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ABSTRACT

Space latticed dome is a type of structural system whose major character is
three-dimensional shape and three-dimensional loaded. The rationally loaded character,
great stiffness, lightweight, low fabrication cost, novel and lively pattern, beauty and
great expression art measuring are features of this type of structure. Therefore the
latticed domes are widely used abroad and home.

Total trend in development of latticed domes is that the span of latticed dome
becomes more and more large, as well as the material used becomes more and more
economic with the de{relopment of building materials, computer technique and
structural theory. So, the stability is the key problem on the structural design of latticed
domes. Only by the load-displacement nonlinear analysis during the whole process of
the structure, the stability capability of the single-layer unite latticed domes can be
estimated correctly. Therefore, based on the nonlinear whole process analysis of
structure, the paper studies on the stability capability of latticed domes systematically
and deeply. |

Based on FEM analysis software ANSYS, the nonlinear whole process analysis of
stability behavior of single-layer latticed domes with different span and different ratio of
rise to span and different section are carried out. The effect of the symmetrical load and
unsymmetrical load and initial imperfection behavior of single-layer latticed domes
with various parameters changes is also analyzed. A lot of stability regularities are
found through the deduction and analysis of these obtained curves of whole course, At
last, the empirical formula of load capacity of single-layer latticed domes is obtained
through fitting. Some important conclusions are acquired and can be used to guide

engineering design.

Keywords: single-layer latticed domes, stability, buckling, ultimate load,
unsymmetrical load, initial imperfection
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3.8 40m BEEAE 1 SAE R 5 AR A p/g=0)
Fig 3.8 Structural buckling modality of the 40m span one number section (p/g=0)
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Fig 3.9 The whole course curve of the structure by unsymmetrical load(p/g=0,1/4,1/2,1)
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Fig 3.10 Structural buckling modality of the 40m span one number section fL=1/5(p/g=1/4,1/2,1)
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Fig 3.11 Variable relationship of structural ultimate load with p/g
£ 314 ANFEEERAY (BERFT) plg=1/4
Table 3.4 The coefficient of unsymmetrical load influence (perfect structure) p/g=1/4
L=40m L=50m
L | B
1/5 1/6 1/7 1/8 1/5 1/6 1/7 1/8
] 2 Ai]
] 0.8357 | 0.8257 | 0.8216 | 0.9956 1 0.9662 | 0.8329 | 0.8760 | 0.9184
2 1.0699 | 0.8288 | 0.8385 { 0.9842 2 0.9539 | 0.8923 | 0.8316 | 0.8918
3 0.9725 | 0.8242 | 0.8498 | 0.9829 3 0.9600 | 0.8717 | 0.9302 | 0.8820
4 0.9154 | 0.8421 | 0.8278 | 0.9798 4 0.9090 | 0.7617 | 0.8802 | 0.9059
FH{H | 0.9484 | 0.8302 | 0.8344 | 0.9856 | FBME | 0.9473 | 0.8397 | 0.8795 | 0.8995
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® 3.5 ANMERELWEAR (BEME) plg=1/2
Table 3.5 The coefficient of unsymmetrical load influence (perfect structure) p/g=1/2

L=40m L=50m
& 1/5 1/6 1/7 1/8 i 1/5 1/6 1/7 1/8
A i
1 0.7873 | 0.8591 | 0.7698 | 0.9672 ] 09313 | 0.7945 | 0.8198 | 0.8693
2 0.9041 | 0.7978 | 0.7721 | 0.9678 2 0.9294 | 0.8534 | 0.7294 | 0.8564
3 0.8323 | 0.7998 { 0.8431 | 0.9834 3 0.9042 | 0.8444 | 0.8912 | 0.8254
4 0.8231 { 0.8165 | 0.8326 | 1.0030 4 0.8537 } 0.7350 | 0.8381 | 0.8664
P | 0.8367 | 0.8183 | 0.8044 | 0.9804 { -FiufE | 0.9046 | 0.8068 | 0.8196 | 0.8544
& 3.6 AXMTRERHREK (BEEMT) pg=10
Table 3.6 The coefficient of unsymmetrical load influence (perfect structure) p/g=1.0
L=40m L=50m
B L &5
- 1/5 1/6 1/7 1/8 - 1/5 1/6 177 1/8
1 0.6997 | 0.8686 | 0.6868 | 0.8188 1 0.7767 | 0.7475 | 0.7796 | 0.7764
2 0.8536| 0.6927 | 0.6914 | 0.8091 2 0.8525 | 0.8066 { 0.7448 | 0.7849
3 0.8239 | 0.7301 | 0.7117 | 0.8532 3 0.8867 | 0.8021 | 0.8320 { 0.7725
4 0.7995 | 0.7144 | 0.7657 | 0.8371 4 0.8238 | 0.7051 | 0.7956 | 0.7801
FHE ] 0.7942 | 0.7515 | 0.7139 | 0.8296 | -¥E | 0.8349 | 0.7653 | 0.7880 | 0.7785

3.7 ANHAZEWRN FREMNT) pk=1/4
Table 3.7 The coefficient of unsymmetrical load influence (imperfect structure} p/g=1/4

L=40m L=50m
b L
- 1/5 1/6 1/7 1/8 o 1/5 1/6 1/7 1/8
] 0.5894 | 0.6554 | 0.6405 | 0.8355 I 0.6985 | 0.6698 | 0.6933 | 0.6737
2 0.5880 | 0.5962 | 0.6014 | 1.2518 2 0.7042 y 0.7083 | 0.7095 § 0.7377
3 0.7244 | 0.6521 { 0.7039 | 1.2982 3 0.7250 | 0.7197 § 0.7175 | 0.7457
4 0.8531 { 0.6804 | 0.6573 | 1.2221] 4 0.7228 | 0.7296 | 0.7258 | 0.7497
FHME | 0.6887 | 0.6460 | 0.6508 | 1.1519 | -“F#HE | 0.7126 | 0.7069 | 0.7115 | 0.7267

% 3.8 PHHEEYREL (FREMNFE) pg=1/2
Table 3.8 The coefficient of unsymmeitrical load influence (imperfect structure) p/g=1/2

L=40m L=50m
#Lt Bt
- 1/5 1/6 1/7 1/8 - 1/5 1/6 1/7 1/8
1 0.5497 | 0.5096 | 0.4975 | 0.7769 ] 0.6542 | 0.6027 | 0.6203 | 0.6151
2 0.5577 | 0.7306 §{ 0.4433 | 1.0418 2 0.6640 | 0.6359 | 0.6278 | 0.6757
3 0.6631 | 0.5039 | 0.5260 | 1.0838 3 0.6321 | 0.6464 | 0.6463 | 0.6833
4 0.6618 | 0.5090 ! 0.5084 | 1.0579 4 0.6846 | 0.6512 { 0.6571 | 0.6879
i34 | 0.6081 | 0.5633 | 0.4938 | 0.9901 | FH{E | 0.6587 | 0.6341 | 0.6379 { 0.6655
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R 3.9 PAMABREHRAY (FRERT) pe=10
Table 3.9 The coefficient of unsymmetrical load influence (imperfect structure) p/g=1.0

L=40m L=50m
L 1/5 1/6 1/7 1/8 st 1/5 1/6 1/7 1/8
#e R

1 0.5061 | 0.4468 | 0.4659 | 0.7205 i 0.6836 | 0.5421 | 0.5657 | 0.5777

2 0.5081 | 0.4717 | 0.4894 | 0.8187 2 0.6765 | 0.5752 | 0.5845 | 0.6329

3 0.6180 | 0.4662 | 0.4961 | 0.8929 3 0.6541 | 0.5836 | 0.5963 | 0.6389

4 0.6097 | 0.4799 | 0.5001 | 1.0020 4 0.6581 0.5935 | 0.6079 | 0.6428
SFE{E 0.5605 | 0.4662 | 0.4879 | 0.8585 i 0.6681 | 0.5736 | 0.5886 { 0.6231

BT, AR AR (g+p/2) In E RITHREZ (p2),
W ER, S TERMH R g+p/2 fEATM—A R FREFIE. BT LU B0 g+p/2
{E A8 — AL R YA AL bR, TS B RR PR 78 AR X T i B B A i S T AR PR AT 25
FIHE, MARX—RMIHRTIMEER, & 3.10~F 3.11 BH T REKRGEWZ
R (REHT R—RFRNR AR FHE).

k-

#3.10 ROMHRATEEWERYE (BEME)
Table 3.10 The coefficient of antisymmetrical load influence (perfect structure)

L=40m L=50m
9L L
4 1/5 1/6 1/7 1/8 % 1/5 1/6 1/7 1/8
/g D/g
1/4 | 0.8536 | 0.7472 | 0.7510 | 0.8884 | 1/4 | 0.8526 | 0.7557 | 0.7916 | 0.8096
1/2 | 0.6973 | 0.6819 | 0.6706 | 0.8169 | 172 | 0.7539 | 0.6724 | 0.6977 | 0.7121
/1 | 0.5957 | 0.5636 | 0.5354 | 0.6222 | 1/1 | 0.6208 | 0.5739 | 0.5729 | 0.5839
R 311 R EEERE (FEREMNE)
Table 3.11 The coefficient of antisymmetrical load influence (imperfect structure)
L=40m L=50m
) L
L 1/5 1/6 1/7 1/8 % 1/5 1/6 1/7 1/8
p/g p/g
1/4 | 0.6199 | 0.5814 | 0.5857 | 1.03671 | 1/4 | 0.6414 | 0.6362 | 0.6404 | 0.6540
1/2 1 0.5067 | 0.4694 | 0.4115 | 0.8251 1/2 | 0.5489 | 0.5284 | 0.5316 | 0.5546
/1 | 0.5166 | 0.4845 | 0.4881 | 0.8639 1/1 | 0.5345 | 0.5301 | 0.5336 | 0.5450

MK 3.10~FK 3.11 ATLLEH R TFIM LS SRR T SR ERE S,
BEBNT: 2 pe=V4 HERHHHEHELN 75%~89%;: % ple=1/2 BEZEH
B 67%~82%; =5 p/g=1 BEEXMAHAEN 54%~62%; FHRMEERT: 4
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p/g=1/4 MEEZMMAETHRE 58%~103%; X4 pg=1/2 NEEHHAEELE 51%~
82%: =i p/g=1 N EEIYAMFTER 48%~86%. LMK ERE 16 ple B AR
= MERE, B THREERK.

3.5 ¥IIGERPERIFNT
3.5.1 MR\ EREN £ T2tk
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Fig 3.12 The whole course curve of the structure by initial imperfection (p/g=0,1/4,1/2,1)
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R 312 BREHWARE (p/g=0)
Table 3.12 The coefficient of initial imperfection influence (p/g=0)

L=40m L=50m
L 1/5 1/6 177 1/8 Sl 1/5 1/6 1/7 1/8
& 4
0.7020 | 0.6936 | 0.6787 | 0.5345 1 0.6255 ] 0.7176 | 0.4579 | 0.4276
0.8429 1 0.7236 | 0.6992 | 0.4448 2 0.6279 | 0.5632 | 0.4396 | 0.3995
0.6941 | 0.7505 | 0.7356 | 0.4487 3 0.6346 | 0.5647 | 0.4997 | 0.3998
0.7076 | 0.7543 | 0.7565 | 0.4584 4 0.6171 { 0.5011 | 0.4796 | 0.4113
FEE | 0.7367 | 0.7305 | 0.7175 | 0.4716 ¥EE 0.6263 | 0.5867 | 0.4692 | 0.4096
£ 313 REZWERE (p/g=1/4)
Table 2.13 The coefficient of initial imperfection influence {p/g=1/4>
L=40m | L=50m
& 1/5 1/6 1/7 1/8 L 1/5 1/6 1/7 1/8
A WH
1 0.5913 { 0.5234 | 0.6331 | 0.5454 1 0.4522 | 0.4439 | 0.3624 } 0.3137
2 0.5813 | 0.6227 | 0.6082 | 0.6883 2 0.4635 | 0.4468 | 0.3750 | 0.3304
3 0.6103 | 0.6704 | 0.7275 | 0.6828 3 0.4793 | 0.4663 | 0.3861 | 0.3381
4 0.6292 | 0.7185 | 0.6495 | 0.6663 4 0.4908 | 0.4799 | 0.3955 | 0.3404
Fi9E | 0.6030 | 0.6338 | 0.6546 | 0.6457 | FHE | 0.4715 ] 0.4592 | 0.3798 | 0.3306
* 3. 14 BREEWMAK (p/g=1/2)
Table 3.14 The coefficient of initial imperfection influence (p/g=1/2)
| L=40m L=50m
e 2 b
- 1/5 1/6 1/7 1/8 - 1/5 1/6 1/7 1/8
1 0.4617 | 0.4281 | 0.4110 | 0.4171 1 0.4354 | 0.4188 | 0.3465 | 0.3026
2 0.4399 | 0.3760 | 0.3697 | 0.4709 2 0.4486 | 0.4197 { 0.6550 | 0.3151
3 0.4733 | 0.4580 | 0.4553 | 0.4948 3 0.4437 | 0.4323 | 0.3630 | 0.3311
4 0.5115 | 0.4559 | 0.4646 | 0.4928 4 0.4949 | 0.4440 | 0.3760 | 0.3263
FEME | 0.4716 | 0.4295 | 0.4252 | 0.4689 | FX{E | 0.4566 | 0.4287 | 0.4351 | 0.3188
®3.15 BREEMER (pg=1.0)
Table 3.15 The coefficient of initial imperfection influence ((p/g=1.0)
L=40m L=50m
ol (- fnd
- 1/5 1/6 1/7 1/8 e 1/5 1/6 1/7 1/8
1 0.4512 | 0.3753 | 0.4108 | 0.3982 1 0.5506 | 0.4007 | 0.3323 { 0.3182
2 0.4743 | 0.4279 | 0.4759 | 0.3763 2 0.4983 | 0.4015 | 0.3435 | 0.3001
3 0.5154 | 0.43375 1 0.4329 | 0.4075 3 0.4681 | 0.4109 | 0.3588 | 0.3307
4 0.5242 | 0.4433 | 0.4543 | 0.4556 4 0.4931 | 0.4218 | 0.3664 | 0.3389
FH{E | 04913 | 0.4201 | 0.4435 [ 04095 | “F#ME | 0.5025 | 0.4087 | 0.3503 | 0.3220
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R R A8 3

3 BEEREIM SEA 8 — B 2 R

TR P EIE TR G AR E AR I B TR S e TR,
BRCDEEEARKELR p/e ZRB XK. FHHFHFEEAT, KB/ EMER
VISR B B U, TR NI R R 30%~60%, NEREHERT, &
B EL K RIP X VIR SR M B E, MEN NS EE M ER 60%~73%.

K 3.16~% 3.18 L5 T EBAIIRG M REAM KA R T, MEREA
AN TREAMERERBE M HE, NFITLUEBRESR L/1000 ¥1255Lt
M A TR .

& 316 PHMEAEEREEWERE (p/g=1/4)
Table 3.16 The coefficient of unsymmetrical load and initial imperfection influence (p/g=1/4)

L=40m L=50m

& 1/5 | /6 1/7 1/8 Sils 1/5 1/6 1/7 1/8
T B

1 0.4138 | 0.4546 | 0.4348 | 0.4466 1 0.4369 | 0.3698 | 0.3175 | 0.2881

2 0.4962 | 0.4314 | 0.4205 | 0.5569 2 0.4422 | 0.3986 | 0.3152 | 0.2947

3 0.5028 | 0.4894 | 0.5178 | 0.5825 3 0.4599 | 0.4065 | 0.3592 | 0.2982
4 0.5030 | 0.5132 | 0.4973 | 0.5577 4 0.4461 | 0.3656 | 0.3481 | 0.3084
FHME | 04790 | 0.4722 | 0.4676 | 0.5359 | FIE | 0.4463 | 0.3851 | 0.3350 | 0.2974

R 31T AT HEREETHERE (p/g=1/2)
Table 3.17 The coeflicient of unsymmetrical load and initial imperfection influence (p/g=1/2)

L=40m L=50m
P& B

- 1/5 1/6 1/7 1/8 o 1/5 1/6 1/7 1/8
1 0.3216 | 0.3535 | 0.3377 | 0.4152 1 0.4092 | 0.3327 | 0.2841 | 0.2630
2 [ 04706} 0.3116 | 0.3101 | 0.4635 2 0.4169 | 0.3582 | 0.2789 | 0.2699
3 0.4603 | 0.3782 | 0.3869 | 0.4864 3 0.4011 | 0.3650 | 0.3535 | 0.2733
4 0.4683 | 0.3839 | 0.3846 | 0.4828 4 0.4225 | 0.3263 | 0.3151 | 0.2829

P59 | 0.4302 | 0.3568 | 0.3548 | 0.4620 | FH#E | 0.4124 | 0.3456 | 0.3079 | 0.2723

F3.18 ANHRBABREERRAY (pe=1.0)
Table 3.18 The coefficient of unsymmetrical load and initial imperfection influence (p/g=1.0)

L=40m L=50m
e d B
. 1/5 1/6 177 1/8 - 1/5 1/6 1/7 1/8
] 0.3553 | 0.3099 | 0.3163 | 0.3851 I 0.4276 | 0.2993 | 0.2891] | 0.2462
2 0.4288 | 0.3413 |1 0.3422 | 0.3642 2 0.4248 | 0.3239 | 0.2597 { 0.2528
3 0.4289 | 0.3499 | 0.3650 | 0.4007 3 0.4150 | 0.3296 | 0.2985 | 0.2555
4 0.4314 { 0.3620 | 0.3783 { 0.4572 4 (0.4062 | 0.2974 | 0.2915 | 0.2644
FiE | 0.4111 | 0.3408 | 0.3505 | 0.4018 | “F&{H | 04184 | 0.3126 | 0.2847 | 0.2547
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4.1 REREMEERRENITE®

NTPRAGH, RENEER. K. HRLBE—BEESHHNELNEN
RENRNEERR. ZUMTANREMTEEWE, BEBAANRELRY
7, ERFEENARRTHEGRIE.

RTMTRARZED AL RARRSSATRAREEEER, HANRS
GREARNKA N . RRET. GRFAMATHRER. RYLEMRES 5
K Ap A A T To ILRIA, Ap A, FHR

EA EA, EA
Eé":__'! Eﬁ& _———— Eé‘c =____F'_
A, A, A,
2 . T (4.1)
D, =—*, D,==%, D,=—=
A, A, A,

AF S Spn I Dy Dy DRTHENTREDR T AMEREENNENE. £
AMEHAREEER. WMRERCSHNSRERNESHERIFETRTN:
B, =E(5,+28,sin* @), D, =D,+2D,sin'x
B,=E(S, +26_cos'a), D, =D,+2D_ sin*c )
B,, =B, =B, =2E6, sin’ acos’

D,, =D, =D, =2D sin’ acos’ a

4.1 ¥R R E
Fig 4.1 Simplification figure of reduced stiffness



BERAEM T F i 4 5L JZERTH M Fefs B AR B A A A5

XEBEMARNFIARERAD, T2 . HILAT R, BARTRIALE
IEAZFPERT

4.2 EASHRBAS

EFMMARNEERT, SYBREZEEFE—ENXR. FRRHAEEN, &
KA, BdXENNERAKS, EEERERBBAHEHRER.
X AR B (B XL R R R TR 8 “ BlEH AT, RS T R EBEAES
S RKIEWEERRNG T RR, REEIH XA, TUA—ABILIPZEEHR
B HIER A 5 —BER AR R HI{E.

V=Ll sks A eV ERIE] S5 3 AEI VS P (MEIVE P E SA EIPZ W

—TRE R
% TR
—JudEge it o
e 35 AcAEIDE

%EDE%W{

A] I3 7347 <

%ﬁﬁﬂﬁﬁﬁ{

—&HEEEAREREEN—F, EL4ERNZEMMXRZEENFL. ¥
FARR .

Y=0,+p0 +¢€
{ bothy (4.3)

g~N(0,0°%)

H T (4.3) HRA—TIERLERIEE, 3B LA —nREEIIER . HEY
By By o BRE x EXRHKRMER (REZHD.

Y=EX)=p,+px (4.4)

AT (4.4) FA (—rmeets) BIRAESREHRE, =R 4R AETE K.
SFRE (4.3), RITHARPZFRERMGTREBEFHEROSE L, 5. BK
EXTx, YEn NI BMWE (x,y.), i=1,2,---,n. WH (43) F
Y, =fy + P +¢
{SI-NN (0,0%),i=1,2,-, nAR H T

RV EREEIX n B (x,p), i=12,n KRR KM EE R K
Y=p,+px. BAIZEL, ATUEETHNERAY =4 +px, FAFEMN
TEATHELET —KERL: Y=4+8x, FXn MRARELR L EHBE
Bh “HBE7, RITMAES L FixtRKY =48 +6x 1Eh & mME =R K
Y =B, + Bx W&, BN A, B 4 BlVEhBREE 8, L B .

(4.5)
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ERREM LA 4 HEREAMARERE NS AR

AL L_ERT BT x BN (x5
5’: =0 + Bx, (4.6)
SHME y, 5 y, BRI
‘yi —3):|=|yi_(ﬁﬂ+ﬁl‘xj) ' (4.7)

RAR (x,y) Wy HHEB LIRS, W42 LEEEGLHTR. ZRFE
IR B BE TR, BN

0=0(8,8) =31, (B, + Bx )T (48)

f=]

Y=PBo+B8ix

I
l
i
|
|
I
|
|

& 4.2

OB, ) WRBELERMREF SN, TLL, ANEK EHNFAANE
£ L, QENARN). BA-RERRERE S, 4G E, B AE

OB B)= min 0(B,,8)20. (4.9)

—m{ﬁu,ﬁ, <o

K, RQXTF A, AHRSH gg, jg , HAEMAE, 04
0 I

%39—=-22Lyf ~(By+Bx)1=0
) ] ’ l:‘ (4.10)
E'ég‘ = "ZZ [y — (B, + Aix)x, =0

BAE4
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EIRKFEM %2008 3 4 B ESRT M AR EAR TRE YA
nﬁn +(ix;‘)ﬁ] =iyi
: = = (4.11)
(fo)ﬁw(Zx )5, = Zx,v,
F (4.11) FAERFBRA
s
x—-—Z y-—-—Zy.
o e (4.12)
=“Zx 9@""‘_2-“;}’
HREHFELE 41D Eﬂﬁﬁﬂkﬁi‘%ﬁﬁ%u;%
{ﬂo +;ﬂ1 =y
_ o, (4.13)
xfy+x P, =xy
fRIL TR B
Bl = EZ—-—Z (4.14)
X -=X
=17
-~ ny %y, - (Zx)(zy) ny,—nxy Z(x ~x)(¥; = »)
B, == == = A —= =l (4.15)
nz.x,. —(fo Zx -nx Z(x,.-—-x)
=] =] i=1 F=]
y54
B,=y-Bx (4.16)
HRMETHA Q IKEB/MEN B, B NS L, BHBN_TEMET (Least
Sqrares Eastimation) {8} ¥R LS & 7. RF BB SH AT T ERR AT D Rk,
TREBNBEXHFER/IZERFIREL R
V=8, +Bx (4.17)
By,
Y = y+8,(x—x) (4.18)
T REE—EEE LR TR MEXER x, Y ZEIKANEBRR, HFHH
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BERRFEMEAI0T 4 BEIRE M TR ERAE THla o=

HEIFEEFEAAKNTIERSKIA, HEHREEENEXMANTEY [ —

EHEBEHRRR, R (43) RE-FRER. HM4RFERS, BT TFEL—%

AERE—&ASHIIBFNESE, Wit EHElEEMNB ST UARE N

FERBIZFE—FHEHE, ERENAIBENRLAERREZLERE NN . Fik,

RITEARBEH# —PHEIHMTAFER TR ESHEISESAFEL? ik yER

JitRE, EHENZMEEARER S FEED SRS ITRR.
ENEEHRHETE Y BTAHE, NEEFHF

L= (- (4.19)
r=t

AUEH Yy o KMBMEy, =12, nESER, H8 y BEshs R
R, XA LR R ERRI? N B A LAR B

Yi =ﬁﬂ+ﬂlxﬁ i=12,---,n

! -Z(J’ - ) —Z(}a Yo+ —y)

f=]

—Z(y -5) +ZU -y +2Z(y -y )i =)

i=l

S =50~ 7 = Y1 =0+ Bt = DI+ B (- 1))

=] i=l

=310, 9) - By, - DB, (x, - 9]

i=1

= El Z":[(J"f -.;)(xi - ;)] - Biz i (x‘ _;)2

i=l i=i

=B Y- -5 Y (- =0

Ly -Z(y -y +Z(J’. ~y) (4.20)

F=]

0= (-y) U= Z(y, y) (421

=]

Ef
l,=Q+U (4.22)
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IR KM FAig X 4 BEIREM R ERE NS AR

ML — PRSI UMQKIE X
Wy, =+ fix, CRAKAAELR LN T HEE x (HLF, B

_Z)’ Z(ﬁﬁ_{—ﬁlx) ﬁ:}"‘z?:; ;

:-1

2t ;’1:;’23”':;’11 Egzlﬂg,ﬁm%} - BILU =Z(;’;‘ “;)Zﬁﬁﬁ—‘ﬁ? 3’1:;'23'“3.;} X n
=]

MNEBFRETF IR, HRT 3y, 7,000y, KIS BREE UK S B REF £, %, %,

B (HEMHEER—EE EXAT x &N SNAER) BE58%3 4
%, X

U=3 63 =30+ Bis =D =B Y -D =Bl

=1

BIATLAE H, x(i=12,-- A%, g HK (HE&ERE) UnsHk. BURE
Za E:ﬁéﬁiﬁﬁ%&éﬁ&ﬁ%?%%ﬂ PR oA ENE Y H .
i

Q=Z(yi "'3’:‘)1 =Z[J’f “(Eo ""':5’1-"::)]2 (4.24)
B2 RITERE RN T » Xy A B YIS bR 2 5T 1,
BRARETETA,
RF (422) B SRRE ¥ y RHEHXEXERTTIER y 1958k L)
EREHATER y A8, HEHFARU RREFHAQ. BRUZEL F
EMHEERK (QEMKERN, REEHNERREE. T

Z": ('xr' - ;)(,Vf — ;)
o - e (4.25)

lxy _
JZJI:: J i (x, *;)2 2(.}’; _;)2
AERBRIXFEEEXRBRNE, EXtE, UEL_REE

1 12'
el '5‘ [*”] e (4.26)

! { [ )1 11

4 ¥y = Yy L

B RRRTEEEARU NBEET ML I, K- YHEXEL.
U20,020,U<] , B (4.26) F10<” <1,0<|H <1,

1.5 r=01f, I =0, W B, =0, HEEIHELTTTF x 8, THy WS
x LR, xHyBREEXRR. BERANS R ITER.

2.0<|r| <1, XERERKEHER, EHxE5y FEE —EMELXR, r BE

4%



B R KFEM AR 4 BEREM SR EAE e AT

IE0, x5y WEREGE, RS, BEAHGHRT. 4| REE 1, £ 5
y BRI, BABREEEES. 0 15,50, WXLy EMH%E: ~<o0
M B,<0, BERSHR x5y faAEE.
3.5|r|=08), U=1,,0=0, ﬂfﬁmﬁﬁﬁnﬁﬁﬁi, i x5 y FEHE
FE I 2tk R——T 2 & iEMER.
ZuEERRKNS T ERE — e tmHEeER, REFRNESNMER
ZEHRER, HEBAESR, HEREBA
Y=0,+6x++p8,x,+¢&
{E“*N(O o?)

(4.27)

FIREK R B/ ZRIER AR MBH S HIETHE.

SEhrEESF, WIREZRIFIELZERR, MRAXFHEE (BAREME) K
KRR, BFEANHERBEMEN. HEl, ELKEREEREERENRATE
TEEI MR, HHUNRERITRKE.

4.3 HEARBEL

MNEHAREER, nEAESABERHSENETRAOBRITAXBRERE
B, HETZAEERED, FREANERALE, EEBRREEBAMHEEE
AF—ERENFEITRESEEN. NERERAERE, MEREHEEENT
EREZERVENRITHE —NBEIE T, NTE—ABETEM %
REMPBEERE, EXMHFERGN KBTI ER, EEHRREZEH
FIRUENEFERFERRNEBERAMBEN T ESAR, ATHEMGAKE )
FTUBZRERAFTE, XXX TRIASTHAFERBARBHE ——MNBESTE
%ﬁm%%,%ﬁ%#%?ﬁi@ﬂﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁmﬁmﬂﬁ,%mT
BRIBEERBEIWLAMESARN. BidSEHH TR ICH(S, 14, 22, 45,
46|REBRARHES, %Eﬂ“ﬁﬁﬁa4E??iﬁii$“$ﬂ%ﬂﬂﬁﬁ%ﬁ%i&mﬂE@ftdafF, BB
R .

R
K. D: MRERSRIE B: B #RRIE
R: MFTm$B¥E a: FFERY, BHEIEIITRAE

LARPHBESERET L —EHNEERE., SHREY. BEZHAE, FF
BT SNAESHNERREVBD , TS E AR LN RMAERT K R L%
R L. BERYVIBERMEAAXTHFHERIZRE, AR (4.28) WEXK o BIEMNIZ
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B TR I 4 BERERARTARBE AR

e LA a5 R B W R B AT AR R R 2L

4.4 RIEABITE
4.4, 1 BEMEMRIES O

FEREAR (428), W 32 /BENMEESHREEER THRRETEAE
HBITEIE T, BREH o« =2.6227; Kitp BB 7B P ZE R AR H
EN W

(nn

i

JBD

4, =2:6227 5 | (4.29)

A A RIS RECH 98.324%.
R4, RIVE 2 AEERENSTRITERNAR (429 BT

# 4.1 BEMENETE g 5631 (429 go BHE
Table 4.1 Comparison g.; of whole process of perfect structure with g, of formula(4.29)

| ) | 40 | s }
A5 - . - -— - - - s
%ﬂ?ﬂkﬁ s | e | E.,? L 1/8 1/5 6 | 177 l 18 |
Gor 14,430 | 11055 | 8.637 | 6200 | 15291 | 11.681 | 9.110 | 7.256
IZ# Jo 2 1;‘.3;889 12?255 9.36? 6.016 ;,35}2 12.821 | 9177 | 6.603
has (%) |-14.559 | -9.797 | <7794 | 3.053 | 0.078 | -8.895 | -0.729 | 9.896
'—'t s . -  —
G 20.568 | 15.757 | 12311 | 8.837 | 16898 | 12.909 | 10068 | 8.019 |
zzﬂz qcr;%j:iﬁ ;;515 16?985 1%,,833 8.537 ;5.753 13.079 | 10457 1.309 |
B2 (%) | 5400 | 7220 | 4073 | 3519 | 0867 | -1305 | 3721 | 9.717
q;,- ;;.267 17.825 | 13.926 | 5.997 120.75-3 15.851 .12.363 0.847
B’Zﬁ qﬂ%ﬂf}ﬁ ;;.?35 1ﬂ3?333 *3;?_32 Hmg;.sz 20,31 15.776 | 1127 _:,353
RE (W) &867 5630 | -0.042 | 5.119 | 2.167 | 0477 | 9.697 ﬁ 3;646
B q;,,. 28.697 | 21984 | 17.176 12330 | 25.449 | 19.441 | 15.162 | 12.077
4;ﬁ qﬂ,%“‘imztﬁl j:%:&s 22;334 17.452 1:598 25.838 21.776 | 14471 T-Er‘gm
wmE (%) | 7.561 | -3.391 -1.%81 6312 | -1.506 | -10.720 | 4.778 | 9.978
i, wppe=e L EUR) o0

g ()
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BERRKFMLFALR L 4 SLZERTE M SRR E A R AR,

WiE, ATLEHAR (429) HRESK LR 10% LA GBIT 10% HEE s,
ERTERM). NCARELE, NERERETEANER (BIE 95%) BT

2, Waealh
vBD

9, =231 | (4.30)

4.4.2 ZEEHEROFABHHA AR

NETJLER S, AT LAE BRI MR RN ARG HEA S ER, Y
L ptg SRE AR EE, SHNRERE NN p/e N ABEE TRHER,
TR Xk AT EIAEXN R AR R AR R B AR O A R R AT R 2
HIR R RS, FARRGTI A ER S A 20k R R & FERT R LA 0 R =5
EARBRAZER (Rath TEEANZNER). B MATLAB %4:[E 1783

k, =-03678(p/g)’ +0.7269(p/ g)* -0.5771(p/ g) +1.0000 (4.31)

REREXL 10% AL, ERE 42,
RI12~F 31544 H T%E%ﬂﬁéﬁﬁ%ﬁ%&ﬁﬁﬁﬁ&%ﬁwﬁﬁ{’ﬁﬁ T,
W et AR XS T X RAE IR T R B BRI R MR S AR L, FIH
HEERIRBEVIREEE R ALK
k, =0.6409(p/ g)’ —0.6546(p/ g)* ~0.1613(p/ g) +0.5935 (4.32)

RI1~KIBHUT HERYRGEEMTEATRERIERT, MEREA
BN TEEMFERERB KA, R R R 2 R % R YT R
MAN R EEHAK

k, =-0.5912(p/ g)’ +1.2695(p/ g)* —0.9520(p/ g) +0.5935 (4.33)

ZAI TN TE pg=0, 1/4, 172, 1 BN T EBERAMNFRARIEH. B
% RISk R F B R AN R R AR N R R R R EE. NS
I ULE W ksl b X ke HER D X AVIRBME S5 X R R X W 2 ik R
REEWERAHE.,

a1l
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ERANFMLFMRX

4 R M REARNBE AR

Table 4.2 Comparison &; with &, of formula(4.34)

242 EAASI (431 b S

5 FF (m) 40 50
T =
Rt 1/5 1/6 1/7 1/8 1/5 1/6 1/7 1/8
AN 0.8357 | 0.8257 | 0.8216 |0.9956|0.9662| 0.8329 | 0.876 [0.9184
B has (90) | 27,165 | -8.463 | -9.004 | 10.046 | 7.309 | -7.525 | -2.235 | 2 485
ki 1.0699 | 0.8288 | 0.8385 |0.9842|0.9539| 0.8923 | 0.8316 |0.8918
25
2/8=0.25
Bz (o) | 16293 | 8.057 | -6.807 | 9.004 | 6.114 | ©.367 | 7.693 | 0.424
SRAB= gl K |09725 | 08242 | 0.8498 [0.9829| 0.96 | 0.8717 | 0.9302 | 0.822
0.8956
BH g )| 701 | 866 | -5.387 | 8884 | 6.711 | <2739 | 3.722 |.1.539
s2| K 0.9154 | 0.8216 | 0.8278 | 0.9798 1} 0.909 | 0.7617 | 0.8802 |0.9059
Bl =2 o) | 2165 | -6.351 | -8.188 | 8.596 | 1477 {-17.5761 -1.747 | 1.139
12| K 0.7873 | 0.8591 | 0.7698 | 0.9672 | 0.9313 | 0.7945 | 0.8198 |0.8693
Bl s (%) | .7.694 | 1.307 |-10.142|12.337] 8.958 | 6.718 | -3.425 | 2465
ky 0.9041 | 0.7978 | 0.7721 10.9678 { 0.9294 | 0.8534 | 0.7292 |6.8564
p/e=0.5 25
Bl a9 | 6219 | 6277 | 9814 [ 123021 8772 | 0.647 |-16.243 | 0.995
2 kb=\;g| k| 0832307998 | 0.8431 [0.9834|0.9042 | 0.8444 | 0.8912 {0.8254
0.8479
B me 9y ) 11871 | -6.011 | -0.566 | 13.7811 6.229 | 0412 | 4.861 |.2.723
s2| K 0.8231 | 0.8165 | 0.8326 | 1.003 |0.8537! 0.735 | 0.8381 |0.8664
Bilhase (%) | -3.01 | -3.843 | -1.835 | 15.466| 0.682 | -15.357| -1.166 | 2.138
12| K 0.6997 | 0.8686 | 0.6868 |0.8188!0.7767! 0.7475 | 0.7796 |6.7764
B im2e (95) |.12.148 | 9.659 |-14.255] 4.165 | -1.03 | 4977 | -0.654 | -1.069
ru| A 0.8536 | 0.6927 | 0.6914 | 0.8091 | 0.8525 | 0.8066 | 0.7448 |0.7849
p/g=1.0
BElge (%) ] 8072 |-13281]-13.404] 3016 | 7.953 | 2.715 | -5.357 | 0.025
2R k=l3g| &k |08239|0.7301 | 07117 [0.8532|0.3867 | 0.8021 | 0.832 |0.7725
0.7847
BEee 9y | 4758 | -7.478 | -10257| 8.029 111503 | 2.169 | 5.685 |-1.579
Y " 0.7995 | 0.7144 | 0.7657 10.8371 | 0.8238! 0.7051 | 0.7956 |0.7801
BE s ()| 1851 | 948 | 2481 | 626 | 4476 |-11.2891 137 | 059
AN k
ik mrimg =R oA 5000
vk
H
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Table 4.3 Comparison influence coefficient &y with kz with &3

*F43 BWEE L.

v ks B ERER

p/’g

ki

k;

ks

k1 X k3

0

1.0000

0.5935

0.5935

0.5935

0.25

0.8956

0.5223

0.4274

0.4678

0.5

0.8479

0.4293

0.3678

0.3640

1

0.7847

0.4185

0.3469

0.3284

LERBVIRR G AN RTEBWHE, LHRRED
RATH:

AR RIS

E: RE kW

Arh (4.33)

4.5 FEWRIVTH LY

™

] Lk
(D EINFRTEERR BB ESEN

g, =2.3311k

NBD
2

5]

JARFE B TR R LA E]EL
8. SRR

X7 BR T M FE R AR B A T

(4.34)

AR Al BEAR R BT

B BERTETE, IR L& S s R B S B TSR SRR A 2 H1E .
(2) NFEHRRTERIRE, ZXEMRENE TERNREEEEA:

OEZNE

@Ry B AT .

HTO, HTEXHEEMTERE S RRMEERER, TEERPE ST 6
AEERE: NTQ, AXMFERKMFNREREREEERN, FET
JUTSER 2B TE WENERESRMEEREN®m. il EL

BENATRER, BV RS EHRMRTERRE LRI ER

(3) NATSEEETT RS S, EEI?ﬁ&ﬂﬂ%ﬂﬁﬁﬂiﬁiﬁﬁ%_ﬁuﬁﬂ%%ﬂﬂ"
FEBAEE, WERS LER - SMiTiR. AR (434) FIREBHERAFE

HME B —ENRERE
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RR KT AR “ SRR

5 LHie5RE

s

5.1 XHEZELE L

AR TWENETRLAEEFREMENRATESE HIERIRNEE.
B, RENRTERESSH, BRTHHER. RIRMRMLA
RptEENNERERRINEY, HHEAEEHTET. SRASK, RU
HFHNE, BEMSHEERTRERERITLEAR, BEAHR, B3
M &R

1, REBFREREEIE RGNS TESS, ERTABETR. R
EHERE, ENEETEMNSSS SN, NSHAEREBLTRLER
MERERLR, AKXRETENNEERNANSARENS, AERTFHZT
S,

2. EWRFEER, YRERERESBIASN, EHNBREBHER. X
EASRE SRR S~ MR AN, B —RAETREN 1/300. FMELT
lFRAN, ECESWBREBHIUAERE.

3. B MM IS SF G, ~REANF A TREE S, METEREE
X 12, 1] S S50 A P 5

4. BARNERRALHETSURE VBD KRERHXE.

§, FELEMIBTFE Rt F AR, RN LR LG REHE R TR
Bttt AR BT, HAE EEaMEg, A%ES,

6. FIERAKFRA AT AR R RERAR, EATHRABMEREHER
s B A FEE, BUGEh R HATR e TRSTRE . WA
BREEIE, Ul pre ARERIG, FRIENKROMAERBERERERBARMR
., BERBAE =-0.3678(p/g) +0.7269(p/ g)* —0.5771 p/ g)+1.0000 .

7. FIEHG r BSCIRIE T M AR AR, ARG S5 BB HON M7
G gt A ) R

§. WIHEZETM, EEWNERMFRNAZEES, THRIE. &M
GBS UL RIS SRR R K |

o. BMTHHEIRMT, BHAEFEFRARSARAINBESAR,

JBD

4, =23311k =5~
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BERKFH AR SERESRE

HHk =-0.5912(p/ g)* +1.2695(p/ g)* —0.9520(p/ g} +0.5935 .

10, HEMREEHHREEREFRNEZEMNEERNE, ALFIREP

5.2 HlA—TH R IAE

NN REHPIHRAORERE, RBETHRREHWERBEHEIN. &
MYEIRIRAT, AN REBITHEEGH . BEERR, NMEEWHNANEBITEL3E
BIER, MRS SCEFNIEREN AR SREMERMN, Eem ki
GHPTAEZRD THIE. VBSHKEFEFE. BT XEWRLNRE, &F
i*Fgﬁﬁ@f:ﬂﬁkﬁ%mlf’ﬁ%‘gls%‘i\tﬂﬁiﬁ‘*ﬁ

HREHABRSENSE. IRBBEHIESEHAER NS —. thiF.
AT %ﬁ#—%i:ﬁ%ﬂﬁ%nﬁﬁﬁ? R, RirEMHERER. BTHEEiERE
R RS TR

2. BAESHEARL. WEREEFENERSTAREIFR, S8R
MEES T &M FHREREMRERR.

3. MR AN M REGH, BEXAERTHN S BAN %L
NAHEAR, RENTERGER, MinEHaRE, #—SREAENERE.

4. KEAMFTRERMTLE M. BERMRHN FTET 4] RARAR A ST,
B KRBT REN H RN BB R B R4 ZEERIR FE R Mg AT
ME R MFTRMIE, NTITERAMERFE IMTHERMBEAE,

5. RRE. . MAERUNTZAZTEKETEHWER, IRE—HER.
MAE—MRER, MRE—REER, NE—MBEAR. F+EHRHBE TERTKR
Bik{E R (Tensegrity Systems) %,

6. MRS TR AARTMERNRBEEREE R NEE, E2H ERM R
EFTFEsHMAXRTE, NEENEEME THASHEIBERITIEELR
EaAT, [EEMuE PR,

7. RN E SRR REERRA. AP ERMAKE. RN, Nt
AMFRERERNRIER TS A RN, 31H8 et XA N RS .

8. IR AKEBEMREMERERSKPHMBERAT (BB EEMFTES T &
EFMAMER) MPUEMT. SHIER. BRAESHERRE.

9, #H—F R, ENER/LA. MEERERENSEREMTE.

10. HwAIMREHINEEFEHT. WTEM CAD REHRMG (AFEE34EK
WRARRMSATH, ETSTRNEMITEANLAS ., SHRRAeRT, &
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H R Kl 2 F Y w3 5tk RE

MR BB . SN T E . AR A TR mMTEE), Lk
RS NANEER SN EE.

11, MELHIRART, SENBEEAMRERT, ERETHREEH
BB, SHRIE.

12, BOEMEHNEEHNN T TZNES. TAFEIEFSHNS a3
et e R TR S 5HT . BEMITREMAEPNE, BE~ARAS
TREN. RETETHTERSHT MRS BT,

13, BUEHRBEM AL EEE AR T . FRSEMIE S0
AV FI A& B PR R RS T .

14, FHIGHETRERSSEEDES (AEITHENSE, SNESES
HED B EBR S,

iimh
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BERNFMEFA R B

25
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