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摘要

盲源分离是在源信号与传输信道未知的情况下仅利用接收天线的观测数据提

取或恢复统计独立的源信号。盲源分离因为在语音处理、医学信号处理，图像增

强与无线通信等诸多领域具有广泛的应用前景，从而引起了信号处理学界和神经

网络学界的共同兴趣。本文围绕这一热点课题展开，并把研究重点放在非平稳环

境中的盲源分离算法研究，本文的主要工作包括以下几个方面：

1．提出一种变步长、变动量项因子的自适应改进的自然梯度算法实现源信号

瞬时混合的盲分离。在后向传播算法的启发下，在自然梯度学习过程中结合动量

项以加快收敛速度，同时改善自然梯度算法的稳定性。然后在分离模型中提出一

个合适的测度函数自适应控制步长和动量项因子，由此得到的变步长和变动量项

因子的改进的自然梯度算法适合解决时变环境下的盲源分离问题。实验表明与经

典的自然梯度算法和其它改进的自然梯度算法相比，即使在信源个数很多的情况

下，本文所提自适应改进的自然梯度算法有更快的收敛速度和更好的稳态精确性，

当混合矩阵突变或信号功率突变时自适应改进的自然梯度算法依然有较好的跟踪

能力。此外，结合自然梯度和非线性主分量分析提出了一种块递归的盲源分离方

法，构造出按块递归更新的矩阵方程，然后用QR分解和回代法求解该矩阵方程得

到最优分离矩阵。所提方法与已有递归型盲源分离算法相比适于实时处理且遗忘

因子的选择相对简单，与其它块处理算法相比有较快的初始收敛速度。

2．针对混合矩阵发生突变的情况，提出一种基于时变遗忘因子递归广义特征

分解的非白源盲分离算法。首先给出一种新的协方差矩阵的逆矩阵和时延相关矩

阵乘积的递归更新方程，广义特征向量的估计经由近似幂迭代法和压缩处理在线

实现，得到的在线算法可以避免同时估计协方差矩阵及其逆矩阵。为跟踪混合矩

阵的突然变化，提出一种新颖的基于广义特征向量关于协方差矩阵正交特性的在

线决策规则，可以判别混合矩阵是否发生突变，从而利用时变遗忘因子的递归广

义特征分解算法在混合矩阵发生突变后能获得较好的跟踪能力及精确的稳态性

能。

3．充分利用人类发音的特点和语音信号的非平稳特性，提出一种数目未知的

语音信号瞬时混合的盲分离和信源数目检测算法。首先利用递归广义特征分解在

线估计对应于最大广义特征值的广义特征向量，利用向量相似度定义广义特征向

量的平均相似度用以拟合信道互扰性能曲线，并根据平均相似度曲线提取出“高

相似度区间’’近似“分离区间"。然后进一步提取分离性能较好的“高相似度区间’’

并剔除部分“混合区间”，得到“高分离度区间"。然后对“高分离度区间’’中的

广义特征向量进行多阶段聚类确定源信号的数目，在实现估计信号数目的同时完
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成信号的盲分离。此外，所提算法可以克服盲提取问题中先提取出的信源性能好

而后提取出的信源性能差的缺点。

4．针对现有卷积混合盲源分离的频域算法存在的问题，即恢复出的信号是源

信号和一个未知的滤波器的卷积，且由于部分频率点处盲源分离方法的失效和无

法精确解决排列和尺度模糊问题，分离出的信号中会泄露进其余的信号分量，影

响分离性能。提出一种基于多信道语音增强的频域盲源分离后处理方法以消除空

间干扰和背景噪声。该方法有机结合盲源分离技术与阵列处理技术，既可充分利

用空域信息，又无需增加其它先验信息。首先在频域盲源分离方法中利用语谱分

裂技术得到胁Ⅳ个分离信号，将多输入多输出(MIMO)混合系统分裂成Ⅳ个单输

入多输出(SIMO)系统，泄露进该信号的其它信号分量可以视为干扰信号，然后分

别用频域多信道语音增强方法重构出各个语音信号，以消除不同信源间的空间干

扰和环境噪声。仿真结果表明该算法具有良好的性能。

关键词：盲源分离(BSS)，独立分量分析(ICA)，瞬时混合，卷积混合，非平稳信

号，非白信号，自然梯度，广义特征分解(GED)，多信道语音增强，变步长，变遗

忘因子
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ABSTRACT III

ABSTRACT

Blind source separation 03ss)aims to extract independent but unobservered source

signals from their mixtures captured by a number of sensors without knowing the

mixing coefficients．Over the past two decades，the problem of BSS has received much

attention in various fields，such as speech and audio processing，image enhancement

and biomedical signal processing．The main works Can be summarized as follows：

1．An adaptive improved natural gradient algorithm for blind separation of

instantaneous mixtures of independent sources is proposed．First,inspired by the

well—known back-propagation algorithm，we incorporate a momentum term into the

natural gradient learning process to accelerate the convergence rate and improve the

stability．Then，an estimation function for the adaptation of the separation model is

obtained to adaptively control a step—size parameter and a momentum factor．The

proposed natural gradient algorithm with variable step．size parameter and variable

momentum factor is therefore well suited to blind source separation in a time-varying

environment．The expected improvement in the convergence speed，stability and

tracking ability of the proposed algorithm is demonstrated by extensive simulation

results in both time-invariant and time-varying environments．The ability of the

proposed algorithm to separate extremely weak(or badly scaled)sources and many

sources is also verified．In addition，a block recursive approach for blind source

separation is presented．Firstly,based on natul诅gradient and nonlinear principal

component analysis，a matrix equation is obtained by block recursive updating，and then

the matrix equation is solved using QR factorization and back substitution to obtain the

optimal separating matrix．Compared诵m other existing recursive-type BSS methods，

the proposed algorithm is feasible to real-time processing，and the choice of the

forgetting factor is simple．Compared with other block processing methods，the

proposed algorithm has fast initial convergence speed．

2．An efficient variable forgetting factor recursive generalized eigen-decomposition

algorithm is developed for blind separation of non-white sources when the mixing

matrix changes abruptly．We derive a new recursive update equation for the

multiplication of a cross-correlation matrix and the inverse of a covariante matrix with

compact form and low computational complexity．The generalized eigenvectors are

recursively estimated by using the approximated power method and the deflation

procedure．Without additional priori information of the mixtures，we propose a novel

雷达信号处理国家重点实验室



!V 非平稳环境中的盲源分离算法研究

on—line decision rule to track the abrupt variations of the mixing matrix and then a

variable forgetting factor recursive generalized eigen-decomposition algorithm for BSS—

is presented for the time—varying environments．n圮improved tracking ability and

steady—state accuracy of the proposed algorithm are validated by the computer

simulation results．

3．By exploiting of speech nonstationarity,a method for estimating the number of

sources from instantaneous mixtures of speech signals with unknown source number is

presented，and then the sources are extracted．m first dominant generalized
eigenvector is estimated by recursive generalized eigen—decomposition．砀e mean

similarity CUD／e of the estimat．ed generalized eigenvector is introduced to fit

inter-channel interference cRrve，and then“High Similarity Intervals'’are extracted to

approach‘‘Separation Interval”．Moreover,“High Separation Intervals”are obtained

by extracting‘'nigh Similarity Intervals'’with better separation performance and

eliminate‘'Mixtures Interval”．Final，the number of the SOurCeS is estimated with

multistage clutstering techniques and the corresponding SOurCeS are extracted．The

proposed algorithm Can avoid suffering the error propagation of the deflation technique，

which exists in all sequential algorithms．

4．A new post—processing method for convolutive mixtures blind speech separation is

proposed．-It utilizes multi-channel signal enhancement to suppress spatial interference

and background noise．Due to imprecision for solving the permutation ambiguity

problem，frequency domain blind source separation has its fundamental limitation in

separation quality．To overcome that，by splitting spectrograms，the MxN multi-input

multi-output(MⅡ订O)system will be converted into N single-input multi—output(SIMO)

system in frequency domain blind speeCh separation system．Furthermore，to attenuate

spatial interference from competing SOurCeS and background noise，the multi—channel

signal enhancement method is exploited to reconstruct source signals from the N SIMO

system respectively．The separation performance of the proposed algorithm is

demonstrated by experiments．

Key words：Blind SOurce Separation(BSS)，Independent Component Analysis(／CA)，

instantaneous mixtures，eonvolutive mixtures，nonstationary SOurCeS，non-white Source，

natural gradient,generalized eigen-deeomposition(GED)，multi—channel speech

enhancement,variable step-size，variable forgetting factor
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第一章绪论

第一章绪论

§1．1引言

盲源分离(BSS：Blind Source Separation)是在源信号与传输信道未知的情况下

仅根据源信号的统计独立性假设从观测信号(混合信号)中提取或恢复源信号。典

型的例子是鸡尾酒会(cocktail party)f司题，即在一个同时存在众多谈话者的环境中，

由麦克风录取谈话者声音的混合信号，通过信号处理的方法，分离出各位谈话者

．或特定的谈话者的声音信号。这里术语“盲”有两重含义：第一，源信号不能被

观测；第二，源信号是如何混合的是未知的。显然，当源信号与传输信道参数都

未知时，盲源分离是一种很自然的选择。

建模成不同的多输入多输出的数学模型，

为瞬时混合和卷积混合。

盲源分离的混合过程需要根据实际应用

可分为无记忆和有记忆的，也可分别称

近二十多年来，盲源分离已成为信号处理领域最热门的研究课题之一，其研

究正突飞猛进，已有诸多著作面世【l-91。利用源信号或输入信号的部分量化信息(如

源信号的相互统计独立性、恒模性、非白、非平稳和非高斯统计性等等)，盲信号

处理技术可以有效地实现系统辨识和源信号的恢复等。盲源分离技术己在语音识

别、图像处理、生物信号处理、通信(特别是无线通信)信号处理以及源信号不易

或不可能测量的自然信号处理等领域显示出十分诱人的应用前景。

§1．2瞬时混合盲源分离研究发展与现状

盲源分离问题的早期研究集中于模型相对简单的瞬时混合情形。Juaen和

HeraultBoq2]最早在1986年提出了一种类神经盲源分离方法，该方法基于反馈神经

网络，通过取奇次的非线性函数构成Hebb训练，从而达到盲源分离的目的。虽然

该方法只能用于两个混合源信号的盲分离，非线性函数的选取具有随意性，并且

缺乏理论解释，但是Juaen和Herault的工作作为盲源分离问题的研究开端，具有

里程碑式的意义。Tong等人【13】分析了盲源分离问题的可辨识性和不确定性，并给

出一种基于高阶统计量的矩阵代数分解方法。Cardoso等人t14l提出了一类基于高阶

统计量的近似联合对角化盲源分离方法，并可用于盲波束形成。Comon[15】分析了

瞬时混合信号的盲分离问题，明确了独立分量分析(ICA：Independent Component

Analysis)的概念，利用可以测度源信号统计独立性的Kullback-Leiber(K-L)准则作

为对比函数(Contrast Function)，并通过对概率密度函数的高阶近似，得出用于测度

信号各分量统计独立的对比函数，并由此得出一类基于特征分解的独立分量分析
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方法。这种方法需要对观测信号进行白化预处理，而且是一种批处理算法，运算

量大，实时性差。需要指出的是独立分量分析虽然在概念上是一个简单的问题，

但它可以引入许多有趣的技术，如高阶统计量、信息论、稀疏编码、投影跟踪和

信息几何等等，并有着广泛的应用。Bell等人【16J基于信息理论，通过最大化输出

非线性节点的熵，得出一种最大信息传输的准则函数并由此导出一种自适应的盲

源分离方法和盲反卷积方法，当该方法中非线性函数的选取逼近源信号的概率分

布时，可以较好的恢复出源信号，但收敛慢，且需要矩阵求逆运算，稳定性也比

较差。在从神经网络角度研究自适应信号分离的独立分量分析方法时，为克服随

机梯度优化方法收敛比较慢的缺点，Cichocki等人旧提出了自然梯度算法，它的

学习规则不仅容易计算，而且可以避免矩阵求逆运算。后来，Amaritl8】从信息几何

的角度诠释了自然梯度算法工作原理，并证明了自然梯度算法的有效性，对自然

梯度算法的进一步研究参见文献【4】及其中文献，自然梯度算法的收敛性取决于步

长的选取和初始分离矩阵的取值，如何选择这些参数以同时保证收敛速度、稳定

性和跟踪能力较为关键。Cardoso等人【19J则从自适应信号分离必须具有等变化性

(equivariant)出发，相对于普通梯度(绝对梯度)，定义了相对梯度，由之得到

的算法称为相对梯度算法，可以证明自然梯度算法与相对梯度算法是等价的，因

而自然梯度算法也具有等变化性。Yang等人【20l已证明：熵最大化与独立分量分析

是等价的。随着盲分离算法研究的深入，逐渐引入和产生了许多相关理论分析，

如Cao等人【21】的行可分解理论，Amari等人瞄】的半参数统计理论，Cardoso等人[23-24]

的局部稳定性理论等。

受独立分量分析的启发，Karhunen等人【2弛7J在主分量分析方法(PCA：Principal

ComponentAnalysis)引入某种非线性，提出了一类非线性主分量分析的盲源分离

算法。Pajunen等人【26】通过结合非线性主分量分析(NPCA)和近似投影子空间跟踪

(PAST)算法圆J提出了递归最小二乘(RLS)型的盲源分离算法，实验结果表明该算法

的收敛速度优于已有的自适应盲源分离算法。由于RLS算法的推导是基于普通的

随机梯度，而自然梯度算法明显优于普通的随机梯度算法，朱孝龙等人[291将自然

梯度算法与非线性主分量分析的的递归最小二乘算法相结合，提出了基于自然梯

度递归最小二乘算法。需要注意的是这两种递归算法[26#91都需要对观测信号预白

化。朱孝龙等人【30】随后又提出了无需对观测信号预白化的基于自然梯度和NPCA

的递归最小二乘盲分离方法。

基于广义特征分解的盲源分离方法【31-331是一种简单而有效的离线盲分离方

法，它利用源信号的特性，如源信号的非白性、非高斯性或非平稳性，由混合信

号的二阶或四阶统计量构造相应的矩阵束，通过对构成矩阵束的两个矩阵的精确

联合对角化可求出矩阵束的广义特征向量矩阵，即为待求的分离矩阵。Cardoso等

人1341提出了基于二阶统计量的多个不同时延相关矩阵的近似联合对角化算法
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(SOBI)，通过对经白化预处理的观测信号构成不同时延的相关矩阵，通过求一个

酉矩阵使得上述不同时延的相关矩阵实现近似联合对角化，从而可到分离矩阵实

现盲信号分离。基于非正交近似联合对角化的盲源分离算法【35’381则可避免对观测

信号进行白化预处理。

除了同步提取所有源信号的并行算法外，盲源分离还可以采用一次只提取一

个源信号的串行算法139】，比较典型的有定点(fixed-point)算法(也被称)白FastlCA算

法．)[40。45】，Hyvarinen等A[4041】首先基于源信号非高斯性测度(或峭度)，给出一类

定点训练算法，该类算法能提取单个具有正或负峭度的源信号。该类算法由于计

算复杂度小、分离性能好而受到广泛的关注。不同学者又相继提出了进一步改进

或简化的FastlCA算法及适用于不同情形的FastlCA算法，如复值信号的FaSflCA算

法142]，复值非高斯非圆信号的FastlCA算法【43】等。该类算法的收敛性能也得到了深

入研究【4纠51。Li等人【4q提出了一种形式上类似于并行算法的盲提取算法，该算法

的特点是一步就可以提取出一个信号，而不同于传统的盲信号提取算法提取一个

源信号需要分提取和数据压缩两步完成。李细林等人【47l则提出了基于二阶统计量

的盲信号提取算法，通过对自相关矩阵的近似联合对角化实现信号的盲提取，并

且在部分先验信息给定的情况下可以提取特定的信号。

在现实世界中考虑一些问题时，必须考虑源信号的非平稳性。所以近年来，

盲源分离问题中的非平稳性引起了大家广泛的关注。盲源分离中的非平稳性问题

可以分为以下三类：+

(1)混合函数不时变，源信号为非平稳的。研究盲分离中的非平稳性阿题的

大多数学者考虑的是这种情况，Souloumiaci4引对两个不同时刻协方差矩阵进行确切

的联合对角化(这等价于解一个广义特征值问题)，由此得出的算法能实现非平稳

源的盲分离。Matsuoka等人【49】考虑了一个本质上是高斯互信息的标准，但他们对

于其中的最优化问题只提出一个随机梯度问题。Pham等人【50】提出的拟牛顿型方法

显然要优于前者。Choi等入15ll利用不同的时间窗数据框架结构得到多个时延相关

矩阵，然后用近似联合对角化方法来估计混合矩阵。但在实际环境中的非平稳信

号大多不宜视为短时平稳的，因此基于时频分布的非平稳信号的盲分离技术[s2-s4]

已引起了广泛的专注。主要原因之一是它能够实现非平稳相关信源的分离，而传

统盲源分离方法的基本假设为信源是统计独立的。

(2)混合系统时变、源信号为平稳的。混合系统时变也可分为混合矩阵慢变

和突变，这种情况通常需要在线算法跟踪混合矩阵的变化。Everson等【55】提出一种

有效的跟踪混合矩阵同时估计源信号的方法来解决盲分离问题，这里独立源的混

合过程根据马尔可夫过程建模成进化过程。魁姐ed【56】在混合系统时变，源的密度

能建模成有限个高斯混合的情况下，用贝叶斯方法，即著名的马尔可夫链蒙特卡

罗(MCMC)方法来仿真实现以解决这种情况下的盲分离问题。Parga等人阳也提出

雷达信号处理国家重点实验室
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一种混合系统缓慢平滑变化时的盲分离方法，在源信号平稳和各态历经时给出一

种代数解法，但并没有给出仿真结果。

(3)混合系统时变、源信号非平稳。这种情况最为复杂，研究相对较少，张

贤达等人【58】提出了基于卡尔曼滤波的盲源分离算法，仿真实验表明该算法可以适

用于混合矩阵缓慢变化、源信号是语音信号韵情况!Pokharel等人【591提出了基于递

归广义特征分解的盲源分离方法用以改善算法的收敛速度和跟踪性能，该文中分

别推导了基于非白、非高斯和非平稳源信号的递归算法，仿真实验表明所提递归

算法具有快速和稳定的收敛性能，且给出了混合矩阵慢变、源信号是语音信号的

实验，但在该例中所用语音信号的样本太少(样本数为2000)，无法真正体现的语

音信号的非平稳特性。该文也给出了信道慢变、源信号为BPSK信号的实验。

在实际应用上需要考虑混合矩阵突变的情形，混合矩阵发生突变时通常要求

算法具有较快的跟踪性能。显然利用步长因子为常数的随机梯度的算法不适用于

跟踪突变的环境，这是因为当步长因子太小时，算法的收敛速度太慢，而当步长

因子太大时，失调太大可能会导致算法发散。而利用时变步长因子的在线算法来

跟踪时变的环境通常能在快速收敛的同时得到更为精确的稳态性能。Douglas等人

l删回顾了几种自适应步长选择方法，重点介绍了梯度自适应步长选择算法。Thomas

等人16lJ给出了一种自调节步长选择算法，大大加快了收敛速度，跟踪能力也有很

大提高。Chambers等人【62】运用了一种梯度自适应步长因子的ESAI算法，将输入

信号动态变化时的算法性能和混合矩阵的变化联系在一起。Yuan等人[63J提出了变

步长符号自然梯度算法，用于独立信号的在线盲分离，该算法的符号操作是通过

推导归一化动态分离模型得到的。类似地，利用常数遗忘因子的递归盲源分离算

法也不适用于跟踪突变的环境，这是因为当遗忘因子很接近于1时，算法的收敛

速度太慢，而当遗忘因子太小时，失调太大可能会导致算法发散。而利用时变遗

忘因子的递归算法来跟踪时变的环境通常能在快速收敛的同时得到更为精确的稳

态性能。对于混合矩阵突变的情况，滑窗递归最小二乘算法比指数加权窗有好的

跟踪性能畔J，基于Papaodysseus矩阵求逆引理【6引，利用观测数据通过滑窗加权求

和的方式构造类似文献[59】的递归算法，但是这种方法需要根据实际情况选择滑窗

的长度，滑窗太长则稳态性能较好而收敛速度较慢，滑窗较短可提高收敛速度但

稳态性能较差，滑窗太短则易导致算法发散。

已有研究大多假设源信号个数是预先知道的，从而采用的分离矩阵行数等于

信源个数，而实际中源信号的个数往往是未知的，甚至是随实际环境动态变化的，

欠定盲信号分离只能成功分离部分源信号[66-671，因此通常研究超定和适定情况下

信源数目未知的盲源分离问题。Chichocki等人【68】将适定盲源分离的自然梯度算法

直接推广到源信号个数未知的超定盲源分离的新分离模型中，算法的输出信号中

会有冗余信号，需要利用输出信号之间的相关性，检测并去除冗余输出同时确定
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源信号个数。Ye等人[69-70]研究了源信号数目未知与动态变化时的超定盲源分离可

分离性及对比函数问题，推导了信源数目未知的盲源分离的自然梯度算法。Lv等

人【7lJ则给出了一种数目未知的稀疏信源的统一的盲源分离方法。

随着盲源分离技术应用范围的不断拓展及相应限制性条件的逐步放宽，不同

的学者们提出了大量适用于特定环境的盲源分离算法，如基于非负矩阵分解和稀

疏分量分析的欠定盲源分离算法【72。习，在非线性混合情况下的盲源分离算法【741等，

这里不再一一赘述。

盲信号处理理论经过二十多年发展，无论在研究方向或应用领域都在不断扩

张，除了上述已提及的部分国内学者的研究成果，其他国内学者也在瞬时混合盲

信号处理理论和应用技术的各个方面都取得了重大进展【75硼。凌燮亭等人【75‘761针

对无线通信应用较早开展了盲源分离的研究。何振亚、刘琚和杨绿溪等人r77。81】基

于特征分析和高阶谱的盲源分离，提出了一系列基于高阶统计量和信息理论的判

据和算法，进一步研究了基于独立分量分析的数字水印技术。胡光锐等人Is2】研究

了基于统计独立的盲语音分离问题，并提出了基于混合高斯模型概率密度估计的

语音分离方法。马远良等人【8粥6J提出了水声信号的盲分离的实数和复数算法和性：

能评价准则，并提出了欠定情况下高阶累积量的复数混合矩阵盲估计算法。谢胜j

利等人【97-89]研究了盲源分离几何方法，盲信号分离的多路回波消除结构及稀疏分

量分析。邱天爽等人即】研究了基于分数低阶矩的脉冲信号的盲分离，并应用于水

声和语音信号处理。殷福亮等人19l】研究了基于去相关和非平稳性的盲源分离方法。

陈天平等人睇】研究了白化过程的动态行为和自然梯度算法的局部稳定性。王君等

人[93-941研究高阶统计量、径向基函数和遗传算法实现了非线性盲源分离，并提出

了有交叉项抑制的时频分布基盲源分离技术。张丽清等人195J研究有激活函数适应

的自然梯度基盲源分离方法。张贤达等人[29-30,47,7”1，96-99]对盲源分离进行了系统深

入的研究，提出了基于递归最小二乘的盲源分离方法，信源数目未知和动态变化

时的盲信号分离，学习率的自适应确定的分阶段方法与模糊集方法和基于二阶统

计量的连续盲提取方法等。冯大政等人【1咿101】研究了改进白化技术，利用矩阵的双

正交性提出了一种信号盲分离问题的多阶段分解算法及矩阵组稳健代数方法从阵

列信号中提取统计独立信号。此外，还有许多学者在瞬时混合盲源分离领域收获

了卓著的成果，这里不一一赘述。

§1．3卷积混合盲源分离研究发展与现状

同瞬时混合模型相比，卷积混合是更接近真实状况的一种模型，对于解决实

际问题具有极为重要的意义，例如，通信系统中的串扰问题，电话、电视会议系

统中的回波对消问题，都可以看成是卷积混合信号的盲分离问题，因而卷积混合
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的盲源分离问题在近几年来受到越来越多的关注。并且随着计算机的运算速度越

来越快，该项技术可以广泛的应用在语音信号处理、图像信号处理、通讯信号处

理、水声信号处理以及医学信号的检测、数据挖掘等领域，有着广泛的应用前景。

目前很多卷积混合信号的盲分离算法是瞬时混合信号盲分离算法在卷积混合情况

下的推广。而且这种推广既可以在时域内进行，又可以在频域内进行。因此卷积

混合信号盲分离算法可以分为时域与频域算法两大类。

时域方法是较早提出的一类针对卷积混合信号盲分离的方法，可分为基于二

阶统计量、高阶统计量和信息论等的算法。基于二阶统计量的算法有Weinstein算

法【1021、Gerven算法{1嘲及Kawamoto等人【1041基于源信号非平稳性的瞬时混合信号

盲分离算法推广到卷积混合信号的盲分离算法，以及Bousbia等人【105】把SOBI算

法推广得到的相关矩阵联合块状对角化算法等，基于二阶统计量算法的优点在于，

只需要比较少的数据量就能获得较好的估计性能。基于高阶统计量的算法有Yellin

算法【106l、 推广的EASI算法【1071等，这类算法不仅能够提供系统的相位信息，而

且可以有效地抑制高斯噪声。基于信息论的算法有Choi等人【l∞】的动态递归神经网

络算法及Douglas等人[109J的自然梯度算法等。由于时域方法规避了频域算法中必

须解决的排列模糊和尺度模糊问题，是卷积混合盲源分离的一个重要研究方向。

但是，时域方法要需要联合估计很多待定参数，计算复杂度高。

频域盲源分离方法【11¨42】利用短时傅立叶变换把时域卷积混合盲分离问题转

换为多个频域瞬时混合盲分离问题。此类方法可利用现有的瞬时混合盲源分离算

法对各个频率分离问题进行独立处理【1101。一方面大大降低了运算量，另一方面便

于参考借鉴性能优越的瞬时混合盲分离算法。然而要想得到满意的分离结果，所

有的频域盲分离算法都必须解决盲源分离问题固有的排列和尺度模糊问题【111】。因

为时域方法是联合处理，上述两种不确定性不影响其分离性能，而在频域方法中，

各个频率分量上的排列不一致导致信号的重新混合，同时尺度不确定性也会导致

合成信号频谱畸变。所以如何解决排列问题和尺度问题是研究各种频域盲分离问

题的关键所在。目前用来解决频域排列问题的方法大致有以下几类，第一类方法

基于频率平滑【u2‘113】，通过在时域限制滤波器长度来解决置换问题，这种方法可有

效分离在没有混响的环境中录制的麦克风信号，但当混响存在时，该方法的性能

严重下降；第二类方法基于阵列处理波达方向估计【ll¨”】，通过分析分离矩阵所形

成的方向图来估计波达方向，并根据波达方向进行置换。第三类方法利用相邻频

率间的相关性【n¨17】来解决置换问题，即计算所有可能排列中相邻频率的频谱包络

特性，相邻频率频谱包络相干性最大的排列被视为一致的排列。但由于该方法需

要依次置换相邻频率，当某频率处盲源分离失效而得不到有效的分离矩阵时将导

致误差累积，从而影响整个算法的性能；当各个频率处的盲分离性能都很好时，

频率相关方法具有较高的精确度，而利用波达方向方法时一个频率上的失调不会
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影响到其他频率，因此具有稳健性的优点。将两者相结合可以有效的解决排列模

糊问题【118】。虽然各国学者针对频率置换问题在以上三大类方法的基础上已提出很

多频率置换方法【119d221，并且在特定的试验环境中能获得较满意的性能，但为了提

高实用化水平，进一步研究能够在各种实际声音环境中通用的，既精确又稳健的

频率置换问题依然是频域盲源分离问题的难点和热点。而现有的频率置换方法大

多基于两输入多输出系统，即两个语音信号，两个或两个以上麦克风阵元模型，

严重制约了盲源分离在语音增强等实际问题中的应用。在实际环境中常要考虑多

个，甚至来自同一方向的多个说话者，而上述的频率置换方法大都不能直接推广

到两个以上源信号卷积混合的问题中，因此研究多个语音信号卷积混合盲分离的

频率置换问题是在盲源分离技术实用化的道路上需要攻克的主要难关之一。由于．

频域盲源分离方法便于实时处理，已有不同的学者给出了实时(或接近实时)处理算

法和演示系统【脚。125】。

在有混响的环境中，盲源分离的性能受到了很大的影响甚至无法分离出源信

号，这是单纯的盲源分离技术无法克服的障碍。这是因为传统的盲源分离问题把

多输入多输出声学系统当作一个“黑匣子”，在恢复源信号的过程中不考虑系统的内一

部结构，即不考虑空间声学的特性如独立语音源的方位，这样分离的信号都是单

耳信号，这使得无法利用许多优越的多信道信号增强算法进一步抑制干扰和噪声

信号。近来，获得分离信号的空间可辨性已经出现在立体声和多信道语音处理系

统中。因此考虑把盲源分离和宽带阵列处理，如语音增强等技术有效的结合起来，

真正的把盲源分离技术推向实用。同时，如何进一步利用阵列几何信息、语音信

号固有特性以及现有自适应滤波方法等技术也引起了极大的关注。Parra等人【1261

提出结合卷积盲源分离和几何波束形成的几何源分离方法，通过几何线性约束可

以在一定程度上解决频域盲源分离问题中的内在的不确定性问题。Knaak等人【127】

进一步提出了几何约束的独立分量分析算法，并详细的分析了算法的收敛性能。

需要注意的是与基本的频域盲源分离方法相比，基于几何约束的盲源分离法【l掘呓7】

都需要一定的先验信息，如目标信号的方向角的大致估值等。～般频域盲源分离

算法对每个频率作同样的处理，但是人耳对不同频率的敏感性不同1123】，因此Pan

等人【129】提出一种基于E滤波器最小均方算法和人类听觉系统的感知卷积盲源分离

算法，这种方法的基本思想是可以重点处理人耳比较敏感的频率而忽略入耳不敏

感的频率。Low等人(130】提出一种卷积盲信号分离的后处理方法，该方法本质上是

一种基于子带的语音增强方案，它基于盲源分离技术把目标信号和干扰信号进行

空间分离，然后利用自适应噪声对消器抑制干扰。但是该方法主要适用于只有一

个目标信号的情况。Huang等人【13l】提出了一种在混响环境中基于盲信道辨识的两

阶段算法实现语音信号的分离和去混响。Rivet等人【132】结合音视频语音处理和盲源

分离技术从卷积混合中提取语音信号，利用音视频信息给出一种新的统计模型，
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用以解决盲源分离问题中的置换和尺度的不确定性。此外，在欠定情况下卷积混

合盲源分离算法也取得了深入研究【133·1351。

国内学者在卷积混合盲源分离各个方面的研究也取得了重大进展。何培宇等

人[136-1371研究了语音信号的盲分离，对模型进行了简化，对多路声回波进行抑制。

张安清等人【1381提出了频域卷积混合盲源分离的新算法。苏野平等人【139]提出了一种

改进的基于高阶累积量的语音盲分离算法，算法具有较快的速度。梅铁民等人【l加1

提出了一种基于在时域中优化频域独立性标准的盲源分离方法，可以避免频率置

换问题。何昭水等人【14lJ基于稀疏性表示提出了一种基于自然梯度的频域盲源分离

算法，并可应用于欠定盲源分离问题。张贤达等人【H2l提出了基于斜投影的卷积信

道盲信号分离。此夕卜，还有许多学者在卷积混合盲源分离领域作出了卓著的成绩，

这里不一一赘述。

§1．4本文的研究内容

本论文对非平稳环境中的盲源分离问题进行了研究。这里“非平稳"有两重

含义，第一，源信号是非平稳信号；第二传输信道是非平稳的，即混合矩阵是动

态变化的。本文重点研究混合矩阵发生突变的情形，提出了不同的利用参数自适

应调节的在线算法跟踪时变环境。此外还研究了数目未知的语音信号瞬时混合的

盲分离问题，及语音信号卷积混合频域算法中的后处理方法。具体内容安排如下：

第二章重点介绍了盲源分离问题的基本知识。介绍了盲源分离的概念，研究

了盲源分离问题不同的混合模型，对盲源分离问题的可分离性、分离原则及分离

系统的设计进行了分析论证。

第三章首先提出一种变步长、变动量项因子的自然梯度算法实现源信号瞬时

混合的盲分离。在后向传播算法的启发下，我们在自然梯度的学习过程中引入动

量项以加快收敛速度，同时可以改善自然梯度算法的稳定性。然后，在分离模型

中引入一个合适的测度函数来控制步长和动量项因子，由此得到的变步长、变动

量项因子的自然梯度算法非常适合解决时变环境下的盲源分离问题。与经典的自

然梯度算法及其它改进的自然梯度算法相比，即使在信源个数很多的情况下，自

适应修正的自然梯度算法有更快的收敛速度和更好的稳态精确性，当混合矩阵突

变或信号功率突变时自适应修正的自然梯度算法依然有较好的跟踪能力。此外，

我们结合自然梯度和非线性主分量分析提出了一种块递归的盲源分离方法，构造

出按块递归更新的矩阵方程，然后用QR分解和回代法求解该矩阵方程得到最优分

离矩阵。与已有递归型盲源分离算法相比，所提方法适于实时处理且遗忘因子的

选择相对简单，与其它块处理算法相比有较快的初始收敛速度。

第四章针对混合矩阵发生突变的情况，提出一种基于时变遗忘因子递归广义

西安电子科技大学博士论文
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特征分解的非白源盲分离算法。首先给出一种协方差矩阵的逆矩阵和互相关矩阵

乘积的递归更新方程，具有较低的计算复杂度，广义特征向量的估计经由近似幂

迭代法和压缩处理在线实现，得到的在线算法可以避免同时估计协方差矩阵及其

逆矩阵。为跟踪混合矩阵的突然变化，提出一种新颖的基于广义特征向量的在线

决策规则，可以判别混合矩阵是否发生突变，从而利用变遗忘因子的递归广义特

征分解算法改善在线盲源分离算法的性能，利用生物信号进行仿真的实验结果表

明所提在线决策规则可以准确跟踪混合矩阵的突然变化，所用变遗忘因子的算法

既能获得较好的跟踪能力又能得到精确的稳态性能。

第五章充分利用语音信号的非平稳特性，对于数目未知的语音信号瞬时混合

的盲分离问题，在实现信号数目检测的同时完成信号的盲分离，并可克服盲提取

问题中先提取出的信源性能好而后提取出的信源性能差的缺点。首先利用递归广

义特征分解在线估计的对应于最大广义特征值的广义特征向量，由向量的相似度

定义平均相似度用以拟合信道互扰性能曲线，并根据平均相似度曲线提取出“高

相似度区间’’近似“分离区间’’。然后进一步提取分离性能较好的“高相似度区间"

并剔除部分“混合区间”，得到“高分离度区间"。 然后利用多阶段聚类的方法确

定源信号的数目，同时实现信号的盲分离或提取。仿真实现表明当信源数目适中

时所提算法可以精确的估计出信源数目，发生错误估计或漏估信号的概率较低，、

并且用估计性能最好的广义特征向量作为分离向量，从而获得分离性能最好的语

音信号
’

第六章针对现有卷积混合盲源分离的频域方法存在的问题，即恢复出的信号

是源信号和一个未知的滤波器的卷积，且由于部分频率点处盲源分离方法的失效

和无法精确解决排列和尺度模糊问题，分离出的信号中会泄露进其余的信号分量，

影响分离性能。提出一种基于多信道语音增强的频域盲源分离后处理方法以消除

空间干扰和背景噪声。该方法有机结合盲源分离技术与阵列处理技术，既可充分

利用空域信息，又无需增加其它先验假设。首先在频域盲源分离方法中利用语谱

分裂技术得到MxN个分离信号，可视为多输入多输出(MIMo)混合系统分裂成

N个单输入多输出(SIMO)系统，泄露进该信号的其它信号分量可以视为干扰信号，

然后分别用频域多信道信号增强方法重构出各个语音信号，以消除不同信源间的

空间干扰和环境噪声。仿真结果表明基于多信道信号增强的后处理算法可以弥补

由于排列模糊导致算法分离性能下降使得语音信号质量受损的情况。
’

第七章对全文的研究工作做了概括和总结，对未来工作进行了展望，给出了

几个有待进一步研究的问题。
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第二章盲源分离的基础知识

§2．1引言

盲源分离是在不知道源信号和传输信道参数的情况下，根据源信号的统计特

性，仅由观测信号来分离或恢复出源信号的过程。盲源分离是信号处理领域中的

一个基本问题，近二十年来己成为一个引人注目的研究热点。这是因为盲源分离

问题有大量潜在的应用并且盲源分离本身也是有研究价值的问题。尽管现在已有

不少盲源分离的文献，但依然有很多问题没有得到解决，因此盲源分离依然是一

个活跃的研究领域，在多用户通信、语音处理、生物医学工程和图像处理等诸多

领域有着非常重要的理论价值和研究意义。显然，当源信号与传输信道参数都未

知时，盲源分离是一种很自然的选择。这里术语“盲"有两重含义：第一，源信

号不能被观测；第二，源信号是如何混合的是未知的。文中把源信号的混合信号

称为观测信号，源信号的混合模型称为混合系统。盲源分离的混合系统信号模型

如图2．1所示：

墨(r)

J2(f)

‰(f)

混合

系统

彳

图2．1盲源分离的混合系统信号模型

五(f)

乇O)

％(f)

图2．1中观测信号五@)是源信号sⅣ)，歹=l，2，⋯，N的某一函数，这个把s愈)映

射到‘O)的函数称为混合函数。观测者只能观测到传感器接收到的信号

而(f)，f=1，2，⋯，M，而源信号和混合函数都是未知的；盲源分离的任务就是通过辨

识混合函数来恢复源信号。由于上述系统的描述是一般性的，因此需要针对具体

问题利用不同的标准对它进行分类，这些标准包括源信号的部分先验知识、混合

函数的特性及它与源信号的关系。例如，根据观测信号和源信号个数的多少，盲

源分离问题可以分为以下三种情况：

★适定盲源分离：观测信号和源信号的数目相等，也称为完备盲源分离；

★超定盲源分离：观测信号数目比源信号的数目多，也称为欠完备盲源分离；
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★欠定盲源分离：观测信号数目比源信号的数目少，也称为过完备盲源分离。

此外，也可根据源信号的混合方式是否线性进行划分，而混合过程可分为瞬时的

或卷积的，同样混合函数也可以是时不变的或时变的。大多情况下的研究对象是

上述不同分类的组合形式：如线性瞬时适定盲源分离问题、线性卷积混合超定盲

潭分离问题等。针对不同模型的盲源分离问题已经提出了大量不同类型的算法。

例如，根据工作方式的不同，盲源分离算法可分为在线算法和离线算法，前者是

自适应算法，后者是批处理算法。根据信号提取方式的不同，盲源分离算法又可

分为串行算法和并行算法，前者逐个提取信号，后者实现所有信号的同步提取。

根据源信号的特性，如非白、非高斯、非平稳性等，盲源分离算法又可分为基于

不同阶统计量的算法。与混合函数的分类类似，大多数盲源分离算法也是上述不

同分类的组合形式，如在经典算法中，Cardoso等人fl翎的特征矩阵近似联合对角化

算法(JADE算法【1】和SOBI算法【21)属于批处理并行算法，其中JADE算法是基于四

阶统计量，而SOBI算法则基于二阶统计量；Hyvarinen等人1311约快速定点算法属

于批处理串行算法；Amari等人【41的自然梯度算法和Cardoso等人【51的等变化算法

属于自适应并行算法。

近二十多年来，盲源分离算法的研究和性能分析非常活跃，所研究的信号模

型及涉及到的基本理论各有不同，本章主要针对线性瞬时混合模型和线性卷积混

合模型介绍其所涉及到的基本理论。

2．2．1信号模型与假设

§2．2瞬时混合盲源分离

如图2．2所示，假设Ⅳ个统计独立的源信号勺(f)，j=l，2，⋯，Ⅳ经过线性瞬时混
合后得到M个观测信号(或传感器信号)而(f)，f=1，2，⋯，M，下面的方程对于线性时
不变瞬时混合函数成立：

Ⅳ

^(f)=∑atJsj(t)
』暑l

Ⅳ

吃(，)=∑％Jsj(t)
J兽l

Ⅳ

嘞(f)=∑％t(f) (2．1)
J=l

这里吩e R，i=1，2，⋯，M，J=l，2，⋯，N是混合参数。

式(2．1)能用向量和矩阵的形式来表示：

x(f)=知13f)(2．2)

———————————————————●——————————————————————————————一一
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这里

混迭系统彳 分离系统形

图2．主盲源分离的线性瞬时混迭与分离信号模型

z(，)=[五(，)，而(，)，⋯，‰(r)]7为肘维观测信号向量；

s(f)=[s，(f)，s2(t)，⋯，％(f)]r为Ⅳ维源信号向量：

彳=[％L。Ⅳ是元素为吩的M×Ⅳ维矩阵，在盲源分离中称为混合矩阵a

『．11表示矩阵或向量的转置。

由于传输信道和传感器阵列包含加性噪声，因此在实际应用中必须考虑加性

噪声，这样式(2．2)中的混合模型就变为

x(t)=血O)+以O)(2．3)

这里以(f)=h(r)，他(f)，⋯，‰(f)]2是加性噪声向量。

事实上，式(2．3)可写作

圳枷】嘲缅(，)I刀VJ I

其中J表示M维的单位矩阵。因此式(23)也属于式(2．2)的范畴。今后在线性瞬时

混合的情况下，如无特别说明，我们只讨论式(2．2)描述的不包含噪声的模型。

2．2．2可分离性与分离原则

盲源分离问题的可分离性包括信号是否实际可分离和在什么条件下是可分离

的。分离原则为在实现盲分离时所采用的原则。为了使用数学术语来陈述上面的

问题，我们用下面的形式来描述盲源分离问题：
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x(O=八sO)) (2．4)

和

yO)=g(xO)) (2．5)

可分离性就是存在一个函数g(·)，使得每个乃包含不同st的分量，即以=z，(s，)，

这里z，是任意的滤波器算子。分离原则就是怎样来估计函数g(．)。我们这里的讨论

限于线性时不变函数，同时假设源信号是独立的。

需要特别指出的是源信号的独立性假定是盲源分离问题中一个最基本的假

定，从观测数据中分离独立的源信号是基础的而又具有挑战性的问题，近年来已

受到广泛的关注。许多研究人员已经用不同的方法，例如神经网络、机器学习、

高阶统计量、最小互信息、波束形成和自适应噪声对消等，不同程度上地解决了

这个问题。尽管他们所用的方法不同，但是源信号的统计独立性假设是绝大部分

解决方案中所共有的、最重要的假设。统计独立性意味着知道其中一个源信号，

不能估计或描述任一别的源信号。独立性假定或由它导出的假定(如不相关)被

上述大部分的解决方案用作分离标准。换句话说，若输出信号满足独立性标准，

那么就可以认为分离是成功的。Yellin等人16J已证明若源信号是统计独立的，那么

观测信号能分离的一个充分必要条件是分离系统的输出也是统计独立的。本文中

给出的新算法也属于这一类。

源信号S，是相互统计独立的当且仅当源信号的联合概率密度ps(s)等于边缘密

度见。(s，)的乘积，即

见(力=np,j(sj)。

Comon等人忉阐明了若输出是源信号的线性函数且分离后的信号是两两独立的，

那么它们也是相互独立的。

Tong等人隅1给出在两种情况下，也就是不相关源和独立源的可辨识的条件。

他们在分析中假设：

(1)厂(．)是一个线性时不变瞬时混合矩阵，即信道是线性的且无记忆能力；

(2)厂(·)是列满秩的；

(3)源信号q是均值为零，协方差矩阵非奇异的广义平稳过程。

两种可分离情况分别为：

1．不相关源s。能被辨识，若满足下面的条件：

(i)s，，J=1，⋯，N是不相关的；

(ii)存在一个f>0使得掣E{g≠警胁一，。> E{sj)
。
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2．独立源J，能被辨识，若

(i)s，，J=1，⋯，N是相互独立的；

(ii)等≠筹巾J。
Tong等人【9】给出了波形保持(waveformpreserving)的概念，他们认为分离后

的输出的非唯一性的集合必须属于一个唯一的波形类别，他们也证明了源信号也

必须属于同一类。这就定义了解的可行族。在源信号的概率密度和传输信道的特

性都未知的情况下不能唯一地辨识源信号。

在我们的假设下，厂(·)对应于混合矩阵A，上面的分析表明为了尽可能好的

恢复出源信号，矩阵4必须是可逆的。这意味着在给定彳依赖于源的物理的位置一

的情况下，源信号必须是空间可分解的。进而，源信号的数目需小于或等于传感

器的数目(N≤M)，从而使得系统不是欠定的。

在理想情况下，当M=Ⅳ时，

s(f)=A叫甄f)=Wx(t) (2．6)

这里W=A-1是解混合矩阵，或称为分离矩阵。

当M>N时，

s(f)=A。x(t)=Wx(t) (2．7)

这里W=A4是解混合矩阵，其中44表示4的Morre-Penrose广义逆(伪逆)矩阵。

若混合系统是可逆的或存在伪逆，这对应于M≥N(传感器的数目大于或等于

源信号的数目)的情况，在方阵的情况下混合矩阵是非奇异的。可以通过直接估计

混合矩阵的逆或其伪逆处理这个问题。矩阵非奇异的要求在物理现实上可以解释

为传感器信号是空间可分解的，这也是盲源分离问题中最通常的要求。如图2．2所

示，对应于瞬时混合(见式(2．2))的解混合(分离)系统形式如下：

y(f)=rex(t)=WAs(t) r2．8)

这里W∈RⅣ埘， y(t)e R服1是源信号的估计向量，或称为源信号的拷贝。

然而，在盲源分离问题中对混合矩阵4的完全辨识是不可能的，即混合矩阵

的辨识是一个病态问题。在盲源分离问题中有两个内在的模糊或不确定性：

‘(i)尽管可以将各信源正确分开，但并不能确定其排列顺序，‘这相当于同时交

换源信号和混合矩阵与之对应的列的位置后，所得到的观测向量是相同

的；

伍)一个信号和与之对应的混合矩阵4的列之间互换一固定比例因子，对观

测值不会产生影响，即：

x(f)=As(t)=∑知墨(f) (2．9)

其中％是任意复因子，口，是4的列向量．
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正是由于上述两个不确定性的存在，使得解混合系统和混合系统的乘积有以

下的形式：

WA=AP (2．10)

这里彳是对角矩阵，P是置换矩阵。

混合矩阵A的非完全辨识称为4的不确定性。既然4有不确定性，我们可以

假定源信号有单位方差，即把源信号的复振幅的动态变化归并到混合矩阵么的相

应的列中。由于源假定是不相关的，所以源信号方差的归一化结果为：

冠(O)=I (2．11)

从而有

疋(O)=E{x(t)x月0)}=从月 (2．12)

归一化仍然使得混合矩阵4的各列的排列顺序和相位保持不确定性。为了解

决这一不确定性问题，Cardoso等人【心1将两个矩阵“本质相等，，的概念引入盲源分

离中。

定义2．1(矩阵的本质相等)两个矩阵P和Q称为本质相等(essentially

equal)，并记作p-Q，若存在一个矩阵G使得P=Qc，其中G是一个广义交换

矩阵(即其每一行每一列只有一个非零元素)，并且其元素具有单位模。 一

由定义2．1知，一个矩阵若其列向量交换位置与／或某列向量的所有元素都同

乘以一个常数因子，则所得矩阵是原矩阵的本质相等矩阵。

综上所述，在盲源分离的讨论中，应该将混合矩阵4的可辨识性可理解为确

定一个与彳本质相等的矩阵。显然，这样的不确定性对源信号的分离不会有任何

实质性的影响。此外，对于一个不可逆的线性混合系统(它不存在左伪逆)，例如包

含源的数目多于传感器的数目的情况，这种情况必须联合估计源信号和混合系统。

这要求关于源信号的更多的先验知识，因此这种情况“盲"的程度要低一些。

2．2．3分离系统与分离性能

若要设计一个分离算法，就必须选择一个分离系统。其中最自然的选择就是

利用混合系统的逆的结构，另外一些通常选择的分离系统为前馈、后馈或反馈结

构的神经网络。然后基于分离系统和它们相应的分离准则来估计参数。分离算法

的形式虽多，但是推导思想却大同小异。首先需要选择恰当的对比函数(contrast

function)，然后采用某种优化方法来搜索对比函数的极值点，即构造过程可以统一

表示为[tOl

BSS算法=对比函数+优化方法 (2．13)

因此，盲源分离算法的性能取决于两个方面。其中，对比函数决定算法的统计性

能，包括～致性、渐进方差和稳健性等；优化方法决定算法的性能，包括收敛速

度、运算量、内存需求和数值稳定性等。
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盲源分离问题的对比函数是分离系统的输出J，的分布的一个实值函数，它满足

当且仅当J，=Cs是源信号的一个拷贝时取到极大值，这里C表示一个广义交换矩

阵。对比函数可以分为两大类：一类是对所有分离状态都等价的对称对比函数Ll¨，

另一类是非对称的对比函数【121。常用的对比函数有信息论对比函数[4,13-141，其中包

括最大熵对比函数【131、最小互信息对比函数[41和极大似然对比函数1141。此外还有

恒模对比函数{151，非线性主分量分析对比函数(16，171，高阶累积量对比函数【11,121和

最大去高斯性对比函数【l剐等。

根据优化方法的特点，通常使用迭代算法或递归算法用来求分离矩阵，如梯

度下降算法，自然梯度算法，牛顿型算法及递归最小二乘算法等。确定分离系统

的另外一个选择就是用批处理算法还是甩自适应算法。在批处理算法中，在其中

任意一段数据中可以认为参数是不变的，它由这个时间段内的数据确定。由于我

们不希望分离参数在短的时间周期内有显著的变化，为减少计算时间，可以用上

一批数据的估计值作为下一个估计的开始点。若输入是非平稳的，那么批处理算

法的性能通常会明显的偏差。这个影响可以通过相互重叠的分段批处理来减小，

但不可避免的会增加计算时间。而在自适应算法中，参数会在处理每一个新的数

据时得到更新，但这引入了新的参数，即步长或遗忘因子，它影响算法的收敛速

度及跟踪性能。通常来说步长或遗忘因子取常数时算法的性能受限，需要采用变

步长或变遗忘因子方法的方法在加快算法收敛速度的同时提高稳态精确性117,19]。

若不能正确的设置学习参数，该算法就不能正确的收敛甚至根本就不再收敛。

§2．3卷积混合盲源分离

2．3．1信号模型与假设

设在混响环境中用膨个麦克风吒(，)(胁=1，⋯，M)接收Ⅳ个统计独立的语音信

号晶(f)(刀--'I)o Q)Ⅳ)(M 2奶，这在数学上可以描述成一个MxN多输入多输出

(MⅡvIo)有限脉冲响应(FIR)系统(如图2-3所示)，第m个麦克风的第t个快拍可表

示为

ⅣL-1

‰(f)=∑∑‰(f)磊(f一礁m=l,---,M (2．14)
n=l l=O

这里‰(z)表示从第玎个源信号到第m个麦克风的脉冲响应。
卷积混合模型也可用矩阵形式表示为

三一I

x(f)=∑A(1)s(t-1) (2．15)
． 1=0

这里xO)=“∞，⋯，嘞(D】是观测向量，s(t)=h(f)，⋯，吩(f)】源信号向量，A(t)为
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混逛深统4“)分离系统歹y(妨
图2．3盲源分离的卷积混迭与分离信号模型

滤波器混合矩阵，它的每个元素口肭(，)都是一个三阶的滤波器。

此外，通过短时傅立叶变换(STFT)把卷积混合模型(2．15)cb的观测信号x(t1
变换到频域中，得到每个频率点上的瞬时混合

‘x(s，f)=A(／)s(厂，f) (2．16)

这里x(s，r)=[墨(厂，f)，⋯，如(厂，t)12，s(／，f)=[墨(厂，f)，⋯，SN(f，f)丁，

l 4。(厂)⋯4Ⅳ(厂)l
4(厂)=l ! ‘。 i l，其中so(s，f)、以(厂，f)和‰(门分别表示s。(f)、
l如。(力⋯‰(厂)j

xnl(t)矛r]am。(z)的短时傅立叶变换a

2．3．2可分离性与分离原则

业已证nyjt20，211，瞬时混合和卷积混合模型的所有代数性质是等价的。瞬时盲

源分离和多通道盲解卷积的关系和等价性参见文献[22】的表9．1。因此卷积混合盲

源分离问题的可分离性与分离原则与瞬时盲源分离情形类似，这里不再进一步讨

论。

需要注意的是上解介绍的卷积混合的盲源分离概念与多通道盲解卷积[20,23忍51

有所不同，虽然两者的混合的数学模型相同，但是通常两者的前提假设条件和分

离的结果却是不同的。在本节中介绍的卷积混合信号的盲分离，假设条件通常需

要源信号之间是相互独立的或空间不相关的，其分离出的信号也不仅只有幅值的

不确定性与排列的不确定性，而且是源信号经过一个传递函数后的滤波信号，即
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％(D=∑吃(z)％(卜m
1=0

这里以(z)是一个未知的传递函数。而在多通道盲解卷积问题中，其假设条件除了

需要源信号之间是相互独立之外，通常还需要每一个源信号都是一个独立同分布

的过程。这类信号在现实中不易遇到，但在通讯中经过调制后的信号大多是能满

足这个条件的，例如经过正交幅度调制后的Q触Ⅵ信号等，同时．，盲解卷积后得到

的信号与原始信号相比有着幅值的不确定性与延迟的不确定性，即

％(f)=反％(卜f)

这里以是一个尺度因子，f表示延迟。显然，多通道盲解卷积是卷积盲源分离的

一种特殊情况，它在系统输出端保持了源信号的时间结构【221。

2．3．3分离系统与分离性能

针对不同域的混合模型(2．15)和(2．16)，可以选择不同的分离系统实现源信号的

盲分离。因此，卷积混合盲源分离方法可以分为时域方法和频域方法。

时域方法是针对混合模型(2．15)，用一个长度为K的FIR滤波器％。(k)的集合

构成分离系统来恢复源信号(如图2．3所示)
’

咒(f)=∑∑％。(k)x．(t-k)，n=l，⋯，N (2．17)
m=I k=O

首先提出在时域对卷积混合信号进行盲分离的方法【26】，是利用独立分量分析

的概念把瞬时混合时的标量混合矩阵扩展到卷积混合时的滤波器混合矩阵的方

法。所有的时域分离方法都利用源信号的统计特性，如源信号的非高斯性，非平

稳性和功率谱特性等【2¨们。从式(2．17)可见时域方法需要估计MN'K个系数，在滤

波器长度较大时具有较高的计算复杂度，此外收敛速度也是制约时域方法的一个

重要问题。

频域方法(如图2．4所示)是针对混合模型(2．16)，由于在每个频率点观测信号都

是复值信号的瞬时混合，故可直接利用复值盲源分离算法求出分离矩阵∥(厂)以便

重构源信号。每个频率点的分离信号可以表示为

r(f，r)；∥(厂)x(厂，r) (2．18)

I暇。(力⋯‰(门l
这里y(^t)--[Y。(f，f)，⋯，巧(厂，f)]r，形(厂)=l i ‘． ； 1，其中

L％，(力⋯‰(力j
艺(厂，f)和Wmtl(力分别表示％(f)和‰(，)的短时傅立叶变换。
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混合信号。 分离系统 分离信号

图2．4频域盲源分离流形

与卷积混合盲分离的时域算法相比，卷积混合分离的频域算法有着很大的优

越性。在时域的盲分离算法中，当混合滤波器的阶数比较高时，分离滤波器每一

阶的求解都要依靠滤波器中其余阶的求解，这会使得计算量变的非常大而且也会

大大降低分离的效果。Chart[31】提出了分离矩阵对角常数化的算法；当混合滤波器

的长度在5阶以下时，其算法可以很快地恢复出原始信号，当混合滤波器的长度

变到6阶以上时，其分离速度就会非常地慢，而且分离的效果也会很差。相对而

言，在频域中我们对每一个固定的频率用瞬时盲分离的方法进行分离，各个频率

段的计算是相互独立的，因此，频域的卷积混合盲分离算法受到混合滤波器阶数

的影响就较少，而且算法的计算量也较小。Smaragdist32】用实验证明对于一个两输

入两输出系统，当分离滤波器长度为1024，采样频率为44．1 kHz时，用频域的算

法比用时域算法的计算量要减少了近70倍。

当然，频域算法也存在三个问题，主要是由于混合模型特性和瞬时盲源分离

固有的两个不确定性所引起的。第一，在频域中求解卷积混合盲分离问题时，虽

然从理论上讲可以利用已有复值瞬时混合盲源分离算法，但是在样本数目有限的

情况下，在每个频率点面临的是小样本的盲源分离问题，一些在线算法在这种情

况下分离性能较差或根本无法收敛【331。第二，盲分离中排列的不确定性会导致在

各个频段分离出的信号不能够正确的重构，从而可能使分离性能变差甚至失败【341。

第三，因为在盲源分离中有着幅值的不确定性，所以它会使得在各个频段分离的

信号在频域上的幅值有偏差，从而会导致信号频谱的变形【35】。在语音信号的盲分

离中就会使得语音信号的音质有所变化。针对上述三个问题，目前已有很多的算

法133-39]用以改进频率盲源分离方法的性能。
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§2．4本章小结

本章重点介绍了盲源分离问题的基本知识。介绍了盲源分离的概念，研究了

盲源分离问题不同的混合模型，对盲源分离问题的可分离性、分离原则及分离系

统的设计进行了分析论证。
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第三章改进的自然梯度算法

§3．1引言

盲源分离是在不知道源信号和传输通道的先验信息的情况下，根据源信号的

统计特性，仅由观测到的混合信号恢复出源信号的过程。在过去的二十几年中，

盲源分离问题在声学和语音处理【l】图像增强以及生物信号处理【2】等诸多领域获得

了广泛关注。为便于通过数字信号处理器实时实现这些应用，通常需要利用自适

应学习的盲源分离算法，为此人们已经针对不同的盲源分离问题提出了大量的在

线学习算法。自适应处理可以随着数据的陆续取得而逐步更新分离矩阵，使得分

离信号各分量趋于相互独立，在线算法的计算一般比较简单，但收敛速度慢也是

其固有缺点。

Cichocld等人13-5】提出了著名的自然梯度算法，既可以免除随机梯度算法【6J中

矩阵求逆的问题，又保留了随机梯度算法的简单性和数值稳定性。1998年，Amarit7】

利用微分几何学18】证明了当用负对数似然函数作为损失函数时，自然梯度是Fisher

有效的。自然梯度的性质以及扩展也获得了深入研究19-16J。此外可以证明自然梯度

算法实际上是与相对梯度【17】等效的，因此，自然梯度算法也具有等变化性。自然

梯度算法的收敛性取决于步长和初始分离矩阵，如何选择这些参数以同时保证其

收敛速度、稳定性和跟踪能力是很困难的。目前已经有很多选择步长的方法【18珑】。

但是在混迭矩阵发生突变时，上述变步长盲源分离的跟踪能力还需进一步改善。

由于递归最d"--乘(RLS)算法在收敛速度和跟踪能力方面要优于最小均方

(UⅥS)算法【埽J，Pajunen等人【19】提出了基于非线性主分量分析的递归盲源分离方法。

而自然梯度算法比一般梯度算法有更好的收敛性能和数值稳定性。Zhu等人【20m】

结合非线性主分量分析和自然梯度，首先提出了一种RLS算法来解决盲源分离问

题【20l，该方法的算法收敛速度快，数值稳定高。但要求分离矩阵为正交矩阵，若

在递归学习中不能保持正交特性，则算法的性能会受到很大的影响，其仿真结果

中正交性测度曲线呈间隔性起伏，从而会影响到算法的性能。Zhu等人L2l】随后又

提无需对观测信号预白化的基于自然梯度和非线性主分量分析的递归最d"--乘盲

分离方法。

本章在第3．3节中提出了一种用于盲源分离的自适应修正自然梯度算法。首

先，在后向传播(BP)算法的启发下，我们在自然梯度的学习过程中引入动量项以加

快收敛速度，同时改善自然梯度算法的稳定性。然后，在分离模型中引入一个合

适的测度函数来控制步长和动量项因子，由此得到的变步长和变动量项因子的自
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然梯度算法非常适合解决时交环境(例如混合矩阵突变或信号能量突变)下的盲

源分离问题。在时不变和时交环境下的不同仿真实验表明本章所提算法在收敛速

度、稳定性以及跟踪能力方面都有很大改善，并且当信号能量非常弱或信号能量

比例严重失调时的分离效果仍然良好。该算法还适用于适定情况下的多个信号(例

如：信号源的个数等于10)分离。此外，为实现对观测数据按块处理时算法有快速

收敛性能，在第3．4节中提出一种按块递归的盲源分离方法，基于文献【20】中用结

合自然梯度和非线性主分量分析得到所求正交矩阵的最优解的方法，我们按块更

新矩阵方程，且对其逐块求解来解决盲分离问题。在求解矩阵方程时利用QR分解

和回代算法避免了直接求逆矩阵的运算，因此所提算法具有较好的数值稳定性，

在迭代过程中保持了所求矩阵的正交特性。

§3．2自适应改进的自然梯度算法

3．2．1自然梯度算法

在源信号统计独立的情况下，希望使用一神经网络从观测数据向量中实时恢

复源信号，这一过程称为在线盲信号分离。图3．1画出了混合模型与盲源分离的前

馈神经网络方框图。用M个传感器阵列接收Ⅳ个统计独立的源信号

j(，)=l(f)，＆(，)，⋯，％(，)，，混合矩阵根据不同的应用和环境会有不同的数学模

型，本章主要讨论线性瞬时混合的情况，即观测信号xj(t)，．，=1，．．．，M(M≥iv)是源

信号薯O)，歹=1，．．．，Ⅳ的线性瞬时混合信号。在这种情况下，信号模型通常表示为

工O)=As(t) (3．1)

这里xo)=k◇)，屯(，)，⋯，‰(f)了是阵列观测向量，4=[吩]∈RMxN(吖≥忉是列

满秩的未知混合矩阵。不失一般性，本章均考虑M=N的情形。

在线盲源分离的目的是用权矩阵W(t)∈RⅣxⅣ从观测信号工O)中恢复源信号

s(f)，即寻找矩阵刀使得BA=G，其中G为广义交换矩阵。因此希望使用自适应

学习算法，收敛后的权矩阵耽满足关系式

W=A2G

以使得输出向量

． J，(f)=形Q)xO)=W。As(t)=Gs(t) (3．2)

为源信号的估计。因此，神经网络在时刻f的分离性能由合成矩阵r(f)全W(t)A衡

量，它描述混合一分离模型中信号被分离为独立分量的“精确性"。这里矩阵形(f)在

盲分离中称为分离矩阵或解混合矩阵，在神经计算和神经网络中称为突触权矩阵。
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图3．1混合模型与盲源分离的前馈神经网络

下面从神经网络系统输出的互信息的最小化推导分离矩阵的更新公式。最小

互信息(minimum．mutual information，MMI)的基本思想是：选择神经网络的权矩

阵形，使输出Y的各个分量之间的相依性最小化，即使得输出向量J，(，)的各个分

量尽可能相互统计独立。这一方法称为独立分量分析(ICA)，是Comon于1994年

提出的【221。现在，独立分量分析已成为信号处理、模式识别和神经计算等领域中

的一种著名算法。

作为信号之间相依性的测度，通常采用输出向量Y的联合概率密度函数与其边

缘概率密度函数之间的Kullback-Leibler(K-L)散度

D(形)=KEpy(Y，∥)89y(J，，∥)]

叁胍啦貉 。‘3’

其中Py(J，，∥)表示随机变量J，联合概率密度函数，以(y，形)是y的边缘概率密度

函数的乘积，即gy(y，w)--兀：。吼(咒，形)。

K-L散度是两个概率分布差异的自然测度。因此D(形)给出了分布Py(Y，∥)与

分布g，(y，形)之间的距离。显然，若各个输出分量乃O)相互独立，则

Pr(Y，w)---q,(y，形)，即D(形)=o。反之，D(形)=o意味着只(})相互独立。

信号分量之间的KL散度与它们之间的互信息等价D(W)兰，(形)，并且互信息

为非负值，即，(形)≥0。因此，当且仅当输出各分量独立时，互信息最小(等于零)，

即

，(形)量0 iff 形=APAd (3．4)

其中A为NxN的对角矩阵，P为NxN的置换矩阵。

互信息也可以用熵表示为【5】
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D(形)=，(形)=州(J，，矿)+∑片以，∥) (3．5)

其中日(J，，形)=一fp(y，w)log p(y，形)匆为联合熵，

H(M，形)=一k，o，，W)Iogq，(咒，形)觑为边缘熵。

互信息最小的条件是：熵日(J，，形)取最大值∑日(．y；，形)·即互信息最小与最

大熵等价。

由y-Vex，根据矩阵理论P(Y，∥)=p(x)／det(W)，其中de￡(∥)表示矩阵∥的

行列式，微分熵可以表示为

日(力=日(曲+log det(nv)l (3．6)

对于gj(咒，形)，可用类似的方法处理，这样得到一个筒单的代价(风险)函数

D(∥)=一日(x)一log}det(形)l-∑E{logq，(yj，∥)} (3．7)

由于日(x)与分离矩阵形无关，可以把日(x)从式(3．7)中略去。

为使代价函数极小化，一个简单的思想是用普通的随机梯度下降实时学习算

法，由下式给出

训归W(t+1)一re(垆叩嚣 (3．8)

这里77>o为步长参数，等是梯度矩阵。
由简单的微分矩阵计算，可得

△矽o)=77{J一厂(J，(r))J，ro)}形刁o) (3．9)

其中J为单位矩阵，矽一r是矿逆阵的转置，／(J，)=tf(y。)，．．．，f(YⅣ)】r中的激活函

数f(Y)为非线性奇函数。实际上，大多算法中激活函数通常需要根据源信号的分

布进行选择f5。6，171。

上述随机梯度优化方法的主要缺点是收敛比较慢。因此，希望有一种优化方

法既能保留随机梯度方法的简单性和数值稳定性，又能够得到很好的渐近收敛性。

还希望其性能与混合矩阵无关，以便即使当混合矩阵接近奇异矩阵时，算法依然

能够工作得很好。

当参数空间是欧几里德空间时，梯度一刮a形代表函数D的最速下降方向。
在现在的情形中，参数空间由所有的非奇异NxN矩阵矿组成。这是一个乘法群，

它的单位元是单位矩阵fⅣ。而且，它是一个流形，因此它形成一个李群。Amari
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等B，'划利用这个事实引入一个自然飚emaIlIlian测度到空间W， 他们证明了在黎

曼空间中参数A的最陡下降方向不是沿梯度丽01)，而是沿自然梯茇

器wr(f)如(f)睁方向【7’101。因此，自然梯度算法可以表示成在线形式：

△矿(r)=一，7嚣∥r(r)形(f)二77{，一f(J，(r))J，r(r))矽(f) (3．10a)

形(f+1)=矽(r)+△形(D (3．10b)

对应的块自然梯度算法可以表示为：

·．△≯y(刀)=刁{J一：≥，：B。。一。卜。f(y(r)；yr(r))≯y(玎) (3．，，a)

形0+1)=矽(挖)+△形(，1) (3．1lb)

其中B为块的大小。设置B=1，可以很容易将块自然梯度算法转化为在线算法。

3．2．2结合动量项的自然梯度算法

神经网络是一个由称为神经元的基本单元构成的并行分布传感器，构成神经

网络的基本单元称为神经元。20世纪80年代中期，Rumelhart等人【23】提出了误差

反向传播(BP：back．propagation)算法。从此，BP算法被广泛应用于多层感知结

构的训练。所谓多层感知器，就是单层感知器的推广，即在输入层和输出层之间

加上隐含层(一层或多层)。这种由输入层、隐含层和输出层构成的神经网络称为

多层前馈神经网络。

下面我们简单回顾一下BP算法。BP学习过程可以描述如下：(1)：11作信号正

向传播：输入信号从输入层经隐单元，传向输出层，在输出端产生输出信号。在

信号向前传递过程中网络的权值是固定不变的，如果在输出层不能得到期望的输

出，则转入误差信号反向传播；(2)误差信号反向传播：网络的实际输出与期望输

五

而

：
●

h

图3．2 第珀勺个神经元的简化模型
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出之间的差值即为误差信号，误差信号由输出端开始逐层向前传播。在误差信号

反向传播的过程中，网络的权值由误差反馈进行调节，通过权值的不断修正使网

络的实际输出更接近期望输出。

图3．2为多层感知器结构中第f的个神经元的简化模型，其中毛，i=1，．．．，Ⅳ表示．

Ⅳ

观测信号，峋(f=l，．．．，M，=1，．．．，N)为权重，net,=∑％毛为线性混合器的输
． J=l

出，激活函数通常定义为矽(以et)=———L一。l+exp(一，zP‘)

定义该网络的代价函数为均方差的累加和，即：
' Ⅳ

1 ^r

f(，1)皇92e,(胛)《(功=去∑lq(刀)12
一i=1 ‘i=1

其中ei01)=喀一只(玎)为误差信号，磷为输出期望信号。

BP算法就是通过不断调整权值，使代价函数孝(功达到极小值，

得到的权值更新公式为：

％伽+1)=w,j(n)+Aw,j(n)

其中权值和负梯度成比例关系，所以更新项可以表示为：

(3．12)

由梯度下降法

(3．13)

咄∽=川桷功=叫等 (3．14)

这里∥表示步长参数，V峋孝(以)为代价函数孝(功沿权值吩方向的梯度。

在式(3．14)中加入动量项可以加快BP算法的收敛速度【18,23】，将更新项△心，(以)

修正为：

△％(刀)=必％(刀一1)一∥V～孝(刀) (3．15)

其中，口称为动量项因子，AwF(n-1)为上一步的梯度。动量项为△％(刀)增加了一

个前馈循环，对BP算法的学习过程带来极大的好处，能够加快算法的收敛速度并

且避免学习过程在陷入局部最小点而得不到最优解。

和BP算法类似，自然梯度算法也采用梯度下降法，所以，受BP算法启发，

我们在自然梯度学习过程中引入动量项以加快其收敛速度，由此得到修正自然梯

度算法：

AW(力)=叩丽OK(，z)wr(")w(力)+aAW(力一1)(3．16a)
W(刀+1)=W(力)+AW(n) (3．16b)

其中删刀一1)为动量项，口为动量项因子。
实际上，式(3．16a)n-j'以看作AW(n)的一阶差分方程：
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AW(加一刁∑kffi0矿‘杀(掣r(七)w(七) (3·1 7)

AW(n)是自然梯度序列的加权指数和，或者说是对式(3．16a)的平滑。因此，在自

然梯度算法中引入动量项也提高了学习过程的稳定性。

仿真结果表明结合动量项确实可以加快自然梯度算法的收敛速度并提高算法

的稳定性，但是，在时变环境下的算法的跟踪能力及信号能量极弱时算法的分离

性能有待提高。此外，算法性能对刀和口很敏感，而77和口通常为经验值。下一节

我们将提出一种自适应改进算法来消除自然梯度算法对参数的敏感性。

3．2．3参数自适应控制算法

虽然在自然梯度算法中引入动量项可以加快收敛速度并提高学习过程的稳定

度，但是要选取最优的步长r／和动量项因子口很困难。一种简单的方法就是将77(或

口)定义为时间的指数下降函数，但是时变环境下的跟踪能力并没有改善。自适应

选择参数的方法【25。01通常被认为是不错的选择，特别是在时变环境下，即能加快

学习算法的收敛速度，又能保证学习算法的稳态准确性。因此本节我们将提出一

种自适应修正自然梯度算法。

自适应步长选择方法的原则是当被估计参数值与它的最优值之间的距离大

时，步长相应取较大的值，反之，步长应取较小的值【2引。在盲源分离问题中，不

可能直接利用实际误差来控制步长，．只能选择一种有效的替代测度来度量误差。

Thomas等人【281定义了一种估计函数：

日(，z)=J一去∑f(J，(f))J，r(f) (3．18)
”t=B(n—lhl

令E{口(哟)为日(功的期望，用H(n)的平滑形式fi(n)来逼近期望值：

日(拧)=(1-rl(n-1))H(n一1)+rl(n-1)H(n) (3．19)

有许多均方范数都可以作为合适的误差测度来控制步长，我们采用了一种新的代

价函数，令膏{『(功=}厅{，(刀)12，得到一个新的矩阵雪(胛)，疗驴(刀)为第j行，第歹列元

素。就可以用日(，1)的Frobenius范数作为控制步长的代价函数，即：

D(挖)。爿f日(功|lF (3．20)

步长刁(功根据O(n)变化，并且由下面自适应公式进行平滑：

，7(功=flrl(n-1)+(1-f1)l砷(n) (3．21)

其中罗为遗忘因子，一般取接近l的实数，P为比例因子。

由(3．16a)式知动量项因子口对zXW(n一1)的作用和步长r／对AW(n)的作用相

似，即口(，z)由①仰一1)控制，得到动量项因子的自适应平滑形式：
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口(刀)=∥口(刀一1)+(1一∥)∥①(咒一1)0．22)

针对(3．21)和(3．22)1拘自适应形式，我们作如下注释：

牌：通过大量仿真，我们发现要想在参数自适应调节的算法中用较小的运
算复杂度得到最快的收敛速度和稳健性，选择一个合适的测度是关键所在。Thomas

等人【281定义代价函数为：

m(拧)=max日：(功 (3．23)
lJ

其中厅。0)为豆Q)的第f行，第jf列元素。此代价函数①(船)受限于对y(f)幅度的

稳健性，尤其是当块大小B很小时(如B=1)。用豆(刀)平方谱范数作为控制步长

的代价函数更稳定，但是同时增加了运算复杂度。仿真结果表pyJ(3．20)定义的代价

函数具有较好的稳健性，运算量适中。

理襻2；在式(3．21)和(3．22)的自适应形式中，合适的遗忘因子∥和比例因子p

能有效加快收敛速度，改善分离性能。Thomas等人嘲的自调节步长算法(记为SASS

算法)选择夕=0．998，p=O．25。但是，SASS算法对∥和P非常敏感。本文提出的

算法在0．9≤∥≤O．99，p=l时效果都很好，说明我们的算法对∥敏感度降低，并

且可以去掉比例因子P。此外，为了使所有参数都可以自适应调节，遗忘因子∥也

可以表示为自适应形式：

fl(n)=(1一叩(刀一1))∥(疗一1)+，7(万一I)(1一re(n)) (3．24)

由此得到式(3．21)和(3．22)的修正形式：

r／(n)=声(挖)，7(终一1)+(1一∥(靠))①(玎) (3．25)

口(咒)=fl(n-1)oc(n-1)+(1一∥(珂一0)m(n一1) (3．26)

表3．1自适应修正的盲源分离算法步骤

Ⅱ(功=I一去∑f(y(，))y 7’O)
1．J

flB(n-I_I+l

H(疗)=(1一r／(n-1))H(n一1)+r／(n—1)H(刀)

①加)={IH(n)岵 ．

p(拧)=(1一刁(阼一1))∥(”一1)+刁(栉一00-m(n))
a(n)=fl(n-1)a(n-1)+(1-fl(n-1))O(n-1)
r1(n)=∥(哟刁(”一1)+(1一∥(玎))①(玎)

AW(n)=rl(n)H(n)W(n-1)+a(n)aW(n一1)

W(n+1)=W(玎)+aW(n)
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的上限％5五厕I ，口(刀)的上限为0。50如果刖<1一碡或夕(少o·99，

一№g专斟乔落‰j．∞乃
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这里c=锄，=黝是组合矩阵，Var{J，》表示信号‘的方差。

在仿真实验中，取十个复值信号作为源信号，其中五个4-QAM信号，五个

8-PSK信号。每次仿真实验所用混合矩阵A=l呸『1的各元素为服从复高斯分布的随

机数，且有E{l％12}=1和E{嘞2)=o。激活函数取为f【y)=lJ，12Y。所有算法取同样
的初始分离矩阵矽(0)=0．00 11。

实验一：考虑在时不变环境下的两种情况：

(1)首先比较结合动量项的自然梯度算法(记作M-NG)和经典自然梯度算法

(记作NG)的性能。本例中动量项因子口分别取不同的值(口=0．2，0．35，0．5)。样本数

T=50000，块长B=10，在两个算法中步长都取r／=0．01。500次独立运行的平均

SIR性能曲线如图3．4所示它表明M-NG算法比NG算法有更快的收敛速度。动量

项因子口越大，算法收敛越快，但口太大则可能导致算法发散。另一方面，如果倪

取值太小，则会使动量项无法起到加快收敛速度的作用。因此对口取值需要收敛

速度和稳态性能之间折中。通常来说，动量项的取值范围为O．2≤口s O。5。

(2)当只有小样本的观测数据可用时，图3。4表明块处理的自然梯度算法无法

收敛，另一方面，当块长太小时(如B=1)，在多信源的情况下(如露≥lO)无法得到

好的分离性能。在这种情况下，Douglas等人131】在每次迭代中重复利用所有观测数

图3．4不同自然梯度算法经500独立运行的信干比均值图
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图3．5不同自然梯度算法在1000个样本B=T时经500独立运行的信干比均值图

据，这等价于在式(3．11)中令B=T，对应算法记为S-NG算法。为比较算法性能，

下面同时运行NG算法、M-NG算法和S-NG算法，这里步长77=0．3，样本数

T=1000。图3．5表明M．NG有较快的收敛性能，而三个算法的稳态精确性相同。

(3)为便于比较B=10时不同算法的分离性能，下面同时运行NG算法，M-NG

算法， SASS算法【28】和我们提出的自适应修正自然梯度算法(记为AI-NG)算法和

没有结合动量项的AI-NG算法(记为AI-NG-No-Mom)。在这五个算法中，

T=50000。每个算法的其它参数见表3．2。图3．6(a)表明AI-NG算法和

AI-NG-No．Morn算法的收敛速度和稳态精确性能明显优于其它三种算法，这也表

明文中提出的测度(式(3．20))有更好的性能。

为进一步表明自适应动量项在AI-NG算法中的作用，AI-NG算法和

AI-NG-No．Mom算法的平均性能差如图3．6(b)所示，这表明与自适应步长因子相

表3．2实验一第三种情况不同算法中所用参数

NG：巧=0．01．

M．NG：r／=0．01．口=0．5．

SASS：initial of r／is 0．1，∥=0．998，p=0．25．

AI-NG-No-Mom：initial of r／is 0．1，initial of∥is 0．9．
趾．NG：initial of卵is 0．1，initial of口is 0．5，

initial of口is 0．9．

雷达信号处理国家重点实验室



非平稳环境中的盲源分离算法研究

∞
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图3．6(a)：五个不同自然梯度算法经500独立运行的信干比均值图

图3．6(b)：AI-NG算法和AI-NG-No-Mom算法经500独立运行的平均性能差

比，自适应动量项因子对于／kI NG算法的分离性能起到一个辅助或次要的作用。

这是因为自适应动量项因子口伽)依赖于前一时刻的值①伽一1)，而自适应步长因子

则依赖于当前值。此外，根据第3．2．2节中的分析，在自然梯度中结合动量项可以

在学习过程中改善算法的稳定性。因此，自适应动量项对于AI-NG的性能有积极

作用。
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实验二：设瞬时混合的10个源信号中有5个幅度均为1的8-PSK，5个幅度

均为1旷的8-PSK。 其它参数的取值与实验一中第三种情况。分离性能曲线如图

3．7所示，表明NG算法和M-NG算法收敛较慢，分离性能也比较差，SASS算法

和AI-NO算法收敛性能相对较好，但AI-NG算法比SASS算法有更快的收敛速度

和更好的分离性能。

∞
3
筮
*
j磐

图3．7四个不同自然梯度算法经500独立运行的信干比均值图

实验三：为验证AI-NG算法在时变环境中的跟踪能力，我们在下面两种情况

下同时运行参数自适应调节的AI-NG算法和SASS算法进行比较。

， (1)假设在样本数T=100000的情况下，混合矩阵每隔25000个样本发生一次
， ．’、

突然变化，发生突变后的混合矩阵的元素同样服从复高斯分布，且有Ella；r I-l和
～。 7‘ J

EIa,2}-0。其余参数取值与实验一第三种情况相同，分离性能曲线如图3．8所示。
、 ’ ，

一 ．(2)假设在样本数T=50000的情况下，源信号功率隔25000个样本发生一次

突然变化。为方便起见，假设在发生突变前的10个源信号中有5个幅度为10巧的

4-QAM信号，5个幅度为1的8-PSK信号。在信号功率发生突变后，10个源信号

中有5个幅度为1的4-QAM信号，5个幅度为l的8-PSK信号。其余参数的取值

与实验一第三种情况相同，分离性能曲线如图3．9所示。

． 图3．8和图3．9表明本章提出的AI-NG算法在时变环境中有更好的跟踪能力。
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图3．8不同算法在混合矩阵发生突变时经500独立运行的信干比均值图

J．、

∞
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图3．9不同算法在信号功率发生突变时经500独立运行的信干比均值图

§3．3基于自然梯度和非线性主分量分析的块递归盲源分离算法

本节考虑两阶段的盲分离方法，即首先线性瞬时混合模型(3．1)中的观测向量用

矩阵V∈RⅣ枷作预白化处理，然后经自适应学习求得正交矩阵W∈RⅣxⅣ，把源信

号从经白化处理的观测数据中分离出来。因此，总体分离矩阵可记为B=胛。不

西安电子科技大学博士论文



第三章改进的自然梯度算法 49

失一般性，本节考虑M=N的情形。

白化矩阵y可以由离线或在线的方法近似计算12】，经预白化处理的观测向量

'，O)=溉(f)=胁O)=垂sO) (3．28)

的协方差矩阵为单位矩阵，即

E{v(Ov(t)r}=VR=Vr=VAilryr=笾r=， (3．29)

这里耍-VA为正交矩阵。
这样输出信号向量为

J，(f)=Bx(t)=Wv(t)=WVx(t) (3．30)

只需求出矩阵形即可分离出源信号，可以证明嘲，矩阵矽的最优解为

矿=PsQr． (3．31)

这里J为对角元素为±1的对角矩阵，易证矽为正交矩阵。

3．3．1递归最小二乘盲源分离算法

有很多准则可以用来确定正交矩阵形，下面采用非线性主分量分析准则p5】：

以(形p))=￡{l|l，◇)一W7’◇)g(乒y(f)l，(，))82} (3．32)

2ffcdpg(y)=[g(y,)，⋯，g(蜘)】2，g(·)为一非线性函数。

文献【19】提出了一种修正的最小二乘型准则，它用指数加权求和代替式$．32)

中均方误差的期望，用z(f)=g(∥O一1)l，(嘞近似代替g(∥(，)l，O))，得到

，(∥(f))=乏∥№)一形rⅢ吖 (3．33)

这里0<∥≤1是接近于1的遗忘因子。‘厂(形(嘞关于W(t)的梯度为

VJ(W(t))=E ft卜七{一z(尼)Vr(七)+z(忌)zr(后)形(f)} (3．34)
k=l

Ama一刁已经证明自然梯度学习比一般梯度学习更加有效，自然梯度已广泛应

用于盲源分离问题中。自然梯度豇(∥)和一般梯度va(w)的关系为

订(形)=形形rvJ(w)一W[VJ(W)]rW (3．35)

Zhu等人【20】把式(3．34)代入式(3．35)经简化后得到

亏73(Ve"(t))=EflH{一z(七)'，r(七)+y(七)zr(七)形(f)) (3．36)
k=l

并由此得出基于自然梯度的递归最小二乘盲源分离方法。文献【20】中递归型算法得

到形(f)在时刻f的最优值为
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一哪=[圭ff-ky(k)zr(k)y(k)z礁∥z(k)v砸)卜㈣(3．37)L Lk=1
％◇)= l l∑∥m r(七)I_圣‘10)罗(f)(3．
一 J j

其中西(f)二∑夕卜‘y(k)zr(妨，甲(f)=∑声卜‘z(k)vr(妨。用递归的形式可分别写成

咖(D=fl#(t--1)+y(t)Zf(f)，罗(f)=∥妒O一1)+Z(t)vT(t) (3．38)

3．3．2．块递归的自适应盲源分离算法

3．2．2．1矩阵方程的求解

下面从矩阵方程求解的观点来考察式(3．37)，乃乙(f)可以看成是矩阵方程

咖(f)形(r)=y(f) (3．39)

的解。为了讨论的方便，下面对式(3．39)的分析省略了时间指标r。

我们首先讨论矩阵方程

咖矽=y (3．40)

的求解问题，这里咖，形，妒均为Ⅳ阶方阵，且设西可逆。我们知道，在解线性方程

组或矩阵方程时要遵循的基本原则是应当尽可能避免直接求矩阵的逆f32】。

因此在我们的问题中，为避免在求解矩阵方程时直接求咖的逆，首先对圣作

QR分解

． 咖=鲫 (3．41)

这里Q为正交矩阵，盈为上三角矩阵。因为空为可逆矩阵，则置的对角线元素均

为正数。对应的矩阵方程(3．40)变为

她形=y (3．42)

这样在求解(3．42)时就可以充分利用对多作QR分解得到的Q为正交矩阵这一优

点，即Q～=Qr。对(3．40)两边同乘Q丁，且令f=Qry，得

．
RW=／-, (3．43)

即得到一个下三角矩阵方程。对于下三角线性方程组，可用回代方法【321求解，矩

阵方程的解法与之类似，但它是逐行求出矽。下三角矩阵方程的回代算法的伪代

码见表3．3。

拦帮’在表3．3中，W(k，：)表示矩阵∥的第七行，‰表示矩阵R的第U，七)个

表3．3回代算法的伪代码

W(n，：)=，(刀，：)／‰
for k=(以一1)：(一1)：1

啉十k卜，毫椰：，]卢
end
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元素。．

瑾=窄二；在回代算法中，在计算形的第七行时，由于％作分母，通常需要

判断其是否为零。如前所述，足的对角线元素均为正数，故可省略这一步骤。

3．3．2．2块递归实现

式(3．37)qb咖ljf)和y(f)可以递归计算，由上一节的分析对每个时刻f我们可以通

过两阶段的方法求矩阵方程的解形(f)而不需要直接求咖(r)的逆，这样的方法具有

更好的数值稳定性。如前所述，为更精确的估计出w(t)，下面采用按块更新矩阵、

逐块求解矩阵方程的块递归方法。把所用数据y(k)，z(七)和v(k)分别分成长度为

均为K的块，把得到数据块分别求出互相关矩阵，再逐块相加来实现垂(f)和y(f)按

块递归更新。为此把(3．37)中指数加权求和的形式修正为

矿∥卜r掌k=(r∑-1)K∥k飞幼? 岬，
f， ，，1 fK 、

⋯⋯7

矿◇，)-∑矿{专∑z(k)vr(惫)I
f：1 ＼A I爿r—I)K+I J

其按块递归的形式分别为

圣6(f’)

矿O’)

．B圣 (r，

O’

1)

1)

y(k)zr(七)
+1

(3．45)

z(k)vr(七)
+I

这里上标b表示圣(f)和甲(，)经由块递归计算，K表示每一小块的长度，为与时刻t

区别，这里用f7表示按块递归的时间指标，首先用求和近似计算各小块的互相关函

数，然后再对不同的小块用指数加权求和计算所有样本的互相关函数。若所处理

的数据样本为r，则相当于把丁个样本分成互不重叠的I丁／K l+1个小块(这里I．I

表示取下整数)，即，=1，⋯，l吖K l+l。此外，在第1叫K l+1个小块中，只有

rem(T，K)(表示r除以K的余数，它小于K)个样本，此时只需对这陀m(r，K)个
数据求互相关作为第1丁／K I+1个小块的互相关矩阵。这样可由矩阵方程

咖6◇’)形O’)=罗6◇7)，t’=l，⋯，l吖K I+1 (3．46)

按第3．3．2．1节中的方法递归得出最优正交矩阵形。。

3．3．3仿真实验

为验证所提算法的有效性，这里做了不同的仿真实验，第3．2节定义的信干比

(sIR)作为性能指标。在仿真实验中，我们使用文献[20yP的源信号：

s(t)=[sign(cos(2n'1 55t)，sin(2n'800t)，sin(27r300t+6 cos(2n'60t))，sin(2，r90t)，国(f)r
这里∞(D是在卜1，l】上服从均匀分布的随机信号．源信号的采样率为10概，源信号

雷达信号处理国家重点实验室
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与随机产生的方阵混合得到观测信号。

为表示的方便，把【19】中算法记为‘Pajunen’，[20】中算法记为‘Zhu’，本文所

提算法记为‘BR-BSS’。仿真中样本数T=4000，∥=0．983，形(0)=I，非线性函

数g(t)=tanh(t)。

在BR-BSS算法中，为取得快速收敛并保持好的分离性能，前500个样本取

K=1，块迭代次数为t7 500．从第501个样本起取K=10，块迭代次数为

f’=(r-500)／K=350。BR-BSS算法中块长K的取值越大，则算法运行一次所需时

间越少，但算法的自适应性会减弱，因此需要对算法的运算时间和自适应性能折

中。

三个算法按样本比较的平均性能指标见图3．10。Pajunenl拘算法是基于一般梯

度的递归算法，在本例中出现发散，而Zhu的算法和BR-BSS算法由于基于自然梯

度则不会发散。BR．BSS算法和Zhu的算法在前500次迭代的性能曲线基本重合，而

在500次迭代之后BR—BSS算法的串音误差小于Zhu的算法。三种算法平均运行一次

所需时间见表3．4，BR．BSS算法一次运行所需时间明显小于其它两种算法．Zhu的

算法采用时变遗忘因子可以加快收敛速度和增强稳态性能，但BR-BSS算法可以在

同时实现这两个优点的同时只需较少的运算时间，遗忘因子的选择相对简单。

表3．4三种算法运行一次所需平均时间

算法 Pajunen Zhu B10BSS

运行时间(秒) 0．484 0．437 0．156

图3．10不同递归算法500次独立运行的信干比均值图
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为了与同样的按块处理的越-NG算法的性能，下面同时运行BR-BSS算法和

AI-NG算’法，由于舭．NG算法中参数自适应控制，因此在行BR-BSS算法中使用时

变遗忘因子【201

艄={o．9艺”耽J}≯
这里艮-1，三=(趾-0．95)／10。4。
由图3．11可知，BR．BSS算法在初始迭代阶段收敛性能较快，但是稳态性能不

如AI-NG算法且一次运行所需时间大于AI-NG算法。

图3．1l不同块处理算法500次独立运行信干比均值图

由于递归学>-j的矩阵∥是正交矩阵，因此需要考察在递归过程中∥是否保

持正交性。同文献[31】，我们用如下代价函数来衡量W偏离正交矩阵的程度：

s=0≯唧r-AllF，这里彳=纰(≯唧r)表示由≯聊7’的对角元素构成的对角矩阵，

l|．1IF表示FrobeIlillS范数．如图3．12Ffi示，显然本文所提算法得到矩阵形的正交性
能指标较小，说明在BR-BSS算法中形在递归更新时更好的保持了正交性。

§3．4本章小结

本章首先提出了一种变步长变动量相因子的自适应修正的自然梯度算法。首

先，在后向传播(BP)算法的启发下，我们在自然梯度的学习过程中引入动量项以

加快收敛速度，同时改善自然梯度算法的稳定性。然后，在分离模型中引入一个

雷达信号处理国家重点实验室
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迭代次数

图3．12不同算法500次独立运行矩阵形的正交性能均值图

合适的测度函数来控制步长和动量项因子，由此得到的变步长和变动量项因子的

自然梯度算法非常适合解决时变环境(例如混合矩阵突变或信号功率突变)下的

盲源分离问题。对不同自然梯度的性能进行了详细的比较，实验表明与经典的自

然梯度算法和其它改进的自然梯度算法相比，即使在信源个数很多的情况下，自

适应修正的自然梯度算法有更快的收敛速度和更好的稳态精确性，当混合矩阵突

变或信号功率突变时自适应修正的自然梯度算法依然有较好的跟踪能力。随后又

提出一种按块递归的盲源分离方法，基于结合自然梯度和非线性主分量分析得到

所求正交矩阵的最优解的方法，我们按块更新矩阵方程，且对其逐块求解来解决

盲分离问题。在求解矩阵方程时利用QR分解和回代算法避免了直接求逆矩阵的

运算，因此所提算法具有较好的数值稳定性，在迭代过程中保持了所求矩阵的正

交特性。
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第四章基于变遗忘因子递归广义特征分解的盲源分离算法

§4．1引言

盲源分离在语音、无线通信，图像，雷达和声纳以及医学信号处理等诸多领

域具有广阔的应用前景Ll刮。为便于通过数字信号处理器实现这些应用，通常需要

利用在线学习的盲盲源分离算法，人们也已经针对不同的盲源分离问题提出了大

量的在线学习算法B-TI。

基于广义特征分解(GED)【8-9】的盲源分离方法【10‘121是一种简单而有效的盲分离

方法，它利用源信号的特性，如非白性、非高斯性或非平稳性，由混合信号的二

阶或四阶统计量构造相应的矩阵束，所构造矩阵束的广义特征向量矩阵即为待求

的分离矩阵。为实现广义特征分解方法的在线处理，Rao等人【13】提出了递归广义

特征分解快速算法。基于递归广义特征分解的盲源分离方法f14-161已经被用以改善

算法的收敛速度和跟踪性能，该文中分别推导了基于非白、非高斯和非平稳源信

号的递归算法，仿真实验表明所提递归算法具有快速和稳定的收敛性能，且适用

于信道缓慢变化，即慢变混合矩阵的情形。但是文献【16】中没有涉及混合矩阵突变

时算法跟踪性能的研究，显然利用常数遗忘因子的递归算法不适用于跟踪突变的

环境，而利用时变遗忘因子的递归算法来跟踪时变的环境通常能在快速收敛的同

时得到更为精确的稳态性能。对于基于随机梯度的盲源分离算法，利用激活函数

设计代价函数来自适应调节学习率可以加快算法的收敛并提高跟踪性能【17-18】。而

对于基于广义特征分解的盲源分离方法而言，一方面无需选择激活函数是它的优

点，因为激活函数的选择通常与信号的特性(如超高斯，欠高斯)有关，从而影响

对应算法的普遍适用型；另一方面则无法根据激活函数设计代价函数来自适应调

节遗忘因子。此外，在文献【16】中观测数据的协方差矩阵和它的逆矩阵的递归估计

必须分别经由该文中更新公式(27)和定点算法(30)实现，即同时使用两个独立的更

新方程来估计测数据的协方差矩阵及其逆矩阵。这种递归方式将会导致出现数值

误差，无法保证估计的协方差矩阵及其逆矩阵的乘积是单位矩阵，在仿真实验中

必须对协方差矩阵及其逆矩阵进行合适的初始化以避免算法发散。但是初始化通

常需要根据所处理数据和反复实验选择，因此文献[14．16]qb的递归方式有待于进

一一步改进。

本章提出一种基于在线决策规则的时变遗忘因子递归广义特征分解方法实现

非白源混迭的盲分离。首先给出～种新的协方差矩阵的逆矩阵和时延相关矩阵乘

积的递归更新方程，且具有较低的计算复杂度，广义特征向量经由近似幂迭代法

和压缩处理方法在线实现，得到的在线算法可以避免同时估计协方差矩阵及其逆

雷达信号处理国家重点实验室
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矩阵。为进一步跟踪混合矩阵的突然变化，我们提出一种新颖的基于广义特征向

量关于协方差矩阵正交化的在线决策规则，可以判定混合矩阵突变是否突变，当

混迭矩阵被判定为发生突变时，然后利用变遗忘因子的递归广义特征分解算法改

善在线盲源分离算法性能，既能获得较好的跟踪能力又能得到精确的稳态性能。

§4．_2基于广义特征分解的盲源分离算法

用M个传感器阵列接收Ⅳ个统计独立的源信号s(f)=[^(f),82(f)，6·m 9如(f)]2，

其线性瞬时混合情形可建模为

x(O弓As(t) (4．1)

这里x(f)=[五(f)，而(f)，⋯，嘞(f)了是阵列观测向量，A=[aa，⋯，‰】∈．Ⅱ∥。Ⅳ(M≥聊

列满秩的未知混合矩阵。不失一般性，下面均考虑M=N的情形。

盲源分离的目的是用矩阵W∈RⅣ州从观测信号x(f)中恢复源信号s(f)，以使

输出向量

J，(f)=W1xO)(4．2)

为源信号的拷贝。若不考虑排列和尺度的不确定性，则有形7’=4-1是最优分离矩

阵。

由文献【12】中分析可知，求分离矩阵的过程可转化为求解两个协方差矩阵的广

义特征分解问题。根据源信号特性的不同(如非平稳源，非高斯源，非白源)，协

方差矩阵的选择有所不同。本章针对非白平稳源信号，下面给出详细的推导。

观测信号的时延分别为0和Jr的两个协方差矩阵为

R。=E{工o)xo)r)=4E{s9)so)r)4r=444r (4．3)

R7=E{x(f净o+f)r)=4E{s(r)so+f)0彳r=AA；Ar (4．4)

其中E{．}表示数学期望。由于假设源信相互统计独立，故群和4皆为对角矩阵。

在实际计算中为满足矩阵的对称性要求，用盈f=R7+R7)r)／2代替F，则有
俞=以∥ (4．5)

这里鸳是对角矩阵。
用矩阵W分别右乘(4．3)、(4．5)两个等式的两边，得到

RoW=4群4rW，盈7W=444rW (4．6)

由于群是源信号的自相关矩阵，故可逆，则由(4．6)可得
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孟rW：RoWA (4．7)

其中4=(群)’1 4为对角矩阵。这样构成一个广义特征方程，即矩阵束(素f，R。)的
广义特征值为对角矩阵彳的对角元，对应的广义特征向量矩阵为分离矩阵的转置

矩阵。因此求分离矩阵的问题就转化为求矩阵束f交f，R01的广义特征向量矩阵。进

一步，式(4．7)中Ro为对称正定矩阵，故可逆，因此式(4．7)可写为

D全(掣1川盈7=WAWr (4．8)

即矩阵D的特征向量矩阵形为分离矩阵的转置矩阵。求解特征值问题时，只要特

征值和和其对应的特征向量在矩阵彳和矽中位置相对应，就能确保式(4．8)成立。

因此求出的特征向量矩阵矿存在排列和尺度的不确定性，从而导致分离出的源信

号之间也有排列和尺度的不确定性。

广义特征值分解的基本性质【8,91如y：设矩阵R和Q都是NxN的实对称矩阵，

且冠是正定矩阵，那么矩阵柬(Q，R)有实的广义特征值乃，i=1，．．．，N，对应有“R．

正交化"的广义特征向量

嚣R2w等^J郇，．．删N ㈤，
w： ，=磊，f，∈{1，．．．，}

、。

这里磊是Kronecker delta函数。易证广义特征向量也具有“Q一正交化”性质：

一Qwj=五岛，f，，∈{1，．．．，N} (4．10)

对于盲源分离问题来说，对由观测向量的二阶和四阶统计量构成的矩阵束进行同

时(联合)对角化就等价于广义特征值问题的求解，矩阵束的广义特征向量构成的矩

阵即为所求分离矩阵。

§4．3递归广义特征分解的盲源分离算法

4．3．1递归更新

为满足实际应用的需要通常需对观测数据进行自适应在线处理，以获得精确

的跟踪能力。为此本章用指数加权求和代替式(4．3)、(4．4)中相关函数的数学期望，

即用观测信号的指数加权求和来估计相关函数：

Rou)=∑∥x(i)xr(f) (4．s1)
f≈l

盍7(f)=∑∥(x(咖r(i-r)+x(i-r)xr(f))／2 (4．12)
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这里∥为遗忘因子，通常取小于但趋于1的数。

把式(4．11)、(4．12)写成递归的形式如下：

Ro(D=pRoO一1)+工O)xr(D

岔(r)=砸70一1)I(二(f)，o—f)+x(『一r)，o))／2

令P(r)=R。(f)r1，由矩阵求逆引理‘191得到P(f)递归形式为

这里QO)=

(4．13)

(4．14)

删=万1聊-1)一吉舛)m)川)ⅥH) (4．15)

P(t-1)

fl+x(t)7P(t一1)x(t)

由式(4．8)、(4．14)和．(4。15)， 可以递归地求出

D(，)=D(t-1)+

[(P(，)螂)，(卜力+P(f)x(∽)，(，))／2一Q(嗍)x(f)f D(f一1)](4·1
6’

由式(4．8)可知，矩阵D的特征向量矩阵对应于分离矩阵，这样递归求矩阵束

(盈7(f)，R。(f))的广义特征向量的问题就转化为递归求解矩阵D(r)的特征向量。

4．3．2近似幂迭代方法

现在考虑在递归更新矩阵D(f)的同时求其特征向量以实现盲源分离。求给定

矩阵的特征向量可根据实际问题的需要选择不同的方法。本章中对信源的平稳性

假设意味着对于固定的时延f，当t的值很大时Q(f)是确定的矩阵。根据文献【20】，

当t的值很大时协方差矩阵的逆阵P(t)具有近似确定(或近似平稳)的特点。故而

D(t)=P(t)Q(t)对于固定的时延和大的f值也是近似确定的。因此为实现在线处理

以及出于算法复杂度的考虑，且避免同时用不同的更新方程估计协方差矩阵R(t)

及其逆矩阵P(f)。我们这里对D(f)使用近似幂迭代方法，或称为自然幂迭代方法【21】

瞄=描：，t=l∥2．． ㈣
I，．，◇)='，o)／0('，o)ll：， ，，⋯

r“u

这里lI．1l：表示向量的Euclidean范数。式(4．17)表示递归估计Do)的最大特征值对应

的特征向量，即对DO)每更新一次，同时利用幂迭代法对DO)迭代一次，直到算

法收敛。
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Hua等人【21】中证明了自然幂迭代法具有全局和指数收敛性能。这是自然幂迭

代法与其它方法相比最大的优点。此外，由于本章中矩阵D(t)的特征向量需要逐

个估计，因此Dq)的近似平稳特性对于有效利用自然幂迭代方法是至关重要的。

下面考虑运算量，近似幂迭代方法(4．17)需要fⅣ2+2N)N次运算，而在文献

【16】中对菲白源信号的递归盲源分离算法(记为RBSS-NW)中的迭代规则需要

f3N2+3N+I)N次运算。显然，本文所用迭代法的运算量小于对应于RBSS-NW

算法中的运算量，特别是当Ⅳ的取值较大时。此外如前所述，近似幂迭代法可以

避免同时估计协方差矩阵墨和它的逆阵P。

4．3．3压缩处理

下面对D(t)进行压缩处理，以便估计D(t)的其余特征向量。

为清楚地说明压缩过程，把科(f)、孟7(f)和Dljf)分别记为辟(，)、廓(，)和q◇)，

q(r)的最大特征值对应的特征向量记为嵋(f)，则经七一1次压缩后得到矩阵记为

麟(f)、癣(f)和风(f)，其对应的特征向量记为wAt)。

由压缩处理规则‘”1，对于癣(f)，令如胜沪等瓣 ㈣
峨∽《【f)岷㈣

对于霹(D，令戢。(D=肆(f)，则有

耳+。(f)=只(f) (4．19)

由式(4．8)、(4．18)和(4．19)有¨M沪≈辫 (4．20)

由式(4．20)可得

f4+1(t)wAt)=o，
【4qO)叶O)=乃O)～(f)，／≠k

从上式可知把4∞压缩为AH∞的过程就是把已求出的对应于吮0)的特征值置

零，而其余的特征值和它们对应的特征向量保持不变，即压缩过程使得4(，)的最

大特征值为零，除此之外见(f)和皿+。(f)具有相同的非零广义特征对。这样经过对

然后皿(O压缩处理后再用近似幂迭代法求眈+，(f)的最大特征值对应的特征向量，

依次类推，经万一1步后就可以依次估计出D(f)所有特征向量。
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组合式(4．16)、(4．17)和(4．24)即可得到～种新的基于递归广义特征分解的盲源

分离算法，该方法可视为RBSS-NW算法的改进算法。为方便且与RBSS-NW算法

区别，上述利用常数遗忘因子的本节所提基于递归广义特征分解的盲源分离算法

简记为CFF．RGED。显然，CFF．RGED方法的收敛速率取决于近似幂迭代方法。

§4．4混合矩阵突变时基于时变遗忘因子的递归盲源分离算法

在时变环境中合理选择遗忘因子对于递归算法的收敛性能是至关重要的，常

数遗忘因子限制了算法的收敛性能，且跟踪性能较差。通常需要利用有效代价函

数自适应调节遗忘因子。下面我们提出一种在线决策规则来跟踪混合矩阵的突然

变化，同时结合时变遗忘因子来改善第4．3节中递归算法的跟踪性能。

4．4．1时交遗忘因子

当混合矩阵不发生变化时，如下的时变遗忘因子f22J

‘

胁{o．9艺～一x?≯ ㈣
对于获得快速收敛性能和好的稳态精确性是一个简单而有效的选择，这里

0．95<／臼max≤1，L=(儿-0．95)／lo-4。但是这样的时变遗忘因子在夕ljf)已经增加
到玩牡后，混合矩阵发生突变时就相当于常数遗忘因子，跟踪性能较差。事实上，

在盲源分离问题中，发生突变的时刻通常是未知的，因此无法直接利用该遗忘因

子改善算法的跟踪性能。

为验证本节下面提出的时变遗忘因子递归盲源分离算法在混合矩阵发生突变

时的跟踪性能。这里把混合矩阵发生突变的时刻t’已知时，上节所提基于递归广义

特征分解的盲源分离方法结合式(4．21)中的时变遗忘因子作为一个参考算法，记为

VFF．RGED．Ref,这样在ⅦF．RGED．Ref算法中，对应于式(4．21)的遗忘因子可以表

示成

届三{0．95“2。7。1x竺J}≯“ ㈣
其中，表示混合矩阵发生突变的时刻。本节假设混合矩阵发生相邻两次突变的时间

间隔L’大于式(4．22)中L的值。因为即使儿取最大值，即儿=1，对应于三的最
大值为500，因此上述假设可以视为一个合理的假设。而在所有时刻混合矩阵都发
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生剧烈动态变化的情况则不在本章考虑范围之内。

4．4．2在线决策规则

在盲源分离问题中，发生突变的时刻f’通常是未知的，而上节所提基于递归广

义特征分解的盲源分离方法并没有利用激活函数，因此也不能象第三章中那样利

用激活函数控制时变参数。为此下面利用广义特征向量本身的“Q．正交化"特性

来提出在线决策规则以跟踪混合矩阵的突然变化，需要指出的是这里无需使用混

合矩阵的额外的先验信息。需要注意的是这里没有利用“冠一正交化”特性是为了

避免同时更新协方差矩阵欠(f)和它的逆阵P(f)。

为减小计算量，且提高决策规则对于混合矩阵变化的敏感性。下面只利用主

广义特征向量M和峨来设计代价函数。广义特征向量嵋和％之间在不同时刻的

“Q．正交化”可用如下表达式

勺(f)=(1嵋。一p)Q(，)嵋(f)l+l矸。一p)Q(r)屹(r)1)／2，p=1，．．．，P (4．23)

来衡量，这里屹(f)和峨O—p)，k=l，2，p=l，．．．，P分别表示主广义特征向量峨的当

前时刻和过去时刻的估计量。用向量的形式可表示为

cp)=【cl(，)，乞(，)，⋯，勺∽】(4．24)

由于在式(4．16)qb D(f)的值随随着每次样本更新的变化而变化，且在式(4．17)

中用近似幂迭代方法来估计D(f)的特征向量，因此即使混合矩阵不变且已获得良

好的分离性能的情况下，相邻时刻的估计的特征向量间也有差异。因此，c(f)的分

量的最大值和最小值之间的差异也是明显的。

另一方面，当混合矩阵在某一时刻f’发生突然变化后，由于估计的特征向量不

再是混合矩阵没发生变化时矩阵束的好的估计量，因此广义特征向量的当前时刻

估计量哆O’)和过去时刻估计量w，07一pⅪ≠元P=1，．．。，P)之间的“Q一正交化"特

性就会失效，仿真结果表明当混合矩阵发生突变时c(f)的分量的最大值和最小值之

间的差异变得非常之小。换句话说，c(f)的分量的最大值和最小值的差异大小可以

用来判定混合矩阵是否发生突变，因此，定义如下比值oF,=司‰(4．25)2面币两≤螽丽 ’

作为代价函数来表明混合矩阵的变化情况，这里ⅡlaX(c(f))和Inin(cO))分别表示

c(f)的分量的最大值和最小值，显然，当ma)【(c(f))和nliIl(c(D)的差值很小时，q
接近于O．5。如仿真实验中图4．3所示，当混合矩阵不发生突变时CF,的在区间
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【o．8，1)内，而当混合矩阵发生突变时cZ的在匿间(o．5，0．6】内。
下面用假设日。和玩分别表示混合矩阵发生和没有发生突然变化。设y为·适

当的门限值，则在线决策规则为

Ho

CE之7 (4．26)

H≯

即当c5<y时，判定混合矩阵发生突然变化，否则判定混合矩阵没有发生突变。

一旦混合矩阵在时刻f’被判定为发生突变，就可从时刻f’+1开始在上节所提基

于递归广义特征分解的盲源分离算法中用式(4．22),9的时变遗忘因子来实施跟踪。

这里把上节所提基于递归广义特征分解的盲源分离法，时变遗忘因子(4．22)和在线

决策规则(4．26)相结合得到的在线跟踪算法记为VFF．RGED．DR，它可用以改善

CFF．RGED算法的跟踪性能。需要注意的是在VFF．RGED．DR算法中，混合矩阵发

生突变时刻t’是经过在线决策规N(4．26)判定的，由于样本更新的累积效应，所判

定的混合矩阵突变时Nt’可能比混合矩阵真正发生突变的时刻有所延迟，仿真实验

中图4．6也证实了这一点。

在L’>L的假设下，一旦日。在时刻f’为真，即混合矩阵被判定为发生突变，

那么在区间(f7+1，f’+￡】中混合矩阵则不会发生再次突变，即在区间(f’+l，f’+三】中

Ho为真，因此在(，+1，，’+三】中无需再计算cE的值。只在(，+1，t’+工】中用时变遗
忘因子(4．22)来跟踪发生突变后的混合矩阵。当，=，+上+l时，重新开始计算CE的

值用以判定混合矩阵是否再次发生突变。

此外，为了评估所提在线决策规贝Jl(4．26)的性能，下面引入正确判决混合矩阵突

变的概率

只=≤筹 (4．27)‘口 定骀．菔治舯 V⋯7

当圪的值越大，表明在线决策规贝JJ(4．26)越有效。

关于向量c(f)，参数趾和C巧，有如下注释：
荭释—2本节中c(f)的取值对于判定混合矩阵是否发生突变是至关重要的。由

于压缩处理所致的误差累积使得所提RGED算法中估计的特征向量的精确性依次

降低。与利用所有特征向量设计代价函数相比，我们这里只利用主特征向量嵋(，)和

鸩(f)来设计代价函数对混合矩阵的变化情况更为敏感，从而具有更为有效的跟踪

能力，此外也具有较小的计算复杂度。

蛀稃l二：在时变遗忘因子(4．22),9，儿的值对于VFF-RGED—DR算法的稳态
分离性能有很大影响。魅的值越大，则稳态精确性越好，然而，当k的值太大，
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如雎=1时，VFF．RGED—DR算法虽然能得到较好的分离性能，但是如果混合矩
阵发生缓巨变化，此时，VFF-RGED-DR算法的跟踪性能则会交差。因此为使所提

算法更具普遍性，应使k的值小于1。
荭稃兰：我们使用如下方法在仿真实验中利用式(4．25)$11式(4．26)判别混合矩阵

是否发生突变。在区间【l，三】中令CF,=‰，这里‰是大于7的常数。当尹>L时，
开始计算根据式(4。25)计算CZ的值并利用式(4．26)作出判决，一旦Hp在某一时刻f’

为真，在，7+1开始利用式(4．22)跟踪混合矩阵的突变，又因为在混合矩阵发生突变

后，在L’>三的假设下在区间(f’+l，t7+三)内也为真，因此可以停止计算CF,，可

将其设为cE=‰，这里‰为某一接近于1的常数。当f=，+互时，重新开始式
(4．25)计算CF,的值并利用式(4．26)作出判决。这样在递归过程中CF,取值为如下分

段函数

讧：I max(e(t))丽，f≤f’或纠’“． ㈣)讧= (c(f))’⋯一～⋯． (4．28)

l，7■一， {≤f≤L和t’<tt t≤f，+三【，7m瓠， -王s f s 利’<sf。+L

§4．5仿真实验

在本节中，我们用仿真实验来验证所提算法的有效性。我们考虑分离ICALAB

工具箱中【ll@．M3i07．mat文件包含的四个典型的生物信号而，．．．，＆，信号曲线如图4．1

所示。在下面的不同算法中，取彳=I。所提算法的分离性能由平均信干比

(SIR)(dB)[20,301来衡量，这里Sm的值越大，说明算法的性能越好。

5
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图4．1仿真实验中所用源信号波形
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实验一：．为便于比较，我们同时运行文献【17】中的RBSS-NW算法和我们提出

的CFF-RGED算法和基于变遗忘因子(12)的RGED算法。混合矩阵A的各元素为在

卜1，l】区间服从均匀分布的随机数。三个算法的初始分离矩阵的列向量均为由随机

产生的单位列向量，遗忘因子分别等于0．996和1。矩阵Q和P被分别初始化为万J和

万-1J。在RBSS-NW算法中皿的初始化矩阵为甜。令万=104，对三种算法均由1000

次蒙特卡罗实验得到算法的平均性能。

图4．2表明这两种算法对于相同的遗忘因子有几乎相同的性能曲线。此外，在

初始迭代阶段，对于同一算法即使遗忘因子不同也可得到大致相同的收敛速率。

这是因为本文所提算法中近似幂迭代方法和RBSS-NW算法中定点算法对于收敛

速度有重要作用。∥=1能得到比∥=0．996更好的稳态精确性能。一然而，由于用两

个独立的方程来更新盈(f)和P(f)，如果取不到合适的初始化参数占，RBSS-NW算

法有潜在的失败风险。在我们的试验中如果令万=1，则每运行1000次RBSS-NW算

法，有大致4．5次算法会出现发散的情况，而我们所提的算法则不会出现这种情况，

这是由于本文算法避免了同时更新足(f)和P(r)，且更新公式相对简单，计算复杂

度低。因此本文所提CFF．RGED算法进一步该进了RBSS-NW算法。

∞
3

墨
啦
妲

图4．2两种递归算法对于不同常数遗忘因子1000次平均的信干比均值图

实验二：下面我们考虑盲源分离问题中混合矩阵发生的突然变化的情况。混

合矩阵4的各元素为在卜1，1】区间服从均匀分布的随机数且每隔2500个样本发生

一次突然变化。用判决混合矩阵突变的正确的概率只来评估所提在线决策规则

(4．26)的性能。VFF．RGED—DR算法中矩阵Q，P及初始分离矩阵的初始化与实验

一中的CFF．RGED算法中参数的初始化相同。在VFF．RGED．DR算法中，取P=10，
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图4．3混合矩阵发生突变时正确判决概率￡一门限，，性能指标图

1，1

1
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m4．4混合矩阵发生突变的情况下CE在l ooo次实验中的值

儿=1，‰=1。vFF·RGED-DR算法对不同的门限y运行1000次蒙特卡罗实验。
图4．3中画出了对应于门限值7的概率值艺，它表明在区间『o．7，o．811正确判决

混合矩阵发生突变的概率只≥0．95。图4．4给出了当7=O．75时一次实验在线估计的

CE的值，除了算法初始收敛阶段和混合矩阵发生突变后的时间间隔工外，混合矩

阵不发生突变时CF,的值都大于0．8而在混合矩阵发生突变后CF随之变为0．58。虽

然每次实验的结果不尽相同，但可以说明式(4．24)中c(f)的分量最大值与最小值在

混合矩阵发生突变时近似相同，在混合矩阵不发生突变时差异较大。从而表明所
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提在线决策规则的有效性。 图4．3和图4．4表明本文所提出的在线决策准则能够有

效跟踪混合矩阵的突然变化。

实验三：为进一步表明所提算法的跟踪能力，我们比较Ⅵ7F．RGED-DR算法、

ⅦF-RGED-Ref算法和CFF．RGED算法在混合矩阵发生突变时的跟踪能力。对于

CFF．RGED算法，常数遗忘因子∥分别取0．996和1。其它参数同实验一。

VFF．RGED．Re蹲法中的参数除变遗忘因子外其余参数同实验一中的CFF．RGED

算法参数的取值。在变遗忘因子(式(4．22))中，刀|麟=1。对于VFF—RGED-DR算法，

参数同实验二中所用的参数。对三个算法均运行1000次蒙特卡罗实验，图4．5给出

了当混合矩阵发生突变时三种算法的平均性能曲线，表明CFF．RGED算法在∥=1

没有跟踪能力，而在p=0．996时具有跟踪能力，但跟踪能力依然较差，而

V】阡一RGED．DR算法由于能检测到混合矩阵的突变时刻，从而可以利用变遗忘因子

实现快速跟踪并可得到较好的稳态精确性。图4．5和图4．6表明VFF．RGED．DR的算

法性能趋于VFF．RGED．Ref算法的性能，两者性能差异如图4．6所示，在混合矩阵发

生突变后的短时间内，VFF．RGED．Ref算法的性能优于VFF．RGED．DR算法，这是

由于样本更新的累积效应，所判定的混合矩阵突变时刻，可能比混合矩阵真正发生

突变的时刻有所延迟，因此性能分离相应略差，之后则趋于相同。图4．5和图4．6表

明VFF．RGED．DR算法适合于盲源分离问题中混合矩阵发生突然变化的情况，并对

需要在线处理的盲分离任务有潜在的应用。混合矩阵发生突变时在线提取的信号

如图4．7所示。

迭代次数

图4．5三种递归算法在混合矩阵突变的情况下1000次平均的信干比均值图
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∞
3
删
嫠
掣

迭代次数

图4．6 VFF-RGED—DR算法与VFF-RGED-Ref算法之间的信干比性能差
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图4．7混合矩阵突变的情况下在线提取出的信号

§4．6本章小结

针对盲源分离问题中混合矩阵发生突变的情况，本章提出一种基于时变遗忘

因子递归广义特征分解的盲源分离算法。已有递归广义特征分解算法且在递归过

程中利用不同的公式同时在线估计协方差矩阵及其逆矩阵，容易导致数值误差，
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算法的性能对初始分离矩阵的取值比较敏感，易导致算法发散，缺乏应用的普遍

性。此外，已有递归广义特征分解算法基于常数遗忘因子，在混合矩阵发生突变

时跟踪能力较差，有待进一步改进。

本章首先给出一种协方差矩阵的逆矩阵和互相关矩阵乘积的递归更新方程，

且具有较低的计算复杂度，广义特征向量经由近似幂迭代法和压缩映象方法在线

实现，得到的在线算法可以避免同时估计协方差矩阵及其逆矩阵。为跟踪混合矩

阵的突然变化，我们提出一种新颖的基于广义特征向量的“Q．正交化”特性的在

线决策规则，可以判别混合矩阵是否发生突变，从而利用变遗忘因子的递归广义

特征分解算法改善在线盲源分离算法性能，既能获得较好的跟踪能力又能得到精

确的稳态性能。
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第五章数目未知的语音信号瞬时混合的

盲分离与信源数目检测算法

§5．1引言

对于盲源分离问题及其在不同领域的应用，人们已提出了很多算法fl-2]。在语

音处理中盲源分离技术的一个典型应用是“鸡尾酒会”问题，即在多人同时说话

的情况下，把混杂在其中的一个或几个人的声音提取或分离出来皂在实际环境中，

由于混响的存在，接收到的信号通常为源信号的延迟和滤波信号。这种情况下的

混合方式可用卷积混合近模型近似。卷积混合盲语音分离问题已经引起了广泛的

兴趣13圳，主要处理方法可分为时域方法和频域方法，但是时域方法通常需要很大

的计算量15J，频域方法则存在频率置换问题睁10】。由于麦克风阵列中不同麦克风接

收信号时存在时延，瞬时混合的盲源分离方法通常不适用于分离麦克风阵列接收

信号。但是当麦克风阵列中的麦克风位置近似相同，且对不同的方向有不同的增

益，源信号的卷积混合可用瞬时模型来近似【l卜13】。因此对于瞬时混合的如语音信

号的盲分离具有研究意义和实用价值。

源信号的非平稳特性对于解决盲源分离问题是非常有用的信息，Matsuoka等

人1141基于神经网络提出了适用于非平稳过程的盲分离方法。利用语音信号的短时

平稳特性，Choi等人【t5-16]对经过预白化处理的观测信号通过不同的时间滑窗得到

多个不同时刻、不同时延的相关矩阵，这些相关矩阵利用近似联合对角化方法【l 7】

估计混合矩阵。Pham等Atl8l利用多个正定矩阵的近似联合对角化方法提出了非平

稳源瞬时混合的盲分离方法。Ying等人【19】利用非白和非平稳特性，提出了基于解

相关的代价函数，并分别给出了批处理算法和在线算法。此外基于广义特征分解

的盲源分离方法【20-22]是一种有效的盲分离方法，它利用源信号的特性，如非平稳

性，非自或非高斯性，由观测数据构造不同的矩阵束，所构造矩阵束的广义特征

矩阵即为所求分离矩阵。对于非平稳信号，其相关矩阵是时变的，因此对观测信

号的在线处理可以更好的反映其时变特性。

已有研究大多假设源信号数目是预先知道的，从而采用的分离矩阵行数等于

信源数目，而实际中源信号的数目往往是未知的，甚至是随实际情况动态变化的，

由于欠定盲信号分离只能成功分离部分源信号123-241，因此我们本章主要研究语音

信号数目未知的超定盲信号分离。Ye等人【25】研究了信源数目未知与变化时的盲信

号分离方法。但是针对数目未知的语音信号瞬时混合盲分离的研究尚不多见。

对于信源数目已知时语音信号瞬时混合盲分离的算法已有较为成熟的研究，
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但大都不能适用于信源数目未知的盲分离问题，无法分离出所有的源信号，虽然

盲提取算法可以逐个提取源信号，并通过一定的判决准则，确定是否把所有的信

号提取出来，但是大多的盲提取算法在提取出一个源信号后需要对数据作压缩处

理，把已提取出的信号的信息从混合信号或所用相关矩阵中消去，这样逐个提取

的过程会产生误差累积，导致所提取信号的质量依次降低，在信源数目较多的情．

况下甚至无法提取出个别信源。

本章充分利用人类发音的特点和语音信号的非平稳特性，对于数目未知的语

音信号瞬时混的盲分离问题，通过对在线估计的广义特征向量进行聚类处理，在

实现信号数目检测的同时完成信号的盲分离，并可克服盲提取问题中先提取出的

信源性能好而后提取出的信源性能差的缺点。虽然Pokharel等人126】提出了基于递

归广义特征分解的非平稳源的盲分离方法，并以语音信号为例研究了在信道(即混

合矩阵)慢变情况下的盲分离问题，但该文在仿真试验中只用了2000个样本，无

法真实体现语音信号的非平稳特性，以语音信号的采样率为16 KHz为例，如果录

制一段时间长度为3秒的对话，则相应有48000个样本。由于人类对话交流的特

点，说话人在说一句话时在词或词组间可能会有停顿，也可能在一定的时间间隔

内保持沉默，那么在多个说话人同时说话的情况下(经典的“鸡尾酒会问题”)，

当构成矩阵束的两个协方差矩阵的的时延较大时，在线估计的对应的最大广义特

征值的广义特征向量，是随着实际语音环境的变化而变化，并不对应于特定的说

话入，而是对应不同说话人，这样提取出的信号中不同的时间间隔内对应着不同

的说话人，如果实际语音环境的动态变化较大，则分离出信号听起来只是无法辨

别的“噪音"。

但也正是语音信号的上述特性给我们解决数目未知的语音信号盲分离问题提

供了一种新的解决思路，由于所用近似幂迭代方法的快速收敛特性，在线估计的

最大广义特征值对应的广义特征向量在某些时间间隔内能得到很好的估计性能，

且对应于某一个说话人。在线估计的最大特征值对应的特征向量在某些时间间隔

内能得到很好的估计性能，这样在某个区间内估计的特征向量就可以有效的提取

出一个源信号。那么对于每个说话人都会在某个或某些时间间隔内有在线估计的

广义特征向量与之相对应，这样如果我们能够得到所有不同的广义特征向量，则

可以确定信源的数目并利用得到的广义特征向量提取出所有的源信号。为此本节

利用向量的相似度和广义特征分解的特性提出有效的代价函数，并利用提取‘‘高

分离度区间集"和对“高分离度区间集’’中估计的广义特征向量迭代聚类的方法，

在完成信源数目的检测的同时实现源信号的盲分离。

西安电子科技大学博士论文
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§5．2基于广义特征分解的非平稳信号的盲提取算法．

5．2．1非平稳信号构成矩阵柬的广义特征分解

用M个传感器阵列接收Ⅳ个统计独立的源信号墨(r)=l(，)，如(，)，⋯，如(，)]2，

其线性瞬时混合情形可建模为

x(D=As(t) (5．1)

这里x(f)=[而(f)，吻(r)，⋯，嘞(f)]7是阵列观测向量，tl=[al，-一，％】∈∥州(M≥Ⅳ)

列满秩的未知混合矩阵。

盲源分离的目的是用分离矩阵从观测信号x(t)中恢复源信号s(f)，以使输出向
且里

y(t)=Wrx(t) (5．2)

作为源信号的拷贝，这里W e RⅣ洲。若不考虑排列和尺度的不确定性，则有

形r=A一是最优分离矩阵。

由文献[21]中分析可知，求分离矩阵的过程可转化为求解两个协方差矩阵的

广义特征分解问题。根据源信号特性的不同(如非平稳源，非高斯源，非白源)，

协方差矩阵的选择有所不同，

本章考虑的语音信号为非平稳信号，则观测信号的协方差矩阵

疋o)=E{xo)x(f)r)=么E{s(f沁o)r)4r=4Eo)4r 15．3)

随时间r的变化而变化，由假设源信号相互统计独立，故墨∞为对角矩阵。

我们选择两个不同时刻矗，t2，则

，，：!。他(‘■ (5．4)
母(f2)=饯心)∥

用矩阵矿分别右乘式(5．4)中两个等式的两边，得到

g,(tO形=他(f1)∥形
(5．5)

’

疋(tOw=AIR,(t2)Ar形
、7

由于墨心)是源信号的自相关函数，故其对角元均为非零元素，则由式(5．5)N得

母(毛)矽=母(h)WA (5．6)

其中彳=墨Q)_1墨(，1)为对角矩阵。这样构成一个广义特征方程，即矩阵束

(墨“)，噩Q))的广义特征值为彳的对角元素，形的列为对应的广义特征向量。因
此求分离矩阵的问题就转化为求矩阵束(疋(f1)，疋也))的广义特征矩阵，进一步式

(5．6)中墨q)，R心)中均为对称正定矩阵，故均为可逆矩阵，因此式(5．6)可写为
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D垒疋(f2)。1疋(6)=WAW7’ (5．7)

即需求矩阵D的特征向量矩阵形。求解特征值问题时，只要特征值和和其对应的

特征向量在矩阵A和形中位置相对应，就能确保式(5．7)成立，因此求出的特征向

量矩阵形存在排列和尺度的不确定性。从而导致分离出的源信号之间也有排列和

尺度的不确定性。

5．2．2基于递归广义特征分解的盲提取算法

5．2．2．1协方差矩阵的递归实现

由于语音信号为非平稳信号，其统计特性随时间的变化而动态的变化。因此

通常需对观测数据进行自适应处理，以获得更精确的跟踪能力以满足由于实际应

用的需要。为实现递归自适应运算，’用指数加权求和代替式(5『．4)中相关函数的数学

期望，得到观测信号的指数加权的相关函数：

RAt0=∑∥x(i)xr(f)
’：1 (5．8)
t’

疋(f2)=∑∥x(i)x丁(D

这里A为遗忘因子，通常取小于但趋于l的数。

把式(5．8)写成递归的形式
。

乏曷三瓮芝1)+x㈨(t2)，x：!：啪(tO @9，
疋(乞)=允疋(乞一

1

由矩阵求逆引理‘271，【墨(f2)】_1递归形式为

《1(，2)=_I．也--1(，2—1)-{Q(Ox(6)x(t9r《1(，2-1) (5．10)

这里Q(f2)=石丽Rx顽l(t2-葡1)丽。其中f1，f2紫取值可根据递i月时间指标俑定，
下面取t2=r，fl=t-／r其中鬈>O为不同时刻fl，如之间的时间间隔。

令PO)=《10)，由式式(5．7)、(5．9)和(5．10)， 可以递归地求出

Dq)=P(f)墨O一曲

=D(t-‘1)+[P(力xp一曲x(f一曲r—Q(r)x@)xp)rDo一1)]’(5．11)
为实现在线处理以及出于算法复杂度的考虑，本章用近似幂迭代法【勰】估计

o(t)的最大特征值对应的特征向量．由于(5．11)式中DO)为递归更新，幂迭代法的
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计算格式是：取分离矩阵w(o)的每一列都为任意的单位向量，其第一列M(0)作

为初始向量，然后进行迭代

I'，O)=D(t)w1(t-1)

{wl(t)=vet)111．coil：，t=l州2一 (5．12)

【五(D=w‘(f)D(f)嵋(f)-

即D(t)由(5．1i)式更新的同时，利用幂迭代法由(5．12)式对D(，)迭代一次得到M(f)，

直到算法收敛．由幂迭代法的收敛性分析【291可知：当D(t)的特征值按模互不相等

时i矗(f)收敛于D(f)的按模最大的特征值，M(f)按方向收敛于D(t)的最大特征值

对应的特征向量。

贿．3数目未知的语音信号瞬时混合盲分离与信源数目检测算法

5．3．1语音信号在线提取特性分析

为便手分析语音信号在线分离的特性，本节在假设混合矩阵4已知的情况下

来分析对应于最大广义特征值的广义特征向量砒的时变特性，为此我们定义如下

的信道互扰(Inter-channel inte彘rence)【301作为性能指标
Ⅳ

∑I c,(t)12-ma．x I c,(t)12

ICI,=上L—面丽r一(5．13max )
ICI，II’

I
’

这里【q(f)，c2(t)，⋯，cⅣ(f)】=订(fM是全局混合一解混向量，y(f)=砰(f)4s(，)即为对

应于嵋提取出的源信号。ICI,的值越小，说明算法的分离性能越好，下面通过两

个简单的例子说明嵋的时变特性。

例1．假设用两个传感器接收两个语音信号(即M=一N=2)， 语音信号的采样

率为16她，信号波形分别见图5．1(a)和图5．1@。混合矩阵4的各元素为在卜1，1】
区间服从均匀分布的随机数。图5．1(c)给出了其中一个混合信号。利用第5．2节中

基于递归广义特征分解的盲提取方法在线计算对应于最大广义特征值的广义特征

向量。取初始向量嵋(O)为任意的单位向量。下面研究遗忘因子小于1且时间间隔

r取不同值时的在线提取的信号波形及ICIt性能曲线。

图5．1(d)给出了遗忘因子∥=0．9996且r=3000时递归算法一次运行在线提取

出的信号波形。对应的ICI,性能曲线(见图5．1(e))呈现间隔性起伏。从图5．1中标

注的四个从左到右虚线矩形框中可以直观地看出：_图5．1(d)dP在线提取的信号波形

中第一个和第三个虚线框中的信号属于第一个源信号(见图5．1(a))，第二个和第四
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图5．1两个源信号混合的在线提取语音信号特性图

个虚线框中的信号属第二个源信号(见图5．1(b))，并且图5．1(e)中对应于四个虚线

框的ICI,的值都接近于O，表明此时有很好的分离性能。图5．1(f)给出了遗忘因子

∥=0．9996且K=500时在线提取出的信号波对应的ICI,性能曲线见图1(g)。与图

1(e)相比，图1(g)中ICI,性能曲线的间隔性起伏较为密集但分离性能较好的采样

区间长度较短，对应的在线提取的信号波形则不易直观看出与源信号的对应关系。

在实验中，混合矩阵4是不变的，因此ICI,性能曲线(见图5．1(e))呈现的间隔

性起伏是由于嵋的在线估计向量的时变特性所致。为便于表述，我们把嵋的估计

向量能取得良好分离性能的采样区间简称为“分离区间”，所有“分离区间’’组成

的集合简称为“分离区间集"，记为

{【，，，，]1ICI,<岛，∈”，’】，占>o} (5．13)

这里g取趋于零的正常数。与之相对应，区间f1，州与“分离区间集"差集合
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’【l，丁卜{【，，'f’】f弛<￡t e[t’，，】，g>o} (5．14)

称为“混合区间集”，包含在其中的区间称为“混合区间”。显然，算法在混合区

间中的分离性能较差甚至无法实现分离。

通过例1可以直观看到在线提取的信号、源信号与部分“分离区间"的对应

关系，下面重点研究多个传感器接收多个语音信号的超定盲提取问题中各参数的

时变特性。

例2． 假设用八个传感器接收四个语音信号(即M=8，N=4)，茁=1000，其它

参数同例1。考察在线提取的信号波形，ICI,性能曲线和如下参数

％(，)全叫(，)墨“)嵋∞ (5．15)

的时变特性，这里毫(毛)=墨(毛)／Il足毡)犯。

图2(a)一(d)给出了四个语音信号的波形，图2(e)给出了其中一个混合信号的波

形。图2(0给出在线提取的信号的波形，但不易看出在线提取的信号、源信号与部

分“分离区间”的对应关系。与例1中ICI,性能曲线(图1(e))相比，图2(曲表明在信

源较多的情况下ICI,性能曲线的间隔性起伏更为密集。相应的“分离区间”也更多。

图2∞给出了在线估计的参数％(f)，可见在大部分的“分离区间’’内％O)的值

接近于零。这是由于按照广义特征值分解的性质(见第4．2节)，

五(，)全一O)足(^)M9)为在线估计的矩阵束(足(，1)，足也))的广义特征值。在递归

算法中疋(‘)按式(5．8)指数加权求和，从而具有较大的范数值，故式(5．15)51iJ疋(f1)

作归一化处理后所得参数％(f)的值较小，接近于零。下节将利用％(f)的时变特

性作为一个性能指标确定信源数目。

从例1和例2的实验结果中容易验证，在同一“分离区间"中不同采样点的

对应的向量M∽都是同一广义特征向量的估计值，而不同“分离区间”中的向量

嵋(f)则可能对应同一广义特征向量，也可能对应不同广义特征向量。对于这种现

象有如下解释：由于语音的非平稳特性和说话人在发音时有停顿，因此，在线估

．计的对应于最大广义特征值的广义特征向量随着实际语音环境的变化而变化，并

不总对应于特定的说话人，而是对应不同说话人，这样提取出的信号中不同的采

样间隔内对应着不同的说话人。当对应于最大广义特征值的广义特征向量发生突

然变化时就会导致算法分离性能下降，而保持不变时则可取得良好的分离性能，

从而使得性能曲线ICI,呈现不同采样间隔的起伏现象，导致所提取的信号在不同的
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图5．2四个源信号混合的在线提取语音信号特性图

“分离区间”可能对应于不同的源信号，在“混合区间"依然是源信号的混合。

总体而言无法获得单独提取出单个信源，如果实际语音环境的动态变化较大时则

提取出信号听起来只是无法辨别的“噪音"。另外，“分离区间”的数目与信源数

目、时间间隔K，和门限值s有关。

5．3．2信源数目检测与分离算法

对应于不同广义特征值的广义特征向量的数目正是信源的数目，从对第5．3．1

节中例l和例2的分析可知，不同的“分离区间"对应不同的广义特征向量的估

计值，正是这种现象为我们解决信源未知或动态变化时的瞬时混合语音信号盲分

离和信源数目检测问题提供了重要的研究思路。若对“分离区间"中向量嵋(f)进

行聚类，向量聚类的数目即为信源的数目。但是在盲源分离问题中，混合矩阵4是

未知的，因此实际无法给出ICI,性能曲线，从而无法直接得到“分离区间’’。
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本节在混合矩阵4未知的情况下充分利用第5．2‘节中递归盲提取算法得到的

分离向量序列嵋(O(t=x+l，⋯，?)，语音的非平稳特性、％p)的时变特性及向量

相似度(similarity)等信息通过拟合“分离区间"和多阶段聚类算法实现信源数目

的检测并同时完成信源的盲分离。

要想在混合矩阵彳未知的情况下正确检测出信源数目，需对在线估计的向量

序列嵋(f)0=x+l，⋯，D进行分类，并把一定意义下分离性能最好的向量作为广义

特征向量的估计，同时根据估计的对应于不同广义特征值的广义特征向量的数目

确定信源的数目。显然，分离性能最好的向量一定是上节定义的“分离区间集’’

中采样时刻对应的向量。但由于混合矩阵未知，所以“分离区间"不能直接得到。

因此需要根据已知信息“拟合”(或近似)出“分离区间”，并对近似的“分离区间"

中采样时刻对应的向量进行聚类或分类，从而根据聚类数目确定信源的数目。

5．3．2．1提取“高分离度区间刀

本节分别利用两种性能指标拟 ICI,性能曲线，提取出两类不同特性的区间集

合，进一步得到“高分离度区间集"，属于其中的区间称为“高分离度区间”。。

利用向量的相似度或相异度(dissimilarity)对向量进行分类是一种简单的选

择，针对要解决实际问题，向量的相似度可以有不同定义：如Euclidean距离，

Mahalanobis距离，夹角余弦、Tanimoto测度以及目标一概念距离D1】等。本节利用

两个M维向量lII和u2的夹角余弦函数

配㈣⋯妣揣 ㈣

作为向量相似性的测度，显然0≤r(q，坞)≤1，r(嵋，恐)的值越大则表示两个向量

的相似度越高，“lll，％)=1则表示两个向量只相差一个比例系数，即嵋=孝哆，这

里善为非零常数。

为了拟合1(21,性能曲线，我们把当前分离向量嵋(f)与过去分离向量

嵋(f一力，j『=1，⋯，工之间的平均相似度定义为

坶：{卜鼋1 t-缶x-Ir(州f)，啪嘲肛乳 伍，≥
l 1一÷∑r(M(r)，Mo一歹))，f一鬈>三
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非平稳环境中的盲源分离算法研究

这里用近似幂迭代法(5．12)在线估计的向量wz(t)，f=公+1，⋯，丁都是单位向量，故

上式中r(嵋(f)，嵋仃一／))=l一(f)嵋(f一_，)l。

从式(5．17)n-I"知，MS,的值越小，当前时刻向量嵋∽与其临近向量的相似程度

越高。由于在同一“分离区间"中不同采样时刻估计的向量是同一广义特征向量

的估计，因此这些向量具有很高的相似度，对应坶的值接近于零。换言之，在迅
的值都很小(小于某个门限)的采样区间内的向量间具有很高的向量相似度，这样

的区间称为“高相似度区间’’。所有“高相似度区间”的组成的集合称为“高相似

度区间集’’，记为

B，／-]I崦<∥∈p，^]，0<厂<1l (5．18)

其中，，为趋于0的正数。

由于ICI,性能曲线和平均相似度MS,曲线在“分离区间"中的值都是趋于零，

因此我们利用平均相似度MS,曲线来拟合ICI,性能曲线，再进一步利用平均相似度

MS,曲线提取出“高相似度区间集’’以拟合“分离区间集’’。

下面利用平均相似度MS,曲线采用如下决策规则在线提取“高相似度区间”。

其基本思想是对于给定的门限y，比较MS(t)的值与MS(t一1)的值判定当前采样时

刻t是否属于某一“高相似度区间’’，若属于一个“高相似度区间"，进一步判定该

点是否为区间的端点，若该点不是区间端点，则该“高相似度区间”的长度加l，

若当前时刻f被判定为一个“高相似度区间”的起点，则把该点设为区间起点，并

把“高相似度区间”的数目加l，若当前时刻f被判定是一个“高相似度区间"外

的第一个点，则把前一时刻f一1设为区间终点结束该区间。基于Matlab语言的“高

相似度区间”的在线搜索算法见表5．1。

需要指出的是在同一个“分离区间"中的不同向量都是同一个广义特征向量

的近似，因此这些向量与其临近向量有很高的平均相似度。但是向量间具有很高

的平均相似度的区间并不一定是“分离区间”，“混合区间”中的向量间也可能会

有很高的平均相似度。换句话说，“高相似度区间集’’中既包含所有“分离区间”，

也可能包含部分“混合区间"。因此还需要进一步作后续处理以剔除“混合区间"。

此外，对应于同一广义特征向量的不同“分离区间”中的分离向量的分离性能也

有差异。

根据上述分析，为正确检测信源数目，还需要对“高相似度区间集’’进行两

个步骤的处理：

(i)从提取出的“高相似度区间集"中剔除“混合区间"；

∞剔除分离性能较差的“高相似度区间”。

西安电子科技大学博士论文



第五章数目未知的语音信号瞬时混合的盲分离与信源数目检测算法

表5．1基于Matlab语言的“高相似度区间”的在线搜索算法

Flag—number。0；％用于统计“高相似度区间”的个数

Flag—length=o；％用于统计每个“高相似度区间”的长度

Highsimilarity_interval=zeros(T，3)；
％该矩阵的每一行分别记录一个‘“高相似度区间”的起点、终点
和区间长度

if MS(t)<y

矿MS(t一1)>厂

Flag—number=Flag—number+1；

High__similarity_interval(Flag—number，1)=f；

Flag—length=1；
else ．

Flag—length=Flag—length+l；

end

else

if MS(t-1)<y

High_similarity_interval(Flag—number，2)=卜1；

High_similarity_interval(Flag—number，3)=Flag—length；
end

end ．

High_similarity_interval=High_similarity interval(1：只昭一number，：)；

下面利用在线估计的参数Ⅳ。(f)的时变特性提取丌。(f)的值很小的区间(称

为“Ⅳ，(f)趋零区间集”)以得到“高分离度区间’’。如5．3．1节中图2(h)所示，

分离区间中对应的％p)的值接近于零。把％O)的值都小于某一给定门限p(如

P=0．01)的采样区间称为“Ⅳ。(r)趋零区间-，，，类似“高相似度区间’’的搜索算

法，我们也可以提取出“Ⅳ，(f)趋零区间”。“Ⅳ，O)趋零区间”对应于“分离区间"

中分离性能较好的部分，因此我们可以取“Ⅳ，O)趋零区间"与“高相似度区间"

的交集作为“高分离度区间”。一方面可以提取出分离性能较好的分离区间，另一

方面则可剔除部分“混合区间”。

用于存储“高分离度区间集”的矩阵记为High separation interval，该矩阵

的行数即为交集的数目，该矩阵列数设为四，其中前三列用于存储每个“高分离

度区间”的起点、终点和区间长度。注意到“高分离度区间”是“肼，(f)趋零区间”

与“高相似度区间"的交集，即每一个“高分离度区间”都分别是某一“高相似

度区间"的子区间，因此High-separation_interval第四列存储该“高分离度区间’’

雷达信号处理国家重点实验室
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在矩阵High-similarity_interval中所在行的行数，用于标识该“高分离度区间’’是

某一“高相似度区间"的子区间，以便下一阶段的进一步处理。

同提取“高相似度区间"遇到的问题一样，“％(r)趋零区间"也不一定是“分

离区间刀，因此，根据“％(f)趋零区间”无法完全剔除“混合区间”，需在下一阶

段进一步处理。需要指出的是“高相似度区间集”与“％(f)趋零区间集"都是在

估计向量嵋(t)的同时在线提取的。

5．3．2．2以高分离度区间一聚类

“高分离度区间"的区间长度越大说明算法在该区间内的收敛性能越稳定，

从而该区间中的向量为广义特征向量的精确估计值的概率越大。因此本节利用“高

分离度区间"的长度和属于不同“高分离度区间”中的向量间的相似度对“高分

离度区间集"中的“高分离度区间’’进行迭代聚类，并初步确定信源数目。

迭代步骤如下：

初始化：令估计的源信号数目费=0；

第1步：首先从“高分离度区间集"中找到区间长度最大的“分离区间"，

即

【Length—max，Number—row】=max(High．separation_interval(：，3))；

这里等式右边表示求High_separation_interval中第三列的最大值，Length—max表

示区间长度最大值，Number row表示区间长度最大值所在的矩阵行数。用如下符

口
丐

tmp—f垒High_separation_interval(Number—row,f)，f=l，2

表示该矩阵的第Number row行第f列元素。

把该“高分离度区间”【卸一1，呻一2】作为对应于提取第一个源信号的广义特

征向量的精确估计值区间，并判定源信号数目为l，然后在该区间【trap_1，trap一2】
中求在MS,值最小的采样时刻，即

【旌一m／n,Santvleinstant]=rain(MS(tnto—l：tnp一2))

这里埘一聊f玎表示在区间【f唧-1，tmp一2】内岭的最小值，勋嬲如删表示在
区间【tmp_1，tmp一2】内的第Sample_instant个点处取得MS,的最小值，并在对应的

采样时刻“=tmp一1+Sample__instant一1)估计的向量矽(：，尹)作为一个广义特征向

量的估计值，相应可以提取出一个源信号。

同时存储与已判定出的广义特征向量的相似度大于给定门限r／(如r／=O．99)的
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第五章数目未知的语音信号瞬时混合的盲分离与信源数目检测算法

“高分离度区间"，这些区间内的向量均视为同一广义特征向量的估计，可以提取

出同一源信号，这些区间全体称为“同源聚类区间集”。为避免重复提取同一个源

信号，需要把“同源聚类区间集"从“高分离度区间集”中剔除。

第k步(七=2，3，⋯)：如果在剔除掉k一1个“同源聚类区间集"的“高分离度区
’

，一 ●

间集"中与对应于已判定为源信号的广义特征向量的相似度小于r／的区间数目大于

零；则按第一步的方法提取下一个广义特征向量，得到相应的分离信号，并把检

测出的信源数目加一(Ⅳ．-对+1)，直到与对应于已判定为源信号的广义特征向量

的相似度小于r／的区间数目为零。

5．2．2．3剔除。孤立区间一

由第5．2．2．1节中分析可知，根据“高相似度区间”和“群，(f)趋零区间’’无

法完全剔除“混合区间”，因此经过第5．2．2．2节的聚类处理后部分“混合区间”

也被判定为对应于源信号的“分离区间”被保留下来，这样检测出的信源数目可

能大于真实的信源数目，因此需要进一步处理。

考察对应于被判定为信源的不同“同源聚类区间集’’。由于“同源聚类区间集"

中区间个数一般较多，且“混合区间"中的估计的广义特征向量与它向量的相似

性较小，因此我们考察“同源聚类区间集"中区间的数目。若区间集中区间数目

只有一个，则该区间判定为“混合区间’’，这样的区间称为“孤立区间”，将其从

“高分离度区间集"中剔除。若一个“同源聚类区间集”中区间数目大于一个，

但这些区间属于“高相似度区间集’’同一个区间或相邻的两个区间，也将其视为

“混合区间”，这可能是由于“高相似度区间集”中的区间本是“混合区间"，和

“肼，(f)趋零区间集"取交集后被分割成的若干子区间，它们还是“混合区间”，

这样的区间也视为“孤立区间"。把“孤立区间"剔除后保留的“同源聚类区间集’’

的集合数目即为信源数目。

§5．4仿真实验

以下实验假设用传感器阵列接收信源数目未知的语音信号，为验证所提算法

的性能，首先以传感器数目M=8，信源数目分别N=4为例阐述算法的提取“高

分离度区间"和“高分离度区间"聚类的过程，然后在相同的传感器数目(M=8)

接收数目不同(N=3，4，5，6)的源信号的情况下检测信源的数目，在下面不同实验

中所用到的所有源信号波形见图5．3。为体现信源数目未知的特点，我们在试验中
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图5．3仿真试验中所用源信号

用一组相同的参数来分别检测信源数目不同时的信源数目。混合矩阵A的各元素

为在卜1，l】区间服从均匀分布的随机数。仿真实验中所用的参数取值分别为

贸=1000，7=0．0002，三=100，P=0．004，r／=0．99，∥=0．9996。

实验一：在假设用八个传感器接收四个语音信号(即M=8，N=4)的情况下利

用第5．3节中的方法检测信源数目。所用源信号为图5．3中的前四个信号。

图5．4(a)给出ICI,性能曲线以检验所提性能参数(式(5．15)和式(5．17”拟合ICI,

性能(心性能曲线是在混合矩阵已知的情况下得到的，但在我们实验中并不利用
混合矩阵的信息)。首先利用向量相似度(相异度)拟合“ICI,性能曲线"。由式(5．17)

给出的平均相似度曲线见图5．4(b)，与图5．4(a)中16"1,性能曲线相比较，除去部分

采样区间(如[4500，5500】、[45500，46500]等)，平均相似度蓝线在接近于零时可以

较好的拟合ICI,性能曲线。这表明我们可以从平均相似度曲线中提取“高相似度区

间集”来近似“分离区间集弦，但需要从中剔除相似度较高的“混合区间"，如

[4500，5500】、【45500，46500】等。由于长度太小的区间的“高相似度区间”的可信

度不高，在从平均相似度曲线搜索“高相似度区间集”时只保留区间长度大于50的

“高相似度区间"。为直观表示“高相似度区间集"，这里用Matlab语言的表示法，

令HSl fa!l：ing=zeros(1，r)，这里HSl_fating表示一个元素全为零的lxT行向量，
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蚕i匝五五西匹10五西鲴(a)I性能曲线

一

(b)卓均相似度曲线x104
0．4

笺02
0

口
三 1

军0．5
∞'1-0

0．5 1 15 2 2．5 3 3．5 4 4．5 5

(c)高相似度区问表征曲线
。Io'

0．5 1 15 2 2．5 3 3．5—4 4．5 ．5

(d)PI冲的特性曲线x104

05 1 1．5 2 2．5 3 3．5 4 4．5 5

(e)PIp趋零区间表征啦线 xlo．

0．5 1 15 2 2．5 3 3．5 4 4．5 5

迭代次数(采样点) x104

图5．4拟合ICI,性能曲线与其区间表征曲线

把与“高相似度区间”中采样时刻相对应的HSIfitting中的区间内的点都赋值为1，

得到的折线如图5．4(c)所示，即折线上为1的部分对应的采样区间为“高相似度区

间”，折线上为0的部分判定为“混合区间’’。下面用类似的折线直观表示所提取

的各种区间。为进一步提取“高分离度区间集"并剔除部分“混合区间"，图5．4(d)

给出了％◇)特性曲线，根据％p)特性曲线提取得到的“％p)趋零区间’’表征

曲线如图4(e)所示，这时提取出的区间个数较多，说明在给定的门限下Ⅳ，(f)随时

间变化比较剧烈。

图5．5(a)给出了图5．4(c)中所示的“高相似度区间集’，和图5．4(e)所示的“％O)
趋零区间’’的交集，即“高分离度区间集"的表征曲线。只包含在一种区间集合

种的部分“混合区间”(如区间[4500，5500】等)已经取交集后剔除，另外部分分离性

能不好的“高相似度区间"也在取交集后剔除。

经过对“高分离度区间集”中区间利用第5．3节中迭代聚类(移=0．99)并剔除

“孤立区间"后的区间集合表示曲线如图5．5(b)所示，这里区间中元素都为一的区

雷达信号处理国家重点实验室
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(d)对应于第二个信源的‘高分离度区间集’表征曲线

5

j【10●

“

0．5 1 15 2 25 3 3．5 4 4．5 5
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(g)·孤立区问集-表征曲线x 104
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x1矿

图5．5“高分离度区间”、信源数目、“同源区间”及“孤立区间”表征曲线

间的数目则为经检测得到的信源的数目。图5．5(c)．(f)分别给出了对图5．5(a)中的

区间的对应于四个源信号的“同源聚类区间集”表征曲线，由此可见对应于同一

源信号的广义特征向量可在多个“聚类区间”中出现，这种现象表明漏检某一源

信号的概率较小。图5．S(曲则给出了对应于“混合区间”的“孤立区间"表征曲

线，这些区间中对应的向量与其它区间中向量的相似度较小。

为避免估计出的信源数目虽然正确的，但对应的某个广义特征向量却可能是

一“混合区间’’中的一个估计向量，而另外一个对应于源信号广义特征向量估计

被漏检，这样必然有一个源信号无法正确的分离出来。为此需要进一步验证算法

对于信源数目的检测的可靠性，我们分别对数目不同的信源的混合的情形进行如
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下的Mento．Carlo实验。假设检测出对应于信源的广义特征向量存储在对×M矩阵

矿中，这里膏是实际检测的信源的数目。由于每次仿真混合矩阵的随机性，每次

实验中检测出信源的顺序具有不确定性，为验证每次仿真实验的检测性能，我们

定义类似于式(5．13)的信道互扰性能指标

嘲=善障器卜 @㈣

这里刀◇)=痧r(fM是全局混合～解混矩阵，其中丑(f)=[％o)]费。Ⅳ。

实验二用数目相同的传感器阵列(M=8)接收数目不同(N=3，⋯，7)的源
信号的情况下检测信源的数目，为体现信源数目未知的特点，其余参数同实验一。

表5．2是用所提信源数目检测算法对于信源数目不同时分别进行1000次重复

实验检测出信源数目正确率。当信源数目为3时检测正确率为100％，当信源数目

增多时，正确率随之下降，这主要是因为信源数目不同时对应的性能指标ICI,(式

(5．13))有所不同，ICI,的值随着信源数目的增加而变大，而实验中为体现信源数目

表5．2 1000次仿真实验检测信源数目的正确识别率

信源数目 N=3 N=4 N=5 ．N=6 N=7

正确识别率 100％ 99．4％ 97．7％ 94．8％ 86．3％

图5．6信源数目为4时1000实验的性能指标甄的值

雷达信号处理国家重点实验室
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未知的特点，用一组相同的参数来分别检测信源数目不同时的信源数目。因此参

数的设置需要一定程度的折中。

图5．6是信源数目为4时，1000次不同实验的ICl[性能指标，每个点表示一

次实验的xcl；的值。从图5．6中可以看到性能指标值明显偏大的点的数目为6个，

与表5．2中信源数目为4时错误检测结果的次数相同，这表明所提信源数目检测算

法可以较为准确的检测出信源数目，并对应于真实的信源。此外，一般的盲提取

算法通常会在提取的过程中进行数据压缩导致误差累积，从而提取出的信源的质

量依次下降，而在本文恢复出的信号都对应于估计性能最好的广义特征向量，，因

此都具有很好的分离性能。

§5．5本章小结

本章充分利用人类发音的特点和语音信号的非平稳特性，对于数目未知的语

音信号瞬时混的盲分离问题，在实现信号数目检测的同时完成信号的盲分离，并

可克服盲提取问题中先提取出的信源性能好而后提取出的信源性能差的缺点。由

于人类对话交流的特点，在线估计的对应的最大广义特征值的特征向量，是随着

实际语音环境的变化而变化，并不对应于特定的说话人，由于所用近似幂迭代方

法的快速收敛特性，在线估计的最大广义特征值对应的广义特征向量在某些时间

间隔内能得到很好的估计性能，且对应于某一个说话人。这样可以利用估计性能

良好的不同广义特征向量的数目确定信源的数目，并利用得到的广义特征向量提

取出所有的源信号。

本章首先利用向量的相似度定义了平均相似度MSt，用以拟合ICIt性能曲线，

并从MS,曲线中提取出“高相似度区间”拟合“分离区间"。然后利用“Ⅳ，(r)趋

零区间”进一步提取分离性能较好的“高相似度区间"并剔除部分“混合区间”，

得到“高分离度区间”。 然后利用多阶段聚类的方法确定源信号的数目，并可在

完成信源数目的检测的同时实现信号的盲分离或提取。仿真实验表明本章提出的

信源数目检测算法具有良好的性能。
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第六章基于多信道信号增强的卷积混合语音

信号盲分离的后处理算法

§6．1引言

近年来，麦克风阵列语音信号处理已成为信号处理领域的研究热点I问。在典

型的语音通信环境(如音视频会议、车载免提应答系统、声控系统和助听器等)中，

用户通常希望在通话时能够自由活动且无需佩戴或手持麦克风。但由麦克风阵列

接收的信号中往往搀杂了背景噪声和室内混响等会影响用户之间顺畅的交流。因

此如何在有噪声和混响的声学环境中高质量地跟踪、增强和分离目标语音信号是

一个很有实用价值且极具挑战性的课题。

在语音增强技术研究的早期，人们利用单传感器接收信号并由观测信号的谱

信息实现单信道语音增强【6】。为进一步提高受损声音和语音信号的质量，基于麦克

风阵列的多信道信号增强技术由于可以同时利用空域信息和谱信息，其性能比传

统的单传感器处理技术有显著提高。因此目前的语音增强研究已由单信道模型转

向立体声和多信道情形【l】。利用阵列的空域信息使多信道语音信号处理算法得到更

多自由度，利用波束形成技术17棚在增强目标信号的同时抑制干扰和噪声，有利于

提高算法性能以进一步推进语音通信系统的商业化。然而传统波束形成技术虽充

分利用了麦克风阵列流形(如传感器和信源的位置)，但无法避免由于信道误差导

致的互扰和泄漏问题；并且为了获得较好的性能常需较多的阵元，但阵元太多会

增加设备造价，不利于多信道信号增强技术的实用化发展。

在一些非合作的声学环境(如鸡尾酒会问题)中，往往没有信道或信源的先验

信息可以利用。在这种情况下，传统的波束形成技术的有效应用受到了一定的制

约。而盲源分离技术【9do】正是在没有任何先验知识的条件下从观测信号中恢复或提

取出源信号。由于盲源分离技术无需已知阵列的几何流形和物理特性，所以能有

效地克服信道误差，增强阵列处理的性能。即使信源波达方向未知，盲源分离抑

制干扰的程度也已接近甚至超过传统的自适应波束形成，其潜在应用目前是一个

很活跃的研究课题，因此盲信号分离的技术已在声学和信号处理领域引起了极为

广泛的关注。

盲源分离的混合过程通常被建模成多输入多输出删o)的数学模型，这种模
雷达信号处理国家重点实验室
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型可分为无记忆和有记忆的，也可分别称为瞬时混合和卷积混合。盲源分离问题

的早期研究集中于相对简单的瞬时混合情形19-10】，但在典型的声学环境中(如著名

的“鸡尾酒会’’问题)，由于声音传播的多径效应，源信号的混合方式建模为卷积

混合是更为现实【91。而语音信号以卷积的方式混合会使问题的解决变得相当困难。

通常需要考虑用有限冲激响应(FIR)滤波器矩阵来分离卷积混合的信号。

目前已有许多方法用来处理基于卷积混合的盲源分离问题，这些方法大致可

分为两类，第一类是时域方法[11-13】，若所用算法收敛，则能获得较好的性能，但

通常现有算法具有复杂度高和收敛速度慢的缺点。第二类是频域算法【14-201，‘即通

过短时傅立叶变换把时域卷积混合盲分离问题转换为频域多个瞬时混合盲分离问

题，可在整个频带范围内，利用现有的瞬时混合盲源分离算法对各个频率分离问

题进行独立处理。这样一方面大大降低了运算量，另一方面可利用现有的研究成

果，便于参考借鉴性能优越的瞬时混合盲分离算法。卷积混合的盲语音分离问题

的频域算法由于便于实时处理己被广泛研究，国内外学者在其特定的实验环境中

已取得了较好的结果，且开发了不同的盲源分离实时处理系统。然而要想得到理

想的分离结果，所有的频域盲分离算法都必须解决由于盲源分离问题本身存在的

置换模糊和尺度模糊问题。因为时域方法是联合处理，上述两种不确定性不影响

其分离性能，而在频域方法中，各个频率分量之间分别处理，易出现各个频率分

量上的排列不一致问题，进而重构时会导致信号频谱的重新混合，各个频率分量

上尺度模糊也会导致合成信号频谱产生畸变。因此，若不能有效解决置换模糊问

题和尺度模糊问题，则会导致分离性能的下降甚至无法分离。虽然各国学者针对

频率置换问题已提出很多频率置换方法，并且在特定的试验环境中都能获得较满

意的性能，但是在真实的语音环境中有噪声和混响的存在，无法得到真正既精确

又稳健的频率置换解决方法。此外由于上述的不确定性，大多频域盲源分离算法

得到的分离信号是源信号的卷积信号，在强混晌的声学环境中，盲源分离算法的

分离性会能严重降低。

本章针对现有频域盲源分离方法存在的问题，即恢复出的信号是源信号和一

个未知的滤波器的卷积，且由于部分频率点处盲源分离方法的失效和无法精确解

决排列和尺度模糊问题，分离出的信号中会泄露进其余的信号分量，影响分离性

能。本章提出一种基于多信道语音增强的频域盲源分离后处理方法。该方法有机

结合盲源分离技术与阵列处理技术，既可充分利用空域信息，又无需增加其它先

验假设。首先在频域盲源分离方法中利用语谱分裂技术得到MxN个分离信号，可
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视为多输入多输出(MIMO)混合系统分裂成N个单输入多输出(SIMO)系统，泄

露进该信号的其它信号分量可以视为干扰信号，然后分别独立用频域多信道语音

增强方法重构出各个语音信号，计算机仿真结果表明本章所提算法具有良好的性

能。

§6．2频域盲源分离算法

6．2．1卷积混合盲源分离问题的数学模型

设用M个麦克风接tI叟N(M≥忉个统计独立的语音信号霸(0(-=1，⋯，N)得到

观测信号％(O(m=1，⋯，M)‘，这在数学上可以描述成一个MxN多输入多输出

似IMo)有限冲激响应(FIR)系统(如图6．1所示)，第肌个麦克风的第f令快拍可
表示为

ⅣL-1

‰(r)=∑∑口。(咖。(f—z)+P。(f)，m=l，⋯，M ‘(6．1)
n=l 1=0

这里nJf)表示从第豫个源信号到第坍个麦克风的脉冲响应。％(f)为均值为零方
差为仃2的白高斯噪声。

卷积混合模型也可用矩阵形式表示为

x(f)=4(f)木s(f)+P(f) (6．2)

这里x(r)=[_(f)，⋯，嘞(f)]是观测矢量，s(f)《西(f)，⋯，‰(f)]源信号矢量，A(t)

为滤波器混合矩阵，P(f)=[Pl(f)，⋯，％(f)]是噪声矢量。

卷积混合信号盲分离的目的是通过一个分离系统来重构源信号。重构的信号

^U， 儿VJst(t) 。{，l rn} 、爪
L

％Q) x,At) 蜘O)
¨^拼V，卜_—◆彬 ’71 wmctK，h够
混迭系统彳U) 分离系统≯y(七)

图6．1盲源分离的卷积混迭与分离信号模型
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是源信号盼滤波，且重构信号与源信号存在排列和尺度的不确定性模糊【堋。时域

方法是用一个长度为K的FIR滤波器M‰(露)的集合构成分离系统来产生分离信号
(如图6．1所示)

M K-1

儿(r)三∑∑w埘(七)％(卜尼)，拧=1，．．．-，N (6．3)
m=l k=O

从式(6．3)可见卷积混合盲源分离问题的时域方法需要估计的系数较多，具有较大

的计算复杂度。

6．2．2频域盲源分离算法

频域盲源分离的流形如图6．2所示。一通过短时傅立叶变换(STFT)把卷积混

合的观测信号变换到频域中，得到每个频率点上的瞬时混合

x(s，t)=4(厂)s(厂，f)+E(／，t) (6．4)

这里x(s，，)=[五(／，f)，⋯，K(厂，f)]f，s(s，f)=[墨(厂，r)，⋯，晶(厂，f)]r，

l 4。(门⋯．4Ⅳ(厂)I

4(厂)=I ； 。． ； l，E(厂，f)=[互(／，，)，⋯，％(厂，f)]r，其中最(厂，f)、
‘L如。(门⋯‰(厂)J

‘

L(厂，f)、己(厂，f)和如(力分别表示％(f)、b(f)、em(f)和‰(z)的短时傅立叶

算法求出分离矩阵∥(，)以分离出源信号。分离信号可以表示为

r(／，，)=矿(厂)x(厂，f) (6．5)

混迭信号 分离系统 ‘分离信号

图6．2频域盲源分离流形
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f磁。(力⋯‰(力]

这里y(厂，f)=[写(厂，f)，⋯，k(厂，f)了，一矽(厂)=I j ’． ； }。
【-％t(门⋯‰(门J

6．2．2．1复值瞬时盲源分离

瞬时混合盲源分离问题的分离矩阵可通过一个两阶段的分离系统来求得，一首

先对观测信号预白化，NxM白化矩阵可表示为y(厂)=人y2(厂)彰(厂)，然后用

独立分量分析．(IcA)方法求得一个NxN酉矩阵u(厂)实现源信号的盲分离。因

此，总体分离矩阵为形(厂)=U(f)V(f)。

为获得稳定和快速的收敛，Arald等人[201用如下的复值ICA的批处理自然梯度

学习规则

Ⅳ(厂，f+1)=Ⅳ(六力+△u(厂f)

咧川=H卜B，=B(兰N-I)+I巾(砷(川1 (6．6)

-_1，磊／IN H巾(川)毗矿]毗r)
这里M是步长， B为块的大小。非线性矢量函数①(·)定义为

①(]I，(厂，r))=[①(K(／，f))，⋯，①(％(^f))]7’ (6．7)

其中①(E(厂，r))=[1+eXp(一巧尺’(厂，，))]-l+_『《1+exp(一巧，)(厂，r))]-1，这里

巧R’(厂，f)和】：：：气厂，f)分别表示艺(f，f)的实部和虚部，支献【14】表明这种类型的非

线性函数适宜处理频域语音信号分离。

6．2．2．2解排列模糊

目前用来解决排列问题的方法大致有以下几类，Parm等人【15】基于频率平滑，

通过在时域限制滤波器长度来解决置换问题，这种方法可有效分离在没有混响的

环境中录制的麦克风信号，但当混响存在时，该方法的性能严重下降；Kurita等

人㈣和Morgan等入【1刀基于阵列处理波达方向估计，通过分析分离矩阵所形成的方
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向图来估计波达方向，并根据波达方向进行置换：Ikeda等人【18-191利用相邻频率间

的相关性来解决置换问题，即计算所有可能排列中相邻频率的频谱包络特性，使

得相邻频率频谱包络相干性最大的排列被视为一致的排列进行置换；但由于该方

法需要依次置换相邻频率，当某频率处盲源分离失效而得不到有效的分离矩阵时

将导致误差累积，从而影响整个算法的性能。当各个频率处的盲分离性能都很好

时，频率相关方法具有较高的精确度，而利用波达方向方法时一个频率上的失调

不会影响到其他频率，因此具有稳健性的优点。虽然各国学者针对频率置换问题

在以上三大类方法的基础上已提出很多频率置换方法，并且在特定的试验环境中

都能获得较满意的性能，但在没有阵列流形等先验知识的情形下，很难既精确又

稳健的解决频率置换问题，使分离出的信号中含有其它干扰信号分量，影响分离

信号的质量。

用上述不同方法均可求得排列矩阵e(／1，然后按下式修正分离矩阵

w(s)《-e(／)w(s) (6．8)

6．2．2．3解尺度模糊

解决尺度模糊问题的一个有效的方法是的分裂语谱方法【181，用该方法解决尺

度模糊问题，对于M个传感器，Ⅳ个源的情况会得到M×N个分离信号，即每个

传感器上得到Ⅳ个分离信号1由推导可知分离信号是源信号与一未知滤波器的卷

积。文献【18】中没有对其做进一步处理，直接作为源信号的估计。

Matsuoka汹提出了最小畸变原理，尺度模糊可由下式解决：

llv(f)七-．-diag(W’(厂))形(厂) (6．9)

由此解尺度模糊后得到分离信号为

乙(厂，f)=4嘲(厂)最(厂，f)， n--I，⋯，N (6．10)

由式(6．10)得到Ⅳ个分离信号是用分裂语谱方法得到的分离信号中的一部分，

即分离性能较好的主路径信号。且无需把每个传感器Ⅳ个分离结果都求出来，与

文献[18】相比减少了计算量。但两者的共同的缺点是得到的分离信号是源信号的滤

波信号，且分离出的信号中会可能泄露进其它信号。
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§6．3基于多信道信号增强的后处理算法

6．3．1分裂的语谱与多信道信号增强模型的关系

为实现基于多信道信号增强的后处理，下面通过分裂语谱法㈣I得到给出一种

直观的推导。简单起见，考虑肘=N=2的无噪情形，一对于M≥N的情形有类似结

果，只是式(6．12)中w(s)的逆阵相应变为伪逆。

假设排列模糊问题已解决，则分离信号为

Y(S，f)2矽(厂)x(厂，f)=矽(厂)4(厂)s(厂，f)=D(厂)s(厂，f) (6．11)

其中∥(厂)4(／)=D(厂)=讲昭{霸(厂)，乞(厂)}表示对角的尺度矩阵，这里霸(厂)和

乞(厂)是依赖于频率厂的标量。由(6．11)可得

矿。1 c厂，=4c厂，。一c力=[芝：{；髟乏{；；2{；钐艺{厂)]- c6．·劲

把n_J,w_(厂)第一行为元素构成对角矩阵记做

4(力=硪昭{4。(厂)／毛(厂)，4：(厂)／包(厂)} (6．13)

则有

咖Mc仍c舛∞；要黝 ㈣
其中幺(厂，f)=[玄。(厂，f)，霉：(厂，，)了，写(厂，f)表示第f个传感器接收到第，个源信

号。式(6．14)相当于把(6．4)中第一个传感器上接收的两个语音信号的混合分裂为两

个分量，这个过程称为分裂语谱。同理有

咖M毗力=出；菱黝 ㈣

其中E(厂，f)=rE。(厂，f)，袁：(厂，f)]2。

由于解决尺度模糊后得到的分离信号是源信号的滤波，此外排列问题不可能

做到完全精确，会有部分信号分量泄露进其它信号中，两者将引起频域盲源分离

问题的分离性能的下降甚至无法分离，而一般的卷积混合盲源分离技术没有对这

个问题做进一步处理。为提高分离质量，本文充分利用空域信息对该问题做进一
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步处理，在增强源信号的同时消除泄露进该信号的其余信号分量和噪声。为此，

把式(6．14)和(6．15)改写为

f量：{；二门iJ：L‘丘4√；iTnil]墨(^r) 娟．t6曲
K加 越u√J 恤均砷

阮牝珏∽r， @16协
I-疋(厂，r)j L4z(州吃V矿7

_“～7

从式(6．16)我们可以看到还有空域信息可以利用，如(6．16)式第--个方程可视为

用阵列接收源信号西(f)，再把泄露进西(f)的另一信号毛(，)的部分分量作为干扰信

号，则为典型的多信道信号增强问题【23】，可以通过多信道信号增强算法分别重构

出源信号。 即通过分裂语谱，可以把多输入多输出(MIMO)的盲源分离问题分裂

成两个独立的单输入多输出(S蹦0)的多信道信号增强问题。

6．3．2基于多信道信号增强的后处理算法

把式(6．16)推广到M≥N的一般情况，则可把Ⅳ个输入M个输出的盲源分离

问题分裂成Ⅳ个独立的单输入M个输出的多信道增强问题，即

p加’(厂，f)=％(厂)瓯(厂，r)+Q押’(厂，f)+E加’(厂，f)，n-=l，⋯，N (6．17)

这里用矿(”’(f，t)表示第玎个源信号对应的阵列接收信号，同理下面用上标(”’表示

处理第刀个源信号。 an(厂)表示混合矩阵4(厂)的第甩列，瓯(厂，r)表示第，z个源

信号的时频域表示，Qo’(厂，r)表示泄露进信号最(厂，f)的其它残余信号分量，视为

干扰信号，层(一’f厂，,)m,示mmmmm。

下面分别解决这Ⅳ个SIMO多信道信号增强问题，增强语音信号的同时消除

干扰和噪声。利用Gannot等人【231提出的传递函数．广义旁瓣相消(TF．GSC)的多

信道信号音增强算法，该算法不需要直接估计传递函数，而是提出了传递函数比

的概念，利用语音信号的非平稳特性，用次优的算法来估计传递函数比。然后利

用频域广义旁瓣相消结构来消除空间干扰和噪声以实现信号增强；具体的算法推

导详见文献【23】。由此得到的频域盲源分离解混及多信道信号增强后处理的流程如

图6．3所示。

显然式(6．17)和"IF．GSC算法的模型相吻合，有以下注释：
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图6．3频域盲源分离解混及多信道信号增强后处理的流程图

蝴，式(6．17)中an(厂)与TF—GSC算法的传递函数相对应。"IF—GSC算法的传
递函数是任意的，不要求特定的阵列流形，在求解过程中无需具体求出传递函数，

只需求传递函数比；而盲源分离问题中只要能重构出源信号，可以不必求出混合

矩阵，即无需求出口。(f)的值。两者对传递函数的要求是一致的。这样既可充分利

用空域信息，又不用增加新的先验信息，如参考信号等。对应于式(6．17)的传递函

数比定义为日‘”’(f)=暇(力／％(门，即用爿(厂)的第，z列元素除以该列第一行的元

素；

荭释2：文献【23】中的干扰信号既包括有方向的噪声分量，也包括环境噪声，

式(6．17)中把泄露进该信号的其余信号的残余信号Qo’(^f)考虑为有向噪声，同时

考虑环境噪声存在。

由上述分析可知，式(6．17)和TF．GSC算法的模型相吻合，因此对式(6．17)可用

多信道信号增强算法作迸一步处理，改进盲源分离问题中分离信号的性能。

对式(6．17)表示的SIMO的多信道增强问题利用TF—GSC算法重构第

n(n=l，⋯，册个源信号结构如图6．4所示。

TF．GSC算法的算法步骤如下：

(1)固定波束形成器：．Y脚FBF(n)(厂，f)=[日cn’(厂)]日p(H’(厂，o／11日cH’(厂)02：
(2) 噪声参考信号：y(月’(厂，f)=[B(H’(／)]Ⅳp(n’(厂，f)；
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Ko’(厂，f)
巧町(厂，f)

堙’(厂，f)

其中

Bo’(／)=

图6．4对应于第胛个源信号的TF．GSC结构

口三。(厂)
瓦(厂)
l一

0

0

西。(f) ‘(／)
瓦(厂) 瓦(厂)
0 ⋯ 0

l ⋯ 0

(3)输出信号：y(n’(厂，f)=聪(厂，})一[G(n’(厂，f)]日y(H’(厂，f)

(4)滤波器更新：霹’(六r+1)=砩’(厂，t)+Jt2V：”’(厂，f)[E(厂，伽‘／≈，(／，，)

这里磴，(厂，f)=p础，(厂，f-1)+(1-p)X。p(厂，f)12
(5)利用叠接相加(overlap-add)法重构源信号y‘“’(f)，n=l，．．．，N。

§6．4仿真实验

仿真实验用三个阵元接收两个统计独立的语音信号，即用语音信号与抽头为8

的FIR滤波器卷积混合。为体现盲处理特性，本文仿真对阵列流形没有特别约束，

这样在解决排列问题时需用【18】中不依赖于阵列流形的方法，这里分别取脉冲响应

滤波器为服从均值为零方差为一的均匀分布。实验所用参数值见表6．1。
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表6．1仿真参数

参数 取值

语音信号采样率 16K比

DFT的长度 512

帧移 128

步长 “=0．001／如=0．005

遗忘因子 P=0．96

本章用如下的性能指标来度量所提后处理算法的性能。盲源分离问题的基本

的假设是源信号统计独立，因此可以利用重构的信号矢量和源信号矢量的相似度

(或相异度)[z41来测度分离性能，理想的盲分离的结果要求第j个源信号与其重构

信号有较高相似度，与第，个源信号的重构信号有较强的相异度。这里把两个信号

矢量夹角的余弦函数

吒=D(‘(f)，乃(f))= ，‘歹=1，⋯，N (6．18)

作为两个向量相似度(或相异度)的度量。本文所用两个信源号的相异度为0．0024，

说明两信源可视为独立的。若能精确的分离出源信号，则以吒为元素的矩阵D为

广义置换矩阵。因此可用[12】中的性能指标(PI)

丹=如哉_1]+绻
)
一1 l (6．19)

1

来刻画算法的性能，PI越小，即第f个源信号与其重构信号的相似性越强，与第歹

个源信号的重构信号的相似性越弱，说明该算法的性能越好。

下面给出所提算法与不同的解尺度模糊算法的性能比较，第一个算法是基于

最小畸变原理[221的方法，第二个算法是分裂语谱【l刀方法，由于分裂语谱方法把每

个阵列都分离出两个信号，故在每个阵列上得到不同性能指标，本文所提算法是

在分裂语谱法的基础上，利用多信道信号增强方法重构源信号，图6．5是源信号、

混合信号与用后处理增强方法重构的信号的语谱图(不影响直观效果，这里只给

出其中两个混合信号的语谱图)。

图6．6是用分裂语谱方法得到的6个分离信号的语谱图，如图6．6中箭头所示，
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图6．5源信号、混合信号与后处理方法重构的信号的语谱圈

很显然由于排列模糊导致一个信语谱中含有另一信号的部分语谱，而图6 5中用后

处理方法增强的语音信号则没有出现这个问题，说明本文提出的后处理方法明显

改善了分离结果。另外通过主观听取重构的语音信号，同样会发现未经后处理得

到的分离信号中还会混杂着另一源信号的声音，而经后处理得到的分离信号则是

较为纯净的语音。从图6 7可见，在不同信噪比下，本章所提算法的性能指标明显

优于上述两种算法。

§6．5本章小结

频域盲源分离方法利用短时傅立叶变换把时域卷积混合盲分离问题转换为多

个频域瞬时混合盲分离问题。此类方法可利用现有的瞬时混台盲源分离算法对各

个频率分离问题进行独立处理。一方面大大降低了运算量，另一方面便于参考借

鉴性能优越的瞬时混合盲分离算法。然而要想得到满意的分离结果，所有的频域

盲分离算法都必须解决盲源分离问题固有主要问题：1)分离出的信号是源信号的滤
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图6．6分裂语谱法得到分离信号的语谱图

图67不同信噪比下的性能指标
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波；2)部分频率点处盲源分离方法失效；3)无法精确解决排列和尺度模糊问题，

这样分离出的信号中会泄露进其余的信号分量，影响分离性能。

本章提出一种基于多信道信号增强的频域后处理方法。本该方法有机结合盲

源分离技术与阵列处理技术，既可充分利用空域信息，又无需增加其它先验假设。

首先在频域盲源分离方法中利用语谱分裂技术得到MxN个分离信号，可视为得到

Ⅳ个单输入多输出(SIMO)系统，泄露进该信号的其它信号分量可以视为干扰信号，

然后分别用基于传递函数比和广义旁瓣相消结构频域多信道语音增强方法重构出

各个语音信号，仿真结果表明该算法具有良好的性能，由语谱图可以说明本章提

出的基于多信道信号增强的频域盲源分离后处理方法明显改善了排列不确定问

题。另外通过主观听取重构的语音信号，同样会发现未经后处理得到的分离信号

中还会混杂着另一源信号的声音。此外，其它有效的多信道后处理方法有待于进

一步研究，如根据噪声分量和干扰分量的强弱分别进行噪声对消或干扰抑制等。
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§7．1本文内容总结

本论文对非平稳环境中的盲源分离问题进行了探索性研究。这里“非平稳’’

有两重含义，第一，源信号是非平稳信号；第二传输信道是非平稳的，即混合矩

阵是动态变化的。本文重点研究混合矩阵发生突变的情形，提出了利用自适应参

数的不同在线算法跟踪时变环境。此外还研究了数目未知的语音信号瞬时混合的

盲源分离问题及语音信号卷积混合频域算法中的后处理方法，主要内容可概括如

下：

1．首先提出一种变步长、变动量项因子的自然梯度算法实现源信号瞬时混合

的盲分离。在后向传播(BP)算法的启发下，我们在自然梯度的学习过程中引入动量

项以加快收敛速度，同时可以改善自然梯度算法的稳定性。然后，在分离模型中

引入一个合适的测度函数来控制步长和动量项因子，由此得到的变步长f变动量

项因子的自然梯度算法非常适合解决时变环境下的盲源分离问题。与经典的自然

梯度算法及其它改进的自然梯度算法相比，即使在信源个数很多的情况下，自适

应修正的自然梯度算法有更快的收敛速度和更好的稳态精确性，当混合矩阵突变

或信号功率突变时自适应修正的自然梯度算法依然有较好的跟踪能力。一此外，我

们结合自然梯度和非线性主分量分析提出了一种块递归的盲源分离方法，构造出

按块递归更新的矩阵方程， 然后用QR分解和回代法求解该矩阵方程得到最优分

离矩阵。与已有递归型盲源分离算法相比，所提方法适于实时处理且遗忘因子的

选择相对简单，与其它块处理算法相比有较快的初始收敛速度。

2．针对混合矩阵发生突变的情况，提出一种基于时变遗忘因子递归广义特征

分解的非白源盲分离算法。首先给出一种协方差矩阵的逆矩阵和互相关矩阵乘积

的递归更新方程，具有较低的计算复杂度，广义特征向量的估计经由近似幂迭代

法和压缩处理在线实现，得到的在线算法可以避免同时估计协方差矩阵及其逆矩

阵。为跟踪混合矩阵的突然变化，提出一种新颖的基于广义特征向量的在线决策

规则，可以判别混合矩阵是否发生突变，从而利用变遗忘因子的递归广义特征分

解算法改善在线盲源分离算法的性能，利用生物信号进行仿真的实验结果表明所

提在线决策规则可以准确跟踪混合矩阵的突然变化，所用交遗忘因子的算法既能

获得较好的跟踪能力又能得到精确的稳态性能。

3．充分利用语音信号的非平稳特性，对于数目未知的语音信号瞬时混合的盲

分离问题，在实现信号数目检测的同时完成信号的盲分离，并可克服盲提取问题

雷达信号处理国家重点实验室



110 非平稳环境中的盲源分离算法研究

中先提取出的信源性能好而后提取出的信源性能差的缺点。首先利用递归广义特

征分解在线估计的对应于最大广义特征值的广义特征向量，由向量的相似度定义

平均相似度用以拟合信道互扰性能曲线，并根据平均相似度曲线提取出“高相似

度区间簟近似“分离区间”。然后进一步提取分离性能较好的“高相似度区间"

并剔除部分“混合区间J=，得到“高分离度区间’’。然后利用多阶段聚类的方法

确定源信号的数目，同时实现信号的盲分离或提取。仿真实现表明当信源数目适

中时所提算法可以精确的估计出信源数目，发生错误估计或漏估信号的概率较低，

并且用估计性能最好的广义特征向量作为分离向量，从而获得分离性能最好的语

音信号。

4．针对现有卷积混合盲源分离的频域方法存在的问题，即恢复出的信号是源

信号和一个未知的滤波器的卷积，且由于部分频率点处盲源分离方法的失效和无

法精确解决排列和尺度模糊问题，分离出的信号中会泄露进其余的信号分量，影

响分离性能。提出一种基于多信道语音增强的频域盲源分离后处理方法以消除空

间干扰和背景噪声。该方法有机结合盲源分离技术与阵列处理技术，既可充分利

用空域信息，又无需增加其它先验假设。首先在频域盲源分离方法中利用语谱分

裂技术得到MxN个分离信号，可视为多输入多输出(MIMO)混合系统分裂成Ⅳ个

单输入多输出(SIMO)系统，泄露进该信号的其它信号分量可以视为干扰信号，然

后分别用频域多信道信号增强方法重构出各个语音信号，以消除不同信源间的空

间干扰和环境噪声。仿真结果表明基于多信道信号增强的后处理算法可以弥补由

于排列模糊导致算法分离性能下降使得语音信号质量受损的情况。

§7．2工作展望

在过去的近30年内，盲源分离问题的研究已经取得了长足的进步，在理论研

究方面己经得到了有意义的结果，并且提出了许多有效的算法。但是，盲分离技

术在实际的信号分离问题中的应用，则还需要进行大量艰苦的深入研究，也只有

在盲源分离算法能够在信号处理领域得到较广泛的实际应用之后，才能实现盲源

分离问题研究的真正意义。作者拟提出以下几个方面作为未来的研究方向以供探

讨：

1．弱信号检测和分离研究问题

在复杂电磁背景中，观测信号为大量信号的混合，且信源数目未知，而弱信

号往往携带有我们需要的信息。在信源数目很多的情况下，目前的并行盲源分离

算法性能会严重退化。而在盲提取问题中，所提取信号的质量由于压缩处理的误

差累积往往随着提取顺序下降。此外通常采用观测数据矩阵的奇异值分解和协方

差矩阵的特征值分解来估计信源数目。在动态的环境中，需要在线算法跟踪环境
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的变化。因此，在信源数目未知的信号分离问题中，对弱信号的检测与分离就成

为我们需要解决的一个难题。

2．低信噪比情况下的在线盲源分离问题

当前的在线盲源分离算法通常不考虑噪声，或者假定噪声非常小，以致可以

忽略不计。但在实际应用中，观测信号总要受噪声的污染，某些情况下噪声还比

较大，甚至强于信号。因此对噪声，尤其是对色噪声的抑制方法的研究是必须考

虑的又一个难题，这个问题不解决，在线盲源分离的应用范围将受很大的影响。

3．多信源卷积混合盲源分离问题

频率置换问题是解决频域盲源分离问题的最大障碍，且目前大多算法是在两

信源情况下才能取得好的分离性能，因此研究两个以上语音信号卷积混合盲分离

的频率置换问题，该问题被认为是盲源分离技术实用化道路上所必须完成的艰巨

任务。为了在混响环境中分离出混合的语音信号，必须克服盲源分离技术和宽带

阵列处理技术各自固有的缺点，将盲源分离技术和宽带阵列处理技术的优点有机

结合起来，研究适合于非平稳噪声环境的语音增强方案，实现多个语音信号的分

离，降低所提出算法的计算复杂性，增强算法的稳健性和实用性。

4．欠定卷积混合盲源分离问题

目前研究欠定盲语音分离问题的算法，大都是利用语音信号在时频域中的稀

疏特性，基于稀疏分量分析和聚类算法实现信号的分离，但是在实际环境中，语

音信号在时频域中的稀疏特性并不是总是成立，在某些时频点出并不是只有一个

语音信号存在，因此需要进一步利用语音特性、人类听觉感知特性及先进的聚类

技术设计有效的欠定盲源分离算法并尽可能消除音乐噪声。
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