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R BRI HUBE AR & R S PR RERT

The Synthesis and Flame Retardance of Reactive-type Organophosphorus
Flame Retardants

Abstract

A series of novel phenolic hydroxyl-containing reactive-type orgnophosphorus flame
retardants used in epoxy resins and alkene-containing reactive-type orgnophosphorus flame
retardants used in polystyrene were synthesized. The flame retardances were tested and
evaluated.

By-products in the bottom products during the production of DOPO-HQ were analyzed,
the structures of the two main by-products were identified as two isomers of 0-2DOPO-HQ
(2,5-bis(6-oxido-6H-dibenz[c,e][1,2]Joxaphosphorin-6-yl)benzene-1,4-diol);  causes and
mechanism for the production of 0-2DOPO-HQ were found during the synthesis of
DOPO-HQ through experiments, and the conditions on production of DOPO-HQ were
optimized. Since two active hydroxyl groups were present in the molecule of 0-2DOPO-HQ
with higher phosphorus content than DOPO-HQ, 0-2DOPO-HQ should be good reactive-type
flame retardant for epoxy resins. Therefore, 0-2DOPO-HQ was synthesized starting from
DOPO-HQ through successive oxidation and addition reactions; 0-2DOPO-HQ exhibited
" excellent flame retardance according to flammability testing results.

The cross-coupling reaction of DOPO with halogenated phenols were achieved for the
first time, novel phenolic hydroxyl-containing reactive-type DOPO-based flame retardants
used in epoxy resins were synthesized; the cross-coupling reactions of
2'-hydroxybiphenyl-2-ylphosphinic acid (HPPA) or diphenyl phosphine oxide (DPO) with
halogenated phenols were studied according to the above result, new reactive-type flame
retardants used in epoxy resins were synthesized.

An approach for the synthesis of 2-methylene-3-phosphorylalkanoates (MPA) via
Sn2-Sn2' reactions of Baylis-Hiliman bromides (BHB) with R"R'P(O)H was put forward for
the first time. Methyl 2-((diphenyl-phosphoryl)(phenyl)methyl)acrylate(MPA-1)was
incorporated into polystyrene as reactive-type orgnophosphorus flame retardant monomer via
radical polymerization, flammability testing results shown that MPA-1 greatly improved
flammability of polystyrene.

Key Words : Reactive-type ; Organophosphorus ; Flame Retardant; DOPO ;
Phosphorylalkanoate
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Tab. 1.1 Statistics on fire incidents in China, 2002-2007

Year Occurrence Deaths Financial loss (10°'RMB)
2002 258315 2393 154446

2003 253932 2482 159089

2004 252704 2558 167197

2005 235941 2496 136288

2006 222702 1517 78446

2007 163521 1617 112515.8
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Fig. 1.1 Schematic representation of many processes involved in polymer combustion
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Fig. 1.2 Idealized description of the temperature variation with time in an enclosure fire
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Tab. 1.2 Standard for tests for flammability of plastic materials

Method Standard code
LOI GB 2406-93, ASTM D2863, 1SO 4589-1984
UL-94V GB 4609-84, ANSI/UL-94

(1) BRME 45 H0M E :(GB 2406-80, ASTM D2863)!¢)
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e SPECIMEN
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FT240A approx. 50 mm _L~_J

1.4 38% V-0, V-1, V-2 UL-94 EERBENXEEREE
Fig. 1.4 UL 94 vertical burning test apparatus for V-0, V-1, V-2 classification
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Tab. 1.3 UL 94 vertical burning test for V-0, V-1, V-2 classification

R V-0 V-1 V-2
Afterflame time for each individual specimen t; or t, <108 <308 <308
Total afterflame time for any condition set (t; plus t, <508 <2508 <2508
for the 5 specimens)
Afterflame plus afterglow time for each individual <30S <60S <60S
specimen after the second flame application (t,+t3)
Afterflame or afterglow of any specimen up to the No No No
holding clamp
Cotton indicator ignited by flaming particles or drops No No Yes
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Yuji e R T A PNIQ-(ZE BB EER, PPQ), AITHEMAGKIE L, 218
B H0.3%0F, UL 94MRIEV-04 . KazuoS™ i T & 4719. 208121 E AL B3R £
FEFERMHIZR . ARGEREH, LR=FLEWRMELHH36.35wt %, 30.52wt%
F132.36wWt%Ht, #EAIIA 2 FHAR M RAUL 94 V-04%

@ ng@ Lo

19 20 | 21

XiaZ M5 FP-HRIL &M S KRB R M E T SRAMBRENLE Y2, /hE
Y22 AR ELFICNER EM S, 255 B H2.83%0F, N,A700°C R E#ik41%, LOI
1£29.5%, UL 943UiRiEV-04% ; T F VIR EYA(TBBA) IR IR B S, IR-S BiX17.12%
A feik 2 R R R .

_16_



REBTRFHLEART

Chen W Ik & B T4 SURH M 4257 25 13, VU RS X0 B Ko B 1L & 4723(BDSPBP), 230
R AR R EW IR B iFEBEMA Y. BDSPBPE & 4 18wt%ht, LOWEIX29.4,
UL 94JUiRIEV-04%, NoH795°C TR K H1518.2%, M IXBDSPBPHE ML TN 49.2%.

OH
0\ //o 9/0 0\9
P HOCH,CH,OCH,CH0-P( X P~ OCH2CH20CHCHZ0H
o o o
OH
BDSPBP
22 23

@ HENED

HergenrotheraZ£ P84 5 T SHRE R K IR E M K (24-28), FIEIREM IRTGMDAFBE
M. BEEBIKE1.5%E, AR RRERBE, BEMERNRERE. fiERE
ERZE .

Hsc—g(o/_? )2 @—ﬁ(ow )2 Vc37_\o—('|l=?—o/ﬁc:)7

o
24 25 @

27 28

AleonS R FMBRE) R TREAUHESREAR AR RN E A SR T HEHE
W AR & Y029(IHPO-Gly), FHHBFR T IHPO-Gly A B B ALFI1E A T 2R AR I BE AR 1
MRERRH, BUFA2, 4-—ERFRKDAT), NEBEZFRE(HPA), 4-—Hj&
HEitng (DMAP)HI — & —(DICY)RY, UL 943URE A FIV-04; H A =FALH 28 2B
(BFsMEA) AL FIELET, UL 945 ER A& BIV-14t . THPO-GlyFE#AK K My 8 - 7
TR, BESEA13%M, UL 940IRATIAV-0417, THPO-GlyFH AL FIDGEBAR &,
WE, HELFIADATH S B 43.6%, LLRELFIABAMPOR(m-2 %K 3) B EH

-17 -



R R IR & 5 PR RERRF T

LBBEA B H6.8%, TIABEARNE, UL o4lRABIV-0EM, JERMTIFER
IR, IHPO-GlyFH#MLFIDGEBAME MG JE ILF ADATH B & B & /D H1%AF, UL 94
PRBRATIEV-04, N, F700°C 5 %i520%4),

H, Q Hp
HaCHC~C -OH,CH,CHAC R ~CH,CH,CH,0-C -CH-CH,
o} CIHz o}

BhuniyaZPO4 i T HRE M IE30(a-d), FE1LJE HFFEM AELOIAN F33.3-40.32 18, 3F
BERIFH B84 . Bhuniyaih% 8 T P/NFIP/ShAE A . PANUIMIE R 2 P/NEL 0
B, HFNETHEASYREHEDIMR; PRSOTRZ MAGHRER, FHERNEZ,
TRLOUE 5 HEMLF T T .

(o] (o)

I Ha I
(o) O-Ar-O—P—O-Ar—O-C '(FH"CHz O—Ar—0-P—-0O-Ar-0 o]
u/{ © o ) @ \A

n

—OEO- U 0O -0+

RenZPUFI % = HAH 5 M E MM R N A T NELAG-BR) F LA
(BPHPPO), AREEHEAE AR SHHT & BAEMIE31(BPHPPO-EP). f4,4-—H
# — KW (DDS)E (L HIBPHPPO-EP A H R BMIRR K, BEEHRT7.79%H, 800C TN,
IR iE51.8%, BRHREIES2.1%; LOMEXA34. LinEP>S 0 AL —HEBS
2,3-FFE-1-TI B R B T S B A E BE32(BGPPO). 437 FIDDM. DDS#
DICYE{£BGPPO, 78 Z|MIFEMAELOIN33-43, 700°C FN,H K& H28-50%, RI;
HY B 4T B BH AR R

- 18 -



REET KA AR

BPHPPO-EP BGPPO
31 32

Shau P94 R T 2 F & TIAN R E I ) 1035 U PR R EAL BEEA BN IE33(TGCAO), 5
Epon 828EXDEN3483FEMAE R4, 45 FBEMP(WG-EH KK Z AL E /L), DDMAD
DDSE kL, FEIALIIFREM BEA B A E R R . WangE I BT 27 & A A&
FA f5 B R R0 T P BELARR G 2 O BRSEUH I§ 34(TGDMO) . 43 %I FIBEMP. DDMAIDDS[E 4k,
TGDMO, B FIFFEMIE S5HEpon 828FIDEN 438 E M fEAALL, /a2 R E(K,
FHEBRERIRRKE,

0}
Hzc HC_HzC OOCD: :©:COO CHz‘CH CHz ‘)) \N ||=I’ N/ &
Ho C—HC-H C~00C COO- CH2‘CH CH2 O;: : l

CH3 0
TGCAO TGDMO
33 34

KazuoZ™Wl& i T & EAL B 45 Ha RO S0 35 367FI]37 HEREHER P =FF
WSS B 5426.17wt%, 26.12 wt%F128.42 wi%Fht, UL 9435 V-0%.

A JH Oy

35 36 37

SchiferZ P04 i T BB FOR E HLBE S [A]44DPPO, Hifi—H & T =M EDPPO
EDENSE M E38(a-c), I 5DOPOFEDENSE M A538(d-NFIBEER — KB DENFFE M
B38(g,h) PR IEE Ttk . SRR KB, FrADPPOMDOPOZ:DEN S M i 7 %

- 19 -



RN NIRRT & i SRR BERFF AT

EEH0.8%F, UL 94MiREEFIV-04%; TR —KAEEDENAE N B S EE
1.7%0F, EEHSERME. B EN1.7%K, DOPOEDENKE M AELOLIE39.2,
M DPPOXDENIE M AELOIBS K, H31.1.

ik S
zjdg—f

JengZ & B T SRR EMFE39(GDP), HABIARRKEEBELFIE K. BEMmHE
WREREN, EEFIENEHSBEOREMIEEEBRENLOL XEFANENHSR
SEENTRENER, TiansEEHNTRASYEREGEM.

B\,o%yog{o(jo-g}nod:\/&

GDP
39

Q) SP-HELEY

_20_



RER TRFAE AR

ChiuZP8FI Fi Y BB — Z.BE(DEP) 5 UM A(BPA) I e R ¥, & T & %4 P-H
BMDEPATAYI40. (AT UBRMEER LS ZAREKEE T T U RBIRR, FEihaH
R E M FE R ELL B & 3. SEW X EL T DEPAIBPA-DEP & 4L AIBE 1883 R E M4 B I BE AR
¥, 18 %|#DEP/BE 188 HIBPA-DEP/BE 188XF 4 #% fig ILOI S 7] 429.55130.5, = FDDM
4L HIBE 188 M IE(LOIA24), i BIDEPHIBPA-DEPT] 3 54 #} it BELAR M .

CH3
CH4CH,0- P OH—O ~P+OCH,CH;

CHj
BPA DEP

(3) BB RULED

JengZ VPRI B Z AR EUBPDCC) S HEA AW RN &R T S HP-NEKIBE
B R E A IR FE L 7)(41-44) . FH 5 F)H THEMM AEBE 188. NPES-901 FIGDPIRE %
feRIBERRELL, HIREREKY, BAMNTEWEERERBEERS, BHTEREY
BRIFINT EHP-OR. BIEMSHANBEBEEY, FREMEES TR, #H
T

Ha CHs \y @ Ry G GH
HzNCHCHz('OCHZCH‘—)-N P-0 o- l|= N- CHcHZ(-OCHZCI-I)—NH2
HzN(l:HCHZ(—OCHZCH‘)-NH NH?HCHZ'—(OCHZCI:H)-NHZ

| X
CH,4 CH5 " CH3; CH,
DCPD230

41

. OHN T Oo
A as

YOO
OO

DCPPDA
42



R LB & A S FRAR I AERT ST

CHs CHs CHy CHs
HZNCHCHZ‘(-OCHZCH-)—N p— NHCHCHzf'OCHZCH)'NHz

PPDCD230
43
?
HN HN—P—NH NH

PPDCPDA
4

“4) EuFey

EHER—EE-P-N-EF R THTHI-BIEEY, RIEFHP. NTEHF 5K
RE, BB AEBMPREBERRE. BT EREES TP FEP. NI
Mt E, REXBUEYYASAGHRYE, RALEREEE. R, BERH
(LODFMECKERE TR BE S5 4% Lo

Chen-YangZ LI N 4- B B X E)F =B 4 R, S RESERBR—Z
BN, HRYESHERRRRNSGE T & RBHE & B H R E W IE49(PPCPT).
EEpon 828F1DER 73230 & #4 fs#i Lk, PPCPTE 55— RE{b7DDM, DDS. DICY
FODAZ RABW R, AR IIHEM G R E R SR EHMLOL

i
Cl—llD —OEt
OEt

Q. ) K Oj -

N’ N T

QO \ O _THFTEA_ N3P3(0CeH4O —P~OEt)237(0CeHsOH)a 63
0 O OEt

KOH/EtOH Q N
N3P3(OCeH4O —P—OEt )2.37(0CgH4OCH,CH—CH; )3 63

OEt

o /¢l
ave PPCPT

49

- 922 -



KERTRFF AR

Buckingham % °19 & 5 T @B R BEEATA450-54, FAVEFR UM B () BELIR [ 4L 77,
PEAAR R K .

NH N H,oN
2 // NHZ HZN 2
\\
o ,o °~
N P§

O \'0—
o -'o—z
O\'U-
0\'0:2 O

0 °~'N\P?0 0.
o

R=H, CH3 OCH;,

HaN, _NH, ) 2

o No O NPy

oN. " 'go
SN SN
O

EWBEEmBR LA REMERYE, R, BTHER—RFESPRN, T2
Hk, WRK, BAR, FEkRHT HERERIEM AT IR .

(5) DOPOZBEZL LAY

DOPO(9,10- —&-9-5-10-B§ 7= FE-10- 4L W) & — FF EE 9 HIBEFELIR I 6] 4% .
DOPO #FH&H P-H &, AISEME. HE, FEESHITMRRN, £RE&H
DOPO £74#]. DOPO iAW &H RN, AI{EANRNEHRFIZERE RN
FEMN M. BTXEMARFEBHRERIELGW, S RERREE BT ek
B E I A IO A FOHURR P B . A DOPO AT AEMITERR EM AE R IS X EH A
FR: —RBAEN S BERE AR B L SR AR R STE PRI IR B IR, —RIEN BB
W R 5 5 2 B R R T R B IR R B s - 72 DOPO AT HBI N R B IR EE
EESREEAREBTANEEER, THIAEHEREEOREMEERLN. B115
WEM e R AE BRI FRE RR . B2 FEWRH, ARBESE. #43
e, RIHAARRREGER ZEKK DOPO A E M AL & M k. 7 DOPO %7
Y SIANIRE R, TS A BRI EMAE. DOPO HIFE M5 piek 5 e E W

-23 -



B RV HUBERE AR -& R S FRIR M BERT A

EEBELRIFFET, o] k4 R VA R PR IR E % fig . DOPO ) P-H 88 af LAfEZF
SRITH, FMAX—RMATH %S DOPO KNI EMAL, HET DOPO EULEYT
FEE RN RS MR A B RIF MR ERTR.

O BEELHF

DOPO # FH W PH #EMERR 14-EWMMALREELXHERE LA
55(DOPO-HQ)'**}fl 56(DOPO-NQ)*!, B FRIEHIFRMAE DOPO LML, 55
RELAAR A R S0 Pl R B HH RS v O B LR FE A B, LLIR R BELAAST) TBBA FEAR AR 04 fiE
FERMRRRENE. ERBEATENET, BEEN LI%NRAEES UL-94 V-0 4;
TR AT TBBA RE & 6-13%, BEFREEKFHMAN BHPP B 5 & 2.2%0), 7 HEEF]
HIFIBRAR R, HRIFAMRF DOPO-NQ BT B A BIF MR, SMBERIFEN L
HIFE TR IR B 4T X BRI A 660,

Q. QL

DOPO-HQ DOPO-NQ
55 56

FIF DOPO # P-H % R M iE P8, DOPO i) P-Cl BfT4EY), BAIBREELEAHE
IR E W AR E L] 57-61.

DOPO 53352 O sk By W AL (KN 57(DOPO-HPM)#% A T R0 Hig- By B # A
B AR, BRMFEMIEER S BEREE TR TR TES MR, UL-94 iRkiE
V-0 4. Cai % AF|H DOPO S AMM AR E KA KT 58(DOPO-TRIOL). %t
Wy A BIRER RBEMR G, PARMEZEBE S B0 1.87%B A& 3] UL-94 V-0 . 5HEM
AR R, BRI E R S 1 B IR B (T FEE B & BRI o n, XEH
& DOPO-TRIOL Fl B f)3 i R & WS BRF BEH K, R R &9 4R BB K i DOPO
LHEIEE RE T BREYS FHERABES . & DOPO SHMINBER R, 2 UM EM I
B AL, Liu E7FH DOPO 55BAIR N HI& T 5 A& Bl R g B L7
59(DOPO-PN)H1 60(Ar-DOPO-N). EAIRIMHBHFHHAE S FERE. STRERHA,
DOPO-PN FR#RAI4R B BYBS IR E M IS CNE200, T, KF 160°C, #HAM#EE KT 300C,

_24_



KT RF A8

RS RN 2%e, RIBEIEH LOL X 26, FHMRMEX UL-94 V-0 £; Ar-DOPO-N FHAR
fty CNE200 SR8 WA Ty ik 159-177°C, A RERE KT 320C, S EAT 1.6%HK,
WBREIEH LOI i% 26-33.5, HHAREHIHBRE. Wang ZH A DOPO #74E4 ODC
EmEMIER KNSR T 61(OD-PN), AT CNE HEBRHA. LRERKY, B
Bik 1.35%K, LOI Ak 33, BHMAM:IX UL-94 V-0 %K. FHEHARTER®A. WRE, &
BRI Tk S A

n
<

DOPO-TRIOL DOPO-PN
DOPO-HPM 58 59
57 “ () ()
H
o

@ REME L

DOPO ] 5 F B AL & Wi sl £ & 56 R A IR B AL 767, Wang U014
T DOPO 5 EREAAK RIS, 4 5%175 62(DOPOMA)FI 63(DOPOITA).
3% DOPOMA 1 DOPOITA A T A BIAE M A(DGEBA)KIEL . SLRBIERY,
DOPOMA F1 DOPOITA ] 43 FI7E 130°CH1 160°C T 5 DGEBA b kM54, EIEE
H LT DOPO-HQ 55 B&{i(150-180°C)*); {H — % F14# DGEBA #uia g Mt 55 ELM
DGEBA g%, #IEEMHINFH: DOPO-HQ 44 Z>DOPOITA 14 %Z>DOPOMA 4 &, iX
RETHFRMTIERN P-C BREREHMAFTIER. {H DOPOMA AR 5% # 5} iR



R EVA HUBERE RIS RS FRIRPE RERIT A

BE{iE 390°C LA k. {84 BiE 1.7%0F, DOPOMA 1 DOPOITA 4L FIERE 4 iE UL-94

MR E AT E R V-0 &
: ° %
\Eﬂ';OH z F.;“qtm-l
OH O OH
O O

@)

O-1

DOPOMA DOPOITA
62 63

® MR EL)

1998 4F, Chen ZUSP\Y se4RiE T & BRAT 4 I DOPO FTAMKIA K, HATHE
R AR I BEAA [ 4K . DOPO 5K BB INEUR 5 i /k 132 64(DMSA). IS5 K9, DMSA
E{LE) DGEBA , 5HRI/NE R — FERAT(HHPA)ELAR A — R (PA)E LA DGEBA
L, EBEEER LOI MRE, KRS THENIEKERE.

e
.

DMSA

@ BEAEBEWH

FREENFREMHHBREZNHENBEMTZ —. REARMERESR, %
DOPO BIAZ LM+, WAZSHAREEEREWIEE LT . Wang 208
DOPO-HQ L ja) il%E 2K F B R B, FF &R % T DOPO % — 75 fg M g [ AL 65,
F#FF DGEBA HIBE#R L. PRI ER A Z [P I REE R 367C, Ty 4 170C,
LOI % 30, BRHEENIAREHEMBMRYE. Liu ZBPHRE TH2F DOPO 5 4.4-
TRECRPER 4.4-“HEZEKFEEN RN, &8 T WEE DOPO T4 66(a,b),
67. 67(2DOPO-A) [ 4t. 748 FF By B 2R & IR (CNE200)T, i& 195°C, 5% 4 iR ik
316°C, LOI ik 37; Mercado % A®%% 2DOPO-A B T DGEBA HIE 4k, 2DOPO-A BT

- 26 -



KERTRKEHEEARI

FRIMER, TERBHEWER 225°C, BXRMUBIFOMEMRYE, BSE 4.5%0,

LOI 5 332, 5%#ARIEEEE 309°C. Lin ZBF|H DOPO SEIHMERKLMLL
(pararosaniline chloride)fJ A N-& B T =% 2 DOPO fi744) 68(DOPO-TA). FFHTF
DGEBA H! hp7200 ¥4 4 i (I FEERBA 50, 45 R K 9, DOPO-TA BH#X 1) DGEBA 1 hp7200
HEMIERR &R T, 4 5% 171°CH 190°C, X DGEBA/DOPO-TA/DDM 4 R & 81X
1.8%, hp7200/DOPO-TA/DDM A ZB & Bi& 1.46%HF, UL-94 JiRiL V-0 &Ko Just I
Schartel 2 AB>%) 5¢ 78 DOPO B35 _ERULIEIR& R T — R FIE I DOPO FT4EY) 69-71.




R Y LB RATIR & i S FR M BT R

Schartel 2 A9 T 1444 69 FE#A DGEBA KI#i#tERE. 35V mM%E DOPO #itk
W IR BEBET T L. 69 FH#RE DGEBA ##/5, P I ERYAEFEMP, mimE
DOPO AR X EERES M. & VI ) GEBA/DDS/VI AR LAREFEM 69
DGEBA/DDS &% LOI #£5) 17%, UL-94 Ji{iE V-1 &, BRE RIFHERYE.

® HEREWHF

Lin FF 4% H DOPO 5 & BB A AL T & BB BRER AR M Ae AL T 72. %
72 BRI ER REBE S B /N T 1.6%8T UL-94 SR ik V-0 2%, B B MEEEE-FE N
RRE AR R T, 2050k 204 CH1 161°C, S%ASMEEE S AL P 463°CHI 439°C, A
R BN E R SR % #2007 £, Lin B5TA 5 A DOPO 5 I & i in ak
ET FRENMBREN— M ERN =F AR ER ISR 73, 74. HH 73,
74 FiF CNE IFRBT9T. BFRERKRHE, 73, 74 IR EMAE, B8R 0.9%0,
UL-94 JREBATIE V-1 &, BESEN 1.2%8F, UL-94 JiREAIE V-0 %K. N-P UhEHN
AT LARRRE 73, 74 IR FRAMERE. Wang SEAPIE R T A= MM ERE. EREN=]
A A TR S B 467 7S(ODOPM-MPN). i BE AT A TR EM fs IR, BE S B 0 0.81%
HE B 2.36%M BN AL UL-94 V-0 . FEREMMEABAS REFRIMIELE. FER
i deett, mERER A RE .

72

73: X=0OH, Y=H
74: X=H, Y=0OH
NH,
ST TS G
P=CHp|=_srCHz—N" "N N-CH -
o]
ODOPM-MPN

75

® DOPO I E W i
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7£ DOPO fTAEY I AME I, o]l %& A FiPEMRIAE WIS . DOPO EEIFE W 5 5 5k
REHEREMBERNFIGEET, iTRELRRMARBERLHFEME. DOPO K
P-H S o] MERERBIT I, FIAHX—RMNA]#|& & DOPO EMIE M sk,

DOPO 5 EU A%t & B4 A DOPO &R, F2 X1 76(DOPO-Gly) P,
Alistadt % APYHIR T DOPO-Gly/DGEBA/DDS(4,4’- — 8 3 — KW )16 R AIBHR M B2,
DOPO-Gly MISIAX MBI eI AP RR R B AR R, BHEEN 2%,
UL-94 JUlifik V-0 % Cadiz S AP HA T 58F EREER S X AR KA AN ER
3%, DOPO £HMKZINERRE TR EYH LOL, IEHRE T A EHIREMRIE.

O CH3 HsC H3C
P onox CH,— - CH2
DOPO-Gly X=AorB X=AorB

76 77(a,b) 78(a,b)

A= B=

X OoX (0.4
X N A eH Q O
| JrcH—l-_JrcHa- —CH,~CH-CH,  —CH,~CH-CH,~P
n

(o]
X=AorB O

p_fiiw 5 S
A

DOPO-OH-DEN DOPO-CH,OH-DEN
n=36 n=3.6
80 81

DOPOLDGEBA R N 7] & B & B 1-3% MR E M i577(a,b), PEEBE S EHIRS,
LOIBEZ &P, FRE M AE77(a,b)HIDDSE L, BEAEHOME1.6%HT, LOIH2ME



R R HIBEREART & RS B RERT AL

28, UL-94JUiRiE V-04 ; 3t T MM s PN B KR EM TG AR, B B0 E2.23%
B, LOIF218%27, UL-94HiRIEV-04% .

EKiH, FIFADOPOLS M EEHE M AR K, BT DOPOXEAE H By & IR & M fig
78(a,b) > IFIDOPOL I BE IR E M 15 79(a,b)*" . IR 578(a,b)5> BIFIDDS, PN#I
DICYCUE D)4l =S B A2%E, =HIHAIIKUL-94V-04, BT HEARF, 45
#228°C. 178°CH1213°C. 4, Bkl & MDOPORIEM s 5 B T RS L FEHEH,
BT EN B B ARAT ML B T AL R R, FRE BE79(a,b) IDICY Bk, BES 82.5%,
LOIFA43.7, ULO4MRIEEIV-1%. JIVE—FERARENEESERN, BEEHR
1.25%, B EHNS5.7%H, ULANRAEIV-0%, A2 TAbER. XERENETE
fI, EATEMRER R T REAKRER =4, MmiaE TR,

Schifer%*8IF FI DOPOSE L= FIDOPO 5 F BE I B 4 5 B BE R 48 IS O R 4
TR R AE BE IR S 580, 81. HEME80, 814 7fH4.4- & HE %K H {1 (DDM)HE
th, STSOFEMER, BESEHEEL66%, LOIH26.58%E33.9; X T8IHEME
%R, BEEHOMELT%, LOIH26.58%E39.2, “HEBSEN0.81%M, UL-94M
REIAERI V-0, T, AF185C, RIHLFHIFHMRERMIREH.

DOPO-HQ 55 A E M g B 4L 7 Z7= T 07 IR YE, ADOPO-HQ A H (8] 7] &
B — 2 514 B BEARER U fIE 4 1482-85126.63.9299.1001 - 89(DOPO-BQ-Gly) 4 B #PN. DDS.
DICYf@th, = KIEWRNFHIRFY: DICY>DDS>PNP, & BHMRFIKIFREMIET,
BERE. FHPNEWAKDOPO-BQ-Gly R &M fig, A B HO®REE1.03%HF, 700°C Ak
REHOTIREZE11%, LOIHI9ARE T34, UL-94PRIEV-0L%. TR 2R B H
TBBAR, RE&&IA7.24%A Feik ZIMFAIBEMR SR . DOPO-BQ-Gly st & iR 3 R Be Fg &
LR 5 MR B th o — S HOBEIRBUR . WangZ 'R 555 H e BRER A B R N &
BT XU A BLRE B AE83(DG-0) M & 2531 45 44 (I IR E M iE84(N2-0), 85(N4-0). =415
FIDDS[E 1k, DG-0/DDSHE %, W& & 42.4%, LOIA32; N2-0/DDSH R, B &8 42.6%,
LOI433; N4-0/DDSHAR, BE&EH1.4%, LOIK3S: =HUL-94RREIEFIV-0L%. T
18 FI AR IR R PR TR & B 13.4-22.7% 0, A REIABAR R FEAR AR

- 0=P-0
0=P-0 0, ,°\
0 0 CH,-CH'CH,0—X-0-CH, CH'CH,—O 0-CH,CH'CH,0-X-0-CH, CH-CH,
DOPO-BQ-Gly

. DGO X= ——.—t—'—- CH

83 CHj
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0:P-0

o] o]
7N I\
CHy"CHCH,0 o- CHZCH CH,—O O-CH,CH'CH,0 O-CH,CH-CH,
OH
N2-0
84

H2C CHCHZ
HC~ CH‘CHz HZC CH CH,
HC- CH CH, O CH, Q
O CHZ O P- 0 HZCHC
CH, CH CHZ—O O-CHy’ CH CH,
H,CHC—CH,
o
N4-0
85

Liul® ' NF f4,4°- — 55 — X B 5—8 =4 FDOPOKI R N & B T 3 &L B o
4k, T & BB R ERIES6-89. 8651887 PN, 4,4’ - & & — K F{(DDM)
FIDICY[E 4k, LOIA[IA26-45, Tyk142-165°C. DICYE4LAIS6FISSIAE M S, LOIR A,
5 7 A455030, XRHEADICYF ME TR EHHBEAREM TR TR RERGIE
K. EZRZRB00C T HERIIMAKE, 77 H32.1%H120.2. 87F1895} 7| FIDDMAIDICY
[lft, TgRIiX131-170°C, LOLA31-45, HFEBES BRI MLOIZ &R MBS, 700C
T HUR EAT1517.9-36.7%%1,

OH 0 “
HZC/E?-IC"CHZ'OO’CH[C:I—\CHZ » P'O a
0=P-0 Hzc—?«:—cn-nz-oo-c&-oz-cﬁ—\CH2

OP-0,

DOPO-E1 p
86 87
0, CH OH CH
Clqz‘\CH’CHgO Q Q o-CHzc;H-CHz-oo—CHz-?H»CHZOO"CHzCHF'{C
CHj OH 0:P-0 OH CH3 5‘

DOPO-E2
88
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O P-0

0, CH CH o
CHZ‘CH-CHzoo-Cqu,H-cHz-oo-t-lzc-c,:H-cmzoo—cuzcn-‘cu2
CHs OH OH CH

; -0

2DOPO-E2
89

Déring ZUIH| F Xt % — S 5 DOPO HIlNik, ARG H SEBIEM S RMHI%T
F & DOPO HEFFE M fiE 90. FrARIHEM 5551 DDM M 4.4 - —HE_HOEF K
(PACM)E L, ZEBARAMIBESE T (2514 1.01%H 1.44%0), UL-94 MR ATiE V-0 4%,
LOI 4354 29.1 M1 29.5; T, RERES B M InH B TR, B RFER R IERE,(>169C).
BT XL FHRFTEN e LA R R R ERAIRE H, TTEES AN DOPO-HQ M=
mZ—RAF I ER.

\ GHRC
O=PH0-)::H 0 o
¥
03 O OH o
Gy

ShsAS

90

o]

BZ, RNEAHBERATIN A THEN R RR, —8AT AR 400 CTUL L&,
MER T, 8%, BREFMNFRREERMERE. FEEENL, AHBHERMKER
BT o AR PR SR O B 2R R AN [B1 M 0 FRBEIE R ATS e B AR R IRE 1Y
%, AHLBEFEMFIAR B, L fkett, FERMAEMIENR R EEREEN.
DOPO RTAEWIEAEZ KA VBRI G FE, BT HARR A AT RE R IR AU s A%
FIBF AR RZ
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1.3.5 REBANHARNEEREESYPHEAMRER

it EZ+EEP, RNEFHBEERFIES PR E &mEY(step-reaction polymer)
PR R BRE, KEXEIRET RNVEFHRTIERE. REMRE. FENESLEY
FHIN . R, BATER RN %S Y (chain-reaction polymer) (M, B2 BELKE.
RAFEBRED TN AN —E A TR AR E. RERE 1979 4, Allen FRAICY
KEENBHLEDATEBR YR ER, RAEGHAATEEFR. B4
LY, FHLEMRCRRE. HREREH, BIAESHLRBARARNHER T
FE(PMMA), BREBIHEPANNBEZZEEPS) S22, JEERSMENMERYE. B
AINBIEMFIAEEL, RS B T REBE SRR

(1) BE(HMEEIRA R4

L7 1960 4F, O’Brien Z' g K& R T AHBEER T IBEHL &Y 91(DEMMP),
Y R A IR BB R & Bk, Price &I'IBFAE, &%F 10%LL L DEMMP
MMA-DEMMP E&YZIH REFFIFBEBRME, BEINREYS PMMA BE 5%LLF
MMA-DEMMP &P, 7F 480°C T AL BR-MALE, 490°CU BT/ E T LA A B 5
R REsRTERBRIFE A, RUIBEMET R A REEM. Price Z'NE¥ DEMMP 57N
R HUBE IR 9S(DEEP)RIPEMRMEREAT T HLES, —H A 515 MMA R, ZHRBES
BRER T, MMA/DEMMP 575 in DEEP ) PMMA AHLL, SIS EE &, FRHEEL.
MMA/DEMMP £ T PMMA H#32FHUERE, B T, HPT PR, Price &85 5]
e T A RIBRE R R B RGN E B HUBEBHRFIAE PMMA o B F B BELAAE B 22 1
& N B HLBEBER ) 91(DEMMP). 92(DEAMP). 93(DEMEP)F1 94(DEAEP) 5 7 hi £ FH
#R57 95(DEEP). 96(TEP)f1 97(TNButPO)AHL:, FF PMMA B}, ZEBES BN 3.5%K 4B
AT {# PMMA K] LOI i 17.8 & Z 21, H RN EBEMRA LA AR FIPER I E & &
T, Price 21N iz R AVH HIBEFE#AF DEMMP. DEAMP. DEMEP 1 DEAEP 5¥ 0
RIFE K57 DEEP il TEP 251 FEREZEPS)F, FHXI ARV EHIT THR. ARER
=W, RMEEARRERED IR EAERZSM, FWETSAHEMER: kM
F HLBEREAR I R i B F S AHFRER A FEAR PR

Q_OEt H Q_oEt
OEt OEt
o)
DEMMP DEAMP

91 92
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o ?,OEt H o ?_oEt
~"No7 \ )\n/ ~NorPN
z Et OEt

0
DEMEP DEAEP
93 94
2 Q ?
Et—P-OEt EtO—P-OEt But—P—But
OEt OEt But
DEEP TEP TNButPO
95 96 97

Canadell "M DEMMP B T4 42 51 [ R B 0 38 K 248 (I BRGS0, FEARLE R
FKIHLOIM 1741 H%E28.6, EiRH RIFHIFHMRME

CochezZ5 MO8 5 T AR EUR I DEMMPRT 4 4798(a-d), FHBFR T EAINHER
YIFI5SMMAZL R DI FERERBERY IR . BT EESHMERMERIIEMRER, B
BN EHE SV RGBT IR

R

c H3 O OEt

R=H, 4-BrCgHs, 1-naphthyl, CH3(CH,)s
98(a-d)

JEREIAFREE AT B R R BRAR A 99-1011 15, SRR
I IR R -

GH; 0 0 OH O CHy
HC=C- $¢=0~CH,~CH—CH,~ ,'OEt (C2H5O)2POCH2 CH- CHZOC C=CH,
o OH OEt

MAP

99 100
CH3 QMe

H,C=< 0=P-OMe
O_CHz'(‘:H_CHz_O_(I?_CHz"S_CHz'CHZ

o] OH o)

101
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Wang M4 % TR N A PLBEE & 102(MEPP). RS EHN 2.17Wi% T,
MEPP/MMA F:E 4 LOI 7]l PMMA () 17 15 % 21.8; UL 94 Mlikik V-0 %%, H T,
WNHELETR.

0]
1
HO’E\O/\/O C](a
(0] + ®
© NH(CH,CHa)3

MEPP
102

Ebdon &!'"W5i% T — R 5| 2B R SRR B4R 103-114, BIRERH, XA
EXZHEMFRERNERFEMNAHEBERNIER, ERARSYHA T XL BAR
PS 5t PMMA F R & ) #da e t R R v .

N\ .0 —\ 0 N\ /0 —\ 0

/P\ /P\ /P\ rp\
HO OH Et0 OEt CeHsO 0CgHs CgHsHCH,CO  OCH.CH,CeHs

103 104 105

—\_0 Oy ,OEt

P

CHZP OEt
OEt
107 110

o \/\P//O

/
AOEt P
OCH P
eoa©© W OO

(2) RBEREIR S RK

R VBT EREE P. N WARTRTE R REFRHERE, iR
M EENE. SHR-RAENRERBEBTEY T 5 BB SR EILR K . Selvaraj
EICURIET 4- LR E-A-BKEEERBHEILEY 115(CPHVB) S HER Tl WHKRZ
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BEMBPRAHBRFELRRN. £RMLEYZE CPHVB £ 4 32.9wt%H, 600°C K
X3 62%, ErHMRFEHHGEETE.

1l
CIISNN
cl Ci
CPHVB
115

Allcock ' HRE T S HRMBEBERAMREZSH 116 MR FETHH T 117
MEm. EBBEMENTIA, FREVH T, BETHE, EREIIA 10Wm%EBFHH
BT, REVKEREERBIEERS.

+ AIBN

——
Toluene

)
P
CH
X N °N 0

, T
0O (o) Il I_
+ _ABN | RO-P~\*R7OR
Toluene RO OR Qp@
{ <) ;
N, PIOR
N Nor
P RO-P< P
orY OR
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Allcock ZPNEFH Z B ERE RS 1S SFERNBMRFENEHELERNE
BT BRI Y), RE T REVMKPIREE.

Hj

?CH20F3 ‘QCHz‘ HHCHz‘ ')'y
//—©~ﬁ+FI’=N)§—(OCHZCF3)4 *H ZC=<CH3 AIBN COOCH;8

HN
OCH,CF

118

Chen-Yang 21251 B8 7, 3% F 25 70 4 BR B 00 TR B A AT 44 119(HPCP)HI UV EL R
NA AL T B BRI B KRk

N3P3(OP),(HEMA)g.,
OPr"= OCH,CH,CH3
HEMA= OCH,CH,OC(O)CH(CH3y=CH,
HPCP
119

Bz, BT RMBEEYBEMATIAE RFOREYHENE. RO EEMER
. REFRHEBEMBEROFNE, EHAERRNESYHERIRPZI T ZER.
FFRNAT PS. PMMA F1 PAN S8R S WKIA HIBEERAN, Lm0 44 RTIHT
FH— DA

1.4 ZFIBEFE X

EERK, BEEANIET K Z2MEMNRRERK H R, RRFITILAEIR
HkfR. HRBREANRARRBERERNFAN, FENEERMEESRZE. HRRYS
FHOEHE T IR B SRR M AR IR RE B, PR LR, B 8.
K&, SOAFRMERT LR IUEA fTvE TERE. '

YRR AR CR H, R REF AR FUR IS, BRHERE DR
>, B, ZEERFSEA05IAER . RSEEAYUBEERA b T A7 LIE i
ERBRARESYEMEZ T, EEAIREFERRN ST TFARETY, HREMEA . B3
B S Rl A FEAR AT ST AR B o RIS, A AL RELAR TR F R E AT B B R IR S,
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R BRI WA AT A& P S BEARE RERFT AT

X RERFASTREREF IR SFZ—.
CRRFTIR, AICEFERNBENBRAMEATANE, ERIRMLFENA+HE
HEREX.

1.5 BFHRAS

X EM PRE R ZH R & R B R LB E VIR, HR I REM AR .
FEEMT=ZFHENE:

(1) 4 47TDOPO-HQA BERFT W EERI=W 4 F4H, BHEBIF=Wr4REML
B, FHEHMRIDOPO-HQM & Bkt HTFEIF=Yo-2DOPO-HQEHHNMEHRE,
H B8-S BHLDOPO-HQEH, HMHIF Ko-2DOPO-HQMIA R Ak, HIFFREHMME.

(2) KHAPAENAT XABBIEA LA TE R 2R I I B B R U i B 711 o

(3) F i Baylis-HillmanR Y 5H IR L AR MRS BRF RS HERMILRS
#, RTFERZEAERIIEER, HBIFHLERE.
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2 DOPO-HQ &R TZ i1k B 0-2DOPO-HQ RS AX 5 K A

2.1 5|F

B _EHE90EM LK, FRFIMESI—HREENIMIAEERK BIR. K2
20034E Bk B A7 T RoHSHE 4 MIWEEEE 4, LA MR ME T e B F AR & T R
MEILERAREE S, AEYRATEIFRE T EES BT RSB S0, B
T BRI L R ERR o

B RPN, FeR B IEFRALDOPOMTAEYIEEREZKRE. BIERIEDOPO
TR TN FEH, FHRABEZWRAER. BEEHARRE ML
faEtAftaEt; P-CEREARBHIMEMMPUKERS, BKABLMRTAKERER
FIMER: P-ORREAEERE, WTREWEEMAIREEMEMRYE. DOPORKATEY
FMEIFEM LK. W, Ti. RiEB. HRLRRA, BSC ZHTHRFHRE
e, S BEEEMRBERRE.

DOPO-HQZ B # il FDOPOE S B £ R EMEM RE MM —, HTHMER
B, FWS TR FaSATEMBNMEIR, xHE SRR HBA Rt A R
[63-66)

Tk E, DOPO-HQ H DOPO 55t %7 7, — B ZBKBR B 2 B0 b [ ) 4%, 16399,
DOPO-HQ & Rt £k & 2.1 Bizm.

(g Clg ¢
P=H , . v + others
o] 0]
> s
°© OH

DOPO p-BQ DOPO-HQ
2.1 DOPO-HQ & &
Fig. 2.1 Synthesis of DOPO-HQ

#Rifi, 7€ DOPO-HQ MIAF=id 2 d, EHEFL SRMEF=wr=4, #Fr=mPiitaRH,
DOPO-HQ ZE TK. HTRIFYMLURZE, AT #RE DOPO-HQ HIF=fmaifE, FEME
HKEBFATEL RSt ERIE, MEEMTHERISAE, EERKEF=MHEHIR, %
K4 DOPO-HQ A E T M 10-15%. FEMMT AT EEAEENFRN,
BAEF RIS R A KIBIR . & T4k DOPO-HQ W& KT, &3 DOPO-HQ 4
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PR AR EERSETT . AMERRABIFHEER 2,3-X6-
£ -6H- "R H[c.e][1,2]EBEZ O FF)-1,4- K (8 K 0-2DOPO-HQ), FH Xt 0-2DOPO-HQ
FEAERINLEREAT TR AL CE0LEEAE B, fRAL T DOPO-HQ MI-& ML E . BT 0-2DOPO-HQ
BEFMENRE, HEBRSEN 11.51%, L DOPO-HQ HIBF& B(9.55%)Fm, Hdl

e AT IR L B BEFELAR) . [RItk, DA DOPO-HQ A RAELE L. MM S K
MEWEREKT 0-2DOPO-HQ; 3% 0-2DOPO-HQ R FHEM MG, X+H 4T
Pk, WXL REH 0-2DOPO-HQ EH L F MBHMRMEAE .

2.2 £R511ie

2.2.1 DOPO-HQ & Ry P &I =4 B 3 4

TR CER T, 537 L L RE Z B R R 2R 98576 i DOPO-HQ. Fi—. Bl
B 2Bk HEHS: % DOPO T —EBZ B ZRBkF, ZBINA leq. p-BQ, REF
BZE 125CKRN 4 h, BEZE, IS DOPO-HQ &, HAAZ-HILMESRK
THF PEsciRaE, R 85%. Fik=. UHENHH. & DOPO MA—EBFE TP,
FHEZE 90°C{# DOPO 2R, S HIA 0.9 eq. p-BQ, F/hBinsE, BREFHEZE 110C
Bl RN 2h, BEEZR, T8 DOPO-HQ MM, HMHAZ B ZMES FHE THF %
BRIRAE, WE 88%.

LRI P, HPLC BRERRN, KA _ERBEH A ERNE SIS EE MR EEE =
Yk, BEREHA L RERERN 5%. XEMHEIFYERSEEIERHHE
¥t 5 DOPO-HQ #ifE, UWAXMAZ B ZMES RS KE THF L&A fekrx. B
FrERmARE AR, Hit, KX#T DOPO-HQ WA= A .

i T 04K DOPO-HQ I R .41, B LEX LIREIF=YIH 5 F AT EE,
HAFF = ANHE.

(1) HPLC-MS 247

SR Al THF ¥es424E DOPO-HQ, 133 THF ¥R EHE &, HEAREET,
53] DOPO-HQ AR MIRA LR B EWHS, HPESHFKER Y, MNHERHET
HPLC-MS 73#7.

DOPO-HQ & i 2 1R 4 £ % 4 HPLC-MS B3R ik 2.1 Fizs.

£ 574 DOPO-HQ HIHLHI % 29.5%(% 2.1, No.l), BAFEERI=Y) BP-1(3& 2.1,
No.2)F1 BP-2(% 2.1, No )W EEDHH 21.6%F 29.2%. BP-1 1 BP-2 KI5 FEWH
538,
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#2.1 DOPO-HQ& B E K MTHPLC-MSik EI i 5%
Tab. 2.1 HPLC-MS data of bottom residue of synthesis of DOPO-HQ

No. Content Area % -MS +MS MW

1 DOPO-HQ 29.5 3229 325.0 324
BP-1 21.6 537.0 539.1 538

3 BP-2 292 537.0 539.1 538

DOPO-HQ & B #2 7 25 ) HPLC-MS % E & 2.2 fiik:

Intens,
x106
259
20 BP-2
1.5
1.0
A St
0 10 20 30 ) 50 60 70 80 90 Time [min]
{~———"1.CF0001.D: TIC -Al MS, d (0.6,10, GA) ]
intens. TS, 6 58, 6min HA21443)
x108] DOPO-HQ 3229
4 230.8
2 l
L - IS, 24.1-24 3min B{1574-1583), Background Subracied
10 230.8 537.0
0.5
3159
oD BP-2 M3, 32.5-33. 1min #(2154-2163), Background Subl
2308
075 §37.0
0.50 25 Agilemt Technologies
0.25
0.00 315.9
100 200 300 400 500 800 700 800 900 " miz
[——TTIC +AlI MS, Smoothed (0.9,10, GA} ]
intens § +MIS, 6.6-6 Brmin HAGZ454)
x108] DOPO-HQ 326.0
0504
0251 ae4 2329 | 4557 e
<fo¥ +MS, 24.9-25. 1rvin #(1716-1727,
BP-1 5301
o]
]
307.0 L l
i WIS, 34.0-34 Tmin 23042965,
8] BP-2 539.1
4
24
o (1 .
LAt

Al 2.2 DOPO-HQ & K E5 M HPLC-MS ¥ P %32
Fig. 2.2 HPLC-MS data of bottom residue of synthesis of DOPO-HQ
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R LB AR S R S B AR RERIT T

R#E HPLC-MS 3 UL & R Rt B4 P40 BP-1 1 BP-2 M4 F&5 M hnE 2.3 A
AHIEEA DOPO BREKIT R M. B4 DOPO B AHXTAL B AT e 4R 18],
X =F, 4351 0-2DOPO-HQ. m-2DOPO-HQ F! p-2DOPO-HQ FiR.

O
AKX (g ”sg H
ﬁj G SED

0-2DOPO-HQ m-2DOPO-HQ p-2DOPO-HQ
2.3 BP-1 #1 BP-2 AT RE 4 T 454
Fig. 2.3 Possible molecular structures of BP-1and BP-2

(2) NMR 43#7

KRR ATHINSRES SRS P RER, JBREREY, UHE-Z&
B A Ve, RERHE €51 4) B8 /8 2 BP-1 A1 BP-2 4415, % BP-1 il BP-2 #4T 'HNMR,
31p NMR #1 BC NMR 43#7.

& 2.4 Bk BP-1 9 'TH NMR A&,

B BP-1 (1 'H NMR BT LLEH, &% 12.239 AbH#HIE a HMRHASTE, 5%
5.889 1 5.893 AL FUE b AXE_EIRHE LR H R FIORHEE, HEigh
DOPO % %38 & H R FRHFIEIE, f a b 8E, ALK B B R AL FERE—H,
FiCA BP-1 M FEMTHANRBENR, ERBELTRIKY, REBZES DOPO
#EP=0 EAZTHAE, FULATLAHRRE 2.3 134 DOPO E4b-TRIALHIZ5H, B
AT HERR m-2DOPO-HQ &, T P-H #BE&, MBAERENE B ST AR TFIEKN
B HIET BP-1 4T 4 HIR 0-2DOPO-HQ i& £ p-2DOPO-HQ 45 #4.,
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KIEE TR LA

@
o @ o o NOMTONMNT rPALNrTORD ODVOR
- KeErSERAERARNRNENNNNN COQOQODOOG B0 0WY o
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Fig. 2.4 "H NMR spectra of BP-1
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Fig. 2.5 *'P NMR spectra of BP-1
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1 BP-1 ¥ *'P NMR BT LAE H, BP-1 3 FHHA P H T AL # IR B R A AT
A, Hik’'PNMR EE LSRRI, HEMB SN 29.611.

k& 2.6 A BP-1 i °C NMR &£ /&l. @18 2.6 aTLLEH, BP-1 HFH¥EMB
5k 161.6 (—414 a, K EMBREMERMRIR FRREE, BTzeh—41%, B8R
H 5 SMBREARE R R FUFERELRU, BFMRETFEARIFASRE: (%0
% 6 4 146.5 (1 b %, 4 DOPO EH 5 O JH THIMERE T R4S T4,

B 'P NMR 1 1*C NMR & B A BeHER 0-2DOPO-HQ Fi p-2DOPO-HQ HHAE — 455
¥, Bk, XF BP-1 K43 FE MG —F 5.
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& 2.6 BP-1 f#1 °C NMR %
Fig. 2.6 The *C NMR of BP-1

W 2.7 x>k BP-2 i) 'THNMR %, il 2.7 aTLLEH, &% 12.258 LM 8 a
HERFRFFFEE, &K 6.64 M —HEHi% (J=8.04 Hz) X HE MR LM HIRF
M4 AEE, gk DOPO % FF3F E H RTFIFEM. B a Kk, aTRUAHEBEA
MBEMUETRE B L BP-2 M FEMFRAIMBENNR, EBMBRELTRK
%, RBEEE S DOPO % £ P=0 AFHFH4E, Hikal iHRRE 2.3 F% 4 DOPO
HEbFESIMLEH, BIRTHERR m-2DOPO-HQ 4514, BFF##E P-H 55, BAEMRESE
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TEMESR AR TEMESER AN BP2 KT & E 0-2DOPO-HQ & 2
p-2DOPO-HQ %i#.
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Fig. 2.7 1H NMR spectra of BP-2
i 2.8 sk BP-2 1P NMR &£
T g
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i
/& 2.8 BP-2 # *'P NMR i
Fig. 2.8 *'P NMR spectra of BP-2
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HE 2.8 ATUEH, *'PNMR EE L ERGHIE, 108 & 32.788, K BP-2
SFHEN P RFALKNFERERER, HHFTEES.

W& 2.9 B BP-2 9 °C NMR % E. @118 2.9 TLUEH, BP-2 A FHhEMs
8 4 161.64 Hj—4HI% a, ASMBEAERMRKIR FHRRIEE, BT XA -4, B
RSB ERREMENKR FILERERM, AMRRTFRAREFEONRE: (¥
fi% 8 A 141.77 K b i, > DOPO EH 5 O JR FHIERE FHISFML .

B35 §ER ,,35§§§§§ SEg8838s8xE2 R 825 80 88
5532 $I% 239333 838 S8RGNAN A IREN ARSI RER 33 88
g
e3 5
88
|
a
1 )
162.50 162.00 161.50 161.00 160.50 |
ppm (11}
'
\ }
h
a b . |
'
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i . Rt o
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180 150 140 130 120 10 100 [

2.9 BP-2 1 °C NMR % &
Fig. 2.9 The ’C NMR of BP-2

g1 3P NMR F1 *C NMR i B R B HE R 0-2DOPO-HQ F p-2DOPO-HQ FAEfT — 445
¥, Ei, %F BP-2 M TFEMBF—T 0T,
3) IR 4+#7
WE 2.10 Frask BP-1 (IR &, H& 2.10 ATLLEH, % 3434cm™ 4% PhOH
BRI ; 1597 cm™ % P-Ph Rlci&; 1188cm™ 2 P=0O WRWtI&; 948 cm™ 4 P-O-Ph 1%
o,
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Fig. 2.11 IR spectra of BP-2

4z FATik, B HPLC-MS. 'H NMR. *'P NMR. *C NMR 1 IR #¥7 "] ¥ #4 %€ BP-1
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BN (R LB R A4 43 51132 R 0-2DOPO-HQ Fl p-2DOPO-HQ), M 2.12 ik, AT
W€ BP-1 f1 BP-2 M#EM 450, ZUMBus— DR R 454

e Clg o
o) ozié OKEKE
J

0-2DOPO-HQ p-2DOPO-HQ
A 2.12 BP-1 1 BP-2 4> F 454
Fig. 2.12 Molecular structure of BP-1and BP-2

Kok, & T #5%E BP-1 1 BP-2 MIHERA > F 454, X BP-1 M1 BP-2 1T T X-$14A47
.

(4) G X-STERATS

H{ BP-1 il BP-2 KRG, R BIEVIE 285, A S P I R w e &,
K ZBRE R BUE IR B B RRE S R KD &8, 78 Bruker SMART APEXII X-
S EATFX EWESIE, FHLT AR R AR Mo Ka 4 (3=0.71073 nm) 1E R A4
S, 7E 293K, L 6-20 By RiaHh. EHMENT A SHELXS-97 BRI EEER Y,
LHIAEER T AR K& 0 R RSB RN ZFEEIE . BP-1 1 BP-2 85 X-514%
5t BABEAR S EK. BAKESTHEB F.

B X-$H R AT 45 R X B, BP-1 A1 BP-2 I DOPO 7E 1,4-% By 83k Eit
F4B0L, B —FHIYEE 0-2DOPO-HQ KL, RESAF4 P RFFHFLRHERF,
BP-1 FH A P R FHIMA H(S,S)B, T BP-2 FFA P B FFHH LKA K SRE.
BP-1 f1 BP-2 ) @A H & 2.13-2.16 Fi7w.

7t BP-1 f1 BP-2 4+ F9, %/ DOPO AL T HARMBMHIALE . —BRBE, M
ZRALFEEE, FE A DOPO HANSFTHE, BHFTHANRE DOPO EHAKINAL,
BV EH R T p-2DOPO-HQ, TIAFIFEK 0-2DOPO-HQ. MiLR 4 RMKR, XoJfEL
P DOPO E b il 5X R MM pr b P /LR E, Fbmss 7 24 EER K
R,
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2.13 BP-1 M4 F 45K
Fig. 2.13 Molecular structure of BP-1

2.14 BP-1 f1 @A SR E
Fig. 2.14 Crystal packing diagram for BP-1
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A 2.15 BP-2 5 F45#44
Fig. 2.15 Molecular structure of BP-2

2.16 BP-2 & A HEFE
Fig. 2.16 Crystal packing diagram for BP-2
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2. 2.2 DOPO-HQ & R 0-2DOPO-HQ F=4 [ B Y i iE

I THaE DOPO-HQ &2+ 0-2DOPO-HQ F~AMEN, %8| T %<, DOPO
HEM p-BQ AEX 0-2DOPO-HQ AR EMI M.

WA RN4&MH4H DOPO 5 p-BQ IIA—E B LB ZEBEHP, T 80CT KA, &
B — B [B] R — IR, HPLC BRER.

) ZRPEW

—f &M T, DOPO-HQ &AL N, (R, RMREZATH#ITH, Eitk, &
YA R 5T R B XK. % DOPO 5 p-BQ 7 N, R MBS A AT &4 T R,
0-2DOPO-HQ WA E M ZN . RNEEY)E T HPLC RER, LRERNEK 2.2,

#2.2%35 %1 0-2DOPO-HQA F & I W
Tab. 2.2 Influence of air on the production of - 2DOPO-HQ?

Entry Condition DOPO-HQ, %° 0-2DOPO-HQ, %°
1 N, 60.9 7.32
2 air 60.5 7.28
? Reaction conditions: DOPO (2 mmol), p-BQ (2 mmol), ethoxyethanol (12 mL), 80°C,8 h.
® HPLC area ratio.

HE 2.2 AUEH, Ny IZSEAEHT, 02DOPO-HQ HIAERESN HIN 7.32%H
7.28%, “EAMERK, B, HBRTZSIENEW 0-2DOPO-HQ F=AKK .

(2) DOPO HEHIE MW

B 0-2DOPO-HQ 14y FAR M LAE H, —4F 0-2DOPO-HQ FHE 2eq. DOPO I leq.
p-BQ KN4, Eik% % DOPO &%t 0-2DOPO-HQ KA BRI, W& 2.3 Fix.

#£2.3 DOPOH & Xf0-2DOPO-HQAE L B HI & a°
Tab. 2.3 Influence of DOPO amount on the production of 0-2DOPO-HQ”
Entry DOPO DOPO-HQ, %° 0-2DOPO-HQ, %°  0-2DOPO-HQ/DOPO-HQ

1 lTeq. 60.9 732 0.12
2 2 eq. 422 2.24 0.053
3 3 eq. 46.5 1.49 0.032

? Reaction conditions: DOPO, p-BQ (2 mmol), ethoxyethanol (12 mL), Ny, 80°C, 8 h.
® HPLC area ratio.
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%k 2.3 J&H, DOPO HEMM, 0-2DOPO-HQ/DOPO-HQ HIBE W/, BiAAH
i DOPO A &7 LM i DOPO-HQ F A B ifi #1| 0-2DOPO-HQ K14 /.. 1.8 DOPO-HQ
F1 0-2DOPO-HQ MR FF K. Fik, DOPO R4 0-2DOPO-HQ KIS RE %K.
(3) p-BQ AEHZ W

2.4 p-BQH E Xf0o-2DOPO-HQAE L B I W*
Tab. 2.4 Influence of p-BQ amount on the production of 0-2DOPO-HQ*
p-BQ Time(min) DOPO° DOPO-HQ®  0-2DOPO-HQ 0-2DOPO-HQ/DOPO-HQ

0 0 0 0
10 42.77 23.17 0.71 0.031
leq. 20 32.12 33.06 1.8 0.054
30 24.79 40.09 2.58 0.064
40 20.57 42.03 3.23 0.077
50 17.65 46.84 3.87 0.083
60 14.36 45.42 4.83 0.11
0 0 0 0
10 6.38 40.84 14.46 0.35
5eq. 20 1.52 3433 24.04 0.70
30 0.12 28.94 26.92 0.93
40 0.06 28.80 26.90 0.93
50 0 28.75 26.85 0.93

? Reaction conditions: DOPO (2 mmot), p-BQ, ethoxyethanol (12 mL), N, 80°C. ® HPLC area ratio.

T ERRMEZHT, E8T p-BQ HESHN leq.Fl Seq. T KNI & YI4H AUBER H]
A4k, 4% 10 min BUFE—R, HPLC BREE, STREBEFITR 2.4 #,

¥ EREREELTE 217 %, BB LN EARTT LIS H:

I. p-BQHEN 1 eq.bt: BERMZAIEFIIELK, DOPO & EZEH T, DOPO-HQ Ml
0-2DOPO-HQ & B #8811 0-2DOPO-HQ/DOPO-HQ {8t B /= [Nz fist 8] f) FiE K T 484 10

II. p-BQ &N S eq.Bt: BELE, DOPO ML, 30 445 K#5, DOPO JL
F4£4k 584, DOPO-HQ K& BERES 10 min iy, EF|—AHKME, 10min 5, BR
B Bl k4L FE &, DOPO-HQ K& B KT T/, i8] DOPO-HQ 448 5 RN, B
H2AHHTEYR, RN 30min J§, SE&TIECHE: BRNAERZEK, 0-2DOPO-HQ
FI&BEHEM, KN 30minf5, BB TIEEME; 0-2DOPO-HQ/DOPO-HQ fH thFE K
P IE) K TG 0, 30 min f5iX 0.93.
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FiRsgR e Ri%H, DOPO 5 p-BQ kM4 Ak DOPO-HQ j&, DOPO-HQ AJ4k4t s
p-BQ KRPML; #n p-BQ #H &, 0-2DOPO-HQ WIAEKER M, ¥ p-BQ AR

0-2DOPO-HQ M FEJRHA.
I. pBQHEN leq.
—a—DOPO
. —e— DOPO-HQ
0] —A—0-2DOPO-HQ
8 40
5 |
£ 304
] 20
& p
I 104
] . R N A A
[} + T v T ¥ LN
0 10 20 30 0 0 80
Time,min
1.0
]
o % —e— 0-2DOPO-HQ/DOPO-HQ
g u.sj
0.4
02
0.0 T T T ! A
0 10 20 30 4 50 8
Time,min
II. p-BQ HEA 5eq.
. —a—DOPO )
w© —e—DOPO-HQ
] ﬂ '\. —a—0-2DOPO-HQ
g E— 2 N
® 204 /
g A
3 "]
[
—
) r 5 1 T LA
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to Time, min _o_ 5.200PO-HQ/DOPO-HQ
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° 06
E 04]
O.Z-J
0.0 T T .
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F2.17 p-BQH &%t 0-2DOPO-HQA: i &

Fig. 2.17 Influence of p-BQ amount on the production of 0-2DOPO-HQ
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RIB SR IREB R LAY SRR S Y2 M K EEHE R RN, 20 HE 80
S48, Kalninsh % AU U008 TR U AW SEARMAEWZ M EE F R . i3
HERMHQLE 2-H-14-KMChBQMEZEMEMMAEZHT, KREBTHBARNER
(p-BQ)F! 2-5-1,4- X —EYChHQWIE &Y, i 2.18 Fizm.

e = P

ChBQ p-BQ ChHQ
F2.18 HQ/ChBQLp-BQ/ChHQf¥5 4k
Fig. 2.18 Transformation between HQ/ChBQ and p-BQ/ChHQ

% Kalninsh 25 A IREV I R TR LR 4R, TR, 0-2DOPO-HQ P4
FITRE R NHLEE %: B 58, DOPO 5 p-BQ KM DOPO-HQ; #&)5 DOPO-HQ 5
MR R P BX RRE S I REENERRN, £ DOPO-p-BQ, M p-BQ #iE R
A A ZEHQ): &J5 DOPO-p-BQ 55 —%4F DOPO MR EM 0-2DOPO-HQ.
0-2DOPO-HQ =4 K 7] B S M AL i 2.19 Frizw.

T RRAEE 2.19 Fi7Rf) 0-2DOPO-HQ F= AN, K Z B & N T2+ DOPO-HQ
£ p-BQ 1EF F 4 A+ [6]45 DOPO-p-BQ, i@ it T W FsEie, HxFseR e
TFEHAT IR 47

(1) ¥ DOPO-HQ 5 p-BQ AR 18 |# 5 DOPO-HQ/BQ-0.

(2) DOPO-HQ/BQ & &Yk . ¥ DOPO-HQ(2 mmol)Fl p-BQ(2 mmol)JIA %
(S mL)d, FEBH 72h, RNBHEFOEGBFRENEROAEARZR, HHK
M HFH DOPO-HQBQ LKEWMAEM, i, FERLE, MERBHHT, B
DOPO-HQ/BQ-1.

Q) EREAY 0.4 g IMARZEGS mL)H, Bl 20h, SEHERAEE, FRE,
HUEREFHT, 844 DOPO-HQ/BQ-2.

Xt & DOPO-HQ/BQ-0. DOPO-HQ/BQ-1 1 DOPO-HQ/BQ-2 #4T IR Mk, Xt
iR 3 MR EEEEATHB . 3 MK IR EE WA 2.20-2.22 FivR.
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Fig. 2.19 Possible mechanism for the production of 0-2DOPO-HQ
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Fig. 2.20 The IR spectra of DOPO-HQ/BQ-0
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Fig. 2.21 The IR spectra of DOPO-HQ/BQ-1
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FE2.22 DOPO-HQ/BQ-2 IR &
Fig. 2.22 The IR spectra of DOPO-HQ/BQ-2
¥ bR IR EEEIRSI TR 2.5 H AT HE.
2.5 DOPO-HQ/BQH: i IR K4
Tab. 2.5 IR data of DOPO-HQ/BQ samples
Wave number(cm™) Assignments
DOPO-HQ/BQ-0 DOPO-HQ/BQ-1 DOPO-HQ/BQ-2
926 937 935 V p.opn, Stretching
1194 1207 1205 V p-o, stretching
1589 1593 1593 V p.pps Stretching
3238, 3390 3190 3186, 3396 V PhO-H
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B IR EETUEH, DOPO-HQ & p-BQ MHBEE, KEMLEE D,
DOPO-HQ/BQ-0 ' p-BQ MIBHRMIE v co b 1653cm™, HEEHH 72 h 5, BR
DOPO-HQ/p-BQ BEME, v c-o BHZE /A 1647 cm™; FIR, DOPO-HQ HIFHR
% 3238, 3390 cm™ P /MK 3190 cm™. DOPO-HQ/BQ-1 fi#Eld 20 h J5, B
DOPO-HQ/BQ-2 ] v p.opn 1 v p—o 5 DOPO-HQ/BQ-1 AHLLEE /N, T v c-oBEK, [
BT 3396 cm” AHITEE v mon, RPBEWARRETHE, WRAET
DOPO-HQ/BQ [ DOPO-p-BQ/HQ HI#7E. it HPLC 5 DOPO-p-BQ Fx#E ¥t
(DOPO-p-BQ I & 5% 2.2.4 %), 3 DOPO-HQ/BQ-2 F 1A DOPO(1 eq.), 80C R
[ 8 h, A4} Bt 0-2DOPO-HQ F1x} % —Fy(HQ), AIE B K Wi #2457 DOPO-p-BQ,
WAERA T S MATLEE B IERA P

R3S, DOPO AL E % DOPO-p-BQ 4+ F 5 DOPO EMARAL, XA[#id
DOPO-p-BQ 43 FH R F 1% A Ml TH 4 TR

Hyperchem#% {4 & HyperCube 2 5 7 & K324 Windows R HFEFF, &% AR Fi&it
MK, THTETHE. TFHE. 2TFH0EHE, MR+ 232, %
B #8427 8 % 4 Hyperchem  8.0%F DOPO-p-BQ 14> T 45 My AT MU+ 58, B3
DOPO-p-BQItAL 5 Mty 1 s fir 7 A

B EW R : 3T Hyperchem 8.0 217, £ DOPO-p-BQ 43T 4 &, £ #% Build
) Add H & Model Build %4, %] DOPO-p-BQ f14 F=4 K. %+ Setup 3 H
Ff Semi-empirical f74, 7EFH KIXHEHEFEFE MNDO 5%, #RJ5 A Compute FEH
# i) Geometry optimization #74, Algorithm i% Polak-Ribiere, Options ¥ % RMS gradient
of 0.001 kcal/mol #AT MM E, THHERWE 2.23 Firn. BHF EEREFHGFES
MBS T 2.6 F.

#l 2.23 DOPO-p-BQ 11 Hifi 43 7 I
Fig. 2.23 Static charges of atoms for DOPO-p-BQ
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2.6 DOPO-p-BQHI &R 4 [ F 14 B fof
Tab. 2.6 The static charges of partial atoms for DOPO-p-BQ
Atom Static charges (e)
Cl -0.023
c2 -0.280
C3 0.284
C4 -0.071
Cs -0.105
Cé 0.267
(0] -0.215
02 -0.250

WHEREKY, =5 ZFERMHBAIKET C1. C4 M C5 &, Cl K#HE
fof B B AR, PRUETE 5 T 8RR A B, B r 24 C3-C2(0.564e) KT C3-C4
(0.355¢) f C6-CS (0.372) , BP, ZZEEAFHBN, C1-C2 ZHKHBTEES
6] C2-C3 Z [al#% . B, FRMMIETEAELE Cl RTFA, 4R 0-2DOPO-HQ.

RIBIHE 4 R4 DOPO-p-BQ M= E A H A AE, 0 2.24 Fik.

[;/ < ~ ::?:;‘—: ""L‘,’“'"““ &
| ’ T
Jis
& 2.24 DOPO-p-BQ (] HL 7] # i

Fig. 2.24 Total charge density of DOPO-p-BQ
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2.2.3 DOPO-HQ &R BITZ 1k

2.2.2 MIFFR K 0-2DOPO-HQ HIF=A £ M F DOPO-HQ 5 p-BQ %4, KEMTF
¥4 DOPO-p-BQ 1 HQ &4, $RJG DOPO-p-BQ 55 —4rF DOPO il HiJE ik
1. AT 14k DOPO-HQ KA B4k, i 0-2DOPO-HQ HIF=4, W] REIN T4 #E:

(1) _RE RN E

RERMEE, I8 K4R DOPO-HQ MRAEREHH, RN, mEaMmngs i
BHIEES, B DOPO-HQ/p-BQ LK&MHIFE R, Miu#id DOPO-HQ 5] DOPO-p-BQ
RiEE4k, IEEHE) 0-2DOPO-HQ =4 K H Y.

Q)R ¥R N4k R H DOPO &t &

¥EH T2 4% DOPO 5 p-BQ FIR A RN SR, S5 DOPO BT+, A
JEEH p-BQ, 3#H DOPO 5 p-BQ #EHEL KT 1.

AR R 415 H: K DOPO(S mmol) I A H (10 mL)¥, fi#ZE 105°C, 24thn
A p-BQ(4.5 mmol), 1 /MEINSE, BRMN 2 /MY, MEER, dEH A&, HPLC
B8, 0-2DOPO-HQ HFE/MF 1.1%, THMTHEFELEMY 5%. B3| DOPO-HQ H &
ZEHEERREE, SEITREE 9% L, K 88%.

2.2.4 0-2D0PO-HQ B9 & B

0-2DOPO-HQ #+ FHEF W NEERE, AIMEAN RN FHBARARARED ST
%, H 0-2DOPO-HQ H MR TEBMSEN 11.51%, & T DOPO-HQ KBS & 9.55%,
Eitt, ¥tk 0-2DOPO-HQ tt DOPO-HQ RAE ML R MMM . HHIABERER

0-2DOPO-HQ MI& T L E, W HmueE.
KRS SR 0-2DOPO-HQ, RMNEZnE 2.25 fik:

L oH
O (o] OH p
1';-" 9 098 _DOPO_
° o.
P\ OH

DOPO-HQ DOPO-p-BQ O-ZDOPO HQ

2.25 0-2DOPO-HQMI & B B 2%
Fig. 2.25 Route for the synthesis of 0-2DOPO-HQ
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(1) itk

KA ENEATHE DOPO-HQ &4k DOPO-p-BQ. B5E, H8T ANRIFLHIT
DOPO-HQ HIELIT 2.

B 0-2DOPO-HQ MIF=AHIE A 41, p-BQ A4k DOPO-HQ MIE L. RIBLERK
B, KH p-BQ AEMF, RAMELUHITES, BMFEMHA 4eq. p-BQ 5 DOPO-HQ FZ
Z B ZBRE NP R R N 24 /bR, R BERE] 1: 2.79 # DOPO-HQ: DOPO-p-BQ &
&Y. BERFMGRPEER p-BQ LRAEBMIE BB %, FUEUHRTT
LSRN, B3%BNEZBENEE p-BQ KISXHR, A NaBO!'#, L-H,0,1",
MnO,1%%, NalO P H EALFIHAT IR RIRK . BT DOPO-HQ ZE XL MR M AR ¥
REAK, RMERK, BIFE, REMENME. %5300, F ARG ERNHR
B (CAN)AEALT, ATLALEEWE SR T DOPO-p-BQ AtFEsHRetE (Kl 2.26
FIR), RM&MERM, #ERME. 8 'H. *'P NMR # IR % DOPO-p-BQ #1443
4T T R1E, DOPO-p-BQ 1 '"HNMR. *'P NMR 1 IR i & tn & 2.27-2.29 iR,

B 2.27 FATLLE H, DOPO-HQ 47 i) '"HNMR it FIRIZ M B R RS e k.
& 2.28 #, *'P NMR £78 DOPO-HQ ¥, ¥AHH 21.29 K P R FAFMLIEL K
16.144, B 229 &, IR BREHHD 1662 cm™ HI4HL & HERH b C=0 Tk,

() IRk

DOPO 5 DOPO-p-BQ Mk A% 0-2DOPO-HQ. ¥ DOPO ¥ F THF, FHEZE[MR,
St DOPO-p-BQ, [EIWIRNY, &8, HEEYERKEA 0-2DOPO-HQ Ek. H ik
SEHEAEEAS, XHAMESK 'H, P REABERY, BN TS BP-1 /1
BP-2 )5 F4H—3, # 0-2DOPO-HQ 4.

O (FP”’O H CAN/St-gel
= l l CHZCI2 = | l
OH

DOPO-HQ DOPO-p-BQ
& 2.26 DOPO-p-BQ K&K
Fig. 2.26 Synthesis of DOPO-p-BQ
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e 430 ek e S cagr e SN
ﬁu. e

1
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1
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R
AT RS SARE SREE MRS
T ERTRA R ’ : - _, -
Bl 2.27 DOPO-p-BQ 7 '"H NMR i
Fig. 2.27 "H NMR spectra of DOPO-p-BQ
3
|
|
LN j T T T T lﬁ' T T T I L T T ‘[ T T T T r T T | T T T
400 200 100 ] -100
ppm(f1)

2.28 DOPO-p-BQ f# *'P NMR %
Fig. 2.28 >'P NMR spectra of DOPO-p-BQ
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954 13:00:40 Jo08 w ] i
A
IRTIrA A o
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7 [Er g i
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| AN B
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83 (i il
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) & %. ! Bk
N ! gﬂ&; : »
— e \\& —r ‘gié—;!, : I' —— 5|
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—. Wrvarnavoery (g T}
F2.29 DOPO-p-BQIIIR ¥ &

Fig. 2.29 The IR spectrum of DOPO-p-BQ

2.2.5 o-2DOPO-HQ & PR AT izt

S TP E, UL 0-2DOPO-HQ FHL FERMBEEM IR(PN) A B, =FEBH
K EAAR R, X4AR BRI AN MG (CNE)EAT B, 178 A R8-S B PR AL AR B )
BEIRE MR, FHXMEATIRBEFESLON, FEEMP(UL-9)FI# TR

(1) LOI #1 UL-94 i,

¥ A FIBES B K 0-2DOPO-HQ BHR1L CNE PR g R0 LOI {0 UL-94 T H Akl
RERI TR 27 #.

% 2.7 FA# CNE FFE MR LOI A UL-94V #REEMR 51
Tab. 2.7 LOI values and UL-94v test rating for cured CNE epoxy resins

Sample 0-2DOPO-HQ/PN  P% LOI  UL-94v Classification
S1 0/100 0 23 V-2
S2 15/85 0.61 28 V-1
S3 30/70 1.31 31 V-0
S4 45/55 2.12 34 V-0
S5 60/40 3.05 36 V-0

- 62 -



REBTRE M #AR

£ 2.7 HNRERRY, BERSENEN, FEREN LOIEEESM, H#EE
H0BEZE 0.61%, LOI f1 23 iN%E 28, AR HE; LBFE X 4.14%/f, LOI
BEAA 38, BEEH0IRER 0.61%, UL-94v Wikt V2 RIBER V-1 4%, BHSE
BREEIINZE 1.31%, UL-94v MRENAIA B V-0 &, SRR AREMRE.

() BEST

HES(TGA)E B, FEMEMMIEYRNREEEZKEL, BRIMMEED
MR ENEEREAR. X TGA &R AT LIS 3] DTG %k, WILABMEHNAKRE
BWEHE .

FRXARSAT, AT ARBEEBHENEH M S1-S5 1 TGA. R28FIHT
P& S1-S5 HIERESIE . HP S1 AR E 0-2DOPO-HQ, {XLA PN A 4L FIHI CNE 3
P AEEER . S1 B S%wt MBI Tys A 357°C, 10%wt HERE Taio N 379°C, 3%
ERBRABE R 405C; & 0-2DOPO-HQ HIPRMRALFE S S2-S5, Tos M Ta 1055 S1 AHEL
WAK, EREEBSERMM, Tos M Tawo &K, BEEEN 3.05%8F, TasH Tyio 75
B2 333°CHI364°C. #B 0-2DOPO-HQ 15N, fE#tEIRIREERTREMK, XIEE
REAMAE ESIAT C-P&,C-P BARAEN 264k)/mol, HJR Sk C-C EfFE A2 331 ki/mol
AN, EZHBBRT S TR R AR PR B RRREERX N AR S 2K
W hnToPEAK, FIRE UL BEAATU B 51 N B R R RS, ERRPKREER
Runax PEBE &5 B AOIY NI B E PR, WBESER 1.31%0, Ruax H 048, LLBESEN O B,

2.8 S1-S5HIMEAE
Tab. 2.8 Thermal properties of S1-S5*

No. 0-2DOPO-HQ/PN P%(wt) Temperature of weight loss, C Rumax. Char yield at
(wt) Tes® Tare®  Toat (%/°C) 700°C(Wt%)°

St 0/100 0 357 379 405 0.80 26.5

S2  15/85 0.61 347 374 405 0.76 324

S3  30/70 1.31 346 372 398 0.48 38.9

S4  45/55 2.12 336 365 395, 471 0.24,0.13 519

S5 60/40 3.05 333 364 362, 495 0.17,0.11  57.0

® Under N, atmosphere, 20°C/min.

b Ta5:5wt% weight-loss temperature; Tgq 10:10Wt% weight-loss temperature;

® Tmax: Temperature of the maximum rate of d weight 10ss; Rma: the maximum weight-loss
rate, determined via differential thermogravimetry.

4TGA residue

- 63 -



RS USRI & A S BRAR M BERT R

BT 40%, ULEABES BHIMM, MRS BEETERK, BARMERBEAL; S4
MISSTFEFI MRuaer WAMBAR—IKD R, BRPEDHEERREENFBIAMR,
MERAKEMERE MM EERE RO EERNEZ—, NR28ITLIEH, HMHSE
fIxgn, MERRRE BERM, B8 EN3.05%FEMSS), BKERIEST%, XEHEA
0-2DOPO-HQ# FHE S BRE(11.51%), HAFAEXRSER, EATRENER. #
S B8R, BARSBEERBE, BUREER, WHMEEEANREREME
BIZZBR LK, B RRETERSE, 306 T MR — 2 28, Bt AR B K 73 A% FE Rinax
BAK, KRB RFREHERE.

S1-S5HITGAMDTG i £k tnn E12.30F12.31 Fi7R . S4FISSHIDTG £k E R A B K4
BB, ULEIAMER S BAR—B TR,

TG, %
8
L

— Tt v r v
0 100 200 300 400 500 600 700 800
Temperature, 'C

’12.30 S1-SSHITGA B %k
Fig. 2.30 The TGA curves of S1-S5
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1st. deriv. weight, %/C

1.0 L . S S S S — T
0 100 200 300 400 500 600 700 800
Temperature, 'C

231 S1-S5HIDTG I ZE
Fig. 2.31 The DTG curves of S1-S5

2.3 ARG

2.3.1 THRHFHRAF

(1) FEXE

S8 b BT A6 P 1 = AN 88 5 : Nicolet Impact 400 B 4T 4R 6154 (3 E Nicolet A 7)),
Varian Mercury Vx300 ZRi3t4R{X (FEE Varian 24 F)) , Agilent 1200 mBGRABEIE (£
[E Agilent A7) , Agilent LC/MSD Trap VL A8 23 ik BC A X (3£ E Agilent 27]) ,
B4 EMAESBHE AN (BED , XLB BFRFEAN (FHERBIERAFD ,
HC-2C B TR =X (PR _ LIS AR AR , CZF-3 BK -3 B RBEM E X,
STA 449C B[S # X (#EE NETZSCH 48] .

() EFERHA

LR ERMEERNE: DOPO (T, >99%, WHEFEEILEAT) ,
DOPO-HQ (T #h, >99%, thFHEEEHEAT) , 46 F BB X AW (CNE)
(CYDCN-200, # & {H 202g/eq., BERAWLSAFERAERA D » BEMISEPN)
(HFH, FREME 106, EEMAEMLT D ; XK, X, NIk, Z22FBZ
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RE, HEREIEL(CAN), “H@FH, =FERYH AN (HARALERIERL
"), HEEATEER 200-300 B (EAEELERFFRATD .

2.3.2 SHERS

(1) DOPO-HQ B4 B

¥ DOPO-HQ & s THF BB ATHRIMNERRBESHM, W 1.0g #HH
CH,Cl, (30 mL)¥fi#, iTIEREAEY, HN100-140 HEENTRER(10 g R M, K45, F
TdetE, DL CHLCL ABERR, HREEESE, 2BEENFYEH CHCLES BT
R A EEEIFY) BP-1 fl BP-2 4.

BP-1: m.p. 300-301°C, IR (KBr): 3434 (vpnon), 2922, 1732, 1597 (v p.pn), 1438, 1266,
1188 (v p=0), 948 (v p.opn)em™; "H NMR (300 MHz, CDCly): § 5.90 (dd, J=1.2, 8.0 Hz, 2H,
Ar-H), 6.85-6.98 (m, 4H, Ar-H), 7.40-8.52 (m, 8H, Ar-H), 7.26-7.32 (m, 1H, Ar-H),
7.37-7.49 (m, 2H, Ar-H), 7.49-7.55 (m, 1H, Ar-H), 7.66-7.74 (m, 4H, Ar-H), 12.24 (s, 2H,
Ph-OH); *C NMR (75 MHz, CDCls, TMS): § 102.61 (d, J=142.2 Hz), 120.37, 121.42, 123.96
(d, J=5.0 Hz), 124.29 (d, J=66.6 Hz), 125.76, 127.59, 128.50, 129.05, 129.19, 129.58, 132.49,
133.47, 146.48, 161.61;>'P NMR (121 MHz, CDCls, H3POy): § 29.611. m/z: 538.

BP-2: m.p. 287-288°C, IR (KBr): 3438 (v ph-on), 2916, 1595 (v ppy), 1425, 1255, 1188 (v
p=0), 944 (v popn)em™; 'H NMR (300 MHz, CDCL): § 6.64 (d, J= 8.0 Hz, 2H, Ar-H),
6.85-6.99 (m, 4H, Ar-H), 7.06-7.18 (m, 4H, Ar-H), 7.27-7.41 (m, 6H, Ar-H), 7.48 (d, J=7.56
Hz, 2H, Ar-H), 12.26 (s, 2H, Ph-OH); >*C NMR (75 MHz, CDCl;, TMS): & 103.34 (d,
J=143.2 Hz), 120.72, 121.25, 122.84, 123.18, 124.34 (d, J=25.5 Hz), 124.64, 127.70, 128.79,
129.56, 130.20, 132.30, 133.75, 147.77, 161.64;>'P NMR (121 MHz, CDCls, H3POy): &
32.788. m/z: 538.

() a4k DOPO-p-BQ K& H

75 500 mL DU, ANARERZ(200-300 B, 60 g)F1 CH,CL(250 mL), FFahiid:,
1) 2o o i I T A6 BC 4 9 CAN 7K¥EW(CAN 0.05 mol, 27.5 g+/K 25 mL), SRFUBEPHERERE
SE¥A. BET, HEEZHETMNA DOPO-HQ(0.02 mol, 6.48g)#E CH,Cly(20 mL)H
HIRIFW. 58, $HE 20 min J§, DOPO-HQ &M, RMKELAFE, TLC BR,
DOPO-HQ M54 . i, CH,ClL(100 mL)BLkIED, &FHIEM, /KEE(S0 mLx3 1K),
F7K NaSOs 48, MR Y7178 DOPO-p-BQ # &, CH;CN E4 BB UIEERE
%, y=90.9%, m.p.208-209°C. IR (KBr): 3051 (v =c.1), 1662 (V c=0), 1591 (V p.pr), 1198 (v
p=0), 926 (v popn)em™; 'H NMR (300 MHz, CDCl3): 8 6.75 (dd, J=6.0, 10.2 Hz, 1H, =C-H),
6.80 (dd, J=2.7, 10.2 Hz, 1H, =C-H), 7.21 (dd, J=1.2, 8.1 Hz, 1H, =C-H), 7.26-7.32 (m, 1H,
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Ar-H), 7.37-7.49 (m, 2H, Ar-H), 7.49-7.55 (m, 1H, Ar-H), 7.74 (t, 1H, J=7.8 Hz, Ar-H),
7.94-8.07 (m, 3H, Ar-H); >'P NMR (121 MHz, CDCls, H;POy): & 16.144.

(3) 0-2DOPO-HQ K& H

7 250 mL PY R, ok DOPO(0.119 mol, 25.7 g), THF(100 mL), FHEZEEI,
S#IIA DOPO-p-BQ(0.119 mol, 38.2g), 1hN5E, ME/EHEW 3h, BEER, &
1%, FEI, BT, BRHEAEE 49g mp. 270-274°C, y=70.3%. HHEESEHE D
FERS L, 1. I: mp.300-301°C, 'H*P NMR & HPLC 8 877 5 BP-1 X HREW K.
II: m.p.287-288°C, 'H, *'P NMR & HPLC %[ 87~ 5 BP-2 AR,

4) R4 T DOPO-HQ K%

# DOPO(S mmol) I A B ZK(10 mL)H, An#Z 105°C, 4t p-BQ(4.5 mmol), 1
MEINSE, BRMN2 /D, BEER, dEHAGEE, FRERGGE, di8, #F,
8 DOPO-HQ, Y1 # 88%, m.p. 254-255°C (1it*** 255-256"C). IR (KBr): 3423, 3248 (V ph.oH),
1589 (V p.pp,), 1194 (v p=0), 928 (v popr)em™; 'H NMR (300 MHz, DMSO-ds): § 6.67 (t, J=8.0
Hz, 1H, Ar-H), 6.89 (dd, J=3.3, 8.7 Hz, 1H, Ar-H), 7.13-7.31 (m, 2H, Ar-H), 7.40-7.51 (m,
2H, Ar-H), 7.53-7.63 (m, 1H, Ar-H), 7.69-7.74 (m, 1H, Ar-H); *'P NMR (121 MHz,
DMSO-ds, H3POy): § 21.92.

2. 3. 3 BEHAAME TR

(1) 0-2DOPO-HQ FE# CNE P& 5] %

$%% 2.9 FELEL Y, % 0-2DOPO-HQ. CNE FI PN VE&, HAIA 0.2%wt f] PhsP {E
HEEHF], 25CUTF, BEFREYHFERREENS, BEHREEIRERER.
WM, AR, BONEREH, #TmERk. BEgHR, K SMpa,
150°CHE 4k 1 h, 200°C [E4k 2 h, 260°CRE4L 1 ho FERJE, EUHFREM AR, HEX
BT BB R E A

% 2.9 0-2DOPO-HQ FH# CNE IR U g i [ 4L By
Tab. 2.9 Curing ingredients of 0-2DOPO-HQ flame retardant CNE epoxy resins

Sample 0-2DOPO-HQ/P P% CNE(g) 2HCA-HQ(g) PN(g) Ph;P(mg)
N

S1 0/100 0 30 0 15.74 91

S2 15/85 0.61 30 2.6 14.75 95

S3 30/70 1.31 30 58 13.52 99

S4 45/55 2.12 30 9.81 11.99 104

S5 60/40 3.05 30 15.0 10.0 110
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(2) LOI 71 UL-94v BE A J 5

LOI1 fliR& % br#E ASTM-2863 , H4 R~F % 100 mmx6.5 mmx3 mm. UL-94v ik
S % bR FMVSS 302/2S0 3975 , #4& R4 127 mmx12.5 mmx3 mm.

(3) HEFH(TGA)

MESPTRAESM, BRERA, HSVE 30 mL/min, MREELEZEE-700C,
FHiE & % 20°C/min.

2.4 KB/

1. ¥ T DOPO-HQ A& RFPERALRFRIF W EE/MS, Wil HPLC-MS, 'H
NMR. *PNMR. BC NMR. IR fl# & X-§F AT 04, BE T HAEER=4) BP-1
1 BP-2 19> F 4 ¥4 0-2DOPO-HQ (2,3-W(6-8.-6H-— K 3 [c.e][1,2) A BELL T FF)-1,4-%
ZENMBEAN R, B4 DOPO EMFH P JRF 4 51k(S,S)EAMS,RE,

2. B RMNEWHEMERE, HixE T DOPO-HQ & BidfEH 0-2DOPO-HQ =4
FRE. BIZE DOPO-HQ & B EF, X EKER(p-BQ)5 DOPO-HQ K ELMIE R K MY,
45T DOPO # 1,4-% % (DOPO-p-BQ), DOPO-p-BQ 5% —4rF DOPO MK T
0-2DOPO-HQ. FH#EItAR4L T DOPO-HQ K& MK M4, 7E DOPO-HQ &M HE XM
#|T 0-2DOPO-HQ )=,

3. BT 0-2DOPO-HQ S HBHMEMRE, JHEBES ELL DOPO-HQ &, WHEEM
RESE IR R A% i B B PR AR FELAASRI . R BA DOPO-HQ A FRHE I 8 AL IRF R
Ri, &7 0-2DOPO-HQ, PHME 5514 90.9%H 70.3%.

4. % 0-2DOPO-HQ A 4R MyEEME M IE(CNE)IRE A B4, &Eid LOI. UL-94v
MAESTIR, REFEROFEN RGN ERE BT R E. HEE
K 1.31%60F, UL-94v KX V-0 &, N, T 700°C Bk ik 38.9%. BEE & A 3.05%58T,
N; F 700°C B ZiE 57%.
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3 Pd LR XBECE B RN B AR AT Y S AL

3.1 5|8

PR R R N R HLBERR AT R I AR MR ERBUR YL 88, ZEH AR R BRI
ZRA, HRMRER RN VBT E 3.1 PR ST, RTHA LA R
HEHRAHR, EERA RRPOH 5 HMASCIaifid# KM 58 ik
R BLA R AU A R T FR R R R N A HLBE LR 0-2DOPO-HQ,
BT KRR AIE

O OH

1]
PhaP~ i

DOPO-HQ DOPO-NQ DOPO-HPM
Bl 3.1 2R R HLBERE A
Fig. 3.1 Hydoxy-containing reactive-type orgnophosphorus flame retardants

T A8 A TREAN AL ) R'R7P(O)H FIER M AR D, 48 IR FNE & R R A HLBE
AR FRENBERPRBRY, SRBEK. £BAR, KRR THERERE
HUBEFRARTIAI TR o

Pd LR BB R BAR L T — TG R P-C A BT E ), AT R FEZRE
REHBEERA, AXRURA Pd A BEKIE G & BEFBHLED.

R, Pd BUZUBEER P-C BRIGEAANERTRE T ZONA. 7
DB S PIE D RRRNN Pd AR BB R BB EHET 1982 4E, Hirao H AP
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BT T WRERR — fe s 55 55 B pq AL Bk 25 B iR AL YD #E EN A1 Pd (PPhs)s 77 7E T HIMBEX
JRRE, 43 ) B R R — e SR A 20 S R — e R AV B F I 3.2 BTRt.

Q
H-PCOEt

Pd(PPh Q
OEt (PPh3)y __@_P\_ OEt
+ EtsN OEt
—< >—Br 94%

I
H’P\_OEt

OEt Pd(PPh;), ",'\_ OFt
M EtsN Ph / OEt
Ph
= 93%
Br

¥l 3.2 Pd fiEAL T RERR — Z R A93E ABER
Fig. 3.2 Pd catalyzed cross-coupling of diethyl phosphite

7E Hirao ZABFRMER b, FIT Pd AR XBBEERRRA, BERR—
PR 1 RS T R A MBEERA. T SREL 2, KM 3, k. TN
B4, —T8, —JC, =uBEST, B E AW S, IR =friRs 9 ZFnE 3.3
Iﬁ.7]—'_\.)[134-139]°

o) o) 0 o)
R-OR' _R-OR' _R-OR' _ .R-R
- \ ” Ed \ rd \
H orz H Rz H } H R
1 2 3 4
H H R /BH3 OR
R—R R-R R-R R>p. RO-R
H R rR R H OR
5 6 7 8 9

B 3.3 AT Pd HEALST B S N A B3R A A

Fig. 3.3 Phosphorus nucleophiles used in Pd catalyzed cross-coupling reaction

238 20 ZEM KRR, Pd U SUBERFE L P-C B R NAEFHIBHLZETRIET B
KB EENEM. ZRRNERRNEFRMN. WES., EFES. BRIEFRS B
T2 AT A VISR RF ARG & e OB,
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RE Pd ALBEXTE P-C ERUR N ELIA TRAERE, 2L DOPO b RMIR
FUEA) Pd HEAL BB R B IR ST A ROE H11R />, EL 8 2004 4F, Beletskaya Z AT
DOPO 5%, HEMFEIAMRZEN Pd HALBBRN(WE 3.4 Fin). #AR
&4 : % DOPO 5#UKIRE, MIEFIMA PACL(PPhs), M K,CO3, FF#8453H0 10 mol
% FE=ZEFWEBTEAC), T 100CTFEZEANKFTRMN 6h, AJ5EH 75%H
DOPO 5 )3 X ABBF=1 . % PhsP BUARAECAE, KAEA & 5 PACLLy(L=4,5-
bis(diphenyl phosphino)-9,9-dimethylxanthene)fE 4 [ B fIHE LTI H A BE IR 15 B 47 R SE 38
8. PREH, BTEAC MNAF BER S RMEE, XAJRERE BTEACIZE T Pd ¥
Ik B0, UL EGN A8, DOPO SHUAAI RN, £ BTEAC &R, RNMEKIE,
¥~ 0 30-40 mol % BTEAC J&, RMNIEZEAGF|BEIEE, 7E 5 mol % PdCL, 30 mol %
BTEAC 11 eq. EubN f#7£ F, DOPO 58 F 100°CEBKRMN, 6 h RN AHITEE,
AI5r B 70% B AR . AR BIBREAE X R KW ERT R, KAREE RN
t-BuONa 1 DABCO 1E MR, &7=4 50% L EMEIF=Y), X0l fE2H T DOPO 4 P-O

RETRIIEN.
® ®

+ AX ———— Q

H~H y=50-75% RAr
) o)

X=Br, |

Ar= Ph, 4-MeCgH,, 4-NCCgH,

Base= K,CO3;, Et;N, t-BuONa, DABCO

[PdF PdCly, PdCIy(PhaP)z, PA(PPhg)s; [NiJ=NiClx(Ph3P),

& 3.4 DOPO 55 {LY)i) Pd fE4LAT AR R Y
Fig. 3.4 Pd catalyzed cross-coupling reaction of DOPO with aryl halides

-0

SR DOPO 5 &5 R AN s B BERH KR ASCRIRE. FEL ERRPOH 5
PR3 B RIS R RIS th AU FR T Schwabacher 2 AKIAFZIY, L Pd (PPhs), Cl, 4L,
FEFL AN ARA, 2eq. MBEM S leq. KHMBEEBAR T —HERBRTE, K
EH 76% (A 3.5 FizR).
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o
? Pd 4
i (PPh3)Cl; | R? P~
+ H’F]"OMe — OMe
H propylene Oxide 2

CH4CN
OH 76%

& 3.5 R°R”’P(O)H 5 s fXBy 9 Pd AEALAE AR EX S Y
Fig. 3.5 Pd catalyzed cross-coupling reaction of R’R”’P(O)H with halogen-substituted phenols

KX BEAEET DOPO S5xHER ) Pd AR RABEER N, B E T B R N 4
HEEHEM EE T R34 FE DOPO 4y,

AWICER Pd AR BBRA A B T HERVBE P RS AR RN, ¥
2-Q2-FREEKE) F R BEB(HPPA)RI — X B E (L B(DPO) 5 pa KB B K, BRR T BaF 5L
WEER, X Pd AR BB S BB ER R N A YIBEEMRFTIM T RIBHLE L.

3.2 ZFR5itE

A1 T DOPO 5 KA BYAT XABEK 1 R R4 A, DAXT IR ZRPAAE 4y 1B Bk i B B R HE IR
N, ZH8THEAFIFE. B, KRB EXN R NEREN . RN MERE
AEERNDEFEERFERE, HEBRRSERNMEERSTRRSRERT R, TR
MR EIEEE; H KRB xR F X AL T 2RISR R B . SRR
R, XFIXH[158]DOPO L5755 ik ) i B BRI SCER[144] B HLBE AL &) S5 AR 19
B, FARREREFNILRER, ZWRNACERERERENFIRMBMIFIE.

BJE, ERILRMNE&H T, FH DOPO. HPPA 1 DPO 5 KBy HIREE R AR T
EY )ik =giIR 3 38

3.2.1 DOPO 5 &R HIIBEX S K2

i it DOPO 5 %f # M3 () Pd AL AT BB R LA AL T B4 4-(6-8-6H- 2K 3
[c.el[1,21 8 B 7 O FF) % B) 4-(6-oxido-6H-dibenz[c,e][1,2]oxa -phosphorin-6-yl)phenol
(4-ODOPP, Ia).

4-ODOPP f] 'THNMR. *'P NMR # IR & B &l 3.6, 3.7, 3.8 fir.
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N
4

o LA
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N = » N

8 8 2 8
-

| T T T T T T
10.0 9.0 8.0 7.0 8.0

¥ 3.6 4-ODOPP (1] 'H NMR % &
Fig. 3.6 The "H NMR of 4-ODOPP

11.0
ppm (f1)

K 3.6 4-ODOPP ] '"H NMR & &, {LZE47%8 6 7E 10. 259 Kb i BUd h MY 2 R AR 1E
I, 8% 6.861-8. 181 MIKFALIE A 53 &R FHISHEME, 4 6 % 6.861-6.900 Y
P EIE AR EEMBEMESHER T ERENERT 2, 2 FISMTE.

R

i 5
z |

£~ )-om
(e
i

o ,
250 200 150 100 50 o -50

ppm (1)

&l 3.7 4-ODOPP f *'P NMR ¥
Fig. 3.7 The *'P NMR of 4-ODOPP
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& 3.7 4-ODOPP {1 °'P NMR it J8 b, {200 6 75 24. 176 Abf 804 4 DOPO £
FIEA P R F R

TF Jul

A

st |

2000

1000
.. Wavenumbers (cm-1)

F 3.8 4-ODOPP ) IR %
Fig. 3.8 The IR spectrum of 4-ODOPP
P 3.8 4-ODOPP IR &, HHH 3451 cm™ AbHIIRIE A B2 O-H 4IRS
I, 1433 cm™ 4b% P-Ph RUTIE, 1202 cm™ &b NEYBE C-O ¥4, 1124 cm’
kb P=0 Wi, 931 cm™ &b% P-O-Ph MR,

JEEHT: Anal. Caled. for CigH;305P: C, 70.13; H, 4.25; P, 10.05; found: C, 70.20; H,
4.22;P,10.13.

A T AL 4-ODOPP B [ B 444, 8 T B ma | o B 2% FP R 3R o % B2 (98 : Nap,COs,
K2CO3!

NaOAc, E;N, i-Pr,NEt, Cy,NMe, propylene oxide; % EMHEFIH: PACl,,
Pd(OAc);, PdCL(PhsP),, Pd(PhsP)s; ERMEFE 1,4-“8 /%, LI, THF, THF,

REMERE,
(1) LTRSS P PR %
A 1,4- S FR R, ZEA 0 Pd AEAL TR , DOPO 55 % KB A & £ fB X )R R (Tab.
3.1, Entry 1); SN PACL(PhsP) 1 4 R NAEALF, EtN A8, A4 B H 8% EEREH)
(Tab. 3.1, Entry 2), iE 8§ PdCly(Ph;P), 5 DOPO 5 X ER I BELRE —ERHEILIER.
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% 3.1 BHEEALFIX DOPO 55X BBy R i Y ) 5 ma *
Tab. 3.1 The influence of catalysts and bases on the cross-coupling of DOPO with 4-iodophenol (Ia)®

%0 = Bron
ase 6

-0

)

o=

Entry Catalyst (5%mol) Phase-transfer Base Reaction Yield, %’
+Ligand (10% mol) catalyst (20%mol) time, h
1 — — Et;:N 24 No reaction
2 PdCly(PhsP), —_ EtN 24 8
3 PdCly(PhsP), BTEAC Et;N 24 10
4 PdCly(Ph;P), BTEAC i-PpNEt® 24 12
5 PdCIy(PhsP), BTEAC Cy,NMe® 24 45
6 PdC1(Ph;P), BTEAC propylene 24 —
oxide
7 PdCL(Ph;P), BTEAC Na,CO; 24 23
8 PdCL(PhsP), BTEAC K,CO; 24 58
9 PdC1y(Ph;P), BTEAC NaOAc 4 66
10 PdCly(PhsP), — NaOAc 4 67
11 Pd(OAc),+Ph;P —_ EtN 4 83
12 Pd(QAc),+Ph,P — NaOAc 4 94
13 Pd(Ph;P), — Et:N 4 85
14 Pd(Ph;P), — NaOAe¢ 4 95
15 PdCl,+Ph;P — Et:N 4 72
16 PdCl+Ph;P — NaOAc 4 89

®The reactions were carried out using DOPO (1 mmol), 4-iodophenol (1 mmol), and base (2 mmol), in
1,4-dioxane (3 mL) at 100°C under nitrogen atmosphere.

® Isolated yield.

¢i-Pr,NEt: N,N-diisopropylethylamine; Cy,NMe: N,N-dicyclohexylmethylamine.

B, 5% Beletskaya 2 ASHGRTST, LU PACL(PhsP), AHEALT, FE45H1 20% mol
BTEAC, % £ F§HXT DOPO 5% UK B {5 Bk [ B W3« SCH 45 R 40 Tab. 3.1, Entries
3-9 B o BRAIFP TR R BN AR K, AP Cy.NMe FITEHLE KoCOs.
NaOAc i}, AIEBIE R, FAFVUIED EsN, i-Pr,NEt #1 Cy,NMe ABET, &ML
FEK(Tab. 3.1, Entries 3-5), {B%{#f Cy,NMe AH}, WRKFAIE 45%(Tad. 3.1,
Entry 5); & U R F RS, KoCOs AT, MW ATiA 58%(Tab. 3.1, Entry
8), {#H NaOAc XM, RMHERBRAIL 66%(Tab. 3.1, Entry 9); M¥IHE A5
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YEERFIN, RSB B, XAHERE DOPO E&ZEE M, P-H B SHERMEE
EIF=Y), HEMHLET DOPO 53 #iZEy I RERS | 2/ . BTEAC RIS &M A 2
B WA K(Tab. 3.1, Entries2, 3 fl Entries9, 10).

K, 4AILL EN F NaOAc A, %8 T AR BRI RN BCERKZ®. 4K
% EA PA(OAc),/PhsP 1 Pd(PhsP)s A EALF, FFLL NaOAc AN, RMNIKERS, W4
S 94%7F0 95%(Tab. 3.1, Entries 12,14), LA E;N A5ET, RAERIRK, 2514 83%
F0 85%(Tab. 3.1, Entries 11,13); LA PAClL/PhsP AEALTFIR, RS EEML, P NaOAc
HBET, R Z ATk 89%(Tab. 3.1, Entry 16).

K6, DOPO 55 %o B 25 Moy 1) 18 BK S5 2 52 FE AL SRR K S 88 K, B A B9 8 NaOAc,
Y F AL PA(OAC)/PhsP B P(PhsP)s ATER AR LI R, RMKREH .

(2) WX R N B W

53 IR A PA(OAc),/PhsP 1 PA(PhsP)s AT, NaOAc AW, & EE IR KL
EREW. LRERKRHA, HIERFREAEF 1,4-dioxane. CH;CN M THF F# T 3k75

R 3.2 X DOPO 53 T By Bk S N A R
Tab. 3.2 The influence of solvents on the cross-coupling of DOPO with 4-iodophenol (Ia)

( (>

o, l-@- OH Cat. 0
i Base ﬁ—Q—OH
OL (J
Entry  Catalyst (5% mol)+Ligand Base Solvent Reaction Yield, %°
(10% mol) time, h
1 1,4-dioxane 4 94
2 CH,:CN 4 93
3 Pd(OAc),+Ph;P NaOAc THF 8 92
4 Toluene 12 83
5 EtOH 12 63
6 1,4-dioxane 4 95
7 CH;CN 4 93
8 Pd(Ph;P), NaOAc THF 8 91
9 Toluene 12 77
10 EtOH 12 61

?The reactions were carried out using DOPO (1 mmol), 4-iodophenol (1 mmol), and NaOAc (2 mmol), in
solvent (3 mL)at reflux temperature under nitrogen atmosphere.
® Isolated yield.

- 176 -



RERTRFH L EAIRT

B % (Tab. 3.2, Entries 1,2,3 #6,7,8), MEIEREBFIFENRFHBERNLEY R
NI BR A .

KK 4 RRA RN BAEB RN 1,4-dioxane, WA ZIEH THF.

(3) [ i BE R B TR %o i 2 ) 3

43 LA PA(OAC),+PhsP F1 Pd(PhsP)s AHEALTR, NaOAc A%, 14-dioxane A¥EH,
EERNRFEMNEXEERNEWE. ERERIITRII P XRERKRYA, BERN
BEMRE, RNNESEE, RNEEREM. P PAOAc)+PhsP AL, BEHK 100°C
i, RMATZE 4 h A5ERK, WERTTIE 94%(Tab. 3.3, Entry 5); BEH 20CH, KM 72 /b
i, REZF] 45%K HAR/=Y)(Tab. 3.3, Entry 1). LA Pd(PhsP), A4, EEEA 100°CHE,
RNZE 4 h H5ER, WEAIE 95%(Tab. 3.3, Entry 9); A 20°CRE, RN 72 /M, R
B2 52%H H ¥57=4)(Tab. 3.3, Entry 6).

BRI b, B 1 9 SN2 96 FE A 18) 444 b - B PA(OAC),+PhsP A EALF, IR B 100°C,
R[] 4 by WU 94%; DA PA(PhsP)s AHEALF), RIVIRER 80°C, RELATIE] 4 h, #
# 95%.

#3.3 RIHRREFR AN DOPO 553 BB Bk 2 I A S °

Tab. 3.3 The influence of temperature and reaction times on the cross-coupling of DOPO with
4-iodophenol (Ia)*

+ IOOH Cat. (P

-H . P OH
1 1.4-dioxane 1l
o NaOAc o

Entry Catalyst (5% mol)tLigand Temperature,’C Reaction time, h Yield, %°

_O

=U

(10% mol)
1 20 72 45
2 40 48 67
3 Pd(OAc),+PhsP 60 12 81
4 80 6 92
5 100 4 94
6 20 72 52
7 Pd(Ph;P), 40 48 69
8 60 10 85
9 80 4 95

*The reactions were carried out using DOPO (1 mmol), 4-iodophenol (1 mmol), and NaOAc (2 mmol), in
1,4-dioxane (3 mL)under nitrogen atmosphere.
® Isolated yield.
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/M. DOPO 53K Ey 32 SR BRI BE R N &4 K : (A)DOPO(1 mmol), XA
(1 mmol), Pd(OAc), (0.05 mmol), PhyP(0.01 mmol), NaOAc(2 mmol), 1,4-dioxane (3
mL), 100C, Ny SR F XM 4 h. (B)EREFMFI(A)XEL 0.05 mmol Pd(PhsP), 10
Pd(OAc),/PhsP 1E K4 & BE I 4L .

3.2.2 DOPO 5H & s X B AY 1Bk I iz

£ Lid DOPO H5xt#MiAMBEIMMU RN T, A—RIMABNRABE
DOPO fBEk. Method A: DOPO(I mmol), X{SE}(1 mmol), Pd(OAc), (0.05 mmol),
Ph3P(0.01 mmol), NaOAc(2 mmol), 1,4-dioxane 3 mL), F 100C N, & F RN, HZE
FRHEFE T2,

Method B: #:{E4&4F[F] Method A, {XLA Pd(PhsP)y(0.05 mmol)f{# Pd(OAc),/PhsP
YEA R BRI AT o

LI ERWMEK 3.4 PiR. LREHREKH, Method A F1 Method B AT LMRIFHIA T
DOPO HHEMAE KB, X T RIALERH AR G- EE), KA Method A
Method B WM EARK, WEREE, Method A 1 Method B Yt T[4 Hilik 3] 94%F
95%(Tab. 3.4, Entries 3,4). XJ T4BALEAC I E Q-HUERY), KA Method A F1 Method
B R ERK, 4294 10%F0 78%(Tab. 3.4, Entries 5,6), X 7] A2 % Method B &
B BRI BN HG: BS 4By 3-IERY 5 DOPO BERM R SIHIEL, W
BAR, XFHER BT EMEIEN. XA Method B, 2-ft-1,4-% —F 5 DOPO
fBEE, LU #78 8) DOPO-HQ(Tab. 3.4, Entry 8). ] Method B, LA RACE)
5 DOPO 1Bk, RIEWEER, EK RN BRI, X 5-33%, KRR KM
AR,

3 3.4 DOPO 5 s LBy 938 SUABHR [ B *
Tab. 3.4 Cross-coupling of DOPO with various halogen-substituted phenols®

C|? [Pd], base O C”)
Fl, H + ArX - E Ar
O Y dioxane, 100°C O 0
lad
Ar= 4-HOCgH4(a), 3-HOCgH,(b), 2-HOCgH 4(c), 2,5-(HO),CgH3d)
X= 1, Br

Method A: [Pd]= Pd(OAc),/Ph3P, base=NaOAc
Method B: [Pd]= Pd(Ph3P)4, base=NaOAc
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(4% 3.4, Tab.34)

©
=

Entry halogen-substituted Product Reaction Yield, Method®
phenols time, h %P

1 Ia 4 94 A

2 : OH 4 95 B

3 H Ib 4 94 A

4 4 93 B
I

5 HOQ Ic 24 10 A

6 4 78 B
I

7 HO Id 12 13 A

8 12 65 B
I

OH

9 Ia 24 33 B
Br OH

10 OH Ib 24 28 B
e

11 H Ic 24 5 B

12 Hj Id 24 25 B

(o]
o o

The reactions were carried out using DOPO (1 mmot), halogen-substituted phenol (1 mmol), and NaOAc

(2 mmol), in dioxane (3 mL) at 100°C under nitrogen atmosphere.

® Isolated yield.

*Method A: Pd(OAc), (5% mol), PhsP (10% mol)were used as catalysts. Method B: Pd(Ph;P), (5% mol)
was used as the catalyst.

3.2.3 HPPA 5 KB} BB EX S L

& TR 5 Pd 4k DOPO B EATEYIN G HKE, FRBUL 2-Q-REXE)EEIX
B§M2(2-(2-hydroxyphenyl)phenylphosphonic acid, HPPA) K K N A2 25 R4, ZEECRAEK
B R N % DOPO ZEEATAEM(IE 3.9 FiR). HPPA §HEIHKRMP-HE, 5K

REi#4T Pd ALIBER R B, 4 HPPA-Ar, )5 B i K B FF 4 B DOPO-Ar.
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@ (e

- - i

H [Pd] RoAT 1,0 P—Ar
H + ArX — OH A 6

O (o @

HPPA HPPA-Ar DOPO-Ar

O O-1=0

ArX= halogen-substituted phenols

& 3.9 LA HPPA 4 EHE& B DOPO EBYARATEY
Fig. 3.9 Synthesis of DOPO based phenols starting from HPPA

Tk E, DOPO & mi& tH HPPA 7 130°C FrkE A #1486, T _E DOPO H14&
& 3.10 Bias. HPPA 464 DOPO fyrhfalik, HE 545, B5KCHm{SEa,
HPPA F P-H RN iEH 5 DOPO H#) P-H R NiEHAR, B UBEXT HPPA 5 xEH

BEAERT VR .
3 ®
i (o]
O R~H 130°C P—H
OH _— ]
o O
HPPA DOPO

3.10 Tk I DOPO M4 Ak
Fig. 3.10 Industrial synthesis of DOPO

%A 3.2.2 & Method B H M 4A4%, B HPPA(1 mmol), pi/CEY(1 mmol), Pd(Ph;P),
(0.05 mmol), NaOAc(2 mmol), 1,4-dioxane (3 mL), F 100°C N R F RN, HEFEH
KAAMHFETE. ERERWE 3.5 Fir.

_80_



KEBTKFE LEAIRL

% 3.5 HPPA 5 ca AR A28 SUAR R S B °
Tab. 3.5 Cross-coupling of HPPA with various halogen-substituted phenols®

O i O i O
11 0 fo)
»~ K H [Pd], base R=Ar 0

—_—

‘ —
OH + ArX - OH RAr
O OH 1,4-dioxane, 100°C O OH O 0
HPPA HPPA-Ar (ad)
Ar= 4-HOCgH,(a), 3-HOCgH 4(b), 2-HOCgH,(C), 2,5-(HO),CgH(d)
X= 1, Br
[Pd]= Pd(Ph3P),, base=NaOAc
Entry halogen-substituted Product Reaction time, Yield, %"
phenols h
1 Ia 8 96
| OH
2 H Ib 8 94
3 H Ic 8 83
4 H Id 12 77
'_(z \>

Ie 48 18

“The reactions were carried out using HPPA (1 mmol), halogen-substituted phenol (1 mmol), Pd(Ph;P),
(0.05 mmol) and NaOAc (2 mmol), in dioxane (3 mL) at 100°C under nitrogen atmosphere.b Isolated yield.
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TRERERY, RMARES B H H87=4) HPPA-Ar, T2 BEURKERBERL™
¥ DOPO-Ar. X7 g2 FE A DOPO-Ar 53 F W EFH AL, LS Ar BB —/4N KK
AR, FDTFEHHAREIEFRK HPPA-Ar BARE . X4 Pd #E4LA B DOPO %
MATAEYIRBt T —4&5#21%, ©17T H HPPA #)%& DOPO figkeiim, LK HPPA &
A DOPO ##1T Pd fEAL BB R I IR R, AT R KWABIRHRE, PRIRABA. DI
ByPE b R N R R R BB, ATIA 77-96%(Tab. 3.5 Entries 1-4), LLRACEMEN R MEH,
R EEK, BHTEIRNKFE, RNBEESRE, KRN 18-45%(Tab. 3.5
Entries 5-8), {EAHLLT DOPO AR [Z%l, LL HPPA X R EL-& B DOPO-Ar, RMWIKE
BE. RNFERKERMIER T BEBIREEEIE BARr=d, BLBKRHE R I
WA K. {55 DOPO Lk, DL HPPA b RMNEERMNEEME, RMEEK,

3.2.4 DPO 5 pa{XEA RO {BEX R 2

DPO 5 &8 EH, MENARTRENEH, HRTEPKEER 15.32%, H
B AT AR AP, &3Pl DPO A RN ER& R T SMBEN RN HHL
WERE AR

¥ 3.2.2 & Method B #J R M 444, B DPO(1 mmol), Bi/LEY(1 mmol), Pd(PhsP)s
(0.05 mmol), NaOAc(2 mmol), 1.4-dioxane (3 mL), F 100C N, R F RN, HZEEH
xAE T 4A, FIF Pd HEALBERR LG T DPO(Z R EEMBHEMERTEY).

LR INE 3.6 Frn. DPO A 5 i ABYE BB, BUREY LR AREME IR B R R i
HaE, NG, WER: BTFTRAMMKER, SRFERRESAN, HLAEEAL
FISFAL B ZE (K (Tab. 3.6, Entries 1-4, and Entries 5-8).

% 3.6 DPO 5 A B Y
Tab. 3.6 Cross-coupling of DPO with various halogen-substituted phenols®

O\ﬁ? [Pd], base ©\9
P—H + ArX P
©/ 1,4-dioxane, 100°C ©/

DPO I(a-d)

—Ar

Ar= 4-HOCgH (@), 3-HOCgH,(b), 2-HOCgH,(c), 2,5-(HO),CgHs(d)
X=1,Br
[Pd]= Pd(Ph3P),, base=NaOAc
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(4% 3.6, Tab. 3.6)

Entry halogen-substituted Product Reaction time, Yield, %°
phenols h

1 Ia 8 91
] OH

2 H 1Ib 8 90
|

3 HO Ile 8 85
0

4 HO, 1d 12 79
-0

OH

5 Ia 24 44
Br OH

6 H Ib 24 39
e

7 H Ie 24 28
s

8 H Id 24 36
0y

OH

?The reactions were carried out using DPO (1 mmol), halogen-substituted phenol (1 mmol), Pd(Phs;P),
(0.05 mmol) and NaOAc (2 mmol), in dioxane (3 mL) at 100°C under nitrogen atmosphere.
b Isolated yield.

3.3 LIERS

3.3.1 KB HF 5 HAF
(1) FEMSE
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Sz36 A BT A 9 £ E {38 : Nicolet Impact 400 V41 41 i {X (SEE Nicolet 2A8]),
Varian Mercury Vx300 #ZB3t#R{C (3@ Varian A%]) , EA-1108 RITE ML (BK
#) Carlo Erba Instruments A 7]) , BHFHMATKBEE S (BEHD .

2) FERAH

IR EERFH: DOPO (LML, >99%, WM EXLEAT) , %
ZEALEE, WKERR, WEIR, RE, B, WNEZE, MHER, WUPCERE), AAHER,
ARHER, APRER, PACL(PhsP),, Pd(OAc),, PdCl, Pd(PhsP),, = E:RE, ¥H=
LEFWHEBTEAC), 14-Z&A W, 28, BX, WEKW, 28, —8FRShs
Vreids (EAERMLERFAERAT) , HENEK 100-140 B (FBEFEAT 4
| ID I
.32 5HERS

(1) RN EMERE R

@ 2-1-1,4-2K Z By )& P

%% Mohanakrishnan 2 A" )& B J73. 0CTF, [ FeCl(1.39g, 8.5 mmol)i{jZ,
FEVAW(20 mL)S N Nal (0.64 g, 4.3 mmol), 3T 0CHIHE 15 min. HZERF WAL
F_H)(0.473 g, 4.3 mmol), F O0°CKRI 6h. ¥ RNIEEWEAMF NH,Cl KBRS,
A Z.B ZEREB (220 mL). FHUHAKEE, /K NaySO, T4, I8, BIEZATER,
821 4- X" &, ZRMOBRES BB LAHRERE, TLC —"R(1: 3 2R LE:
EC%), y=60%, m.p.114-115C, (1it'*®115-117°C).

@ 4-REBIE R

5% Podall Z A& BT E. HEEB22.6g 0.24 mo)BFT S Z.5%(48 mL)H,
F 0°CF r A Bry32g, 0.2 mol)7E & Z5%(21 mL)KI¥ER, 160 min f5E, M5
Fﬁ)ir“osm BIEREBREER . REYHERS, W 120-122°C/15mmHg 184},

B 4-BE®, TLC —E(1: 5 ZBR LEE: ECHT), y=85%, m.p.62-64 C(m 1160} 63.65C).

@ 2-B-14-F B A L

5% Egbe Z AU & b vE. K5t =10 g, 0.09 mol)#FF AcOH(100 mL)H,
F 0CF i H A0 Bry(7.2g, 0.045 mol)fE AcOH(20 mL)E#&, 2-3 h fnse, MEfkE
BT 2-8CRFL 2 h. WIEZERZ AcOH, BHHMWA 20: 1 MEN/ZBELRBAGEH
REE, y=48%, m.p.110-111°C(lit."?112°C)

@ ZFEFIBDPOIE K
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%% Willans!"> 4 5. KK AICI(0.5mol, 66.8g), #(1.95 mol, 152.1g)
1 PCl3(0.5 mol, 68.8g)#KKIA 500ml =K, FHEEMIR, 4K HCl A 44 FBR %
. 24h ERNER, BRMNBEEYEZEER, ZI8MA 480 ml 2.25N thEg+, —&H
1200 m3)AE, AIHFIAME, BRFALHO00mb3)E, KRR TER, ZTEHEN
B AHR DPO (91 g). DPOMMAF A 2.5 FEHGEENKRE, FEZEEW,
R 05h 5, BRXHER, Hrih DPO 5REIKMMMIE &k 1§, Nk, 18 74g
Bk, BARRBTHEZ 130C, RBBENFI%, BERZERNKER, 2@
B, 1874 DPO 582 g, y=58%, m.p.136-138°C(lit.'"*" 137-139°C).

(2) Pd fEALAE X ABIR B 2L DL BELAA TFI ) & AR

A% MH T, DOPO, HPPA Bl DPO 5 =AM AL X BEX R Y, BA-&MRITHEER:

Method A: 8 HLBEHL S EEH(DOPO, HPPA B, DPO)(1.0 mmol)55 Pd(OAc), (0.05
mmol, 11 mg), PhsP (0.1 mmol, 26 mg), NaOAc (2.0 mmol, 164 mg), 7 =4b7(1.0
mmol), A 25mL =0, EREHRGE, ZET, FHEHSEMA 1L4-28-FC mL)
EA RNER, FHRZE 100CRM, TLC REZXNRFRERNTE. ¥ RARESYRH
FER, HZBZEQ mL)ER, X RNEYIR, BAREEBR00%wt, 10 mL),
KRS R VRN T EMAR LR, BRADHESE, 2EKE, KEHZRZ
B5(20 mLx3)2 . HHHEH, K¥E(Q0mLx3), MMEEH/KBEAO0mL), J/K Na,SO;
T, vk, BBRERGEEEAHETY), EREEIESBEEHA: 2:98-5:95 MeOH/
CH,Cly).

Method B: #1EFIFE A, {XLL Pd(PhsP)s 1E 4 R BRI

4-(6- F -6H- — K FF [celll2] & B % & & ) X B  (1a)4-(6-oxido-6H-
dibenzjc,e}[1,2Joxaphosphorin-6-yD)phenol: H & [&4%, 15 51 256-258°C . IR (KBr): 3451 (v
on), 1433 (v ppp), 1380, 1292, 1202 (v phon), 1124 (v po)em™; 'H NMR (300 MHz,
DMSO-dy): 8 6.87 (dd, J=9.0, 3.6 Hz, 2H, Ar-H), 7.23-7.34 (m, 2H, Ar-H), 7.41-7.57 (m, 5H,
Ar-H), 7.71-7.76 (m, 1H, Ar-H), 8.15-8.22 (m, 2H, Ar-H), 10.26 (s, 1H, OH); *'P NMR (121
MHz, DMSO-d;s, H3POy): § 24.18. Anal. Calcd. for C;sH30:P: C, 70.13; H, 4.25; P, 10.05;
found: C, 70.20; H, 4.22; P, 10.13.

3-(6-%-6H-—F I [c.e][1,2] A WA D EF) KB (Ib)3-(6-oxido-6H- dibenz[c,e][1,2]
oxaphosphorin-6-yl)phenol: 5[ {4, #& £ 235-236°C . IR (KBr): 3415 (v on), 3138, 1597,
1477, 1436(v ppy), 1272, 1240, 1189, 1148, 1119 (v p=0), 1080, 922 (v p.opr)em™’; 'H NMR
(300 MHz, DMSO-dj): & 6.96-7.08 (m, 2H, Ar-H), 7.14-7.29 (m, 4H, Ar-H), 7.37-7.56 (m,
3H, Ar-H), 7.70 (t, J=7.2, 1H, Ar-H), 8.07-8.15 (m, 2H, Ar-H), 9.62 (s, 1H, OH); *'P NMR
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(121 MHz, DMSO-ds, H3POy): § 23.40. Anal. Calcd. for C;gH;30:P: C, 70.13; H, 4.25; P,
10.05; found: C, 70.18; H, 4.27; P, 10.08.

2-(6-%-6H- Z X H [ce][1,2] AR O H)EH (Ic)2-(6-oxido-6H-dibenz [c,e][1,2]
oxaphosphorin-6-yl)phenol: H €2 [& 1k, 1% 5 285-287°C . IR (KBr): 3454 (v on), 3070, 3018,
2919, 2846, 2705, 2595, 1637, 1592, 1441(v p.py), 1303, 1173, 1103 (v p=o), 836 (v p.opr)em™;
'H NMR (300 MHz, DMSO-ds): & 6.78-6.83 (m, 1H Ar-H), 6.93-6.96 (m, 1H Ar-H),
7.22-7.31 (m, 2H Ar-H), 7.40-7.61 (m, 4H Ar-H), 7.70-7.75 (m, 2H Ar-H), 8.17-8.23 (m, 2H
Ar-H), 10.12 (s, 1H, OH); >'P NMR (121 MHz, DMSO-ds, H;PO4): § 25.22. Anal. Calcd. for
C1sH303P: C, 70.13; H, 4.25; P, 10.05; found: C, 70.19; H, 4.22; P, 10.15.

2-(6- # -6H- — K Ff [cel[I.2] E B 24 35 )-14- Z B H XK (I1d)2-(6-oxido-6H-
dibenz[c,e][1,2] oxaphosphorin-6-yl)-1,4-dihydroxy phenylene: H & [ & , & &
254-255°C . IR (KBr): 3423 (v on), 3248, 1651, 1589, 1500, 1475, 1452 (v ppn), 1194, 1140 (v
p=0), 928 (v p.opn)em™’; '"H NMR (300 MHz, DMSO-dj): § 6.63-6.67 (t, 1H, Ar-H), 6.89-6.92
(d, 1H, Ar-H), 7.19-7.32 (m, 2H, Ar-H), 7.43-7.59 (m, 3H, Ar-H), 7.62-7.75 (t, 1H, Ar-H),
8.23-8.24 (d, 2H, Ar-H), 9.19 (s, 1H, OH), 9.48 (s, 1H, OH); >'P NMR (121 MHz, DMSO-dj,
H3POy): 6 21.92. Anal. Calcd. for CisH304P: C, 66.67; H, 4.04; P, 9.55; found: C, 66.47; H,
4.12; P, 9.31.

4-(Z K EBB)XE (Ila)4-(diphenylphosphoryl)phenol: H & [H &, 15 &
247-249°C. IR (KBr): 3475, 3416 (v on), 1617, 1598, 1435 (v p.pn), 1286, 1169, 1119(v
p-o)em™’; 'TH NMR (300 MHz, DMSO-d®): & 6.88 (dd, J=8.7, 2.1 Hz, 2H, Ar-H), 7.33-7.40 (m,
2H, Ar-H), 7.45-7.60 (m, 10H, Ar-H), 10.07 (s, 1H, OH); *'P NMR (121 MHz, DMSO-d®,
H3POy): 8 26.25. Anal. Caled. for C1sH;s0,P: C, 73.46; H, 5.14; P, 10.53; found: C, 73.44; H,
5.13; P, 10.50.

(X HEBH)X® (1Ib)3-(diphenylphosphoryl)phenol: 1 & [& &, 4 &
188-189°C. IR (KBr): 3473, 3415 (v on), 1618, 1438 (v p.py), 1271, 1159, 1117 (v pg)em™;
'H NMR (300 MHz, DMSO-d®%): & 6.93-7.28 (m, 3H, Ar-H), 7.29-7.31 (m, 1H, Ar-H),
7.49-7.63 (m, 10H, Ar-H), 9.79 (s, 1H, OH); *'P NMR (121 MHz, DMSO-d®, H3PO,): §
26.33. Anal. Calcd. for Ci;gH;s0,P: C, 73.46; H, 5.14; P, 10.53; found: C, 73.48; H, 5.12; P,
10.52.

2 Z K EBB) X H (1lc)2-(diphenylphosphoryl)phenol: A £ [& 14, & /&
235-236°C. IR (KBr): 3454 (v on), 1637, 1592, 1441 (v p.py), 1173, 1103 (v po)em™; 'H
NMR (300 MHz, DMSO-d®): & 6.84-6.94 (m, 2H, Ar-H), 7.38-7.69 (m, 14H, Ar-H), 10.50 (s,
1H, OH); *'P NMR (121 MHz, DMSO-d®, H3PO,): § 29.63. Anal. Calcd. for CigH;50,P: C,
73.46; H, 5.14; P, 10.53; found: C, 73.44; H, 5.10; P, 10.61.
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2-(ZFHB®E)-1,4- K} 2-(diphenylphosphoryl)benzene-1,4-diol: Hfa[E 1k, 1%
A 212-214°C(lit. 214-215°C). IR (KBr): 3415(v on), 3147, 1433 (v p.pp), 1205 (v pron), 1128
(v p=o)em’’; *'P NMR (121 MHz, DMSO-d®, HsPOy): § 32.46.

3.4 AB/IE

1. 7 Pd EALFIFFAE T, BIKEILT DOPO 5AMML X BEL, &R T A ENE
Fo R 10 = N B HL R AR o

2. R RMAGT, P HPPA §XABKBECEG T DOPO EMARNEE
PUBEFH IR o

3. EALRMANFT, R DPO 5HRMKIBEKS KT DPO EMARNEAH
BEREIRA o
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4 2-\F A B -3- R B 551 BR BE (MPA) BUE AR5 N

4.1 3|

W 134 frid, RMEHHBHRRTERRMRESYHRNARE T — &Mt
. #LMAESHHRAGRAERNRE SV FNRELE)F, AESREYHE
mrtae. BEYERAF A2 aREIBMHIK, BSFRMEEMFTMEL, E8DKBE
&8 U A SR B N REAR R 1,

AT Bt iE A N T8 KR S Y KR B LB RS, AR SO LR
ERIE R T I F it

-~ @ COOR*
Structrue |
_\g_H
H
4
1 |:§<
RA\S*R:’ \ H Structrue Il
RZ
COOR*
H \ Structrue Il
N ®
H
@ — Functional group containing P element

B 4.1 SBERRMAILR AR it

Fig. 4.1 Design of co-monomer of phosphorus-containing flame retardants

BT RBRERE GBS ELEHREFRIEMAENE, Bk, EERGREEER
BHARSE R R RV BHE, #ENBEE AR R R R SIABHAS ., BTRES
t(Structure DI RIRACIERE &, RBERSHIRSIEE; 105 5B 4 (Structure 11,
A FEMTRIERLT, WARERAR, DARAIEMM, R&RMEERET, Hik
BATEBURME S P)(Structure DIE A AR ICHIFT TN 5. P-C BEAG IR HIKEIE
Rt B e & B HUBE B R H 5 R IRER BHALL P-C BAE.
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Ebdon % A'BIFTR Y, ZHBENGEREE VB S WA R A EER TR WE
PR Ak 5K LGSR R GRSV LER, FEika 3Ll Structure I 4 HERF=Y,
HFHREATERTHIILE.

Baylis-Hillman & B & — M AR HC—CEIIRN, HARFRTFLFHEMER
L E AT SRR LES R T ANKER, B8 TRAMZRS, BiE, h
Baylis-Hillman Il i )3k 18 I Baylis-Hillman iR 4L #(BHB)Z B T B £ iy k'8, #RIEF
[ ) R BRI A, SRR AT UE i Sv2 I B B BHB AR IR T 18 B JE s M AT £
BHB-S\2U75177, 7] LA UBHB i) — 45 8 5k IR T 18 1 Sn2” R N 18 B3 M AT £
BHB-S\2!'B1Pl, A LR T, SIS RN EMES, Eik, 4 RBHB-S\2H
BHB-S\2' KB &) . %M HIE BBHB-S\2 7] iBHBZ: ' [8] {4 BHB-SN2Brift 1T & 419
Sn2-Sn2’ RN R3], RN WE4.207R.

R/\[EWG S\2 R/\EEWG
NuH

Br Nu
BHB BHB-S\2
SK2 |Nu' S
NuH
EWG
RN
R/\[ . _SNZ__, EWG
Br “Nu
BHB-S\2Br BHB-Sy2'
4.2 BHB BIEZEA R B

Fig. 4.2 Nucleophilic substitution of BHB

A T4 K BHB-SN2 (I, B— AR5 Nl Sn2 R4 R AT fe i
T5Ed. B/, BIAFEZIRN NuH TS RN 474 BHB-SN2, XMV13E) BHB-SN2
1 BHB-S\2’ HIIREY. &5 BHB-SN2” IR MR RE AR NuH e
HEUE Nu’ . ¥ BHB #44% BHB-S\2Br ®/¢1 BHB 5 DABCO!®, DBU!'®-#2g;
Quinidine Z*WE B E, THT SN2” FEHIARKFEHRANA LiBEGH!], NaBH,'),
WA e, BRI  DABCO R M K B8 B M A 5 7
182, 185]%%

AR ICH KK BEERAFA T BHB 9 Sn2-Sn2° KB, ATFERLEERMNEEH
R R IL B B4 (Structure I).
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HTERBHEZY Structure 1 (- T F 5 -3- B B 2 8 & M &,
2-methylene-3-phosphorylalkanoates , f&#% MPA), 8 LIH B 5B 758 ArCHO M
RIGERER AR R, Wit T & k.

H
©) M > A'/\[ =, COOR*
Br
BH

Ar
MPA BHB

R'R"P(O)H Jl
Br/CHO + Il/

P 4.3 MPA Hy-& LR 2 BTt
Fig. 4.3 Design of synthetic route of MPA

B, BB SHEHRESER YU MELL T , @il Baylis-Hillman < & /X Baylis-Hillman
mEABH); #RJ5% BH #4k % Baylis-Hillman #R{L#)(BHB); BHB ZE—E &M T 58
F AR R'R7P(O)H ZIELER) Sn2-Sn2° RN AR B B AR MPA.

BB ArCHO 1E 4 Baylis-Hillman N HJEY), B FIF 140 BAR7=% MPA 1
FEEE, NTEREGURENMAREHNRRE, HRERE.

T BEEZIAS RR'POH FEFENBESEMFESER M HNEA%RE K&l
BMEEMSESERNTHRENES. BE5ESENd &, ¥R RRP(OH M4F
BMK, SEBEENTRE, REFDRBERYET .

ARICAM T P4k BH. BHB X HA5rF=4) MPA, LT MPA & RLf) R N 444,
HHBREE MPA L EMERLHEIE, ERTHERNREYFEMRIERE

4.2 ER5i1E

4.2.1 Baylis—Hillman 1nBi43 (BH) B9& AL

Baylis-Hillman il 41 (BH) 7] t 85 2540 &Y F1id IR M 12 4 Bay lis-Hillman < S (BT 8
F¥B-H R ) 5 {8 b 6175

B-HR N 515 B FH & %5 ) R AR R AL 77 —1,4- B R 3 [2,2,2) 51 (DABCO).
19724, B-HR B KSR IE N 368 TDABCOMALAI, = F i xt B-HR B A AL
IEMERFT. 20004E, Basavaiah®USHRGE T K& = FRAEHIB-HR N, (B3 FRER4-
AEFBAEUEART RN, RAEEIEEEE. 20024, CaZ!'SHHEEKRMK
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WHEBHINA R, E=FREAMLT, B-HRMGERE TS EHmR, Rds] S
R’E.

DABCOR N il B ZHIB-HR ML, M=FEEE5E. KK, £AELH
g X B ML & R T H e ABH, & HLK4.1.

¥ B 5 BRGREAAVUEELTIE THNER, SR THERMN. EE6E
HE(TLORBR RN, RNEHRE, BRMBEEYWHKAER, 2R PHER. Kk,
F. RAFMERE GRS E, 53+ E4BH.

#4.1 Baylis-Hillman il SLA7(BH) ) & &
Tab. 4.1 Synthesis of Baylis-Hillman adducts (BH)

COOR‘ Cat., rt. H 4
ArCHO  + W — COOR
solvent
BH

BH-1: Ar = Ph, R*= Me

BH-2:  4-CIPh, Me

BH-3: 4-CIPh, Et

BH4: 2,4-Di-CIPh, Et

BH-5: Furan-2-yl, Me

BH-6: 4-Nitrophenyl, Et

BH-7: Ph, Et

Entry BH Cat. Solvent React. Yield *
Time, (h)
1 BH-1 DABCO THF 48 70
2 BH-1 Me;N Methanol 24 78
3 BH-2 DABCO THF 48 45
4 BH-2 MesN Methanol 24 83
5 BH-3 MesN Ethanol 12 85
6 BH-4 MesN Ethanol 12 88
7 BH-5 MesN Methanol 8 90
8 BH-6 Me;N Ethanol 8 93
9 BH-7 Me;N Ethanol 24 79
*Isolated yields.

MRAIREEERTTUE N, R RNARS, MesN/Mehthol5Me;N/Ethanol
A% 5DABCO/THF A AL, RACEZERR, F=RKEH(Entries 1, 2, 3, 4).

BPEBRTHETZFERBMEBERLAYBRAER, RMERR, =HKRERS
(Entries 5, 6, 7, 8).
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R*eH AR 4 Z B PP R A K (Entries 2, 9%14, 5).
B & BUEIBHAP [ 4K 2 F 85 /92 '"H NMRBA, 530S RBURHS, EWN T4
I IEH o
4.2.2 Baylis—HilIman jR{L49 (BHB) B9 & X
Baylis-Hillman 824k 4)(BHB)A] i1 BH 58 R %" 5 PBr;"" |k M4 % .
SRMEMethod A): ¥ BH B Ti&EE CH.Cl, F 0°CF i 40%HBr, 2R 5 HIE

BT RIKRRER, SEREIR. ZBEANKKR, BZEFHIER, LK NasSo, T
1%, ZTHHN, 62575 BHB,

4.2 Baylis-Hillmani® (k. ¥)(BHB) )& B
Tab. 4.2 Synthesis of Baylis-Hillman bromides (BHB)

OH . 409 R*
N COORS Mehod A: 40%HBI/H,S0,4 Ar/\ECOO
or Method B: PBr; Br
BH BHB
BHB-1: Ar = Ph, R*= Me
BHB-2: 4-CIPh, Me
BHB-3: 4-CIPh, Et
BHB-4: 2,4-Di-CIPh, Et
BHB-5: Furan-2-yl, Me
BHB-6: 4-Nitrophenyl, Et
BHB-7: Ph, Et
Entry BHB Method. Yield ®

1 BHB-1 A 89

2 BHB-1 B 87

3 BHB-2 A 82

4 BHB-2 B 81

5 BHB-3 A 85

6 BHB-4 A 88

7 BHB-5 A 68

8 BHB-5 B 83

9 BHB-6 A 75

10 BHB-7 A 87

*Isolated yields.
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PBr;iE(Method B): #BH¥E T&ECH,Cly,, F0°C FifNPBry(leq.)ICHCLIE K
MREZEBRNYNE, REHRSBEMEIAKKS, BZEFRER, TKNaSO,
T, ZTHN, HaiEsEHEm%BHB. RNERYITERI2T,

KR EFHTE, STREHBHBLEYIMI &R, FFOMKREHEESAKR, —K&
KTF80%. ARTXS T (Z)-2-(IR H Ak)-3-(W M -2-55) R % B FF BR(BHB-5) I & 1, EIRMRIE
(Mehod A) 2 LEPBr;i:(Method B) 21K 15%, X AJ#EZMethod AKH T, RMNAER
K B FEE RIS IR 3073 5 R R 2

K217 7% ABHB-1#'"H NMRiZE, §44.3990) 84 K 58 8 FAEN T P EKE
FEHBEANEBRTORFFE; 547.8300 8igk 5HEKERFHEN —NERFHR

fiLi,

hhhhh

830
588
564
463
438
4.399
3.883
0.000

Ar-H
i
! ]
c
! Y '
A A A
WL vy
2 N » »
8 33 8 8
T 7T ‘ T T T T ‘ T T T T ‘ T T T T ‘ T T T T ‘ T T T T ‘ T T T T .‘—‘7 T T T ] T T T T ‘
8.0 7.0 8.0 5.0 40 30 20 1.0 0.0

pom (f1)
& 4.4 BHB-1 ) '"H NMR i &

Fig. 4.4 The '"H NMR of BHB-1

4.2.3 BMBFEZRAFIBE K

A SOk TUAE HLBEE AR H R'R”P(O)H, T MPA K& RUR NATST, X P0F
FEBAR T 9 B A = % 2 4k B (diphenylphosphine oxide, f&j#f DPO), —FIHEEILB¥
(dibenzylphosphine oxide, f&j#k DBO), DOPO B — ZE&. DPO X 5 PCl; 7 AICl
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46 T # Friedel-Craft K N4 %, DBO Bif ¥k KiAF 5 W B — Z. B8 i N & A
0920, W MR — Z. B N 7 AL AT A L& B A .
4.2 4 2-TP RE-3-BBt B4 IR BRBE (MPA) RO S X

A TP A& RS IR AR B4R MPA, {§ Baylis-Hillman JR4L¥)(BHB) 53
#AAF R"RP(OYH M R AR B L AT, BE RS IEELER) Sn2-SN2° HLER AT

B ZEEENBEDPO)(Z)-2-(1R I H)-3-F B H 15 R B BR(BHB-1) b K M &
Y, ZEEWRY 2-(CHREBEB)CRE) F2) N5 R FEE(MPA-1D) KA S &

#—35: BHB-1 5SHYIRK SN2 RN . #RYE Basavaiah 2 A Ky#RiE %), BHB-1 7
5 14 ZRFEZHQ22] FHMOABCOTERTRN, HEMBIE S22 &Y
BHB-1-Sx2Br.

% =/: BHB-1-S\2Br 5 DPO Hj SN2’ . K T {# RN AEFR 2 BE4T, BT
BHB-1-Sx2Br #1 DPO # BH BRIF MG N RIER, 6 RNAESEERE &4 T#T

5.056
5.027
3.817

—— 0.000

d ¢ b
]
1

| S A [
e b -
N (: - o Eod
8 2 2 8 8
— T

e |
—H woo{

]

T T LA
80 70 (1) 5.4

°
»
e
w
o
4
e
-
o
=3
e

4.5 MPA-1 1 '"H NMR ¥ &

Fig. 4.5 The 'H NMR of MPA-1
AT EEES K MPA-1, AT TWTHRERLR: ¥ BHB-1(1 mmol)5 DABCO(Q2
mmol) A RN, N, /YT, TZIEEF P =B B 15 min; R/E, I DPO(1 mmol),
FHEZE 80°CHiHE R AL, TLC BRER, 8hERENHFE A, EFAH, HEARESERA

_94_



RERTRFEF LRI

Bk, WK 82%. 'HNMR, *'PNMR, BCNMR, IR, MS #&EHIEMITES NG
BER, MPA-1 9 FLHIIEW.

MPA-1 1 '"H NMR & B & 4.5 Fis. B MPA-1 ) '"H NMR £ B[ & H, FEH
FRIEWEH TUAS, AR § 7 3.62 MHF R E 3 NRFHISIE@R): §7E5.04 M5
BRTFHEXRFERRF LI ANETFHONEED), HTRFEP R TRSTNRIANE
#(J=8.5 Hz); & 7E 6.43 1 6.82 ) 2 N5 uhE kIR FHEK T T(c, d), HTZEPRT
WIm, XHNETFH IR AWNELE, #HEFHESH N 1.8 M 2.2 Hz.

& 4.6 Fiak MPA-1 3P NMR & . B 4.6 PATLLEH, LEAH S 7 31.55
W —A ik, RPALEY MPA-1 - FHEE—AP BT,

2 g
» o
QP’O 0
Mo/
MPA-1
|
T T T T l T T T T I T T 1 1 ] T T |
100 50 0 -50

& 4.6 MPA-1 ] *'P NMR % &
Fig. 4.6 The *'P NMR of MPA-1

Wi 4.7 i<k MPA-1 £ 3C NMR #£ 8. MPA-1 i °C NMR # & _+ B7R, 1h¥47
# 8 7E 45.60 A BN E & A 5 P HTFAEE KK T HRE T (2), C-P R A H B Ucp=67.7 Hz;
§ 7F 52.23 AbH e N R R TIE(b); & 76 136.44 ALHTE I A PRI R T E(c),
‘Jor=2.2 Hz; & 7E 127.13 Kb XU I A s B B T 66(d), “Jcp=2.0 Hz; & 7E 166.71 &b
SN W h BRI T (e)s *Jep=9.4 Hzo
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52201
45,053

S 4sase

'b
d

a

| 1]
c
| ﬂ
J ” A "
T T I T T T T | T T T T [ T
150 100 50
ppen (1)

Fig 4.7 MPA-1 {1 °C NMR i
Fig. 4.7 The >C NMR of MPA-1

MPA-1 (] IR BB 4.8 Fic. B 4.8 ATHEH, FHHEH 3055, 2947 cm™ Kk

Y B
‘1.-,. d ::"-. .,L: o o
Lk

£ 4.8 MPA-1 () IR ¥
Fig. 4.8 The IR spectrum of MPA-1
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Wk C-H MR R, 1718 cm™ A MBAES AWML, 1620 cm™  C=C {4
#®5h: 1437 cm™ % CHs Wiiride; 1242, 1184 % C-O Hilki; 1128 cm™ % P=0 {4k
3.

MPA-1 [REEWE 4.9 Fir. 4.9 BLER, MPA-1 M4F&FEMH) X:
377.1295, (M+Na)+ljb 399.1117, 4 ¥ & 376.12, 5EREMR.

lenSpec QF T-ESH Thde ontee e 30012007

Sa VS K IS v Senpe Tranag o 2 &are ¢ L"""gfze

7 1298
.-
D rads
ws7es[ba {""‘,

92 2577 oy “22 27976 g3 xme 330
Py pa—— LB 2 e s s e ™ B Ea i men T R S e o eu B e dng
3 & & E

S Crarge

P 4.9 MPA-1 ()i
Fig. 4.9 The mass spectrum of MPA-1

hTHRAL MPA-1 BIE R, ZRTH. BH. BERKNS RN ROEW. @
AR N AT : ¥ BHB-1(1 mmol) 5%5(2 mmol) I & M, No R4 T, F# (3 mL)
FEBRBEE 15min; KJ5, A DPO(1 mmol), FHEZE—EBEHERMN, TLC RER
FRSEARZE., FAE, EREEIESEETS.

(1) xR

HELERBARMEANT, ZHEEER, T 80CTHIRMN. ERERITRK 4.3,
AONBEE;, SN ERBAK(Tab. 4.3, Entry 1). RAGEFES, PHRAHM, FEAHRYE
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k%, EH /DR HBr 4R, RMEHEERANFE, RNH#ITEE, 24h FNE
8% B I A IRIEH(KLCOs , NaHCO;, NaOAc)s, RMIER Figm, &
38-52%(Tab. 4.3, Entry 2-4), {HRERNEFEHEE, BIFRE. EuN AN, 5TV
A, RYERFRER, TLC IBEHER 12h FEEEHTS, R RMNERERE,
X183 46% H A57=9)(Tab. 4.3, Entry 5). % DABCO MHEY, R N7EBE A 8] 52
(8h), BARF=Hi R BiRE, WRIE 82%, iF ¥ DABCO HRUIRE T 4/ B
HEE. Fik, AL EE DABCO 1544 B MPA L&Y KI5 .

R4.3 BT RSB

Tab. 4.3 The influence of base on the reaction ®

CO,Me P(O)Ph
Ph,P(O)H + Ph/\[ ’ ___»base C(ZZ)ZMe + by-products
CH4LCN Ph
Br
DPO BHB-1 MPA-1
Entry Base Time (h) yield®
1 - 24 8
2 K»,CO; 24 52
3 NaHCO; 24 38
4 NaOAc 24 40
5 Et;N 12 46
6 DABCO 8 82

 General reaction conditions: (i)BHB-1 (1 mmol), base (2 mmol), CH;CN (3 mL) r.t. 15 min;
(ii))DPO (1 mmol), 80°C.
® Isolated yields.

DABCO FIHEST R MR KM L& 4.4. DABCO KT 2.0 mmol i, P&
DABCO FIEM#ERE, RNMFKEART. XEEA MPA-1 SRMTRENEN: BE
DABCO 5 BHB-1 KN ERL C-N BILEY) (a), T 1 mmol DABCO, DPO M
BEFIUUEFA=ZMHETF, =B EYERE, 55— 38 DABCO M)
O =N BERFHEB M —MEERIR T, BERETYNE 4.9). FEHIEXEMH
BRATF=BEri b A r R, AR NAERERS. DABCO MHERIT 2.0
mmol 5, SFEYRRERERAL, Ei, DABCO HHE %S 2.0 mmol A H.
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4.4 DABCOWI F & X RN i 2 ma®
Tab. 4.4 The influence of amount of DABCO on the reaction

CO,Me P(O)Ph2
A 2 DAB
PhP(O)H + Ph/\E ———»CO CO,Me + by-products
CH, N  Ph
Br
DPO BHB-1 MPA-1
Entry DABCO (mmol) yield®

1 1.0 51

2 1.5 72

3 2.0 82

4 2.5 81

5 3.0 80
? General reaction conditions: (i)BHB-1 (1 mmol), DABCO, CH;CN (3 mL) r.t. 15 min; (ii)DPO (1
mmol), 80°C.
® Jsolated yields.

o Ph DABCO
Phii —_— ~o Ph<
poPH T ppPTOH | op0” [Sj
P(O)Ph2
COzMe
(b) Ph
—_—
+
COM DABCO* HBr
~COzMe X v2e +
DABCO . DABCO
> NN

Br IRAVAN
Br I\/N
(a)

B 4.10 MPA-1 & R T BENL
Fig. 4.10 Possible synthetic mechanism of MPA-1

(2) RN e NI

ARSI R N o (8 (AR B P I OR 20 BOR S, IR I 1 5 9 R A AH
BAER M R BOE R DR = R B . AR OB R T LR EA AT, B 2¢q
DABCO A, RNEEFIXF=YREKZW(R 4.5). LRERRY, UIRHENIEDE
R BLBEFIN, RV R A ERIERE, P& HE T REBEE, &F RN
YIEEMALT, BrUAEIF 24 h G, N33 10%K B #57=4)(Tab. 4.5, Entry 1); F . Z8
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ZBE. ZB. THF. 1,4-ZF /5. ZFEFR DMF #al1ER R NI RI, 8 B80T RleE
58-82%(Tab. 4.5, Entries 2-8), I+ ZF5H DMF {E¥ FIRT R M 6]%E . K&, 8 h
Ja NS4, PRI 51k 82%F0 80%(Tab. 4.5, Entries 7 and 8). XEHK K, FEHF
Bk 3T e A BL () FI(b) B BUF I iR AL D, BRI TRE RN ERYRE. 54
ZIREFINAE . F= M BB FIRI B S, VISP ZREVERN & B MPA RN HIEH.

R4S VIR L

Tab. 4.5 The influence of solvent on the reaction *

CO,Me P(O)Ph
N C0:Me pasco
Ph,PO)H + P“A[ A2, COMe + by-products
solvent  Ph

Br
DPO BHB-1 MPA-1
Entry Solvent Time (h) yield’

1 n-Hexane 24 10°
2 Toluene 24 58
3 EtOAc 24 61
4 EtOH 24 65
5 THF 12 75°
6 Dioxane 12 77
7 CH;CN 8 82
8 DMF 8 80

# General reaction conditions: (1) BHB-1 (1 mmol), DABCO, solvent (3 mL) r.t. 15 min; (2) DPO (1

mmol), 80°C.

® Isolated yields.

¢ Reflux.

(3) MBEEXT R YRR

EERBRELAGT, ERT CHEANER, BESNRNEEMEW. FHE5 T80T
b, L4-ZENHF. FERFMDMFEAE, AR RIEE &M BRI E I Zm. YU
CREVERFIZAMT, BERPORE RS, RAERMR, 7=l R RS . RNEFEH20T
FZEB0°C, RMMIAIH48 hWERIE8 h, PP E H138%1R 5 £ 82%(Tab. 4.6 Entries 1-4),
SR LLLA-—ENIR . FEMDMEAEA, F5T100C, 110°CHMI53CTF, BEX=Y
WRMER. LREREY, 14-ZEAKRNDMFERFIN, B E T RNEZ N
R, 183t BARF=YIRBE A K(Tab. 4.5, Entries 6,8%f tb Tab. 4.6 Entries 5,7). LA %
AR, ISR E N B AR 0 R N R AR A B R, SO E] 24 hER R 8
h, FEYIBER H158%1% B 5 78%(Tab. 4.5, Entry 25ttt Tab. 4.6, Entry 6).
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RA.6 WX RN E A

Tab. 4.6 The influence of temperature on the reaction *

CO,Me P(O)Ph;
X 2 DABCO
Ph,P(O)H + ph/\[ _DABCO_ CO,Me + by-products
solvent  Ph

Br
DPO BHB-1 MPA-1
Entry Solvent Temperature(C) Time (h) yield®
1 CH;CN 20 48 38
2 CH;CN 40 24 46
3 CH;CN 60 24 69
4 CH;CN 80 8 82
5 Dioxane Reflux, 100 8 79
6 Toluene Reflux, 110 8 78
7 DMF Reflux, 153 6 79

* General reaction conditions: (1)BHB-1 (1 mmol), DABCO (2 mmol), solvent (3 mL)r.t. 15 min;
(2)DPO (1 mmol), 80°C.
b Isolated yields.

4) KX RMEZW

R4.7 KEX R

Tab. 4.7 The influence of amount of water on the reaction

CO,Me P(O)Ph;
A 2 DABCO
Ph,P(O)H + Ph/\[ —_ CO,Me + by-products
Br CHs, CN Ph
H,0
DPO BHB-1 MPA-1
Entry H,0 (mmol) Time (h) yield®

1 0 8 82
2 2.0 6 79
3 4.0 4 77
4 6.0 2 81
5 8.0 2 76
6 12.0 1.5 72

# General reaction conditions: (1) BHB-1 (1 mmol), DABCO (2 mmol), H,0, solvent (3
mL), r.t. 15 min; (2) DPO (1 mmol), 80°C.
b Isolated yields.
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BF DPO &5 BHB MR MA T LA Sn2 RV, FHKMIAS KPR fER
BFRAEW, Hik, ERTAKMRMEMER, LRERLEK 47,

FTRERERA, EEKMMAREERSRNEER, XA EERE KKK FEFHEH
B T2V E A Sn2 BB P TR A AL, PR T R BLiE AL R, AT 5 N pmas gk 47101,

LA 6 -12eq. H,O I, RNVATIAIRTEHY 8 h 4548 % 1.5h, RTIAKKMA, TTRESHE
B EHFRFEY)h COMe HIKRR, 1€ B Ar=YiilZEH BT T B (Tab. 4.7, Entry 2-6). K&
BH 6eq Bf, RNAEREMRBIQ)ATEE, BKKBEINAZE TR S T BRI K%
M TFBEAK, BHIRFYE 81%(Tab. 4.7, Entry 4). Et, BEEKFMEN 6eqERhE
BB BRI &4 .

Gall EER, HE B MPA-1 MBEER T ZE4&M44: % BHB-1(1 mmol)
5 DABCO(2 mmol), 7K(6 mmol)JIA KN, N R T, FZIEG mL)FEEHHE 15
min; 4R/, MMA DPO(1 mmol), FHEZ 80°CHHERMN, TLC BREZE BERMERE® 2
h). JEAbER, FERRHAIESBEET.

ELRMMRNEZGT, AT HE MPA (L&Y, TREFRIITR 4.8 9. AR
48 TTUEH, PAZIENHER, DPO 5 BHB RN UK EWEBI HAx7Y, WEAE
75-85% (Tab. 4.8, Entries 1-10); BHB " R & Me % Et X} x St AN K (Tab. 4.8,
Entries 3 and 5); BHB & Ar Z3 EEREEX Rk MR Z Wt 4 23 (Tab. 4.8, Entries
1,3,5,7-9). DBO 5 BHB [z iy th. 7] 183 2|5 =il & B #57=4)(Tab. 4.8, Entry 10); LAZAEAH
B, AR — LBE(DEP)IFZANES, RNMIEREK, XBEE] 32-34%K Bir =9
MPA-8 1 MPA-9(Tab. 4.8, Entries 11, 13), X2 WM — ZEEH i P-O 8 5 TR
RAEBRNGER . ZALLFEERDRMERR, MPA-8 fl MPA-9 MIEFR AR,
A 9355 3] 61%F1 63%( Tab. 4.8, Entries 12 , 14).
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R4S MPARTEYERE
Tab. 4.8 Synthesis of MPA derivatives
H OOR  DABCO H  COOR RR'P(OH R'R(O)P, COOR
F{_ CHyCN A }_Q—ﬁ/\/u 80°C ) <\
3 r K
Ar Br rt, 15min B \— Ar
BHB-1~7 a1~7 MPA-1~9
BHB-1: Ar = Ph, R= Me R'R"P(O)H
BHB-2: 4-CIPh, Me DPO:R'= R"=Ph
BHB-3: 4-CIPh, Et DBO: R'= R" = PhCH,
BHB-4: 2,4-Di-CIPh, Et DEP: R'=R" = EtO
BHB-5: Furan-2-yl, Me
BHB-6: 4-Nitrophenyl, Et
BHB-7: Ph, Et
Entry R’R”P(O)H BHB Product Reaction time, h Yield /%’
1 DPO BHB-1 MPA-1 8 82
2 DPO BHB-1 MPA-1 12 78°
3 DPO BHB-2 MPA-2 8 79
4 DPO BHB-2 MPA-2 12 81°
5 DPO BHB-3 MPA-3 8 80
6 DPO BHB-3 MPA-3 12 82°
7 DPO BHB-4 MPA-4 8 81
8 DPO BHB-5 MPA-5 8 75
9 DPO BHB-6 MPA-6 8 85
10 DBO BHB-6 MPA-7 8 84
11 DEP BHB-6 MPA-8 8 32
12 DEP BHB-6 MPA-8 12 61°
13 DEP BHB-7 MPA-9 8 34
14 DEP BHB-7 MPA-9 12 63°

? General reaction conditions: (i) BHB-1 (1 mmol), DABCO (2 mmol), H,O, solvent (3 mL), r.t. 15
min; (ii) DPO (1 mmol), 80°C.

® Isolated yields.

®Toluene as solvent, 80°C.

4.2.5 WPA-1 5E T HERMBYA RN

H T R MPA RINLEYILE R RN E S BB RS, 23CEL MPA-1 AR
Y, BARLEHK MPA-1 5XZHEORRE, AR TARBESENHRIERY
PS/MPA-11"7,

PE MPA-1 14 LRI BER LB SR R 0 F

(1) MPA-1 AE K E, FELEERFKHREK.
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(2) MPA-1 B 5 BB & (X 8.23%), WIERIBMRIEREEE .

(3)MPA-1 SAE &R, MREMMBURIERRL.

(4) MPA-1 43 FH P TZLU P-C @5HMERASE S, ARENKERENE, M
RIS FE P AR5 WK 43 AR T 0TS BRI R A T e

MPA-1 5XZHEHITHRBREBERE. REVEHE, TEZSMNMNEREYNHS
B: ENSATHRARSYH TGA: BIBAREYAERELAMRE, i dTRRE
EH(LODAE HRE LR (UL-94v)TIR . BRI 'H NMR B nE 4.1 Fix.
PS/MPA-1 3tZR4) 5 MPA-1 £ 'H NMR #4515 F & 4.11 f1 4.12 . —FXLaTHE
, 5P RFHEMNBREFLEHERF b BB HREERN 5.04 TAREEK
445; BEJE, MPA-1 ik ERIBANEIR T ¢, dFFEEIHE, BHARETE.

kN
o

C[OzMe

| ~<CH2—E:?icnz—j\—)—

y
Ph™ p P(O)Ph,

pm (t1)
/& 4.11 PS/MPA-1 2t Y% 'H NMR %14
Fig. 4.11 The 'H NMR of PS/MPA-1 co-polymer
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B 4.12 MPA-1 ff1 'TH NMR i &
Fig. 4.12 The "H NMR of MPA-1

¥ MPA-1 5XZEETHEBIR, G T ARBEESERN PS/MPA-1 FHRIL R
Ao

AR XERSRT, MR T AEBES & PS/MPA-1 H A S1-S4 /8 TGA. & 4.9 FIlH
THESD S1-S4 BB e BidE . HoP S1 AR E MPA-1 MR ZE B R . S1 K 5%wt 5%
B Tas 2 340°C, 10%wt DARRE Taio A 367°C, HREERBRMESER 412°C; §F
MPA-1 HIRRRALEE G S2-S4, TosFl Tq105 S1 FHLLEK, BREEBS B, TosH
Tano BEAREEK, BESER 8.9%F, Tys M Tai0 2 HIFER 201°CHI253C. B MPA-1 [
BIN, BRI et E R, XEERFRAREGYPIIATRBEHREN P=0
#, FREVHPFE—ERPBMONER, EXIERTREERE TR R LK
%, BB AR B AR BN P AEIE Toax A S 2 593 N0 B,
BEBA BEAR T BT 5N A B AR A R R AT, (BB K HVR EE E R BERE S B HIHE DT
BEBRK, WM S4BEEEN 8.9%Ef, Runh 1.39, HLBEEEN 0 B Ruw A 2.38, [
KT 41.5%, UEHBESERM, FHEMERSERERERK, ERIMH 2L
SRR . AR 49ETTUUEH, BEHESENEMN, MEHSREHEEM, BEE
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K 8.9%(FE i S4BT, BURZEN 16.4%, XEFEN MPA-1 5IAM KT 45/ 388 n T FR
MR, RN MPA-1 4 FHREMNERGE, AHNTRENER. MEBESERS,
BARSBREBBE, BRESS, WHMEERXRNEEEMBIZBERR, H
BKBETERG, 06T HERIE—E 2R, TR E K MREE Row BIK.

R4.9 S1-S4HHERE
Tab. 4.9 Thermal properties of $1-S5°

Sample MPA-1/S P%wt® Temperature of weight loss, ‘C Ruax’ Char yield at LOI
b
(mol) Tas® Toro® T (%/C)  700°C(wit%)
S1 0/100 0 340 367 412 2.38 0.1 179
S2 20/80 5.5 301 336 397 1.95 6.4 23.6
S3 40/60 6.7 230 302 392 1.78 9.5 24.8
S4 60/40 8.9 201 253 376 1.39 16.4 25.7

* Under N, atmosphere, 20°C/min.

® Mol percentages of monomers in the copolymer feeds.

P content was determined by gravimetric quinolinium molybdophosphate method.

d Tas:5wt% weight-loss temperature; Tgq10:10w1% weight-loss temperature;

© Trmax: Temperature of the maximum rate of d weight loss; Ruya: the maximum weight-loss rate, determined
via differential thermogravimetry.

PTGA residue

S1-S4MITGARIDTG #1 £% (B 4.13F14.14F 7 -

Temperature, 'C

El4.13 S1-S4FITGA £k
Fig. 4.13 The TGA curves of S1-S4
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4.14 S1-S4HIDTG 2%
Fig. 4.14 The DTG curves of S1-S4

4.3 LIERS

4.3.1 TRMFS5HF

() FESH

SCI6 AP A A A E B AU 2% - Nicolet Impact 400 & 41 5b Y6 i 4% (3£ E Nicolet A7),
* Varian Mercury Vx300 Z R334 (¥ E Varian A7) , Agilent 1200 B8R E (%
[ Agilent A%]) , FTICR-MS (lonspec 7.0T)%! Fii{% (3 IonSpec AF]) , BHEH
MAEKBAE AN (BHD , HC2C REHHNEN (R EaathidSBERAFD ,
CZF-3 RUKFEEMREMEIL, STA 449C RS #H{X (4EE NETZSCH A7)

(2) FERAH

SERPHEANEERNE: IERTE, W%@Z‘Ea, =2k (DABCO) ,
R, WEEPE, MHERETRE, 24-ZH8XFE, KW-2-FEE, O, IBR_
ZfE, WEE, B, BE, THF, Ek, 1,4-2“FH I, DMF, %, KREM,
BRI, =R, SEM, RE, ZRBE, KR, KNR, TKRRYM, FHF,
B, 2B, X, DK=FMHE, =ZFWLBE WE, ZBRIEE, AWmE, —EAFRSHR
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SRR (BAERBMLERFFRATD , HEFTEA 200-300 B (EAEELER
FERAF) .

4.3.2 5 RERS

(1) Baylis-Hillman 5 S41(BH) & A

7£ 50 mL & R AR KN % 8530 mmol), 74 EREE(90mmol), = &(37.5 mmol,
33%KEW), ¥#)30mL, FETRMN 8-24h. TLC BRERMN, RNEHRE, HRNME
AV A 20 ml KFERE, A S FHEEIG0 mLx3), & HF YA, MAMEAHH(3E0 mL)
¥E, K30 mL)¥E, TAKBRMTE, BERRETEES. AREEREEESEZ
B 2. W5/ 10 hEk=1/4-3/7), 1874 BH.

-(BECEE)FR)AKRTE (BH-1) methyl 2-(hydroxy(phenyl)methyl)acrylate:
BREEMRY . WZE 78%. 'H NMR (300 MHz, CDCL3)8: 3.15 (br, 1H, OH)3.68 (s, 3H,
CO,CHj), 5.53 (s, 1H, CHOH), 5.84 (s, 1H, C=CHy,), 6.32 (s, 1H, C=CH,), 7.28-7.36 (m, 5H,
Ar-H).

24 A X E R E)R E)RWN K B F B (BH-2) methyl
2-((4-chlorophenyl)(hydroxy)methyl)acrylate: ¥ & HRY), W 83%. 'H NMR (300
MHz, CDCl)3: 3.45 (br, 1H, OH), 3.70 (s, 3H, CO2CHs), 5.46 (s, 1H, CHOH), 5.83 (s, 1H,
C=CHH), 6.31 (s, 1H, C=CHH), 7.26-7.27 (m, 4H, Ar-H ).

24 & X E (R E )R E)K H B Z B (BH-3) ethyl
2-((4-chlorophenyl)(hydroxy)methyDacrylate: & B RY, W# 85%. "H NMR (300
MHz, CDCl3)8: 1.21 (t, 3H, J=7.2 Hz, CO,CH,CHj), 3.45 (br, 1H, OH), 4.12 (q, 2H, J=7.2
Hz, CO,CH,CH3), 5.46 (s, 1H, CHOH), 5.83 (s, 1H, C=CHH), 6.31 (s, 1H, C=CHH),
7.26-7.27 (m, 4H, Ar-H ).

2224- Z A X EYNHEBE)F E)A & B L B (BH4) ethyl
2-((2,4-dichlorophenyl)(hydroxy)methylacrylate: TG4 iR, 0K 88%. 'H NMR (300
MHz, CDCl3)3: 1.29 (t, 3H, J=7.5 Hz, CO,CH,CHs), 3.16 (br, 1H, OH), 4.22 (q, 2H, I=7.5
Hz, CO,CH,CHs3), 5.58 (s, 1H, CHOH), 5.91 (s, 1H, C=CHH), 6.34 (s, 1H, C=CHH), 7.28
(dd, 1H, J=1.8, 8.7Hz, Ar-H), 7.38 (d, 1H, J=1.8 Hz, Ar-H), 7.50 (d, 1H, J=8.7 Hz, Ar-H ).

2-(( MR R 2- B )R E )R E )R KR F B (BHS methyl
2-((furan-2-yl)(hydroxy)methyDacrylate: E0RY), WZE 90%. 'H NMR (300 MHz,
CDCL)8: 3.36 (br, 1H, OH), 3.75 (s, 3H, CO,CHs), 5.59 (s, 1H, CHOH ), 5.96 (s, 1H,
C=CHH), 6.24-6.25 (m, 1H, Ar-H), 6.32-6.33 (m, 1H, Ar-H), 6.39(s, 1H, C=CHH), 7.36-7.37
(m, 1H, Ar-H).
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(R E @G- W EXE)FE)AK B Z BE (BH6 ethyl
2-(hydroxy(4-nitrophenyl)methyl)acrylate: ## A, mp. 67-69C. W& 93%. 'H
NMR (300 MHz, CDCL3)s: 1.26 (t, 3H, J=7.2 Hz, CO,CH,CHs), 3.15 (br, 1H, OH), 4.19 (q,
2H, J=7.2 Hz, CO,CH,CH;), 5.63 (s, 1H, CHOH), 5.87 (s, 1H, C=CHH), 6.40 (s, 1H,
C=CHH), 7.58 (d, 2H, J=8.7Hz, Ar-H), 8.19 (d, 2H, J=8.7Hz, Ar-H).

2-(BREGFE)FE)NHR LEE (BH-7) ethyl 2-(hydroxy(phenyl)methyl)acrylate:
T HRY . WE 79%. 'H NMR (300 MHz, CDCl5)8: 1.30 (t, 3H, J=7.0 Hz, CO,CH,CH3),
3.10 (bs, 1H, OH)4.17 (q, q, 2H, J=7.0 Hz, CO,CH,CHj3), 5.52 (s, 1H, CHOH), 5.85 (s, 1H,
C=CH,), 6.25 (s, 1H, C=CH,), 7.25-7.39 (m, 5H, Ar-H).

(2)Baylis-Hillman R {t4)(BHB) )& %,

Method A: # BH (10 mmol)F T & Ft (20 mL)F, T 0°C T HBr K
¥ #(40%, 30 mmol, 4.4 mL), RJFH MK HyS04(3 mL), 10 min 158, #FEKKE, B
KRAZER, BHEIR. BRIBEDEBEIAKKP, ZS P HEFERQ0mLx3), #HM
FACHIBERYEQRO mLx2), TAKBERATIE, BERBRERFHES. HRhEKA AL
S B(ZRR LR/ MEE=1/5-4/6), 1874 BHB.

Method B: ¥ BH (5 mmo)¥EF THEM & P4 20 mL)+F, F 0°CF 7 PBr;
(5 mmol)ZE & (S mL)F HIF W, 30 min f05E, SRIGHE OC AL RN 2h. KRN
BEVEBEIANKKSD, —EPLHEFENEOMLx3), MAMEIHAERIEQO mLx2), FTK
WM TR, BEGRBREFERR. HASERE G B (L8R ZE/ G mBt=1/5-4/6),
B7=%) BHB.

(Z)2-(GRFHE)3-EXEAHERFE (BHB-1) (Z)-methyl 2-(bromomethyl)-3- phenyl
acrylate: ¥REAIHRY, W2 89 %.'H NMR (300 MHz, CDCl3)3: 3.89 (s, 3H, OCH3), 4.40
(s, 2H, CH,Br), 7.42-7.49 (m, 3H, Ar-H), 7.56-7.60 (m, 2H, Ar-H), 7.84 (s, 1H, Ar-CH=C).

D2-(BRPEYG-AEXHE)RE B FE (BHB-2) (Z)-methyl 2-(bromo
methyl)-3-(4-chlorophenylacrylate: JC{aH R4, % 82%.'H NMR (300 MHz, CDCL)3:
3.89 (s, 3H, OCH3)4.36 (s, 2H, CH,Br), 7.42-7.53 (m, 4H, Ar-H), 7.77 (s, 1H, Ar-CH=C).

@D2-(RFE)-G-HAEXE)NHEB ZBE (BHB-3) (Z)-ethyl 2-(bromo
methyl)-3-(4-chlorophenylacrylate: TG HRY, B 85%. 'H NMR (300 MHz, CDCl;)3:
1.36 (t, 3H, J= 7.2 Hz, OCH,CHj), 4.32 (q, 2H, J = 7.2 Hz, OCH,CH3), 4.43 (s, 2H, CH,Br),
7.36-7.43 (m, 4H, Ar-H), 7.76 (s, 1H, Ar-CH=C).

(Z)2-(RFHE)3-Q4-—HERE)NHFEMZES (BHB-4) (Z)-ethyl 2-(bromo
methyl)-3-(2,4-dichlorophenyl)acrylate: T HRY), K Z88%. 'H NMR (300 MHz,
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CDCL)8: 1.37 (t, 3H, J= 7.1 Hz, OCH,CH3), 4.31 (q, 2H, J = 7.1 Hz, OCH,CH3), 4.42 (s, 2H,
CH,Br), 7.34 (dd, 1H, J = 8.5, 2.5 Hz, Ar-H), 7.46 (s, 1H, Ar-H), 7.6 (d, 1H, J = 8.5 Hz,
Ar-H), , 7.79 (s, 1H, Ar-CH=C).

2)2-( R F E)3-(Bk g -2-2E)RNE B FE (BHB-S) (Z)-methyl
2-(bromomethyl)-3-(furan-2-ylacrylate: EHRY), ZE 83 %. 'H NMR (300 MHz,
CDCl3)3: 3.86 (s, 3H, OCH;), 4.72 (s, 2H, CH,Br), 6.57 (dd, 1H, J = 1.5, 3.3 Hz, furan-H),
6.85 (d, 1H, J= 3.3 Hz, furan-H), 7.51 (s, 1H, Ar-CH=C), 7.67 (d, 1H, J = 1.5 Hz, furan-H),

QD2-(RFE)G-HEXE)RNKHBKBR ZE (BHB6) (Z)ethyl
2-(bromomethyl)-3-(4-nitrophenyl)acrylate: ¥ ¥ E 14, #55 97-98 °C, W# 75 %. 'H
NMR (300 MHz, CDC13)8: 1.40 (t, 3H, J = 7.5 Hz, OCH,CHj),4.31 (s, 2H, CH,Br), 4.39 (g,
2H, J = 7.5 Hz, OCH,CH3), 7.73 (d, 2H, J = 8.4 Hz, Ar-H), 7.82 (s, 1H, Ar-CH=C), 8.33 (d,
2H, J = 8.4 Hz, Ar-H).

D)2-(RFE)I-ZEAEGR LB (BHB-7) (Z)-ethyl 2-(bromomethyl)-3- phenyl
acrylate: TEMRY, WZE 87 %. 'H NMR (300 MHz, CDCL)8: 1.39 (t, 3H, J = 6.8 Hz,
OCH,CHj3), 433 (q, 2H, J = 6.8 Hz, OCH,CH3), 4.41 (s, 2H, CH,Br), 7.41-7.46 (m, 3H,
Ar-H), 7.55-7.57 (m, 2H, Ar-H), 7.83 (s, 1H, Ar-CH=C).

QG)BEWUBEFE R & A

®© =X HEE 1L B (DPO) K A B synthesis of diphenylphosphine oxide: £ %
Willans! V) & s 5 i . 848 . 3.3.2(1), 78724 DPO 58.2 g, y=58%, m.p. 136-138°C(lit."*"
137-139°C).

@ ZFEEALBE(DBO)KA A synthesis of dibenzylphosphine oxide: £% Miller %
ABIRIEM, FREVEAL (0.2 mol, 25.7g), KB (0.2 mol, 4.8 g), EREALFQ mhFIZ
BX(10 mD)ANA 200 ml PU K, WA 21 12-2R 2%, AEZHBER, RNMIIK: BN
Pl R FACTKLE 90 ml ZEBEF I, EHITINEE, M RNSBRFEME, BinseE, 4
SPIRR MY 0.5 he ¥ R NIBEYAKKABMREZR 0C, TR ZE&0.066 mol, 9.1
g)7E 50 ml ZEBF P RIB M, MEEIFRKRMN 2h, BKAGRER, BREZR. BRNES
WEEMALRBOREERE: K=1: 2, 100 mD)¥F, ZMZE(B0 mIxQ)FE, TKGERHT
18, BUE RSB A aEE 173 ¢ FEEL B 12.1g A4, m.p. 109-110°C(lit.*?
109.3-110.1°C), W 80%(LA T Bk — Z.Es++)'H NMR (300 MHz, CDCl3)8: 3.17 (dd, 4H,
2JPH 16.3 Hz ArCH,P), 6.96 (dt, 1H, 'JPH 469 Hz)7.01-7.40 (m, 10H, Ar-H).

(4)2- V0 B 2-3- B B B BE AXBR R (MPA) I A 1

N2 f## T, % BHB(1 mmol), DABCO(2 mmol)F Z 5 (8% B %)(3 m)IA RN,

ZIE T HEE 15 min; AR5 R’R”P(O)H (1 mmol), FHEZE 80°C, TLC BRERN, K
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MEERE, MAZEPLAS m)FBERE, 10 ml Kk, BROEAPKERE, KRB
Fre, BUEBBREFEHS. 0SSR EESB(CRK LB/ A ME=1/5-4/6), 137
% MPA.

((ZEXEHMBNABE)FE)NERF B (MPA-1) Methyl 2-((diphenyl
-phosphoryl)(phenyl)methyl)acrylate: H . [E &, 1 146-147°C, W ZE 83%. IR (KBr):
3055, 2947(v=CH,), 2947 (v Ph-H), 1718 (vC=0), 1620 (vC=C), 1491(vCH3), 1437 (vP-Ph),
1242, 1184 (vC-0), 1128 (vVP=O)cm™; 'H NMR (300 MHz, CDCl3, TMS): & 3.62 (s, 3H,
COOCHs), 5.04 (d, J=8.5 Hz, 1H, PCHPh), 6.43 (d, J=1.8 Hz, 1H, C=CHH), 6.82 (d, J=2.2
Hz, 1H, C=CHH), 7.16-7.23 (m, 3H, Ar-H), 7.25-7.28 (m, 2H, Ar-H), 7.32-7.37 (m, 3H,
Ar-H), 7.44-7.50 (m, SH, Ar-H), 7.50-7.91 (m, 2H, Ar-H); °C NMR (75 MHz, CDCl;, TMS):
§ 45.60 (d, Jcp=67.7 Hz, P-C-Ph), 52.23(s, CO,CH3), 127.13 (d, *Jcp=2.0 Hz, C=CH,),
127.96, 128.11, 128.22 (d, J =1.3 Hz), 128.44, 128.60, 129.98, 130.06, 130.27, 130.35, 130.89,
131.00, 131.10, 131.22, 131.34 (d, J =2.72 Hz), 131.50 (d, J=2.57 Hz), 131.64 (d, J =2.7 Hz),
(16C, Ph), 132.82 (d, "Jc.p=5.7 Hz, P-C, Ph), 134.68 (d, Jc.p=5.3 Hz, P-C, Ph), 136.44 (d,
Jc.p=2.2 Hz, CO,CH3), 166.71 (d, *Jc.p=9.4 Hz, C=0); *'P NMR (121 MHz, CDCl3, H;POy):
8 31.55; Anal. calcd for C»3Hz,05P: C, 73.39; H, 5.62; P, 8.23; found: C, 73.37; H, 5.65; P,
8.20.

(@G- EEXEN X EHBYFEIANGEBR P E  (MPA-2) Methyl
2-((4-chlorophenyl)(diphenylphosphoryl)methyl)acrylate. Ffa[E1A, 45/ 186-1877C,
% 81%. IR (KBr): 3055,2951(v=CHy,), 2920 (vPh-H), 1724 (vC=0), 1614 (vC=C), 1489
(vCH3), 1437 (vP-Ph), 1244, 1180 (vC-0), 1130 (vP=0) cm™; "H NMR (300 MHz, CDCl;): &
3.63 (s, 3H, COOCH?), 5.01 (d, J=8.4 Hz, 1H, PCHPh), 6.43 (s, 1H, C=CHH), 6.79 (s, 1H,
C=CHH), 7.15 (d, J=8.4 Hz, 2H, Ar-H), 7.28-7.31 (m, 4H, Ar-H), 7.36-7.52 (m, 6H, Ar-H),
7.86 (t, J=8.1 Hz, 2H, Ar-H); >C NMR (75 MHz, CDCls, TMS): & 45.05 (d, 'Jc.p=67.7 Hz,
P-C-Ph), 52.32(s, CO,CHs), 128.14, 128.30, 128.41, 128.53, 128.68, 130.42, 130.50, 130.83,
130.95, 131.04, 131.16, 131.27, 131.35, 131.56 (d, J=2.0 Hz), 131.78 (d, J=2.0 Hz), 132.53,
132.64, 133.26, 133.33, 133.40, 136.30, 166.58 (d, *Jc.p=9.5 Hz, C=0); *'P NMR (121 MHz,
CDCls, HsPOy): 8 31.21. Anal. calcd for Ca3HaoCIOsP: C, 67.24; H, 4.91; P, 7.54; found: C,
67.26; H, 4.94; P, 7.50.

2@ A EXEN__XEHRB)FRE)RNHEMRZBE (MPA3) Ethyl
2-((4-chlorophenyl)(diphenylphosphoryl)methylacrylate. [ {&.fE 4%, #5 114-115°C,

W Z 82%. IR (KBr): 3057, 2983(v=CHy), 2928 (vPh-H), 1711 (vC=0), 1622 (vC=C), 1489
(vCHs), 1439 (vP-Ph), 1236, 1188 (vC-0), 1122 (vP=O)cm™; "H NMR (300 MHz, CDCls): &
1.18 (t, J=6.9 Hz, 3H, COOCH,CHj), 4.03-4.11 (m, 2H, COOCH,CH3), 5.04 (d, J=7.8 Hz,
1H, PCHPh), 6.44 (s, 1H, C=CHH), 6.77 (s, 1H, C=CHH), 7.13 (d, J=7.8 Hz, 2H, Ar-H),
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7.29-7.40 (m, 5H, Ar-H), 7.47-7.52 (m, 5H, Ar-H), 7.87 (t, J=8.0 Hz, 2H, Ar-H); °C NMR
(75 MHz, CDCl;, TMS): § 13.97 (s, CHs), 44.95 (d, 'Jcp =68.7 Hz, P-C-Ph), 61.40 (s,
CH,CHs), 128.19, 128.34, 128.44, 128.56, 128.69, 130.31, 130.89, 131.00, 131.11, 131.23,
131.32, 131.38, 131.62, 131.84, 133.27, 133.41, 136.40, 166.12 (d, *Jc.p =9.2 Hz, C=0); P
NMR (121 MHz, CDCls, H3PO4): § 31.60. Anal. calcd for C24Hx,CIOsP: C, 67.85; H, 5.22; P,
7.29; found: C, 67.81; H, 5.24; Cl, 8.30; O, 11.35; P, 7.24.

24— HEXENZEXEBBOFE)RNBE R ZE (MPA4) Ethyl
2-((2,4-dichlorophenyl)(diphenylphosphoryl)methylacrylate. H & & & , & K
128-129°C, YrZ 81%. IR (KBr): 3059, 2982(v=CH,), 2931 (vPh-H), 1716 (vC=0), 1622
(vC=C), 1583, 1470 (vCH,), 1439 (vP-Ph), 1230, 1194 (vC-0), 1119 (vP=0O)cm™'; 'H NMR
(300 MHz, CDClL): & 1.17 (t, J=7.2 Hz, 3H, , COOCH,CH;), 4.00-4.04 (m, 2H,
COOCH,CHs3), 5.64 (d, J=8.7 Hz, 1H, PCHPh), 6.50 (d, J=2.4 Hz, 1H, C=CHH), 6.63 (d,
J=2.4 Hz, 1H, C=CHH), 7.19-7.33 (m, 4H, Ar-H), 7.39-7.53 (m, 6H, Ar-H), 7.83-7.90 (m, 2H,
Ar-H), 7.98 (dd, J=10.2 Hz, J=1.5 Hz, 1H, Ar-H); *C NMR (75 MHz, CDCl;, TMS): & 13.97
(s, CHs), 40.65 (d, Jcp =66.8 Hz, P-C-Ph), 61.36 (s, CH,CHs), 127.30, 128.15, 12831,
128.49, 128.65, 128.97, 130.98, 131.10, 131.36, 131.42, 131.48, 131.85 (d, J=2.4 Hz), 132.00,
132.06 (d, J=3.7 Hz), 132.61 (d, J=4.5 Hz), 133.78 (d, J=1.8 Hz), 135.30 (d, J=7.8 Hz),
135.83 (d, J=2.9 Hz), 165.67 (d, *Jc.p =8.1 Hz, C=0); *'P NMR (121 MHz, CDCls, HsPO,): &
31.31. Anal. caled for C,4H,;CLO5P: C, 62.76; H, 4.61; P, 6.74; found: C, 62.71; H, 4.63; P,
6.71.

(TR EBB(RM2- )R RE)REHBFE (MPA-5) Methyl 2-((diphenyl
-phosphoryl)(furan-2-yl)methyl)acrylate. [ £f [l {4, 45 /5 82-83°C, (2 75%. IR (KBr):
3059 (v=CHy), 2926 (v furan-H), 1718 (vC=0), 1622 (vC=C), 1437 (vP-Ph), 1271, 1203
(vC-0), 1120 (vP=0) cm™; 'H NMR (300 MHz, CDCL): § 3.54 (s, 3H, COOCH), 5.38 (d,
J=10.5 Hz, 1H, PCHPh), 6.20-6.22 (m, 1H, C=CHH), 6.39-6.41 (m, 1H, C=<CHH), 6.53 (dd,
J=10.2 Hz, J=3.5 Hz, 2H, furan-H), 7.23 (s, 1H), 7.35-7.48 (m, 6H), 7.65-7.81 (m, 4H); *C
NMR (75 MHz, CDCls, TMS): & 34.81 (d, J=67.0 Hz), 47.09,-104.67, 105.55, 123.13, 123.28,
126.25, 126.37, 126.50, 126.59, 126.64, 126.68, 126.70, 126.74, 128.14 (d, J=4.1 Hz), 136.95
(d, J=1.7 Hz), 143.24 (d, J=4.0 Hz), 161.23 (d, J=5.8 Hz); >'P NMR (121 MHz, CDCl,
H3POy): & 29.59. Anal. caled for CH9O4P: C, 68.85; H, 5.23; P, 8.45; found: C, 68.90; H,
5.26; P, 8.41.

(X EBB-HEEXE)FE)RNE R LB (MPA-6) Ethyl
2-((diphenylphosphoryl)(4-nitrophenyl)methyl)acrylate. 5 [E 1A, 455 155-156°C, I
# 85%. IR (KBr): 3059, 2980(v=CH,), 2926 (vPh-H), 1713 (vC=0), 1626 (vC=C), 1516,
1437 (vP-Ph), 1319, 1244, 1180 (vC-0), 1124 (vP=0)cm’’; 'H NMR (300 MHz, CDCL): &
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1.19 (, J=6.9 Hz, 3H, COOCHj), 4.06-4.14 (m, 2H, PCHPh), 5.17 (d, J=8.1 Hz, 1H, C=CHH),
6.51 (d, J=1.5 Hz, 1H, C=CHH), 6.85 (d, J=2.1 Hz, 1H Ar-H), 7.27-7.33 (m, 2H, Ar-H), 7.37
(t, J=7.2 Hz, 1H, Ar-H), 7.48-7.55 (m, 7H, Ar-H), 7.86-7.91 (m, 2H, Ar-H), 8.02 (d, J=8.1 Hz,
2H, Ar-H); C NMR (75 MHz, CDCl;, TMS): § 13.92, 45.49 (d, ] =67.3 Hz), 61.21, 127.08
(d, J=2.0 Hz), 127.94, 128.10, 128.20, 128.40, 128.55, 129.97, 130.05, 130.87, 130.99, 131.09,
131.21, 131.31 (d, J=2.6 Hz), 131.60 (d, J=2.6 Hz), 132.86 (d, J=5.2 Hz), 134.85 (d, J=5.4
Hz), 136.67, 166.21 (d, J=9.6 Hz); >'P NMR (121 MHz, CDCls, H3POy): § 31.60. Anal. calcd
for Co4H,NOsP: C, 66.20; H, 5.09; P, 7.11; found: C, 66.23; H, 5.11; P, 7.10.

2(ZFEBBEG-BHERTE)FE)ANSR ZE (MPA7) Ethyl
2-((dibenzylphosphoryl)(4-nitrophenyl)methyl)acrylate. FHf&[E &, #5 110-111°C, K
% 84%. IR (KBr): 3063, 2982(v=CH,), 2929 (vPh-H), 1711 (vC=0), 1622 (vC=C), 1599,
1522, 1495, 1348 (Ph-NO,), 1242, 1186 (vC-0), 1128 (vP=O)cm™'; '"H NMR (300 MHz,
CDCls): 8 1.26 (t, J=7.2 Hz, 3H, COOCH,CH5), 2.85-2.90 (m, 2H, PhCH,), 3.17-3.24(m, 2H,
PhCHS), 4.12-4.17 (m, 2H, COOCH,CH;), 4.34 (d, J=6.9 Hz, 1H, PCHPh), 6.49 (s, 1H ,
C=CHH), 6.80 (s, 1H, C=CHH), 7.00-7.03 (m, 2H, Ar-H), 7.14-7.17 (m, 5H, Ar-H),
7.17-7.29 (m, 3H, Ar-H), 7.61 (d, J=8.4 Hz, 2H, Ar-H), 8.06 (d, J=8.7 Hz, 2H, Ar-H); *C
NMR (75 MHz, CDCls, TMS): & 14.02, 34.95 (d, J=20.6 Hz), 35.77 (d, J=18.6 Hz), 44.30 (d,
J=59.4 Hz), 61.65, 123.65, 126.90 (d, J=2.3 Hz), 127.147 (d, J=2.6 Hz), 128.49 (d, J=1.4 Hz),
128.79 (d, J=1.7 Hz), 129.68, 129.74, 130.44, 130.50, 130.61, 130.68, 130.74, 130.83, 131.42
(d, J=6.6 Hz), 136.01(d, J=2.6 Hz), 143.62 (d, J=4.6 Hz), 147.17, 165.72 (d, J=8.6 Hz); *'P
NMR (121 MHz, CDCls, H3POy): & 43.77. Anal. calcd for CoHygNOsP: C, 67.38; H, 5.65; P,
6.68; found: C, 67.37; H, 5.67; P, 6.67.

2AZZEEBMBE)-HERXE)FRE)RNBEMRLE (MPA-8) Ethyl
2-((diethoxyphosphoryl)(4-nitrophenyl)methyl)acrylate. (X3 EHRY), WE 61%. IR
(KBr): 3059, 2983(v=CH,), 2933 (vPh-H), 1714 (vC=0), 1622 (vC=C), 1493, 1439, 1392,
1319, 1240(vP=0), 1205 (vC-0), 1132, 1053, 1026, 966 cm™’; 'H NMR (300 MHz, CDCl;): &
1.07 (t, J=7.2 Hz, 3H), 1.17-1.30 (m, 6H), 3.68-3.74 (m, 1H), 3.86-3.91 (m, 1H), 4.04-4.19 (m,
4H), 4.60 (d, J=24.3 Hz, 1H), 6.54-6.56 (m, 2H), 7.16-7.28 (m, 2H, Ar-H), 7.44-7.49 (m, 2H,
Ar-H); *C NMR (75 MHz, CDCl3, TMS): § 13.94, 16.03 (d, J=5.7 Hz), 16.22 (d, J=6.0 Hz),
442 (d, J=140.8 Hz), 61.16, 62.32 (d, J=7.1 Hz), 62.80 (d, J=6.9 Hz), 127.28 (d, J=2.6 Hz),
128.33 (d, J=1.73 Hz), 128.43, 128.52, 129.50, 129.59, 134.81 (d, J=6.1 Hz), 136.21 (d, J=1.7
Hz), 165.99 (d, J=14.0 Hz); *'P NMR (121 MHz, CDCls, H;POs): & 24.62. Anal. calcd for
CisHNO7P: C, 51.75; H, 5.97; P, 8.34; found: C, 51.73; H, 5.99; P, 8.30.

2 2R EBBEXEXE)FE)NS K L BB (MPA9) Ethyl
2-((diethoxyphosphoryl)(phenyl)methyl)acrylate. T 5. /iR, WL 63%. IR (KBr): 3063,
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2983(v=CH,), 2933 (vPh-H), 1716 (vC=0), 1651, 1622 (vC=C), 1493, 1454, 1392,
1367,1296, 1242(vP=0), 1207 (vC-0), 1132, 1055, 1026, 964 cm™; '"H NMR (300 MHz,
CDCls): 8 1.07 (t, J=7.1 Hz, 3H), 1.22-1.31 (m, 6H), 3.68-3.74 (m, 1H), 3.86-3.91 (m, 1H),
4.04-4.20 (m, 4H), 4.59 (d, J=24.0 Hz, 1H), 6.53-6.55 (m, 2H), 7.25-7.34 (m, 3H, Ar-H),
7.44-7.47 (m, 2H, Ar-H); *C NMR (75 MHz, CDCl, TMS): § 13.97, 16.06 (d, J=5.8 Hz),
16.25 (d, J=5.7 Hz), 43.94 (d, J=140.8 Hz), 61.18, 62.36 (d, J=7.4 Hz), 62.83 (d, J=6.9 Hz),
127.30 (d, J=2.9 Hz), 128.36 (d, J=1.65 Hz), 128.45, 128.53, 129.54, 129.64, 134.89 (d, J=6.3
Hz), 136.29 (d, J=2.3 Hz), 166.04 (d, J=14.3 Hz); >'P NMR (121 MHz, CDCls, H;PO,): &
24.60. Anal. calcd for C;sHxO5P: C, 58.89; H, 7.10; P, 9.49; found: C, 58.90; H, 7.13; P,
9.46.

(5) MPA-1 5 ZKE(S)H R A&

L Richsgs 2

BARRBCEL S/MPA-1=20:80 mol: ¥ MPA-1(4.51 g, 12 mmol). % Z.#(5.0 g, 48 mmol).
BEZRT (82 mg, 0.6 mmo)F 1,2- & Z 520 mL)IMA I IR, N, B, No fR&HP T
FEE 65°CRN 48 h, # M 2 IE 25e(150 mL)F, #riH Ak, BaaEEm
ZEREERE, RERAIECHEB PR RA—IK, BT TIRE 5 PS/MPA-1 3R
¥, W 51%wt. TTEMTIEF=Y LS E, P%=5.5%.
4.3. 3 BRI

(1) LOT #1 UL-94v BHAR MR

# MPA-1 5EXRZIHEMERYIHAIMANERF, MME 180°CEFIT K. LOI fikS
ZEHRVE ASTM-2863 , H4 R <124 100 mmx6.5 mmx3 mm.UL-94v fli& 5 Z ki FMVSS
302/2S03975 , B4 RSEA 127 mmx12.5 mmx3 mm,

(2) MEFH(TGA)

PEMTERERYE, ARS5R, BRME 30 mL/min, RREEGEZEZ 700°C,
FH##E 2 20°C/min.
4.4 KB

1. i#id Baylis-Hillman {R{LAJ(BHB)S 5 4% iR 5 R"R'P(O)H #7 Sn2-Sn2° R BL, HIK
AT 2-T0 3B B B A B R (MPA) KL &Y.

2. B 2-((CHEEBB)(ERE)FE)AHRTE (MPA-DIEA RN EH HLE%FE R 2
1, B BHERNEAREZES FLEHD, LOIH TGA JiAL REKH, MPA %4
YRR BRI HIFHAR R .
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1. 4417 DOPO-HQ & EXRFEFYHEERS, HETHNEER =W
Z¥h 0-2DOPO-HQ(2,3-X(6-8-6H- % I [c.e][1,2) A BE R T 3)-1,4- K BB 7
Hatk; EEx R NEENEE, BET 0-2DOPO-HQ FEAMER, FHHEIAALT
DOPO-HQ HI& L2 . T 0-2DOPO-HQ &H M MEM 2, 3F A% & £k DOPO-HQ
&, TR R MRS AR B I R B B SR Fig B A o LA DOPO-HQ A JR kMR i & 4L
P L R, &/ T 0-2DOPO-HQ, BHWEFA 90.9%F 70.3%; PHMAM:MAE
B 0-2DOPO-HQ RE L R HIFHAYE .

2. KF Pd LA REEILT DOPO 5 KM XBEL, AT Hll giEHmE
RN DOPO HIRE M AR M A ZESLEAE ESCELT HPPA F1 DPO 5 XARY IR

s BT BRI N B A LB R R S AR

3. J#id Baylis-Hillman {R44I(BHB)5 £ 57 R'RP(O)H ) Sn2-Sn2° R, BHIK
BT 2-T FEE-3-B BB B BR(MPA) KL AW 4 2-(Z R BB (R E) F &) S
MREEE (MPA-DER RN B HLBEREAA Bk, Eid B hBERMIRARE ZH T 41
g1, BEAAMERAER MPA-1 7] R E R &SRR 2 HI R IE
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BT E -3

1. @& kiRit, FRFHERTEULSREART 0-2DOPO-HQ (2,3-3U(6-
S-6H-Z K 3 [c.e][1 2J A B AR O FF)-1 4- K ).

2. HKi#Eid Baylis-Hillman {R4L4(BHB ) 575 HLBEE HA7 RR"P(O)H [ Sn2-Sn2’
RNERRT 2-0 B H-3-BE B B R B (MPA)Y B L &9 .
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iR A IEXPIERMEEFREX

AIBN 2,2’-azobisisobutyronitrile
Ar aryl
BH Baylis-Hillman adduct
BHB Baylis-Hillman bromide
p-BQ p-benzoquinone
Calcd calculated
CNE o-cresol formaldehyde novolac epoxy
Cy.NMe N,N-dicyclohexylmethylamine
DABCO 1,4-diazabicyclo[2.2.2]octane
DBU 1,8-Diazabicyclo[5.4.0]Jundec-7-ene
DMF N,N-dimethylformamide
DMSO dimethyl sulfoxide
DOPO 9,10-dihydro-9-oxa-10-phosphaphenanthrene 10-oxide
DOPO-HQ 2-(6-oxido-6-H-dibenzo[c,e][1,2]Joxaphosphorin-6-yl)-1,4-benzenediol
Et ethyl
eq. equivalent
Fig. figure
h hour
HPLC high performance liquid chromatography
HPPA 2-(2-hydroxyphenyl)phenylphosphonic acid
IR infrared
i-Pr,NEt N,N-diisopropylethylamine
L ligand :
LOI limited oxygen index
Me methyl
Me;sN trimethyl amine
mL milliliter
mmol millimole
MPA 2-methylene-3-phosphorylalkanoates
MS mass spectrometry
NMR nuclear magnetic resonance
s = singlet d = double
t = triple q = quartet
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PBr;
Pd

Ph
PhsP
PMMA
PN

PS
TGA
THF

m = multiple dd = double of doublet
td= triplet of double br = broad
phosphorous tribromide

palladium

phenyl

triphenylphosphine

polymethyl methacrylate

phenol formaldehyde novolac resin
polystyrene

thermal gravimetricanalysis
tetrahydrofuran

yield
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Mis% B BP-1 #1 BP-2 BUA 8 X &4

Ft 3 B1 BP-1 1 BP-2 #3438

(THTEUIR

BP-1 BP-2
Formula C30H3006P; C30H006P2
Formula Weight 538.42 538.42
Crystal System Monoclinic Tetragonal
Space group C12/c1(15) P42 bc (106)
a/A 27.893(5) 18.4429(9)
b/A 10.2649(19) 18.4429(9)
c/A 17.309(3) 14.3214(14)
al/° 90.000 90.00
B/° 105.494(2) 90.00
v/° 90.000 90.00
Cell Volume / A® 4775.9(15) 4871.29(58)
Z 78 80
F(000) 2340 2400
Crystal Size/mm 0.4x0.4x0.8 0.4x0.4x0.8
0 range for data collection / ° 2.21-25.67 2.21-25.67
R, ®R 0.0396, 0.0531 0.0293, 0.0330
B3 B2 BP-1 ME4 K
Bond Bond length, { Bond Bond length, | Bond Bond
A A length, A
P(1)-0(3) 1.4796(16) C(7)-C(36) 1.399(3) C(18)-C(25) 1.399(3)
P(1)-0(2) 1.5932(15) C(7)-C(18) 1.401(3) C(19)-C(31) 1.383(3)
P(1)-C(6) 1.784(2) 0(6)-C(14) 1.345(3) C(20)-C(24) 1.369(3)
P(1)-C(15) 1.792(2) C(9)-C(15) 1.395(3) C(21)-C(32) 1.373(4)
P(2)-0(4) 1.4819(16) C(9)-C(23) 1.405(3) C(22)-C(24) 1.378(4)
P(2)-0O(1) 1.5894(15) C(10)-C(14) 1.405(3) C(22)-C(29) 1.380(4)
P(2)-C(7) 1.774(2) C(10)-C(15) 1.458(3) C(23)-C(27) 1.3503)
P(2)-C(10) 1.794(2) C(11)-C(12) 1.392(3) C(25)-C(28) 1.373(4)
O(1)-C(5) 1.405(2) C(11)-C(29) 1.401(3) C(26)-C(33) 1.376(3)
0(2)-C(12) 1.408(2) C(11)-C(17) 1.476(3) C(28)-C(30) 1.379(4)
0O(5)-C(9) 1.352(2) C(12)-C(20) 1.378(3) C(30)-C(36) 1.373(4)
C(5)-C(26) 1.379(3) C(14)-C(27) 1.407(3) C(31)-C(32) 1.377(4)
C(5)-C(16) 1.392(3) C(16)-C(34) 1.399(3) C(33)-C(35) 1.372(4)
C(6)-C(19) 1.388(3) C(16)-C(18) 1.475(3) C(34)-C(35) 1.378(4)
C(6)-C(17) 1.401(3) C(17)-C(21) 1.395(3)
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M3 B3 BP-1 fEB5r A

Bonds Bond angles, | Bonds Bond angles, | Bonds Bond

° ° angles, °
O(3)-P(1)-0(2) 112.86(9) O(5)-C(9)-C(15) 125.1(2) C(6)-C(17)-C(11)  120.57(19)
O(3)-P(1)-C(6) 113.07(9) O(5)-C(9)-C(23) 114.68(19) C(25-C(18)-C(7) 117.9(2)
O(2)-P(1)-C(6) 102.83(9) C(15)-C(9)-C(23)  120.3(2) C(25)-C(18)-C(16) 121.9(2)
O(3)-P(1)-C(15) 110.40(9) C(14)-C(10)-C(15) 118.46(19) C(7)-C(18)-C(16)  120.1(2)
O(2)-P(1)-C(15)  106.62(9) C(14)-C(10)-P(2)  115.45(16) C31)-C(19)-C(6) 120.1(2)
C(6)-P(1)-C(15)  110.66(10) C(15)-C(10)-P(2)  124.55(16) C(24)-C(20)-C(12) 119.2(2)
O(4)-P(2)-0(1) 112.64(9) C(12)-C(11)-C(29) 115.7(2) C(32)-C21)-C(17) 120.8(2)
0(4)-P(2)-C(7) 113.62(10) C(12)-C(11)-C(17)  121.93(19) C(24)-C(22)-C(29) 120.1(2)
O(1)-P(2)-C(7) 102.95(9) CR9)-C(11)-C(17) 122.4(2) C(27)-C(23)-C9) 120.8(2)
O(4)-P2)-C(10)  110.62(10) C(20)-C(12)-C(11) 123.2(2) C(20)-C(24)-C(22) 120.0(2)
O(1)-P(2)-C(10)  107.23(9) C(20)-C(12)-0(2) 116.37(19) C(28)-C(25)-C(18) 121.0(3)
C(7)-P(2)-C(10)  109.35(10) C(11)-C(12)-0(2)  120.42(19) C(33)-C(26)-C(5) 119.0(2)
C(5)-0(1)-P(2) 120.32(13) 0O(6)-C(14)-C(10)  125.92) C(23)-C(27)-C(14) 121.5(2)
C(12)-0(2)-P(1)  118.89(13) 0(6)-C(14)-C(27) 114.4(2) C(25)-C(28)-C(30) 120.6(3)
C(26)-C(5)-C(16) 123.1(2) C(10)-C(14)-C27) 119.7(2) C(22)-C(29)-C(11) 121.8(2)
C(26)-C(5)-O(1) 115.7(2) C(9)-C(15)-C(10) 118.79(19) C(36)-C(30)-C(28) 120.0(2)
C(16)-C(5)-O(1) 121.16(18) C(9)-C(15)-P(1) 115.70(16) C(32)-C(31)-C(19) 119.0(2)
C(19)-C(6)-C(17) 121.1(2) C(10)-C(15)-P(1)  124.49(15) C(21)-C(32)-C(31) 121.4(2)
C(19)-C(6)-P(1)  121.01(17) C(5)-C(16)-C(34) 116.0(2) C(35)-C(33)-C(26) 119.9(2)
C(17)-C(6)-P(1) 117.91(17) C(5)-C(16)-C(18)  122.06(19) C(35)-C(34)-C(16) 121.4(2)
C(36)-C(7)-C(18) 120.4(2) C(34)-C(16)-C(18) 122.0(2) C(33)-C(35)-C(34) 120.6(2)
C(36)-C(7)-P(2) 120.23(19) C2N-CAT-C6) 117.6(2) C(30)-C(36)-C(7)  120.0(3)
C(18)-C(7)-P(2)  119.30(16) C2N-CATN-C(11) 121.9Q2)

Fft3% B4 BP-2 /- K
Bond Bond Bond Bond Bond Bond
length, A length, A length, A

P(1)-0(4) 1.4812(17) | C(8)-C(24) 1.405(3) C(17)-C(19) 1.402(3)
P(1)-0(1) 1.5942(15) | C(9)-C(22) 1.393(3) C(18)-C(25) 1.388(3)
P(1)-C(10) 1.771(2) C(10)-C(15) 1.398(3) C(20)-C(27) 1.374(3)
P(1)-C(5) 1.795(2) C(10)-C(20) 1.400(3) C(21)-C(30) 1.379(4)
P(2)-0(3) 1.4778(17) | C(11)-C(28) 1.372(3) C(22)-C(25) 1.347(4)
P(2)-0(2) 1.5858(16) | C(11)-C(12) 1.386(3) C(23)-C(29) 1.362(4)
P(2)-C(8) 1.782(2) C(12)-C(26) 1.409(3) C(23)-C(31) 1.380(4)
P(2)-C(1) 1.797(2) C(12)-C(24) 1.477(3) C(24)-C(36) 1.393(3)
C(1)-C(9) 1.401(3) C(13)-C(35) 1.373(3) C(26)-C(33) 1.366(5)
C(1)-C(5) 1.454(3) C(14)-C(31) 1.371(3) C(27)-C(30) 1.383(4)
0(1)-C(14) 1.395(3) C(14)-C(19) 1.399(3) C(28)-C(32) 1.372(5)
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(ZEFf3% B4 BP-2 B2 KD

Bond Bond Bond Bond Bond Bond

length, A length, A length, A
O(5)-C(9) 1.354(3) C(15)-C(21) 1.397(3) C(32)-C(33) 1.376(5)
C(5)-C(18) 1.411(3) C(15)-C(19) 1.472(3) C(34)-C(36) 1.372(4)
O0(2)-C(11) 1.407(3) 0(6)-C(18) 1.349(3) C(34)-C(35) 1.378(4)
C(8)-C(13) 1.390(3) C(17)-C(29) 1.369(4)

Ft3% BS BP-2 f#54r  M

Bonds Bond Bonds Bond Bonds Bond

angles, ° angles, ° angles, °
O4)-P(1)-0(1) 112.59(9) O(5)-C(9)-C(22) 114.1Q2) C(14)-C(19)-C(17)  115.0(2)
O(4)-P(1)-C(10) 110.89(9) O(5)-C(9)-C(1) 125.4(2) C(14)-C(19)-C(15)  122.16(19)
O(1)-P(1)-C(10) 103.60(9) C(22)-C(9)-C(1) 120.5(2) C(17)-C(19)-C(15) 122.8(2)
O(4)-P(1)-C(5) 111.27(10) | C(15)-C(10)-C(2)0 121.7(2) C(27)-C(20)-C(10) 119.2(2)
O(1)-P(1)-C(5) 102.93(9) C(15)-C(10)-P(1)  118.40(17) | C(30)-C(21)-C(15) 120.9(2)
C(10)-P(1)-C(5) 115.10(10) | C(20)-C(10)-P(1)  119.40(16) | C(25)-C(22)-C(9)  120.8(2)
0(3)-P(2)-0(2) 111.92(9) C(28)-C(11)-C(12) 122.9(2) C(29)-C(23)-C(31) 119.3(2)
O(3)-P(2)-C(8) 112.60(10) | C(28)-C(11)-0(2) 116.2(2) CB6)-C24)-C(8) 117.2(2)
O(2)-P(2)-C(8) 102.51(9) C(12)-C(11)-0(2) 120.9(2) C(36)-C(24)-C(12) 122.8(2)
O(3)-P(2)-C(1) 110.84(10) | C(11)-C(12)-C(26) 116.2(2) C(8)-C(24)-C(12)  120.0(2)
0O(2)-P(2)-C(1) 108.95(9) C(11)-C(12)-C(24) 122.1(2) C(22)-C(25)-C(18) 122.1(2)
C(8)-P(2)-C(1) 109.68(10) | C(26)-C(12)-C(24) 121.7(2) C(33)-C(26)-C(12) 121.1(3)
C(9)-C(1)-C(5) 118.48(18) | C(35)-C(13)-C(8) 119.9(2) C(20)-C27)-C(30) 119.9(2)
C(9)-C(1)-P(2) 112.78(16) | C(31)-C(14)-O(1)  115.51(19) | C(11)-C(28)-C(32) 119.3(3)
C(5)-C(1)-P(2) 128.30(16) | C(31)-C(14)-C(19) 123.0(2) C(23)-C(29)-C(17)  120.9(2)
C(14)-0(1)-P(1) 120.29(13) | O(1)-C(14)-C(19)  121.48(19) | C(21)-C(30)-C(27) 120.9(2)
C(18)-C(5)-C(1) 118.56(19) | C(21)-C(15)-C(10) 117.3(2) C(14)-C(31)-C(23) 119.6(2)
C(18)-C(5)-P(1) 115.87(16) | C(21)-C(15)-C(19) 121.9(2) C(28)-C(32)-C(33) 119.9(3)
C(1)-C(5)-P(1) 125.44(15) | C(10)-C(15)-C(19) 120.83(19) | C(26)-C(33)-C(32) 120.6(3)
C(11)-0(2)-P(2) 117.37(14) | C(29)-C(17)-C(19) 122.1(3) C(36)-C(34)-C(35) 120.5(2)
C(13)-C(8)-C(24) 121.0(2) O(6)-C(18)-C(25) 114.9(2) C(13)-C(35)-C(34) 119.9(3)
C(13)-C(8)-P(2) 121.38(17) | O(6)-C(18)-C(5) 125.5(2) C(34)-C(36)-C(24) 121.5(3)
C(24)-C(8)-P(2) 117.51(17) | C(25)-C(18)-C(5) 119.6(2)
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