
摘要

 I

基于流媒体技术的网络视频监控系统的研究与实现

摘要

随着网络技术和多媒体技术的不断发展，网络视频监控系统的应用越来越广泛，但

其视频数据流在网络传输过程中的实时性和传输质量得不到很好的保证。流媒体技术的

兴起较好的解决了这个问题，将其应用于网络视频监控系统中显然是数字监控领域的巨

大突破。但目前的很多监控系统都跟具体的硬件相关，所以有必要开发一种具有通用性

的基于流媒体技术的网络视频监控系统。
本文通过采用流媒体技术及其开发工具 DirectShow完成了一个用 USB摄像头作为
视频采集设备，完全用软件的方法实现的网络视频监控系统。DirectShow是微软公司开
发的一套基于 Windows 平台的软件开发包，它为 Windows 平台上处理各种格式的媒体
文件播放、音/视频采集等高性能要求的多媒体应用提供了完整的解决方案。本文的研究
内容和成果如下：

1、研究了流媒体技术的原理及流媒体传输协议 RTP/RTCP 的实现机制和应用，以
及视音频数据的压缩、解码标准；

2、选用了 Visual C++6.0作为开发平台，运用微软的 DirectShow技术进行了视音频
的采集、播放、编码、解码、回放等开发编程；

3、对流媒体网络视频监控系统的总体结构和各功能模块进行了设计，并编程实现
了系统服务器端和客户端软件功能，对网络传输模块的实现主要是建立了网络发送和网

络接收两个过滤器，实现了视音频由发送端过滤器发送到网络，接收端可以顺利地回放

视频图像和声音；
最后对完成的系统进行了相关的调试和实验，验证了系统方案的有效性，并对系统

的进一步完善工作进行了展望。本系统软件原型具有较好的规范性和重用性，不仅可用

于远程监控系统，还可用于多媒体远程教学、网络视频会议、视频聊天等软件系统，具

有较好的应用前景

关键词：流媒体，视频监控系统，DirectShow，RTP/RTCP，Filter

Abstract

 II

RESEARCH AND REALIZATION OF NETWORK VIDEO MONITOR SYSTEM

BASED ON STREAMING MEDIA TECHNOLOGY

ABSTRACT

With the development of network and multimedia technology, the application of the
network video monitor system is more and more extensive. However, the network video
monitor system often cannot adapt well to the high real-time requirement, and low-level
efficiency of the video streaming transmission cannot satisfy the system requirement. The
development of streaming media technology gives a chance to better solve this problem.
Obviously, it is a great breakthrough in digital monitoring field that streaming media
technology used for network video monitor system.But many monitor system relevant to
concrete hardware, so it is necessary to develop a kind of commonality network video
monitor system based on streaming media technoloy.

This paper completed a network monitor system using the USB camera as the video
collecting equipment, which realized with pure software by adopting the streaming media
technique and DirectShow.DirectShow is a software development kit, which Microsoft
Corporation develops based on the Windows platform software.It provides a whole solution
for the Windows platform to process the preview and the audio/video collection of the media
document.The study contents and results in the paper are as follows:

1. Researched the principle of streaming media technology, the implementation
mechanism and application of transport protocol RTP/RTCP, and the video and audio data
compression, decoding standards;

2. Selected VC++6.0 and DirectShow tech as developing platform to make gathering,
playing, encoding, decoding, replaying program;

3. Designed the overall structure of the streaming media network monitor system and
each functional module, and realized the software function of both the server-end and
client-end by programming. The network transmission module has mainly realized by
establishing the network send filter and network receive filter, which can send the audio/video
datas to the network and the receiver can playback the video images and sound smoothly.

At last, it has completed the relevant debugging and proved the effectiveness of the
system , and the further improve work has been presented.With the quality of service and
reusability as the design goals, the prototype can be applied not only in remote supervisory
system but also in multimedia distanceeducation system, network video conference and so on.

Key Words: streaming media, video monitor system, DirectShow, RTP/RTCP, Filter

独创性声明

本人郑重声明：所呈交的学位论文是我个人在导师指导下进行的研究

工作及取得的研究成果。尽我所知，除了文中特别加以标注和致谢的地方

外，论文中不包含其他人已经发表和撰写的研究成果，也不包含为获得华

东交通大学或其他教育机构的学位或证书所使用过的材料。与我一同工作

的同志对本研究所做的任何贡献均已在论文中作了明确的说明并表示了谢

意。

本人签名 日期

关于论文使用授权的说明

本人完全了解华东交通大学有关保留、使用学位论文的规定，即：学

校有权保留送交论文的复印件，允许论文被查阅和借阅。学校可以公布论

文的全部或部分内容，可以采用影印、缩印或其他复制手段保存论文。

保密的论文在解密后遵守此规定，本论文无保密内容。

本人签名 导师签名 日期

第一章 绪论

 1

第一章 绪论

1.1 视频监控系统的发展

视频监控系统系统是安全防范系统的组成部分，它是一种防范能力较强的综合系

统。随着社会的发展和技术的进步，人们对方便、快捷的视频监控的要求越来越高，涉

及的领域也越来越广[1]。视频监控系统从最早的局限于金融业的应用，逐渐遍布各行各

业，如：大型公共设施的安防、电力系统、交通领域、社区物业管理等。近年来，随着

计算机、网络以及图像处理、传输技术的飞速发展，视频监控技术也取得了长足的发展。
视频监控系统发展大概经历了三个发展阶段：在 90 年代初以前，主要是以模拟设

备为主的闭路电视监控系统，称为第一代视频监控系统，即模拟视频监控系统；90年代
中期，随着计算机处理能力的提高和视频技术的发展，人们利用计算机的高速数据处理

能力进行视频的采集和处理，从而大大提高了图像质量，增强了视频监控的功能。这种

基于多媒体计算机的系统称为第二代视频监控系统，即模拟与数字混合监控系统；90
年代末，随着网络带宽、计算机处理能力和存储容量的迅速提高，以及各种实用视频信

息处理技术的出现，视频监控进入了全数字化的网络时代，称为第三代视频监控系统，

即全数字视频监控系统或网络数字视频监控系统[2]。第三代视频监控系统以网络为依托，

以数字视频的压缩、传输、存储和播放为核心，以智能实用的图像分析为特色，引发了

视频监控行业的技术革命。

1.1.1 模拟视频监控系统

模拟视频监控系统一般是以摄像机、控制设备(云台、解码器)和中心设备(视频矩阵、
画面分割器、磁带录像机)为核心，采用模拟方式传输信号，通过手动方式对各个被控
站点的情况进行切换显示[2]。主要应用于小范围内的控制，监控图像一般只能在监控中

心查看。其基本结构如图 1-1所示：

图 1-1 模拟视频监控系统示意图

Fig.1-1 Analog Video Monitor System Diagram

第一章 绪论

 2

1.1.2 数字视频监控系统

数字视频监控系统一般是在监控现场，设置若干台摄像机、各种检测、报警探头与

数据设备，它们通过各自的传输线路，汇聚到控制单元上，进行信号编码压缩，再以数

字的方式经过传输系统到监控中心，监控中心通过信号解码进行实时监控。其核心就是

将模拟的视频、音频和控制信号转化成数字信号，形成实现某种功能的数据流，有效地

传输和控制[2]。由于需要建设大规模的传输系统，成本高，因此主要适用于近距离监控

（如：大楼监控等）。其基本结构如图 1-2所示：

图 1-2 数字视频监控系统示意图

Fig.1-2 Digital Video Monitor System Diagram

1.1.3 IP网络视频监控系统

IP网络视频监控系统是在传统视频监控的基础上，通过以太局域网、PSTN电话网、
Internet 等网络完成数据传输，借助于数字光纤、数字微波、无线通信、ATM、DDN、
ISDN、卫星通信等多种远程数字传输媒介，使用点对点、广播、组播等多种传输方式，
使监控的图像在网络上进行传输，实现远程监控，完全不受空间的局限[3]。其基本结构

如图 1-3所示：

图 1-3 网络视频监控系统示意图

Fig.1-3 NetWork Video Monitor System Diagram

第一章 绪论

 3

1.1.4 基于移动通信的视频监控系统

基于移动通信的视频监控系统是指运用现代移动通信技术（如：GPRS、CDMA），
采用无线 Modem 将采集、编码压缩的视频图像通过通信网络传送到移动终端（手机、
移动 PC等），从而实现无线远程实时监控。其基本结构如图 1-4所示[4]：

图 1-4 基于移动通信的视频监控系统示意图

Fig.1-4 Video Monitor System Based on mobile communication Diagram

1.1.5 智能视频监控系统

智能视频监控以数字化、网络化视频监控为基础，但又有别于一般的网络化视频监

控，是一种更高端的视频监控应用，它区别于传统意义上的监控系统在于其智能性。智

能视频监控系统以计算机视觉分析技术为主，能够识别不同的物体，发现监控画面中的

异常情况，并能够以最快和最佳的方式发出警报和提供有用信息，从而能够更加有效的

协助安全人员处理危机，并最大限度的降低误报和漏报现象。简单而言就是，不仅用摄

像机代替人眼，而且用计算机代替人、协助人，来完成监视或控制任务，从而减轻人的

负担。视觉监控以其强大的功能、灵活的使用方式、广泛的应用前景及巨大的潜在经济

价值，从而激发了世界上广大科研工作者及相关商家的浓厚兴趣[5]。
在技术的不断前进发展中，视频监控系统必然沿着数字化、网络化和智能化的方向

继续迅速发展。系统功能综合化、视频数字化、监控网络化、系统集成开放及标准化是

视频监控系统发展的必然趋势。

1.2 流媒体技术概述

1.2.1 流媒体的发展现状

流媒体（Streaming Media）技术是从互联网上发展起来的一种多媒体应用技术。

所谓流媒体，是指在 Internet/Intranet中使用流式传输技术的连续时基媒体，如：音

频、视频或多媒体文件[6]。流媒体不同于传统的多媒体，它的主要特点就是运用可变带

宽技术，以流的形式进行数字媒体的传送。流媒体在播放前并不下载整个文件，数据流

随时传送随时播放，只是在开始时有一些延迟，这样可以使人们在线欣赏到连续不断的

第一章 绪论

 4

高品质的音频和视频节目，避免了用户必须等待整个文件全部从 Internet 上下载才能

观看的缺点。流媒体技术起源于窄带互联网时期，当时互联网的通信网络还比较落后，

用户仅能以非常低的连接速率，通过网络获得静态的图文。随着技术的发展，流媒体的

定义已不再是单一的流式传输技术，它衍生出了适合流式传输的网络通信技术、多媒体

数据采集技术、多媒体数据压缩技术、多媒体数据存储技术等更多的基础技术。现在的

流媒体已经发展成为一个产业。互联网的发展更是决定了流媒体市场的广阔前景。商业

网站利用流媒体播放新闻、音乐直播和点播，企业和一些机构采用点播和流媒体进行员

工培训、信息发布、公司介绍等，可提高效率，节约开支。这样巨大的市场吸引越来越

多的企业参与竞争。一个全球化的媒体市场和竞争格局已经初步形成，如何在这个市场

取得份额，成为当前诸多企业关注的焦点。国内外厂商的纷纷涌入，将使我国的流媒体

市场更加活跃，更加成熟，当然竞争也将更加激烈[7]。
目前，Internet中最通用的流媒体系统包括 RealNetworks，Microsoft Window Media

Player，Apple QuickTime等，RealNetworks，Window Media Player流媒体播放器甚至已
成为 PC标准配置[6]。

1.2.2 流媒体技术的应用

流媒体技术改变了传统互联网的呆板形象，丰富了互联网的功能，使之成为一种有

强大吸引力的新媒体。流媒体技术正逐渐应用到社会的各行各业中，现在流媒体技术广

泛应用在多媒体新闻发布、网络直播、电子商务、视频点播、视频会议、视频监控、远

程教育、远程医疗等网络信息服务的各个方面，为提供人们的生活品质做出了巨大的贡

献[8]。下面是几个典型的应用例子[9]：
在线直播(Live Video)：娱乐是流媒体的重要应用场合。用摄像机或其它装置获得视
频信号后，就可以通过站点进行基于 Internet 的现场直播，或者保存为流媒体格式的文
件，以供按需播放。需要在一台较高配置的 PC机或服务器上安装上普通视频采集卡和
声卡，然后通过视频采集卡输入视频和通过声卡输入声音信号就可以用实时编码工具来

进行直播或录制成流媒体文件。在这种应用中可加入一定的计费手段，从而能够提供有

偿多媒体内容服务。
远程教育(Remote Learning)：远程教学将为更多的人提供接受教育的机会。教学者
事先在 Internet上发出通知，听众在讲座开始前访问某个 URL地址，当讲座开始时，听
众可以看到演讲者的演讲画面并听到他的声音。整个讲座也可以流媒体文件的形式记录

下来，用于以后按需播放。教学者事先把流媒体文件传给远程教学服务器，当听众需要

听讲座时，同样访问相应的 URL 地址，请求获取服务器中的流媒体内容。媒体数据通
过流式传输下载到用户的浏览器高速缓存中，由媒体播放器实时回放。
视频会议(Video Conference)：视频会议和远程教学有很多类似之处，但它对实时性
的要求更高。在一个视频会议中，各个会议点用音视频采集设备得到多媒体内容信息，

第一章 绪论

 5

经过数字化后用某种压缩方法进行压缩。压缩数据可以通过网络直接在各个会议点之间

组播，或传到多点处理器经过合成或转换后再向各与会点组播。但不管采用哪种方式，

都需要保证以尽量小的时延在各个点进行回放，这正是流媒体技术发挥作用的地方。
远程监控((Remote Surveillance)：流媒体技术也可以应用于远程监控。近年来，一

些公司已经开发了一类所谓 web camera的产品，基本上它就是把图像采集、压缩、web
server和 Internet接入集成在一个设备中，使得远程监控可以通过 Internet完成，这与传
统的远程监控系统相比，在可控制性、监控距离、架设方便性等方面都有很强的竞争力。

1.2.3 流媒体技术的发展趋势

正如几年前的 IP网络和Web技术，流媒体应用正处于高速持续增长时期。流媒体
市场将呈现巨大的收入潜能，未来几年里，流媒体将会呈现出以下几个发展趋势[10]：
（1） MPEG-4多媒体解码标准的发展势头会越来越猛；
（2） 通过电视观看流媒体；
（3） 拓展流媒体在通信领域内应用；
（4） 流媒体标准之争日渐白热化；
（5） 利用内容分发网络（CDN）来传输流媒体。

1.3 视频监控和流媒体技术结合

网络视频监控系统在其发展过程中遇到了许多的技术难题，最主要的就是视频数据

流在网络传输过程中的实时性和传输质量不能得到很好的保证，这主要是因为在现阶段

存在着网络带宽不足、数据的传输效率低下、传输过程中丢包率较高等因素。

如何在现有的网络带宽条件上实现远程监控，并且在价格与图像质量上求得最佳的

平衡，成了目前迫切需要解决的问题。流媒体技术的兴起和广泛应用，为这个问题的解

决提供了一个新的思路，它根据自身特性将连续媒体流压缩封装后按照一定的时序要求

发给接收端，保证了接收端可以边接收数据边实时播放，从而提高了系统的实时性；同

时，它的流量控制和网络拥塞控制机制也提高了网络传输效率的稳定性，进而保证了接

收端的播放质量。而网络视频监控系统则以数字视频处理技术为核心，综合了网络技术、

多媒体技术、图像压缩技术于一体，有效的克服了模拟监控的缺点；提高了数据传输的

实时性、系统的并行处理能力和系统存储容量，并支持多种有线、无线传输介质，集视

频切换、智能控制、远程传输等功能于一身。流媒体技术应用于网络视频监控系统显然

是数字监控领域的巨大突破，能有效克服其他传输方式存在的局限性。

无论从技术角度还是市场角度来说，流媒体技术应用于网络视频监控系统都有其他

技术无可比拟的优越性。特别对窄带远程监控尤为显著，用户不必等远端监控信息传输

完毕即可实时、连续播放，有效克服其它方式播放的等待问题，且实时性较好。虽然，

第一章 绪论

 6

该方式可能影响视频图像质量，但是，随着数字视频技术的发展、图像压缩质量的提高

以及网络带宽的增大，流媒体技术的应用完全可以满足视频图像监控和记录的需求。因

此，流媒体技术和视频监控技术的融合应用是它们发展的必然趋势，它们的综合应用在

将来也必然越来越广泛。

1.4 论文研究内容及章节安排

1.4.1 课题相关领域的现状及发展趋势

在国内外市场上，主要推出了数字控制的模拟视频监控和数字视频监控两类产品。

前者技术发展已经非常成熟、性能稳定，在实际工程中得到广泛应用，特别是在大、中

型视频监控工程中的应用尤为广泛；后者是新近崛起的以计算机技术及图像视频压缩为

核心的新型视频监控系统，该系统解决了模拟系统部分弊端，但仍需进一步完善和发展。

视频监控应用具有巨大的市场前景，所以视频监控系统的研究和开发受到了学术界、产

业界和使用部门的高度重视，研究成果和开发的产品层出不穷。

流媒体技术发展也非常迅猛，目前 Internet 上每周约有 45000 小时的广播节目，

58 个美国电视台提供 Web 广播，34 个电视台提供点播服务。有近半数的跨国企业公司

在内部使用流媒体实现 Web广播。来自国际权威机构的调查，2000年在网上访问流媒体

的人数增加 65%，西方网络发达国家访问流媒体的人数已达到 1.1亿人，约占网民的 1/3，

在亚洲也迅速增加到 2500 万人，约占网民的 1/9。与用户增长相呼应，去年 Internet

上视频流媒体技术应用增长幅度达 251%。在美国己经有三分之一的 Internet用户使用

流媒体业务，有近百家的 ISP提供流媒体业务，在 2000年己有 40亿左右的市场；在欧

洲、亚洲等地这样的用户也有一定的规模[11]。

在欧美等发达国家，视频监控的发展比较快，应用也十分广泛。但是他们的产品价

格较高、带宽要求较大、培训和维护也很不方便，而且从国外引进的产品本地化程度较

差，在功能、接口、使用环境等方面均或多或少地存在一些与我国国情及现场需要不太

吻合的地方。我国视频监控行业最初是由闭路电视监控(CCTV)逐渐发展起来的，已近二

十年的历史，从简单模拟视频监控到现在的纯数字化网络视频监控，监控系统在国内目

前应用已经相当广泛。国内长城集团、网通电子商务有限公司、北京微电子技术有限责

任公司等也自主开发了国产的数字视频监控系统。国内高校也在监控系统的研发方而发

挥着重要的作用。总的说来，流媒体服务以及流媒体技术应用在视频监控系统中在我国

处于起步阶段，也有一些关键技术性问题还待于解决和完善。

1.4.2 课题研究的目的及意义

流媒体的应用广泛，如何充分应用这种优秀的新技术于传统的监控系统，让监控系

统的应用范围更加广阔，并且满足网络化的需要，在现有的网络带宽条件上实现远程监

第一章 绪论

 7

控，并且在价格与图像质量上求得最佳的平衡，是本论文着眼研究的课题。通过对本课

题的关键技术的研究和应用，以达到能够设计并实现一种具有通用性的基于流媒体技术

的网络视频监控系统，并且该监控系统不跟具体的硬件相关，完全用软件的方式来实现，

系统采用模块化结构设计，易于更新和扩展，也可以有效降低系统集成的困难和成本，

在工程应用中具有一定的实用价值。因此，本系统适应了监控系统数字化、网络化、集

成化的发展趋势，具有良好的发展前景。

1.4.3 课题的主要内容及章节安排

本文的研究目标是：探索如何利用流媒体技术，实现基于流媒体技术的网络视频监

控系统。该方案将使用 Visual C++ 6.0为开发平台，服务器端软件采用 DirectShow技

术实现对 UBS摄像头的视频采集、预览、MPEG-4压缩、录像、回放等功能；客户端软件

采用 DirectShow 技术实现对视频数据的解压，预览、录像、回放等功能。网络传输模

块的重点是对网络发送过滤器和网络接收过滤器的设计和实现。采用 C/S结构，完整构

架了一个基于流媒体技术的小型网络视频监控系统。根据本课题的研究思路和设计模块

划分，本论文共分为 7章，各章安排如下：

第一章，绪论。阐述了课题研究背景，介绍了视频监控系统和流媒体技术的现状及

发展、论文研究的内容和完成的工作。

第二章，介绍了流媒体相关技术，包括流媒体传输技术、流媒体原理，RTP/RTCP

协议等。

第三章，深入剖析了 DirectShow技术，从 DirectShow的结构，工作原理及内部实

现机制等方面进行了分析和阐述。

第四章，详细阐述了系统的设计。首先，介绍了系统的整体设计思想，然后对服务

器端和客户端各模块的设计，其后阐述了开发网络发送和接收过滤器的过程。

第五章，详细介绍了各种技术实现系统功能的具体过程，包括服务器端和客户端软

件的各功能模块的实现，及网络模块的网络发送和接收过滤器的实现过程。

第六章，展示了系统的调试、运行与测试结果，测试主要在局域网中进行。

第七章，结束语。对本文的工作进行总结和展望。

第二章 流媒体相关技术介绍

 8

第二章 流媒体相关技术介绍

2.1 流式传输基础

流媒体是指在 Internet/Intranet中使用流式传输技术的连续时基媒体，如音频、视频
或多媒体文件。流式媒体在播放前并不下载整个文件，只将开始部分内容存入内存，流

式媒体的数据流随时传送随时播放，只是在开始时有一些延迟。流媒体实现的关键技术

就是流式传输[6]。流式传输定义很广泛，现在主要指通过网络传送媒体（如视频、音频）

的技术总称。实现流式传输有两种方法：实时流式(Real-Time Streaming)传输和顺序流式
(Progressive Streaming)传输。一般说来，如视频为实时广播，或使用流式传输媒体服务
器，或应用如 RTSP的实时协议，即为实时流式传输。如使用 HTTP服务器，文件即通
过顺序流发送，这种传输方式就称为顺序流式传输。采用哪种传输方法依赖于用户的具

体需求，当然，流式文件也支持播放前完全下载到硬盘后再播放[12]。

2.1.1 顺序流式传输

顺序流式传输是顺序下载，在下载文件的同时用户可以观看在线媒体。在给定时刻，

用户只能观看已下载的那部分，而不能跳到还未下载的其他部分。顺序流式传输不像实

时流式传输在传输期间根据用户连接的速度做调整。由于标准的 HTTP服务器可发送这
种形式的文件，也不需要其他特殊协议，它经常被称作 HTTP流式传输[13]。顺序流式传

输比较适合高质量的短片段，如片头、片尾和广告，由于该文件在播放前观看部分是无

损下载的，所以这种方法能够保证电影播放的最终质量。但这就意味着用户在观看前，

必须经历延迟，对较慢的连接尤其如此。
对通过调制解调器发布短片段，顺序流式传输显得很实用，它允许用比调制解调器

更高的数据速率创建视频片段。尽管有延迟，毕竟可发布较高质量的视频片段。
顺序流式文件是放在标准 HTTP或 FTP服务器上，易于管理，基本上与防火墙无关。
顺序流式传输小适合长片段和有随机访问要求的视频，如：讲座、演说与演示，它也不

支持现场广播。严格说来，顺序流式传输其实是一种点播技术。

2.1.2 实时流式传输

实时流式传输是指保证媒体信号带宽与网络连接配匹，使媒体可被实时观看到。实

时流与 HTTP流式传输不同，它需要专用的流媒体服务器与传输协议。实时流式传输总
是实时传送，特别适合现场事件，也支持随机访问，用户可快进或后退以观看前面或后

面的内容。理论上，实时流一经播放就可不停止，但实际上，可能发生周期暂停[13]。
实时流式传输必须配匹连接带宽，这意味着在以调制解调器速度连接时图像质量较

第二章 流媒体相关技术介绍

 9

差。而且，由于出错丢失的信息被忽略掉，网络拥挤或出现问题时，视频质量很差。如

欲保证视频质量，顺序流式传输也许更好。实时流式传输需要特定服务器，如 QuickTime
Streaming Server ，Real Server与Windows Media Server。这些服务器允许用户对媒体发
送进行更多级别的控制，因而系统设置、管理比标准 HTTP服务器更复杂。实时流式传
输还需要特殊网络协议，如：RTSP（Real-Time Streaming Protocol）或MMS（Microsoft
Media Server）。这些协议在防火墙存在的情况下有时会出现问题，导致用户不能看到一
些地点的实时内容。

2.2 流媒体技术原理

首先，流式传输的实现需要缓存。这是因为 Internet 是以包传输为基础进行断续的
异步传输。数据在传输中它们要被分解为许多包，由于网络是动态变化的，各个包的选

择路由可能不尽相同，故到达客户端的时间延迟也就不等。为此，要使用缓存系统来弥

补延迟和抖动的影响，并保证数据包的顺序正确，从而使媒体数据能连续输出，而不会

因为网络暂时拥塞使播放出现停顿。通常高速缓存所需容量并不大，因为高速缓存使用

环形链表结构来存储数据，通过丢弃已经播放的内容，流可以重新利用空出的高速缓存

空间来缓存后续尚未播放的内容。
再次，流式传输的实现需要合适的传输协议。WWW技术是以 HTTP为基础的，而

HTTP又建立在 TCP基础之上。由于 TCP需要较多的开销，故不太适合传输实时数据。
在流式传输的实现方案中，一般采用 HTTP/TCP来传输控制信息，而用 RTP/ UDP来传
输实时视音频数据。
流式传输的过程一般是这样的：用户选择某一流媒体服务后，Web 浏览器与 Web

服务器之间使用 HTTP/TCP交换控制信息，以便把需要传输的实时数据从原始信息中检
索出来；然后客户机上的 Web浏览器启动流媒体播放程序，使用 HTTP从 Web服务器
检索相关参数对流媒体播放程序初始化。这些参数可能包括目录信息、A/ V数据的编码
类型或与 A/ V检索相关的服务器地址。流式传输的过程如图 2-1所示[14]。

Web浏览器 Web服务器

播放器 A/V服务器

HTTP/TCP

源文件

控制信息RTSP/TCP (UDP)
数据信息RTP/UDP

图 2-1 流式传输基本原理

Fig.2-1 Fundamental principle of stream transmission

第二章 流媒体相关技术介绍

 10

流媒体播放程序及 A/V 服务器之间运行实时流控制协议(RTSP)，以交换 A/V 传输
所需的控制信息。与 CD 播放机或录像机所提供的功能相似，RTSP 提供了操纵播放、
快进、快倒、暂停及录制等命令的方法。A/V服务器使用 RTP/ UDP协议将 A/V数据传
输给 A/V 客户程序(一般可认为客户程序等同于 Helper 程序)，一旦 A/V 数据抵达客户
端，流媒体播放程序即可播放输出。

2.3 流媒体传输协议

2.3.1 RTP/RTCP协议介绍

1996年 IETF的视频/音频工作组制订了 RTP/RTCP协议，专门用于支持网络实时传
输服务，提供数据实时传输的标准[15]。RTP/RTCP 是端对端的协议。在协议层次中，
RTP/RTCP虽然位于应用层，但多数应用还要在 RTP/RTCP之上建立更符合应用要求的
协议。在网络传输过程中，RTP/RTCP不处理连接建立工作，其下层网络既可以是有连
接的，也可以是无连接的。如果传输流媒体，RTP/RTCP 一般基于组播协议；它并不要
求特定的地址格式，而仅要求下层提供相对好的分帧、合帧及分段、合段的工作；该协

议不提供可靠性保障，作为应用层的一部分，该协议并不是操作系统的内容。RFC1889
中定义 RTP/RTCP协议族由两个相关的协议构成：

1)实时传输协议 RTP用来传输具有实时特点的数据。

2)实时传输控制协议 RTCP用于统计、管理和控制 RTP传输。RTP和 RTCP协同工作

完成任务。

目前最新的版本是 2003 年公布的 RFC3550。RTP 是一个轻量级的网络协议，它没
有对下一层的传输协议做硬性规定，在 IP 网络上，我们一般使用 UDP 协议作为下一层

协议传输数据，图 2-2显示了它在 TCP/IP协议栈中的位置。

图 2-2 RTP在 TCP/IP协议栈中的位置

Fig.2-2 The position of RTP in TCP/IP protocol stack

第二章 流媒体相关技术介绍

 11

2.3.2 RTP/RTCP协议工作原理

RTP和 RTCP协作操作，完成数据的实时传输，为了控制会话，它还可能和其他的
网络协议共同工作，比如在多媒体应用中的实时流协议 RTSP（Real-Time Streaming
Protocol），如图 2-3所示。

图 2-3 RTP/RTCP协作工作图

Fig.2-3 Cooperation work chart of RTP/RTCP

在整个工作过程中它们各自完成自己的任务：
1）RTP协议用来传输实时数据。在 RTP包中包括数据包序列号、时间戳等信息。
2）RTCP协议用来监控数据传输质量和统计参加在当前会话中的成员的一些信息。
这些统计信息可能对那些“松散控制”的应用是足够的，比如像免费的网络直播等对成

员没有具体限制的应用。但对于一些特殊要求，需要使用其他的非 RTP手段来加以保证。
3）会话控制协议，比如 RTSP，用来传输和会话控制有关的数据，比如用户的管理、
用户数据的设置和媒体的操作。

2.3.3 RTP/RTCP 传输流程

RTP 与 RTCP 传输视频流的工作流程如下：在视频服务器端，流媒体视频流按照
RTP数据传输协议的数据包格式被装入 RTP数据包的数据载荷段，并配置 RTP数据包
头部的时间戳、同步信息、顺序号等参数，即数据包被“流”化了；同时周期性地接收

RTCP包，利用这些信息动态地改变自身参数设置。客户端收到数据包后先分析 RTP包
头，判断版本、载荷类型等信息的有效性，更新缓冲区的 RTP信息，如收到的字节数、
视频帧数、包数、顺序号等信息；按照 RTP时间戳和顺序号等进行信源同步，整理 RTP
包顺序，重构视频帧；最后根据载荷类型标识进行解码，将数据放入缓存供解码器解码

输出，同时客户端根据 RTP包中的信息周期性回送包含服务质量(QoS)反馈控制信息的
RTCP包(接收报告包 RR)到服务器以检测发送端和接收端数据的一致性。图 2-4是基于
RTP/UDP/IP的传输系统结构框图，在 UDP协议的基础上，使用 RTP协议传输视频流，
使用 RTCP协议进行传输控制。

第二章 流媒体相关技术介绍

 12

UDP

RTP RTCP

压缩编码 Qos反馈控制

UDP

RTCP RTP

Qos反馈控制
缓存

解码

IP IPInternet

视频流

RR RR

图 2-4 基于 RTP/UDP/IP的传输系统结构框图

Fig.2-4 Structure chart of transmission system based on RTP/UDP/IP

2.3.3 RTP协议

RTP是英文 Real-Time Transport Protocol的缩写，中文名称是实时传输协议，是一
种提供端对端传输服务的实时传输协议，用来支持在单目标广播和多目标广播网络服务

中传输实时数据，而实时数据的传输则由RTCP协议来监视和控制。RTP定义在RFC1889
中[15]。其报文结构包含广泛用于多媒体的若干个域，包括声音点播、影视点播、Internet
电话和电视会议等。RTP没有对声音和电视的压缩格式制定标准，它可以被用来传输普
通格式的文件。RTP 协议与 TCP 协议十分相似，只是当差错造成分组丢失时，不要求
重发，同时 RTP 规范中还定义了实时传输控制协议 RTCP，用于提供 QoS 监视机制。
RTP协议位于传输层之上，它没有连接的概念，虽然它既可以建立在面向连接的协议上，
也可以建立在面向无连接的协议上，但是一般来说，RTP作为实时数据传输而设计的，
而建立在 UDP 协议之上，RTP/RTCP/UDP 协议一起用于视频音频流的实时传输。RTP
用于 UDP数据封装时的情景如图 2-5所示。

图 2-5 RTP数据包的封装过程

 Fig.2-5 Encapsulation Process of RTP Packet

第二章 流媒体相关技术介绍

 13

RTP协议对于实时多媒体数据的传输的特点有如下：
1）RTP 是一种轻型的传输协议，提供端到端的实时媒体传输功能，但并不提供机
制来确保实时传输和服务质量。协议本身相对轻型、快捷，常常与具体应用结合在一起。

2）灵活性：RTP 协议将数据实时传输与控制策略分开。协议本身只提供实时传输
机制，不具体规定控制策略。开发者可以根据不同的应用环境，选择实现效率较高的算

法及控制策略。
3）独立性：RTP 协议与下层协议无关，可以在 UDP/IP、IPX、ATM 的 AAL 层上
实现。

4）良好的扩展性：不仅支持单播，还支持组播。
RTP 协议的核心是其报文格式。报文是 RTP 对数据传输的封装单位，典型的报文
由报头和负载组成，在协议中仅定义了报头的数据结构，而不限制负载的大小。RTP报
头由 16个字节组成，其中最后 4个字节 CSRC域可选，格式如图 2-6所示。

V(2) P(1) X(1) CC(4) M(1) PT(7) Seq Number(16)

TimeStamp(32)

SSRC(32)

CSRC(32)

0 31

图 2-6 RTP报头格式

Fig.2-6 Format of RTP Packet Header

V：RTP版本号，2位；
P：填充标识，1 位，置”1”表示用户数据最后有填充位，用户数据中最后一个字节

是填充位计数，它表示一共加了多少个填充位。在两种情况下可能要填充，一是某些加

密算法要求数据块大小固定；二是在一个低层协议数据包中装载多个 RTP分组；
X：扩展位标识，1位，置“1”表示 RTP报头后紧随一个扩展报头；
CC：CSRC计数，4位，表示在定长的 RTP报头后的 CSRC标识符的数量；
M：标记，l位，置“1”对于视频标识表示最后一帧；对于音频表示谈话开始。
PT(数据类型)：7位，标识 RTP报文内负载的数据类型；
SeqNumber(序列号)：2字节，一个 RTP传输会话中的所有 RTP报文依次编号，其
中第 1个 RTP包的编号可为 0或为一个随机数。每发送一个 RTP报文，序列号就加 1，
接收端可以用它来检查报文是否有丢失并按顺序处理报文。

Timestamp(时间戳)：4 字节，标识 RTP 报文内负载的时间信息。它反映 RTP 数据
信息中第 1 个字节的采样时刻(时间)。接收端可以利用这个时间戳去除由网络引起的信

第二章 流媒体相关技术介绍

 14

息包的抖动，并且在接收端为播放提供同步功能。
SSRC(同步源标识)：4字节，用于标识数据源，该标识符在一次会话中是唯一的，
如果有两个参与者的 SSRC相同，就会产生冲突。

CSRC(混合器列表)：仅用于有混合器的情况下。可以有 0到 15项，每项 32位，对
一个 RTP 混合器(Mixer)产生的组合流有贡献的 RTP 分组源。CSRC 列表识别在此包中
负载的有贡献源，识别符的数目在 CC域中给定。若有贡献源多于 15个，仅识别 15个。

RTP协议本身包括两部分：RTP数据传输协议和 RTCP传输控制协议。为了可靠、
高效地传送实时数据，RTP和 RTCP必须配合使用，通常 RTCP包的数量占所有传输量
的 5%。RTP 实时传输协议主要用于负载多媒体数据，并通过包头时间参数的配置使其
具有实时的特征。RTP本身并不能为按顺序传送数据包提供可靠的传送机制，也不提供
流量控制或拥塞控制，它依靠 RTCP传输控制协议提供这些服务。

2.3.4 RTCP协议

RTCP是英文 Real-Time Transport Control Protocol的缩写，中文名称是实时传输控
制协议，是一种用来传输控制数据的协议，它主要向会话中的所有参与者定期发送控制

数据报文，其发送的方式和 RTP数据包相同[16]。RTCP由多种不同的数据报文组成，每
种报文传输不同的信息。这些报文包括以下 5类：
发送者报告（SR）：用来发布数据发送者的传输信息；
接收者报告（RR）：用来发布数据接收者的数据接收质量统计信息，有时 RR 也包
括在数据发送者报告中；
描述信息（SDES）：用来描述一个参与者；
离开报告（BYE）：用来通知会话中其他参与者自己要离开会话；
特殊应用报告（APP）：用来传输应用程序自定义的数据信息。
每个 RTCP分组以一个固定首部开始，如图 2-7所示，分组中其它字段的格式取决

于分组首部中的类型字段。

VER P RC PT 报文长度

0 31

数据区

⋯⋯

1 2 8 16

图 2-7 RTCP固定首部

Fig.2-7 Fixed Header of RTP Packet

RTCP首部字段中，VER表示版本号，P字段指明是否填充，填充数据的最后一个
字节表示填充数据的计数。分组的数据区包含一系列的报告记录，5 位的 RC 字段含有

第二章 流媒体相关技术介绍

 15

报告计数。16位的 length字段用于说明分组的全部长度。8位 P字段说明了分组类型。
RTCP 协议处理机制根据需要定义了四种类型的报文。这些类型决定了 RTCP 分组中报
告的格式。

RTCP协议的工作过程是：当应用程序开始一个 RTP会话时，将使用两个端口：一
个给 RTP，一个给 RTCP。 RTP本身并不能为按顺序传送数据包提供可靠的传送机制，
也不提供流量控制或拥塞控制，它依靠 RTCP提供这些服务。在 RTP的会话之间周期的
发放一些 RTCP 包以用来监听服务质量和交换会话用户信息等功能。RTCP 包中含有已
发送的数据包的数量、丢失的数据包的数量等统计资料。因此，发送方可以利用这些信

息动态地改变传输速率，甚至改变有效载荷类型。RTP和 RTCP配合使用，它们能以有
效的反馈和最小的开销使传输效率最佳化，因而特别适合传送网上的实时数据。根据用

户间的数据传输反馈信息，可以制定流量控制的策略，而会话用户信息的交互，可以制

定会话控制的策略。RTCP主要提供了四种功能：
首先，也是最主要的功能，RTCP 提供一种数据发布质量的反馈信息控制媒体数据
的传送质量，也可用来监视网络和用来诊断网络中的问题，这是 RTP/RTCP的核心功能，
并和下层传输协议的流量控制等相关。
其次，由于端系统可能重新启动或在所有参与者中有可能发现 SSRC冲突而改变自

己的 SSRC 标志。数据接收者需要固定的标志来跟踪参与者。RTCP 传输的内容中包括
一个固定的 CNAME 数据项，它是 RTP 源在传输层的标志，一般在会话中它是唯一并
且固定的，在会话中可以使用它来标志不同的参与者，即使该参与者可能改变自己的

SSRC标志。CNAME标志也可以用来进行同步同一会话中的音视频等工作。
再次，由于参与者所发送的 RTCP包，会话中所有参与者都可以接收的到，所以，
一个参与者可以通过接收 RTCP数据包估计会话中参与者的个数。根据参与者个数来调
整发送 RTCP数据的速度。
最后，一个可选特性，就是通过分析 RTCP数据包描述会话成员，比如将他们的名
字或 Email地址显示在应用程序的用户界面上。

2.3.5 RTP相关其他协议

在 RTP 协议或流媒体应用的运行过程中，有时还需要其它一些协议和 RTP 共同工
作，来完成流媒体传输会话的管理和流媒体数据的传输。这些协议包括会话管理方面的

RTSP协议和资源管理方面的 RSVP协议等。
（1）RTSP协议
实时流协议（Real-Time Streaming Protocol，RTSP）是一个应用层网络传输协议，
由 IETF 发布，它主要用来对实时数据传输会话的控制[17]。RTSP 的一个主要功能是支
持类似 VCR的控制操作，如停止、暂停/重新开始、快进和快退，另一个主要功能是建
立和控制在媒体服务器和客户机之间的连续音频/视频媒体流。RTSP为实时数据的按需

第二章 流媒体相关技术介绍

 16

和可控传输提供了一个可扩展的框架一般在设计的时候，与具体的应用相适应。进行传

输的数据源可以是实时数据，也可以是存贮于介质上的历史数据。
RTSP协议用于控制多路数据传输会话，并且这些流可以选择不同的下层传输协议，
比如 UDP、组播 UDP或 TCP等，RTSP为流的传输提供了选择下层传输协议的方法。
在一般的流传输会话中，大都使用 RTP作为下层传输协议，RTSP自己并不传输媒体数
据，只起一个控制传输的作用。它的很多操作和 HTTP非常相似。HTTP与 RTSP相比，
HTTP传送 HTML，而 RTP传送的是多媒体数据。HTTP请求由客户机发出，服务器做
出响应，使用 RTSP时，客户机和服务器都可以发出请求，即 RTSP可以是双向的。
（2）RSVP协议
RSVP（Resource Reservation Protocol）是一种资源预留协议。它为 Internet综合服
务而设计的，提供了由接收方发起的面向组播或点对点数据传播的资源预留，保障了每

一业务流都有足够的“独享”的带宽，克服了由于网络信包过多引起的拥塞、丢失和重

传，提高了网络传输的 QoS性能。
端系统（End System）利用 RSVP协议为应用程序数据流向网络申请特定的 QoS，
路由器等网络设备利用该协议传递 QoS请求并建立和维护所需要的内部状态。RSVP协
议为单向的数据流进行资源的预留，所以对 RSVP而言发送方和接收方并不相同，尽管
某一进程可能同时是发送方和接收方。RSVP协议处在 TCP/IP协议栈中的传输层位置，
虽然它并不传输任何实际的数据。RSVP 和 IGMP 或 ICMP 一样，是 Internet 的一种传
输控制协议。

2.4 本章小结

本章首先对流媒体技术的概念与基本原理进行了简单介绍，包括流媒体的传输原

理、流媒体的传输方式，然后对 RTP/RTCP/RTSP 协议分别进行了详细分析，为后文的
流媒体网络传输实现奠定了理论基础。

第三章 DirectShow的分析与研究

 17

第三章 DirectShow的分析与研究

3.1 DirectShow概述

3.1.1 DirectX简介

Microsoft DirectX是微软专门为基于Windows平台的游戏以及其它高性能多媒体应
用程序的开发而提供的一套底层应用程序接口(API)函数，它支持三维图像和各类音效设
备的输入。开发 DirectX的主要目的是为了让运行在Windows平台的应用程序具有良好
的表现力和实时的硬件访问能力。

DirectX 隐藏了复杂多变的硬件驱动及其相关的执行细节，因此，具有很好设备无
关性，应用程序可以通过使用 DirectX提供的编程接口直接对 HAL(硬件抽象层)进行操
作，既充分发挥了计算机的各种优良性能，又简化了应用程序的编写[23]。

3.1.2 DirectShow简介

DirectShow是Microsoft Windows平台上处理流媒体的一套体系结构，是Microsoft
DirectX家族的一员[18]。DirectShow提供了高质量的多媒体数据采集和多媒体数据播放，
它支持包括 ASF（Advanced Systems Format）、MPEG（Motion Picture Experts Group）、
AVI（Audio-Video Interleaved）、MP3（MPEG AudioLayer-3）等在内的多种数据媒体格
式，同时它也支持现在的 WDM 驱动的设备和过去 VFW 驱动的设备。DirectX 采用了
COM（Component Object Model）标准，而 DirectShow是一套完全基于 COM的应用系
统。DirectShow中的组件都是以 COM对象的形式出现的，如果要开发一个 DirectShow
应用，我们应该必须知道如何使用 COM组件，DirectShow为用户提供了很多实用的组
件来方便用户开发应用程序，但是，如果想扩展现有的 DirectShow的功能来适应自己的
应用，我们必须按照 COM标准来实现我们的组件。
事实上，计算机应用领域中的很多模块都可以和 DirectShow系统交互。也就是说，

DirectShow的应用范畴很广。单纯从本地系统来说，DirectShow可以实现可以从本地机
器中的采集设备采集音视频数据、压缩、保存、回放等功能。而从网络应用的角度来说，

DirectShow更可用于视频点播、视频会议、视频监视等领域。

3.1.2 组件对象模型（COM）基础知识

COM作为Win32的一种基础架构，在Windows平台上的应用非常广泛，DirectShow
是一套完全基于 COM标准的应用系统。如果要开发 DirectShow应用，需要熟悉 COM
客户端应用开发的过程和方法；如果要开发 Filter组件来扩展 DirectShow的功能，就需

第三章 DirectShow的分析与研究

 18

要熟悉 COM组件的实现过程和方法，因为 Filter本身就是一种 COM组件。
在 COM标准中，最重要的三个概念应该是 COM组件、COM对象和 COM接口了。

其中 COM对象是一个非常活跃的元素，它是对外提供服务的主体；COM组件为 COM
对象活动提供空间的一个容器，在Windows平台上可以是一个 DLL（Dynamic Linking
Library）文件也可以是一个可执行的文件（EXE）；COM对象以接口的方式向外界提供
服务，这种接口被称作 COM接口（COM Interface），COM接口实际上是一个 COM和
COM 客户程序之间的契约，它由一组被定义但是没有实现的函数原型所组成，也就是
所谓的 C++中的纯虚类。一个 COM组件中可以包含一个或几个 COM对象，一个 COM
对象也可以实现一个或几个 COM 接口。图 3-1 简单说明了 COM 组件、COM 对象和
COM接口之间的关系。

图 3-1 COM组件、对象和接口之间的关系

Fig.3-1 The relations between COM Component、object and interface

COM组件和 COM接口都由一个 128位的 GUID来标识，组件的标识称为 Class ID
（CLSID），而接口的标识被称为接口 ID（IID）。应用程序需要用这两个 GUID 来创建
对象，以使用 COM 组件和组件中对象的服务。根据 COM 组件在客户端的加载方式不
同，可以将 COM组件分为三类：进程内组件、本地进程间组件和远程组件。DirectShow
中的 Filter一般是一种进程内组件，以 DLL的形式为应用提供服务。下面简单讲述进程
内组件的应用和开发的关键过程。
当 COM 客户端调用 COM 的功能时，它首先创建一个 COM 对象或者通过其它途

径获得 COM对象，然后通过该 COM对象所实现的 COM接口调用 COM对象所实现的
服务。当所有的调用结束以后，如果客户端程序不再需要使用该 COM对象，则它应该
释放该对象所占有的资源和对象本身。此过程的具体实现可在讲述 COM的文献上找到。
对于 Filter 的开发者来说，掌握 COM 组件、尤其是进程内组件的实现方法显得比
较重要。对于普通开发人员来说，熟悉 COM 体系结构，开发 COM 组件是一件比较困
难的事情，但是，DirectX SDK为用户提供了相当丰富的基类，一般应用可以通过继承
合适的基类来实现 Filter的功能[22]。

第三章 DirectShow的分析与研究

 19

3.2 DirectShow结构

设计开发 DirectShow的主要目的便是通过隔离应用系统和数据处理的复杂性、硬件
系统的多样性和多个流之间同步的复杂性来简化在 Windows 平台上开发数字多媒体应
用的过程，降低开发系统的难度为了适应数据媒体格式和硬件设备的多样性，DirectShow
使用一种子系统——过滤器（Filter）来处理软件和硬件之间的差异。图 3-2 显示了
DirectShow应用程序、DirectShow系统和 DirectShow支持的软硬件之间的关系[18]。

图 3-2 DirectShow系统结构

Fig.3-2 DirectShow system structure

如图所示，中间方框以内是 DirectShow系统，虚线以下是 Ring 0级别的硬件设备
及其驱动程序，虚线以上是 Ring3 级别的应用程序，DirectShow 位于应用程序层。
DirectShow 数据处理过程一般由 Filter 来完成，所有这些 Filter 由一种被称为“Filter
Graph”的模型来管理，使所使用的所有 Filter 根据先后顺序连接成一条生产线来协同工
作。系统中的 Filter 分为几类，有些可以在系统以外的介质或设备上获得数据，有些可
以以某种方式来处理这些数据，比如改变视频流的格式等，另外一些可以将处理好的数

据送到系统的外界，比如写到文件里或在屏幕上显示图像等。DirectShow通过这些不同
的 Filter和外界的物理设备交换数据，并控制这些设备，从而使 DirectShow可以将应用
程序和这些复杂的多种多样的设备隔离开来。

第三章 DirectShow的分析与研究

 20

3.3 DirectShow过滤器（Filter）

3.3.1 Filter原理及应用

Filter是一种 COM组件，一般它都是进程内组件，它是 DirectShow最基本的概念，
DirectShow中对数据的每一步操作都由 Filter来完成。DirectShow为用户提供了一组标
准的 Filter，它们可以完成一些基本的数据操作。各个 Filter之间是连接在一起的，这些
Filter上的连接点也是一个 COM对象，称作 Pin，各个 Filter之间通过 Pin组件传递数据
流，这种多个 Filter连接在一起的 Filter组称作 Filter Graph。管理 Filter Graph的管理者
称作 Filter Graph Manager，也是一个 COM对象。Filter Graph是 Filter的一个容器，Filter
是容器中的最小功能模块，作为 COM组件，Filter至少实现并暴露 IBaseFilter接口给应
用程序，而 Pin则一定要暴露 IPin接口。
根据 Filter在 Filter Graph中的位置不同或根据 Filter上Pin的情况不同，可以将 Filter
分为三类，如图 3-3所示[18]：

图 3-3 Filter的种类

Fig3-3 Filter species

1）源过滤器（Source Filter），在 Graph的开始位置，它的主要工作是从 Graph外界
获得数据，这些数据源的介质可以是硬盘文件、网络、其它数码设备。这些 Filter 一般
只有输出 Pin（有些视频采集卡 Filter上会有模拟的输入 Pin），不同的源 Filter处理不同
格式和形式的数据。

2）传输过滤器（Transform Filter），在 Graph的中间位置，它们从上游的 Filter获得
数据，对数据进行一定的处理，比如编码、解码等操作，然后生成输出的数据流传输给

下游的 Filter，这些 Filter既有输入 Pin又有输出 Pin。
3）渲染过滤器（Renderer Filter），它一般在 Graph的末尾，从上游 Filter接收数据，

然后将数据以某种形式展现给用户，比如显示图像、播放声音或写入文件等，这些 Filter
一般只有输入 Pin，没有输出 Pin。
在使用过程中，Filter有三种不同的状态：运行（Running）、暂停（Paused）和停止
（Stopped）。其中运行状态表明 Filter正在处理数据；停止状态是 Filter停止处理数据的
一种状态；而暂停状态一般用作在运行状态之前等待数据就绪的一个状态。一般来讲，

Filter Graph中的所有 Filter的状态是统一改变的，它们的状态也是统一的，所以我们也
可以称 Filter Graph的状态是运行、暂停还是停止。

第三章 DirectShow的分析与研究

 21

3.3.2 Filter的连接

Filter只有加入到 Filter Graph中并且和其他 Filter连接成完整的链路后，才会发挥
作用。Graph中的 Filter要协同工作，应该首先按照一定的顺序连接在一起，Filter的连
接实际上是 Filter上的 Pin之间的连接。连接的方向一般是从上游（Upstream）Filter的
输出 Pin指向下游（Downstream）Filter的输入 Pin。 Pin的连接是连接的两个 Pin之间
使用媒体类型的“协商”过程，Pin通过 IPin接口来完成相互之间的连接。在连接过程
中，判断媒体类型是否合适和分配 Sample分配器是两个非常重要的步骤。在 IPin中分
别有 CheckMediaType和 DecideAllocator两个方法来完成这两项功能。过滤器引脚之间
的连接过程如图 3-4所示，连接步骤大致如下：

(1)过滤器链路管理器调用过滤器输出引脚上的 IPin::Coilnect，并传入一个输入引脚
指针参数；

(2)输出引脚一旦接受连接，则调用输入引脚的 IPin::ReceiveConnection函数；
(3)如果输入引脚也接受连接，则连接成功。

指定了媒体类型？ 枚举Pin上的媒体类型

接口查询

Sample分配器
协商

检查连接

检查媒体类型

接收连接

完成连接

检查连接

检查媒体类型

完成连接

输出引脚

否

是

尝试连接
输入引脚

接收连接

图 3-4 Pin的连接过程

Fig.3-4 Pin connection process

3.3.3 Filter之间数据传输原理

Filter之间的成功连接为数据传输做好了准备。在 Pin之间传输数据时，它们并不直
接传输数据内存的地址，而是传输一个指向 COM 组件的指针。这个 COM 组件管理要
传输的数据内存，我们称这个 COM 组件为 Sample，它实现了 IMediaSample 接口并暴
露给应用程序。下游的 Filter 可以通过调用 IMediaSample 的接口方法获得媒体数据或
Sample的描述信息。

第三章 DirectShow的分析与研究

 22

Sample中的数据由 Sample对象来管理，Sample对象也需要一个工具来管理，这种
工具是另外一种 COM 组件称作分配器（Allocator）。Allocator 实现并暴露给应用程序
IMemAllocator接口，此对象负责创建和管理 Sample。当 Filter需要一个空闲 Sample时
就向 Allocator申请，Allocator返回给 Filter一个指向 Sample的指针，图 3-5[18]显示了数

据传输和 Sample分配管理的过程。

Filter FilterMedia
Sample

Memory Buffer

Allocator

Media
Sample

Memory Buffer

Media
Sample

Memory Buffer

Media
Sample

Memory Buffer

Output Pin Input Pin

Not In Use

图 3-5 Media Sample在 Filter间传递

Fig.3-5 Media Sample’s transmit between Filers

Filter 之间数据传送的方式有两种：推模式和拉模式。其中推模式的数据传输是上
游的 Filter将自己所产生的 Sample用专门的线程“推”给下游的 Filter；拉模式的数据
传输是上游的 Filter 没有主动推数据的功能，需要下游的 Filter 向他申请数据，上游的
Filter接收到请求后向下传递数据。
推模式：在源 Filter后面的 Filter输入 Pin上，实现了一个 IMemInputPin接口，数
据正是通过上一级 Filter 调用这个接口的 Receive 方法进行传输。数据从输出 Pin 通过
Receive 方法调用传输到输入 Pin 上，并未进行内存拷贝，它只是一个相当于数据到达
的“通知”。然后由上游的过滤器决定发送的数据并把数据“推”向下游的过滤器，下

游过滤器被动接收并对数据进行处理。
推模式最典型的例子是用于实时多媒体数据源(Live Source)的发送，如图 3-6所示。
例如：视频采集卡等设备。这些设备以一种源过滤器的方式出现在过滤器图表中，它能

够自己产生数据，并且使特定的线程将数据“推”向下一级过滤器。

第三章 DirectShow的分析与研究

 23

图 3-6 推模式图表

Fig.3-6 Graph of push mode

拉模式：源 Filter的输出 Pin上都实现了一个 IAsyncReader接口，其后面的分离过
滤器(Splitter Filter)，就是通过调用这个接口的 Request 方法或 SyncRead 方法来获得数
据。分离过滤器像推模式一样，调用下一级 Filter输入 Pin上 IMemInputPin接口 Receive
方法实现数据的往下传送。
这种数据传输模式由处于链路下游的过滤器主动向上游过滤器请求获取数据。虽然

形式上媒体样本仍然是从上游的输出引脚传送至下游的输入引脚，但数据传输的主动权

掌握在下游过滤器手中。媒体文件的回放就是拉模式方法最典型的应用，如图 3-7所示。

图 3-7 拉模式图表

Fig.3-7 Graph of poll mode

3.4 DirectShow的内部机制

3.4.1 线程机制

DirectShow应用程序至少包含两种重要的线程：应用程序主线程以及一个或多个媒
体流线程。Filter的状态变化在应用程序主线程发生，而媒体流线程处理 Sample的传送。
在应用程序主线程等待用户交互信息的同时，媒体流线程处理数据流在过滤器图中的传

输。多线程处理则要注意线程同步问题，DirectShow的解决方案是用临界区来保护敏感
资源。每个过滤器的状态需要由一个临界区来保护。在应用程序主线程中使用的函数，

必须使用 Filter 状态同步对象进行同步；在媒体流线程中使用的函数，必须使用媒体流
同步对象进行同步。媒体流线程必须在 Filter Graph Manager停止 Filter Graph之前被关
闭[20]。

第三章 DirectShow的分析与研究

 24

3.4.2 事件机制

DirectShow 中应用程序与 Filter Graph 的交互控制可以通过事件通知机制(Event
Notification)来实现。例如当数据回放完毕或是运行错误发生时，发出相应的事件，然后
通过事件机制递交事件通知给 Filter Graph Manager或者是应用程序处理。应用程序从消
息队列中取得事件，并根据事件的类型做出相应的处理。DirectShow中的事件通知机制
跟Windows下的消息队列很类似。一个应用程序可以取消 Filter Graph Manager对一个
特定事件类型的默认反应，这个时候 Filter Graph Manager把这种事件直接放入队列中让
应用程序来处理[20]。
这种机制可以实现保证如下功能：
z Filter Graph Manager和应用程序进行信息交互。
z Filter、应用程序和 Filter Graph Manager之间进行信息交互。
z 由应用程序确定它自己要处理哪些事件和怎样处理这些事件。
常见的事件有 EC_COMPLETE，表示 Filter Graph中所有的数据都已经回放完毕(此
时 Filter Graph不会自动转入 Stopped状态，需要我们在应用程序中接收到这个事件后调
用 Filter Graph Manager的 IMediaControl::Stop方法)；有 EC_ERRORABORT，表示运行
时出错；有 EC_DEVICE_LOST，表示热插拔设备(典型的如 USB设备、1394接口设备
等)脱离系统等等。（其他事件参见 DirectX文档）。

Filter Graph Manager 提供以下三个接口 (IMediaEventSink、 IMediaEvent 和
IMediaEventEx)来支持事件通知，其中 IMediaEventSink用在 Filter内部，它的接口方法
Notify用以向 Filter Graph Manager发送事件通知。IMediaEvent给应用程序提供了得到
事件的方法。IMediaEventEx 是 IMediaEvent 的扩展，在应用程序一般使用这个接口处
理 Filter Graph Manager发出的事件。发出的事件。事件处理的大致过程如下：Filter Graph
中的 Filter 发出一个事件（运行出错了或者满足了一定的条件），接收者为 Filter Graph
Manager；Filter Graph Manager对一些特殊的事件有默认的处理方法，在接收到事件后，
要么按默认方法直接处理这个事件，要么放到一个事件队列中等待上层的应用程序处

理；应用程序在获知 Filter Graph Manager有事件发出后，就可以使用 IMediaEventEx接
口从事件队列中读取事件，然后根据事件类型做出相应的处理。

3.4.3 时钟机制

DirectShow结构最核心的部分是 Filter Graph Manager，它实现了两个功能：向下控
制 Graph 中的所有 Filter，向上对应用程序提供编程接口。时钟机制是 Filter Graph
Manager的一个很重要的功能。时钟机制的引入主要是为了解决多媒体数据中音视频的
同步问题。简单说就是选一个公共的参考时钟，并且要求给每个 Sample都打上时间戳，
Video Renderer或 Audio Renderer根据 Sample的时间戳来控制播放。如果到达 Renderer
的 Sample 晚了，则加快 Sample 的播放；如果早了，则 Renderer 等待，一直到 Sample

第三章 DirectShow的分析与研究

 25

时间戳的开始时间再开始播放。

Filter Graph Manager在 Filter Graph运行的时候自动地选择一个参考时钟，同一条
链路的 Filter参照同一个参考时钟。参考时钟的选择的算法如下[20]：
¾ 若 Filter Graph设置了一个参考时钟，则直接使用这个参考时钟。
¾ 若 Filter Graph 中有支持 IReferenceClock 接口的 Live Source，则选择该 Live

Source。Live Source也称为推 Source，可以实时地接收数据，例如视频采集源
就是一个典型的 Live Source。

¾ 若 Filter Graph中没有 Live Source，则从 Renderer Filter依次往上选择一个实现
了 IReferenceClock接口的 Filter。若连接着的 Filter都不能提供参考时钟，则再
从没有连接的 Filter中选择。假如 Filter Graph中含有一个播放音频的链路，由
于声卡上一般都带有硬件定时器，则优先选择 Audio Renderer。

¾ 若以上方法都找不到适合的 Filter，则选取系统参考时钟。即创建一个
CLSID_SystemClock的组件对象实例。

DirectShow定义了两种时间：参考时间(Reference Time)和流时间(Stream Time）。前
者取决于参考时钟的内部实现，是从参考时钟返回的绝对时间 (调用
IReferenceClock::GetTime)。后者应用于 Filter Graph内部的同步，是两次从参考时钟读
取的数值的差值。流时间的取值算法如下：
z Filter Graph运行时，取值为当前参考时钟时间减去 Filter Graph启动时的时间；
z Filter Graph暂停时，保持为暂停那一刻的流时间；
z 执行完一次随机定位（Seek）操作后，数值复位至零；
z Filter Graph停止时，取值不确定。

3.4.4 质量控制机制

时钟机制是到对每个 Sample打上时间戳，虽然 Renderer Filter接收到 Sample后，
会根据 Sample 上的时间戳安排显示时机，但要彻底解决 Filter Graph 运行性能，
DirectShow设计了一种“自适应”的反馈机制：质量控制机制(Quality Control)。质量控
制主要是调整整条链路运行状态时数据流传输的速率[20]。若 Renderer Filter发现数据线
程发送数据太快或太慢时，它就会发送一个质量消息，要求 Source Filter调整数据流的
速率。

Source Filter Transform Filter Video Renderer

3 Notify 2 PassNotify 1 Notify

图 3-8 DirectShow质量控制过程

Fig3-8 Quality control process of DirectShow

第三章 DirectShow的分析与研究

 26

图 3-8[18]显示质量控制消息最初由 Video Renderer发出，以“回溯”的方式逐个询
问是否可进行质量的改善。

DirectShow中使用如下的数据结构描述质量控制消息：
Typedef struct{

QualityMessageType Type;
Long Proportion;
REFERENC_TIME Late;
REFERENCE_TIME TimeStamp;

}Quality;
� 其中 Type是一个枚举器，定了消息的型。

Typedef enum{
Famine, //表示当前数据发送太慢
Flood //表示当前数据发送太快

}QualityMessageType；
� Proportion（比例）：表示需要调整的码率与原先码率的比例关系。以 1000 为
基线，150表示调整 15%，1000表示调整 100%；

� Late（延迟）：最新帧的延迟时间(到达时间与时间戳的差值)。
� Timestamp（时间戳）：最新帧的时间戳。
质量控制是通过 Quality Control 接口来处理的。该接口包含两种方法，Notify：任
何实现 IQualityControl的对象通过该方法接收质量消息，它可以处理该消息或者把它传
递到另外一个质量控制对象；SetSink：指定质量管理器。
能够调整发送速度的 IQualityControl 接口一般在 Source Filter 上实现，Transform

Filter 只是将 Quality Message 往上一级 Filter 传递。应用程序可以实现自己的 Quality
Control Manager，然后通过调用 SetSink方法设置给 Filter。

3.5 本章小结

本章主要介绍 DirectShow 框架的原理，深入剖析了 DirectShow 的内部机制，由于
DirectShow框架是基于微软组建对象模型（COM）的，在 DirectShow SDK中提供了封
装好的 DirectShow的 C++类库，这个类库已经实现了常用 Filter上必需的接口，而且提
供了基本的 Filter 框架，可以实现对多媒体数据流的强大的控制能力，因此解决了软件
的重用性问题。本章内容为下面章节详细阐述的各功能模块设计和编程实现作好铺垫。

第四章 系统结构设计

 27

第四章 系统结构设计

4.1 系统总体结构设计

本监控系统架构建立在第三代数字视频监控系统的基础上，采用 C/S结构，以流媒
体技术为核心，运用 DirectShow进行音频视频采集、压缩，并结合网络 RTP/RTCP传输
技术实现了主机间的数据通信，提出了一种在网络上应用流媒体技术实现音频视频实时

传输的远程视频监控系统的设计。系统结构如图 4-1所示。系统分为服务器端和客户端，
两端的软件均在普通 PC机上运行。服务器端 PC接有 USB摄像头，软件首先读出摄像
头的设备名和音频设备名，在采集视频数据进行显示的同时，将视频数据采用MPEG-4
压缩编码，可录像到硬盘上。当有客户端请求视音频数据时，将压缩后的数据通过 IP
网络发送出去，客户端软件接收到视音频数据后，存储到硬盘上或解压后进行播放。

网络USB摄像头 PC服务器

客户端

客户端

客户端

用DirectShow进行采集、压缩

图 4-1 系统总体结构设计

Fig.4-1 Design of system total structure

本系统有以下功能：
（1）进行本地采集设备的自检，可检测到系统所采用的视频设备和音频设备名称；
（2）进行本地的视频图像预览显示；
（3）进行本地视频和音频采集参数调整；
（4）客户端可呼叫连接服务器请求视音频数据；
（5）实现客户端的视频录像、回放及抓图功能。
本系统设计的整套方案硬件上只需要市面上普通的 USB摄像头和 PC机，大大降低
了硬件成本和开发成本，易于实现。虽然在视频效果上无法与专业的安防设备相比，但

是 100万像素的摄像头可以实现 320*240，甚至更高分辨率的画面，足以满足一般的小
区、家庭监视的需要。本系统只需进行少许修改，还可以应用于远程教学，远程医疗中。

第四章 系统结构设计

 28

4.2 服务器端软件模块设计

服务器端软件分为五个模块，如图 4-2所示

图 4-2 服务器软件模块组成图

Fig.4-2 Component graph of server software module

（1）视/音频数据采集模块：该模块从 USB摄像头采集视频数据，从音频设备（声
卡或麦克风）采集音频信号，以帧的形式分别发送到显示模块和压缩模块。
（2）视频显示模块：将采集模块送来的视频数据进行播放。
（3）数据压缩模块：将采集模块送来的视/音频数据压缩，减小数据量，并传送给

数据存储模块和发送模块。
（4）数据存储模块：将压缩后的视/音频数据存储到本地硬盘上。
（5）数据发送模块：将压缩后的数据用 RTP/RTCP协议发送到网络。

4.3 客户端软件模块设计

客户端软件分为五个模块，如图 4-3所示

视/音频数据采集模块

视频显示模块 数据压缩模块

数据存储模块 数据发送模块

第四章 系统结构设计

 29

图 4-3 客户端软件模块组成

Fig.4-3 Component graph of client software module

（1）数据接收模块：该模块从网络中接收服务器端发送来的视/音频数据，并分别
发送到数据存储模块和数据解压模块。
（2）数据存储模块：将接收模块送来的视频数据存储到本地硬盘上。
（3）数据解压模块：将接收模块送来的视频数据解压，并传送给视频显示模块。
（4）视音频显示模块：将解压后的数据进行播放。
（5）回放模块：回放视频文件。

4.4 网络传输模块的设计

网络传输部分是通过设计两个 Filter 来实现的，分别是网络发送 Filter（NetSend
Filter）和网络接收 Filter（NetReceive Filter）。在传输中使用 RTP/RTCP将视频数据和音
频数据分别封装和传输。在方案中，我们将使用不同的端口进行视频和音频的传输。同

时对视频和音频数据报使用统一的时间戳，以保证它们在客户端的同步播放。在正式开

始媒体数据传输之前，发送端必须向接收端通知所传输的媒体类型。因为接收端需要根

据媒体类型来确定所使用的解码器，以正确建立 Graph，而只有在 Graph运行之后，接
收端才能通过网络接收 Filter 接收媒体数据。发送端通知接收端的方式属于控制信息传
输部分，实现方式与通常的网络传输相同。传输结构图如 4-4所示

视频录像模块

数据接收模块

数据解压模块

音视频显示模块 回放模块

抓图模块

第四章 系统结构设计

 30

图 4-4 网络视频/音频传输结构图

Fig.4-4 Structure graph of web video/audio transmission

网络发送 Filter 的输入 pin 接收经过压缩编码的视音频数据后根据不同类型确定
RTP 数据报的负载类型（PT）和时间戳增量，封装好 RTP 数据分组后发送出去，网络
接收 Filter将接收到的数据经 RTP数据分组分解，提取媒体实例样本，设置媒体实例的
格式，主类型，采样频率和样本长度等，并将此媒体实例放入 Filter 的缓冲区中，准备
传送至下一级解码器的输入 pin。

4.5 本章小结

本章对基于流媒体技术的网络视频监控系统的总体框架进行了设计，并规划了服务

器端和客户端各功能模块的具体功能，并介绍了网络发送端和接收端过滤器的设计思

想，为下一步的实现打下了坚实基础。

 NetSend
 Filter

视频采集

音频采集

XviD编码器

MP3编码器

视频输入 Pin

音频输入 Pin

 NetReceive
 Filter

视频播放

音频播放

XviD解码器

MP3解码器

视频输出 Pin

音频输出 Pin

网

络

第五章 系统实现

 31

第五章 系统实现

5.1 开发环境与工具

5.1.1 开发环境

本系统的整个开发过程在局域网中实现。局域网中的 PC服务器配置采用Microsoft
Windows 2000 Professional操作系统，摄像头为市面上普通的 130万像素摄像头，通过
USB与计算机相连。客户端则是相同配置的 PC机，采用Windows XP系统。

5.1.2 开发工具

系统采用Microsoft Visual C++6.0作为系统软件的编程语言和编译环境。Visua1 C++
作为一个集成开发工具，为编程工作者提供了程序框架代码自动生成和可视化的资源编

辑功能，从而使编程工作变得更为简单。并且Microsoft为 Visua1 C++提供了强大的基
本类库MFC(Microsoft Foundation Classes)，因此确立了 Visual C++在开发语言平台上的
领先地位，它真正把Windows应用程序开发带入了一个面向对象的时代。Visual C++不
仅仅是程序设计语言，而且也是一个非常全面的应用程序开发环境，使用它可以开发具

有专业水平的Windows应用程序。
同时，由于各模块的实现都是使用微软公司的 DirectShow技术，用于开发的计算机

还需安装Microsoft DirectX 9.0 SDK程序、Microsoft DirectX 9.0运行时库程序。借助
DirectX底层驱动的支持，通过 COM对象和模块化的方法，把多媒体数据的捕获、传输、
处理与呈现从硬件设备的差异、同步、媒体数据格式等复杂问题中分离出来，提供统一

的 API和基类，从而简化了Windows平台下多媒体应用程序的开发。

5.2 服务器端软件实现

5.2.1 视频采集模块的实现

视频采集是实现系统的第一步，也是 DirectShow最基本的应用之一。所谓采集，通
常是指将模拟信号采样生成的数字信号，经过计算机处理后再现或存储到数字介质上。

由于采集设备性能的差异以及兼容性问题，加上多媒体本身巨大的数据量，一般来说，

采集的任务比较繁重，占用的系统资源也比较多。DirectShow的出现使得采集过程变得
较易实现，它对视频采集硬件的支持通过特定的包装 Filter 来实现，屏蔽了各种采集设
备之间的差异，开发更为简单方便。DirectShow可以支持多种接口的视频采集卡，它们

第五章 系统实现

 32

可以以 PCI或 AGP的方式直接插入 PC机箱，也可以 USB接口的方式外挂。
采集视频数据，首先要获取采集设备信息。系统可能运行在不同的计算机、不同的

操作系统上，目标系统的硬件配置情况是不确定的，因此要采用系统枚举的方法来获取

采集设备。只要采集设备正确安装，DirectShow 就能把它包装成一个 Filter，并且在一
定的类型目录下注册。音频采集设备注册在 Audio Capture Sources目录下，视频采集设
备注册在 Video Capture Sources目录下。应用程序只要枚举特定的类型目录，就能知道
系统中安装有多少个、以及何种类型的采集设备。当我们执行DirectX SDK下的GraphEdt
程序并选择插入 Filters时，可在 Audio Capture Sources和 Video Capture Sources目录下
找到代表安装在本地 PC机上的音频和视频采集卡的 Filter。图 5-1是本论文采用的音频
和视频采集卡的 Filter示意图。

图 5-1 视音频采集卡在 GraphEdt下的示意图

Fig.5-1 Sketch map of Video/Audio Capture Card under GraphEdt

运用 DirectShow实现视频采集模块的功能可分为以下四个步骤[21]：
（1）首先创建一个过滤器链路管理器（Filter Graph Manager）实例，并通过调用

IGraphBuilder 接口引出 IMediaControl（媒体控制），IVideoWindow（视频窗口控制），
IMediaEventEx（媒体事件扩展）三个接口。应用程序通过调用 IVideoWindow接口设置
视频窗口的大小和位置；通过设定控制按钮调用 IMedidaControl接口实现视频播放的开
始和停止。核心代码如下：

BOOL CDXGraph::Create (void)
{

if (!mGraph)
{

第五章 系统实现

 33

if (SUCCEEDED(CoCreateInstance(CLSID_FilterGraph, NULL,
CLSCTX_INPROC_ SERVER, IID_IGraphBuilder, (void**) &mGraph)))

 {
 ……

return QueryInterfaces ();
 }
 ……
 }

 return FALSE;
}
BOOL CDXGraph::QueryInterfaces (void)
{

 if (mGraph)
 {
 HRESULT hr=NOERROR;
 hr |= mGraph->QueryInterface(IID_IMediaControl, (void

**) &mMediaControl);
 hr |= mGraph->QueryInterface(IID_IMediaEventEx, (void

**) &mEvent);
 hr |= mGraph->QueryInterface(IID_IVideoWindow, (void

**) &mVideoWindow);
 ……

return SUCCEEDED(hr);
}
return FALSE;

}
（2）然后创建一个捕获链路（Capture Graph）实例，得到 ICaptureGraphBulider2

接口，DirectShow 专门提供了一个辅助组件 Capture Graph Builder(它的 CLSID 为
CLSID_CaptureGraphBuilder2)来简化这种 Filter Graph 的构建。通过调用接口方法
ICaptureGraphBuilder2::SetFiltergraph 设置 Filter Graph Manager 对 象 指 针 ， 与
IGraphBuilder接口相连接，初始化 Filter Graph。核心代码如下：

hr=CoCreateInstance((REFCLSID)CLSID_CaptureGraphBuilder2, 0,
 CLSCTX_INPROC, (REFIID) IID_ICaptureGraphBuilder2,
 (void**)&mGraphBuilder);

pass=(mGraphBuilder!=NULL);
if (pass)
{

 mGraphBuilder->SetFiltergraph(mGraph->GetGraph());
 ……
 }
（3）运用枚举系统设备方法，列举所有使用的音频采集设备并生成列表，用户可
以选择任一设备，将其对应的 Capture Filter加入到初始化后的 Filter Graph中。

第五章 系统实现

 34

DirectShow提供了一个专门的系统枚举组件（CLSID_SystemDeviceEnum），枚举的
大致过程如下：
（ 1）使用 CoCreateInstance 函数创建一个系统枚举组件对象，并获得

ICreateDevEnmu接口。
（2）使用 ICreateDevEnum的方法 CreateClassEnmuerator为指定的类型目录创建一

个枚举器，并获得 IEnumMoniker接口。
（3）使用 IEnumMoniker 的接口方法 Next 枚举指定类型目录下所有的设备标识

(DeviceMoniker)。每个设备标识对象上都实现了 IMoniker接口。
（4）调用 IMoniker 接口的 BindToStorage 函数之后就可访问设备标识的属性集，
比如得到设备的显示名字（Display Name）、友好名字（Friend Name)等。
（5）调用 IMoniker 接口的 BindToObject 函数可以将设备标识绑定成一个

DirectShow Filter,随后调用 IFilterGraph::AddFilter加入到 Filter Graph中就可以参与工作
了。核心代码如下：

hr=CoCreateInstance(CLSID_SystemDeviceEnum,NULL,CLSCTX_INPROC_SERVE
R,IID_ICreateDevEnum,(void**) &enumHardware);

//创建系统枚举组件对象
 hr=enumHardware->CreateClassEnumerator(inCategory,&enumMoniker,0);
 //指定枚举的类型目录，获得 IEnumMoniker接口
 if (hr==S OK)
 {

IMoniker *pMoniker=NULL;
 if (pEnum->Next(1,&pMoniker,NULL)==S_ OK) //假设系统中只有一个采集设
备，故枚举到的第一个设备就是符合我们要求的采集设备
 {
 ……

moniker->BindToStorage(0,0,IID_IPropertyBag,(void**)
&propertyBag);

 ……
hr=pMoniker->BindToObject(0,0,IID_IBaseFilter, (void

 **)&m_pCapture);//创建采集 Filter实例
枚举到采集设备后，下一步的工作就是把它加入到 Filter Graph中去。代码如下：
hr=m_pIGraphBuilder->AddFilter(m_pCapture, L"CaptureFilter");
（6）渲染捕获 Filter的捕获输出 Pin（Capture Output Pin）或预览 Pin（Preview Pin），
都可以播放捕获到的媒体流，实现实时预览功能。
音频采集模块和视频采集模块的原理和过程类似，这里不再重复说明，采集模块程

序定义了两个类：CAudioDevices和 CVideoDevices，分别用于维护音频采集设备和视频
采集设备的列表。

第五章 系统实现

 35

5.2.2 视频显示模块的实现

上一节已经阐述了采集模块的实现过程，完成了采集应用 Filter Graph 的构造，由
于我们采用的采集 Filter只有一个捕获输出 Pin（如图 5-1中所示），而采集 Filter输出的
视频数据流既要显示，又要压缩后存储或发送给客户端，因此必须在它后面连接一个

Smart Tee Filter，将数据流分成两路，一路用于预览，一路用于压缩后存储或进行网络
发送。

Smart Tee Filter的 GUDI是 CLSD_SmartTee，调用 CoCreateInstance函数创建一个
Smart Tee Filter，再用 IGraphBuilder的 AddFilter函数将它加入到 Filter Graph中，最后
将采集 Filter的 Capture Pin与 Smart Tee Filter的 Input Pin连接起来，Smart Tee Filter得
Preview Pin输出的数据用于显示图像，Capture Pin输出数据用于视频压缩。Smart Tee
Filter如图 5-2所示：

图 5-2 Smart Tee Filter

因此，实现视频显示模块的预览过滤器链路如图 5-3所示：

图 5-3 实现视频预览的 Filter Graph

Fig.5-3 Filter graph of video preview

5.2.3 视频压缩模块的实现

5.2.3.1视频压缩标准

存储和网络传输是网络监控系统的基本功能，未经压缩的数字化图像和声音信号数

据是非常庞大的。所以在视频监控系统中，必须对数字化多媒体信息进行压缩，用尽可

能少的数据来表达信息，节省传输和存储的开销。
视频的压缩分帧内(Intraframe)压缩和帧间((Interframe)压缩。帧内压缩也称空间压缩

((Spatial compression)，不考虑相邻帧之间的冗余信息，与静态图像压缩类似。帧间压缩
是基于视频前后两帧之间具有很大的相关性，也称空间压缩(Temporal compression)，仅
记录帧间的运动差值，可以大大减少数据量。帧间压缩也提高了视频编码对差错率的要

求。

第五章 系统实现

 36

在编码标准方面，国际电信联盟 ITU先后制定了 H.261,H.262,H.26L等标准，国际
标准化组织 ISO/IEC 先后制定了 MPEG-1，MPEG-2，MPEG-4 等标准。这些标准都是
当前工业界和研究机构广泛使用并不断发展的标准系列。MPEG-4 标准的目标与以往
MPEG-1/2标准有了很大的不同，应用前景也更为广阔。MPEG-4的主要目标是：1、基
于对象的压缩标准；2、具有可交互性；3、码率的带宽范围适应性(5k-l0Mbps)。其传输
速率较低，在 4800-64000bps之间，可以利用很窄的带宽，通过帧重建技术，压缩和传
输数据，以求以最少的数据获得最佳的图像质量。这些特点使MPEG-4压缩后的视频更
适合 Internet上流媒体的传输要求[25]。

5.2.3.2视频压缩方法的软件实现

在 DirectShow中，集成了各种标准的编码解码器，它们都是以过滤器的形式存在，
使用方法也和一般的过滤器一样，因此，实现视频图像的编码和解码只要在网络发送端

过滤器的输入 Pin和网络接收端过滤器的输出 Pin进行媒体类型的定义，使之与所指定
的媒体结构类型相匹配，即可实现编码解码功能。编码后的数据需要经过 RTP打包进行
流化处理后才能够成为适合流式传输的文件。

XviD MPEG-4 Codec是以用MPEG-4技术的数字视频编解码器（Codec），本系统
采用它对视频数据进行压缩，在客户端则采用 XviD MPEG-4 Decoder对视频数据进行解
压缩。两个编解码器的创建和使用方法基本相同。
创建 XviD MPEG-4 Codec Filter同样要用枚举实现，枚举的方法和采集设备的枚举
方法一直。视频压缩 Filter 一般存放在 Video Compressor 目录下，GUID 为
CLSID_VideoCompressorCategory，采用枚举的方法找到目录下的 XviD MPEG-4 Codec
（安装了 DirectX 9.0的计算机都有这个编码器），将其绑定为一个 Filter后加入到 Filter
Graph中。XviD MPEG-4 Codec有一个输入 Pin和一个输出 Pin，需要将 5.2.2中所创建
的 Smart Tee Filter的 Capture Pin与 XviD MPEG-4 Codec Filter的 Input Pin连接起来。
XviD MPEG-4 Codec Filter如图 5-4所示。程序中媒体类型的定义是在网络发送端 Filter
的输入 Pin和网络接收端 Filter的输出 Pin的GetMediaType()和CheckMediaType()中进行
设置的，此外还要对数据的MEDIATYPE和MEDIASUBTYPE进行设置。

图 5-4 视频压缩 Filter

Fig.5-4 Video compress filter

第五章 系统实现

 37

5.2.4 音频压缩模块的实现

5.2.4.1音频压缩标准

对音频的编码主要目标就是保留原始音频的频率范围和其中变化的部分。如果带宽

足够，这个目标容易满足。但在网络带宽条件有限的情况下，就必须对某些部分进行适

当地折损。音频信号可分为电话质量的语音、调幅广播质量的音频信号和高保真立体声

信号。语音信号的频率范围在 300Hz~3.4kHz。调幅广播质量音频信号的频率范围是

50Hz~7kHz，而高保真信号的频率范围是 10Hz~20kHz。随着频率带宽的增加，信号的真

实度逐步改善，针对不同的音频信号，制定了相应的压缩标准。

目前比较流行的立体声音频压缩标准为“MPEG音频”。MPEG是 ISO提出的动态
图像编码的国际标准，“MPEG 音频”是该标准的一部分。ISO/MPEG 音频压缩标准里
包括了三个使用高性能音频数据压缩方法的感知方案。按照压缩质量和编码方案的复杂

成都分为三个层次。目前最为流行的立体声音频压缩格式是 MP3，即 MPEG 音频第三
层（MPEG Audio Layer-3）。MP3的优点在于大幅降低数字声音文件的容量，而不是破
坏原来的音质。MP3音频的音质较好，采样率不高，完全适合在网络环境下传送。因此
本文设计的音频传输链路中采用MP3为音频编码方式[26]。

5.2.4.2音频压缩方法的软件实现

在 DirectShow中集成了MP3编码、解码器过滤器，创建的方法和视频编解码 Filter
相同，通过 DirectShow提供的过滤器接口直接选择集成好的编解码过滤器，并直接选择
加入 Filter Graph 即可，不用专门编写压缩程序，但必须在网络发送过滤器的输入 Pin
和网络接收过滤器的输出 Pin的 GetMediaType()和 CheckMediaType()中对音频格式进行
设 定 ， 并 将 媒 体 类 型 的 MEDIASUBTYPE 和 MEDIATYPE 设 置 为
MEDIASUBTYPE_MPEGAudio和MEDIATYPE_Stream，以匹配与其直接连接的编解码
器。MP3 编码器 Filter如图 5-5所示。

图 5-5 音频压缩 Filter

Fig.5-5 Audio compress filter

5.2.5 数据存储模块

视音频数据实现压缩后便可以保存起来，或是通过网络发送出去，这里我们主要实

现视音频数据的存储，即将视音频内容采集到文件中保存起来。我们将其保存为 AVI
文件，DirectShow提供了一个 AVI Mux Filter（如图 5-6所示），视频输出 Pin和音频输
出 Pin分别连接它的 Input Pin，即可以实现视频和音频数据的合成，然后调用 DirectShow

第五章 系统实现

 38

提供的 File write Filter（如图 5-7所示），将合成的数据以文件的形式保存，这里我们将
其保存在 sample.avi文件中。整个服务器端实现过程的 Filter Graph如图 5-8所示。

图 5-6 AVI Mux Filter 图 5-7 File write Filter

图 5-8 服务器端实现过程的 Filter Graph

Fig.5-8 Filter graph of server achieve process

5.3 网络传输的实现

服务器端的数据发送功能通过开发一个网络发送 Filter 来实现，命名为 NetSend
Filter,它仅有输入 Pin，用于从上一级 Filter获取 Sample数据，在得到数据后对其进行
封装，再向网络远程端发送。所以 NetSend Filter是一个 Renderer Filter。
客户端的数据接收功能通过开发一个网络接收 Filter 来实现，命名为 NetReceive

Filter，它的实现和 NetSend Filter有些类似，都是一种应用程序内的 Filter形式。但是
NetReceive Filter的具体实现要比 NetSend Filter复杂一点，NetReceive Filter需要使用
独立的线程进行网络数据的接收，当接收到第一个媒体格式数据后，必须马上通知上

层应用程序完成 Filter Graph的构建，然后继续接收媒体数据，并将这些数据以 Sample
的形式“推”给下一级 Filter。

第五章 系统实现

 39

5.3.1 服务器端网络发送的实现

5.3.1.1网络发送 Filter内部数据的流动
在 DirectShow中的 Graph内的 Filter之间，数据的交换都是通过MediaSample来实

现的。MediaSample是 DirectShow媒体数据的基本单位。Graph中的媒体数据流动过程
也就是 Filter之间MediaSample的传递过程。NetSender Filter属于 Renderer Filter，它只
有一个 Input Pin，没有 Output Pin。它通过 Input Pin从上方的 Filter接收MediaSample,
然后在 Filter内对MediaSample进行分片，RTP封装，然后通过 Net Sender成员对象利
用 RTP打包发送。数据流动如图 5-9所示

图 5-9 网络发送 Filter内部数据流动

Fig.5-9 The data flow of Network Send Filter

5.3.1.2网络发送 Filter的设计
网络发送 Filter 的功能是接收来自上游的压缩视音频流，检查数据类型；对视音频
流分别打包形成 RTP包，发送至网络客户端。这些功能的实现主要依赖于三个类。首先
是 CNetSendFilter类，它是一个典型的 Renderer Filter，这个类是实现功能的主体框架类，
它的最重要的一个父类是 CBaseFilter基类，该类由 DirectShow SDK提供，是为自行开
发 Filter而提供的 DirectShow基类。CBaseFilter是所有 Filter的基类。而主类中的两个
类的实例用以实现具体功能包括检查数据，打包，发送等。第二个类是 CNetSendInputPin，
它主要作用是接收上游的压缩数据流，检查数据类型。系统提供了一个类 CBaseInputPin
帮助实现该类。第三个类是 CNetSender类，该类负责对MediaSample的 RTP打包和 UDP
发送。发送 Filter类图如图 5-10所示。

 NetSend Filter

Media Sample Input Pin 处理 Net Sender 网络

第五章 系统实现

 40

CBaseInputPin CBaseFilter

CNetSendInputPin
mPinKind

GetMediaType()
CheckMediaType()
Receive()
SetMediaKind()

CNetSender
mSession

Create()
SendPacket()
Destory()

CNetSendFilter
mNetsender
mNetSendInputPin
mLost
mPort

Pause()
Stop()
SetPinKind()
SetLocalPort()
SetDestination()

图 5-10 网络发送 Filter类图

Fig.5-10 Class diagram of web transmit filter

下面对照图来分别就各个类的设计进行简单的阐述：
（1）CNetSendInputPin的设计
CNetSendInputPin 需要完成的主要功能有两个：一是实现 Filter 之间所传输的媒体
类型的协商，而是从上方的 Filter接收MediaSample。CNetSendInputPin类主要实现的函
数有四个：

GetMediaType函数，用于获得该 Pin的媒体类型是音频还是视频；
CheckMediaType 函数，该 Pin 连接过程中对连接用的媒体类型进行检查，仅接收

GetMediaType获得的媒体类型。
Receive 函数，上级 Filter 通过该函数将数据传入，在这个函数中进行一定的

MediaSample的选择工作，然后通过委托 Filter上的 mNetSender成员变量的 SendPacket
函数进行数据的打包发送。

SetMediaKind函数，设定该 Pin的媒体类型是音频还是视频。
主要的一个变量 mPinKind用来存放媒体类型。NetSend Filter通过 SetPindKind函
数来设置该值。

第五章 系统实现

 41

（2）CNetSender类的设计
CNetSender 类用于完成基本的网络传输功能，主要是对接收到的媒体 Sample 进行

RTP的打包和发送。CNetSender的主要函数有：
Create函数：主要作用是建立 RTP Session，它有两个参数。前一个参数指定了传输
的一系列参数，主要有 RTCP包的发送频率，RTP包的缺省标记等。第二个参数指定了
传输的协议，类中会根据它创建 Udpsocket或者其他 Socket。

SendPacket 函数：发送数据。具体的发送动作调用的是 RTPSession 的 SendPacket
函数。

Destroy函数：销毁一个 RTPSession。
CNetSender变量 mSession是一个 RTPSession类的实例。
（3）CNetSendFilter的设计
CNetSendFilter类是网络发送 Filter的主类，它的主要作用实际上就是上述两个类的
组合，包括接收上游的 Sample，并将其打包发送。除此之外还包括对整个过程的总体控
制。CNetSendFilter类的继承来自 CBaseFilter类，所以还包括 Pause和 Stop两个函数，
由于 Graph和 Filter开始运行时，在 run前必须经历 pause状态，所以在 pause中来创建
一个 RTP的 Session，从而启动相应的接收 RTP的 RR包的线程。它的函数主要有以下
几个：

Pause函数：用于在 Filter从停止状态转到暂停状态是创建一个用于网络发送数据的
RTP 的 Session 同时指定其目标的 IP 地址和端口号，并启动接收 RTCP 的线程。通过
CNetSender的 SetDestination函数具体实现。

Stop函数：Filter转入停止状态时，通过 CNetSender::Destory来结束 RTP的会话。
SetPinKind函数：设置该 Filter的类型。具体实现要调用 InputPin中的 SetMediaKind
函数。

SetLocalPort函数：设置该 Filter发送 Sample时的所用的本地监听端口号。
SetDestination函数：其租用是设置远程地址和端口号。
5.3.1.3网络发送 Filter的实现
（1）网络发送 Input Pin的关键函数有:

z HRESULT CheckMediaType()：用于检查当前传输数据的数据格式，可以通过此
函数限制某些格式数据的传输。它有一个参数，是一个媒体类型对象的指针。

函数将依次将 Pin 所支持的媒体类型，与该媒体对象作比较，如果匹配的话，
则成功返回，如果没有一个匹配的，则返回错误。该函数实现代码如下：

HRESULT CNetSendInputPin::CheckMediaType (const CMediaType * inMediaType)
{
 if (inMediaType->formattype == FORMAT_VideoInfo ||
 inMediaType->formattype == FORMAT_WaveFormatEx)
 {

第五章 系统实现

 42

 return S_OK;
 }
 return E_FAIL;
}
z STDMETHODIMP Receive(IMediaSample *pSample)：该函数用于从上方的 Filter
接收 MediaSample。它有一个参数是一个 MediaSample 的指针。它的基本流程
是：输入 Pin与上一级 Filter的输出 Pin连接后，数据流会以 IMediaSample结
构 一 帧 一 帧 传 递 过 来 。 调 用 IMediaSample::GetPoint() 和
IMediaSample::GetActuallDataLength()两个函数分别得到这一帧的有效负载数
据和负载长度，最后调用 NetSend Filter的 SendPacket函数进行打包处理后发送
到网络上。该函数实现代码如下：

STDMETHODIMP CNetSendInputPin::Receive (IMediaSample *pSample)
{

 CAutoLock lck (&mReceiveLock);
 HRESULT hr = CRenderedInputPin::Receive (pSample);
 if (SUCCEEDED(hr))
 {
 //判断 Sample装的是否是媒体数据
 if (m_SampleProps.dwStreamId == AM_STREAM_MEDIA)
 {
 PBYTE pData;
 //从 Sample中得到数据指针，以及有效数据长度
 pSample->GetPointer(&pData);
 long length = pSample->GetActualDataLength();
 int bytes = 0;
 //调用 SendPacket函数
 ……
 }
 }
 return hr;
 }
（2）网络发送 Filter 最主要的函数 SendPacket的实现
网络发送 Filter最主要的功能就是把接收到的 MediaSample打包发送，而这功能由

Filter的 SendPacket函数来完成，其实最终就是由 CNetSender::SendPacket来完成。。首
先 NetSend Filter的输入 Pin接收经编码压缩后的音频、视频媒体实例（Sample），然后
调用 CheckMediaType()函数，进行媒体类型的检查，根据不同的媒体类型进行分片和
RTP封装之后，利用 NetSender对象的 SendPacket函数发送到网络。其发送基本流程如
图 5-11所示：

第五章 系统实现

 43

图 5-11 发送 Filter的数据发送流程图

Fig.5-11 Flow chart of network send filter

否

否

否

否

是

是

是

是

InputPin 接 收
Sample

Sample 是否是
媒体数据

根据 Sample属性
设置 RTP包头

Socket 连接
是否建立

媒体数据格式

是否已发送

发送一个包头

未发送数据长度是否小

于最大数据报长度

发送媒体数据

返回

发送格式信息

分片发送媒体数据，

直到全部发送完

第五章 系统实现

 44

我们把要发送的媒体数据先分片后发送，最大的报文长度可以根据用户的需求和网

络环境来定，本系统设定的最大包产故未 1400bytes，所有大于 1400bytes的包都采取分
片发送，所有分片的包都打上相同的时间戳，在接收端碰到相同的时间戳的 RTP包时进
行重组，对最后一个包会打上 Mark 标记作为表示。系统中视频和音频数据采用不同的
端口进行发送，但是视频和音频是同在一个 Graph内处理的，都采用相同的时间戳，以
保证他们在接收端能同步播放。
（3）RTP传输的实现

目前国外有很多组织或者个人，提供了一些开源的 RTP栈，如：GUNccRTP、RTPlib、
librtp、ortp和 JRTPLIB[35]等。本系统采用的是 JRTPLIB来实现 RTP传输。JRTPLIB是
一个用 C++语言实现 RTP 的开发源码库，目前己经可以运行在 Windows、Linux、
FreeBSD、Solaris、Unix和 Vxworks等多种操作系统上。用户可通过编译源码中提供的
库函数来实现 RTP/RTCP的网络传输。它提供了若干个建立 RTP应用的相关类，我们可
以很方便的根据库提供相关类的方法建立 RTP会话，发送 RTP包和 RTCP控制包，而
不用担心 SSRC的冲突。
具体实现过程如下：
1）初始化
在使用 JRTPLIB进行实时流媒体数据传输之前，首先需要对 RTP会话进行初始化，

生成一个 RTPSession类的实例，然后调用 Create()函数，来实现初始化操作。但此时函
数并未制定 RTP/RTCP的发送目标地址，由接下来的步骤完成。初始化实现的代码如下：

RTPSession session；
session.Create()；
如果 RTP 会话创建失败，Create()将会返回一个负数。JRTPLIB 采用了统一的错误
处理机制，它提供的所有函数如果返回负数就表明出现了某种形式的错误，而具体的出

错信息则可以通过调用 RTPGetErrorString()函数得到。RTPGetErrorString()函数将错误代
码作为参数传入，然后返回该错误代码所对应的错误信息。

2）缺省参数设置
在 RTPSeesion 类中有一些函数用于缺省参数的设置，一般包括负载类型、标识、
时间戳等。负载类型由 RTP传输的数据类型决定，在具体实现是，可以采用缺省的方式。
时间戳是 RTP 会话初始化过程所要进行的另一项重要工作，本系统通过调用的
SetTimeStampUnit()方法来实现的。

session.SetDefaultPayloadType();//负载类型设置
session.SetDefaultMark;//M标识
seesion.SetDaulutTimeStampIncrement();//时间戳
3）建立连接
当 RTP会话建立成功后，接下去就可以开始进行流媒体数据的实时传输了。首先获

第五章 系统实现

 45

取客户端的目标地址，RTP协议允许同以会话存在多个目标地址，具体实现可通过调用
RTPSession类的 AddDestination()来获取用户端的地址和端口号等信息。例如：

RTPIPv4Address rtpAddr (intIP, MACAST_PORT);
session.AddDestination (rtpAddr);
其中 RTPIPv4Adress 类的成员函数可以用来获取 IP 地址及端口好。通过以上步骤
后，服务器端就可以向客户端发送流媒体数据了。

4）数据发送
 通过调用 RPTSession类的 SendPacket()方法，可以向客户端发送需要的数据。实现
代码如下：

session.SendPacket ();
其中 SendPacket()是一个重载函数，它具有如下形式：

int SendPacket(void *data,int len)
int SendPacket(void *data,int len,unsigned char pt,bool mark, unsigned long

timestampinc)
第一个参数 data 是载荷，第二个参数是指明载荷的长度，再往后依次是 RTP 负载

类型、标识和时间戳量。这些参数通过刚才介绍的 SetDefaultPayloadType()、
SetDefaultMark()和 SetDefaultTimeStampIncrement()来获取。为 RTP会话设置这些默认参
数的好处是可以简化数据的发送，对于同一个 RTP会话来讲，负载类型、标识和时间戳
增量通常来讲都是相同的，JRTPLIB允许将它们设置为会话的默认参数。如果用于发送
的流媒体数据从缓存区读出，则调用函数：

seesion.SendPacket (buffer, bufsize)
5）控制信息
JRTPLIB是一个高度封装后的 RTP库，我们在使用它时很多时候并不用关心 RTCP

数据是如何被发送和接收的，因为这些都是可以由 JRTPLIB自己来完成的。只要会话建
立和数据发送成功，JRTPLIB就能够自动对到达的 RTCP数据报进行处理，并且还会在
需要的时候发送 RTCP数据报，从而能够确保整个 RTP会话过程的正确性。

6）会话结束
当客户端完成流媒体数据的接收或者服务器要结束对客户端数据的发送，通过

RTPSession类的 Destroy()就可以结束对话了。
session.Destroy ();

 这便是实现网络传输的主流程，核心代码如下：
#include<stdio.h>
#include<string.h>
#include"rtpsession.h"

void checkerror(int err);
int main(int argc,char **argv)
{

RTPSession session;

第五章 系统实现

 46

unsigned long destip;
int destport;
int portbase=6000;
int status,index;
char buffer[128];

if(argc!=3)
{

printf("Usage:./sender destip destport\\n");
return -1;

}

//获得接收端的 IP地址和端口号
destip=inet_addr(argv[1]);
if(destip==INADDR_NONE)
{

printf("Bad IP address specified.\\n");
return -1;

}
destip=ntohl(destip);
destport=atoi(argv[2]);

//创建 RTP会话
status=session.Create(portbase);
checkerror(status);

//指定 RTP数据接收端
status=session.AddDestination(destip,destport);
checkerror(status);

//设置 RTP会话默认参数

session.SetDefaultPayloadType(0);
session.SetDefaultMark(false);
session.SetDefaultTimeStampIncrement(10);

//发送流媒体数据
index=1;
do{

sprintf(buffer,"%d:RTP packet",index++);
session.SendPacket(buffer,strlen(buffer));
printf("Send packet!\\n");

}while(1);
return 0;

第五章 系统实现

 47

5.3.2 客户端网络接收的实现

5.3.2.1网络接收 Filter内部数据的流动
NetReceive Filter与NetSend Filter之间最大的区别就是NetReceive Filter需要自己实
现MediaSample的管理。这是由于这两个 Filter采用的是 PUSH的数据流动方式。在这
种数据流动方式中，都是由上方的 Filter提供 Allocator，并进行MediaSample的管理。
而 NetSend Filter 属于 Renderer Filter，它的下方已经没有 Filter 了，因此不需要提供
Allocator，也不需要管理MediaSample。而 NetReceive Filter通过 SamplePool实现类似
的功能。NetReceive Filter的功能就是将网络上接收到的 RTP包解包，对于同一个 Sample
的不同的包要进行重组，因此必须开辟一个缓存区去对这些包进行缓存。重组好 sample
后以“推”的模式传递到下一个 Filter。网络接收 Filter内部数据流动如图 5-12所示。

图 5-12 网络接收 Filter内部的数据流动

Fig.5-12 Date flow in network receive filter

5.3.2.2网络接收 Filter的设计
网络接收 Filter 的主要功能是接收网络的媒体数据，经过 RTP 的解包，将数据以

MediaSample的形式，传递给下方的 Filter。它位于 Graph的起点，属于 Source Filter。
这个 Filter 的功能实现主要通过三个类来实现。主要包括 CNetReceiveFilter 类，
CNetReceiver类和 CNetReceiveOutputPin类。其中主类是 CNetReceiveFilter类，它负责
整个流程的控制，其父类是 CBaseFilter。CNetReceiver类对应于发送端的 CNetSender，
它的主要功能是实现网络数据的接收，然后以 Sample 的形式“推”给下一级 Filter。
CNetReceiveOutputPin 类的主要作用是和下级的 Filter 进行媒体类型的协商，它的父类
是 CBaseOutputPin。接收 Filter的类图如图 5-13所示。

 NetReceive Filter

RTP队列 包缓冲区 封装成 Sample Output Pin Decoder

第五章 系统实现

 48

CBaseOutputPin CBaseFilter

CNetReceiveOutputPin
mPinKind

GetMediaType()
CheckMediaType()
DecideBufferSize()
InitAllocator()
SetMediaKind()

CNetReceiver
mSession

ThreadProc()
Activate()
PendReads()
AsyncCompletecallback()
ReadCompletion()
Stop()

CNetReceiveFilter
mOutputPin
mNetReceiver

SetPinkind()
SetDestination()
SetPort()
ProcessBuffer()
Pause()
Stop()

图 5-13 网络接收 Filter类图

Fig.5-13 Class diagram of network receive filter

下面对照主要类的类图对类的设计进行简单的阐述：
（1）CNetReceiveOutputPin类的设计
继承了 CBaseOutputPin基类，主要的功能是与下方的 Filter进行媒体类型的协商，
还有就是向下方传递MediaSample。所以它主要实现的函数就是两个：GetMdeiaType和
CheckMediaType。这两个函数的作用和发送端 CNetSendInputPin的两个函数的功能是一
样的，实现也基本类似。
向下方传递MediaSample的功能有另外的两个函数 InitAllocator和DecideBufferSize
来实现。OutputPin 向下方传递传递 MediaSample，本质就是向下方 Filter 提供管理
MediaSample访问的 Allocator（管理器）。InitAllocator函数的作用就是获取创建完毕的
NetRecevAllocator类的指针，实际的创建工作是由 Filter对象来创建的。DecideBufferSize
函数的作用是决定该 Pin使用的 Sample管理器 NetRecvAllocator的属性，如 Sample内
存大小、Sample的个数等等。
（2）CNetReceiver类的设计
CNetReceiver 的作用和 CNetSender 正好相反，它负责网络数据的接收，并将数据

封装成 Sample，发到下一级 Filter中。但是比起发送来，接收端的处理要复杂一些，它
是一个异步接收过程。

Activate函数，该函数作用是创建一个 RTP的 Session，并启动控制线程。这个控制

第五章 系统实现

 49

线程就是一个网络数据接收然后封装为 Sample并发送到下一级 Filter的反复过程。如果
线程启动失败，则销毁会话 Session。

Threadproc 函数，该函数是 NetRceciver 接收过程的主体，它没有参数和返回值。
该函数是一个无限循环，它的主要流程是不断调用 WaitForMultipleObjectsEX 等待时间
发生；如果接收到 Stop时间，就跳出循环；如果超时，就调用 PendReads函数获取 RTP
对列中的 RTP包。

PendReads 函数，该函数的作用是将 RTP 队列中的同一个 Sample 的包接收并存放
在一个 CBuffer类中，记录下它的时间戳。可能同时有多个线程正在运行该函数，因此
要加 Lock。

AsyncCompletionCallBack 函数，该函数是当前 PendReads 函数完毕时时的回调过
程。它的主要作用是在每次接受完网络数据到 CBuffer 后，设置实际得到的 CBuffer 的
长度，然后调用 ReadCompletion函数完成最后的“推”的工作。

ReadCompletion函数，该函数是一个网络数据接收请求完成的最后调用的函数，它
将接收到的 Sample的形式“推”给下一级 Filter 。具体的执行过程是：首先调用 PendReads
函数，进行新的接收，然后将 AsynCompleteCallBack中传递的要求处理的 buffer的指针
交给 Filter。由 Filter的 ProcessBuffer函数进行实际的“推”处理。

Stop函数，该函数主要作用是发出 EVENT_STOP消息，以结束接收网络数据和传
递的线程，并销毁 RTPSession。
（3）CNetReceiveFilter类的设计
CNetReceiveFilter 与 CNetSendFiter 相 同 ， 都 继 承 自 CBaseFilter 基 类 。

CNetReceiveFilte所需要重载的函数和 CNetSendFilter相同，这里不再多做描述。它另外
需要实现的一个重要成员函数是 ProcessBuffer，该函数的功能将接收到的网络数据以
Sample的形式“推”给下一级 Filter。主要流程是从 MediaSample池中去取出一个空闲
的 MediaSample，并用这个 MediaSample来包装进来的 CBuffer类型的缓存对象，包括
指定实际大小，打上时间戳等操作，然后调用 OutputPin 的 Deliver 函数，将这个
MediaSample传递给下一级的 Filter，最后释放这个MediaSample。

 除了上面几个主要的类之外，为了完成 Filter的网络接收和“推”数据到下一级的
Filter，程序自定义了几个工具类，如下：

CBuffer 自定义缓存类，封装了一定大小的内存，用于一块数据的读写，可以放到
缓存池中使用。

CBufferPool缓存池类，维护了一个包含一定数量的 CBuffer类型的缓存对象的双向
列表。这个列表中的每一个缓存对象都能被重用；外部调用者需要缓存时，从列表中取

出一个空闲的缓存对象，然后使用，使用完之后，将该缓存对象收回列表中，等待下一

次使用。
CMediaSample类，因为 DirectShow中以 Sample的形式来传递数据，所以要定义这

第五章 系统实现

 50

个类来包装 CBuffer类型的缓存对象，继承自 IMediaSample2。
CSamplePool 类，维护一个包含一定数量的 CMediaSample 类型的双向列表。列表
中的每一个 Sample对象都是可以重用的。

CNetRecvAlloc类，继承自 IMemAllocator，主要功能就是实现对 Sample的管理，
它是 DirectShow的标准设计，由于 CSamplePool中已经实现 Sample的管理功能，所以
主要是调用 CSamplePool进行实现。

5.3.2.3网络接收 Filter的实现
（1）Net Receive Output Pin上几个重要函数的实现：
z SetupMediaType（）：当 Socket上接收到视频格式数据后，重建输出 Pin上使用
的媒体类型，输出 Pin必须进行格式设置才能正常运行。该函数实现代码如下：

void CNetReceiveOutputPin::SetupMediaType(long inType, char * inFormat, long inLength)
{
 if (inType == PT_VideoMediaType)
 {
 mPreferredMt.SetType (&MEDIATYPE_Video);
 mPreferredMt.SetFormatType (&FORMAT_VideoInfo);
 // 判断得出媒体类型的子类型
 VIDEOINFOHEADER * pvi = (VIDEOINFOHEADER *) inFormat;
 const GUID subtype = GetBitmapSubtype(&pvi->bmiHeader);
 mPreferredMt.SetSubtype (&subtype);
 //修正图像帧大小

pvi->bmiHeader.biSizeImage =pvi->bmiHeader.biWidth*
 pvi->bmiHeader.biHeight*pvi->bmiHeader.bitBitCount/8;

 //设置格式数据
 mPreferredMt.SetFormat ((BYTE*) inFormat, inLength);
 mPreferredMt.SetSampleSize (pvi->bmiHeader.biSizeImage);
 }
 else //音频格式
 {
 mPreferredMt.SetType (&MEDIATYPE_Audio);
 mPreferredMt.SetSubtype (&MEDIASUBTYPE_PCM);
 mPreferredMt.SetFormatType (&FORMAT_WaveFormatEx);
 // 设置格式数据
 WAVEFORMATEX * wave = (WAVEFORMATEX *) inFormat;
 wave->nAvgBytesPerSec = wave->nSamplesPerSec * wave->nChannels
 * wave->wBitsPerSample / 8;
 mPreferredMt.SetFormat ((BYTE*) inFormat, inLength);
 mFilter->SetAudioBytesPerSecond(wave->nAvgBytesPerSec);
 }
 mPreferredMt.SetTemporalCompression (FALSE);
}

第五章 系统实现

 51

z CheckMediaType()：用于输出 Pin连接过程中媒体类型检查；实现代码如下：
HRESULT CNetReceiveOutputPin::CheckMediaType (const CMediaType *

inMediaType)
{

 if (*inMediaType == mPreferredMt)
 {
 return NOERROR;
 }
 return E_FAIL;

}
z DecideBufferSize()：决定输出 Pin上的 Sample属性，实现代码如下：
HRESULT CNetReceiveOutputPin::DecideBufferSize (IMemAllocator * pAlloc,

ALLOCATOR_PROPERTIES * pprop)
{
 ASSERT (pAlloc);
 ASSERT (pprop);
 HRESULT hr = NOERROR;

 // 决定 Sample的内存大小
 if (mPreferredMt.formattype == FORMAT_VideoInfo)
 {
 //如果是视频数据，则 Sample内存大小取值为图像帧大小
 VIDEOINFOHEADER * info = (VIDEOINFOHEADER *)
mPreferredMt.pbFormat;
 pprop->cbBuffer = info->bmiHeader.biSizeImage;
 }
 else
 {
 //如果是音频数据，则 Sample内存大小取值为 1秒钟的数据量大小
 WAVEFORMATEX * info = (WAVEFORMATEX *) mPreferredMt.pbFormat;
 pprop->cbBuffer = info->nAvgBytesPerSec;
 }
 pprop->cBuffers = 1;//使用 1个 Sample
 pprop->cbAlign = 1;//Sample数据按 1字节对齐

 ASSERT(pprop->cbBuffer);

 ALLOCATOR_PROPERTIES Actual;
 hr = pAlloc->SetProperties(pprop, &Actual);
 if (FAILED(hr))
 {
 return hr;
 }

第五章 系统实现

 52

 ASSERT (Actual.cBuffers == 1);

 if (pprop->cBuffers > Actual.cBuffers ||
 pprop->cbBuffer > Actual.cbBuffer)
 {
 return E_FAIL;
 }
 return NOERROR;
}
z GetMediaType()：得出输出 Pin上推荐使用的媒体类型，实现代码如下：
HRESULT CNetOutPin::GetMediaType (int iPosition, CMediaType *pMediaType)
{

 if (iPosition == 0)
 {
 *pMediaType = mPreferredMt;
 return NOERROR;

 }
 return E_INVALIDARG;

}
其中对 CheckMediaType()函数和 GetMediaType()函数都做了特殊定义，只接收指定
媒体类型的解码器的连接。
（2）Net Receiver上重要函数的实现
z AsyncCompletionCallBack ()：用来得到 Pin上一个空闲的 Sample的数据内存地
址，具体实现代码如下：

BOOL CNetReceiver:: AsyncCompletionCallBack (PBYTE * outBuffer)
{
 //将没有释放的 Sample先释放掉
 if (mSample)
 {
 mSample->Release();
 mSample = NULL;
 }
 //在输出 Pin上得到一个新的空闲的 Sample
 HRESULT hr = mOutPin->GetDeliveryBuffer (&mSample,NULL,NULL,0);
 if (mSample)
 {
 //得到 Sample的数据内存地址
 mSample->GetPointer(outBuffer);
 }
 return SUCCEEDED(hr);
}

第五章 系统实现

 53

z ReadCompletion ()函数：将填好的数据的 Sample 发送给下一级 Filter。实现代
码如下：

BOOL CNetReceiver:: ReadCompletion (long inSampleSize)
{
 if (mSample)
 {
 //设置 Sample上的属性
 mSample->SetActualDataLength(inSampleSize);
 mSample->SetSyncPoint(TRUE);
 if (mIsVideo)
 {
 // 如果是视频帧，不使用时间戳（以最快速度播放）
 mSample->SetTime(NULL, NULL);
 }
 else
 {
 //以音频数据计算时间戳
 REFERENCE_TIME rtStart = mLastSampleTime;

mLastSampleTime += (UNITS * inSampleSize / mAudioBytesPerSecond);
 REFERENCE_TIME rtEnd = mLastSampleTime;

//给 Sample打上时间戳
 mSample->SetTime(&rtStart, &rtEnd);
 }
 //将 Sample传送下去
 HRESULT hr = mOutPin->Deliver (mSample);
 //释放 Sample（让它回到空闲列表中去等候下一次使用）
 mSample->Release();
 mSample = NULL;
 return SUCCEEDED(hr);
 }
 return TRUE;
}
（3）Net Receiver Filter上重要函数的实现
Net Receiver Filter关键函数有：
z CBasePin *GetPin()：用于返回 Net Receiver Filter的输出 Pin，在连接各个 Filter
时将会用到，具体代码如下：

 CBasePin * CFilterNetReceiver::GetPin(int n)
{

 if (n == 0)
 {
 return mOutPin;
 }

第五章 系统实现

 54

 else
 {
 return NULL;
 }

}
z SetAudioBytesPer()：用于设置音频每秒的数据量，在给音频 Sample 打时间戳
的时候用于就是时间戳。实现代码如下：

void CFilterNetReceiver::SetAudioBytesPerSecond(long inBytes)
{
 mAudioBytesPerSecond = inBytes;
}
z 公共函数 SetupMediaType()：根据从网络上接收到的格式数据重建输出 Pin 上
使用媒体类型，实现代码如下：

void CNetReceiveFilter::SetupMediaType(long inType, char * inFormat, long
inLength)
{
 //判断将要接收的是视频数据还是音频数据
 if (inType == PT_VideoMediaType)
 {
 mIsVideo = TRUE;
 }
 else
 {
 mIsVideo = FALSE;
 }
//为输出 Pin重建媒体类型

 mOutputPin->SetupMediaType(inType, inFormat, inLength);
 // At last, notify the controller to build filter graph and running
 Broadcast(msg_MediaTypeReceived, &mIsVideo);
}
（4）数据接收过程的实现
网络接收 Filter 需要使用独立的线程进行网络数据的接收，此功能在 Net Receiver
中实现，数据接收流程如图 5-14所示。

第五章 系统实现

 55

图 5-14 网络接收 Filter数据接收流程图

Fig.5-14 Flow chart of network receive filter

与服务器端 RTP 数据传输的实现相对应，在客户端的数据接收也是通过调用
JRTPLIB 库的函数来实现。在此具体的网络数据异步接收的功能是在 PendReads()函数
中实现，具体的流程图如图 5-15所示。

否

是

超时

Stop

创建 RTP会话

ThreadProc控制线程 销毁会话

接收 RTP包

得到输出 Pin的空
闲 Sample地址

等待 100ms

接收数据到 Sample直到
达到指定媒体数据长度

 封装 Sample
设置 Sample属性

设置数据属性

将 Sample“推”给下一级 Filter

第五章 系统实现

 56

图 5-15 PendReads函数实现的流程图

Fig.5-15 Flow chart of PendReads function

首先调用RTPSession类的PollData()函数来接受发送过来的RTP或者RTCP数据报。
接下来调用RTPSession类的GotoFirstSourceWithData()和GotoNextSourceWithData()来判
断 RTP数据源是否到达。从 RTP会话中检测出有效的数据源之后，调用 RTPSession类
的 GetNextPacket()函数抽取 RTP 数据报，当接收到的 RTP 数据报处理完之后，需要及
时释放缓存区空间。对接收到的 RTP数据报进行处理的过程实现代码如下：

session.pollData ();
if(session.GotoFirstSourceWithData())
{ do

{
RTPPacket *pack;
pack=session.GetNextPacket();
delete pack;
}

While (sess.GotoNextSourceWithData());
}

到此，网络发送 Filter和接收 Fiter都构建完毕，将这两个 Filter分别加入到服务器端和
客户端的 Filter Graph中去便可实现网络发送和网络接收的传输功能。

是

是

否

否

PollData()

GotoFirstSource
WithData（）

GetNextPacket()
是否还有 RTP数据报

GetBuffer

把 Packet数据写入 Buffer

结束

第五章 系统实现

 57

5.4 客户端软件实现

5.4.1 数据解压模块的实现

 该模块的实现和服务器端的压缩模块相对应。视频数据解压采用 XviD MPEG-4
Decoder解码器实现，音频数据解压采用MP3解码器实现，它们的创建和使用方法与其
对应的编码器相同，在 5.2.4和 5.2.4节中详细介绍过了，这里就不再累述。这两个解码
器 Filter分别如图 5-16、5-17所示。

图 5-16 视频解压 Filter 图 5-17 音频解压 Filter

Fig.5-16 Video decompression filter Fig.5-17 Audio decompression filter

5.4.2 音视频显示模块

主要通过 Video Render Filter和 Audio Render Filter实现，它们位于 DirectShow Filter
目录下，CLSID分别为 CLSID_VideoRenderer和 CLSID_AudioRenderer。将解压缩后的
数据传入它们的输入 Pin就可以显示了。

5.4.3 抓图模块的实现

客户端在显示的同时可实现即时抓图功能，实现方法是使用 Filter Graph Manager
上的 IBasicVideo接口，只要调用这个接口的 GetCurrentImage函数就可以将当前帧抓下
来，保存为静态的 BMP文件。主要核心代码如下：

BOOL CDXGraph::GetCurrentImage (const char *inFile)
{

//mBasicVideo为 Filter Graph Manager上获得 IBaseVideo接口对象指针
if(!mBasicVideo)
{

 return FALSE;
}
long bitmapSize=0;
//返回读取一帧需要的缓存大小
if (SUCCEEDED(mBasicVideo->GetCurrentImage(&bitmapSize, 0)))
{

 BOOL pass=FALSE;
//申请足够大的缓存用于装载图象数据
BYTE *buffer=new BYTE [bitmapSize];

第五章 系统实现

 58

//返回图像数据（包括 BMP信息头）
if(SUCCEEDED(mBasicVideo->GetCurrentImage(&bitmapSize,(long*)buffer)))
{

 BITMAPFILEHEADER hdr; //BMP文件头
 LPBITMAPINFOHEADER lpbi; //BMP信息头指针
 Lpbi=(LPBITMAPINFOHEADER)buffer;
 Int nColors=1<<lpbi->biBitCount; //颜色数
 //如果颜色数超过 256，则该图像不使用调色板
 if(nColors>256)
 {
 nColors=0;
 }
 //初始化 BMP文件头
 hdr. bfType=((WORD)(‘M’<<8)| ‘B’);//always is “BM”

hdr. bfSize=bitmapSize+sizeof(hdr);
hdr. bfReservedl=0;
hdr. bfReserved2=0;
hdr. bfOffBits=(DWORD) (sizeof(BITMAPFILEHEADER)+

 lpbi->biSize +nColors*sizeof (RGBQUAD));
 //保存为一个 BMP文件

CFile bmpFile (inFile, CFile:: modeReadWrite| CFile::modeCreate
|CFile:: typeBinary);

bmpFile.Write (&hdr, sizeof (BITMAPFILEHEADER)):
bmpFile.Write (buffer, bitmapSize);
bmpFile. Close ();
pass=TRUE:

}
delete[] buffer;
return pass;

}
return TRUE;

 }

5.4.4 视音频录像模块的实现

该模块实现客户端以 MPEG-4 保存视频数据，MP3 保存音频数据，文件格式保存
AVI。用户可以在专门的回放窗口中观看录像文件，也可以通过Windows Media Player
直接播放。写入文件的过程如 5.2.5节中所述。

5.4.5 回放模块的实现

要在系统中回放一个录像文件，需要创建专门的回放 Filter Graph，如图 5-18所示。
在 Filter Graph中要加入MPEG-4解压缩 Filter和MP3解压缩 Filter ，数据经解压缩后，
传递到 Video Renderer Filter和 Audio Renderer Filter进行播放。

第五章 系统实现

 59

图 5-18 文件回放的 Filter Graph

Fig.5-18 Filter graph of file playback

回放录像的播放器界面如图 5-19所示。通过“打开”按钮，可以调入多媒体文件，
“播放”、“暂停”、“停止”按钮分别控制媒体文件的播放、暂停和停止。“抓图”用于

抓取播放过程中的当前图像帧，并保存为本地 BMP文件。“全屏”用于媒体文件的全屏
播放，Esc或 Enter键可以使视频回复到正常模式。下面简单介绍播放器的开发过程。

图 5-19 基于 DirectShow的回放播放器

Fig.5-19 Playback player based on DirectShow

首先，编辑播放器界面并将它封装成类 PLAY,在 PLAY.h中定义一个 CStatic类型的
视频窗口控制对象 mVideoWindow1。为了让视频窗口正常刷新，还需要修改视频窗口
的风格，即在 PLAY.cpp 的初始化函数 OnInitDialog 中增加如下函数调用：
mVideoWindow1.ModifyStyle (0,WS_CLIPCHILDREN);
然后，添加对话框的WM_ERASEBKGND消息相应，代码如下：

第五章 系统实现

 60

BOOL PLAY::OnEraseBkgne (CDC* pDC)
{
 CRect rc;
 mVideWindow1.GetWindowRect(&rc);//获取播放窗口的屏幕坐标
 ScreenToClient(&rc);//将播放窗口的屏幕坐标转化为客户区坐标
 pDC->ExcludeClipRect(&rc);//调整图像大小以适应播放窗口大小
 return CDialog::OnEraseBkgnd(pDC);

//调用积累 CDialog的缺省处理函数处理WM_ERASEBKGND消息
}
我们将 Filter Graph的各种相关操作，包括 Filter Graph Manager的创建。其上各种
控制接口的实现等封装成类 CDXGraph，并在 PLAY.h中定义一个 CDXGraph类型的指
针 mFilterGraph。之后，根据用户选择的源文件，创建相应的回放 Filter Graph，核心代
码如下：

void PLAY::CreateGraph(void)
{

//创建新的 Filter Graph
 DestroyGraph ();

mFilterGraph=new CDXGraph():
if(mFilterGraph->Create())
{

mFilterGraph->RenderFile(mSourceFile);
mFilterGraph->SetDisplayWindow(mVideoWindowl. GetSafeHwnd()):
mFilterGraph->SetNotifyWindow(this->GetSafeHwnd());
mFilterGraph->Pause();

}
}
最后，编写处理 Filter Graph 事件的代码。定义一个消息映射，并在头文件中声明
消息相应函数。然后，在 cpp文件中添加处理代码：

LRESULT PLAY::OnGraphNotify (WPARAM inWParam, LPARAM inLParam)
{

IMediaEventEx *pEvent=NULL;
if(mFilterGraph&&(pEvent=mFilterGraph->GetEventHandle()))
{

LONG eventCode=0, eventParaml=0, eventParam2=0;
whi1e(SUCCEEDED(pEvent->GetEvent(&eventCode,&eventParaml ，

&eventParam2, 0)))
 {
 pEvent->FreeEventParams(eventCode,eventParaml,eventParam2);

switch (eventCode)
{
case EC_COMPLETE:

 OnButtonPause ();

第五章 系统实现

 61

mFilterGraph一>SetCurrentPosition(0);
break;

case EC_USERABORT:
case EC_ERRORABOUT:

 OnButtonStop ();
 break;

default:
 break;

}
}

}
return 0;

}
进度条的实现依赖 Filter Graph Manager上的 IMediaSeeking接口。通过一个定时器，
不断调用 IMediaSeeking::GetCurrentPosition接口方法来获取当前的播放事件，然后根据
媒体的总时间长度，计算进度的百分比，并转化为进度控件的当前位置，然后通过调用

CsliderCtrl::SetPos函数设置游标。
“播放”、“暂停”、“停止”按钮的事件代码中，分别调用了 CDXGraph 类的 Run()、

Pause()、Stop()函数，实现代码如下：
¾ 暂停功能

void CGraPhBase::Pause()
{
m_pMediaControl->Pause ();
m_pMediaControl->StopWhenReady ();
}

¾ 停止功能
void CGraphBase::Stop()
{
m_pMediaControl->Stop ();
m_pMediaControl->StopWhenReady ();
}

¾ 播放功能
void CDxVideoGraphBase::play()
{
m_pMediaControl->Run ();
}

5.5 本章小结

作为本论文的重点，本章完整地给出了 C/S结构下服务器端和客户端各模块功能的

详细实现过程，以及网络传输的发送滤波器和接收滤波器的实现方法。到此也完成了整

个系统的实现工作，对服务器端和客户端软件的运行界面和测试结果如下章所示。

第六章 系统的调试与运行

 62

第六章 系统的调试与运行

6.1 服务器端软件调试及运行界面

运行服务器端软件的计算机需要安装 DirectX9.0，外接 USB摄像头，摄像头连入计
算机后，系统启动是自动查找采集设备，服务器端界面如图 6-1所示：

图 6-1 服务器运行界面

Fig.6-1 Server running interface

界面上设计了两个下拉列表，用来列举视频和音频设备，并设计了“视频设置”和

“音频设置”两个按钮，前者用以跳出视频采集属性页，对视频采集参数进行设置，后

者用以调出音频采集属性页，对音频采集参数进行设置。当按下“预览”按钮便开始显

示视频画面，录像文件的路径为 C:\，文件名为：sample.avi。”“退出系统”按钮用于
释放资源，结束系统的运行。

第六章 系统的调试与运行

 63

6.2 客户端软件调试及运行界面

运行客户端软件的计算机没有 XviD解码器和MP3解码器则需要用户手动安装，所
以客户端计算机最好也安装 DirectX9.0。客户端运行的界面如图 6-2所示：

图 6-2 客户端运行界面

Fig.6-2 Client running interface

当按下“呼叫连接”按钮时会出现 IP地址连接窗口，用以输入服务器主机的 IP地
址，连接到指定的服务器主机上后，便可以接收视音频数据。“视频调节”按钮可以对

接收画面进行参数调节以适合最佳效果观看，“音频调节”按钮则可以对接收声音调节大
小。按下“开始录像”可将多媒体文件保存到指定的文件中，供回放时观看。当按下“抓

图”按钮时系统可把当前帧保存为位图文件。
系统的测试主要在研究所局域网（10M）中完成，其中 1台 PC作为服务器，连接
一个 USB摄像头，2台 PC作为客户机，获取前段视频流，对系统的各个功能进行了详
细的测试，均达到了设计要求，服务器端视频采集功能正常，画面清晰，客户端连接和

断开服务器功能正常，画面显示连贯清晰，延时小于 1秒。

第七章 总结与展望

 64

第七章 总结与展望

7.1 总结

本文研究和实现了基于流媒体技术的网络视频监控系统，通过对流媒体相关技术的

研究和深入剖析 DirectShow框架和机制，结合对监控系统整体构架了解的基础上，提出
了系统的总体框架设计，并通过软件方式实现了网络视频监视系统的功能。重点完成了

监控系统中服务器端和客户端软件各功能模块的实现，以及多媒体数据网络传输功能。
视频音频流的实时传输是目前多媒体领域的研究热点，DirectShow以其灵活，高效
的特点受到普遍关注，但完全运用 DirectShow方法成功开发的远程监控软件并不多见。
随着通讯网络宽带业务的拓展，网络传输能力将得到更进一步提高，网络服务质量也将

得到有效的保证。原来依赖于硬件处理的编解码方式逐渐向软件转化方向发展，多媒体

信息的大量采用将会使流媒体技术越来越多的应用于视频、音频传输系统中。
但目前在众多的多媒体音视频传输软件中，开发方法不规范，可重用性差一直是影

响整个系统性能的主要因素。在本文的实践中，主要对以下方面进行了研究和开发：
（1）研究了视频监控技术理论体系，分析了流媒体技术的基本原理，并简要说明
流媒体技术的出现对网络视频监控技术带来的技术革新。对流媒体技术应用于视频监控

系统中的可行性进行了分析。
（2）在搭建系统前，详细分析了开发平台 DirectShow，从 DirectShow的结构、工
作原理、工作流程以及其内部实现机制进行了深入的分析和阐述，最后介绍了如何利用

DirectShow开发应用程序。
（3）选用了 Visual C++6.0作为开发平台，运用微软的 DirectShow技术对视音频数

据采集、压缩、解压、回放等功能进行开发编程，实现了服务器端和客户端软件的功能。
（4）重点研究了与系统网络传输模块相关的网络通信技术，并完成了网络传输模
块的软件结构设计，通过开发网络发送 Filter 和网络接收 Filter 实现了服务器端网络发
送和客户端网络接收功能。
（5）系统完成了局域网中的测试，取得了较好的效果，图像连贯，无明显马赛克，
延时较小，满足了用户的需求。
随着社会的进步和技术的发展，视频监控技术总体上是朝着数字化、网络化以及功

能综合化的方向发展，流媒体技术的兴起给网络视频监控技术的发展带来了新的契机。

本论文是面向流媒体技术应用于网络监控领域的研究，由于时间仓促，且个人能力有限，

对这一前沿技术研究的不够深入，设计的系统也只是在功能上进行了实现，一定存在许

多需要改进和补充的地方。同时，围绕着本课题相关技术，今后仍然有许多可以值得研

第七章 总结与展望

 65

究的工作可做：
（1）由于时间短暂，用户界面功能还不够完善，不能完全满足监控系统的要求，
有待进一步完善，如增加多画面同时监控、动态报警等，以适合各种监视场合的需求。
（2）在设计过程中没有考虑安全性问题，任何安装了客户端软件的用户均可接收
实时视频数据，在服务器端没有进行客户验证。
（3）因为是模拟的系统实现，没有对界面精雕细琢，也没有能在广域网上测试。
如要作为推向市场的产品，还需在界面以及向广域网上拓展方面下一定的功夫。比如开

发基于 B/S模式下的客户端软件，从网页浏览和控制监控地点等。

7.2 展望

视频监控是目前国内外的一个热点研究领域，进入二十一世纪以来，数字化、网络

化的步伐逐步加快，社会对监控领域的需求范围不断扩大，对监控系统本身的交互性、

高效性、灵活性、安全性及稳定性也必然会提出更高的要求。然而随着技术的发展，视

频监控技术并不只依靠计算机技术，而更多地是结合多媒体技术、网络通信技术、数字

压缩技术、图像识别技术、流媒体技术等先进的技术，使得视频监控系统发展前景更为

广阔。
本论文开发的小型网络监控系统，在实际的应用中，只需在现场安装一个摄像头，

在企业的网络上应用本系统就能很方便的实现视频监控功能，对于那些不想在资金上投

资很多，又想实现监控功能的企业来说，不失为一种很好的选择。虽然还有些监控功能

没有实现，但是已经实现的这些功能是监控系统中的重要部分，该系统完善后的发展前

景十分可观。

致谢

 66

致谢

在此，向我的导师陈剑云教授表示衷心的感谢!本文从开题到完成都得到了陈老师

悉心的指点。在攻读硕士的三年里，陈老师对我的指点使我受益匪浅。如果没有陈老师

的帮助和教导，我无法取得新的进步，也无法完成硕士研究生的学业。

感谢研究所的各位老师，在我的研究生学习期间给予我无私的帮助和关怀，忠心地

感谢他们！

感谢我的同学和朋友，陪伴我度过开心的研究生生活，在工作和学习生活中给予我

大量的帮助和支持，在此向她们表示深深的谢意!

特别感谢我的父母和家人，他们对我的关心、鼓励和支持是我不断前进的动力!

最后，忠心地感谢在百忙之中为本论文评阅和参加答辩的各位老师！

参考文献

 67

参考文献

[1] 刘富强. 数字视频监控系统开发及应用[M]. 北京: 机械工业出版社, 2003.

[2] 张翔等. 基于 IP视频监控应用的 H.264视频压缩[J]. 工业控制计算机, 2003, Vol.16(12): 53-56.
[3] 潘勇强译. H.264编码和基于 H.264的移动服务[OL]. http://www.wx800.com, 2004-07.
[4] 吴辉. 基于嵌入式 DVR/DVS的网络视频监控系统的研究与实现[D].南昌: 华东交通大学, 2005.
[5] 胡志刚. 基于移动通信网络的视频监控系统设计与实现[D]. 长沙: 国防科技大学, 2006.

[6] 吴国勇, 邱学刚，万燕仔.网络视频流媒体技术与应用[M]. 北京: 北京邮电大学出版社, 2001.

[7] 托匹克著, 孔英会译.流媒体技术及商机揭秘[M]. 北京: 电子工业出版社, 2004.

[8] 李炳林. 流媒体技术及应用[J]. 电力系统自动化, 2001:68-71.
[9] 于广. 基于 DirectShow的流媒体组件技术的研究与应用[D]. 广州: 华南理工大学, 2003.

[10] 杨嫚, 朱红.流媒体的发展现状及趋势[J]. 情报科学, 2003，Vol.21(12): 1246-1248.

[11] 袁尧. 基于流媒体传输的视频监控平台的研究[D]. 北京: 北方交通大学, 2006.

[12] 宋刚, 杨显富. 实时流媒体传输及其协议[J]. 成都大学学报(自然科学版), 2005(3).

[13] 钟玉琢, 向哲, 沈红. 流媒体和视频服务器[M]. 北京: 清华大学出版社, 2003.

[14] 张丽. 流媒体技术大全（第一版）[M]. 北京: 中国青年出版社, 2001.

[15] H.Schulzrinne et al. RTP: A Transport Protocol for Real-time Application[S]. IETF Audio/Video
Transport Working Group, RFC 1889, 1996-01.

[16] H.Schulzrinne. RTP Profile for Audio and Video Conference with Minimal Control[S]. Internet ,RFC
1890, 1996(l).

[17] RFC 2326 Real-Time Steaming Protocol (RTSP) [S]. 1998.
[18] Microsoft DirectX9 online document[EB/OL]. http://msdn.microsoft.com.

[19] Microsoft DirectX9.0 SDK. Microsoft Corporation. 2004

[20] 陆其明. DirectShow开发指南[M]. 北京: 清华大学出版社, 2001.

[21] 陆其明. DirectShow实务精选[M]. 北京: 北京科海电子出版社, 2003.

[22] 潘爱民. COM原理与应用[M]. 北京: 清华大学出版社, 1999, 11: 11-14

[23] 袁红亮. 基于 DirectShow的流媒体实时传输的研究与实现[D]. 大连: 大连理工大学, 2005.

[24] 刘忠贤. 基于流媒体的网络监视系统的设计与实现[D]. 西安: 西安电子科技大学, 2005.

[25] 张熙.基于 DirectShow和 RTP的网络视频监控系统设计与开发[D].四川: 西南交通大学，2006.

[26] 张永刚. 西变厂网络视频监控系统设计中的流媒体传输技术及应用[D].西安: 长安大学，2006

[27] 汪理虎.基于流媒体的网络视频监控技术研究与系统实现[D].南京: 南京航空航天大学，2006.

[28] 宋智. 基于流媒体的网络视频监控系统研究与实现[J]. 现代电子技术, 2006(08): 66-70.

[29] 四维科技等. Visual C++视频/音频开发实用工程案例精选[M]. 北京: 人民邮电出版社,2004.

[30] 汪晓平等. Visual C++网络通信协议分析与应用实现[M]. 北京: 人民邮电出版社, 2003

[31] 许先斌等. 运用 RTP协议实时传输 MPEG-4流[J]. 计算机工程与设计, 2003(2): 57-59

[32] 赵进等基于 RTP协议族的流媒体系统设计和实现[J]. 计算机工程, 2005(l): 195-197

[33] 刘毓敏, 李剑琴, 姚彬. 数字视音频技术开发与应用[M]. 北京: 国防工业出版社, 2003.

[34] 李燕灵, 马瑞芳, 左力. 基于 RTP/RTCP 的实时视频数据传输模型及实现[J]. 微电子学与计

算机, 2005, Vol.22(8): 138-140.

参考文献

 68

[35] http://research.edm.uhasselt.be/~jori/page/index.php?n=CS.Jrtplib.
[36] D.Wu, Y.T.Hou, W.Zhu.Streaming Video over the Internet: Approaches and Directions [J]. IEEE

Transactions on Circuits and Systems for video Technology, March 2001, VOl.11 (13): 282-300.
[37] R.Leonardi. Intermedia synchronization for video conference over IP [J]. Image Communication 1999

(15):149-164.
[38] GoaYujni, Shi Feng, Zhang Yansu. Adaptive DirectShow Franework for Layer MPEG-4 Video

Multicast [J]. Journal of Beijing Institute of Technology, 2003, Vol (12): 114-119
[39] C. Sacchi, F. Granelli & C. S. Regazzoni, A post-processing algorithm for performance enhancement

of remote video-based monitoring systems [J]. IEEE, 1999:351-356.
[40] Michael Greiffnhagen, Dorin Comaniciu, Heinrich niemann and Visvanathan Ramesh, Design,

analysis, and engineering of video monitoring systems, an approach and a case study [J]. Proceedings
of the IEEE, 2001, Vol.89(10):1498-1517.

[41] Chao Huang, Jintao Li and Hongzhou Shi, An intelligent streaming media video service system [J].
IEEE, 2002:5-10.

[42] Damien Stolarz, Peer-to-peer streaming media delivery [J]. IEEE, 2002:48-52.
[43] Yuka Kato, DongMei Jiang and Katsuya Hakozaki, A proposal of a streaming video system adapting

to various system environments and its implementation [J]. IEEE, 2004.
[44] Tetsuya Oh-ishi, Koji Sakai, Kazuhiro Kikuma and Akira Kurokawa, Study of the relationship

between peer-to-peer systems and IP multicasting [J]. IEEE Communications Magazine, 2003:80-84.
[45] Zhaoyu Liu, Dichao Peng, Yuliang Zheng and Jeffrey Liu, Communication protection in IP-based

video surveillance systems [J]. IEEE Computer Society, 2005.
[46] Lei Guo, Songqing Chen and Xiaodong Zhang, Design and evaluation of a scalable and reliable p2p

assisted proxy for on-demand streaming media delivery [J], IEEE Computer Society, 2006:669-682.
[47] Jun Wang, Wei-Qi Yan, Mohan S.Kankanhalli, Ramesh Jain and Marcel J. T. Reinders, Adaptive

monitoring for video surveillance [J]. IEEE, 2003:1139-1143.

个人简历 在读期间发表的学术论文

 69

个人简历 在读期间发表的学术论文

个人简历：

姜琴，女，1982年 11月生。

2004年 7月毕业于华东交通大学通信工程专业，获学士学位。

2005年 9月入华东交通大学读硕士研究生。

已发表论文：

[1] 姜琴，陈剑云.基于 CDMA的变电站移动视频监控系统的设计[J].工业控制计算机，2008，第 4

期；

[2] 姜琴，王林，马勇.基于 P2P技术的流媒体转发服务器的设计与实现[J]. 计算机系统应用，2008，

4：p90-92；

[3] 马勇, 姜琴等. 基于禁忌搜索遗传算法的 PMU布点配置[J]. 继电器, 2008, Vol. 36(2):

21-25.

	封面
	文摘
	英文文摘
	声明
	第一章 绪论
	第二章 流媒体相关技术介绍
	第三章 DirectShow 的分析与研究
	第四章 系统结构设计
	第五章 系统实现
	第六章 系统的调试与运行
	第七章 总结与展望
	致谢
	参考文献
	个人简历在读期间发表的学术论文

