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R K FMEF LT ABSTRACT

Robust Adaptive Beamforming Algorithm

ABSTRACT

Adaptive beamforming has found numerous applications in radar, sonar,
seismology, microphone array speech processing, and, more recently, in
wireless communications. In particular, the development of robust adaptive
beamforming spans over three decades.

The performance of adaptive beamforming methods is known to degrade
severely in the presence of even small mismatches between the actual and
presumed array responses to the desired signal. Such mismatches may
frequently occur in practical situations because of violation of underlying
assumptions on the environment, sources, or sensor array. Therefore, robust
approaches to adaptive beamforming appear to be of primary importance in
these cases.

The researches in the paper focus on array signal processing and robust
adaptive beamforming methods. To solve the problems of practical situations,
some researches are as follows:

The performance of the recursive least squares (RLS) algorithm deérades
in the presence of even slight mismatches and small training sample size. On
the basis of the conventional RLS algorithm, the paper develops a novel
robust RLS algorithm against the signal steering vector mismatches and small
training sample size. Simulation results demonstrate a visible performance
gain of the proposed robust RLS algorithm.

The paper makes some researches on least-mean-square (LMS) algorithm,
On the basis of the constrained-LMS algorithm, the paper proposes a robust
constrained-LMS (RCLMS) algorithm. RCLMS algorithm provides excellent

robustness improvements. Computer simulations show good performances.

Keywords: adaptive beamforming, DOA estimation, robust adaptive beamforming

algorithm, RLS algorithm, constrained-LMS algorithm
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Fig.1.2 Basic adaptive array structure with known desired signal
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55 2R M 6,,..0, BL K B K M50 5 3 & a@),..a6,), f#it
MUSICI BIgg % BESPRITPME BB 3. MAIHHKNERILRER N
_ 03 | W a(6,)P

WAR W,
He, oo WITHERFSHBEIR, W, v ANKNBENE, R, =Enou” ()
ATHMMEFRIHEZEE, HNEHFEN

Wi = £ R ,a(6,)

SNR, <ala” (6,)R;\a(6,)=SNR, (2.1)

(2.2
@ B RUUA PR TE 5 2%
WARSHEMURREE LA
La{X(0) = f,(X() = rfﬁlz_| o IXO-Asia(B) QX (0-Fs(on(e)] (2.3)
S VIR RE e PRIATE 37F £ A
R.a(6,) (2.4)

“ aF (8)R,1a6,)
HT RN EES w,, B H, B KRR 5 R A28 th T LU Kb
P55 TR MR L.
@ BIMBFTFERREHE
ZERERBEBRTBE MM FER e RELHE, PMEAHEIRE



KK AL F a3 B figE M4 SRR AR R
e() M E X

e(t) = B,(0)s, (N -W' X (&) (2.5)
BRGENm e BB/ RERS, MTRAHAR
Wise = R.\_‘.:rxd = R:E{X(‘)ﬂ;(t)so(t)} (2.6)

BWES pos0. i=L. DRTHXE, WEANETHRAT —HH®
mER, wmrsimw:
WMSE“-“"'—Ti;l—_R:a
1+a”(6,)R,,a(8,)
FEXMIERT, WS T 156 B R R W, e LL— M LEEE,
LLEM AR LR R BRETERA M DOA BREHEF L T
HERE. A &HBRFHOMGETEL, TRENIRAENRE XOHR
W 51} 6 % 16 B a(6,),...,a(0,) B4 ¥ B, R R R, B 4h v (B 5 5 0 F BoR

@, Q2.7

N

R =~y x.x! (2.8)
N

R, =R, -d}a(6)a"(8,) (2.9)

RETHRAR DOA BREREENGA: HTHEBEHELE, FE
B H M DOA fofhit; BEREFIFRMEE, AN &TEQREHLER
B MTHERAE DOA BHMBRERMAMAENEE (REHEET
Wy TSP REREHE .

Q) ETFSHEFEHHREREE
WA EAE S d) TR B, B B I BRTE B R B R R 4 () B
¥ % #, Wiener Hopf /7] L3 3], B Wiener Hopf /572
Wose = Rty (2.10)
1 = E{X()d(1)} (2.11)
W, 7 CL i /N 38 07 2 LMS 81 B8 B 4 b PR 4 I RO B DMIERTE

U FERREENS A ARERITRRST W DOA Bt AHFE
MEMEFIRE: TERACESHAAERE,: FHAETHAEN, KEH
HEMMESHRBERE .

() ERREAEE

SUMBERERERCHER R, PPEFRSHTE. HERREER
FTREETHR E, TREETARAGSEHRNEBRE S AR KHIMERE
2, Ritol.

MFALES, BAREXEFPHAHANGES, ESHAISHNH
ERMFREEREREN, FERERCON. EAGEESNRERH LS



FAL KA AT X Fo¥ s B SRERLTE
EEE, BATPRES, REMBEENRMNEEERE. DRERADN
HERESHAETHE (WERRENERERME), XRERRE AR
HEUEHEEER: EHRAMNAKNRESASHBEERER (mEH, 4R
FRH. RS SEENESOHEEANGEHER (WHEEE Toeplitz
EWE), WHRAABEHERRER. BREFZARRABAEEERY,
ENARETRAMEERE, WRETHSNER. BELHN—IHF
MAEREE CMA, BHEHEETENRNEFTREAT I HHENSL
ESPES. HTERREFTEINNBEANERS, FIHARRELD
MR R, BRETRIRBREF N EREE,

ERREREEARS: AREEANE AREREIRTH DOA
RIREFIR G : B R REE .,

2.1.2 B A0 R A #R

(1) Bartlett ¥ T Rk 4%

Bartlett i K % i 2% £ £ fuf B o Fourier ¥ 0 B S FE U BB 1 —
MERES . MTERLABRER, REEEERE RS EMAY
FEAMEEWMAGTIREK. BREATRNGESESELE LEBR Y
hERN, BHEKESH

X({®) = a(@)s(®)+n() (2.12)
He, TAREAR
a{@) £[1,e7,..., e/ S (2.13)
AP
¢:—kdcosém——§-cosa=—zzfdcm9 (2.14)

T e ) i o 0 R KA D R T R
max £ (W X(OXY (W} = max W E{X(OX" (O} W

= max {E|s(r)|’ W a@) +o? \|W'[’} (2.15)
EEREFE o —EHBRT, R R %

e, B -1, RREBRAE Y
W " a(@) = [W]-jajcosa =/Lcosa {2.18)

L, « RNABZENRA. 2Ra=0, BB BT RAER, NREK.
U B mim &N



F b K SR F AR L & ppaMaM eRBERAF K

w,, =20 ___a0) 2.17
L Ja" (8)a(®) (217)

K, W, K 4R BF & Bartlett S B EXHES .

WRAREW, TRBA—ATREER E5REBENENESR
A, ML, BRMNEABTFLESESHELT EFERNER (BWRE
#=#H) B, UEFEMNEENARENRERESA-E.

X

PHF:WE};:‘RWBF :?j}M (2-18)
a” (@a(d)
H _
1& H
R=—2 %, (2.19)
k=1

WHRFRTMWefE, THERANELR, B3 Bartlett ¥ RE R
) DA n) B Wy o
(2) Capon W ol 2§

Capon BEHMAEBEHRENHFELHEEN (MVDR, minimum
variance distortion less response) R MR B. EAREMERFLERKRAF0
FHRIMAEAFRA RO ENR D, BXEHEAE “ERN T o LB
SYE” RE. ARERTH |

n}yinW"RW H wha(@)=1 (2.20)

Hep, a@)hIEHF ARG ORE. REKRKRY, £

J=%W”RW+A[1»W”¢(6)] (2.21)
EdR AR RTER/NENE
ar
S = RW - 2a(6)=0 (2.22)
JUES:
W = ARa(8) (2.23)

T W¥a(8) =a" (O)R Aa(@® =1, N
1
A= G)R'a(9)

AT B A R, B W, i

(2.24)



R RFH > FaRL Fo¥ Qs sREALS %

w, - Kl
T d OR a(d)

(2.25)

e, EE A
Pc,m:w“l_——
& Q)R 'a(®)
Lol -or Eoo b fF MK, WEEFRDOE, EAGTRE, Kk
SHEMAERESAT AR,

22 MEEHE
2.2.1 |/MEFELMS K&

1 LMS HEBEHENRERINEENNANRSEZ, EXEnH
FRUWATRAEHAMNE. BNNRBERERZIREN, ZHERL
MY LMS Bk, MAMKRARSRERRZREN, MREERZN
EHH LMS Bk,

1) 3ELR LMS B

Widrow and Hoff (1960) 8 H T —F#& R AR, X HIHAR S KB
WEIEMER A%, ST ERZ A Widrow-Hoff LMS Hik!', RMEE
RBRERRLHFEPHOBETEE. EREEFHFALA

W(n+1)y=Wn)+pX(m)[d(n) - X" ()W (n)] (2.27)
R, pMZHBREEE, AWENE, TURHEENNEE, HER
BECEREmE, mREERNHEETRRESEAR, HESFE

1
0 e 2.28
<p< (2.28)

(2.26)

Her, 4 Rr HBEAEEE.

BAHE IMS BEEXRFHEGFEMARNE, NSEEFS, XEH
FRETHLIABEE - NMHTERKECONINEFRIDEEREFF
) CDMA RETHAMGERERLH. ZEELRRSN, HEHR W
HEEEEEKRN, ZEEKSERE.

2) PHELEI B /D NLMS HiE

UHERESERINY LMS EENER, EBREARNERT -

MEHFEREEXNSE. £ bEAr, BENS

pln)= (2.29)

—
X¥(mx*(m



Fibk Mtk Bod niEAEABSEELT K
e, W RBR—AFE. XMEBREN2]-[171FEZHR, eBET &
FCE P TRAAF P EEEHEEXEETINTE. 58F
M FEEMEL, ZERERE EF RSB NE S B
. CER[18IXT K AEB B L NH BT T Wik

3) YWB /W CLMS B

—AHE R INAL B ow e Ay R B TPy

al)
a;

W(n+1)= P{W(n)— ug(W(m)}+ (2.30)

Hof, psz-%%—ﬂ&%@% W) e~ EB LSRG wmE

LR HEME W Rwe) KB TRAT, RBEEH, RBXE -
) b1 77 ) 1) B :
GEEREZWRE, BANRANBES - SERBBLIARESE, B
W (ma, =1, A LA R &M RA T &R R ERE
min W¥R W
W (2.31)
subject to CW = f
Hed, Cle,nenc]s FEU S £l o
A AR FETURIFBLRIDHER NN DR w, . BAKE
HMmEHFRET, B3

n'gnl"(W)=%W"R“W+ X (CHw - ) (2.32)
A (2.32)%F w K R B
vV, [(W)=R_W +C\ (2.33)
AKEETE, BIBEANNAE
W,, =~RICA (2.34)
BB HRFRENTHARIERSG, HH
C'W,,=f (2.35)
T
A=-{CYRJCT'F (2.36)
ERQ3IORARQRINBARBA M 1 &
W, =R.CIC"RCT'f (2.37)
ARBRIMNEBERERXERRA
W (k+1) = P[W(k)~ uR W (k)] + f (2.38)

Ko, pir-ccioyie?, phSH.



AR FHEFaitX FoF HESMIESRBARS %
2,22 BEEERKKIE DMI &k

GHILER R AR, M ERBEN LS KA EFIRE, MR,
[ PHEE T B 5 MR 5 0 WA R R B B, R B R

R, =% 2 X)X (i) (2.39)
F
R, =ﬁﬁ;d(i)X(i) (2.40)
HEEMRELARXA
W=R.R, (2.41)

HERMERE DMIFZEREHR DT LMS xR A FH, HE
HHRR. ZEEHER—NSEES.

223 iE#Em/ T3k RLS W%

HiERDZRRLS EEER MR ARG H R, AR, , ¥ H[25)F
[26], Mwr4§ 3|

B, =3rXOX" ) (2.42)
fn
R, = iy”"d(i}xw (2.43)

Heb, y ABERT, EB¥Bosys<t. BABKE KR T LSS @ EH
ERE, MNEEHARXN

W (n)=W(n-1)+qm)d(n)-W*(n-DX{n" (2.44)
Kt
- y Ry (n=1)X(n)
O e R B (- )X () (249)
it .
R (n) =y '[Ry(n-D)—g(m)X" ()R} (n~1)] (2.46)

s s Bk, BB R RLS MM SOK % By 7 2
IMS HZR— M HEBER, EER—-P i NWHETERN - 3255,



EREFREELEHT % HESHMNESLEELASE
224 16 CMA WL

(1) BAEHEEE
EHAL CMA BR—METFHRENBEREEREL, EMTHENER
FHREFET RBEIRMLBENEL, BR27]-28), EHHEREN

J(n) mi—fm WP -52Y)] (2.47)

Ko poRIEEH, ERFIEME LR 2, FHARNBIEM “CMA, ",
WREFIMERNENFESEE. dTHEREENRNRERELEY,
REEHERME, —BRABE FREZLETRNRE, HERLR N

Wik+D=W{ky-uv _F(&) {2.48)
p=1g=1 ’
iy = 2% o)l-1 2.49
e(k)= | (k)|sgnd3i =D (2.49)
p=L g=2
i) = 2(y (k) 2 2.50
e(k) = 2(y(k) ) (2.50)
p=2 qg=1
e(k) = 2y(kysgnlly (k) - 1) (2.51)
p=2g=2
e(k) =4y}l 1) (2.52)

HTRENSEERNNERESRSEELER, FEFEFRNE
Fk, mRSKED, MEHSEEKE: S5k, gEss %R,
BEgt, Agee BT —MAFRHAUABUEMB P RERT S, ZEEE
TaEFE EFLSKETF. B REREEHATY BB TR
MMERT EE, BEMREBRERAXSY

W(k+1)=[ XX X¢" (k) (2.53)

HTERT PRETFHES BIA-REBEETNERERS. |
HHEEER, BESHIBESESNEEEEML, B - REEEE
HERAREER &,

(2) BFENMEBRHPOEE

MEBRWRTUEHRSYRE-MEEAPE SR, EEEEGENE

-3



Fdk kB4 i L Fo® HEAEINESLEELATE
W TH, REFNEEEESES, AT TESEEQUAMETESHE
BASN, YEREEASESRAMEENARS ENBINRLRRK
EHEED, ENARTHREESESHREHR. ATEBDBEGOLR
R, GEREMHEANE, FREREEATXNE KBS S KRBT
R
A ZHEEEE
PHEEEERNHEEE SN SE A S RERA P E SN
— P, BITESANEEERRERABEANL - EENE SN HE
M-, FEEAERMAIERE - RRIT RS AERE., 28
—GEEEMEEERERE-MERHESEEE. TRENEENES
MW RIEEEMABREEPRE, RAEESETHABEMEAHERAT
THEEEETRELE, AZEFEERAPESHEF I BEE,
AN EREREPEERNSEER. 2REEHETEARARS
iy, B-BHRETHAREENERES.: E-B0RMBIEHE
ERENESHMNEAR. RIVFHEHL REBE R CMERLEE R,
CHRELRMELEAPEEHREES, NENBWRETRECEHE
WEBES, AER—F, MAXHEIERSHFEF AU FFKE
F,OREBERMTEEHLHER. kA, Z2HEHEENESHEY
EMERLE R, FENHMNERSEEEN T R RN ERERE
ERERHNE.
B, MR E AR E
EHEETURAATAEESRRNE, P eDREEFEREERE
BEx, SRERHES=W XHREBEW, RFSEMNFEEHALES
Wi, BRESEEERNERAFES I RPER” L, MASKNS
A S TS R, TR S RS, %
UMFEEEEFHSEER. SR EEEEHERILRER, HEHR
EERBHEENE, HB—RNUE ZYERATHIMERSESA A ENN
B, XEETFEAPHEREEFERRNEERE. BITERZENA
RzREFHEEBHBX.
C. &7 Givens ZRMEH P EREE
GESRATEFEEEENTE, SERHEHERAFFSHAE,
FPERARFIINEREEB I TRBRHIFSTFEE L, REEESTE
G R Givens BREMMEA LA ESHaEEY. Sk, aFr&E A
PrHERERYKN, ETANEES TSN ELRMETRM, HEE




FiLAFHAEFEHL 5% QEAMIETABARS R
FRETX - BETRA Givens BRABUETRIELHET, ATTER
MEMESORRT R, XSG AEEL SR, FRFHTAH,
EERANEN, BREEANE SEBRKMRRFITEE, EEHEY
MEHBEERBZANEXRERSE, ERFRE - PREFTZENNT
fE -
D. BFFSHAAGIHEAAERRER

HMHEREENEREPRE, SEREERATE-RPESE,
AREEFTURHEBBFES0ERA. REX-BH, RETET
EEHRBAGTOESA/ESERE. SRNEHE, B EEFERY
BREEBE-RHRESHEER. SEESMTHINRSESHREERN
B WA D ZREEEEES - RIERGE R R EEA KR
W, BE, AE-ZEERANREEPRUEXCHARSNBERA. &
W& P REEH A LR RS, BREEXENGELD R
HARGEEENEREREFNDE FRHAR D CRESFREANR
R A IF AT R 30k A7 R T T RE W ORIAR . XK T BT HE
BEAmSEER, AN, WEANTHRHAESEEFTREIOET. 5§
WHRMEREEEMAL, E-HERAREGSHN, HEMItEERER
KT, RERFEGRT, ZEHNTREFEHLHE
E. £EFPHESHSRAPERRE

7% CDMA BB RAT, EHCHFERIARYHGS, WETUEA
RETHESERAHAMEARTIRARF . ATEHOESBRERR
B, CMA HERERFHHNBERLEAES, MURNFTEIARE
BER, BMERMNTE-MAPRRELB XM, SR RATH A L
ABERPES, RANAPHBEGESHAEY F9. BRENAR
HHOMA RS TREPHPHA . IHERERIS N A TEXNRE
SHT4E, EREABOREBHMETZEAHA MRS, TUER
4% T B LA A 1R T TR

225 MEWMEAE

5K #R4rh . Madaline Rule T RYSEMEBEIEIA. SCHR[29)% %5 iR 8
ARAFHRAMXORERTTHR. XTHESFSENBREMENHN
M, W& E[301H[31].

LHEEEECAN, THA MRIIEESE. ERHEBER 45
Pt F ot




FoAb K AR i S Fo¥ HEAMIEELEARS &

-

tanh(x}» (2.54)

l+e™
BEEHF LN
W(n+1)=Win)~ ugW(n)) (2.55)
WP, wRBEDH, ewom)REGEFIRE we) 4% 857 % MSE #if £
V7 % B 6 R
SHAEARErmBITEHN, EREANS NS
Hmy=WH (X (n+1) (2.56)
X e gy YA 2R R B RS
#(n) = tanh(y(n)) (2.57)

E(m)=Fn)-r(n+1) {2.58)
HREFIBLE wn A X357 E MSE Mt E OB s L

HE(mE(n)

oW (n)
e SE(R)
w2£(s)—————aw( )
= 28(n )6£(ﬂ) ay(n)
y(n) BW (m)

g ()=

- 25(n)%%£-§X{n+]) (2.59)

T D RIRZE Ay 18 F ac(n)/ by R 25(m)/op(n) TT B 3

AS(R)

gW () = 2E(m)~——X(n +1) (2.60)

e, Aé(x)iﬁ‘:&?%Fﬁa’%&t%@fﬁwﬁﬁiﬁ%ﬁﬁa BRENEFHEE
yl

W(n+z}=W(n)—zy§(n}%3§X(n+§} ' (2.61)

REGS P HFEMETEERBERDN, B, 43XEEH

BT a2 BRI RAFEN, MRIT 8804 R k%

ARBERIE. REDKE, ZELARRBHEEYE, B4 THAU LR
ETHRRONEES.

2.3 BIsk7 1 DOA it 8%
% 45 B R Y HUBL Y (A0 Bartlett, Capon) 4 9% B e TREFIK K,

_24......



b K F A+ R B-% HpMaMi ARG &
BrRERER, RodEbmese, MAURFER. B A R0 FER
KB k. MUSIC &P, ESPRIT P48 4 91 % DOA it
R g SR

2.3.1 MUSIC B &

EENHEFRIIAEERE (Flw, BAFmfbd, ED LS
HRESHSHEET, EREENSHSE) BTCHSE MG FTHBEREY
S

X()=A@)s(t)+n(t) {2.62)

AT, XOe" RERFANEEHE, sOec™ BRI ESNRERE,
MaeC"" RRMEGEERE, 40)cc"™ BEH THASKRES M.

A(6) =[a(6),a(6,), -, a(0,)] (2.63)
B, a@)ec" BRBINMESSxnzHEHPR, BEe=1.06,.0,. %
A (2.62)1E LU F R % .
B 1: M>p, HXNTAR GEKF B a0) R MTH.
Bl 2: HEP=Es@s"O} TR, Brvsm.
BRI e BRHBEFRBREIGE, B Ee@)}=0, El@e' () =c1
Efe(né ()} =0 .

HTEETBEAEAREx, BANGBEEH%, B xomhFEE

B A1 5 R
R, = E{X()X" (1)} = AOYPA" (8)+o°T (2.64)
Ko, PHFAGESHAMXESR. EFWESERATRMHELEM, MprHh
AWK, NHAKTERETAGSMIHER,; FEEFESERIME, M
PR A, BERHEFRYE: EXRNEFSHEELSMEX, WehENA
MARE. HEE 1. 28, AOPA ONBID. T A0) AR P A
IEEFHEE, APAO)LREXFEEN, FUEM AP0 FTEH AT
E, HPE DN EESHXNERKEH. BEdHREIETE
R, =UZU+c’UUY A (2.65)
MHERER WRIEHEHLRHELETIXER:
A >0, i=1--,D
A=c? i=D+le, M
e, BEEL 4, FHUETFAOPAOZESTES 2, fthFE
R METCRHIEEY Ao, BAM-DN. hFEHEE R, T H %R
FHI A 220224, EFFRGRNIFEREN e e, e, ERH



Fab K B A 4 F b L FoF RRERMSETHEAAF S

RIERW, B MM ER P —HREETE., X
U, ={e, .65}

U,=lep, eyt

MF oMU, BT ERE R OFMEENT MRS LCRRER, #A

15 1iE {8 5E ST 0
R U =o'U,
FRu AFA(2.64), TH
R U, = A(@)YPA"(0)U, +o°U,
BEIL(2.66)F1(2.67), MK
A@)YPA" (YU, =0

(2.66)

(2.67)

(2.68)

M E via@paow, =0, HTPRERFEHRMN, Morr=-0B BT Hr=0, AT

LLTT 43 2
A*(B)U, =0

HERTE, EEAONEANINBERFAERIER, WTEHA

Ua@)=0, 0€{f,-.0,}
14
(W, Ua(8)=0, 6Gelf,.0,}

MTohBERE, L

"o vl

vt =[u, U"][U:‘}-I

13

UUl+U Uy =1

el 70 Ar ik A
a"(O)I-UUM)a(6)=0, 0Oe{f,,6,}

ZERd, MUSICEUHES SR,

1) HRAE W 7R 2 & B o0 48 B3O « (0 RAE T 7 25 R,

2) % R {E¥FIEE T s

D HWERMEBANGFIEEREE v, KUK ANBDMGIEE L,

n=M-D
YT
o _';( D12 VDy20" "y M)

52 A8 NI IE (71 B K ep.nep, ey - B IR S RE BE
U, =lep.p.p084]
4) B ] AL, (0

(2.69)

(2.70)

(2.71)

(2.72)

(2.73)

(2.74)

(2.75)

(2.76)

.77



FAb K F M F AR L Fo¥ HEARINVETRABEEAFTE

P =u—'1_T'_
2" (OU,U"a(8)
TR DARKERS N oRREE SRS [
5) HHESHAEREP
P=(A" A" A" (R, - c* D) A(A* 4)" (2.79)
ERP, AR AONHE.

(2.78)

2.3.2 ESPRIT %

FidE ESPRIT H iR —MAAREA TR TFRARMEIHESSHNT
V. Wi m X AR T B B T MO M IR ER TR BRSBTS
WRTEAEMASHEREEANARANUBHRER, DAIRILHFPL
FERwEEEFSEAFHEES, BATEIRIANNIRERGES
A R N

X0 = 2 5,(0a,(8,) +n,(1) (2.80)
k=1
D . N
71y =Y 5, (™% a,(8,) +n,, (1) (2.81)

k=1

Ref, o RTFEAANESHEOARFTE, BENTHEIMBLESRTA
=87
(1) = A@)s(t) +n,40) (2.82)
$(t) = AW@YRS(1) +n, (1) (2.83)
H
A®) =[a(6),a(8,),+,a(6,)]

sty =[s5,(1), 5, (OF
&= diag{ef'”"""““f°,...’efwwﬁnaufc}

n, (I) = [nxl(t), AL (t)}r
ny(t) = [ﬂ},f(t),‘ ] F’!M (r)]t’

S FhrERAREEBER, x.y0ecm B G 0§ N
Ay R H HHEE; sec™ A D MEEMARBES M &; $ <™y BE
ETAFHMEEE, BN ESET, T n0m0ec h MRS
.

G A EF B RS ), TSR RAHRER



FAL K F A+ F A L FoF AEEEFESAEAAS

()= Bgz] = As(t)+m,(0) (2.84)
i-|" _| 2.85
*[Aq:} %= ) (2.85)
BAEINERNE (W BEMHEXHER
R, =E{z(7" (1)} = AR_A" + 5%, (2.86)

B o<m, WR,L)H 2n-DABAMI UBEEETF o, M504 B
KT SCREAE 48 3 /82 £ D A6 4 1) 58 7 L Mg i — 4> 32 )

CE,=L,[e]"|e) (2.87)
HT RIEY=R4), BEE—NESTREETHL
E, = AT (2.88)
FH—F, BINEESAREHB I EEREIBR I E cc R
E,eC™, WITR
AR
BES
R{E,} = R{E,} = R{4)} (2.90)

HAE M EFKE—ANFIER, FLE, =(E EIMKND, XERFE
AR DR Fec™ WA T R
0=[E, |E,|F=EF +E,F,

= ATF, + AR TF, (2.91)
FIKRLIE, E, )M BTN, &X
¥S-F[F]" (2.92)
X292 AK(2.91), T3
ATY = APT = ATVYT' = A® (2.93)
e 4, WImTig 3|
THT' =9 (2.94)

Ak, vHAFEELRETeMMNATE, MrismEN v LT
I &

(w28



Fab K FMEFELX F=¥ SRR ASARETE
F=F EBHEREBHFNLITTHZE

FHEFEMEREGFRALE ENSEMI TERREERROE.
HT TR SERE . ST LR BTG R E RS, S FF RSB 6
BRRERY, MAAKNAMTURERAEKSBEENTHCN, Hik
MUREMN A HEERGFEREN T EFE. —REALTHEENER
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