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The comprehensive evaluation of working state and research of

multiparameter non-impact theory on drilling pump valve

ABSTRACT

In order to study the failure mechanism of a drilling pump valve and
extend its service life, a research has been done on both the impact fatigue
wear caused by the valve closure and the erosion wear in flow field of the
valve play. (1)A simplified mathematical model describing the closing stage of
valve disk is put forward, so the motion characteristic of valve disk is
analyzed truly. A FEA dynamic model of impact process is presented based on
the working condition of drilling pump valve, and the impact characteristic of
the valve is analyzed. A modified structure is presented which can effectively
alleviate the stress concentration and extend the service life.The mechanical
characteristic and effect degree of the maximum stress concentration spot
when the impact of pump valve happens are mainly studied, hence a
non-impact working condition of drilling pump valve based on the effects of
stress concentration is put forward. (2)The distributed rule of the flow velocity
of the slurry at a certain moment is shown with the CFD simulation; with the
designed experimental model, PIV technology is employed to measure the
flow field distribution of the valve play in the model, and maps of velocity and

vorticity of different valve angles and different disc height is obtained, from
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which the distribution features of flow fields can be concluded, and a general
rule of the flow velocity variation with valve angles and disc height is
summarized through chart analysis of maximum velocities and mean
velocities. Plenty of experiments are conducted respectively with hollow glass
beads and fluorescent particles, and especially influence of the optical
reflection at the boundary of the channel is weakened significantly by using
fluorescent particles, which enriches and completes this PIV experiment.
Furthermore, combining tribological theories, an analysis is made on the
failure mechanism that erosion and abrasion in the working valve play may
induce the valve failure. With all theses studies, completing of valve design

and extending of service life can finally be theoretically supported.

KEY WORDS: failure mechanism; the impact characteristic of pump valve;
non-impact working condition; The flow field characteristic

of valve play; PIV
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Fig.2-1 Structure of pump valve
1 —fluid cylinder; 2 —valve seat; 3 —valve disk; 4 . 8 —seal ring;

5 —spring; 6—sleeve; 7—nut; 9 —guide bar
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Fig.2-2 Working principle of pump valve
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Fig.2-4 Taylor series expansion of h
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Fig.2-6 Program flow of MATLAB
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Fig.2-9 Llift curve of 30° valve disk
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Fig.2-13 Llift curve of 60° valve disk
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Table 2-1 Closing velocities for valve disk of various cone angle

BAH (B  HRERE K  WHERELER OB  XHEEE Ck/B)
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Fig.3-1 Element of two-dimensional contact pair
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Fig.3-2 Gridding for impact process model of pump valve
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Fig.3-3 Impact equivalent stress of 45° valve
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Fig.3-4 Surface morphology at initial failure stage of drilling pump valve
(a)Overall perspective of valve disk  (b) Enlarged drawing of region A
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Fig.3-5 Surface morphology at middle failure stage of drilling pump valve
(a)Overall perspective of valve disk  (b) Enlarged drawing of region A
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Fig.3-6 Surface morphology at overall tearing stage of drilling pump valve
(a)Overall perspective of valve disk  (b) Enlarged drawing of region A
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T 13BN FIHE S pp e B DR YE R W, A SCEEUVHE A 20 5710 0 30° . 35°. 60°FY
HERBEAT B ORI A BE RO IR AR A TR T ELAR AN ) o AR £ BEHE AR R % ok
BRIV AR & N 3-1, TSR IAE 3-7~3-8,

2 3-1 7RIF) f O 08 R e i R R R0 6 2
Table 3-1 Initial conditions for valve's impact of various cone angle

HEM (BD Mg Ok s EE Ok
30 21.6856 27976.91
35 20.1900 29523.46
45 19.3676 33476.65
60 17.5889 44177.89
: HODAL SOLUTION AN
STEP=1
suB =12

TIME=.285E-04
SEQV (AVG)
DMX =.492E-03
o =.213E+08
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B 3-7 30° HE b it B h
Fig.3-7 Impact equivalent stress of 30° valve
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Fig.3-8 Impact equivalent stress of 35° valve
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Fig.3-9 Impact equivalent stress of 60° valve
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Table 3-2 The maximum equivalent stresses at valve's impact interface of various cone angle

i3 ) BRERNA ()

30 0.246x 10'°
35 0.241x 10"
45 0.227x 10"

60 0.214x10"
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Fig.3-10 Structure of pump valve disk before and after improvment

(a) Before improvment (b) After improvment
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SEXPE R R R AR E, TN ARTERAMSHRRE T TE
54 E T U 2R IR v o e R R R PR R Ak b 7 A N R AL R N K R KA
B, FHRW—ANFEE T TR N KT .

4.3.1 RAMHEREHEPKEZR

FERE, FERREMEFERER (4-1) T o 2PN, BhTHERS
W ERRE, REELHFRETNAIHAE, BRIr=ENAEP, TR RHLIEF
BN O . AIEESR T RKERE R HERN WA, RESHR4ST RN
G A RLlE LA, AERTHEREREMMEHEMET, WERERMpEERE
M) SRR, DABTE R KR A B E AR B XA RS RE )
HI A ZIB A HIEE (193676 m-s7') FIMEE (33476.65m-s2) {EREFNIL %
., FH ANSYS SREETE, B2 45T R HERNSE.
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HODAL SOLUTION M

STEP=1

SUB =11

TIME=.300E-04
SEQV (AVG)
DX =.487E-03
SMN =.273E+08
SMX = 227E410

3 i e e ]
.273E8408 . 526E+09 -10ZE+10 -15ZE+10 .20ZE+10
.277E409 . 7758409 .127E+10 -177E+10 SZ2ZTR+10y

B 4-1 45°HERIhili 0N
Fig.4-1 Impact equivalent stress of 45° valve

SN A B VY SR FEERR A A AN . B 4-1 RATLAE Y, FEZR IR i i
Wk, R AR RIS ATH, TR AE HE T S B K b N ) oy, K E
0.227x10' pa o (HLAt 1 55 A0 HE 0 the SR ZE HE T F i BRI K (OB PP  y, LSB =75),
PNFR B P B T4 81 7 A B KN ) i SR I R B 1, e g3 b ke, T LA 7=
7 d KR 4 o B HE TET T 3 DX BT SE R ) R — AN RKB IR IR, MM iR A
0.227%10" pa, JAMIN 0.5 CGREBEIM KN 120 K/450), W 4-2.

&

0.55¢

0.227 % 10109pg«

y

[ ' ' o
El4-2 HEf T sl KN AR b (KRR,

Fig.4-2 The mechanical characteristics at the maximum stress concentration spot
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BIE ETNAETERNSFIRAL T TS

ERREBR IR, il T mNAES XS E 5 U RL, ERAK
HARREERK, X—mEERBRBHERSF, #il FRRETENENE
PG R AR . BT, RErmEe R EPSIRAMIET RRERARMNEE
RH.

{BLFE] 18 /R R T o o R 18 3F K % 58 ol T IR 8 R TR TR 0 R R T o A )
MHESHEWE, TRRAR (4-5) XBRHBRKPEHN T o, EARBEZ M. RN 457
" IR E DA K B R BT R BRI XHEE ', B30, =0.0347x10 pa, LB
REEPRN S /MRE . T RAEHERE TRt RN N EPEERK, TURASHNE
TRy KRB RHL R

0.

p=—2 (4-7)

O-M

SHF4° T RK R, v=6.54.

S FMAEFERXZNAERATHREN, ERBHRITRETLAES BN
HEFRRW, W= ENBRKEFRNS oy, MHBFNTEFERN 0, KR
H VR R TR &R

Cga =YO m=y/%=y/% ‘mfr <oy (4-8)

NF—EGEHNIRR, MORTREYy —E.

4.3.2 MAXhEFRENEESZ

TE4R 1 5% 3 IR IR IR 32 Bt A K PR N B Y TR AL AR B RS D SR P R BB S T
e, AT A EERMIREK AR KA E R BRI T EAOEB, TRE—
MR EFFREE T %, BTRASH—ER, mXk—eWXAEE—E (R
ZHAL), HEE TN AP Rt —E, T LR TEKEA Y — e SERR
FRMAEEM R T R, MEARURN AR RY, REBRERUTELR
ARFERWBEPER. LITLA45°7" RAHI 3.

WESCE TR R AERE A, WELREFNER KRR TR
BB KYE, KMRBREARMPR 0 HOXAERZR, 4RIE 41,
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£ 4-1 FRMK A5 7" WK HEE

Table 4-1 Closing velocity for 45°7" valve of various stroke number

n (K/5H) 80 90 100 110 120 130 140
h CR/A) -148356  -16.1446  -18.7212  -19.1943  -19.3676 -20.5497  -20.7833
n (R/5H) 150 160 170 180 190 200

B CR/A) 214117 217698  -22.2503  -23.8150  -29.7839  -31.2116

Xt ERFERA =K SRR Z T M ZAUMN, B BRI

MEERRY:
h=- 3.05 ’+121 ? —1.62n+53.61
10°
MAEMEZREWT.
-10
-15 )
£ -20}
%-25»
i~
K
=301
_3% L L : . L
0 100 120 140 160 180 200
R (RIS

B4-3 45°7" 18K R BRI AR B0 i 22

Fig.4-3 Fitting curve by closing velocity and stroke number of 457 valve

(4-9)

45" 7" RHEE T amAN AR REh LR E R ERE, H 6.54. Bk, TR
A RFER 457" WH B A VF I KB AT A i (E AT B M DA LUK R ep sk
RBKRAREE, FFRANLDRFREh T &A4R (4-8) #ATIHH SRS,

EAHEE ML HNRR.

4.4 XEINE
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BNE ZTNAEFEENRHREREF T TEEYE

R IR SR AR BTE RS SH BRI BE R T, A RF N RRERER ™
BERm, SR IEBRRRE . BRERREFTERR DR PN A
Bk, BRET R AEF IR, Ft T HA S kg7 REXAR RIAER T,
ZERTENA T L.

AR HERBAARTH G NERY, FAREPEH>ERAN SRS
WAL RAFERLEREE, RETETNAEP PR ARREN G THES
e ZE&MTETREBHFIERHR, BRTFERRXEMGERFENE, B
AT RBES BN AR, BETNAEPERENAER T X INER R X
BATHRMEEE, FRUENFEZENEERNANTEAT —EMEENE. ¥
T &G RATRE R, MEKRBOERSERE—ENEIEX.
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BEE BHRRRAGH SRR ER

FHE $HHARBMRRGHSHEURER

it

5.1 8

A KA EREN, HBEREIIRRAXBNEERE. ERHERTEW
BT E BRI RN, SRBADNSTEEEERXR, Bit, BRAREE
HE R, SLBTEI) T W RIBRIAS 5 AT 0 A DL R B s, BT IR
W SRR B R BRI OLEL. B, A WRERLT RS KB R R R ] e K K
BREMEE . SRR R R T RERA TR ATRE, T2 6 2 1 55
R 55 1R P R T 2 B FE R TR B T B R T 2B M) o A B 0 R R R R LS5 4T
FLRLER RS, NAFESTTRE. FRERER, BUEHRRRIZNEEE
i

5.2 FFWMAAERIR
5.2.1 IR GEIE

ERMY Y, ERRIFBERMARMIESRIALETRKA, FIHX B Hr i H R
BRI R, TEBORRBXELTERRRBPTY RO

Ky WMASERE, BERKKMYE, ERETRENIZRY, KABENIE
b TR, B

T=1u— (5-1)
dy

AH, p—F BB
r—810h (BIR ),

9 GRREERLRE).
dy

XA A B, K (51D BRRAFBR AN ERER, T H5—LET
BEE RATE, S EEE R 5 g, Ba AR, K f s,
PLERAT LM &HEL THER ENNHRERRSRAMRBEFGREHN,
GRS TR KAREHEARKRARK ERB T X R,

Bl 1A% f = e A vk, RMIRTEER, Bk, MARAZHENER
AR, BREEBEMERDAIAR, RAREE. BEREORG—RET
FimeE, MAERENTREERETEFERE FEFFEREMEAFKME, T
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HEH#ME, Wk,

4R AENE LR T OB R, —R4 B FRB KRR BB 2
BEEE, WTA: (1) BEE, BRRMIH02~01ZXK; (2) KRB, BR KN
Z1R015K~1.000K: (3) A FHEE, BRRAES K. 2B, DB,
RABGUEE, BIENERMREH, FAGHatE. SHHERBRJSAE SR ANE
X, TESBRERAOHEFIREAE X. BREXANESEFEEELWHATKS, 0
FE R R FEFE B0, K T BRLIRIIRE Sy . hSh, IR, BATREA, 2
BARME FIRER KD, BEEZWMENRE.

LERAEH TX— i MBI KA, BRI P BT S 4R E
WS RRsE.

B, SR AR YRR R E RN, FEHUNEEA BREHER S SRR,
BEHEERALRTERYVIN A SHEEMXRELE, HFAHTHhE. BRATHE
ZEBERMN, BUARRE SRNG5S EREMEERER, RERE
ARRREFE.

PERE LR, FEARTRA AR R Ak 2 R RY % T R R, (BB R4
RA[ELA A EYIN ) 58T B X RS0 R EXHEAE XN, FEERBKIRE.
EEFAEETUBERZNBEBRANFT, EFEREIATI=2: (1) BHEER; (2)
BIBMRR; (3) BikHERR,

RXRBTEHEE, XBHEENWHTRY, BIERRHRE SN ES-1.

A

du/dy

B5-1 BrERARE L
1—4- itk 2—AEF B AP PR

Fig.5-1 Rheological curve of plastic fluid
1—Newtonian fluid; 2—Plastic type in non-newtonian fluid
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FEE HHRERSOMTELLEE

BURMRAZ NG, FRLLNRERR, RO THEEMREHHEREE, M
REMBEAZ—EN S, NTEBRELBIBIR. LUH N2 AR PR &G A
&, WA RREGNRR GRS . RES-198 %2, FshE YN 585 E
FIXBENE IRV AT S R HAR, MRABIEE K, VIR REIEmSS,
BABETHMmA. BhohFRRERSINTERREVING, FRARBETIN
Ho 1, AHEBEKE SEMT RERERTIN G, BRARREITINS. T 6, K ek
BREEKBRT A NN S, BARBRYINA LRE.

PYHRMFAR, SHMEER, R EETEMNEELE, KEHkE.

BYHRRESMRAMRARTENRL, WERRIERETERHEALRK
ZEH, AAREEARMEBHRUNRTMERELR, BARTR:

du

r=ro+;tpd—y (5-2)

KOUEAUMRELER, BUHERUFKARIE. 7, AL EmATRARREIIN
To g, REHIRE B ERAR B RERE . (KBTIERY, o, ARE, RBYIEE 4, ZBREH.

5.2.2 BHERGMRA X

BHRGE, BIRIEFEAG KT RN RARTT AT ERLN. fitn, #E
dith, RRETENEENTE, ARRTERNASHIFARE, URIISREHER
WEEHEM B KHRET ZEHERXAONEREERARL.

XREFEZEBEXFEABHRE. EERF, JEROSANDITERETRRS
VIR, WAEAR), BTHFERS. DERKS IR R TIN D R TT
thEh, BT FERE. HFFERERTRENHNERE, EXBERERY
T, '

WWR AR E T RRERY AEMTNER, THEENME—T ZENORIA
.

AR AR SRR A SR AR B AR, B, HEREE R
BUE—EEZpMERT, EEHRRNS). FER—H, BEREGE TRt
REM, EHEHEX (FBRENE, REREEAEFEM, AEE (RE
%), BERBBARERSM, RZXERET K,

KU HRANEFH S Re, BUHRFERSZE T RS Re, RAMBHR AL R
A B
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Re, = —%— (53)
a1+
6p,u
Reh, p— B
U —— A
D—REHR.
W*ﬁﬁ%%ﬁ%ﬁm:%?,:%RE%Tﬁﬁﬂﬁﬁﬁ%Eﬁ;z,%¢

B EmX 5.
REEEHER Re, RX S BHA AR GHWREREM. LRRI_FNX S RLE
Re, =2000, BLR U Re, <2000 BT, ZRe, >20000 K.
BUFAAKBK T H AW T
1

hy=2A—— (5-4)
D2g

Ap, AHEURENERRE, HREKE. JREAEEI:

A=—10oD (5-5)
Reﬁ

HRSAERN, ANLEARBL, FRATN:
0.125

,‘S/Reg

A EFRFRIRAK AME, BaTURE SR A S5 8B Re, MR R LK

prirke -
WY R RAEATIR, KA TR

A= (5-6)

h =c— (5-
, g2g )
L. u?
B h=A2"— (5-8)
% ' D2g

Hog, LAaRRFFBHEENAHENLUERE, EREALGHTRN HZH, —K&
RETE A BN TR, ERARNERE, TLLAAZERER. XTEHTENER
REWAKRE, BRTEALRAE. BLREMNER, FBNERSHFBEKRUA,
Hf & EERAXK R . ERTHBRMAEN, ATRARRANLRIR, EhE
Emx—selEn .

L EA = B P B R R T E T, AR R NF B
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BRE YHERBRBNMELRRE

BB TAK I T B) B B E T AT P M A
5.3 WRARAMSHELRER
5.3.1 HRAGHFAR

BHRBOTHENRRRK. EREHFMIE . BiE RS TYIRA K BT
A ETA, REEAGERNL, ARRITEE. RBIER, BEENEPZL B
R E WAERAL, RS OSmERERL, TRRERRS NS
B, AAEWTHA:

(1) RBRASHRELER, TEEmHR3

(2) Gtk (R R GBGA, TEEFRAERE R

(3) WBHRERIERERS:;

(4) HiFHWRHK AT A 1E;

(5) HAFENELALR:

(6) MHMBURRTROTHESHRTERILE.

5.3.2 BRRENSHEL

B BB M AT A, R4 A AR AR A R R R L R B Ak
f1. Ak, BIRRBRISS, BN SERT M SRR BB RIERERR.

RXRTEMHRT IS ERE, HINAMTE B #X RS0 E X ER
ToR. LmhEEUBFEMREWFETTREWIIN, A Fthish, YN 58
HEMIEN. 8RS, FARESHESBRAENHE RIS FA RN 5485 4
R—BH . —aARERERFFERTHHIPREMSHTHA.

KIERA TR FHER, REREREHEERPRLDHREN. N TIE4HR
HERERG, RTHBZEFPHERRENTRE S, ZEEFHMRe, RIEY
ViEER D R

puD
7,D
8n u)

I

S FIRRRIE RS D = D,, - D, % Re,, NF 2000 B, FAKMIRA D LR 15FE
KB 8 A Rk AR % b, 2 BHE TR A8

Re, = (5-9)

n,(1+
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ERAT RER LB

/1=-k—‘ (5-10)
2

h=anl (5-11)
g

AIED, MERROITBAXH, REMETEHRREREMRT, BEHK
REERKMEEAZN, BEETLKEVESR. AIRRENZETH, BREOH
BYRE I REBY VI BRI R TS, BERIE4 Bk, BTREMNSHERR, 414
RERSERG—F, TUNERSHBHUAES G EAOM . REAFHREUAK
ERACKBRENRER. Ak, X REEATRZET 0T AR EL.

(1) #FA—TCA BT E Hifk:

(2) RN —EERTES;

(3) EXRHIERE R LR R XK

5.3.3 HIRRERTERFEEKET

¥ RAEFN ] (B SREFARZ (LB £, EF 2RI HE
WY A EHEN A RE NG NZ, EREFEFTENTFEA (B5-2), %
R R TT R R B E 2 B T % 4. BRI NEMHE (HZ)D TRHAR
FHE AL RN R E R R, ETREA R LA RTRIRED, BERENE
feRE

5-2 PeRER AR
Fig.5-2 Velocity distribution modeling for slurry
P RIE, R AR BRI ] ALE AR
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FEE YHERBRRBHSTELEESR

WERRA LR EREEE R, FEERSTRERANEHHELN, HTR
REEHME, TUUAIEEFEORAMECLR L. EERNZ], BEURRE
KR A BRI 5% 2 WA R B AR AEEE, EAREBEERA, ANRR
I P A AT FR M

EHANEREAT, REEXRELREREFN (VIR NEETFELHA
G #MEEWK . 24, FEEARRREEREERAD, BiknEERES
RERBIRIERBRAD, TR, Hik, ABERTILTR (x) QOEEI AT

BWHEEIHRERN: U (y)=4"+By+C (5-12)

RIERETFEERRAFZME, TUAEHRK AR B K C. @ AE 1 firk
*’i%\:

WIEE, HUWTILAXREFE:

d, =d, +2AHtg0 =d, +2(xcos @ - hcos® O)igd

. (5-13)
=d, +(2xsin 6 - hsin 26)
Xt Mxy), WHTTFXR:
x= A +hcosé (5-14)
cosd
AH =xcos@—-hcos’@ (x>hcosb) (5-15)
FRMER (FRMEmA—HE ).
S, =n(d,hsin 8+’ sin’ 6 cos O) (5-16)
B ERAE Q SHHEQ HIXA:
0.=0,~7 4, (517)
0, RIEAR AR (2-2).
AR X EER S
L U.(n)ds=0, (5-18)
fEy=04
U.(0)=0 (5-19)
£y = hsin6 &t
U, (hsin@) =V, cosf (5-20)

=B KR, W8F A, B, CHIRER.
BIE (5-19) A:
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AT K0 #4683

Ax0* +Bx0+C=0

B3, C=0
B (5-20) F:

A(hsin8Y’ + B(hsin6) =¥, cos0 (521)
BiE (5-18) FH:

[ 21(L-y)cos 4y + By)dy (5-22)

d, )
He L= ey +hsind
AT A8 3.

L . 1 . L . 1 . 0]
Al_h 0) ——(hsin0)* |+ B| = (hsin6) — - 3= x o
(hsin6) (hsin )]+ [ (hsin6) 3(hsmt9)] S (5-23)

5 (5-21) KBRLAT#EE:
Lhsin@ (hsin6)’.  Q

V, cosé(

!
2 3 27 cosf
A= (5-24)
L(hsin6)’ _ (hsin6)*
6 12
. . 2
7, cose(Lh;lnH_(hsile) +2 0. ;
B= 7 COS (5-25)
L(hsin6)’ _ (hsin6)’
6 12

b, MFREHOERAE (RAHD, RERUEHAZERIOERQ,,
BATCUR A BT, WA B 6 T 5 4% 1) b AE — i A0 B 40 o T 5 R
U,(y)= Ay + By FE RS A, B TR & G B AL RIESE .

5.4 KFE /g

AFE S| KBS R AR RIR TR MR REFFE, BEMT T 44
Kt R R T AT SR BR A E AR R HERESLE TR, F
RETENASEATE, URMIRSHENSHRE—BHN. — T MEERBLF
FEE A TR BRI RS .

EARAF IR R B R R |, AT HFE— e R AR ERIAL T RBRYS, AR
TEIRTEIE PO 2 i CARR AR R O AR, IR BN BE A B AR R I FRf  7E
SLERE E B MRUESARRE R LR T BRARSRAE, HRBRRSNER
fEH T VISR BEERREEME, ENRRERE, ERFIRRISERRN
SRR, HEMERHITHRETELE PIV LR E— PHANRIE.
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FEARE HARBETAR CFD 24h

6.1 A

iy

S THHRRBRGOHAT EE, TUNKATERANHR. BALEREY
ETUREERHRRASEE SRR BRE R ERBRT RH2 M, B8
SRR ERMEE, EAMKERE, SIHERAEET—ERRE. ERIRRASE
RHEL R, FERERRNTERATERZE PIVXRE—PHAMNBIE. &
BEXAWHEREN % (CFD) 7%, A FLUENT I EH R B RRGHITIE S
b7, UBRIERS LR RIBBRIS A R, bt — DB SR IR R BRI M
BT T R LRRY.

6.1.1 &K AE (CFD) FHHA

MRS KRS EBUT 3 M EAERAERR: (1) JREFEER: (2
HUE el (h=FEx MEE), XEHE5Z2ENNEEHE: 3) RETHEER.
X R A EHT MRS REMS RO ETE (4D kR, BEFEPHRS
BHE (W) MABBRNREEARE, EARIRMS AN FTEZHREGE
(4); Bt FHHEICRBXEREE, IS BIRIHTE R B et R/ 22 8] sk
BUEMR . XM ER AT E R (3)) 5% (Computational Fluid Dynamics), EAF
faifk CFD. A B thiRmim S EERL. SET RS E N E.

AN FERHRYHESNRY TP B/ ZREEURYELE. &
X RS RE RS TAEEHIREEIRYS, LAENTSRENYETE B,
2% 8] 35 B B O B R R BRI b — BRIV F, OB TAIIZHIE (mesh,
cell, control volume). & Fi 53T N BHZRFR A PIAE (grid), PAHEHIAE X B FK A P&
A (grid point)e XM FHAE G, BHMYBLELEE NEMEL L. X—4H
B 8 b #0148 BT LU AR IR A X AN P A& s RTAR AR 80 LA P A% R LB BRI P A%
AR ERR (XEOBEHERIBRESHIE). NTFRYIBGE, EHY
HETEXERTANDL, BEETA L. BT EHRY)EHEEERRART
AR 25, YBEEEURASATAPYBETENREKR (X MEETER
AEREEHENERTHE). FBRERREEXEEHARB AT R DR
25 B WM, AT LA SRR 1 % 5 R F B E R R AR AR . kAl L, CFD
BREMAREEE L LORTE, TRAKBNEHREE. XEBIE AR EE
A RN BER . T4 ERRE, CFD MR M B #7E T 83 5 X L4030 # 4
Vi, BrnEKEERHR. FX—4 L CFD 5TRAREXMZ &b. B—HE, CFD
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HEARERIERRNOECEER,: Moo Ra AR %0, FiX—
sk, CFD SESHA N2 EMFIN .

6. 1.2 FLUENT f&4r

FLUENT & —AN R TR 43 B e 52 2% JLAAT X 358 1A £ 9 A 370 3 A5 e 46 i) 11
#H CFD #{%. FLUENT M348t 36T “CFD it HH BB S” . Hxig—
RSB R B AL RAES TN EMSE TS, Rt EsE
FHHEERI R AFSBE T EREA AR, Bb CFD KIFRE, Mt Ehm®
REA GBI F T v EL ) B AR AR B & A vl ik P EE R AR
K T ASRH M. B BEEH, CFD ERARE BT R EXMFAS)
TR, HRKGEE T &t A, FERFHAM TREARP4E T EXHER,

AFENE SR RAREA E, FIHFLUENTESURR A, EA SV R
T T e B A A A, IR NI 5T IR 451 2 R LR SR 1L 20 b i N R 14K
o

6.2 h¥REPRAIFA —HE CFD 47
6.2.1 TABAEEHARE

GAMBIT J& FLUENT %K{F8A AT ERRIR, T 257 L fa] 45 4 R0 9 A% 1 4 7o
MR B AR RBRAY, ASCE GAMBIT F#L —#ERi8R . Uik m oK RfE
FAE) 77 A0, GEHCHER R 45° CHES HHERIBELE SNk 2 In B9 48D, R
B3 7R KW o 72, B ) 0 =35", WRELTHEE h=20mm, EFEV a=1.4m s
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6-1 —HERIBRIAUH AR P
Fig.6-1 Arrow diagram for two-dimension flow field of the valve play

BRI ARTEGRA, ZREENNEWR, mERRAREAEERS, FIHE
BIRWTF:

u, Ou, ou
TiB%? : —E4—Ly—r=0 (6-1)
REELE T2 =" e
(—la‘pH)Vz ,=u,%-+u £ tu, Ou,
p Ox &x 7oy oz
Ou ou ou
N-S 5 #2: <—l@+vvzu =u —2+u —S+u,— (6-2)
oy T Ty Ty
—l@+vV2uz=ux@’—+uyau +uz%
| p Oz Ox 19)% o0z

UEBRAF, p— R ER;
u u,~ u,—DHRBEER R x By Bz BT REBE
p— Ui ER;
v—RAEHIEERE .

6.2.2 FLUENT (&R

RERB P RERAIEREGRRAFE, REZNZITRAESEERS), BRAIR
Hek~c HRKMEA (B) K-epsilon [2 eqn)iiRiERD), EHEREHE Energy
Equation. £ 3FBFEE N 1.5x10kg-m>, FELLHA 28007 /(kg k), SHRREHN
1.5w/(m-k), ¥EH10°kg/(m-s). FEAFZHHRESD, WERADEEN 5.31m-s"
CHBRELAMHANY), BEN 313K, WHRBEN 5%; HOUREEH 323K,
WRIRER 5%; RESIFRERLEER 14m-s' (BERTRIFERIAZR).

(1) 45°HERRBE RS 50

WHEERE 6-2. B 6-3 fic. HH A 6-2 & FLUENT J5 AT /3 B A,
& 6-3 A% TECPLOT K EREFBHREEEE. HPEERERPIRATT S
— BB R ARICE T, B FIEE A EE K /ME.
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Fig.6-2 Streamlined diagram for field model of the 45° valve play
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Fig.6-3 Velocity vector diagram for flow field of the 45° valve play
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Fig.6-4 Streamlined diagram for flow field of the 30° valve play
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Fig.6-5 Velocity vector diagram for flow field of the 30° valve play
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Fig.6-6 Streamlined diagram for field model of the 35° valve play
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Fig.6-7 Velocity vector diagram for flow field of the 35° valve play
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Fig.6-8 Streamlined diagram for flow field of the 60° valve play
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Fig.6-9 Velocity vector diagram for flow field of the 60° valve play

XECEA L 2B, ATLAGH, 7E30° E 60 HERIZ A, BIRRHIS P RAAEER KPR
b, AMRRNTFHRA, ERGERLE T TRETR, ELURRYE S 4 §
RAEEALNZETHENOBE P AEEERK, FHABRREEA, ERERELY
TR E A R LW G ESRBERANMNTESRHE, #H
140 3 60° i 7 B A 6 _E IR K.

fesh, MG RF T UGE A ERENLR: R TRAAR R T O

53



JERA T KL F 6 X

RIFTREILA D ER %), MAEERERNMK, REREHMERSE, LEE
VKXo tH EEESHTarsn, Fikx BRI R S GRm EERY) M PRIER, iR
570 12 ol £ P R s AR IRV B M BR R E B R B, FTUATTLAS S, WA TR
B ER—E 0, R R4 HE A 0 o LU BRI WA, T T AR R 5
RIBEH B SRR BEIRE, SRR BIE B,

A5 MBS FIHE A R HE R AR 2 T RAT TR, RIET HiR%58R
IEftt. BRTRE, AT RER.

6.3 #HRMBRAIHN =4 CFD H 47

EZGRRT R 2R T WA ORISR TR, K4 RELH xR
MR, HHERAURRHAALIRE, UL, XN RS HMERE = SEH T
FIRBE AT T AT, IF 5 Rt B4 BT a .

WL 45° 7" BILE MIWGHE F =35, KRR FHRE h=20mm , EE V a=14m-s~' (F A
BB 2R = E R BRASRE, FERMREERTEHREOEH, =4
BRI s P L 6-10.

M 6-10 L mIBRIHTH I M % I
Fig.6-10 Arrow diagram for three-dimension flow field of the valve play

£ FLUENT {53+, 792 RBRIAI7 A% B RE R K R B A 5l 6-11 /1 6-12
ﬂf.f]_-\.o

54



AT W ZBBRF SN CFD 4y

B 611 =ZHEpRRHTEE
Fig.6-11 Streamlined diagram for three-dimension flow field of the valve play
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Fig.6-12 Velocity vector diagram for three-dimension flow field of the valve play
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Fig.7-3 Cutaway view of experimental model

H 74 gRLHA
Fig.7-4 Material object of experimental model

61



A b T K0 52 g i

B 7-5 AT AR S
Fig.7-5 Material object of vavle discs and seats in experimental model

B 7-6 EASLEHML A REN

Fig.7-6 Schematic diagram for working mode of normal incidence and off-axis measurement

B
Bmm

He
\\’l' \m
«W&W
A—H KL
B— i ki1
C——iLKI} cCp

62




BAR IR RBRESRE PIV KR

B 7-7 £ R
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Fig.7-8 Position relationship among the model, laser and camera

7.4 XBERMT
7.4.1 REMNTHSLEBNHRALRER

SO R oh £ R R HE TR M R RITH M AR KBEE EREF LR
SZROFERE. BT XRABMAATESXTUA N> W, ERAFRKRER
THHEANROBR . BT A Bt B R MmO LT W, RIEEGRE,
M GRAE T o SRR RE: T2 0 BBk R A RIS EME K, BRF RS LT
AREG=EEH, ARBESETLHBERAR, HHERELIZEEW.

RAZOBIBURIENRERT, 45 HEREFE h=4mm HEISKEER, LHE
7-9~7-10.

63



JEsite TR0 24U

M 7-9 45° $EBIE h=4 mm B IRBRI SR A
(a) HEXRE (b)) FEAHZE
Fig.7-9 Flow field state of the 45° valve play at h=4 mm
(a) Velocity vector diagram  (b) Flow velocity distribution map
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Fig.7-10 Vorticity distribution map of the 45° valve play at h=4 mm
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Fig.7-11 Flow field state of the 30° valve play at h=3 mm
(a) Velocity vector diagram  (b) Flow velocity distribution map
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Fig.7-12 Flow field state of the 35° valve play at h=3 mm

(a) Velocity vector diagram  (b) Flow velocity distribution map
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Fig.7-13 Flow field state of the 45° valve play at h=3 mm
(a) Velocity vector diagram  (b) Flow velocity distribution map
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Fig.7-14 Flow field state of the 30° valve play at h=4 mm
(a) Velocity vector diagram  (b) Flow velocity distribution map
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Fig.7-15 Flow field state of the 35° valve play at h=4 mm
(a) Velocity vector diagram  (b) Flow velocity distribution map
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Fig.7-16 Flow field state of the 30° valve play at h=5 mm
(a) Velocity vector diagram  (b) Flow velocity distribution map
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Fig.7-17 Flow field state of the 35° valve play at h=5 mm
(a) Velocity vector diagram  (b) Flow velocity distribution map
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Fig.7-18 Flow field state of the 45° valve play at h=5 mm

(a) Velocity vector diagram (b} Flow velocity distribution map
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Fig.7-19 Vorticity distribution map of the 30° valve play at h=3 mm
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Fig.7-20 Vorticity distribution map of the 35° valve play at h=3 mm
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Fig.7-21 Vorticity distribution map of the 45° valve play at h=3 mm
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Fig.7-22 Vorticity distribution map of the 30° valve play at h=4 mm
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Fig.7-23 Vorticity distribution map of the 35° valve play at h=4 mm
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Fig.7-24 Vorticity distribution map of the 30° valve play at h=5 mm
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Fig.7-25 Vorticity distribution map of the 35° valve play at h=5mm
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Fig.7-26 Vorticity distribution map of the 45° valve play at h=5mm
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Table 7-1 Maximum velocities and mean velocities of various working conditions
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35 5 3.959 2.665
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45 4 4.116 2.468
45 5 3.922 2.136
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Fig.7-27 Broken line diagram of maximum velocity variation

(a) The same height but different cone angle (b)The same cone angle but different height
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Fig.7-28 Broken line diagram of mean velocities
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Fig.7-29 Comparison of image grabbed by using different particle

(a) Hollow glass microsphere  (b) Fluorescent particle
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Fig.7-30 Flow field characteristics of the 30° valve play at h=4 mm
(a) Velocity vector diagram (b) Flow velocity distribution map

(a) Vorticity distribution map (b} Reynolds stress distribution map
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