
1 DICOE-05

(b)y 20°
A 5-14 NOWRBEEAA

Fig 5-14 Comparisons of NO concentration distribution at the reburning condition

B 5-14 BR 1 e AT B MR NO fem . X =F25HIf NO K EH .

50



[N il e A7 '8

LIERX A NO & BHNA FRO&AE. H—HE, EHt S5y TaE (6§62 K
B RTINS, %X IRRA MR, MeEERE, EikMhEasEmml Tk
TREE R R X S E AR -

20
162} ) ) =
= NO exit concentration &
- NO reduction efficiency i1g ‘>’.
156 + 5
£ G
g . . " €
£ 150 16 ©
9 5
< B
144 ™ v v -v'l ‘g
114 o
138} g
4 - 4 4 : 12
12.5 160 175 200
Back arch angle [}
R s-15 BN TRESAEXHD NO #kEk
BEREEW

Fig 5-15 Effects of the back arch angle on NO concentration at furnace exit and
the realized NO reduction efficiency due to reburning

Bl 5-15 RO SO B S B A BT T D NO HE BT R R RER M. HER,
—HHRMTHAERAE, WH. BRESHH CHIRENHEREMMEILLE, BERE
HETABHRAIBR T RSP HFLEERETENBRE RAERTZEMH+
SER. H—HH, BRAFEMEX, FEEK NOKERE TR, BEREXKNIRZN
BRAMMIE, €8 NO B EERBIK. BH, AENMMED T STy R ITEE KT
RXSER, ETEMREO0NO RERARERL.

5.5 HiI/EHBE)E B HREEIE NO BIRZNG

Xt =R R A ESEERF A CHIREY 7 E 5-16 T4 BRIREIES D
FIRED MR EEENE NS BE. a5 HE AR/ MER FIRIRE X HA NO &R
XERZHE/D, N BRREEF AT UESEREEAREMR . XEEREAN
RN/, GRAVEHZEXKENREESTRR, BRETREEEM, RES
BRME, MEEERBRGE. A—HE, BRMEBMAREFRE, —#4% CH E§
PEBRAT B IR X T 35 BRI BRI/ T 5 B k. L EE/NE 0.564

51



BRE  PRANSER BRRENOX fH

m B, E& ERFERRK . IHFAELH CHEAP R EES 5K, 5K,
BEEIEK, FEREAPREESERRES PR —BrEARRX TSR, —
o B SMATCRY BBk G, BB R RIE. YoRdnTa, ERYEat
i, & SR AR B R T BRI T R

BRI
B AL
34

(a) 0.729 m

(b) 0.564 m

B 5-16 CH, B4Rt o
Fig 5-16 Comparisons of CH, concentration distribution at the reburning condition

T 5-17 B8R T AIE HERRAI PR RS iR m. hETm: TEOAR
Wb, €18 CHy 5 F TR RGBT T sl i e iR MR pe XS ARG, 3 B iR 7
AR LR AT . M LT CH, R BE2M 3 L B M AT LA 21, /5t (A8 A48 K
IR T AR B Z B BB SRR E, ERBTRAFEAESREREHN
CHy, G T BAMMMRGEKB R T M. BTl s B DR GAw. F, AT/EHE
BB/ NME R RRRRELFE AP IiE 3 AT LAZE S RORE RS R AR, DR AR O 2 THZ A 6 780 4R
AP RS, b, NEFETUEER, RENREIET NOZRXAR
FBEEAKFMIRR, HFTF NO KRR R

52



FEAL KRB+ AL

Temperature

(a) 0.729m

(b) 0.564 m
B 5-17 BEEAHN B
Fig5-17 Comparisons of temperature distribution at the reburning condition

WA 5-18 PATLLEH: B FEREEORNSBOZXIEAREZRME, 7K
IRpEERIK, EBRREHERCEMTEE ARRESEARR . FrUEMX N COKEX
Bth FHRN . Foh, SIRATHUSEEE T CO, RBRIRA X IRBEHR CH, B A/ 24K
BEHWMA. WS, WEBREBENRD, ©AER TR EMEe £ K& NO KRS
SEMMETUEF RS, NERXAH, aTUAELH NO 2 5iER KA.

(a) 0.729m

53



BRI PRS2 YR B RE NOX FI W

(b) 0.564 m

B 5-18 CO#MBL7Ax LA
Fig5-18 Comparisons of CO, concentration distribution at the reburning condition

B 5-19 4877 1 7l Je 48 B 253X 4P i 1) NO A< BE 40 A i AR X B P o AR NS5 SRR 9 -
BRIV A NO & JR X B % T RE B #4808, IR AT WD, XM B
MRS, BT REREAD, E/EHZ MK ENREME REEERHR. HK,
IV X 58 (/N2 B OB A K, el 8t B CHEAP 2 L3R, Hoh
Z ) CHy SR EMEE, FTLL NO R X HAMRE /N, X R ST Bk ke
B M B R AR AR IR S AR SR R A B NG, (B X A NO B JRAE F JAR R I 5S o

rNO

2HIR0E-O0
sy FELE T sl

220 M0
ZBTIE-O8
e VO
B 04
P ETEIEO4
s RECE-T

B e
23 ERLn
1 DEBOS-0r

(a) 0.729m

MO
e
I HETAECE
P T
2200 3604
2OTMEDE
1L IEO8
1205604
19 THE-04
1541 4E-O0

1021 1804
TEMIER
TEII00
& 2RV IEON
T ELE
VENEELR
PR ]
1 HOE 0%

TR T T T

(b) 0.564 m
B 5-19 NOIRBESART H

Fig 5-19 Comparisons of NO concentration distribution at the reburning condition

54



ALK F AR X

156

s NO exit concentration ;&‘
NQ reductlion efficienc 4200
w2l v " y 2
[
— Q
g \ S

4175
& 145} b
o] o]
z g
4150 3
144} 3
0
Z

1125

140 ! : . L
0.60 0.75 0.90 1.05
Width of fore-and-aft arch [m]
B 520 BM&4 TR, FRREXNHO NO HEdk
BIERRKEW

Fig 5-20 Effects of width of fore-and-aft arch on NO concentration at furnace exit and
the realized NO reduction efficiency due to reburning

BMREMT, B, /SHIEIEN NO HME RERR ML MATME 5-20 FFH: Hl.
JE Bt 3R MR ME NO HE BN, EREMK. HEREERMN. SFHEERDE,
BAMEXIRAREE R, maREENE, PREBSNREMEEMRA. BT
BRI, R X IR R ERE 25 ER#HH K. XA, X NO KERERE
BEREFRMGBDHERTR. BARIGBEHR, TEXAKSE NO KBETRER
&, 3 B RS AUB R F B SIR 8, XA UE CH, 2 HE S IR EUE R ZH,
i H NO iR R R Mg AR, FrLl, EEXERBAKEAD, ERNAF —EHRE
NO HR .

55



HEIREL R R, B R B B P HE A IR R UL ™= A SR NO,
KA realizable k-e#8%, AR EEFKA EBU- Arrhenius 2!, $E5#AKA P-1 &
&, PREIE NO fAE R R A DeSoete 1 iH 8 A RFLEE KT, BIAKM B FEEL
B, W —RhE R AR IR S 4P BRI NOL HERUF AT T BB AR, SF LA aEad,
£ TP REHSE MR BIREK NO, M.

ERTHSE 5, BEITE T AMMBEE R TER TL R R4 TR NO HERUT
e, I 5 G BEAT T P ML R A, £ G BERT , 4P R B O NO WRE A 178ppm.
TIZE RS T, BARMRGSEE &1 1B O NO HEUR M 152ppm, NO BEEA
14.6%. XPBEHAMN TAE5MEE, BA—EN NOJRHEM. B BRFAHT
W%, BESFRES TN BREPR EFHERXERT —MERNREE
£X, 3 NOWEREAEF—ENRR. ZXHEEEREERKIENBRITHSEHMES
EIFER. B SESY SR e BRI A MY AR 3R RS AT K 3.

B, AXEASTETHPERREETESYE SETRTEZAAY. BRI,
FLR xS BAREIE NO (UM, FF ARV Bost 4P R T 1 0 A, & e
AR, UM, ERAEURAEHINESPRENSY, EREILXEENO #
MENER. B ELE RS, TAHUTER:

(1) WAPRIBE[ER, —HEBRLT PHR BRI SESHRE 5
B—HE, SHOAEHRPH T NO WERERM. BTEl, H0 NO K@M, EEET
W

Q) BFBRLBEKR, FUEEESABEMR, T HREIET PR ERRE
A RRIER NO & B, MPREH O NO BRERIRK;

() EARMBREREHOREAD, ERPHEEARR—BRX, X, EH’TH,
W\ BT SRR LR HE 2 2 AR A R AE SR & F MR R, NTTAEZHE
RIRELEAE R, FUlEFIT NO #ImHE:

@) BTHKERIEA, SEPHBRBRRESESOREMEME, B THEA
BEXMFRE, Bl HONOHBEAR, ERERK

(5) WARATH AR, FBTHRRE NO. XEEREA: AEKEKA, MEMEH
ALSHERX BRI TR, MATHERZEFRSBESNRE, RN,

56



[l ik e DA

A TRERRXNEREX, TERELHE NO BB

(6) BEEHABBOKAS, MFHPRABNGS. BRESIKEZHFHEERKX
Mg, AR THFFRERIOREREREES ERARL, FUERED
NO fIHF BRI R R HFZ:

(7) B0, EBEERRE/ME NO HEBW/, BREMK. MIAHER, 2L
BT EERRADN, TR XA ROERRK ZFERHIH L. X, X NO KiERE
AEEREFRMUGRBHTESR. BABUMREER, ERXAHKE NO FESK
BRE, FAERAANRRBKFHARRE, XHETUE CH /MR HES MBEUER
BH, E NO WEFEERBMM YA, U, ERXKEREREA, BRMAF—E
BB NO HEBUK R -

57



2% M

SE 3w

[1] & TP NO, IR RABRE SRR AD). KE: KERTKE,
2005: 2

[2] BRK%. TR ATSB HHMRRD]. 5 WHRKE, 2006: 2

[3] K. B, HRAEHAIRETIRPRRRBED]. TP, 1999, 57(1): 3-9

[4] BEHE TURPRLELFETM]. dbR: S ERAEL R, 2002

[5] BB A. #MpeSiERM]). R #HBTRFEHRL, 1992: 2-11

[6] Pels J. R. Nitrous oxide in coal combustion. Delft: EburonP&L,1995:22-27

[7] #FHR, BEK, XFE RERP RS RBERERETERRREEP). PiF
2006100113537

(8] W3, MILE, WLk, EF, XIFE BARERKERERETEP). PiFS:
200710120221.2

[9) B HFEEMRREM). JLR: BB, 1998: 209-285

[10]Miller J. A, Bowan C. T Mechanism and Modeling of Nitrogen Chemistry in
Combustion[J]. Progress in Energy and Combustion Science, 1989,15: 287-338

[11]Williams A., Pourkashanian M., Bysh P, et al. Modelling of Coal Combustion in

low-NOx p.f. Flames[J]. Fuel, 1994, 73(7):1006-1026

[12)B S BKEHREM]. J6R: B2 HARA, 1998: 215-216

[IBJEZE. REDRIE NO B ARBEMAD]. B REIKE, 2006: 5

[14]Fenimore C. P. Formation of Nitric Oxide in Premixed Hydroccarbon Flames[A]. the
Thirteenth Symposium(International) on Combustion[C]. The Combustion Institute, 1971,
373-380

[15]Bames F. J., Bromly J. H, Edwards T. J., Madngezewsky R. NO, Emissions from Radiant
Gas Burners[J]. Journal of the Institute of Energy, 1988, 155: 184-188

[16]Derek G. G., et al. Factors in the Conversion of Fuel Nitrogen to Nitric and Nitrous
Oxides during Fluidized Bed Combustion[J]. Fuel, 1993, 72: 381-388

[17) Leppilahti J., Koljonen T. Nitrogen Evolution from Coal, Peat and Wood during
Gasification: Literature Review[J]. Fuel Processing Technology, 1995, 43(1): 1-45

[8[AIR AR, HRMBEME NO MEINELRHAD]. LR PEAERIETERR
Ft, 2006: 14-18

[19]Glarborg P, Jensen A. D, Johnsson J. E. Fuel Nitrogen Conversion in Solid Fuel Fired
Systems[J]. Progress in Energy and Combustion Science, 2003, 29(2): 89-113

[20]Johnsson J. E. Formation and Reduction of Nitrogen Oxides in Fluidized-bed
Combustion[J]. Fuel, 1994, 73(9): 1398-1415

[21]Shimizu T., Sazawa Y., Adschiri T,, et al. Conversion of Char-bound Nitrogen to Nitric
Oxide during Combustion[J]. Fuel, 1992, 71(4): 361-365

[22]Tullin C. J., Goel S., Morihara A., Sarofim A. F, et al. NO and N,O Formation for Coal
Combustion in a Fluidized Bed: Effect of Carbon Conversion and Bed Temperature[J].
Energy and Fuels, 1993, 7(6): 796-802

[23]Smoot L. D, Hill S. C., Xu H. NOx Control through Rebuming[J]. Progress in Energy
Combustion Science, 1998, 24(5): 385-408

[24]Peter G, Maria U. A. Kinetic Modeling of Hydrocarbon/Nitric Oxide Interactions in a
Flow Reactor[J]. Combustion and Flame, 1998, 115(1): 1-27

58



[if | i e LA 8

RS]h e ik, BhiR. BRMBSESh /) EBAA 5 R m i [J]. FRBEER, 2002,
22(5): 677-682

[26]Zhong B. J., Shi W. W.,, Fu W. B. Effects of Fuel Characteristics on the NO Reduction
during the Reburning with Coal[J]. Fuel Processing Technology, 2002, 79(2): 93-106

[27]Li S., Xu T., Zhou Q., Tan H,, Hui S., Hu H. L. Optimization of Coal Reburning ina
1MW Tangentially Fired Furnace[J]. Fuel, 2007, 86: 1169-1175

[28]Casaca C., Costa M. NO, Control through Reburning Using Biomass in a Laboratory
Furnace[J]. Proceedings of the Combustion Institute, 2009, 32: 2641-2648

[29]Nimmo W., Singh S., Gibbs B. M., Williams P. T. the Evaluation of Waste Tyre Pulverised
Fuel for NO, Reduction by Reburning[J]. Fuel, 2008, 87: 2893-2900

[30]Hampartsoumian E., Folayan O. O., et al. Optimisation of NO, Reduction in Advanced
Coal Reburning Systems and the Effect of Coal Type[J]. Fuel, 2003, 82: 373-384

[31]Vitali L., Zamansky V., Rizeq G. Integration of Direct Combustion with Gasification for
Reduction of NO, Emissions[J]. Proceedings of the Combustion Institute, 2002, 29:
2251-2258

[32]the U.S. Department of Energy. Reducing Emissions of Nitrogen Oxides via Low-NO
Bumer Technologies. Clean Coal Technology. 1996(5)

[33]1%E ® L& % . LOW-NO, Combustion System. 2000, 3-4

[34]Smoot L. D. Internatonal Research Centers’ Activities in Coal Combustion[J]. Progress in
Energy and Combustion Science, 1998, 24(5): 409-501

[35]Eaton A. M, Smoot L. D, et al. Components,Formulations,Solutions,Evaluation,and
Application of Comprehensiv Combustion Models[J]. Progress in Energy and Combustion
Science, 1999, 25: 387-436

[36]Thomas L. B., et al. Coal Combustion Modeling of Large Power Plant, for NOx
Abatement[J]. Fuel, 2007, 86: 2213-2220

[37)Pallares J., Arauzo I, Luis I. D. Numerical Prediction of Unbumed Carbon Levels in
Large Pulverized Coal Utility Boilers[J]. Fuel, 2005, 84: 2364-2371

[38]Asotani T., Yamashita T. Y, et al. Prediction of Ignition Behavior in a Tangentially Fired
Pulverized Coal Boiler Using CFD[J]. Fuel, 2008, 87: 482-490

[39]Backreedy R. I, Jones J. M., et al. Prediction of Unbumed Carbon and NOx in a
Tangentially Fired Power Station Using Single Coals and Blends[J]. Fuel, 2005, 84:
2196-2203

[40]Luis I. D., Cortes C., Pallares J. Numerical Investigation of NO, Emissions from a
Tangentially-fired Unility Boiler under Conventional and Overfire Air Operation[J]. Fuel,
2008, 87: 1259-1269

[41]Wang W, Lu B, et al. A Review of Variational Multiscale CFD for Gas-solid CFB
Modeling[J]. Internation Journal of Multiphase Flow, 2009

[42)Gungor A. Two-dimensional Biomass Combustion Modeling of CFB[J]. Fuel, 2008, 87:
1453-1468

[43]Gungor A., Eskin N. Two-dimensional Coal Combustion Modeling of CFB[J].
International Journal of Thermal Sciences, 2008, 47: 157-174

[44]Gungor A. Prediction of SO, and NO, Emissions for Low-grade Turkish Lignites in CFB
Combustors[J]). Chemical Engineering Journal , 2009, 146: 388-400

[45)Johansson R., Thunman H., Leckner B. Influence of Intraparticle Gradients in Modeling

59



BTk

of Fixed Bed Combustion[J). Combustion and Flame, 2007, 149: 49-62

[46]Yang Y. B., Swithenbank J. Mathematical Modeling of Particle Mixing Effect on the
Combustion of Municipal Solid Wastes in a Packed-bed Furnace[J]. Waste Management,
2008, 28: 1290-1300

[47Ryu C., Phan A. N, Yang Y. B,, et al. Ignition and Bumning Rates of Segregated Waste
Combustion in Packed Beds[J]. Waste Management, 2007, 27: 802-810

[48]Yang Y. B., Sharifi V. N., Swithenbank J. Converting Moving-grate Incineration from
Combustion to Gasificiation-Numerical Simulation of the Buming Characteristics[J].
Waste Management, 2007, 27: 645-655

[49]Yang Y. B., Ryu C., Khor A, et al. Fuel Size Effect on Pinewood Combustion in a Packed
Bed[J]. Fuel, 2005, 84: 2026-2038

[50]Yang Y. B, Sharifi V. N, Swithenbank J. Numerical Simulation of the Buming
Characteristics of Thermally-thick Biomass Fuels in Packed-beds[J]. Institution of
Chemical Engineers, 2005, 83(B6): 549-558

[51]Yang Y. B, Lim C. N., Goodfellow J., et al. A Diffusion Model for Particle Mixing in a
Packed Bed of Buming Solids[J]. Fuel, 2005, 84: 213-225

[52]Yang Y. B., Sharifi V. N., Swithenbank J. Effect of Air Flow Rate and Fuel Moisture on
the Burning Behaviours of Biomass and Simulated Municipal Solid Wastes in Packed
Beds[J]. Fuel, 2004, 83: 1553-1562

[53]Yang Y. B, Ryu C., Goodfellow J., et al. Modelling Waste Combustion in Grate
Furnaces[J]. Institution of Chemical Engineers, 2004, 82(B3): 208-222

[54]Yang Y. B., Yamauchi H., Nasserzadeh V., Swithenbank J. Effects of Fuel Devolatilisation
on the Combustion of Wood Chips and Incineration of Simulated Municipal Solid Waste
in a Packed Bed[J]. Fuel, 2003, 82: 2205-2221

[55]Yang Y. B., Goodfellow J., Goh Y. R, et al. Investigation of Channel Formation Due to
Random Packing in a Burning Waste Bed[J]. Institution of Chemical Engineers, 2001,
79(B): 267-277

[56]Bruch C., Peters B., Nussbaumer T. Modelling Wood Combustion under Fix Bed
Conditions[J]. Fuel, 2003, 82: 729-738

[57]Peters B. Measurements and Application of a Discrete Particle Model(DPM) to Simulate
Combustion of a Packed Bed of Individual Fuel Particles[J]. Combustion and Flame, 2002,
131: 132-146

[58]Cooper J., Hallett W. L. H,, A Numerical Model for Packed-bed Combustion of Char
Particles[J]. Chemical Engineering Science, 2000, 55: 4451-4460

[SoafE, T4, IMEM, XIEF, IME BEERBPRL A N IRBERE T[], ZR5E
SRR A SR %, 2006, 7(8): 140-144

(6048 T, T4, RXL. MBMBETESAZRINERD). ETEZRERAR
BHERR], 2005, 1(1): 22-25

[61]Bose A. C., Wendt J. O. L. Pulverized Coal Combustion :Fuel Nitrogen Mechanisms in
the Rich Post-flame[A]. Symposium(International) on Combustion[C], 1989, 22(1):
1127-1134

[62]Smoot L. D, Smith P J. Coal Combustion and Gasification[M]. Plenum Press,
ISBN7-03-002720-5, 1985

[63iL%<, BRESHE. ImIRTTEsh RIRBAEIRR S R [T]. 16-&HEUR, 2006, 25(3): 15-19

60



FaLKET LA

[64]Shih T. H., Liou W. W, Shabbir A, Yang Z., Zhu J. A New k-¢ Eddy-viscosity Model for
High Reynolds Number Turbulent Flows-Model Development and Validation[J].
Computers Fluids, 1995, 24(3): 227-238

[65)76 475, TRk, MEh R 5 EM]. &IE: FERZERARKE LR,
1992: 153-179

[66)xNB%, AT, MBERAFMM]. LR HET AR, 2007: 249-264

[67]Cheng P. Two-dimensional Radiating Gas Flow by a Moment Method[J]. AIAA Journal,
1964, 2: 1662-1664

[68]Siegel R., Howell J. R. Thermal Radiation Heat Transfer. Hemisphere Publishing
Corporation, Washington DC, 1992

[69]Han X. H., Wei X. L., Schnell U,, et al. Detailed Modeling of Hybrid Reburn/SNCR
Processes for NO, Reduction in Coal-fired Fumnaces[J]. Combustion and Flame, 2003,
132: 374-386

[70]Faravelli T,, Frassoldati A., Ranzi E. Kinetic Modeling of the Interaction between NO and
Hydrocarbon in the Oxidation of Hydrocarbons at Low Temperatures[J]. Combustion and
Flame, 2003, 132: 188-207

[71]Desoete G. G. Overall Reaction Rates of NO and N; Formation from Fuel Nitrogen[A].
the Fifteenth Symposium(Intemational) on Combustion[C]. the Combustion Institute,
1975: 1093-1102

[72]M3C%e. AR 2 RIM]. B2 BRTEKRZHREE, 2001: 203-207

[73]Launder B. E., Spalding D. B. the Numerical Computation of Turbulent Flows[J].
Computer Methods in Applied Mechanics and Engineering, 1974, 3: 269-289

[TAMARZR. BREEMES NO IM$IFETRFAD] LR PEAFRIETERR
FfT, 2006: 83-86

61



BUEF - FAPE RN FEARER

B+ A A AU R F AR R

[1] Sk, Dael, R, MK, Vb AERRERD R NO SRS E N BUE
BAA]l FRELEAZTIRSEMETERC] FR, 2008

62



FaIL KFB L FA R X

BOs

B, FERHFMORABMER L PEAZRIE TR AT RERRR
HEREWIR AR BRABEAICKESES], EENNEEY, BRIZMEGE™E
RAE. REN¥ARKRE., EEHIMARARBT THRUBRKEZM, ERAERZH.

FA R B BRI A TR AR XA RERTRE LR MRS FHEX
EL, RHREFMATE. SRMIURRXEESFHFHRE T HEEHERL, ERKF
AN —FELERE, FREDMBRZIFLHPR-AMRNE. mELRE. 48
B, AAMRBAIHEIRMAM TS, RN TESE BERORRBIRM.

HERETERANH LA RN TFROFARE R L XEEMRE T KR O M
K, EHRAEM: R R F TR F RGOS TR H.

R E XK B R B2 £ H (20606034)F1E K 863 11X B H (2007AA052304) 18
BB R LT,

BB THRM A R ERREA. Bl XEAT¥RATEMMRENER=Z
G, BTFREIMNERF L.

BHXBNART LR, MREMSERRA— BRI SRRR TR L.

63



	封面
	文摘
	英文文摘
	声明
	第一章绪论
	1.1我国工业锅炉概况
	1.2 NOx的危害
	1.3课题的提出和研究内容
	1.3.1课题的提出
	1.3.2研究内容


	第二章NOx控制技术
	2.1 NOx的种类
	2.2不同类型NOx的生成机理与控制措施
	2.2.1热力型NOx
	2.2.2快速型NOx
	2.2.3燃料型NOx

	2.3再燃原理
	2.4低NOx排放技术

	第三章炉内燃烧降低NOx的数学模型
	3.1引言
	3.2模型综述与选择
	3.2.1气相控制方程组
	3.2.2湍流模型
	3.2.3湍流燃烧模型
	3.2.4辐射换热模型
	3.2.5 NOx生成及还原模型

	3.3数值计算方法

	第四章热解燃烧链条炉低NOx排放特性的数值模拟
	4.1计算锅炉介绍
	4.2计算方法和边界条件
	4.2.1计算方法
	4.2.2计算边界条件

	4.3计算结果与分析
	4.3.1炉膛内流场、流速、温度、浓度及反应速率分布
	4.3.2过量空气系数对再燃降低NO的影响
	4.3.3再燃比对降低NO的影响
	4.3.4不同配风方式对再燃降低NO的影响


	第五章炉膛结构参数对再燃降低NOx的影响
	5.1引言
	5.2前拱长度对再燃降低NO的影响
	5.3前拱角度对再燃降低NO的影响
	5.4后拱角度对再燃降低NO的影响
	5.5前后拱间距对再燃降低NO的影响

	结论
	参考文献
	攻读硕士学位期间取得的学术成果
	致谢



