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摘要

在已有的关于时滞系统研究的文献中，一方面，有关减小镇定控制与日”控制结论

保守性的方法有很多，但对于在具体情况下应该如何选择适当的方法还未有分析结果。

另一方面，在时滞参数未知情况下对时滞参数进行自适应控制的研究尚少，而且这些自

适应控制的方案往往需要对时滞参数估计值进行限制，还要事先求得很难估算的“调整

参数”，这些问题使得自适应控制方案的保守性较大、实用性较差。针对现有的时滞系

统研究中日”控制与自适应控制中存在的问题，基于以’'Descriptor-form”为基础的

Lyapunov．Krasovskii泛函方法，以线性矩阵不等式(LMI)为主要工具，讨论时滞系统

满足日。控制与自适应控制设计要求的各种反馈控制器的设计方法，全文主要由以下几

部分组成：

●首先介绍时滞系统的发展趋势、研究概况、在时滞系统的研究中所涉及到的一

些主要方法和工具。然后提出本文研究的一些主要问题和本文研究所需的一些准备知

识．

·针对带有状态时滞与输入时滞的时滞系统，当时滞参数精确已知时，基

于”Descriptor．form”的Lyapunov．Krasovskii泛函方法，对已有的保守性较小的带记忆的

镇定控制、胃。状态反馈控制的各种求解方法进行分析比较，对有问题的方法进行改进，

对在具体情况下基于’'Descriptor-form”的Lyapunov．Krasovskii泛函方法该如何选择适当

的求解方法以使得保守性较小、实用性较强进行了详细阐述；当时滞参数不能精确己知

时，针对已有的时滞相关型的对时滞参数的自适应状态反馈控制器，指出其在保守性，

实用性上的缺陷，进行了三步改进：首先使用基于’'Descriptor-form”的

Lyapunov．Krasovskii泛函方法，并用适当的放大方法提取时滞参数估计值，使得交叉项

放大次数减少，放大额度降低从而减小保守性；再针对已有方法中对时滞参数估计值的

限制、必须事先估计很难计算一“调整参数”这两个影响实用性的关键问题，首次提出

了一种新型的自适应状态反馈控制方案，通过引入一种新型的带记忆状态反馈控制器，

突破以往自适应控制必须让估计值下降的模式，使得对未知时滞参数的自适应律与其当

前值相关，从而解决了上述两个问题，大大增强实用性；最后，针对新型自适应控制方

案中存在的会引起“无记忆”状态反馈控制的问题，对新型自适应控制器进行了进一步

改进，加入两个事先可以确定的参数，使状态反馈控制始终能反映未知时滞参数，这样
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在时滞参数对系统影响较大的情况下也能成功的进行新型自适应控制，从而使得新型自

适应控制方案的适用范围得到扩展。这些都给时滞系统控制器的设计带来了很大的方

便．

●针对带有多个状态时滞与输入时滞以及上界与各滞后状态的范数相关的非线性

环节的时滞系统，在输入时滞参数及非线性环节的上界均未知的情况下，首次对输入时

滞参数、未知上界向量同时进行自适应控制。在状态反馈中用带记忆状态反馈控制实现

对输入时滞参数的新型自适应控制，而对未知上界向量实现新型自适应控制则是在状态

反馈增益中体现，这样就把新型自适应控制从时滞参数推广到了其它参数向量。

●针对带有状态时滞与输入时滞的线性时滞系统，当滞后常数不能精确已知时，

给出基于观测器的对时滞参数的新型自适应控制问题，在观测器中考虑滞后的作用，根

据已有的结论虽然从理论上说可以得到状态反馈控制器与观测器的符合分离性原理的

解，但在求解中往往正因为分离性原理而给观测器的求解带来保守性。此外，已有的结

论不仅有非时滞相关的保守性，而且在自适应律的实现上需要事先确定却又无法确定的

参数，对于这些问题，本文在观测器和输出反馈中均考虑滞后的作用，在求解时在采用

基于’'Descriptor-form”的Lyapunov．Krasovskii泛函方法之后，通过cone补线性化算法，

可以直接算出控制器与观测器的解，对时滞参数的新型自适应律充分利用了观测器状

态，从而真正可以实现。

●针对带有状态时滞与输入时滞以及分布时滞环节的线性时滞系统，对于符合“有

限时滞最普通的线性系统”特性的分布时滞环节，在带记忆状态反馈控制器中包含以分

布时滞参数为滞后常数的记忆项和分布时滞记忆项，给出了对该类系统日4控制的控制

器设计问题的解。当分布时滞参数不能精确已知时，在带记忆状态反馈控制器的记忆项

和分布时滞记忆项中都包含对未知分布时滞参数的估计项，在此基础上实现对分布时滞

参数的新型自适应控制．

本文对主要的设计方案进行了仿真研究。仿真结果表明，本文所给出的控制器设计

方案以及关于时滞参数的新型自适应控制方案均可以获得良好的控制效果。

关键词：时滞，基于’'Descriptor-form”的Lyapunov—Krasovskii泛函，线性矩阵不等

式，渐近稳定，日。控制，新型自适应控制，动态反馈控制，观测器，分布时滞
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Abstract

For the existing research literature of time-delay systems,on the one hand，although there

a∞many methods with regard to reducing conservatism to access the stability of time．delay

systems and to achieving the given H。performance index，there are few analysises about how

to choose appropriate app哪h among these methods under different circumstances．On the other
hand，some results have been brought forward about controller design with adaptation to

time-delay for time．delay systems with unknown consta／1【t t妇e．detays recently,however,some

limitation is forced on the estimation value of the unknown time．delay constant and seme

parameters，which can be obtained by fussy steps，are needed calculation to realize adaptive

strategy．As a result,much conservatism and many difficulties in realization arise．Aiming at

these problems above，using the Lyapunov-Krasovskii functional based on‘"descriptor form'’，this

dissertation devotes on the design of feedback controller for H4 control and adaptive control

for time-delay systems by using LMI’s．The main work of this dissertation consists of the

following parts：

The development about time-delay systems and general situation about their research ale

discussed first,and then the main methods and some tools，which will be used in this dissertation,

ere stated．Furthermore，the major problems，which are studied in this dissertation，are introduced．

Finally,some necessary preliminary results in this dissertation are given．

The existing stabilization controller and H”controller design oftime—delay systems，

mainly linear systems,with delayed state and input delay,which are derived viamemory

feedback and‘'descriptor form”based Lyapanov·Krasovskii functional，are compared and

analyzed in calculating ifthe delay constant can be known exactly,Some improvement has been

proposed，and appropriate methods have been summarized to obtain results less conservative and

more convenient under different circumstances．Ifthe delay constant is not precisely known，

three steps ofradical changes have been proposed，which aim at the problems in conservatism

and convenience ofconventional adaptive control in existence．First,by懈ing the

Lyapunov-Krasovskii functional based on“descriptor form”，the estimation value ofthe uuknown

lime．delay constarlt is obtained by appropriate weighting cross products,resulting in less

conservatism．Second,aiming at the two important problems ofexisting results，which are that

the estimation value ofthe unknown time．delay constant is limited to be larger than the true value

m
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ofthe unknowR time-delay constant and that all‘‘adjusting parameter'’is forced to be

calculated by fussy steps，a new type ofadaptive strategy is proposed．8y using a new type of

memory feedback control，the adaptive strategy is relative to the estimation value，so the

estimation value don’t need to always decrease during control course any longer and

‘‘adjusting parameter'’is unnecessary．Third,considering the new type ofmemory feedback

control。earl become memoryless feedback control，a furthermore improvement is proposed．

By selecting two certain parameters，the unknown delay parameter can always be reflected in

the memory state·feedback controller．In this way,the new type ofadaptive control Call be

used successfully when the unknown time-delay constant influences the system greatly,

bringing about more convenience about the design oftime-delay systems．

For a type of time-delay system with multi delayed states，unknown input delay,and
nonlinear uncertainty whose norm is bounded wjtl’respect to delayed states but the upper

bound is unknown，the new type of adaptive control is first given on the two kinds of

uninlown parameters。The delay·dependent feedback control，with adaptation to both the input

delay constant and the upperbound vector of the nonlinear uncertainty,reflects the estimation

ofinput delay constant in the delayed constant ofthe memory feedback,and the estimation of

the upper bound vector in the matrix ofthe memory feedback controller．So application ofthe

new type ofadaptive strategy has been extended from time-delay constants to vectors．

The design problem about observer-based dynamical output feedback controller for

linear time·delay system with state delay and mput delay is discussed if the delay constants

cannot be known exactly．Although the controller call satisfy the separation principle as the

observer l臻s the delay items．much conservatism arises in calculation by using the separation

principle．Moreover,other conservatism is inevitable became the delay-independent control

w88 used in existing results，and some parameters call’t be obtained，resulting in the

realization of the adaptive control unavailable．So the delayed items are contained both in the

observer and in the output controller in this dissertation。after using the Lyapunov·Krasovskii

functional based on“descriptor form"，the matrices of observer and output controller can be

calculated directly by means of cone complementarity linearization algorithm．Furthermore,

the observer state is made use ofin adaptive strategy,so the observer-based dynamical output
controller with adaptation to unkuown delay constants call be realized in practice．
nlc H。controller design of distributed time·delay systems with delayed state，input

delay,and the distributed part corresponding to“the most ordinary time—delay systems”，is

derivcd viamemory feedback controller．The past distributed information andthe PI memory
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fcedback ale all contained in the memory feedback controlla'．The new type of adaptive

control is proposed if the distributed time-delay constant is not known exactly,with the

estimation ofthe distributed time-delay constant in the memory feedback conuoller．

In this dissertation，simulations are made for major design schemes．Simulation results

show the effectiveness ofthe proposed approaches．

Key words：fime．delay systems，Lyapunov-Krasovskii functional based 011‘‘descriptor form”。

liIle缸mawix mequality(LMD，asymptotically stability,H。control，new type of adaptive

control，dynamical control，observer,distributed time-delay systems
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第一章绪论

1．1研究背景和意义

第一章绪论

在各类工业系统中，时滞现象是极其普遍的，如长管道进辩或皮带传输、极缓慢的

过程或复杂的在线分析仪等均存在时滞现象。此外，在许多大时间常数的系统，也常用

适当的小时间常数加纯滞后环节来近似，这些由于系统本身产生或者由于某种控制目的

故意引入的滞后系统都可以归结为时滞系统(time．delay systems)模型。一般地，一个

系统中原料或信息的传输也往往导致时滞现象的产生。因此，通信系统、传送系统、化

工过程系统、冶金过程系统、环境系统、电力系统等都是典型的时滞系统。根据系统本

身的特性，时滞通常可分为定常的与时变的、已知的与未知的、确定性的与随机的等几

种类型。

时滞的存在使得系统的分析和综合变得更加复杂和困难，同时时滞的存在也往往是

系统不稳定和系统性能变差的根源。但另一方面，由于某些控制目的的需要，人们会在

控制中故意引入滞后的作用，使得最终能够达到更加理想的控制效果。正是由于时滞系

统在实际中的大量存在，以及时滞系统分析和控制的困难性，使得时滞系统的分析和综

合一直是控制理论和控制工程领域中研究的一个热点问题。

在对时滞系统研究的早期，为了能比较清晰地研究，人们通常把实际的时滞系统用

简单的数学模型来表示，这样的数学模型通常为一个滞后型微分方程即泛函微分方程。

上世纪初一种特殊类型的滞后方程——积分微分方程，在不同的系统中被发现，并随之

引入了一套理论【“硼。之后，另一种特殊类型的滞后微分方程——差分微分方程，也得

到了关注和发展旧”。而带有滞后的控制过程首次在文献【17】中得到研究，从那以后，

有关时滞系统方面的研究报告不断涌现。其中1959年以前有关实时滞系统方面研究的

贡献主要集中在文献[18-20]qa，其中的相关型控制的理论对后来的研究具有历史意义．

随着对系统疗4控制问题研究的日臻完善，人们对时滞系统日4控制问题也越来越感兴

趣，参见文献[21．23]等，这主要是由于在工业控制中一般的系统都或多或少的含有时滞，

并且其研究方法与无时滞时不完全相同，因此同时是疗”控制闯题研究时滞系统更具有

实用价值。文献【24·26]通过早期一般的Lyapunov泛函方法，利用Riccati方程或线性矩阵

不等式LMI设计了时滞系统的胃4控制器。VladimirB．Kolmanovskii在[271中探讨了线性
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时滞系统如何制定Lyapunov-Krasovskii泛函来使系统稳定。而E．Fridman在文献[2sj中提

出的新型的基于’'Descriptor-form'’的Lyapunov．Krasovskii泛函方法可以说是为时滞系统

的研究开辟了一条新路，由于该种泛函方法所的结论的保守性较小、求解结果一般是线

性矩阵不等式的解，因此在此后短短五、六年问，大量的文献[29-41]等通过使用基

-于"Descriptor-form”的Lyapunov．Krasovskii泛函方法，利用线性矩阵不等式分别讨论了一

般线性时滞系统‘2缸3¨、分布时滞系统136．42,44-46]、非线性时滞系统137'43】的镇定问题、日”控

制问题【2叫J，以及自适应控制问题【35】等。此外，从频域的角度和泛函微分方程的解的角

度研究时滞系统也有一些成果iso-s4]，但是从这两个角度研究没有从时域角度直观，推导

较为繁琐，因此目前对时滞系统的研究还是以时域为主．

时滞系统的广泛存在，特别是在工程背景下对时滞的考虑是必不可少的，因此，随

着现代工业化程度的不断发展，对时滞系统的研究越来越受到国内外学者、工程实践人

员的关注，并被广泛地应用于航空航天、化学工程、机器人、医疗卫生、汽车工业等控

制中，在实践中积累了许多成功的经验。下面绘出一些时滞系统控制应用的实例，具体

说明时滞系统研究的理论意义和实际应用价值。

从来源上分析，在实际系统中主要存在着两种时滞现象：一种是系统本身固有的时

间滞后现象即系统的状态滞后，例如大型退火炉的炉温控制，从炉膛温度达到所要求的

设定值需要一定的滞后时间，这种滞后使系统本身所具有的。另一种是由构成实际系统

的装置(如控制器、执行器和测量元件等)引起的时滞即控制器、测量元件等执行时产

生的滞后。此外，有时为了达到某种控制目的而在实际系统中故意引入滞后的作用，如

室内温度控制就是这样一种类型的系统，如果不把滞后引入到这样的系统，恒温控制装

置就会连续不断的颤动。以下是一种属于第一种类型的简单时滞系统：

例1；考虑某种生物数量的变化情况，假设该生物分成年与非成年两种类型。用Ⅳ(f)表

示某一时刻的成年生物的密度，假设每一生物从出生到成年需h个单位时间，每一个成

年生物又以固定的速度口产生后代，并以固定的速率“死亡，每一新生生物的存活率为

p，记，=a护。那么关于N(t)数学模型可用如下动态方程来描述陋习

Ⅳ(f)=一／uN(t)+rN(，一^) (1．1)

N(t)的变化率不仅与当前状态有关，还与N(t)的过去状态有关。(1．1)显然是一个非常简

单的线性时滞系统。

而如下的例子可以说是第⋯类和第二类(有时为了控制效果也会含有第三类)的混

2
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合类型的时滞系统：

例2：由156]中可知在液体推进火箭压力发动机中，关于推进系统到爆炸膛的线性化模

型是一个分布时滞系统

I主(f)=互x(f)+五J(f一啊)+￡4(s)缸f+s)as+置w和)+岛“o一如)
{==col{Ctx，D12“) (1．2)

Ix(t)=O,Vt∈【一m觚{^，也，d}，o】
L

其中川)=∞f{五(f)屯(f)x3Ct)_(，)}，xj(t)，f=l，2，3分别是即时爆炸膛压力的相对

偏移量、电容逆流即时块和以稳定值发射推进的即时块比率，毛(f)是从稳定值供力的特

殊点上的即时压力偏移量和从稳定值发射力的两倍值之间的比率。其中的模型矩阵为

4=

p-I

O

-o．5 旦

(1-OJ

0

O O

0 O

o一南
1 l

Et E。

4=0，4= ，骂=

霹2[。古。。]，己=【1 0 0。】，D1：。1．其中的f是压力供给的分片长度，J
是航线惯量，E是航线弹性参数，p是稳态压力和稳态发射压力下降值之间的比率，p

是爆炸过程的压力指数。^、d表示系统各装置的响应滞后，岛表示各控制器、执行器、

检测装置在线辨识各数据并通过计算最后作用于该系统所造成的滞后。同理，

例3：在火箭燃烧的控制理论中，得到方程【轫

疗(，)+(1-n)u(t)+nu(t-r)=0 (1．3)

例4：在数理统计中，关于资本主义经济的周期性危机有过下述形式的方程158】

西(f)=au(t)+bu(t-r)+，(f) (1．4)

显然，经济规律起作用是需要一定时间的，而经济社会做出相应的反应产生经济现象也

是需要时间的．

化学反应中的例子：

例S：在适当的假定之下，下述方程(1．5)可以作为：(1)放射性同位素和示踪蛋白在生物

体内的分布问题【591(属于第一类型)，(2)化学工程中染色水通过若干管子循环时来自中

O

O

O

O

1一d

O

O

O

O

O

O

O
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o

O
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央贮槽的染料混合问题唧l，(3)一类运输调度问题㈨等的数学模型
Ⅳ

莺(f)=∑4x(t一‘) (1．5)
』lo

其中工∈R4为玎维向量函数，4都是r／×n矩阵，‘≥0，i=o，1，2，⋯，N，假设％=0。

由以上例子可以看出时滞系统在实际中是普遍存在的，因而对时滞系统的研究有着

非常广泛的意义。使系统稳定是控制系统中普遍的要求，而胃”控制则反映了系统在系

统含有不确定性因素或在外界干扰影响下仍能保持闭环系统稳定的特性，因此时滞系统

的日。控制研究更具有实用意义。另一方面，在实际中，时滞系统的时滞参数并不能确

切测量到的，而现有的大部分针对时滞参数不确切已知的情况多是找到时滞参数的稳定

界，而对时滞参数进行自适应控制的研究尚少，已有的自适应控制存在着保守性较大、

要事先确定的参数较难估算、对时滞参数估计值限制较强的缺点，因此怎样在时滞系统

的自适应控制、自适应胃。控制上有所突破，会给理论与实践带来重大而深远的意义。

1．2时滞系统的研究概况

有关时滞系统的研究问题一直受到控制界的广泛关注，并取得了丰硕的成果。无论

在工程实践还是理论研究上，处理时滞系统控制问题的方法也是多种多样的。目前关于

时滞系统的研究从分析的角度可分为两类：依赖于时滞的(delay-dependent)和不依赖

于时滞的(delay．independent)。有关不依赖于时滞的研究早在二十世纪初就已经开始，

有关这方面的研究成果己较为成熟，而关于依赖于时滞的研究直到二十世纪九十年代才

开始起步，现在正是广大学者关注的热点之一。对于有关时滞系统控制器设计方面的研

究同样也分为依赖于时滞和不依赖于时滞两种类型，对于依赖于时滞的控制器设计方

案，当滞后较小时具有较小的保守性，同样也是广大学者研究的热点之一。目前大家对

时滞系统的研究主要集中在有关稳定性、鲁棒性、日”特性、无记忆与带记忆的控制器

设计等方面，使用的工具主要有Riccati矩阵方程(或不等式)与线性矩阵不等式(LMl)。

特别是线性矩阵不等式的广泛应用，由于很多问题的求解都能化简为一个线性矩阵不等

式及软件matlab中的LIMIT具箱的方便使用，使得有关时滞系统的控制问题的研究得到

了飞速发展。
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1．2．1时滞系统的稳定性陋2l

稳定性最早起源于力学。一个刚体或一个力学系统具有某～平衡状态，在有微小的

干扰力作用下，这种平衡状态或者几乎保持，或者受到破坏，这就是稳定与不稳定的雏

形。稳定性的最早的～个原理是以Torricelli命名的：物体的重心处于最低位置的平衡是

稳定的。后来逐步发展到研究运动的稳定性。所谓运动，不仅仅局限于物体的运动，任

何事物的变化都是一种运动，都存在是否稳定的问题．因此运动稳定性的研究逐渐从力

学进入到更为广泛的各种实用的领域。

运动稳定性理论的奠基人是俄国学者李雅普诺夫(A．M．Y1只JI y H O

B 1857—1918)。是他首次给出了运动稳定性的精确定义，建立了运动稳定性一套严密的

理论．他创立了两个方法(李雅普诺夫第一、第二方法)，其中第二个价值最大、发展

最快，因为第二方法无需求出运动微分方程的通解——精确的或者近似的，而只要利用

一个函数(李雅普诺夫函数)，即可直接判定运动的稳定性。这一方法叫直接方法，我

们通常说的运动稳定性的理论，主要就是指的这种方法的理论。

在李雅普诺夫逝世以后，直接法的理论经过苏联等国学者的相继研究，到现在已有

了很大的发展。在理论上已经从原来的常微分方程发展到泛函微分方程、随机微分方程，

从有限维空间发展到无限维空间；在应用上，已经从离散系统发展到连续介质系统，从

力学领域发展到自控、机械、航空、航天、电力、化工、生态、经济、管理和系统工程

等多个领域。我国的运动稳定性研究是在50年代由秦元勋以及张学铭、徐淞庆等倡导下

开展起来的。白三十年代以来许多研究者在力学系统的稳定性、控制系统的稳定性、大

系统的稳定性以及基本理论等多个方面取得了突出的成绩。

迄今为止，关于滞后系统的稳定性判据根据与滞后信息的关系而大致分为两类：一

类是滞后无关型(delay—independent)稳定性判据，此结果在表述上不含有滞后参数，

即所获条件对于任意大小的时滞都适用，其形式比较简单，但对滞后参数较小的系统结

果比较保守；另一类是滞后相关型(delay—dependent)稳定性判据，此种方法的结果在

表述形式上明显含有涝后参数，即控制器的存在性依赖于时滞参数的约束，因而降低了

保守性，结果也比较精确，尤其当滞后参数较小时，它能给出较优的结果，缺点是结果

的形式比较复杂，计算也比较繁琐。

时滞系统的控制器根据控制器中是否含有滞后信息可以分为两类：一类是无记忆反

馈控制器，这类控制器是目前众多学者研究的零点，它在滞后对系统影响较小的情况下
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尤为有效，但对于滞后影响较大的系统有时就显得无能为力；另一类是带记忆状态反馈

控制器．有关这类控制器的研究目前闯律者较少，这类控制器可以控制一些无记忆控制

器无法控制的滞后对系统影响较大的系统，有关这方面的详细情况请参阅第三、五章。

对动态系统既可用输入输出关系描述，也可用状态空间描述，由此而定义系统的

外部稳定性与内部稳定性。内部稳定性通常是指在外部输入为零时系统状态的李雅普诺

夫稳定性。外部稳定性通常是指有界输入导致有界输出，BpaiBo稳定性。对于线性系统

而言，内部稳定性可推出外部稳定性，但外部稳定性只有系统可控可观时可推出内部稳

定性，即当系统可控可观时内部稳定性与外部稳定性是等价的。本文所研究的稳定性问

题都是内部稳定性，而日。控制则与外部稳定性问题有关(但本文仅限于系统满足日。性

能指标的研究)。

1．2．2基于“Descriptor form”的Lyapunov-Krasovskii泛函方法

由上节可知，李雅普诺夫第二方法所使用的Lyapunov泛函对于判定系统稳定起着重

要的作用。实际上，泛函的选取也决定了结论的保守性，因为根据李雅普诺夫第二方法，

在对泛函求导以后要使其为非正并且在除原点D之外在所有的轨线上等于零不成立来

判断系统是否稳定．在研究时滞系统稳定性时，泛函的求导会带来一些交叉项，要放大

这些交叉项来得到时滞相关型稳定判据，显然放大交叉项会带来结论的保守性，如何使

交叉项放大次数少、放大界小是近年来研究时滞系统的学者关注的热点。在此基础上，

以E．Fridman提出的基于“Descriptor form”的Lyapunov．Krasovskii泛函方法开始吸引

众多学者关注。

E．Fridman在文献【28】中提出的基于“Descriptor form”的Lyapunov·Krasovskii泛函

方法，通过“Descriptor form”在泛函求导时完全反映系统结构，并“集中”的放大了

原本分散的交叉项，放大的次数、放大的上界都大大降低，这就使结论的保守性有了本

质的突破。此后，不少专家开始关注在使用基于“Descriptor form”的Lyapunov·Krasovs“i

泛函方法后，该怎样计算控制矩阵而不影响保守性。首先，是对放大交叉项的方式的改

进，文献【63】和【64】都相继对常用【24】中的放大方式进行了缩小上界的改进，但由此引出

的控制矩阵的求解也增加了难度。已有的解决方法可分为两种：一种是文献[29，32】中所

使用的调整参数法，129】中的方法是让放大过程中产生的矩阵与泛函原有的二次型矩阵

之间呈线性关系，而[321则是让体现“Descriptor form”的附加矩阵与泛函原有的二次型

6



第一章绪论

矩阵之间呈线性关系，这些线性关系都通过在仿真中调整参数来确定，给计算带来了简

便但有一定保守性；另一种是文献【34】和【33】中所使用的通过cone补线性化算法来计算

控制矩阵的方法，这种方法避免了前一种方法要设定线性关系带来的保守性。但要通过

一定次数的迭代来得到一个LMI的优化问题的解，迭代次数并不能很快确定，有可能

会造成在相当长一段时间内找不到解的结果(参阅第三章)。

为了避免放大交叉项，从根本上解决保守性问题，文献【65】提出了一种通过在泛函

求导时附加两个矩阵来反映系统结构、同时不放大任何交叉项的方法，这种方法在单时

滞系统的稳定界问题上可达到最小的保守性，但要求解控制矩阵时同样面临着上面使用

“Descriptor form”的Lyapunov-Krasovskii泛函方法基础上的两种求解方式的选择。对

于多时滞系统，文本的研究将表明这种在处理单时滞系统时能取得最小保守性的方法在

遇到多时滞参数时求解控制器时计算将会更加复杂繁琐(参见第三章)．

1．2．3时滞系统的月4控制问题脚’

在控制工程中人们最感兴趣的主要问题之一就是如何设计一个反馈控制律使得系

统是渐近稳定的，且尽可能减少干扰输入、系统参数不确定性等对闭环系统的影响，解

决这一问题的行之有效的办法之一就是日。控制方法。

日”控制理论起源于文献[66】(1981)，Zames在【66】中利用频域方法研究了线性系

统的嚣‘控制问题，他首次用明确的数学语言播述了基于经典设计理论的优化设计问题。

他提出了用传递函数阵的日4范数来记述这种优化指标。假设传递函数阵G(s)为s右半

平面上解析的有理函数阵。定义

0G<dl。；sup&-'[G(joJ)]
m

其中仃i(·)表示矩阵的最大奇异值，即孑(G)={五一(G‘G)r，G’为G的转置共轭阵，五h
为最大特征值。性能指标定义为

‘，=iRfllG<*)ll。

Zames提出了使上式定义的性能指标，最小的问题，但是没有能给出行之有效的解法。

从那以后，众多学者投身于有关日。优化设计理论的研究。十多年前人们曾怀疑能

否求得这种设计的一般解，而今天，研究者们不仅已经提出了多种求解方法，而且已形

成了较为完整的理论体系‘铷，使得日”控制理论得到了迅猛发展。从1981年Z,ames提出
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片‘控制思想至今，日。控制理论的研究主流大致可分为三大阶段从1981年到1984年

为止为第一阶段。在此阶段，人们把在控制系统内部稳定的控制器集合中寻求一个使传

递函数矩阵的Ⅳ。范数最小的解的问题【67-70]，通过稳定化控制嚣的Youla参数化变换成模

型匹配或一般距离问题，然后再将其变换为Nehari阍题来求解。设计是基于传递函数矩

阵的(虽然计算时也采用状态控间描述)，其中代表性工作是1984年Golver等人提出的

所谓“1984方法【73l”；到1988年为止为第二阶段，在此期间Ⅳ。控制产生了突破。此时

人们不是采用输入输出传递函数矩阵的描述，而是直接在状态空间描述上进行(虽然日。

优化设计指标本身是基于输入输出描述的)。此类方法不仅设计过程简单，计算量小，

而且所求得的控制器的阶次较低、有明显结构特性。Doyle等人在[71】(1989年)中利

用状态空间方法研究了准优化H。控制问题，这可以认为是线性系统日。控制问题研究

中的一个重要里程碑，他们证明了嚣。设计问题的解可以通过解两个适当的代数RicⅪati

方程得到，该论文的发表标志着日。控制理论的成熟一这种解法的证明是建立在状态
空阔理论之上的，迄今为止，胃4设计方法主要依赖于这种解法；从1989年至今为第三

阶段，是日。控制理论的完善与推广时期．当时Doyle等人只给出了日”控制的“2-硒ccati”

方程的解，而没有给出具体的推导过程。1988年之后的几年中出现了系统的推导方法。

其中之一就是日”控制的纯时域的解法出现，包括微分对策方法174】和极大值原理方程

闱。这两种方法不仅可以解决线性时不变系统的Ⅳ。控制问题，还可以用来处理时变系

统、分布参数系统、非线性系统、奇异摄动系统等。从日。控制思想来看，应用微分对

策方法非常自然。日本学者木村英纪基于网络共轭化(Conjugation)黔概念，提出了证

明更为简洁的解法f761，这个解法后来被进一步完善和发展。不仅如此，这些设计理论的

开发者们还积极同美国111e Ma山Works公司合作，开发了M棚，^B控制软件包(Control
T001)，使舅。控制理论真正成为实用的工程设计理论。

日4理论最初是针对设计控制器在保证闭环系统各回路稳定的条件下使相对于噪声

干扰的输出取极小的问题而建立起来的一种优化方法【吲。进一步研究表明，含一个未建

模动态的鲁棒控制问题、模型匹配问题、跟踪问题以及加权灵敏度问题等都可以转化为

标准日9控制问题[73】，因而日。问题提出后引起了控制界的极大兴趣．经过研究人员十

多年的努力，片。控制理论获得了令人瞩目的发展，逐步形成了自己完整的一套理论体

系，成为分析和设计不确定系统的强有力的工具和控制理论的重要组成部分，已经对并

且还将对控制理论和应用的发展产生举足轻重的影响．

S
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日‘方法有几个特点：I)尽管它回到了输入输出模型，但仍保留了状态空间方法中

某些计算上的优点：2)设计者可以在很大程度上控制由系统产生的频率响应的形状，

这使该方法对工程界很有吸引力；3)许多控制问题都可以统一于标准日。控制问题，如

灵敏度极小化问题、鲁棒镇定问题、混合灵敏度优化问题、跟踪问题、模型匹配问题等

均可归于标准日。问题m．日。控制理论已被尝试应用于交流调整系统、倒立摆以及空

间飞行器的姿态控制中，其有效性已得到越来越多的证实。因此，理论较好的解决了具

有非结构式未建模动态系统的鲁棒分析及综合等问题。

Ⅳ4控制目前的研究热点主要有如下几方面：(1)离散系统日”控制理论的研究；(2)

非线性系统的日”控制：(3)／-／。控制各种算法之间的关系及进一步发展；(4)／-／4控制

理论的应用。

1．2．4时滞系统的自适应控制问题

由1．2_l节可知，时滞相关型控制在时滞参数较小时能取得保守性较小的结论，而

带记忆控制又能在时滞对系统影响较大的情况下能比无记忆控制更能保证系统稳定。因

此，在实践中，时滞参数已知会给控制带来很大便利，但事实上，在很多实际情况下时

滞参数往往不能精确已知或测量(有时仅知道时滞参数的上下界)，这就给实现带记忆

控制、时滞相关型判据造成了困难。目前很多针对时滞参数不确定的时滞系统的研究只

是找出稳定界，而没有进行自适应控制㈣，因此只能进行无记忆控制。而对于带记忆控

制器的设计，一般地，如果时滞参数的上界已知，在泛函求导过程中，可通过放大得到

与时滞参数上界相关的判据。比如文献【48】中就充分利用不确定时滞参数本身及其导数

的上界，对泛函求导后得到的LMI进行了放大，得到的结果比非时滞相关型具有较小的

保守性，但其采用的基于“削减方法”的带记忆控制需要对系统矩阵与时滞之间的关系

进行限制，适用范围较小。

1998年文献[781q"通过用时滞参数的一个估计值来代替原来的未知时滞量，实现了

一种对具有未知时滞参数的系统的带记忆控制，然而这种控制器的存在性与滞后常数估

计的准确程度有关，同样也具有一定的局限性。之后，2001年在文献【79】中首次中提出

了一种对时滞参数的自适应控制方案，基于LMI方法，采用无记忆与带记忆的时滞相

关型复合状态反馈控制，其中记忆反馈中的时滞量为实际量的实时估计值，这就使得对

时滞系统设计带记忆反馈控制时不必已知时滞常数的精确值。但是，这种自适应控制还

9
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不完善，有时甚至难以实现。这是因为如下的原因：第一，在泛函求导后过程中，为保

证系统稳定，不得不限制时滞参数的实时估计值要保持不小于其真实值；第二，为了保

证这一限制能在控制过程中一直成立，必须事先估算一个很难计算的“调整常数”，从

【79】中可以看出估算这个“调整常数”的过程虽然写的比较清楚但其中还是有不能事先

知道的参数；第三，从推导过程中可以看出为得到自适应律，必须把含有时滞参数估计

值的二次型项全部放大转换为以时滞参数实时估计值与其真实值之差为系数的二次型

项，在这个过程中放大了多次不等式，这影响了最终结果的保守性；第四，在所要求的

LMI中，存在若干个需要事先确定的正定矩阵，在所提供的实例中并没有说明这些矩阵

是怎样得到的。因此这种对时滞参数的自适应控制虽然对在时滞参数未知的情况下引入

带记忆控制作了本质上的突破，但是还不成熟，实用性较差。

2002年，文献【80】对一类不确定多时滞非线性系统进行了自适应日”鲁棒控制，这

类系统的非线性不确定项满足范数有界。而且某一不确定项的范数上界与以和该不确定

项相关的时滞参数为时滞量的状态的范数成线性关系，但这个线性常数未知，由于是多

时滞系统，因此各不确定项的上界系数组成一个未知向量，要对这个向量进行自适应日。

鲁棒控制还属首次。虽然在这篇文献中，没有限制未知向量的实时估计值必须不小于其

真实值，也不用估算“调整常数”，但仍存在需要事先确定某些未知矩阵、参数，及所

的结论为非时滞相关型等问题影响到了保守性、实用性。

当系统状态不可测且时滞参数未知时，就要进行基于观测器的对时滞参数自适应控

制，文献[8H及[s21中分别给出了时滞相关型、非时滞相关型的自适应控制，但都存在

和[791中相同的问题。而文献【83】中实现的对未知时滞参数的自适应控制虽然不存在

【19．82】中的问题，但却对控制输入却有着严格的限制——必须是关于输入时滞参数的已

知函数，而且必须在线得到滞后的输入，这在输入时滞量未知的情况下是不能实现的。

因此对时滞系统的自适应控制的研究热点有如下几个方面：(1)如何突破对未知时

滞参数估计值的限制，当然也不需要估算保证这一限制一直成立的“调整常数”；(2)

如何不出现需要事先确定的未知矩阵、参数；(3)如何对除时滞参数以外的未知量也能

进行自适应控制，像[801中的对非线性不确定项上界的自适应控制，如果同时出现未知

时滞参数和未知不确定项，该怎样同时对两种未知量进行自适应控制；(4)对于【8l，82】

等文献中的复杂情况；系统状态不可测且时滞参数未知，此时该如何进行基于观测器的

自适应控制．
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1．2．5线性矩阵不等式

用砌ccati方程方法研究线性时滞系统的文献很多l弘嘲，但应用时普遍都遇到了参数

调整的困难，丽线性矩阵不等式(LMI)方法完全可以避免这～困难【8^明，这正是应用

线性矩阵不等式的优点之一．

所谓LMI方法是指：把系统镇定、何。控制等问题的可解性归结为LMI的可解性。

并利用LMI的解构造出控制器。LMI方法具有如下优势：

(1)具有有效的有限维凸优化算法，如内点算法，其良好的数值特性与Riccati方程方法

相190,9”；

(2)可以统一处理若干不同的控制问题，如它把镇定、L控制、日”控制、协方差上界

控制、LQG控制等问题归入统一的框架嗍；

(3)对一些控制问题、可以设计出所有满足稳定性和其他性能要求的控制器，为多目标

混合控制问题的研究提供了便利【93舯l{

(4)便于设计出固定的阶次和固定结构的控制器。有利于控制器的降阶和结构简化190,9sl。

这些特点使LMI方法处理包括胃。控制问题在内的一些控制问题的能力超过了人们

熟知的其它方法。更重要的是，LMI方法可以统一处理奇异和非奇异日。控制问题。自

九十年代以来，LMI舞／论已成为现代控制理论中最为活跃和最被关注的方向之一190脚l。

大约在100多年前，线性矩阵不等式就已经用来分析动态系统的稳定性。Lyapunov

在他的代表作中发表了著名的Lyapunov理论，指出微分方程：

o

÷x(f)=ax(t) (1。6)
at

稳定(即所有的轨线都趋于零)的充分条件为存在正定矩阵P满足：

47P+朋<0 (1．7)

我们称(1．6)为关于，的Lyaptmov不等式，这实际上就是线性矩阵不等式的一种特殊情

况，而且可以看成是线性矩阵不等式的一个重要的里程碑。

第二个重要的里程碑发生在上世纪40年代。Lur’e，Postnikov以及苏联其他的一些

科学家们首次把Lyapunov方法运用到了实际问题中，如控制工程中，尤其是在控制器

含有非线性的控制稳定性分析中，尽管他们没有明确提出LMI，但在他们的稳定性准则

中实际上已经含有LMIs的形式。

第三个重大突破发生在60年代初期，Yakubovich，Popov，Kalam以及其他的一些
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研究者们，利用我们现在称之为正实性引理成功简化TLMIs的解，导出TPopov准则，

Tsypkin准则以及其他准则。其中Yaktlbovich在这一方面做了很大的贡献【9‘蚓。

近年来，由于控制问题求解的复杂性，往往只能得到一个非线性的矩阵不等式，为

了能得到可以求解的LMI会不得不对某些矩阵进行限制，从而给结论带来了保守性，对

此L．E．Glmoui等研究者提出了一种“圆锥补线性化”算法【卿，它能将非凸可行解问题

转换成一个线性的求最小值的问题。虽然求解过程复杂了一些，但保守性可以得到保证，

因此也逐步被一些研究者所运用【33j41。因此，现在线性矩阵不等式已经成为了控制界的

热点和难点之一。

1．3主要工作

本文的主要工作是研究时滞系统的稳定性与镇定问题、日4控制问题、滞后常数的

自适应控制问题、线性时滞系统基于观测器的动态输出反馈控制器的设计问题以及分布

时滞系统的耳。控制问题。安排如下：

第一章概述了研究的背景、时滞系统的研究意义、问题的提出以及有关时滞系统的

研究概况；

第二章主要介绍了本文研究所需的一些准备知识以及后面各章在证明过程中需要

用到的一些引理；

第三章讨论了带有状态时滞与输入时滞的时滞系统，当时滞参数精确已知时，基

于"Descriptor-form”的Lyapunov．Krasovskii泛函方法，对已有的保守性较小的带记忆的

镇定控制、嚣。状态反馈控制的各种求解方法进行分析比较，对有问题的方法进行改进，

对在具体情况下基于”Descriptor-form”的Lyapunov-Krasovskii泛函方法该如何选择适当

的求解方法以使得保守性较小、实用性较强进行了详细阐述；

第四章当时滞参数不能精确已知时，针对已有的时滞相关型的对时滞参数的自适应

状态反馈控制器，指出其在保守性、实用性上的缺陷，进行了第一步改进：使用基

于，'I)escriptor-form”的Lyapunov．Krasovskii泛函方法，并用适当的放大方法提取时滞参

数估计值，使得交叉项放大次数减少，放大额度降低从而减小保守性；

第五章对时滞参数的自适应控制进行第二步改进：针对已有方法中对时滞参数估计

值的限制、必须事先估计很难计算一“调整参数”这两个影响实用性的关键问题，首次

提出了一种新型的自适应状态反馈控制方案，通过引入一种新型的带记忆状态反馈控制

12
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器，突破以往自适应控制必须让估计值下降的模式，使得对未知时滞参数的自适应律与

其当前值相关，从而解决了上述两个问题，大大增强实用性。接着进一步改进：针对新

型自适应控制方案中存在的会引起“无记忆”状态反馈控制的问题，对新型自适应控制

器进行了进一步改进，加入两个事先可以确定的参数，使状态反馈控制始终能反映未知

时滞参数。这样在时滞参数对系统影响较大的情况下也能成功的进行新型自适应控制，

从而使得新型自适应控制方案的适用范围得到扩展。这些都给时滞系统控制器的设计带

来了很大的方便。

第六章针对带有多个状态时滞与输入时滞以及上界与状态时滞相关的非线性环节

的时滞系统，在输入时滞参数及非线性环节的上界均未知的情况下，首次对输入时滞参

数、未知上界向量同时进行自适应控制。在状态反馈中用带记忆状态反馈控制实现对输

入时滞参数的新型自适应控制，而对未知上界向量实现新型自适应控制则是在状态反馈

增益中体现，这样就把新型自适应控制从时滞参数推广到了其它参数向量。

第七章针对带有状态时滞与输入时滞的线性时滞系统，当滞后常数不能精确已知

时，给出基于观测器的对时滞参数的新型自适应控制问题，在观铡器中考虑滞后的作用，

根据已有的结论虽然从理论上说可以得到状态反馈控制器与观测器的符合分离性原理

的解，但在求解中往往正因为分离性原理而给观测器的求解带来保守性。此外，已有的

结论不仅有非时滞相关的保守性，而且在自适应律的实现上需要事先确定却又无法确定

的参数，对于这些问题，本文在观测器和输出反馈中均考虑滞后的作用，在求解时在采

用基于’'Descriptor-form”的Lyapunov．Krasovskii泛函方法之后，通过COne补线性化算法，

可以直接算出控制器与观测器的解，对时滞参数的新型自适应律充分利用了观测器状

态，从而真正可以实现。

第八章针对带有状态时滞与输入时滞以及分布时滞环节的线性时滞系统，对于符合

“有限时滞最普通的线性系统”特性的分布时滞环节，在带记忆状态反馈控制器中包含

以分布时滞参数为滞后参数的记忆项和分布时滞记忆项，给出了对该类系统日4控制的

控制器设计问题的解。当分布时滞参数不能精确已知时，在带记忆状态反馈控制器的记

忆项和分布时滞记忆项中都包含对未知分布时滞参数的估计项，在此基础上实现对分布

时滞参数的新型自适应控制。

第九章为全文总结，并提出了一些有待解决的问题。

本文的大部分结果已发表于国内的一些有关刊物与会议论文集或已被录用待发表。
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第二章预备知识

本章将介绍日。范数及控制以及Lyapunov稳定性的一些基本概念和后面几章要用

到的一些引理，其目的是为以后的讨论作准备。

2．1 H”范数的基本概念

2．1．1范数

设石是复数域CJ：线性空问，若在工上定义实值函数，(力：善一R满足下列条件：

(1)，(x)20，Vx∈X(正性)l

(2)f(ax)=Iall(x)，垤eX，V口∈R(齐次性)#

(3)，O+力≤，(∞+，(力，Vx，Y∈X(三角不等式)；

(4)f(x)=0当且仅当x=0(正性)，

iJJ称f(x)为x的范数，记为纠I．

2．1．2奇异值

设AeC“”．根据线性代数基本知识可知，脚x所方阵A’A和栉×拧方阵以r均为非负

定阵。且有：
‘

rank(A’A)；rank(AA‘)=ranlr．4

设rankA=r，则A‘A和以‘有个r相同的正特征值，即：

．—≈(爿。一)=五(—t彳‘)>0，，=l，2，⋯，r

而∥A的其余m一，个特征值和JA‘的玎一，个特征值均为零。

定义：称√^为A的非零奇异值(s．mg∞l盯value)，其中^为A’A的特征值，记为

q=√^，f=l，2，⋯，，·

在不至于引起混淆的前提下，称矾为爿的奇异值。
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2．1．3日。范数

的函数矩阵G(s)全体所构成的宅间I)o定义上式左端的值为G(s)的范数，也记为IIG(s)8。。

这里孑(4)表示A的最大奇异值：

烈爿)=max{五【A+彳】)“2(2．2)

由复变函数极大模原理，(2．1)实际上等价于

IIG(s)虬=sup盯帐{G(J国)) (2．3)

{j缨。似卅眦)，“o)～ (2．4)
l：(f)=Cx(t)

⋯7

其中x(t)∈R”为状态向量，以，)∈舻为干扰输入向量，z(，)ER’为系统受控输出向量，

A，B，C为具有适当维数的矩阵。令G(s)=c(sx一爿)“B为线性系统(2．4)的传递函数

矩阵。若A稳定，我们可以用两种方法给出G(s)的日。范数的定义。

①频域法：G(砖的嚣”范数flG(砖L可定义为：

lIG<s>ll。=sup两G(s)】=sup研G(／珊)】

②时域法：用零初始条件时输出能量与输入能量之比来表示G(s)的日。范数，即：

№)lL：max』：：zr(t)z(t)dt]”

可以证明，对于线性时不变系统而言，上述两种关于G(s)的日。范数是等价的。

由于上述第二种定义仅与厶诱导范数有关，所以它容易推广到时滞系统与非线性系统的

15
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2．2日4控制问题

各种日。控制问题都可以化成如图2．1所示的标准问题，图中w、z、”和Y均为向

量值信号：

图2．1

'．，是惕维外部输入信号，一般包括指令(参考信号)，干扰或传感器噪声。z是也维受

控输出，通常包括跟踪误差，调节误差，执行机构输出。材是ra维控制输入信号。Y是

P维量测输出信号，通常指传感器输出及指令信号等。

图中G和K分别表示广义受控装置和控制器。前者是系统的给定部分，而控制器足

有待设计。假设G0)为系统的传递函数矩阵，则系统的日”控制的标准框架或标准问题

是：求一真有理的矩阵足，使得闭环系统稳定，且闭环系统的圩”范数极小．

对于如下线性时不变系统；

{i??2出(‘)+马w(f)+岛“(‘)’石(0)20 (2．5)
lz(f)=Cx(t)+Du(t)

、。

它的日。控制问题等价于寻找控制器：

“(f)=Kx(O (2．6)

使得(2．5)的闭环系统

1 馏警嬲竭螂
的z+岛，稳定且w—z的H。范数(或厶诱导范数)极小。

(2．7)
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2．3 Lyapunov-Krasovski i稳定性

2．3．1时滞系统稳定性定义

考虑一个不受外力作用的系统。系统的描述方程为

鬣x(to篙端e巾，0， ㈣
I +口)=矿(口)，∈【—，，】

、。。吖

其中／(五，f)ER”、≯(DER4，0∈【一r，0】为有界连续的向量函数。方程(2．8)的解可表示

为

y(f)=x(to，以力=x,(to，≯) (2．9)

它是一个关于0e[-r，0】的函数，依赖于初始时刻fo及fo时刻的函数≯，其中

薯=“f+力，e∈卜，，o】。假定f(o，t)=O对tER都成立，如果对每个to∈R，￡>0，都存

在一个实数a(c，to)>0，使由矿Ep(o，回的任意初态函数矿出发的运动对所有时间t∈R

满足x,(to，夕)efl(O,s)，那么则称系统(2．8)的解函数x=O是稳定的。其中

p(O，占)={xlaist(x，o)≤占1，TfUdist(xI，而)，五、X2 eC，表示函数五、而之间最小的距离。

上述定义中，如果a(e，to)与初始时刻to的选择无关，即为万(占)，则称(2．8)的零解

是一致稳定的。若对V占>0存在6(岛)，且存在T(to，占，妒)使当II#ll-<b(to)时对

vt≥to+r(to，占，≯)满足五(fo，矿)Ep(o，s)，则(2．8)的零解是吸引的。进一步说，如果零解

是稳定的、吸引的，则称(2．8)的零解是渐近稳定的，其中㈣=sup l舻(口)8。
蹦一，，01

2，3．2 Lyapunov-grasovskii稳定性基本原理

对于不受外力作用的动态系统(2．8)，设“(j)、“曲，J∈R+为严格单调增加的k类

函数，W：R+_R+，若存在一个RxC—R的连续泛函v(t，妒)使得

“q矿(o)1)≤矿(f’矿)≤刈庐(o)I) (2．10)

v(t，妒)s一∥qJ矿(o)11) (2．1 1)

则系统(2．8)的零解是一致稳定的，若当s>0时W(s)>0，则(2．8)的零解是一致渐近

稳定的。关于泛函的构造，对于最简单的例子——单时滞系统

17
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瓤f)=出(f)+以x(t—f) (2．12)

最简单的Lyapunov泛函通常为

’ 一 ，

矿(‘)=瓤，)7—P“f)+上，j和+F)7Sx(t+g)dO (2·13)

现有结论证明，用(2．13)方式构造的Lyapunov泛函最后通常得到的是时滞无关型的解

【l矧，而上世纪50年代l渤sovs蚓提出并由Hale发展的Lyap啪ov．胁sovs蚓泛函方法则会
得到时滞相关型的解【]231。对于单时滞系统(2．12)，Lyapunov．Kmsovskii泛函可构造为

矿(‘)=工(f)7ex(t)+￡L并(毒)7Sx(善)d誊d8 (2．14)

2．4基本引理

引理2．1I刎：对于任意适当维数的矩阵工，J，，有

XfY+YtX董说XTX+∑YTy．可馐>0
口

与

引理2．2【63】：

引理2．31叫：

有

(2．16)

X7y+r7z≤X7PX+Y7P’’r，Vat>0 (2．17)

对于任意适当维数的向量a，6，正定矩阵z，及矩阵膨。有

也饥Ⅲ童邮+善。洌地] ㈣
对任意口∈R一，bER24，NER2删”，TER艘”，YeR4。h，Z∈R2雕2”，

掰Ⅳ口s『?
p

引理2．4【1∞1(schlIr补引理)：对于定义在尺”上的矩阵Q(x)；矿(功，

S(曲，现行矩阵不等式(LMr)：

隰翻>。
等价于：

胄(x)>0，Q(膏)一S(x)R一’(x)Sr(功>0

(2．19a)

(2．19b)

月(功=R7(曲以及

(2．20a)

口6—．．．．．．．．．．．L州z

，

r

O>一Ⅳ1Jr州习

一

旧．r，

咿●lJ

r●【
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j甄

Q(功>O，Ro)一∥缸)矿’O)S(工)>0 (2．20b)

引理2．5对于任意给定的常数∥≥口，V R。上的矩阵x(t)及正定矩阵Q>O，有

(t9x(t)dt)7Q(tax(t)dt)<(,O一口)rx(f)7Qx(t)dt (2．21)
一 ．一●t

证明根据引理2．1，有

(r“f)出)7Q(rx(f)廊)=r rxr(s)Qx(t)dtds

≤r r争以s)烈s)坝w)@(f)]dsdt=

旦j2 p(s)烈曲凼+p(r)Qx(t)at]=
(∥一口)po)Qx(t)dt 证毕

引理2．6Doll：对一时滞参数‘，假定其自适应律为；l(f)：12(a(f)一^)+q】坍，其中脚、

啊、q为非负常数，如取

啊=厢，q=2(质而一再) (2．22)

其中瓦为fI上下界之间的某一值，则当蟊趋于稳定时，其稳态值

^ ^ ^ 一

专(ao)=qfl+(f1一^)2=^·

证明由于对『I的自适应律为；。(，)：一2(；。(f)一啊)+口l】坍，显然；，+．(f)与三垒≥的差值会

越来越小，盎@)；型安鱼，可得

q毛@)+而@)一^)2=q兰笔旦+(三笔丑一^)2=4alh41-Oq2。如取
啊：质珥，q；2(质珥一瓦)即2(扛一ji)，姒(o。)：2啊．-oi：焉，而

口I r“,(oO+(r“,(oO-／Oz；垫生苴q+( 2==峄
：巫必：砰一j；i：；瓦+瓦：一瓦：：iA

一

●

因此t(。o)：q瓮(ao)+(；，(。o)一啊)2=^。 证毕

下面我们给出线性时滞系统滞后相关型与滞后无关型稳定性判据之间的关系。对于

如下线性时滞系统：

19
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it(t)=血(，)+以工p—f) (2·23)

这里x(t)E科是系统的状态，A，4∈R⋯为具有适当维数的常数矩阵。为了求得系统

(2．23)的滞后相关型控制器，人们通常都是通过等式

x(t—f)=并(f)一Io j(f+力凼J
-．r (2．24)^ 、 ，

2x(f)一j：[Ax(t+s)+Adx(t+s—f)】矗，

把系统(2．23)变换为如下形式

烈f)=(爿+磊)∞)一以￡【出o+s)+4算o+s—f)】凼 (2．25)

式(2．24)把具有离散滞后的时滞系统(2．23)变换为具有分布滞后的时滞系统(2．25)。根据

文献【104】可知时滞系统(2．25)L：：5原系统(2．23)相比，除了具有原时滞系统的所有特征值

外，对应于4的每一个特征值五都有一些附加的特征值，附加特征值满足如下结论

引理2．7[1041：(1)如果以的特征值为而且hTI(丑)≠0，f=l，2，⋯，腮。则对应于五的附加

特征值出现在虚轴上的充要条件是滞后常数满足

r=瓮铲一。搿拇·
其中么(五)表示丑(f-1,2，⋯，Ⅳ)的辐角。

(2)如果以的实特征值为丑>0。则对应于五的附加值出现在虚轴上的充要条件是滞

后常数满足

】

f=i

但如果4的实特征值为五<O，则无论滞后常数为何值，对应于丑的所有附加特征值都

不可能出现在虚轴上。

有引理2．7我们可以看出，时滞系统(2．16)与其变换后的系统(2．18)之间并不是等价

的，它们的稳定性只有当滞后常数充分小时才完全相同。

引理2．8[mI：假设Q(M)为对称矩阵，M、Ⅳ是互不依赖的矩阵，则存在一对称矩阵Ⅳ>O

使得如下矩阵不等式成立

‘，(M)’NU+UTCJ(凹)+Q(M)<0 (2．26)

当且仅当存在对称矩阵Z、J，，及一正常数使得X=口2Y。及下式成立

P：烈柳文My]>。 亿2力
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引理2．9对于积分式rK(口)d矗、r％@)d口有

r巧@)出+f驰)如=石=毒高r m一口)№)州卅％(历】d肋 (2．8)

证明由于左边rK@)da+f％(口)d扭=rK位)d口+f吒(f1)dfl
右边

而历l-丽e f№口)№)+@卅匕∽】d触

=en击№)+bl一_aV2(／3)ldpd口
=r暇@)+而Ii fK(刷用比=eK@)妇+f巧(脚
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第三章时滞系统的时滞参数稳定界与日m控制的具体方法选择

摘要

对于存在状态时滞与输入时滞的时滞系统，本章对已有的各种保守性较小的镇定方法进行比

较，对有问题的方法进行改进，主要通过基于’'Descriptor-form”的Lyapunov·Krasovskii泛函方法和

线性矩阵不等式方法(LMI)。在具体情况下分别就时滞参数稳定界与日。带记忆状态反馈控制器的

设计这两个问题，对如何选择适当的求解方法以使得结论的保守性较小、实用性较强进行了详细阐

述．最后给出一些例子加以说明如何达到“具体问题具体分析”．

3．1引言

众所周知，时滞现象普遍存在于实际的控制问题中，这往往是使系统的性能变差甚

至是造成系统不稳定的主要原因之一，因而对时滞系统的时滞参数稳定界的确定问题，

控制问题(包括镇定控制、Ⅳ。控制等)已引起了众多学者的关注

[2M-2932-34,42-46,63,64,65,102,103]。

目前，线性矩阵不等式方法已成为研究控制问题的有效方法之一。从众多文献中可

以看出，Lyapunov泛函的选取不仅决定着时滞系统的稳定性，而且对结论的保守性也起

着至关重要的作用，Lyapunov泛函从最初的最一般的二次型泛函或加了积分项的

Lyapunov．Krasovskii泛函【2”763，64·1021，到2001年开始兴起的基于，，Descriptor-form’’的

Lyapunov．Kr鹋ovsk“泛函方法(28j9J2。34】及与其类似的方法【槔拍·mj，到2005年提出的不用

放大任何不等式的Lyap岫ov泛函【65】，广大学者都在尝试如何选取适当的泛函使得在推导

过程中交叉项放大的次数少，放大的上界小以达到结论的保守性较小。对于最初的

Lyapunov泛函，要得到在小时滞情况下保守性较小的时滞相关型判据，就必须在推导过

程中对交叉项进行最高次数的放大(次数为系统状态方程中滞后状态的个数与状态导数

包含的项数之积，如果系统为输入时滞的且采用带记忆状态反馈控制则放大的次数更

高)，因此，该种方法得到的结论的保守性是最大的，已经逐步被淘汰。自从2001年

E．Fridman在【28】中提出了能够“一次集中放大交叉项”的基于’'Descriptor-form”的

Lyapunov—Krasovskii泛函方法，
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大量使用该种泛函的关于时滞系统的各种研究结果就不断涌现，就上文所述的时滞参数

稳定界的确定问题、镇定控制、Ⅳ。控制的问题，各学者并没有停滞不前，而是在此基

础上进一步探讨如何在计算过程中不添加保守性，充分发挥这种泛函的优越性。首先，

是对放大交叉项的方式的改进，P．park[631和Y．S．Moon|64l都相继对常用的Petersen I．＆刚

的放大方式进行了缩小上界的改进，但由此引出的控制矩阵的求解也增加了难度。已有

的解决方法可分为两种：一种是E．Fridman[2们、Shin KANNO{32]等人使用的调整参数法，

前者是让放大过程中产生的矩阵与泛函原有的二次型矩阵之间呈线性关系，后者是让体

现“Descriptor form”的附加矩阵与泛函原有的二次聋l矩阵之间呈线性关系，这些线性

关系都通过在仿真中调整参数来确定，给计算带来了简便但有一定保守性；另一种是高

惠军和Payam Naghshtabrizi分别在文献【34】和【33】中所使用的通过cone}["线性化算法来

计算控制矩阵的方法，这种方法避免了前一种方法要设定线性关系带来的保守性，但要

通过一定次数的迭代来得到一个LMI的优化问题的解，迭代次数并不能很快确定，有可

能会造成在相当长一段时间内找不到解的结果。就是对于徐胜元在2005年提出的不需

要放大任何交叉项的泛函方法【651，也只是在单时滞系统的稳定界确定上显示出了优越

性，对于多时滞系统是否还能做到不需要放大任何交叉项，对于时滞系统镇定控制、日4

控制的控制器的求解则在文献【12l】中通过积分变换及cone补线性化算法得到了相应解。

可以说，现有的关于时滞系统稳定界的确定问题、镇定控制、日”控制的问题的求解方

法有很多，各有其优点与缺点，如何改进这些方法的缺点，并在不同的情况下选择适当

的方法以使该种情况下的结论保守性较小、实用性较强是一个值得探讨的问题。

本章主要使用基于’'Descriptor-form”的L归punov-KfasovsJ(ii泛函方法，及线性矩阵不

等式方法，分别就时滞系统稳定界的确定，日”控制这两个问题的求解，对已有的方法

进行改进(主要是E．Fridman对于带记忆控制的“等价子系统”方法[291)，对在单(多)

时滞、系统维数高(低)、保守性要求强(弱)等不同情况下根据各种求解方法的优缺

点进行具体问题具体分析，从而克服了以往泛函方法选取的盲目性。最后给出若干个仿

真实例，说明本章给出的各种情况下相应适当方法的实用性。

3．2问题的描述

本章研究如F两类时滞系统：
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∽础(f)+善4(卜" (3．1)‘ }-l ‘，．1，

卜)2≯(f)，vte[-r，o】，f2掣妒}
其中t>0，i=l，⋯，Z为未知的正常数，4，l=1，⋯，Z为已知的具有适当维数的矩阵。

f膏(f)=出0)+4x(t—tO+Biw(t)+B2u(t-r2)
{：(f)=c《f)+D嘧(玲 (3．2)

【】心)=妒(f)，VtE【一f，o】，f=max{r,，f2)

其中《f)仨彤是状态向量，u(O∈舻为控制输入向量，w(t)ERm为干扰输入向量，

砸)∈R’为系统受控向量，A、4、马、岛、C、D为具有适当维数的矩阵，fI>O为系

统状态时滞常数，％)．0为系统输入时滞常数，妒为系统初始状态函数。

针对(3．1)研究的目的是：假定系统是状态可测的，求系统稳定的条件及时滞参数

t>0．i=1，⋯，，的稳定界。

针对(3，2)研究的目的是：如何设计一个时滞相关型状态反馈控制

甜O)=Kx(t)+局x(t—f1) (3．3)

其中墨、毛为待求的控制器增益矩阵，使得系统(3．1)是渐近稳定的，且满足《z0：<rllwll：

(其中I|．JJ：为厶范数)。

3．3主要结论

3．3．1单(多)时滞系统的稳定界问题——两种方案的比较与选择

对于问题一，首先考虑用【56】中不需要放大任何交叉项的泛函方法，在文献【12l】中，

该问题已通过引理2．9及[651中结论推导得到了如下结论(文献[1211中没有提到引理2．9，

不容易被理解)：

引理3．1对于线性时滞系统(3．1)，如果存在正定矩阵户、Q、五，i=I，⋯，，，及矩阵r、

形，f=1，⋯，f，使现行矩阵不等式LMI(3．4)成立，则系统(3．1)是渐近稳定的。

n；

n12 n13 n“

Ⅱ22Ⅱ2，n24
·
兀"0

· ·
n”

<O (3．4)
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其中 n。=PA+A7P+∑r+∑r7+∑QI，
15I 』lI IlI

n33=diag{-tIZl⋯一f，Z，)，

n。=[P4一I+％7⋯P4一‘+彤7]，兀。=卜『l五⋯一r，r】，

n。．=[f14’Zi⋯巧47乙]，n22=diag{--Q．一彤一彤7⋯一Q一彤一彤7)，

rfl彳ZI⋯巧群zf]
Ⅱ∞=diag{-rt％⋯—r，彤}，n“=I ； ‘． ； l。

I fI∥zl⋯ff∥乙I

引理3．1要求解1个维数为(3l+1)n的线性矩阵不等式(LMI)，共要求解41+1个未知矩

阵的可行解和f个未知参数t，i=l，⋯，，，这在系统时滞参数，个数较多时对求解的实时

性有很大的影响。其实，虽然引理3．1在推导的过程中没有放大交叉项，但是由于有这

么多未知变量要求解使得在它们适当的组合之下线性矩阵不等式(3．4)有可行解，因此不

一定对任何系统都是保守性最小的(有可能找不到适当的未知矩阵可行解的组合)。而

在[281中的结论虽然有一次集中放大不等式所带来的保守性，但它只要求解一个个维数

为，+2的LMI，所要求的未知矩阵数目仅为，+3。由此对于线性时滞系统(3．1)的时滞参

数稳定界问题，我们有如下结论：

①，=l即系统单时滞的情况，采用引理3．1；

②，>l即系统多时滞的情况，如要求所有时滞参数最大的稳定界，z数目较小且对实时

性要求不高，则采用引理3．1及【28】中的推论l，对两种结果进行比较后得到最大的时

滞稳定界；

③f>l，，数目较大或对实时性要求较高，尽量求解[281中的推论l来得到f=m．．哆{‘}。

3．3．2单(多)时滞系统的胃。控制问题一四种方案的比较与选择

对于单时滞的情况，由于(3．1)中f2=0，因此(3．2)g变NⅣ=岛墨JO一气)，取NN(3．1)

的泛函 y(薯)=K(薯)+K(薯)+巧(薯)

其中巧(薯)；x(f)’ex(f)，K(‘)=￡L，i@)7 ZI童似)dadfl，巧(‘)；L．x位)7Qlz@)da，而
要研究系统的H。特性，令初始值≯(f)=0，则有
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矗=r(zTz，2w7w)dt=r(zo一，2w7w+矿(‘触一y(而)
≤r(：o一，2W7w+矿(‘))西 (3．5)

=f((Cx+DKt石(f—f1))7(Cx+DK,xp—f1))一r2H，7w+矿(‘)瑚
五<O则能满足系统的嚣4特性要求，先考虑(3．4)的求导仍用【56】及【12l】中的不放

大交叉项的方法，再代入(3．5)可得

矗≤f妄L于(f，∥r(q)虱抽)d鼢<o (3．6)

其中彳(f，j)7=[地)7 x(t—r1)7童(J)7以f)7]，而r(f1)<o经过引理2．4化简可得一维

数为6玎的不等式f(1)<o，再对f(fI)(o两边同乘以矩阵幽喀{x X X J J j)，

其中X=户一，可得f(f1)<O等价于如下不等式：

t(r0=

rAX+XA’+霉+写7+磊(4z+县U)一耳+厩7一‘写 马 r,XA7 XC7

I · 一磊一厩一玩7 一fl厩0 『l(4x+岛u)7(Du)7
l · · 1z1 0 0 0

l · · + 节2I fI砰 ．0

I · · · + _|=|fzi‘X 0

【 · · · · · 一

(3．7)

其中写=羁z，磊=XQ。X．哌=川x，乏=XZ。x。U=Kx。由引理2．4可知(3．7)
成立包含了矿(‘)<0即系统闭环渐近稳定的解，因此可得如下定理：

定理3．1对于带输入的线性时滞系统(3．2)，且f2=o，如存在正定矩阵x、磊、互，及

矩阵薪，厩、U，满足LMI(3．7)成立，则在控制器(3．3)作用下，闭环系统(3．2)是渐近

稳定的，且系统的日”性能指标小于给定的界，，其中的控制器增益为墨=UX一·

da-Y(3．7)同时出现了乏与田1X，要让(3．7)成为一个可解的LMI·有三种方法：一
种是令乏=以，其中占为正常数可以在仿真过程中不断调整获得，但这会带来～定保守

性；第二种方法就是文献[1211中的--种非凸约束下的线性化方法(后面多时滞中会进行

讨论)，虽然能把原来的非线性矩阵不等式化为线性不等式并可以在一定时间内计算出

可行解，但也需要事先确定一非凸约束的常数，再加上还要事先确定算法的步数，这就

影响了实用性；第三种方法就是和【34】中一样，定义一新的正定矩阵j雷1X≥Mj，之后

可以不需要事先确定第二种方法中的非凸约束的常数，因此比第二种方法实用性强一

<O
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些，这样矩阵不等式(3．7)就变为求解如下LMIs：

f(f1)=

f4x+j“r+霹+写7+磊(4x+82uJ一霹+厩r —fl耳 局 ‘．翮7 XCr

I · 一互～厩一厩7 一fI厩0 fl(^x+县U)7(DU1)7
I · · 1乏 o o o

l · · ’ 吖27 fl群0

l ： ： ： ： 一学 三
(3．8a)

瞪和 ∞D

其中届=圻’，乏=彳1，牙=X-1)毛J[99]qa cone补线性化算法，原来的非凸可行性问

题(3．7)进一步变为如下包含LIVlI条件的非线性最小化问题：

(3．9妒(3．9a)，(3．9”=(3．9b)

[警主]≥。，[j主]≥。，[；妻]≥。 c，．9c，

tr(X2+M,届+互乏)=3n

算法步骤如下；

算法3．1

①选择一充分大的y的初值，使得(3．9)有可行解。令凡=，；

②找到满足(3．9WJ一组可行解(x，i，厉，UI，磊，乏，M．，届，乏，j)，令||}=0；

③解如下的LMI问题：满足(3．9)的raintr(x2‘十∥足+M厨÷+叫凰+互钟+露乏)，

得到的(x，乏，MI，皿，乏，j)为其第k+l组解；

④把第七+l组可行解及②中算得的(霉，厉，Ul，互)代入(3．7)，如(3．7)满足了，则，；y+口，

口为-,b常数，转而执行②；如(3．7)不满足，令k=k+1，如I<肌，m为一自然数，

则转而执行③，如k=研，则程序结束，可行解取k=脚一1组的可行解。

注3．1根据【99】中的结论，如果(3．9)的最小化问题的结果为3n，那么在得到使

trCX2+Mff,+乏五)=3撑成立的(U，Ⅳ)可行解后，可得到使系统闭环渐近稳定且满足

以，为耳。性能指标的要求的控制矩阵K=Ux～。但在实践中，要想让

tr(x2+M,fl,+乏乏)的最小值恰好等于3珂是非常困难的，因此该算法将(3．7)作为算法

是否完成的判别依据。

<O
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可以看出，在单时滞的情况下，上述方法虽然通过定理3．1能够在不放大交叉项的

基础上得到可行解，但为了把非凸问题转化为一个LMI问题，所用的com补线性化算

法中需要确定的执行步数m有可能会影响到实时性及日。指标，，的大小(如果脚取得不

够大，则有可能在达到最大的7之前提前停止运行程序从而影响结论的保守性；如果肼

取得太大，则有可能执行过多的步骤从而取得结果的实时性)．

对于多时滞系统，拿系统(3．2)来说，r2≠0，系统闭环状态方程变为

I膏(f)=出(D+4x(t一毛)+骂w(f)+岛墨x(t—tO+岛％x(t—fl—r2)
{z(f)；Cx(t)+DKtx(t)+DK2x(t—fI) (3．10)

’

I雄)=≯(fX Vf∈【—_，o要f=fI+毛

这样闭环状态方程中就有了3个时滞参数，y(五)中对应于每个时滞参数的相关项均再

增加对应于岛％(f一‘一f2)的相关项，为满足H。特性，-t与(3．5)-(3．9)类似，再由引理2．9

得到如下的矩阵不等式

五=去r E。L L乎瓴气渤岛厂F(r,r：,r3媳墨鼢岛汹鹂豳丞<o (3．11)

其中f(f)7=[x(f)7 x(t—q)7 x(t-r2)7 x(t-r07膏(置)7 i(s2)7 i(岛)7矿]，而经

过引理2．4化简可得r(『l，吒，毛)<0等价于一维数为lOn+n2+玛的不等式

Rfl，f2，f3)<0(3．12)，由此得到如下定理：

定理3．2对于线性时滞系统(3．2)，如果存在正定矩阵P、Q、互，f；1．⋯，Z，及矩阵嚣、

形，j=1，⋯，，，满足LMI(3．12)成立，则在控制器(3．3)作用下，闭环系统(3．2)是渐近稳

定的，且系统的日”性能指标小于给定的界，，。

<0 (3．12)

其中 亍。：PA+么rP+壹r+壹巧r+壹Q』，
ill fIl ill

f33=diag{-rIZI_z2_乙}，

亍12-[蹦一K+町匾一K+叼厦一墨+町]

似又‰c|；吣‘

C

—k—k％L
L

嬲蜘岫张
一r—r—r

一【_■一r

—r

—r
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r．，=【—fI巧一f2K—巧E】·

rl‘=[fl彳7z；吒47zj r3A723]，

f。=diag{-Q。一％一嘶7喝一％一砑一Q3一％一孵}，

『。=幽赡t—q嘭一吒％一q暇，，f“=[i曩茎曩差曩]，r”=[<喜7]，
f。=■耳一巧fl可]，互-一B2K,，互=岛％．

此可用文献【12l】中的方法：将(3．12)分解成引理2．8的形式，llp(3．12)等价于如下矩阵不

其中Q=f，f中的各项除了将f中对应于互，互的项变为零项外，其余项均与i=的相

同，N=diag{P flzl r2乙码Z3 D)，J=VG，U7=【U％U31，其中

旷=[譬麓”≥”麓”乏]，G=[譬譬B％2K。I嚣301：：：爱]，一，表
示第i个0。1的矩阵，瓦表示第f个0"的矩阵，W=[j。0州t。b，o邮。，)J，

--[o州，恍)厶。o。，]，叮；0州，。，吩)‘]·由引理2．8可得f<o成立当且

I彩掰：Q㈤歹似≯彬|>。 (，』5)

其中又=diag{X。⋯冠}， =diag{霉⋯霉}t算法步骤如下： ，

②找到(3．14)。(3．15)的一组可行解瓦、元，令，=1；

③令Z=丘．，Z=墨．I，通过求解下面的LMI问题找到蜀+。、霉“
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满足(3．14)，(3．15)的最小值问题mintrace(牙，F+．霭)；

④如果满足停止条件，退出。否则令．，=j+l，此时如，小于指定步数历则转到③执行；

如_，等于指定步数脚则适当增加口后转到②执行．通常以N=t／“j为停止条件。

从算法3．2可以看出，在多时滞情况下用该种方法计算是。控制矩阵，虽然保守性

能保持铰小，但算法中需要事先确定参数口，指定步数肌和算法3．1一样也要事先设定，

而且每次增加口的额度怎样才算适当并不清楚，因此给具体的实践造成了困难。此外，

由于未知矩阵数目较多，和前--d',节的分析一样：由于有这么多未知变量要求解使得在

它们适当的组合之下线性矩阵不等式(3．14)，(3．15)有可行解，因此不一定对任何系统都

是保守性最小的。由于单时滞的情况下使用算法3．1不需要事先确定口，可知在【56】不放

大交叉项方法的基础上再使用定理3．1及算法3．1，即用【99】中的CA)lie补线性化方法来

求解使系统闭环渐近稳定、且满足日。特性的控制矩阵，只有在单时滞，实时性要求低

的情况下才能充分发挥作用。

其次，我们考虑[341中的在使用基于’'descriptor form”的Lyapunov-Krasovskii泛函方

法基础上的时滞系统的日”控制器算法。对于带输入时滞的线性时滞系统(3．2)，所有基

于”descriptor form”的Lyapunov·Krasovskii泛函方法都要经过如下步骤：

令Jc(t)=灭D，则有

o=-y(t)4-(』4-4+B2K)x(f)+且w(f)一L,y(s)ds一垦墨L贝掌)嘶一垦K【。yo)as
(3．16)

其中K=KI 4-K2，并取系统的Lyapunov·Krasovskii泛函为

矿(‘，wr)=K(薯)+喜￡Ly(矿Qyo)asdO+喜L颤妒墨xo油 (3·17)

其中巧◇)=，Px，P、2、S均为正定矩阵，i=t，2，3。砟O)沿系统(3．16)的导数为
攻(f)=2x7砂

雌y7]雕
雌y7]∽

豳
《盈一二置。]_；}[驰如脚

(3．18)

其中j=彳+4+岛足，4=岛K，4=岛％，f，=f，+屯，令E；[：：]，乒=[吾主]，
矩阵日、B只需满足廊7=PE就可使吃(‘，M)与引入”descriptor form'’前相同，因此
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y(暑，嵋)牯系统(3．16)时导效为

岷'w，)娟Ⅵ)+喜{￡㈤协o’叫Ⅲ)协(f㈣】枷+
壹【z(f)rs工(f)．噬(f—fI)rs工(f一『f)】

代入(3．17)得 吹而，H)2瓤f)r曼。瓤f)+喜氇一喜Ly(护Yf2Y(护)船 (3·19)

考虑系统的H。特性，和(3．5)--样，可得

山=r(z_一，2"7w)dt<r((＆+OK,工(f)+D局x(f—f1))7(Cx+DKlx(t)+DK2x(t—r,D

一，2矿w+矿(薯)渺=r瞰矿亘oi(f)+喜仇一喜Ly(口厂Qy(p)d口弦
(3．20)

其中i(f)’=[，yr矿x(f一『1)7 x(t-r07颤f—f3)71，

量=

％(o=一2￡。[

墨j+j7彳+∑

，厂]，-[五0]“s，出，而Eo<0经过引理z．4变换后可得
墨，一丑+j，只r毋B o o 0(c+DK0r1

· ∑坦一只一巧

<0．

不同的地方主要是对交叉项rl，(t)放大形式的选择，及放大后该如何求解控制矩阵，这些

都关系到结论的保守性、实时性。一般有如下几种方法：

①放大形式采用引理2．1，由于(3．18)q。只要求只、最满足E矿=尼，而没有其他限制可

令11,=nj／n：P，B=lln2P(在之后的LMI求解中有X=p-‘=魏／心e-,1=l／n2巧1)，这样

不需要关于工(f一‘)7，，=l，2，3的项，要求解的矩阵数目较少，求解比较简便，目前用的

比较广泛【32j5，101，1051。但引理2．1及只=nt／n2P，只；1／nzP的限制会影响结论的保守性，

可以用于保守性要求不是特别高、实时性要求较高的情况。在后面几章的推导中基本上

都是采用这种方法，这里不再赘述。

o

o％o。_

O

0

O

O岛。

O

O

O岛。。

O

O墨。。。明以：：
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②放大形式采用引理z．3，对于矩阵声=[；主]在求解过程中令孕=尹1=[鲁耋]，由
于引理2．3中的(2．19b)，会同时出现磊乞_1磊、乏=z『1，对此可采用两种办法；一种是

令乏=蜀盆，这样会增加结论的保守性；另一种就是像本节(3．8)．(3．9)那样通过conc补线

性化算法将原来的非凸可行性问题变为包含LMI条件的非线性最小化问题。显然这样的

方法相对于上文中在使用【56】中不需要放大交叉项基础上再使用cone}F线性化算法，要求

的未知矩阵数目较少、维数较低，且引理2．3与整体求解互=尹‘使得结论保守性较小，

但同样具有执行步数m难以确定的问题，因此可用在保守性要求较高、实时性要求不是

特别高的情况。这种方法在【州中进行了详细分析，其中的cone补线性化算法步骤与

(3．8)·(3．9)相同，这里不再赘述。

③放大形式采用引理2．1．2．3中任一种，对于矩阵F；l苫主l在求解过程中也令

互；P’=[譬曩]，这样在推导过程中会同时出现磊岛K、垦KQ，f=l，2，这样无法
算得控制矩阵，为了解决这一问题，[29，3l】中采用了“等价子系统”的方法：构造一子

系统方=一廖(f)十删O)，在p》1时玎一站，再令善=col{x-}与原系统联立后通过新系

统的控制矩阵置反求原系统的控制矩阵墨——显然用这样的“等价子系统方法”不仅大

常数p》1很难确定，而且在【13，15】中都指出所得蜀与原系统是有一定误差的，因此该

方法并不十分实用；还有一点值得注意的是，如果把虿当成甜来用，则应有

n=疗=一万O)+pu(t)=一pu(t)+pu(t)=0(注意，寸∞而不是t．'CO时的变化律)，这与

【29，3l】中所说的U=Kx(t)即有矗=K膏(f)不一定为零值相矛盾，因此【29，3l】中关于输入时

滞的结论存在问题。如果解决了这个问题，那么就能减少①中限制声中各矩阵所带来的

保守性，使得在保守性要求不是特别高、实时性要求较高的情况下显示出优越性。因此

是两种对“等价子系统方法”进行改进的思想：

(1)构造一子系统廊=面9)+“(f)，显然这样的系统在奇为有限值的情况下满足在

p—O时虿-'甜，不会产生原来方法中把“用磊代入与原系统等价的新系统却产生矗=O

的矛盾，然后再用类似于[29，31]中的推导，值得注意的是带记忆的状态反馈控制的时

滞参数不止一个时，”=∑K，x(t-r,)，应有善=col{x岛写⋯研巧}，其中研--r,x·
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以孝(f)7=[耳(f)7岛甄(，)7 n瓦(，)7]为状态变量重写闭环状态方程(3．15)为

毒(f)=4亏(f)+A4(t—tO+4f(，一tO+4孝(f—rD+马w(f)+B2M(f)+马“2(r)

z(r)=cI古p)+c：善(f—fI) (3．21)

孝(磅=妒8)’Yt∈卜_，O】，f=气+r2 ，

其中五=

0

0

一店1L _㈥一孵；]，
五=[o；?]，毒=[莩]，磊=[丢]，豆=[三]，a=cc所1。。，，
岛=[o 0店1D]，这样带记忆状态反馈控制问题就转变为设计如下无记忆状态反馈

M(f)=墨善(f)=[墨墨忍]手∞，毪(f)=爱f∞=[i墨瓦]善(f) (3．22)

因此可得jH(‘)2瓯(‘)=Ktx(t)=K—tx(t)+粤Kx(‘)+色9％x(f)，控制矩阵K、必需
【”2(f)*-2(f)=K2工(f)=墨x(f)+蚝岛墨工(f)+瓯岛局x(t)

‘ ‘

[1讹-pf．,黑心=图 ㈣
L—n墨 卜岛K儿眨j L丘j

’ 。

州叫罐蕊凇卜¨]瞄h-．,5&T．1图

，-，。=丘[童]，，=t，2，尼产。=量[昙]，，=·，：，不。=毫。F厶。．1，七=t，z p．：s，

孟，1=I，2按如下过程计算：泛函可选为

y(‘，Ⅵ)；K(五)+毒￡￡口以D7彳Q『1互y(s)dsdO+L善(s)7骞善o)as，放大形式选择引理

‘
o∥o

一

4

O

O
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2．-即 轨s‘[孝7 y7]户[：]Q【。，】户7[；]+￡，y。，7．矿牙‘互“s，d， c，．zs，

代入(3．19)中可得一个维数与兰<0相同的矩阵不等式量<0，再对雹<O两边同乘以矩阵

搬位厶如讣其中汹嘲为新变量㈣的维数，亘妒1=嘧塞卜新
囊]的逆·为满足系统的日。特性可得如下的LⅦ

定理3．3对于线性时滞系统(3．2)，如果存在正定矩阵磊、Q‘，t=1，2，3，及矩阵幺、磊，

％，，=l，2满足LMI组(3．27)成立，则在控制器(3．3)作用下，闭环系统(3．2)是渐近稳定

的，且系统的日4性能指标小于给定的界，，。其中的控制器增益可这样算得：先算得

毫=配牙1，i=l，2，再由(3．25)算得霹，f=l，⋯，6，再由(3．24)算得巧，j=l，2-

葛=

如如墨瞄Q；-Q2墨嚣，j
广 t 1

L+(岛U)7+(岛％)7 J

· 也一露+∑Q
3

● ●

』-1

0 0 幺五 龟互 磊五磊口

幺4

0

0

一百1Q
●

●

●

94 0

0 四
0 O

0 O

O O

—‘’g 0
· ^

<0

(3．27)

其中谚=毫磊，i=l，2，因此可得量=眵岔1，，=1,2。

‘2)对于小时滞系统，一舂=—帮+“可得到订*u(t-r,)，这样也以掌=col{x甄⋯巧}为

向量重新构造与原系统等价的新系统的状态方程，而且不用像(1)要估计一极小的参数

p00，给求解带来了方便。

以孝(f)7=[x(f)7 f2瓦(f)7 f，写(f)7]为状态变量重写闭环状态方程(3．10)为

泓o
o

o守。蜃。寥：。O_墨。。。。，
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J毒(f)=鸳(f)+4掌O—fI)+置'“r)+岛M(f)+粤，吩(D

{：(f)=cj善(f)+c2掌(f+f2) (3．28)

l孝(f)=妒(f)'vt∈卜瓦o】，f=rt+f2

五=跨
∥D]。

．吲
B=l 0 l，
【0 J 磊；[丢] 豆=吲

因此(2)在处理日。控制时会出现因果性问题，

只有在输入时滞矗=0时或者受控向量也具有和状态方程中同样的输入时滞即

z(t)=＆O)+Dll(f一吒)才能有解，此时需要求解的LMI与(3．27)形式相同，这里不再赘

述。总结以上关于带输入时滞的线性时滞系统(3．2)的^r控制的各种具体情况，可有如

下结论：

①对保守性要求不是特别高的情况，像【32，35，101。zos]那样用放大形式采用引理2．1，

且对"descriptorfom”矩阵F=l：盏I令只=玛／他n县_l／心P，计算简便实时性较高；
②只有状态时滞即输入时滞参数r2=0的情况，如果保守性要求高、实时性要求低则可

以采用定理3．1再用(3．8)．(3．9)的cone补线性化方法计算控制矩阵7

③输入时滞参数矗≠0的情况，如果保守性要求高、实时性要求很低则可采用定理3．2

及算法3．2；如 放大形式采用引理

：&一限[言主]在⋯⋯时1=瞄目⋯一微性化
方法；如果保守性要求不是特别高(比①高)、实时性要求较高(比①低)则可以使用

定理3．3即改进后的“等价子系统”方法(1)，如果受控向量也具有和状态方程中同样的

输入时滞则可以使用(3．25)的改进后的“等价子系统”方法(2)。

3．4仿真示例

例1考虑如下线性时滞系统宕(f)=出(f)+4p一‘)+以(f一％)，其中

彳=[一：5一o．，]，4=[!。1]，如4=[二．；oi5]，如要得到‘、毛各自的稳定界，

们—叫叫

O

O

O

1●_二fJ协氇o^丐

《o一1

p，q私警_

．

町

爿O

O—M㈨p

o

j

p

中

=

其

．q

样那4口像以可日氐较求要性时实高求要性守保果
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可以用引理3．1，即由LMI(3．9)在fI=r2=O．1时也没找到可行解，而由【28】中推论l的式

(20)在f=m。a．。x(1-I，巧}=200时仍有可行解，因此3．3·1中结论——时滞参数多于一个时应

尽量使用【28】中结论即基于”Descriptor-form”的Lyapunov·Krasovskii泛函方法来求解时

滞参数稳定界是正确的。

例2考虑如F与(3．2)相符的系统

』j@；B 1]xc力+[-1二19]x(t-0．999)+[1]wcr，+[o]“∞
【：(f)=【o 1]xO+o．1u(t)

①在一般情况下，采用计算较为简便的【32，35，101，105】的方法，令异=码／nzP，

艺=1／n2P，，令啊=1，n2=0．1按小间隔变化(O．01)，丑。性能指标最小达到y=O．381直

到有可行解蜀=[o．0000-3．0601】， 蜀--[-o．0000 0．90001，控制器为

Ⅳ(f)=K工(，)+％xq-rt)，计算时间20秒左右；

②用定理3．1，由(3．8)-(3．9)在，，=0．00008时仍有可行解髟=【-0．0000-10．0000】，控制器

为“(f)=Kx(t-r0，计算时间5分钟左右；

③用[34冲定理1H”性能指标最小达到，，=O．105，迭代40次(即cone补线性化算法中

的七)，算得置《1．4961-195．9465】，控制器为“(f)=Kx(t-r1)，计算时间5分钟左右；

④用定理3．3，通过不断调整p最后在P=o．03，y=o．357时算得x=【．o．0002_o．00141，

控制器为“(f)=gx(t一『I)，调整时间lO分钟左右；

可见①计算速度较快实时性好，但保守性稍差；②、③保守性小(其中②在单时滞时能

达到保守性最小)，但实时性稍差；④保守性比③、③大且比①小，但实时性比①差且

比②、⑧好，这完全与3．3．2中结论相符。

3．5本章小结

本章对线性时滞系统的时滞参数稳定界问题、带输入时滞的线性时滞系统的日4控

制问题分别在单、多时滞的情况下对各保守性、实时性要求不同的组合条件下进行了各

种方法的分析、比较，并进行了改进，最终得到关于这两个问题的不同情况下的适合的

求解方法，给广大理论工作者、实践人员提供了“具体问题具体分析”的实用的总结，



第兰章时滞系统的时滞参救稳定界与l-I”控制的具体方法选择

这就给系统时滞参数稳定界确定、日。控制器设计带来很大方便．

本章部分结果已整理成文并已发表于《控制理论与应用》。



衷南大学博士学位论文

第四章时滞系统对时滞参数的自适应日一控制

摘要

对于存在状态时滞、输入时滞的线性时滞系统。当状态时滞常数不能精确已知时。首次使用基

于”Descriptor-form”的Lyapunov-Krasovskii泛函方法，并用适当的放大方法提取时滞参数估计

值，使得交叉项放大次数减少，放大额度降低从而减小保守性，给出了与时滞大小相关的对时滞参

数的自适应日”控制方案；在此基础上加入非线性的与时滞相关的环节，给出了一类带未知输入时

滞的多时滞非线性系统的对时滞参数的自适应日。控制方案，为后面章节中研究更复杂的带未知输

入时滞且非线性环节上界未知的时滞系统的自适应旷控制打下基础。本章的满足设计要求的两种
对时滞参数自适应状态反馈控制器均可通过解相应的线性矩阵不等式(LMI)来得到，最后给出了仿

真实例也足以说明本章所提出的对时滞参数的自适应日”控制器设计方案的有效性。

4．1引言

对于存在状态时滞、输入时滞的线性时滞系统，第三章给出了不同情况下实用性较

高的带记忆的状态反馈控制器的设计方案，但在很多实际情况下时滞参数往往不能精确

已知或测量(有时仅知道时滞参数的上下界)，这就给实现带记忆控制、时滞相关型判

据造成了困难。

一般地，如果时滞参数的上界已知，在泛函求导过程中，可通过放大得到与时滞参

数上界相关的判据。比如岳东2004年在【48】中就充分利用不确定时滞参数本身及其导数

的上界，对泛函求导后得到的LMI进行了放大，得到的结果比非时滞相关型具有较小

的保守性。而对于带记忆控制器的设计，姜偕富1998年在f78]中带记忆控制中通过用时

滞参数的一个估计值来代替原来的未知时滞量，实现了一种对具有未知时滞参数的系统

的带记忆控制，然而这种控制器的存在性与滞后常数估计的准确程度有关，同样也具有

一定的局限性。之后，姜偕富在2001年首次在【79】中提出了一种对时滞参数的自适应控

制方案，基于LM]方法，采用无记忆与带记忆的时滞相关型复合状态反馈控制，其中

记忆反馈中的时滞量为实际量的实时估计值，这就使得对时滞系统设计带记忆反馈控制

时不必已知时滞常数的精确值。但为得到适当形式的自适应控制律在推导过程中运用了

过多次数的放大矩阵不等式；【106]则对【79】中的系统进行了不依赖于时滞的对时滞参数

的自适应控制，自适应律的形式有所简化、矩阵不等式次数有所减少但在时滞常数较大的

情况下会显出无能为力。因此对于[79，106]中的线性时滞系统，既与时滞相关且保守性



第四章时洚系统对时菏参数的自适应目。控制

较小的自适应控制还未有进展，而且对于输入时滞的情况还未研究，再加上还要满足日。

性能指标的情况就更复杂了。另一方面关于非线性时滞系统的自适应H。控制，贾秋玲

2002年在[801中研究了一类不确定多时滞非线性系统的自适应圩。控制，但它是以非线

性不确定项范数上界未知的基础上弓}入自适应控制的，而且需要对系统矩阵进行特定的

分解，且结论是时滞无关的。本章首先基于”descriptor form”的Lyapunov-Krasovskii泛函，

把引入控制后的系统结构充分体现在泛函中，从而克服以往一般Lyapunov．Krasovskii

泛函在推导过程中由于矩阵不等式放大次数较多、放大上界较高带来的保守性，在此基

础上，为得到自适应律没有像[791那样放大包含时滞参数估计值的=次型积分，而是通

过选择适当的放大形式来提取时滞参数估计值与实际值之差，因此放大不等式的次数比

【791大大减少，大大改善自适应控制的保守性；对于加了与时滞相关的非线性环节，本

章也用同样方法给出了在输入时滞未知的情况下对输入时滞参数进行自适应日。控制器

的设计方案，并对非线性环节是否与输入时滞相关进行了讨论，为后面章节中研究更为

复杂的非线性对涝系统——输入时滞未知、与系统状态时滞相关的非线性环节上界未知

的非线性时滞系统对输入时滞参数、非线性环节与各时滞状态相关的未知上界组成的向

量进行自适应日。控制打下了基础。最后给出了仿真实例也足以说明本章所提出的对时

滞参数的自适应日”控制器设计方案的有效性。

4．2问题的提出

本文研究如下两种时滞系统：

Ii(f)=血(f)+A，x(t-r1)+且_H，(，)+岛u(t一屯)
’

{彳(，)=cI(，)+Du(t) (4．1)

l工O)=妒(f)，Vt卜q，0】

其中x(O∈彤是状态向量，w(t)ER一为干扰输入向量，“O)ER’为控制输入向量，

手(f)∈R一为系统受控向量，A、A1．晶、B2、C，D为具有相应适当维数的矩阵，fl>0

为系统状态时滞常数，屯>O为系统受控输入时滞常数(f：与q不一定相等)且『I、f：中

至少有一个参数未知，矿为系统初始状态函数。这里假设■未知，但有已知上界百，下

界“．另一种时滞系统：
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， ，

j(f)=厶(f)+∑4xo—ff)+∑Gj(x(t-fj)，r)+岛“(f—q“)+尽w(f)
，-I J-l

手(r)=Ck(，)+Dl‘(r)‘ (4．2)

m)。妒(f)'Vte[一f'O】，f。¨ma川x{t)

假设4．1似，岛)可镇定

假设4．2存在已知的连续有界的向量函数8jfx(t—f，)，f)∈R’，使得非线性项可表示为

Gj(x(t一一)，t)=／i2aj(x(t—rj)，f)，上界为慨(xo—o)，f)忙qI卜(f一_)I，其中哆≥o，

j=l，⋯，z，为已知的正常数。该假设中的上界不等式隐含着t(o，t)--0，，=l，⋯，，，Vf，

即x(t)=0为自治系统(u(t)=0)的一个平衡点。

其rpx(t)∈R。、w(t)∈R1、“(r)∈R^、三(f)∈足’定义与①中相同，A、4、马、B2、

C、D为具有相应适当维数的矩阵，t 20，f=1，⋯，Z为系统状态时滞常数，巧。为系统

未知的输入时滞常数，但有已知上界最大值记为砍。，下界记为f，+。并能找到正常数

写+l>o使得o≤tI—t+ts弓+t成立，与+I>o使得o<互+I s瓦l一巧+}成立·q(加一勺)，f)为

n维非线向量函数，≯为系统初始状态函数。

对于系统(4．1)研究的目的是：在系统状态石是可测的假定下，对于给定的常数，>0，

如何设计一个带记忆的时滞相关型状态反馈控制器

u(t)=x Jx(t)+K2x(f一毛) (4．3)

使得系统(4．1)是内部稳定的。且满足l嘲：<rUwll：(这里I|．1|：是厶范数)·其中fI(f)为fI的

估计值，并定出对未知时滞参数fl的自适应律。

对于系统(4．2)研究的目的是：对于给定的常数坍>0，如何设计一个带记忆的时滞相

关型状态反馈

控制器

1

“(f)=Klx(f)+∑K“x(t-_)+Kt+2x(t一蟊+I(f)) (4·4)
t*l

其中麓。(f)为f，+．的估计值。；，。(r)≤o，蜀，f；1，⋯，“．2为待求矩阵，使得系统(4．2)是

渐近稳定的，且满足8-II：<坍0卅k(这里lI．Il：是岛范敷)，并定出未知参数f，的自适应律。
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4．3主要结果一自适应控制的第一步改进(保守性的减小)
4．3．I带输入时滞的线性时滞系统对未知时滞参数的自适应日。控制

I童(r)=axCt)+4m—q)+且“r)+岛Kix(t-r2)+马Kx(t-r2-rl(t一毛))
{．(f)=(c+啦)x(t)+DK2x(t-r1) (4．5)

【x(f)=矿(f)，Vte卜f'o】，f=t+才

用【28】中’'descriptor from”的方法，并把童分成xO一屯)之后的项y及m—t)之前的项：

两部分，令y(f)=血(O+4“r一『1)+B1w(t)，z=B2Ktx(t-r2)+岛岛雄一i,(,-rO-％)，

y+：=(A+4+B2K)x(t)+且训∽一艺互【．(j，(s)+z(s))西 (4．6)

其中足=Kt+K：，巧=矗◇一≈>+乞，五=4。互=龟墨，互=垦墨。对于系统(4，4，取

Lyapunov-Krasovskii函数为

y(薯，w，)=K(而，wf)+喜E L(y∽+如))r刀Q『1互o(s)+z(s))dsdO+考(‘一to一吃))2

其中巧@，一)=，既，P、仑>0．i=1，⋯，3为正定矩阵，尹为一正常数·巧(‘，坼，沿系

吃∽，嵋)=2x7m+z)

出㈣][矧吲 ∽，

|2[，删][黝tb嚣马wH驰㈣如，M
其协州雌，协醐再瞄盏]㈣、忍满足肌府·槲u

矿(薯，一)s吃(葺，Ⅵ)+窆{￡【(y(r)+：(f))7刀91互o，(f)+z(f))一(y(f+a)+2(f+口))7

刀Q,-1五O—O+占)+z(f+口))】d口一尹(fl一毛(f—f2))蟊O—f2)
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由引理2．1并由功(，)=-2L[， ㈣7喇互(删俐油，可得
珥st[x7(y+z，7]歹[；]R【。，lp'[y：：]+【。i“s，+：(s，，7；ir耳1五cycs，+z(。)，·c妇

(4．9)

取‘=q+f2，死(f—r2)一rl=f3一r4，且
’

[，◇+力7]歹[o]马fo，J声7[J，：：] (4．。∞

=膏7暑马丑7x+2x7丑蜀只r(y+z)+)，7最玛p2ry+2yrp2p、3巧：+，弓弓彤。

其中冠，f=l，⋯，3，为任一Ⅳ维正定矩阵(而【32】中相应的足的维数为2n)，取正定矩阵

冠=Q，f=1'⋯，3，ca(4．8．4．10)可得

矿(薯，Ⅵ)≤舅7巨￡十(毛(r一『2)一r1)【尹￡O—r2)+z7昱玛巧z】 (4．11)

其中 j=P Y7，矿一巨o=

霄 管
。on —12

·
E姐

互l，露骂

巨23最马

巨”只尽
·0

‰=嵋一彳+∑‘刁Q『1五十∑‘最置譬+f4昱是巧，

E。=z珏=一最一譬+∑‘刁劣‘五+∑fl罡墨鼍，

为研究系统(4．1)的Ⅳ。特性，令初始值妒(f)=O，则对丁>O及给定的常数，>O，有

4=f侮7芽一m2矿叻国≤r厉r-一所2矿w+矿(‘，Ⅵ))席

=r{【(c+明)州+DKzx(t一甜【(c+DKt)xo)+必x(f一；t)】一(4．12)
m2wr’I，+矿(‘，Ⅵ))席

s f_『(f)蠡(f)国

其中尹=[，颤f一毛)7 yT，旷]，且矿=矿+￡拍)，D)＆(s)凼·考虑到；m(r)≤o，

可得矿s矿+，(f)＆(f)一xr(t一；。(f))踯一；l(f))，显然v‘，有‘≥瓮(f)≥‘≥fI．则有

哆墨只‘，∑M
+弓

r
一．d+日一P=，一H_=

2
巨

r

片R日‘，∑Ⅲ
+日

『
一4+一．A号=冒一
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壹=s(f1)≤∥(fl=‘)．量<o时可得以<0，由于f；=‘+f2=f：，因此y，z在量<o所

中对应的各项相同，故将壹<O还原为二次型时y+z可归为一项，不等式的阶数可减一，

由Schur补引理化简后可得量<0等价于一维数为8打的不等式量<O，再对量<O式两边同

乘以矩阵diag(XI⋯五)，其中五=彳1，置；X=p-‘，五=r=巧‘，z，=，．，=4，⋯，8。

由于(4．8)中只要求只，只满足E-r=声叠，而没有其他限制，又考虑到要兼顾保守性和运

算简便，可借鉴132]中的方法令墨=q／n2P，B=l，％户．即x；一／n2墨=I／n2Y，其中码，

，l'为正常数，可得童<0等价于如下不等式(中间过程略)：

其中蜀：

￡1 0 Z2 局

O —S O O

霹0 E， 置

群0群一m2J

巴=

量l昱2⋯量，

霹rt⋯0

霉0⋯r．

<0 (4．13)

童；=【o 0伤4z 01，重；=【o 0坞最U 0】，

哥=【o 0心恳％0】。F。=_(i)-1 QI，r：=一丐1Q2，F，=_(亓+f2)-l Q3，

萤；=【伟／nl(CX+DU)DU2 0。⋯0，】，r．=一，，

夏=n2In,(A+A,)X+n21n,∑岛u+他／玛z(爿+4)7+％，啊∑(最u)7+百Ql
lIl ，。l ，

+乃骇+(玎+f2)g+(吩／啊)2夏
2

雹2=玛／M(他一M)x+也，，lIx(爿+4)7+也／啊∑(最U，)7+‘QI+f2Q2+(百+f2)幺，
JIl

毛=—2玛z+百奶+吃奶+(‘+吃尥，U=Kx，％=局z，i=船Y，
则根据以上推导可得如下结论：

定理4．1对于带输入时滞且状态时滞参数q未知的线性时滞闭环系统(4．2)，如果存在

矩阵U，％，正定矩阵x，Q，1=1，⋯，3，i，及正常数塌、伤，使得线性矩阵不等式

LMI(4．13)成立，可取形如(4．3)的带记忆的状态反馈控制器，且对2"j的自适应律可取为

亩；一吉=p+f2)7最墨彳z(f+≈) (4．14)
，

选定的常数使得『l的估计值力(f)满足百≥『l(f)≥rI≥o，Vt>0，则闭环线性时滞系统
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(4．5)是渐近可镇定的，且日4性能指标小于给定的界胛．反馈增益矩阵及各未知矩阵可

这样算得：蜀=Ux一，％=％x一．

证明根据以上推导我们可以看出，若取自适应律式(4．12)，且当直<0时系统是可镇定

的，进一步，当“r)=0时，有矿(f)；矿(五，o)<0，这时时滞系统(4．1)是内部渐近稳定的。

如果存在矩阵矾，％，正定矩阵x，Qf，f=l，⋯，3，夏，及正常数％、n2，使得线性矩

阵不等式LMI(4．11)成立，且对fl的自适应律可取为式(4．12)时则童<O，线性时滞系统(4．1)

是可镇定的(由Schur补引理可知壹<0包含着童<0的解)，且日4性能指标小于给定的

界y。用Matlab软件中的LMI工具箱可算得矩阵U，正定矩阵X，即可算得葺；配X一，

i=I，2，P=X～=他／啊丑=％昱，由覃=嬲r可得s=A-P．根据以上推导我们可以看出

余下只需证明，，>0的存在性。

如果闭环系统(4．5)是内部稳定的，则根据x(f)寸0，(f-÷∞)以及02)我们可得

fI(f)哼0(t斗∞)也即当系统稳定力(f)变化率趋于零，且由(4．14)可知1"1(f)≤0，因此

fl(f)一直下降直至系统稳定，此时其值也达到稳态值，也即limrt(t)=L存在以及

。；毛(o)一号r印+f2)7B马巧印+f2)田=乞(o)一专Ⅳ(矿) (4．15)

因为x(f)_o。圣哼o(卜+∞)，故存在正常数露，五，使恢f+f2)扩<屁～，Vt>O，

厨是由系统参数确定的常数且与系统的初始函数矽的选取有关，故可得

Ⅳ(妒)；fz(f+巳)7昱坞譬z(f+f2)破s A。(最焉只r)等 (4．16)

因此Ⅳ(矿)就是可估计的。由(4．15)如果选取，．1s m楚．，“fI(0)一‘)／Ⅳ(庐))．则有
ce．,ml—f．W

气≥q>o(而矗O)始终下降，因此蟊(f)>0)。这就表明正常数尹>0是存在的，且可以

从给定的系统及定义在有界集合上的初始函数来进行估计。 证毕

注4．1从(4．9_4．10)可以看出为与，，(fI一力(f—f2))盒(，一f2)结合得到适当形式的自适应律，

本章通过交又项放大再提取放大后的系数来得到n(r一『2)一fl=r3-r4，而在[79]ee，以

时滞参数估计值与真实值之差为系数的二次型是通过反复放大包含时滞参数估计值的

二次积分项得到的，显然本章的结论在已经选取保守性较小的基于’'descriptor form”的
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Lyapunov·Krasovskii泛函基础上又进一步消除了为得到自适应律而附加的放大不等式次

数，因此保守性比【79】要小得多。此外，【791@的结论虽然最后也是要求解一个LMI来

得到控制器，但是它所要求的LMI中有需要事先确定的若干未知正定矩阵，如果没有

这些矩阵的值，那结论中的LMI就不是线性的，而本章的结论中每个矩阵、参数都是

可以确定的，比【79】的实用性要强。

注4．2由于z是x(t-tO之前的项，因此z(f+屯)是可测量的，此外在对未知参数fI引入自

适应律时，前面我们假设fl(t)≥fl，尽管r，+。未知但在实际应用中我们可以先令矗(o)=‘，

在正常数尹>O的选取中有，一，吣ma【．rxp】{(『l(o)一f1)，Ⅳ(妒)}·但fI是未知的，而

{(fl(o)一q)，Ⅳ(声))≤“fl(o)一靠)IN9))，因此在求，的估计值时可以取

，，～2峨mahx．o】{(r,(O)一。)，Ⅳ缈)>·因此自适应律(4·12)是可实现的·

注4．3在求解矩阵不等式(4．13)时。为简单起见，可令，ll=l(或其它正值)，而用搜索

法求解鸣：即对坞设一初值，每经过一微小变化(如0．01为一间隔变化)，直至LMI(4．13)

有可行解为止。

4．3．2一类带未知输入时滞的多时滞非线性系统的对时滞参数的自适应日。控制

对于系统(4．2)，根据(4．2)和(4．4)可得闭环系统状态方程为

孟o)=血(f)+∑4x(t-r,)+∑G』(x(t-rj)，t)+Biw(t)+BzK,x(t—q+1)
hl ，II

+B,ZⅢK,+t砸一乃+广fJ)+岛局+zx(f—f，“一毒+，(f—f『+-” (4．1 7)

享p)=(c+脒I)x(f)+D∑K+】x(t-r，)+DK,+2x(t一弓+1)

础)=M，Vf∈【-f’o】，f-．要噤。托)+舐
和上小节一样，用【28】中“descriptor form”的方法，并把童分成x(f—f，+1)之后的项y及

x(t-弓。)之前的项z两部分，令
I f

yCt)=血(f)+y4x(f一‘)+届以f)+∑Gj(x(f一乃)，o，
I-l 1-1

f

z=Bdqx(t-r．1)十岛乏：K+．工(f—i．，+。一f，)+县!K+2工(f—fol一豸+l(f—f，“)) (4．18)

对于系统(4．18)，并取系统的Lyaptmov-Krasovskii泛函为
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矿(薯，嵋)=巧(f)+誓￡L(y(s)+如))7刀簖1五(_y(s)+邢))捌移+考(‰一钆(，一ff+I))2
一 一

(4·19)

其中f，+1+，=钆l+‘．i=l，⋯，，，f2，n=‰+毒“(t-r，+I)， 4=4-4“=马K·

，+2

i=i，2，⋯，I+2，置=∑局，K(r)=x7Px，，为～正常数，P>O，Ql>0，i--I，2，⋯，2／+2．

相地7砌㈦雌㈣，7]雕lI'02]

～IX∥T Ot+啦犯一三骂描籼舭㈣凼㈣
+如妒0删]) 一

雌㈣川[矧[盈一三日。捧研+骞乃
其中j=_+薯互+县芷，令E=瞄其中j=_+∑互+县芷，令E=I：

fIl I” 芦=[Ⅻ，且¨满脚瑰
后面的推导和上--,j,节类似，多了如下关于非线性的部分：

对于一=：[，㈣，7]尹b。0删]，蚓戡z有
乃≤[，o+z)7]户

≤P◇+z)1户

：]乃【0，】歹7[y：：]+G；。o一。x，，巧1q(x(t-rjxo
枷妒怃卜(啊州帆凡㈣)

(4．2t)

其中瓦．j=i，⋯，f为维数为聆的正定矩阵，取正定矩阵弓=飓，j=l，⋯，，，经过与上一

小节类似的推导，最后得到如下定理：

定理4．2对于带未知输入时滞参数≈。的非线性时滞系统(4．2)，如果存在矩阵q，

，=l，⋯，I+2。正定矩阵x，Q．i=I，⋯，2／+2．豆，f=l，⋯，1+1，及正常数尹，一、慢，

使得线性矩阵不等式(4．23)成立，对q+。的自适应律可取为

f，A十I(D：一一1 z(r+q+I)7罡Q：““只rzO+f。I) (4．22)



第四章时滞系统对时滞参数的自适应日”控制

^ ^

选定的常数使得f，+I的估计值／'i+t(f)满足t。≥fJ+l(f)≥巧。≥q。．Vt20，则线性时滞系

统(4．2)是可镇定的，且日4性能指标小于给定的界册。控制器取为(4．4)，反馈增益矩阵

为：巧=Ux一，，=l，⋯，1+2．而用来估算y的式子(4．15)，(4．16)中的Q3变为了伤Ⅵ·

其中

豆= <0

其中的 量I=【01⋯0，+2吗4x 0l⋯0，】。M=一一f1Q，f=1，⋯，j，

置‰=【oI⋯01+2％易U 0l⋯01+，】，M。=吖t，)。Q，+f，j=“·，，+2，

量玉“=【丹2／r^(CX+DU)D％⋯DUf+2 01⋯02。】，M2f+3=一厶，

量丢。。=【o。⋯0，x 0．⋯031+6】，肘2，+。。=咧五。(霹岛)彳)。厶，f=l，⋯，f，

二l=

0l

—S
：
●

0

0

0l

￡2 且

0 0l

0 0，+l

z3 骂

瑶一m2f

毒=％，一(4+∑4)x+心／啊∑马U+吩／n，X(A+∑4)7+％／M∑(岛U)7+
l=- ，{l ，tI I-I

， 21+2 I+1

∑磁+∑‘Q+(n2／r02∑互+矿
J-! Ilt+l i—I

， 1．2 I 21+2

乞；％／氇(啦一吩)爿+他7啊J(爿+∑4)7+％／啊∑(岛q)7+∑tQ十∑f2+z尹，
坶I ，·J ftl I一十l

f 21+2

毛=∑ffQ+∑‘Q一2嘞石+矿，U=Kx，i=1，⋯，l+2，互--．xs,x，t¨=九+‘，
，-l把，“

f=l'⋯，，。

当非线性环节包含未知参数q+。的部分时，即系统状态方程为

吾～

‰

％。；一文。％是q；叹霉W
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f膏(f)=ax(t)+∑4x(f—t)+芝：Gj(x(f一0)，f)+马“(r—fl“)+置w(f)
● J’I J=l

{-(r)=Cx(t)+Du(t) (4．24)

弦)2矿o)'V‘E[-r,0】，弘，覃臻，{f『)
． 【

如G，+I(xO一■+1)，f)=G■(x(t-re+1))即只和川一巧+1)有关，贝lJ(4．1S)ee z变为

z=岛KxO一钆1)+岛∑墨“x(t—ff+l—q)+马局+2x(t—f『+l—r‘m(t-rJ+I))

+G；．1(工(f一乃+1))

此时(4．21)中可取础t少(饥，一钆，)‘，其中夕为一正常数，(4．21)中的系数为矿的部分再

加上系数为驴(f“-一q+1)rl的相应部分(在(4．23)的宝l中放大为(勉+I)4)，这样(4．22)d9加

上一号8G，+。(工(f))n即可以少放大一次非线性项嘭@(t-rs)，f)巧1qo(t-rj)，f)，其余证

明过程与定理4,2一样。如果G，。(x(t-rj+。)，，)还和当前时刻f有关，则(4．16)中：不变。

此外，(4．19)也多一项

G五t(x(t-r，+1))G；+J(x(t-r．1))=民I(】啦一ff+1))7霹岛毋“(川一q+1))

≤五。(霹岛)8扎(x(f一_))82≤丑。(霹岛)《。愀卜ff+。Ⅺ12

因此式(4．17)中的 矿z矿+萎L，。)置地)凼+￡钳，，(s)艮：x。)出
相应矿=Ix7，o—f1)⋯xr(t一巧+1)xr(t一蟊+。o))J，7 W71，由定理4．2可得

推论4．1对于系统(4．24)，定理4．I仍然成立，除了墨的个数增加至l+2，如

G，+．O(f—f，+。)，f)=G，+，(x(t-r,+I))，则最后要求解的LMI(4．23)中置中的矿变为

伊+(忍+。)～，其余项不变，对乃+．的自适应律由(4．22)变为

“A-(f)=一专z(t+rm)7另Q2。只，印+f『+I)_勃G，+l(m))82 (4．25)

为求得，，，由假设4．2可知(4．16)中Ⅳ(力需加上

歹f8G，+，(x(f))112出=罗rI岛4+。(x(f))02毋≤厨。(霹岛)《。
如q+。(撕一q+1)，f)还和当前时刻f有关，则最后要求的LMI fl：t(4．23)变为
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r一晴小 ∽zD

其中F：=—尹／(五。(霹马)旌。)·‘，置中的置增加对应于，(f—ff+。)的一维，

F?=【o，⋯0t。石0l⋯03，。】，其余证明过程与定理4．2的一样，这里不再赘述·

注4．4当状态时知参数L．i=l，⋯。，未知而输入时滞常数ff+，已知时，状态反馈控制器应

为“=墨加)+∑置。x(t-；-)．当状态时知参数‘，i=l，⋯，，和输入时滞常数弓“均未知

时，状态反馈控制器应为“=Kx(f)+∑K+，x(t-；，)+蜀“x(t—f“-)·这时要采用多参数

的自适应律，而本文又加入了非线性环节，如(4．2)中定义的非线性项的上界未知，情况

将更加复杂。【80】中对一类不确定多时滞非线性系统进行了对非线性项的上界的自适应

H4控制的研究，但采用的是传统的Lyapunov-Krasovskii泛函，而且要对系统矩阵4的

进行分解，结果有一定保守性，关于这方面进一步的研究将在后面的章节中进行·

4．4仿真示例

例-考虑与H∞相符的时滞系统其中‘未知，彳=[：o]，4-[：二19]，旦=[：主]
马=[o] 乇=0．8，彳=o．4，fl=o．3，f1．=o．2，C=【o 1】，D=O．1，取册=o．9，把这
些数据代入LMI(4．13)，令啊=1，啦=O．1按小I司隔燹化(0·01)且芏Ij LMI(4·lj)伺叫仃辨。

叫30=07裟I脚【o．ooot-0．6469]，K：=1．0e-004*[-o．ooos-0．4542]，
Q=瞄黑。．戮，I，此时删．69壤㈣乖o．4，
[象罱]=[。2s。i。n。[4。4zr丌(。t-一r，)，l，r，]，]，可得露=lkII，．。=lj—yII，。=。·，s。z，取五=。·。。24，贝。由
(4．16)可估算出Ⅳ(矿)=o．3454，因此可取，，一="m“s【-『xp】{(i(o)一“)，Ⅳ形)}=o·579l即

'，：1．7268。仿真所得系统状态x∞和参数估计￡(f)分别见图4．1(a)、(b)。
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图4．1(a)系统状态

Fig,4．1(4)State of the system

圈4．1(b)未知时滞参数估计

Fig．4．1(b)Estimate of the tLIllGIOWll delay

例2考虑与(4．2)相符的时滞系统其中f=l，f2未知．fl=。．4，一=暖o]，4=[：二19]，
骂=曙主]，垦=[?，]，屯=。．s，譬=。．，，9，屯=。．s，c=【o-】，。=。．h．
G(工(f一‘))=、／|：泵Zi聂忑习≤最·0．447211x(t—f1)l卜I玻m=1．6，把这些数据代入
LMI(4．23)，令％=1，如=O．1按小间隔变化(O．01)直到LMI(4．23)有可行解：

P=l。0．．。13。，0。1：：：：；：}，K=fo．o，s·—s．，，s，】，^；=【一o．oooz-0．0017]，
驯脚⋯【舢4l，删小o．o研，Q．销黧：嬲l，
此时删用。蚴州-o卿，嘲=[裂嚣Z；珊可得
厨=例。--U童-yll，．。=1．2222，取A=o．0729，0 Eb(4．16)可估算出Ⅳ(妒)=o．0156·因此

可取，一=，器誉p】{(乏(o)一f2．)／Ⅳ(矿)}=25．5754BPy=o．039l-仿真所得系统状态加)和参
数估计蟊(f)分别见图2(a)、(b)。



第四章时滞系统对时滞参数的自适应H∞控翻

图4．2(a)系统状态 圈4．2(b)未知时滞参数估计

vlg．4．2(a)State ofthe system Fig．4．2(b)Estimate ofthe o血lown delay parameter

从图l，2中可清晰看出系统状态在本文所设计的自适应日。控制律作用下最终能很

好的收敛，未知时滞参数的估计值从初值单调下降，并能使其终值始终不小于其真实值．

4．5本章小结

本章通过使用基于”descriptor form'’的Lyapunov．Krasovskii泛函，和线性矩阵不等

式方法LMI，首先研究带未知状态时滞、输入时滞的线性时滞系统，当状态时滞参数不

能精确已知时。充分利用’'descriptor fonn”一次集中放大交叉项能减小保守性的优越性，

在此基础上在放大交叉项时适当提取时滞参数估计值与实际值之差，从而消除了以往结

论中为得到适当形式的自适应律而附加的放大次数，此外还把”descriptorform”进行了以

输入时滞为滞后常数界限的前后两个时段的划分，从而使最终的自适应律不违反因果

性，最后通过求解一个LMI得到相应的带记忆状态反馈控制器(4．2)及对未知状态时滞参

数的自适应律(4．14)。之后又研究了一类带未知输入时滞的多时滞非线性系统，当输入

时滞参数不能精确已知时，采用和研究前一种系统类似的方法，并对非线性环节带来的

复杂性作了放大处理，最后也是通过求解一个LMI得到相应的带记忆状态反馈控制器

(4．4)及对未知状态时滞参数的自适应律(4．22)．并对在非线性环节与输入时滞也相关的

情况作了相应讨论，从与输入时滞相关的这部分非线性环节是否与当前时刻相关的角度

得NT推论4．1。这些都为后面章节中研究更为复杂的非线性时滞系统——时滞常数未

知且与时滞状态相关的非线性环节上界未知的情况奠定了基础。从仿真示例中可以看

出，本章的控制器设计方案当时滞常数未知时容易实现，具有很好的优越性。

本章的部分结果已整理成文并发表于《自动化学报》，还有部分结果已整理成文并

发表于《系统工程理论与实践》。
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第五章时滞系统薪型自适应控制的研究

． 摘要

对于时滞常数不能精确已知的系统，针对以往对时滞参数自适应控制方法中存在的两点缺陷一

—需要对时滞参数估计值进行不小于其真实值的限制，及为保证这一限制在控制过程中始终成立需

要估算一个很难计算的“调整常数”，首次提出了一种新型的自适应状态反馈控制方案，通过引入一

种新型的带记忆状态反馈控制器，突破以往自适应控制必须让估计值下降的模式，使得对未知时滞

参数的自适应律与其当前值相关，从而解决了上述两个问题．大大增强实用性{接着，针对新型自

适应控制方案中存在的会引起“无记忆”状态反馈控制的问题，对新型自适应控制器进行了进一步

改进，加入两个事先可以确定的参数，使状态反馈控制始终能反映未知时滞参数，这样在时滞参数

对系统影响较大的情况下也能成功的进行新型自适应控制，从而使得新型自适应控制方案的适用范

围得到扩展。最后给出了仿真示例也足以说明本章所提出的对时滞参数的自适应新型控制器设计方

案的有效性．

5．1引言

对于存在不确定时滞参数的时滞系统，第四章对于带未知状态时滞的线性输入时滞

系统、带未知输入时滞的非线性多时滞系统分别给出了对未知时滞参数的自适应日。控

制器的设计方案，尽管第四章的关于时滞系统的对时滞参数的自适应控制已经比以往的

方法减小了保守性，但是影响时滞系统自适应控制的最关键的两个问题——对时滞参数

估计值必须不小于其真实值的限制，以及为保证这一限制必须事先估算一个很难计算的

“调整常数”，都还没有得到根本解决。

本章针对以上两个困扰时滞系统自适应控制研究者很久的问题，对于时滞参数己知

其上下界的线性时滞系统(可带输入时滞)，首次提出一种对时滞参数的新型自适应控

制方案，不仅吸取上一章中使用基于”descriptor form”的Lyapunov-l(rasovskii泛函及选择

适当放大方式以提取时滞参数估计值来减小结论保守性的优点，而且采用了一种新型的

带记忆控制的方法，使得带记忆控制的时滞项能反映时滞参数估计值与其一接近值之差

的平方，这样推导出的时滞参数的自适应律不再像以往那样是一个关于系统状态的负定

矩阵的二次型，而是一个以当前时滞参数估计值与其一接近值之差的相反数为系数的关

于系统状态的正定的二次型，也就是说时滞参数的估计值变化和其当前值与时滞参数的

一接近值之差的符号相反。在这样的自适应律作用下，时滞参数估计值不需要限制其与
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真实值大小的关系，只要其初值落在上下界之间，则其值在控制过程中会始终处于这个

范围，最后趋于时滞参数的一个接近值，以往很难计算的“调整常数”也就不需要了。

可以说，这种新型的对时滞参数的自适应控制从根本一1-解决了以往自适应控制在实用性

上的两个问题，但仔细研究可以发现该方法仍有问题——它所使用的带记忆控制实际上

反映的是未知时滞估计值与该时滞的接近值之差的平方，而没有真正反映时滞的估计

值，因此它实际上是一种无记忆控制，特别是在时滞参数估计值早于系统状态趋于稳定

时更为明显，这会使得这种状态反馈控制在未知时滞参数对系统影响较大的情况下无能

为力。因此，本章进一步对新型自适应控制进行了改进，通过加入两个事先可以确定的

参数，使状态反馈控制始终能反映未知时滞参数，特别是当时滞参数估计值趋于稳定时

原来的带记忆状态反馈控制所包含的时滞常数接近于所估计的时滞常数，从而使得新型

自适应控制的实用性得到提高，在时滞参数不能精确己知时给时滞系统控制器的设计带

来了很大的方便。最后给出了仿真示例也足以说明本章所提出的对时滞参数的自适应新

型控制器设计方案的有效性。

5．2问题的提出

本章研究如下两种线性时滞系统：

馏：篇’+A嘲lx(t-，r11)vt 0枷蝴 (5．1)
Ix(f)=妒(f)’ ∈卜fl，1

’ 。

式中z(f)∈R”是状态向量，甜(f)∈R4为控制输入向量，A，Al、B为具有相应适当维数

的矩阵，l"1>O为系统状态时滞常数且fI未知，但有已知上界彳和已知下界f1．，及较为

接近f1的值^(一般^取为彳和‰的中间值)，并能找到正常数瓦使得o<西一魄≤瓦成

立。一为系统初始状态函数。

针对系统(5．1)研究的目的是；如何设计一个带记忆的时滞相关型状态反馈控制

u(t)=KIxO)+局x(f一(五一啊)2) (5．2)

其中毛(f)为『l的估计值，假设；．(f)：一(a∽一向)脚，其中掰≥o为一非负常数即a(f)变化

的方向与(矗(，)一魄)的符号相反，使得系统(4．1)是内部稳定的，并定出未知参数fl的自

适应律。另一种时滞系统；
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J孟(f)4Ax(t)+4加一fI)+Bu(‘一f2’ (5．3)
【缸f)；妒(f)，VtE【-max(rt。『2)，0】

、。

式中加’ER”是状态向量，“∞ER一为控制输入向量，一，4，口为具有相应适当维数

的矩阵，fI>0为系统状态时滞常数，1"2>0为系统受控输入时滞常数，且q，I"2中至少

有一个参数未知，一为系统初始状态函数。这里假设fI未知，但有已知上界‘和已知下

界％，及较为接近ff的值五(一般再取为百和％的中间值)，并能找到正常数i>o，

瓦>0使得o<‘一瓦≤亏，0<焉--rt．≤瓦成立。

针对系统(5．3)研究的目的是：如何设计一个带记忆的时滞相关型状态反馈控制

砸)=置I以力十局x{t-al fI一伪一啊)2) (5．4)

其中；。O)为『I的估计值，假设力A(f)；42(；，(f)一红)+q抑，其中脚≥o为一非负常数印

毛(f)变化的方向与【2‘。(r)一^)+口I】的符号相反，使得系统(5．3)是内部稳定的，并定出

未知参数fI的自适应律，此外比①进一步的要求是：在系统达到稳定的控制过程中，带

记忆状态反馈控制(2)始终能够反映『l。特别是在fIO)稳定后系统状态稳定前，使得带记

^ ^ ^ ^
一

忆项％x(t-a,f1一(力一^)2)中的qfl+(fl一啊)2一瓦，即对于未知时滞fJ一直能实现带记

忆控制．

5．3主要结果

5．3．1一类线性单时滞系统的新型自适应控制——自适应控制的第二步改进(突破原

有的参数限制)
‘

对于系统(5．1)，根据(5．1)和(5．2)司得闭环系统状态方程为

i4t)=掷)+4印一fI)+蹦即)+雕j撕一(蟊一啊)2)
(5．5)

【x(f)=妒(f)'Vt∈卜f，0】

其中f=max(r；，-2)，用[2$]中'deserlptorform”的方法，令
‘

l_y∞=Ax(t)+&x(t-rI)+BK,x(t)+BK2x(t-(≠q一^)2)

。10=-y(f)+(4+4+啪舯4 f-。州ds—BK2 L删如胁
a国
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矿“)=K(f)+喜E L“∥[。刀]Q『’l三I)，(D捌口+j1(￡一^)2 (5．7)

相=叫2xr叫Py=2Ix言r’赫k壹L。l。L．如㈨㈤=2[“][澜t出属∽。．如㈨
一

州蛐4+BK_4_娲御=[Ⅻ一瞄习懈¨只
需满足EP=芦矗就可使政(‘，M)与引入”descriptorform”前相同。考虑到

=2(氛r)一^)；l(f)L知帕，y(∥[o刁]簖1[兰]以s冲+
￡：ty。)，[。刁]91[兰]弛卜如+∥[0刁]劣1[兰]儿+明棚

由于；。o)变化的方向与(；1(f)一^)的符号相反，I夭IRV(x,，嵋)沿系统(5．6)的导数为

矿c薯)≤坟(f)+喜E眇cf)r[。刀]Q-1曙0]yw—yVt一，7[。刁]g’曙]加+。1枷+c幺一啊弦

矿“，≤[，厂]巨。[；]+喜仇一喜￡。yc刃7[。刀]Q『’[三])，c。d曰+ca一啊，最 cs·力

绣(o=一2LP

『丑j+互7丑

亘02l尸一彳+最i
L

y个卧触
P一日+矛巧 I

喜‘[。刁]研1B]一最一只rJt11 L—，J l
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鸭[“7]矽讣Ly娜刁]∥防蛐 (5．to)

其中足，，t1,2，为任一正定矩阵，取芷定矩阵R=Q．i=l，2，由于Q，i=l，2的维数

为2n，因此(5．10)代A(5．9)得

fqx,)娥湖州。咿[，，]豫芦计而枷宣 (5．11)

其中 膏(f)：『jfr，丫，

E雾篇叫心吲∥卧州i制·行矽+砀+^妒+喜心。刀]∥卧州肚lj。J’

定理5．1对于线性时滞系统(5．1)，如存在正定矩阵z，Q，f=1,2 t矩阵q·j=l，2·

及正常数吩、恐使得矩阵不等式(5．14)成立，可取形如(5．2)的带记忆的状态反馈控制器，

且对f1的自适应律可取为式(5．12)，且fI的估计值毛(f)满足『1．s；，(f)≤百，Vt>O．反馈

增益矩阵及各未知矩阵可这样算得：，=z一=％／珥五=％最，so,=Ux一，墨=醍z一。

这时闭环系统(5．1)是渐近稳定的。

乞=<轴[，y1勉P引 (5．12)

当s垒量<O时系统是可镇定的。显然Vfl，fI≤百有s(‘)兰s(百)；同时一定能找到正常

数亏>o使得o<订一^s瓦成立。INNs(r；)<s(‘一啊=夏)<0即能保证。令

雹=s(订一吩=亏)，则下面的(5．13)式誊<o成立时有矿O)=矿(t，O)<o，这时时滞系统(5．1)

嘲甲瓣‘磁尸+黜]re]e：o re]e：恸o，1<。 (5．13)t-I巨；五7乒7+砀+‘磁乒7+∑‘I：l ’l；I【o，】<o (5．
1 1 J l nf I

其中‘=亏2，百>O为使得o<‘一鸟s亏成立的正常数。对(5．13)式左边同乘以矩阵

夏=P1=瞄置]．I一右边乘以牙7，x=，1，由于cs固中只要求矩阵碍、昱只需满足
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摩7。弛就可，又考虑到要兼顾保守性和运算简便，可借鉴【32】中的方法令

只刮州。纠”P．墨卅。置叫，可得牙一=瞄嚣]'再由schur
补引理可得量<O等价于

『∑3 zI ￡2 1
壹=I∑；-(fi)。Ql 0 l<0 (5．14)

【z：0 一_2)。1 Q2J

其中弘[0x％抖弘■％％甜峭z一啦，
『 一啊x ％x]

邑=毛+z：+百Q，其中的邑2l(彳+4)x+妻县uj^x一，12xJ。可见如存在正定矩
阵石、Ql，f=l，2，3，矩阵q，．，=l，2，及正常数一、，％满足矩阵不等式(5．14)，则可取

形如(5．2)的带记忆的状态反馈控制器。且对fl的自适应律可取为式(5．12)，fl的估计值

乏o)满足f1．s毛(f)≤百，Vt>_O，则线性时滞系统(5．1)是渐近稳定的。反馈增益矩阵及

各未知矩阵可这样算得：P=石一=吩7q鼻=坞B，K=Ux～t K=u：z一． 证毕

注5．1由于状态可测，因此由(5．6)可知J，也可测，因此自适应律(5．12)是可以实现的。此

外在求解矩阵不等式(5．14)时，为简单起见，仍用上一章中的方法令，lI=1，而用搜索法

求解坞，这里不再赘述。

注5．2和上一章的结论相比，本文对未知时滞参数的自适应律在形式上虽然包含上章中

的关于状态x的负的二次型，还包括了一时变量(fI(f)一A)，即某一时刻钆的变化律与该

时刻；1与真实值『1的接近值^之间的差值有关，在这样的自适应律下，初值乞(o)也不用

象上一章及【106】中那样假设『l(f)≥‘，可以有如下好处：不需要像以前那样为保证

幺O)2『l一直成立，估计一个很难计算的“调整常数”y(在(79’106】中均未能提供具体

的估计步骤)；此外由(5．12)可知对于这样的自适应律“(，)与『I的接近值红之间的差值会

越来越小，因此只要fl(f)的初始值落在上下界‘和f1．之间，即能使得fl(f)始终处于r1的

上下界‘和fI．之间。显然在这样的自适应律下，f，(r)最终的值应趋于fl的接近值A，

57
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比【79，106}及上一章的方案要简化的多。

5．3．2～种输入时滞的线性时滞系统的新型自适应控制——自适应控制的第三步改进

(实现“带记忆”的新型自适应控制)

对于系统(5．3)，根据(5．3)和(5．4)，及引理2．5中的(2．22)可得闭环系统状态方程为

f ^ ‘

jj(f)=4xO)+4颤，一f1)+—BKx(f一屯)+—B岛颤r—f2一q r,(t-r2)-(r,(t-r2)-ht)2)
【工(f)=矿(f)’Vt∈【---，0】

． (5．15)

其中f=m瓤(才，彳+2i(√石+五2一焉)+f2)，用【28】中”descriptorform'’的方法并令

y=ax(t)+4x(t-r,)，j‘=BKIx(t-f2)+BK2x(t-*'2--Oj力(f一≈)一(fI(t-r2)-h02)。即

Y+：

=(彳+4+丑固x(f)一刮已cy(J)+：(呦凼一甄Lo偕)+z皓))蟛一丑码L(“s)+z(呦西
(5．16)

其中K=Kl+K2， f，。r2+qfl(f—f2)+(flp—f2)一啊)2，对于系统(5．16)， 取

Lyapunov-Krasovskii泛函为 ，

矿如)。K(r)十V2(t)+争2(幺(f一屯)一魄)+q】2

其中K(f)=，戥，吒(f)=妻￡L(“印+：(劝7刀玎1互(y(j)+=(s))施卯，
i=l，2,3为待定正定矩阵，，为正常数，K(r)沿系统(5．16)1㈣

坟(t)=2xrP(y+z) ．

雌删][矧嘲
雌删][Ⅻt[之譬：H北似卅如眦，
啦吣∥][Ⅻ[之譬：k研

其怀州+BK小印互=明辱％m=醐，户=瞄
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(5．17)

，t Q>O，

(5。18)

习肌



塑至兰堕堡墨竺堑型旦重查丝型堕!墨——————————————一

只满足庙，：阳。对于％∞：一2f．。[，o，+=)Tjr--l 0，14--◇(s)+=(s))凼由引理2．1可得

慨17㈣)r]乒阱¨IV"[y斗聃卅删7w互㈣俐冲
(5．19)

其中冠．i=l，2，3，为任“一正定矩阵-而

[“烨门乒m。，ivT㈨
：，e,／hP,rx+2x7／l&gqy+z)+(y+z)7B岛巧o+z) (5·20)

；，只是置7x+2石r最玛巧(y+z)+2zrp，RaPfy+y7P2P、3Pfy+z7B焉口2

白；f2+q a(f—f2)+(知一r2)一啊)2=去{【2(；t(f—f2)一^)+at]2一彳+4^q)+f2(5．21)
考愿剑

!【曼垒!!：!：至竺兰兰：!竺!：

南o)·L烈J)7刁劣’互j(s)出十L【j(，)7刁劣’互膏(r)一j(f+口)7刃g‘互雄+p)】硼
ff2+atd 知一r2)+Cr“,(t—f2)一^)2 ll f2 钼(r一 一f2)一^)‘J

而 南(f)=j—————F————』

；4。 “(t-r2)一^)；。(，一f2)=；lO一『2)【q+2(；l(t-tOrl(t-r2)+2(zq(t 一_}II)】
；q )一啊)n(，一f2)=flO一『2)【q+z【f‘ 一，IIJJ

由于；。∽变化的方向与(2(毛9)一^)+a,l的符号相反，也即；·(r—f2)变化的方向与

h+2(刍。一f2)一^)1的符号相反，因此

吃(f)≤主编(如)+z(f))7刀91互◇(f)+：(嘞一L(y(s)+：(s))7刁91五(y∽+：(J))幽1
(5．22)

取置=Q，f；1，⋯，3，m(5，17)-(5．22)可得

矿(t)sr(，)，曼。j，(f)+【q+2(a(，一屯)一^)】{晴(r—f2)+i1【口1+2(；t9一f2)一^)k7最玛巧力
(5．23)
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陬窖，2童131
其中 瓤f)7=Ix7 j，7，]，E。=l·宣。富：，l，

【· · 巨33J

宣。，=Ej+彳7彳+∑一只Q彳，E，：=P一只+j7巧+∑q只Q只r=互，，，

g：，=∑f，EQ只r一最一譬+∑ff刁91互=皇。，

昱33=∑fJ最Qf夥一最一巧+∑『l矛砑‘互+艺(4^q一霹)+f2】昱马巧·
由上述推导可得如下结论：

定理5．2对于含未知状态时滞参数『I的输入时滞线性时滞系统(5．3)，如存在正定矩阵

X，Q，i=1,2，3，矩阵U，，_，=1,2，使得矩阵不等式(5．25)成立，可取形如(5．4)的带记

忆的状态反馈控制器(其中的参数al，墨按引理2．5的式(2．22)取值)，liar,的自适应律

可取为式(5．24)。反馈增益矩阵为：蜀=U,X一．％=弛X～。这时整个闭环系统(5．3)的

解是渐近稳定的。并且当n(f)趋于稳定时，带记忆状态反馈控制(5．4)中以墨为系数的

带记忆项的时滞常数与五的差值在有限范围内。

证明根据以上推导我们可以看出，若是。<0成立且对fl的自适应律取为

毒。一f2)=一击【q+2(；J(f—f2)一^)p7BB巧z即
fi!(t)：一丢[q+2(蠢(，)一^)]z(t+ru)7昱Q3彤zo+f2) (5．24)
一

=一右瞳+2(九(‘)一^)]。 )7昱Q3920+f2) (5·24’

且当s垒一0<o时系统是渐近稳定的。显然V『l，f1 s百有s(fI)≤s(寸)：同时对蟊一^代

入‘一^=百一√蓐+五2<才一不蔓写记为s’(百)，因此s7(《)<o即能保证s<o成立·令

巨=s’(百)，则互<o成立时有矿(薯)<o，这时时滞系统(5-3)是渐近稳定的。对量<o两边

同乘以矩阵抛(五五墨)，其中蜀=与一，．砭=托；巧‘。由于(5．18)中只要求E、最
满足Ey=鼢即可，考虑到计算简便和不影响保守性，可令丘=％／慢P，置=l，坞，，

把引理2．5中的啊；√亏+五2，口I=2(√五+砰一再)代入并由引理2．4可得量<o等价于如

下不等式：
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吾
一

舌r
1
吾r
‘。2

舌r1

<O

其中童j=【o％4x也4x】，壹；=【o％岛c‘吩岛U o】，x=P-1，

哥--[o心愿％他最％0 0】，M=一f)。Q，i=I，2，3，f；=毛，

q=巧x，J=l，2，童=I。 E∞三23 l，
『毫，豆：写，]

． 【· · 邑，J

童Il=呜／鸭(A+^)x+恐7一∑岛U+n2／rzIX(A+4)7+传／啊∑(马u)7+∑f Qf，

,吾-q：=n21喝(n2一吩)z+啦，码x(A+4)7+他／鸭∑(垦u)7+∑fQ=量”，

夏，=窆fQ一2thX=量：：，黾=窆fQ，一2他Ⅳ+(瓦+t)Q3。

用Matlab软件中的LMI工具箱可算得矩阵弘，正定矩阵x，Q．即可算得K=Gx一，

恐=Gx-1。由于q，JIjl按引理2．5取值，由引理2．5可知，当f-O)趋于稳定时，带记

忆状态反馈控制(5．4)中以疋为系数的带记忆项的时滞常数

^ ^ ． 一

f垒q n(∞)+(fl(∞)一啊)2寸^，

即 os卜flI-陈一fI卜懈饵一引，污一靠1)=maxCr一，；：)· 证毕

注5．3 dit-T"f3：f2+q毛。一吃)+(瓮(f—f2)一^)2，因此

堕弩必=2；，o—f2)一2啊+q=o，因此；。o一『2)=华时毛取得极值点，而
d(f1(f一吒))

-

0(三冬≯)：2>o，因此幺。一吃)=挚=瓦是『3的最小值点，因此
‘=max纯(乞(f—f2)={币玮}))。如果厩选取的是f?和钆的中间值，由函数的对称性可

知f；=勺(；·(f一乇)；百)=毛(；t(，一屯)=f，。)。
注5．4由(5．16)可见，酬2x(t—f2)之后的项．)，及x(f一『2)之前的项=两部分，因此(5．24)
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中的=O+f2)并不违反系统的因果性，(5．24)是可以实现的，即把上一小节中单时滞的结

论进行了输入时滞下的拓展。

注5．5和上一小节同理，在自适应律(5．24)的作用下，乞p)与三垒l_≥：五的差值会越来越
Z

小，因此只要ft(r)的初始值落在上下界百和q．之间，即能使得rf(t)始终处于其上下界百

和f1．之间。显然在这样的自适应律下，蠢(f)最终的值应趋于fI的接近值厩，不需要

【79，106】及上一章的方案那样一定要≠∞≥f始终成立，而且为了保证这个假设成立还要

估计一个很难计算的”调整常数”y(仿真的时候往往还要进一步调整)。更重要的是在实

际应用中，fl(f)往往比系统状态变化得快。由定理5．2可知尽管f。未知，我们还是能得

到包含反映与h：Y-差在有限范围内的关于瓦的记忆项．而在上一小节中，实现自适应律的

带记忆状态反馈控制形式为Ⅳ(f)=K。x(f)+lc：(t一(翕一五)2)，这样在上一小节中自适应

律；。(f)：-<；1(，)一j；；)坍的作用下毛(f)一五，如果瓮(f)在系统趋于稳定即x—o之前就达

‘到五，那么其状态反馈xO一(矗一五)2)寸础)即变成了无记忆项，这在时滞常数q对系统

影响较大时显然会影响系统的稳定性：其实，即使『I(f)在算_0之后才达到

j；i，疋x(f一(；，一五)：)中的(a一厩)：反映的也只是估计值ap)与‘的接近值五之差，而没有

真正反映毛(f)，这不是带记忆控制，在fJ对系统影响较大的情况下将无能为力。显然本

小节在这方面的改进就体现在状态反馈控制(5．4)中符合引理2．6的参数选取上，实现了

带记忆的新型自适应控制。

注5．6这里的z是为了防止『I(r)，变化过快(慢)而添加的调整常数，因为如果被估参

数变化过快，系统状态还未达到平衡，而在状态达到稳定的这较长的响应时间里，实际

的工程应用中有可能会出现一些不确定因素(如干扰的出现，系统参数发生了变化等)，

这对系统的镇定是不利的。另一方面，如果被估参数变化过慢，那么反馈到状态反馈矩

阵中的有关量在很长时问内变化极小，这同样会影响到系统的镇定。值得注意的是：f

是在仿真过程中根据仿真结果进行调整的(一般以lO为数量级)，以使系统状态、被估

参数都能响应较快，这与179，106】及上一章的方案事先估计很难计算的”调整常数”，还

要在仿真过程中进一步调整是不同的。
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对于该类系统时滞参致的其他情况还有以下结论；

推论5,1对于输入时滞参数毛未知但状态时滞‘已知的线性时滞系统(5．3)，而状态反馈

控制由(5．4)变为 “O)=K，x(f)+K2x(t一『l一呜fz一(f2一岛)2) (5．26)

弓变为r3=『l+吒+呸幻(，一毛)+(f2(f～屯)一岛)2。结论陈述与定理5．2相同，只是自适应

律(5．24)及引理2．6中的t，f，靠，^，再，q的下标均由1改为2，要求的LM【形式与(5．25)

相同，其中的‘；f1，f； f；：(t-r：=max{r， )；{矗，f2．)l，此外z变为相同，其中的‘=f1，f； I r： )={矗，f2．)》，此外z变为

z=甄．茗p一吒)+必j．(f—fl一吒一吗f2◇一屯)一(f2(，一f2)一岛)2) (5．27)

推论5,2对于输入时滞参数f2，状态时滞参数fl均未知的线性时滞系统(5．3)，则相应的状

态反馈控制变为

“(f)=KIm)+岛x(t—qrl-(r,-102)+K3x(t--a2f2一(r2一心)2) (5．28)

这 样 不 仅 有 f3=乇+廿lfl(r一毛)+(fIO—t)一^)2 ， 还 有

_：巧+呸；：(f一如)+(；：(f—f2)一岛)：，相应的不仅有互=瓯，而且有互=B玛，结论陈

述与定理5．2相同，自适应律(5．24)及引理2．6中的t，f，靠，红，瓦，q的下标对l'2均有和

推导定理5．2过程中的同样形式，此外=变为

弘甄妒乇’+鼍。一％一q，t’币俨咿^’2’ (5．29)

+BK3x(t—f2一码f2(f—f2)一(f2(f一吒)一心)2)

要求的LMI形式与(5．25)相同，相应的矩阵Qf，V的数目会分别增加一个，LMI维数会

相应增加1，对应的霹=【o如岛％嘞马％0 0 0J，肌=一『：)。幺-其中的

《=一{f3(；·o—r2)=鲸锚))，f：=m强{f4(乞(f一如)=撼纠))。
5．4仿真示例

例t考翩下钢惭晰滞系统∞k(t)堋=Ax(t’：警哥地。’ @s∞
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其中q未知，』t4=[三：]，丑=[o]。‘；。．z。f-．=。^写=。．。s，取f，的接近值为
h=O．15，把这些数据代入LMI(5．14)，令碍=l，也=O．I按小间隔变化(o．0I)直到其有可

行解为；x=[揣篙]，酬¨s·，删ss】，
墨=1．Oe-lOx[-O．6045．0．3781】， 此时吩=0．29， 自适应律矩阵

磁尹=

0．4935

O．7162

0．0691

0．1003

O．7162

1．0478

0．1003

0．1467

0．069l

O．1003

O．0193

O．0281

O．1003

0．1467

O．028l

0．0411

，再取t=百=0．2，fi(o)=f1．=O．I，初始

函数为[差暑]=[三：嚣：曩]，则仿真结果如图s^

圈5．1(8)系统状态轨线 图5．1∞时滞实时估计值曲线

Fig．5．1(a)gta±eVe!Ctotofthe system Fig．5．1(b)estimatevaluefortheunknowndelayparameter

例：考虑与cs∞相符的时滞系统，其中r2=0,008,r。未知，．4[一--，4，笔]，4=[：三]，
口：I?l，百：o．3：fl，靠；o．2，亏：o．05；瓦，即取q的接近值为亏：o．25。如果用【79，106]
中的结论，不能得到一个镇定系统的控制器；如果用上一章中的结论，虽然可以得到镇定

系统的控制器，但必须保证flO)≥‘一直成立，而且必须为此估算一个很难计算的“调

整常数”，，还要在仿真过程中不断调整，实用性差；如果用5．3．1中的结论，虽然不用对

ft(f)进行限制，也不用估算，，可使fl(∞)斗厩，但是系统却不能保证镇定。而根据引理

2．5取囊=√瓦+五2=o．559。口I=2(属+砰一五)=o．618。把这些数据代入LMI(5．25)，令
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叫，rh=0．1按小间隔变化(o．01)勘U LMI(5．25)有可行觥z=B翟≥黑|，
U=【3．5384·14．4488】，％=1．0e--005+【o．0551-0．2228】，即得

墨=qz一--[o．6916-1．6681】，恐=以x～=1．Oe-006’【o．1482-0．2473】r自适应控制

矩阵EQ彳=瞄僦黜o]．取初值删-o．2，初始函数为

[爱篙]=[三端]，f=m旺c百，瓦2+iq+乇，=。．s。t，仿真过程中经过调整得

图5．2(a)系统状态 图5．2(b)未知时滞参数估计

Fig．5．2(a)gta地vector ofthe system Fig．5．2(b)estimate value for the unkllown delay parameter

可见，5．3．2的结论不仅能突破对未知时滞估计值毛(f)的限制，也不用为此估算调整“调

整常数”，，更能在未知时滞五对系统影响较大的情况F实现“带记忆”的新型自适应

控制，保证系统状态的稳定性。

G．5本章小结

本章在基于”descriptor form”的Lyapunov—Krasovskii泛函的基础上首先通过一种新

型的带记忆状态反馈控制，使得推导得到的自适应律能使时值参数估计值的变化能与其

当前值和时滞参数一接近值之差方向相反，变化后的值与时滞参数一接近值之差能越来

越小，因此只要其初值落在上下界之间，则其值在控制过程中会始终处于这个范围，最

后趋于时滞参数的一个接近值，以往结论中对时滞参数估计值必须大于其真实值的限

制、很难计算的“调整常数”也就不需要了．接着，对于这一新型自适应控制方案的缺



东南大学博士学位论文

点——实际上是一无记忆状态反馈控制，又作了进一步改进，通过引入两个事先可以确

定的参数，使得状态反馈控制能始终反映未知时滞参数，在时滞参数对系统性能影响较

大的情况下仍能充分发挥作用。本章是对以往的时滞参数自适应控制的重大突破，通过

仿真示例可以看出，本章的控制器设计方案具有很好的优越性。

本章的部分结果已整理成文并发表于《南京理工大学学报》，还有部分结果已整

理成文并将发表于《系统科学与数学》。



第六章一类输入丑幸滞的不确定多对海非线性系统的薪型自适应日∞控制

第六章一类输入时滞的不确定多时滞非线性系统的

新型自适应H。控制

摘要

针对一类带未知输入时滞参数且含未知上界的不确定非线性环节的时滞系统，基于LMI方法，

采用一种基子’协谢ptorform”的Lyapunov．Krasovskii泛函方法和新型的带记忆的状态反馈控制，使
得时滞参数，未知上界向量这两种参数的自适应律均能反映其实时估计值与其实际接近值之间的差

值，不仅突破以往自适应控制对估计值的大小限制和保证限制成立的“调整参效”计算的困难，而

且把这种新型的自适应控制同时用在同一系统的参数、向量上。与以往的结论相比，本文研究的是

更具有一般性的非线性系统的自适应日。控制，结论的保守性更小、实用性更强，～仿真实例证明

了该控制方案的有效性。

6．1引言

对于时滞系统的对时滞参数的自适应控制问题，第四章分别对一类带不确定状态时

滞参数的输入时滞系统，及一类带不确定输入时滞参数的非线性时滞系统给出了对未知

时滞参数的自适应旷控制器的设计方寨，随后第五章又提出了突破以往自适应控制两

大限制(需要对时滞参数估计值限制并要计算“调整参数”)的新型自适应控制方案并

做了进一步改进，但是对于更复杂的时滞系统——既有输入时滞，又有多状态时滞，还

有上界与时滞状态成线性关系的非线性时滞环节，自适应控制还研究甚少。【80]研究了

一类不确定多时滞非线性系统的自适应骨。控制，它仅是以非线性不确定项范数上界未

知的基础上引入自适应控制的，且是非时滞相关型控制，需要事先确定的未知参数、矩

阵太多而且没有具体求取步骤。

本章在前两章内容的基础上，研究一类较为复杂的非线性多时滞系统——带未知输

入时滞、与各时滞相关的非线性环节的范数上界与各时滞状态的范数成线性关系，但线

性系数未知，这些未知线性系数组成一个向量，要同时对这两种未知量——时滞参数和

非线性未知上界向量进行新型自适应日”控制，由于一个是时滞参数，另一个是未知上

界(即使在系统仅含一个状态时滞再加上输入时滞的情况下也是一个未知向量)，在同

时制定它们的自适应律时要兼顾它们之间的协调性，而且由于输入时滞的出现，如果还
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要满足圩。特性要求，难度将大大增加。除了通过状态反馈控制来实现对时滞参数的新

型自适应日”控制，对非线性环节不确定上界向量的新型自适应曰”控制则是通过适当

的控制矩阵增益来实现，不确定上界向量也和未知时滞参数那样只需要知道上下界值就

能同时实现新型自适应日。控制，与以往的结论相比，本文研究的是更具一般性的非线

性系统的自适应日。控制器设计问题。最后给出仿真示例以说明本章所给出的设计方案

的有效性。

6．2问题的提出一类复杂的非线性时滞系统
考虑如下多时滞非线性系统

主(f)=叙(f)+∑4x(f一‘)+∑q(工G一‘)'t)+B2u(t-f,+1)+马w(f)
I．1 JID

i(f)；Cx(t)+Du(t) (6．1)

x(玲=矿(O，Yt∈f—f，O】，f=maX●～，

材(f)=0，ts0

式中x(t)∈R8是状态向量，w(t)∈R1为干扰输入向量，u(t)E R“为控制输入向量，

；O)E胄^为系统受控向量，A、4、蜀、B2、C、D为具有相应适当维数的矩阵，q≥O，

j--1，⋯，Z为系统状态时滞常数，f，+。为系统未知的输入时滞常数，但有已知上界最大值

记为吐l，已知最小值记为钆1．t及较为接近f，+，的值‰。(一般两+，取为t。和_。的中间

值)，并能找到正常数巩>0使得o<tI一岛+I≤瓦+，成立·q(并(f一0)，f)为打维非线性向

量函数，≯为系统初始状态函数。

假设6．1(五岛)能控

假设6．2存在已知的连续有界的向量函数J，(加一f，)'D∈R一，使得非线性项可表示

为

Gj(x(r一0)’t)---岛t(工(f—fAf) (6·2)

上界为 I乞(x(f一巧)，f)0 s毛ll工(f—q埔

可得 l岛t(《f一-)，f埔s每√=云I；；可耻(f一一邗 (6．3)

该假设的(6．3)式隐含着6，(0，f)=0，_，=o’⋯，l+1，Yt，即j0)=O为自治系统(材(f)=O)



蔓查兰二鲞竺垒翌塑堕至塑塞垩堕塑斐堡堡墨竺竺堑型臭堕垒旦：丝塑

的一个平衡点。令口，=毛√五h(霹岛)，其中历，->0(．，=o，⋯，I+I．)为未知的正常数。

令 J=陬⋯岛+。】r，马=q，j=o，⋯，1+1， 这样在得到口，后即得毛=aj／厕。记j为口的估计值，每个分量估计值有已知上界最大值为口：；口：，
最小值为q．=只．，j=o，⋯，1+1，分别构成的向量为口‘及只(后面均写成母‘≥西(，)≥盟)，

估计误差为3=a一西，选择矿及只问向m-百为母的接近值(一般取其各元素为

每=(乳+筇)，2)，且能找到～向量母满足o≤8口+一剐2 s牌82。
本文研究的目的是：对于给定的常数坍>0，如何设计一个带记忆且时滞相关型的

状态反馈控制

Ⅳo)=K·石(r)+喜K+-川一q)+K+：雄一(彳!f+l∞一呜+1)2)+枷西(f)一万82置+，x(，) (6．4)

其中；m(f)为f，+，的估计值，假设；，+t(f)=一；。(f)一啊+。)M，其中码≥o为一非负常数即

rKt)变化的方向与(“l(f)一啊+．)的符号相反，类似的|90)=一(§O)一oa)m2，m2->0．墨，

f=l，⋯，l+3为待求矩阵。使得系统(6．1)是渐近稳定的，且满足删：<圳l叫I：(这里㈣：是

厶范数)，并定出未知参数巧。未知上界毋的自适应律。

6．3主要结果——对于两种未知参数的新型自适应控制

由(6．1)和(6．4)可得闭环系统如下

io)；丘x(f)+∑4砌’一ff)+∑g(工。一0)，f)+岛墨x(t-r，|。)+岛∑K+．砷一‘+．一t)
，。I ，。日 ，II

+马局+：x(f一≈。一【鼻+。(f—f，+，)一岛+。】2)+马Jo，√ll西。一f，+，)一吲2“f—f，十。)+骂'-，(f)
粥=(c+蹦+肛f)_万卜明曲(f)+D老致融卅+粥+：砸吨“)吨I)2)
x(t)=妒(f)'Vte[-7，O】

(6．5)

其中F2晋骂(‘，巧j)+tl，用【28】中’’descriptorform’’的方法并令

， I+I

yo)=Ar(f)+∑4石(f一『』)+∑Gj(善。一_)，f)+骂wo)
I-l 1-0
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z=岛‰加。一‰)一万《2·x(t-钆)，

z(f)：最壹K+。x(t—f，。一fj)+马蜀+：工(f—f2m)+岛墨x(f—q+。)，即
J，+z+i

=“+妻4+岛善1+2墨+县蜀+，Jii夏z丽柙)+旦“f)一喜4Lo(s)+：(s)+i(s))西
一岛善t+2 KL o，G)+z售)+享g))带一岛玛+，川西(f一≈+I)一万82￡‰(y(s)+：(J)+_(呦幽+
l+t

∑q(地一巧)，f)
J柚

(6．6)

其中q+l+』=钆l+f，，f=1，⋯，，，砀+2=f，+。+【气I(t-rt+1)一岛+I】2，对于系统(6．6)，并

取系统的Lyapunov·Krasovskii泛函为

矿(薯，M)=巧(f)+匕(f)+巧(f)+鲁(毒“o—q¨)一呜+1)2+鲁f§o—f，+．)一aT·西(f一弓+t)一翮(6·7)

其中匕(D=2乏l+2￡L o，(s)+z(s)+_(，))’刀G1五(“s)+z(s)+享(s))捌口，K(f)=，出，

户，Q，，f=l，⋯，2l+2，量r，=l，⋯，，为待定iE定矩阵，‘，厶为正常数·

玛(o=篓L《s)7墨z(s)凼·K(o沿系统(6．6)的导数为
砖@，w，)=2x7，o，+z+动

=z[工7 cy+z十享，7][：主][y+；+亍]
-2[蛐+硼7llo甜盈一￡三岛。槲啪品，)]@研
一2斟1．2五0k∽m∽+_(蝴) ．

叫，∽碉7][Ⅻ[盈一￡三县w摊日一蓦碾
21+2 hI． --a12 一

其中j=』+∑互，互=4，i=I，⋯，f，五+．=a2K,+岛K+一归(f一巧+，)一J8，曩，=B墨，

，=z，⋯，，+：，令E=[：：]，芦=[：主]，且丑、只满足摩7=乒E·



第六章一共输入时溽的不确定多时滞非线性晨绕的新型自适应日4控制

对于绣(f)=一2￡。[，o+=+习7]芦l：l五o，∽+z<?)+彳(s))出由引理2．1可得
仇≤‘[x7 o，+=+习7]芦[：]R【。，ipT[y+：+享] 。。．，，

+f(烈s)+z(s)+i(J))7刁耳’五(y(s)+zo)+彳o))幽●吒

[，(y+z+秽]芦E]如“。，1，[y+：+-]
而 =，最如+2掣x+2x’日Rm譬()，+z+刁+o，+z+刁7忍是m巧(y+z+z-3

=，只R№彳x+2x7五岛。：只『cy+z+D+2(享+z)7B屹+2巧y+，B是，。乎y

+(z+z-yB马“2巧(z+z-'3

(6．10)

其中冠，i=l，⋯，2／+2为任意正定矩阵，此外由假设6．2可得

：[x’◇+z+刁7][言主][Gj。工。，：_，，，，]=：[工7 cy+z+手，7]F[：]岛tc工。一。)，力
≤[x7(y+z+习7]歹[：]乃【。，】乒7[y+：+三]+(岛t(x(t-r，)’r"7巧1岛tc石。一。xr，
≤P∽耐桐t旧譬]■+i]+k(咖触刊2

z薹[，cy+z+习7][言主][q@。，：。"，]
s秘7帅州卧[彳只r]k+暑]+k(矿坷胁硝】=(6．11)
五cz+z，[J7 o+z+习7][主零主≤][y+：+i]+萎t-t-Ij0／2I卜cr一。，82

且

孑7B．哆彳=fl譬岛蜀。Ji聂i：：i：两·石。一r，。，『。6．。：，
：(刍(f—fk。)一两r(§o—q。)一歹)j和一f，+。)7(马蜀+，)7最覃．呸。K0，工(f一巧。)

考虑到



． 一塑型型型咝生—————————一

!【曼丛生!丝：d兰t竺兰竺竺虫：2【气I(f一‰)一‰】‰c卜％，．
L‰(。，卜hr嘞孟(s)7刀砑’互主p)as+丘。，肛(r)7刀g‘五葺∞一砸+口)7刀g‘互加+口)1抬
由于；。(D变化的方向与(；。，(r)一岛+，)的符号相反，也即；m(f—q+。)变化的方向与

(；。，(f—f，+，)一k。)的符号相反，因此

吃(f)s芝l-I院(y④+i(f)+zo”7刃91互(y(o+．‘f)+z◇))一 (6．13)

(吒()，o)+虿(s)+zo))7刁Q『’互(yo)+彳o)+zo))出1

而 吃(f)：艺【xo)r墨x(f)一j时一fj)7S,xq—f1)1(6．14)
t-I

取墨=Q，，f=l，⋯，2l+2，由(6。7)-(6．14)可得

矿(五)si(f)r巨。j(f)+l；，。(f—r，。)一J】}。】{‘毒+．(f—z．，+。)+【；，“(f—z，，+，)一两。】(z+习7E忍，+z巧·

(z+z-D}+(≥(，一f，+。)一两r哦§O一钆。)+五(，+2)·(3(f吖抽)一两·_rB巧列

其中 妒(f)=p y7，矿，(卜_)⋯，口一¨∥]

●

巴O盘

口 冒
一n —12

· 亘22

● ●

(6。15)

毫，，；异j+ir置r+笺ff只Qi墨r+釜s+A(t+2)置置’+露／五·，，

基。；，一只+jr只r+窆t五Q：只『+2(t+2)只巧=基+，=量；。，兰；n。=只旦，

互。；艺t罡Q只r一是一巧+窆t刁Q『1五+勺+，足如m巧．g。=毫，；星。+即+2)最譬，

g：：；皇：，：E抖；笺‘只Q彳一只一巧+窆t碍口1五+五(j+2)B碍，

冒2J“=最旦=毫，J¨=三4，“，

E。，+I；彭以．，一墨，f=1，⋯，l+I，其余项为零。为研究系统(6．5)的Ⅳ。特性，令初始

1，●；J
=芝肼；

价

墨乏

氟

．

．

。

●



第六章一共输入时滞的不确定多时泞非线性系统的新型自适应H甘控翻

值妒【f)=0，则珂嚣足阴鬲缎T>0及，>0有

‘=r(；72一小2w，rw)西≤fG7；一m2w7w+矿瓴，嵋))出=

r{【(c+DKl+枷j(f)7一叫12·DKt+，)x(f)+D杰K+。加一t)+DK,+：工(f一(￡。(f)一岛+1)2)】r

．【(c+D喝+枷蜃(r)7一夏112·DK,+3)m)十D老K∥(f一‘)+粥+：砸一(饥(f)一‰)2)】
一m2WTW+矿(‘，w，)}防s r尹(f)互z(f)出

(6．16)

其中

-『移)=P广：7-it xr(t一_)⋯x7(t-r，+。)xr(t-C'}t+。(f)一‰)2)矿]，且

矿=矿+L‰(，卜‰P，(J)s+：xo)as，故当互<o对可得厶<0，由schllr补引理可得三<0
等价千如下镇阵不等式成寺：

巴=

巴 品l⋯一。21+3

哥M

量玉+， 鸩。

<O (6．17)

其中壹j=[o五五互0。⋯0。+f]，i=1，⋯，21+2，M2m=—。《Q2“：，

M=-r,-1Q，f=1，⋯，2／+1，鸩M=一，，

氦，=[c+峭+扣万可·％+，。。。啦⋯DK,+。。瓯：oI
二=

’’。

一。lJ+7

⋯
二2J+7

●
基≠+，j+7

，其中

”+I

量。=∑ff昱Q口一最一只，+r，。墨是，+：夥 ， 黾，=量。=置。+五u+2)只巧
l=l

置：：=置：，=誊：．=∑‘昱Q巧一昱一巧+五(，+2)最只r，蚕。。=三。。+S。，置，+“+。=一s+：，
ill

；州+7=—脚2I，其余雹∥=巨9，但原下标含有的≠+6变成“-7，其余项为0·由以上推

导可得如下结论：：

定理6．1对于带未知输入时滞参数rt+，的非线性时滞系统(6．I)，如果存在矩阵U，
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f=l，⋯，1+3，正定矩阵石，正常数啊、％，使得线性矩阵不等式(6．20)成立，且对f，+l的

自适应律可取为(6．18)，对占的自适应律可取为(6．19)，选定的常数使得q+，的估计值

f，+I(r)满足tI≥fM(f)≥t+12f，”，并能找到正常数亏“>o使得o<tI一^+l s瓦+。成立．

毋的估计值8(0满足矿≥'9≥8(t)≥只，Vt≥0，则线性时滞系统(6．1)内部是渐近稳定的，

且点r性能指标小于给定的界肼。反馈增益矩阵：K=Ux～，f=l，⋯，1+3．

证明可以看出，若式(6．17)成立且对q+．的自适应律可取为

I'1+1(t-ft+1)=一÷【f，+I(t-rt,I)一岛+l】(z+习7昱Q2“2只『(z+亨)，即
1

钾H(f)=一÷【f，+l(f)一岛“】【=o十f，+1)+-(f+乃“)r县Q2，+2巧【zo+q+1)+亨(f+乃+I))】 (6．18)
1

且对|9的自适应律可取为

^ l ^ 一 一 ．
一

e(t一『，+1)=一÷(口O一巧+1)一口)·五(，+2)*x(t-r，+1)7(B2墨+3)7足月j岛Kt．3x(t-ruI)】，
‘2

．

即

占A(r)：一2墨!÷型(刍o)一西．XT(f)(岛局。)7最譬岛局+，x(f) (6．19)
‘2

而由Schur补引理可知w(f)=0时(6．17)成立包含了系统内部渐近稳定的解(苴o<0)，因

此此时线性时滞系统(6．1)内部是渐近稳定的，且日”性能指标小于给定的界m。令

s垒壹<o，显然Vf，+。，巧。st。有s(f，+。)ss(ff．，)；同时对亩+I一岛+l代入tI一岛+I=_+l；

此外，vJ，西s∥，有s(19)≤s’(矿)，其中s’(∥)表示对于J和善代入其上界矿，对于

母的元素q也做同样处理，而对于枷五(f)一叫12则代入咿一纠12=IIs,112，因此即能保证
s<0．令鸯=∥。对豆<O两边同乘以矩阵diag(XI⋯矗。)，其中置=e-,1，

五jJ=y=∥，置=z=p-1，i=5，⋯，1+6，一=I，．，=f+7，⋯，31+10。令毋=啊7％尸，

最=lln2P，由引理2．4可得妻<O等价于如下不等式(中间过程略)：

巴=

詈

?
M

<O r6．20)

首一

‰



第六章一类输入时滞的不确定多时滞非线性系统的新型白适应日。控制

其中壹i；【o吃4z％4x心4石Oz⋯0。。】，f=1．⋯，z，境，+2=_(t。)-1(k：，

氡=[o U—U—U一0．⋯o。]，厅=n282U,+他㈣岛q+，，

置矗。--[o啦马U心岛U％垦U 0，⋯0：。。】，f=2，⋯，l+2，膨=一f『1Q，

j=l，⋯，1，露，=叫)-1Q，i=／+I，⋯，21+1，其中rm++．=tI+ff，i=1,---,1。矾+，；√，
豆沁=

【詈(Du+cx+H·。“+，n。。。。％⋯。u“。。奶n oI⋯02，+，J’
童0+．=【，≈／％z 0。⋯0，。。1，吼，。=一衫研』，

誊；。=【ol⋯0。X 0。⋯03t+?】，厨‘，。=一∥砰J，f=l，⋯，I+I，

巴=

=
一”
一

一22

●

，其中

置。。=他，啊(4+∑4)．r+吗／M∑岛u+％／q}}岛《岛％，+吩／啊z(爿+∑4)7+

嘞／啊∑1+2(岛u)7+他／啊8岛II(马q。)7+∑／tQ+2∑1+2可Ql+(％，坞)2∑1．2墨+Au+2)J

量．．：壹fJQI+2∑1+Lf QJ一2啦X+t。奶。，量。：量。=置。+五够+2)，

量22=量23=量“=∑tQ+∑fQ，一2n2X+2(I+2)，

置。2=屿，％(他一r0X+n2／玛石(彳+∑4)7+他／啊∑(岛u)7+啦，玛0岛』(马U。)7
tII t=l

， 'fn

+∑『IQ+∑‘Q+丑u+2)，=置13=一-ZI‘
f-l t-I+l

亘，+，；萤：M：马：置，朋：置M，亘+，M=一mZ]m 1，暑枷+．=-s一,，f=l，⋯，1+2。豆l』+7=三2，+7=马=巨3』+，=一4J+7， 马+7^，=一 ，毫I+4，+4=
， f2l，⋯， ·

吒+2=tl+『，--+l'2其余项为0。且墨=xs,x，忙l，⋯，1+2，用Matlab软件中的LMITy}

箱可算得矩阵配，正定矩阵x，翁M，即可算得墨=Ex一，i=1，⋯，1+3。 证毕

注6．1由(6_6)可见，j：陂(．ffh-egx(t—f，+。)之后的项y x(t-tt+1)之前的项z、彳三部分，

因此(6．18)中的z(r+『f+，)、iO+『，+。)并不违反系统的因果性，(6．18)是可以实现的·与上

M

聃

lIlIf

IIlIr

黾
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一章同理，在这样的自适应律作用下，只要力+-(f)的初始值落在上下界t，和钆，．之间，

即能使得ff+t(f)始终处于其上下界t。和『f。之间。显然“-(f)最终的值应趋于q。的接近

值岛+I，不需要象[79，106]及第四章的方案那样一定要≠(f)≥r始终成立，而且为了保证这

个假设成立还要估计一个很难计算的”调整常数”，，(仿真的时候往往还要进一步调整)。

同理，对于参数向量口的自适应律(6．19)，只要霉(f)的初始值落在上下界占‘和只之间，

即能使得西(f)始终处于其上下界矿和鼠之间．显然在这样的自适应律下，西(f)最终的值

应趋于其接近值万，也不用像【80】中那样必须事先确定一个未知正定矩阵r，如果不通

过r控制多(，)变化的大小就有可能使掌(f)超出其上界毋‘，那么定理I中的双$≤Jp’)

就不再成立，所求的LMI(6．20)就不能保证系统稳定，对此【80】并未具体说明如何确定．

注6．2这里的‘，厶是为了防止f『+-(f)，j(f)变化过快(慢)而添加的调整常数，因为如

果被估参数变化过快，系统状态还未达到平衡，而在状态达到稳定的这较长的响应时间

里，实际的工程应用中有可能会出现一些不确定因素(如干扰的出现，系统参数发生了

变化等)，这对系统的镇定是不利的。另一方面，如果被估参数变化过慢，那么反馈到

状态反馈矩阵中的有关量在很长时间内变化极小，这同样会影响到系统的镇定。值得注

意的是：‘，‘是在仿真过程中根据仿真结果进行调整的(一般以lO为数量级)，以使

系统状态、被估参数都能响应较快，这与[79，]061及第四章中事先估计很难计算的”调整

常数”r还要在仿真过程中进一步调整是不同的。

注6．3由5．3．2可知，本章的新型自适应控制有可能在未知时滞参数、非线性环节的未

知上界对系统性能影响较大时无能为力，因此当出现卜述情况时，与5．3．2同理，带记

忆状态反馈控制(6．4)n--J"变为如下形式：

， ^ ‘

Ⅳ(r)=置。x(f)+芝：K+。工(，一t)+蜀+：x(t-a，+。n“(f)一(幻“(f)一珥+．)2)

+

(6．21)

其中新加入的正常数可取为q+。=2(0丽一‰)，珥。=0丽。
口：2(痧丽一歹)．石：店丽·1，
‰)=㈣+哪)+㈨+冬碥+l(f飞1)-‰)+口，+冉钏2【刍(㈠+I)一刃+4卜|J(6．12)
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旷
·x(t--1"I+1)8

II

：{2【3(f—q+．)一石】十口)r{21,9(t—zk．)一a-]+a}x7(f一巧。x马墨+，)7墨只i县局+，x(t—fo．)
(6．22)

相应的，定理6．1中的0岛4变为

如箩取为只与口‘德中间值即可各元素为耳=(只，+碍)／2，则

：√面(；(f)：鼠)：√互(§o)：o·)，分析过程与5．3节类似，g(6．20)5．3=√岛(占(f)=鼠)=、『岛(口O)=o·)，分析过程与 节类似， ．

的萤。中的f，+．昱疋。置变为(岛+。+乃+。)置曼。覃，其余推导过程与定理6．1类似，这

里不再赘述，最后得到的自适应律为

毒+。(f)：一丢【珥。+2(；。o)一珥。)】[z(f+。+。)+亨o+一+．)rBQ2，+：巧【zo+弓+。)+z(f+_。)1￡+t(f)=一者‰+2(“一o)一¨耻(f+¨+亨(‘+¨牝Q2m碍【。o+¨+_(f+_+tⅪ
(6．23)

刍(力=一丛铲【2(札m小川)(垦‰厂忍置蛹州 (6．24)

6．4仿真示例

考虑与c6m相符的时滞系统其中，=-，吃未知，1=。．一。爿=曙o]。^=[Il二19]．
蜀=[：：；]，岛=[?。]，t=。．s，‘=。．，，9t q．=。．s，％=。．，，，，瓦；。．z。，c=f。·】-
D=O．1，Go(，一fI)’p=岛√|而(f)而(fⅪ，Gl(x(t-rO,t)=岛U玉g一1)而秘一fI)I，

G：(x(，一rO，f)=岛√i五(f—f2)毛。一f2)I ， 只；【o．162411 0．172411 0．182411]7 ，

矿．【o．262411 0．272411 0．282411]r。歹；【o．212411 0．222411 0．232411]r，取

m=5．835， 把这些数据代A LM／(6．20)， 取初值乞(o)=o．6，

§(o)=【o．232411 0．242411 0．25241l】r，令，lI=1，力2=o．1按小间隔变化(o．01)直到

K吃誓=一Z誓

妫

巩
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LMI(6．20)有可行解；尸=1．167；：．．21494575 l，2=0．0024，蜀=【o．。574．4．9294]·
％=1．Oe-005’[43．0320．0．2186]，局=1．0e·004．【·0．0301-o．1713]，

蜀=1．0e·004叶o．2082 0．14281。可得自适应增益矩阵

， 1 0．1878 0．0814I

忍g霹。1m。-004+‰814 011635 I’

3五(呸墨)T吒吒T呸‘=1．oe-ootl·l 00．．2493261：．．2290632l I，仿真过程中经过调整得到
t：1．0e-004，如=1．0e-009，所得系统状态x(r)和参数估计乞(f)、善(f)分别见图6．1和图

6．2∽、Co)。从图中可以看出，在25秒左右xO)、蟊(，)、善(r)都能很好的收敛。

圈6．1系统状态

Fig．6．1 State ofthe system

图6．2(曲未知时滞参散估计

F．嘻6．2∞Estimate ofthe tmlmowfl dehy parameter

圈6．2(b)41；线性环节未知上界向量估计

Fig．6．20,)Estimateofthetmknownl母kⅧdofnonltne,ryea

注6．4由于该控制系统比较复杂，为方便理解，现给出如下系统结构框图：
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其中的A框表示由式(6．5)所描述的闭环系统，B框表示由式(6．is)、(6．19)描述的两种未

知参数——￡。(f)，西(f)的自适应律，在这样的自适应律下得到的当前时刻的t+，(f)，西(f)，

再由C框——由式(6．4)描述的状态反馈控制器得到控制输入群◇)，所需的控制矩阵

K，f-l，⋯，1+3由线性矩阵不等式(6．20)事先算得，值得注意的是估计值口(f)不像钆(f)

一样出现在反馈控制的记忆参数中，而是出现在控制矩阵蜀+，的增益上，这是由于由

(6．1)．(6，3)可知口不是时滞参数面是非线性环节的未知上界所构成的向量。

6．5本章小结

本章在前两章内容的基础上，把时滞系统的对时滞参数的新型自适应控制的研究扩展

到更复杂的系统，在非线性多时滞系统的输入时滞参数未知、与各时滞参数相关的非线

性环节的上界也未知的情况下对这两种参数同时进行新型自适应控制，对时滞参数的新

型自适应控制仍通过带记忆状态反馈实现，对非线性环节的不确定上界的新型自适应控

制则通过另一状态反馈的控制矩阵的增益来实现，使碍研究的非线性时滞系统更趋于一

般化，最后在求解线性矩阵不等式的基础上得到了可实现的对两种参数的自适应律。通

过仿真示例可以看出，本章的控制器设计方案在输入时滞参数未知，非线性环节的范数

与以各时滞参数为滞后常数的状态的范数上界成线性关系、且线性系数未知的情况下容

易实现，具有很好的优越性。

本章的结果已整理并将发表于《系统科学与数学》。
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第七章 一类改进的线性时滞系统的基于观测器的对时滞参数

的自适应控制

摘要

本章主要讨论一类输入时滞、状态时滞参数均不能精确己知的时滞系统基于观测器的镇定问题，

同时要对两个未知时滞参数进行和第五章一样的新型自适应控制。首先根据以往的基于分离性原理

的方法分别设计控制器及观测器，接着分析该方案实现时的保守性，在此基础上综合以往计算控制

矩阵的方法，得到一种能同时计算控制器、观测器矩阵的算法，在这样的观测器基础上的对时滞参

数的新型自适应控制才能真正得以实现。

7．1引言

对于时滞参数不能精确已知的时滞系统，第五章已经提出了新型自适应控制的方

法，第六章则是把这种保守性较小、无需对时滞参数估计值进行限制的实用性较强的新

型自适应控制用到了一类复杂的非线性时滞系统上，但是这些结论研究的对象都是状态

可测的时滞系统。对于状态不可测的时滞系统，镇定控制一般通过基于观测器的方法来

实现[49,81-83,108,1091，这些观测器一般来说可分为两种，一种是带记忆的观测器，另一种是

不带记忆的观测器。对于第一种，Azuma对一时滞系统进了基于观测器的镇定控制【l⋯，

NagIlsh诅b血i贝0是对～网络时滞系统设计了基于观测器的镇定控制133】。对于后一种观测

器，王自东和马书平分别在【49】和[109]对中立时滞系统及离散的奇异时滞系统进行了基

于观测器的控制器的设计．与状态可测时带记忆状态反馈比无记忆状态反馈保守性小同

理，状态不可测量测输出可测的情况下，带记忆输出反馈的观测器显然比无记忆输出反

馈的观测器保守性要小，但是已有的基于带记忆输出反馈的观测器的对时滞系统的镇定

控制都必须知道时滞参数的精确值，否则无法实现这样的控制器，Sugimoto在【83】中对

带一未知时滞参数的线性时滞系统进行了基于观测器的自适应控制，但是必须要求控制

输入是一个关于时间和时滞常数的函数，这给实践中选择适当的函数来作为控制输入带

来了困难。丽姜偕富在【62，81，82】中通过分析得到了时滞系统的可分离性原理，并在此基

础上对时滞参数已知的情况设计了控制器、观测器，对时滞参数未知的情况设计出了与

已知情况下等价的控制器、观测器，并得到了对未知时滞参数的自适应律。虽然这种方

法在时滞参数未知情况下的设计看似便利，但实际上是一种非时滞相关型控制，此外还
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存在两个问题：第一，在计算控制器、观测器时虽然可通过两个LMI计算得到相应矩阵，

但仔细观察可知实际上观测器矩阵必须在前一个计算控制器LMI可行的基础上，把控制

器矩阵的可行解代入包含观测器矩阵的LMI才能得到非矛盾解，前一个LMI给后者带来

了保守性：第二，在时滞参数未知的情况下，虽然得到了自适应律的具体形式，但是需

要事先确定的未知量太多，其中最关键的量——观测器状态与系统实际状态差值的范数

的上界这在具体实践时如何得到都没有做具体的分析说明。而文献【llO】虽然通过把观测

器状态引入到自适应律中，对后一种缺点进行了改进，但是第一个问题还没解决，此外

又增加一个问题——在对观测器矩阵的求解上，往往需要对量测输出向量中的矩阵c进

行是否满秩的讨论，而矩阵C未满秩对有可能得不到观测器矩阵的解。因此保守性小、

真正切实可行的基于观测器的对时值参数的自适应控制还未有结果。

本章首先仍以时滞系统的可分离性原理为基础，对未知的状态和输入时滞参数都进

行了新型自适应控制，要实现两个参数的自适应律必须求解两个LMI才能得到控制器、

观测器矩阵，但是在计算中发现了上述分离性原理带来的保守性——观测器的计算要依

赖于控制器的计算，因此在新的方案中尝试能否在一个LMI同时计算控制器、观测器

矩阵，在对以往保守性较小的基于”descriptor form”的Lyapunov-Krosovskii泛函之上的

控制矩阵的求解算法进行比较后，发现[331q，使用的一种基于cone补线性化算法能同时

计算控制器、观测器矩阵，而且无需考虑矩阵c是否满秩。这就给实践真正带来了实用

和便利，并成功的把新型自适应控制用到了状态不可测的情况下。

7．2问题的提出——两种控制方案的提出

考虑如下带输入时滞的线性时滞系统

l宝∞=血(f)+Ax(t-r1)+Bu(t-r2)
{夕(f)=cx(t)(7．1)

Ix(f)=≯O)，Vt芒【—f，01，f=max{rI，rd+f2

其中x(t)∈R”为状态向量，u(t)∈R一为控制输入向量，歹∈胪为量测输出向量，彳，

4，B，C为适当维数的矩阵．fl≥O为状态时滞参数，I"2>-0为输入时滞参数，这两个

时滞参数至少一个不能精确己知，但对于不确定的时滞参数已知它们的上下界，即已知

时滞参数fI．和百，i=1，2使得禾s‘s‘，i=1，2成立。妒(f)eC[-r，o】为系统初始向量，

并能找到‘的接近值i，f=l，2．及正常数_l，和《：使得0<f一亏≤亏l与0<亏一f1．s《z，
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，：l，2成立，一般写可取为‘与靠的中间值，即有《；毕，，=l，2。本章研究的目
二

的是：如何在观测器中同时考虑状态滞后与输入滞后项的作用，设计一个带记忆的动态

输出反馈控制器，并能得到对未知时滞参数ft的自适应律，其中自适应律必须满足新型

自适应律的要求即有钉(fx订(f)一i)≤0。可有如下两种方案：

①如下形式的带记忆的动态输出反馈控制器(观测器状态方程中带记忆项，且控制输入

的观测器状态反馈带记忆。观测器中的输出反馈部分为无记忆)：

石(f)=Ax(t)+AIx(t-(rt(t)-1％)2)+Blu(t)+马u(t-r2)+上【夕O)一Cx(t)】
^ ^ ^

“(f)=正x(力+E工O一(fI(f)一^)2)

x(t)=y(f)'t∈【—f．，0】，f‘=写2+f2
(7．2)

^ ^ ^

其中fI(f)为系统(7．1)的状态时滞常数fI的实时估计值，且满足fl(f)(“O)一啊)≤0，

Vt>0。关于时滞常数fl的自适应律将在后面给出，使得如下闭环系统是渐近稳定的：

it(t)：(彳+置E)x(t)+Aix(t—q)一蜀曩P(t)+BiFzx(t一(；，(f)一矗)：)一马五PO一(毛(，)一^)2)+

岛Ex(f—f2)一B2Fte(t一毛)+县E“f一吃-(r,(t-rO-^)2)

-B2F2e(t-r2-(r,(t-r2)-^)2)

p(f)；(4一LC)P(t)+Alx(t一五)一4三(f一(；Io)一噍)2)
工(p=矿(力，印)=尹(f)一∥(，)’tE【一max(r；，瓦2+‘，霄+『；)'o】

(7．3)

其中P(f)=工(f)一量(f)，从(7．3)我们很容易看出，这种基于观测器的动态输出反馈控制器

的设计符合分离性原理，这就给我们在控制器与观测器的设计过程带来了很大方便。

②考虑如下带记忆的基于观测器的动态输出反馈控制器(观测器状态方程中带记忆项，

且观测器中的输出反馈部分带记忆，控制输入的观测器状态反馈为无记忆)：

^ ^ “ ^—：- n

x(t)=ax(t)+4x(t—f1)+—B缸(f一『2)+厶【夕(f)一夕(f)】+芝：厶“【夕(f—ft)一夕O—fJ)l
，Il

甜(f)；Kx(t) (7．4)

xO)2矿(f)，f∈【一f‘，o】’f+=m。a．。xCrT)

·82．
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该种输出反馈带记忆的观测器比输出反馈无记忆的观测器保守性要小，但是必须要求各

时滞参数精确已知，由于t．f=l，2均未知，因此我们采用如下的以时滞参数估计值为

滞后参数的观测器

x(f)=zlx(t)+4x(t—qfl(f)一(fl(f)一^)2)+Bu(t—a2f2(f)一(r2(f)一如)2)+

厶【歹(f)一c工(f)】+∑‘+l涉(f—atf，O)一(f，(f)一^)2)一cx(t一口l f，(f)一(n(0一^)2)】
^—￡ ^ ^ ^ ^ ^

J=l

Ⅳ(r)=Kx(t)

x(t)={f，(f)’t∈【吖。，o】，f’=max{(瓦2+2町(√亏+亏2一亏))，f}

(7．5)

其中会(r)，j：1，2，为系统(7．1)的状态时滞常数‘，b1，2，的实时估计值，且满足

；．(f)【2(；．(r)一^f)+q】so，l：I，2，其中的参数q、噍，f：I，2均根据未知时滞参数『f及

其接近值Z按引理2．5取值。

7．3主要结果

7．3．I使用分离性原理的基于观测器的对时滞参数的自适应控制

由(7．1)-(7．3)我们可引入如下”descriptor form'’，并令

M(f)=(A+BtFl)x(t)+Anx(t—f1)一旦EP(f)+旦五xO一(fI(f)一^)2)-BsF2eCt-(rl(f)一向)2)·

弛(f)=岛E并O—f2)+岛五x(t-r2一(fI(t-r2)一^)2)]fllz(t)=j(f)，兄=儿，
‘ ‘

^ ．
^ ‘

元=Ax(0+Axit一0·(f)一趣)2)+LCe+蜀石J(‘)一垦点88)+蜀墨x0一(fl(f)一鸟)“．因此

一最五e(f一(f一(f)一^)2)

乃+弘=j=盈一喜五L“(s)+北(呦西一面(D+妻五￡。z(s)豳
两+兄=xA=互二妒喜五L(郧)+弛渺+工伽) (7．6)

z=a=(4一三c)g(r)+4x一4￡。(M(力+儿o))‘妇一4三+4 E^(只(s)+死(s))西

其中j=爿+4+且F+垦，，F=E+五，五=4，互=且五，互=岛E，互=马五，
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豆：BlF+BzF，互：4+马五，互=岛E，互=恳E。写=气，瓦=(ap)一^)2，专=f2

瓦=f2+(fIO—f2)一^)2，亏=亏∥l--I，2，3，取闭环系统(7．6)的Lyapunov-Krasovskii泛

函为

矿瓴)=K+匕+巧+善4 E L“(s)+乃(s矿互r簖1互∽(曲+儿o))dsde+

妻￡L如)7刁耳‘互如)d册+喜￡L拐(s)+兄(呦7考岔’互瓴(D+兄(呦出硼
+￡L“(J)+yds))7彳簖14执o)+乃o))asdo+

￡￡。嘎(s)+兄。))7彳露’4伤。)+兄o))dsaO+(ao一吒)一_III)2
(7．7)

其中K_--X：rE工，巧：fB二，巧；P，最e，Q，磊，f：l，⋯，8，_，_，；1，⋯，6均为j,vg

矩阵，^为待定正常数。巧(，)，，=l。⋯，3沿系统(7．6)的导数为

歧(D；zx7弓c乃+儿)=z[工7魄+M)7][：主][月：儿]
=z[工7∽+儿，7][0曩]t[互；一羔：芰一面]一喜[置]f≮∽cs，+儿cs，，凼
+如旧渊
=z[x7 c乃+儿，7][0曩][互。一羔：羔一面]一喜哺+妻岛

吃。，=zfBc只+兄，=z[f c兄+兄，7][0耄][两：艿]
=z[f嘶厂将孔妊，+焉开死H驰一删嘲
牛卧砂㈣k，+焉丹只k



第七章一类改进的线性时滞索统的基于观测器的尉时滞参数的自适应控制

吃(f)=2P7Bz=2[， 黝
=：[er z7][o萎]{[。4一三c，。—：+4x一4l一[三]￡．。。cs，+y：cs))出
+[三]【^c兄cs，+兄cs"凼，
=z[er z7][0 曩][(爿一工c：4)。一；]一彳+芦

其中弓、只，丘，霉。丘、毒满足这样自绦件：令E=瞄习，

足砰坪；类似的有互=心针丘、毒满足碍坪；

卿舻执例[台删0删咖乃。凇
s《[，∽+儿)7]露[o]s【o，】旱[见：n]+￡。∽(s)+儿(s))r刀并1五(朋(。+兄(s))凼

只≤亏[，m+段)7]霉[：]互【o，1互7[M：儿]+Lz(s，刁哥1五z(s)凼

磊s霉P’瓴+兄，7]豆[：]z【。z，可[甄：咒]+￡。c只cs，+死cs”7冒z。五c兄。，+兄cJ，，d，
彳sq[。r z’]亏[；]盂【。，】，}[：]+j二cMcs，+y：cs，，79f,。1^c乃cs，+yzcs，，·c括
声≤-[，，]亏E]霉【o，】碍[习+L(-1(s)+-2(s矿4r牙’4嘎(s)+藏(呦凼
_2[，c力+咒，7]露[三]≤[，∽+儿，7]瞪]磊[只『碍][M：肋]+，否7宏‘面

(7．9)

∞

满

满

仃

B

一只

，

、

p■

一pu

’

，

1●●J

1●●J只B一只一只

8
O

B

O{{

一pq

—pq



P tm州枷啦’匕]
；x7只只砰j+2，只墨謦(M+乃)+(M+M)7与S乎(M+乃) ，l：4，同理得

鲁f}母。或x+2#P‘sf冀(h+yO+识只st薯H+2Rs。鼍y。+记只s?《y。

[，cM+乃，7]亏[：]互【0，】再7[M：儿] ，，；。，

=#峪lP：x+2f咚t瑶咄+站+记峪|毪h+2唪f琏yt+嫒唪t《yt

[，c豆+兄，7]五[0]z砷，，髟[只i冗] ，；：。

：xAT只z砰，^+2。AT互巧譬(甄+豇)+玎亏z最强+2霉l可再+霹霉z覃鹑

m(7·7)。(7·9)，并取蜴；墨ri=1，⋯，4，E=互，i=2,3，4，磊=霉，i=1，2，3，Q，=霉，磊=五

嘲s喜翻置㈣+(刍㈣H瓶吲+池呦圳 (710)

暖弓只霉乃+一只置可咒+艿只五譬元)l

其中#=c，订一，，《=p’开霹，，]，暑=[鼍1芎：耋]
隅，蚕，：⋯莒。

；一I·瓦⋯巨：，
’一f· · ’． i

卜 ··瓦

_ ●

且三l。=只j+刀只+∑亏只2·甲+∑i只日巧+日磊彳，
』q t'2

互l：=星”=墨一J：+j7譬+∑i只Q誓+∑i只墨巧+只磊置，

En=‰=∑i只Q乎一只一彳+艺i只足彳+芝i刀Q-1互+只磊乎+q4914
，。I f-2 nl

‰=杰i只g彳一B一譬+t只Q．誓+杰i只R譬+『2只足譬+杰瓦刀g-五十层磊彳
+fI彳缉1^

3

置。=丘．=i+互’最十∑t豆磊乎，置。=豆￡c。
J·l

量。：；至．，：最一丘+jr丘+杰t丘磊掌
Jd



第七章一类改进的线性时游系统的基于观测墨的对对海参戥的自适应控崩

黾=黾=O：c，瓦=重。=一最一影+∑f毒磊謦+∑i砰牙1互+写群翥14，
llI J‘l

重，，=一是一譬+∑亏丘磊葺+f2丘磊謦+∑t彳牙‘互+写4宏14，
l。l ，。l

置．．=夏(彳+4一LC)+CA+4-zc)7豆+q丘Q5覃+瓦丘磊孑+∥磊’百。

蚕。=与一豆+(4+4一Lc)2最+fI豆Q，髟+亏霞磊影，

蚕。=一豆一露+t亏g可+瓦亏磊覃+∑亏刀可1五，其余项为零。由以上推导可得如下
m

结论：

定理7．1对于带未知状态时滞参数‘的非线性时滞系统(7．1)，如果存在矩阵U，

f=l，2，3，正定矩阵X，正常数惕、啦，使得线性矩阵不等式(7．12)，(7．13)成立，‘的

自适应律可取为(7．11)，选定的常数使得f。的估计值fl(f)满足f1．s毛s百，并能找到正常

数葛>o使得o<0一鸟s写成立，Vt_>O，则线性时滞系统(7．1)内部是渐近稳定的。动态

输出反馈增益矩阵：F=U工～，i=1，⋯，2。系统的观测器矩阵：把求解(7．12)及(7．13)

得到的一组可行解E，i=l，2，Q』，f=I，⋯，5，墨。i=2，3，4，最，最，最，B，豆，亏，

磊，f=l，⋯，5代入黾<0(量2定义看证明中部分)，即可求得工的可行解。

证明可以看出，若不等式暑<O，i=1,2成立，且对ff的自适应律可取为

；．(t-r2)：一(幺(f一屯)一向)饼只Q4譬儿+一只R巧咒+艿只磊巧_2)，ep

fA。=．(fIA～噍)(圬O+f2)只(Q．+墨)巧儿(f+f2)+霹O+乇)只磊乎兄(f+f2” (7．11)

此时线性时滞系统(7．1)内部是渐近稳定的，令S～A旦，<0，显然Vfl，『l≤玎有

墨(‘)曼墨(‘)：由于o<百一^≤瓦，把矗(，)一^代入彳一^=亏记为《，可得￡(‘)s≤，

这样《<o即能保证S<o．令≤垒豆。<o．对昙<o两边同乘以矩阵凼昭(置⋯五)，其

中xi=ffl，五，=Y=ffl，由引理2．4可知亘<o等价于一维数为8栉的不等式氡<o·

由于(7．6)qag'；J"只、只的要求为满足蹰7=再E，考虑到计算简便和不影响保守性，令

只=啊／屿丑，只=1，％月，其中nl、n2为正常数，可得量。<O等价于如下不等式(中间过

程略)：
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品l=

品l =2⋯=6

笔M

薯 M

<0

其中z=彳1·芎=【o n,4x吩4z】，霹叫o％置％心旦％ol，

。e。r-【o他马U一：％马U．2 0l⋯q．．】，i=3，4，M=一(瓦‘)“Q。f=1，⋯，4，

童：=【o他4x他^z 0。⋯04】，肘j=一瓦’)。幺．童，=

(7．12)

毛2卺(彳+4Ⅸ+詈喜喜马U，+in2 x似+4)7+鲁妻喜(骂u)7+窑亏。Q+喜亏。焉+磊

蓦：：置，，：导(也-n,膳+争x(一+4)，+导∑2∑2(且u)r+杰亏‘Qf+杰亏+墨+磊，
琏 啊 强百五

。

一t-I —tm2

量。=蚕。=—2％彳+∑百Q+∑瓦’R+磊

豆。=-2他x+∑亏‘Q+f2Q．+∑i’置+f2墨+磊，写‘=彳，亏=写2，_．=『2，i=f2+-2。

曩=瓦，f=l，2，3．这样通过求解(7．12)P--I"得到异=X一，只=UX一，f=1，2，Q。i=1，⋯，5．

磊，置，i=2，3，4，把这些矩阵代入量：<o，而由引理2．4可得量：<o等价于一维数为13n

的不等式壹：<o．令豆=磊，岛最，恿=l，盈弓，亏=匾／r％e,，霉=l，琏墨．其中曩、焉，

羁、瓦为正常数。对乏<o两边同乘以矩阵出g(置⋯量，)，其中置=哥’，忌，=穸=露1，

丘=露1，．羲=罗=零1，置=，，f=6，⋯，13。可得置<o等价于如下不等式(中间过

程略)：

其中

。

『萤。 置：⋯豆，

鸯2=悸届．
I： ’·

【霉 藏

<O

盖；=[o磊(4+骂五)j呜(4+马五)j 0 0]

(7．13)
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壹；=[o_；i2岛互j而县Ej 0 0 o]，

重：=[o而县Ej如垦E贾0。⋯o．]，M=-(百)’1豆，i=I，2，3，

量；=[o吗4戈忍4j 0，⋯o，]，鸩=一(亏‘)一1磊，
^毛=—磊，只+．=—(彳)“墨，f=2,3，4

耻[o 詈c喜喜唧飘⋯ 壹；=[o。⋯0．焉且Ej 0。⋯0，]

量L=[o。⋯04砭县只牙q⋯o，。]，i=1，2。置：=

冒
一15
-

二
一巧

：
●

臂
一"

毛。=鲁似+4+善2；2马‘污+鲁j(彳+4+善2萎2蜀‘)7+喜百磊，墨。=鲁矿，

墨-：=宣a=鲁(焉一固)贾+鲁j(A+4+善2善2 E‘)7+喜百磊，墨”；量。=鲁矿，
壹。=壹：，=_2盈贾+∑百磊，雹∞=屯忍贾+∑百磊+f2磊，

壹。=瓦／焉【(4+4)j一矿1+码／耳【(4+4)j一矿r+iQ+亏‘磊，

毒，=鲁(瓦一甄)j+鲁fo+4)2一矿】，+百幺+亏’趸，墨。=-2r％2+r[Q,+r,’磊，
髓 ％

y；三C贾。

这样通过求解(7．13)可得到最=贾一，B=j～，磊，i--1，⋯，4，进而可以得到互，霉，

真，毒，把这些矩阵全代入置：<0即可得到矩阵三，从而避免了由LC=P霄一1求三可能会

带来的困难(矩阵C不一定行满秩，在matlab中直接求解通过解线性方程的办法由￡C求

三有可能无解)。这样可得到如下系统(7．1)在基于(7．2)的动态输出反馈控制器下的自适应

控制器算法。

算法7．1：

①调整啊、吃，求解LMI(7．12)得到毋，只，B，E=UX一，t=l，2，Qf，i；l，⋯，5，

磊，墨，i=2,3，4等矩阵的可行解；

②把由(7．12)得到的一组可行解f--U,，I=I，2，Q．f=l，⋯，5，磊，墨。i=2，3'4代
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A(7．13)，调整焉、亓2及羁、瓦，求解LMI(7．13)看是否可行；

③如果(7．13)不可行则转到①得到(7．12)的下一组可行解；如果(7．13)P--J"行则得到

E，丘，昱，E，互，霉，磊，f=l’⋯，4等矩阵的可行解；

④得到输出反馈阵E=Ux一，f=1,2；

⑤把由(7．12)·(7．13)得到的可行矩阵巧，i=l。2，Q，i=1，⋯，5，墨，i=2，3，4．五，丘。

恿，B，豆，豆，磊，f=l，⋯，5代入重：<o，得到矩阵工的可行解。
A ^ “

注7．1由(7．6)o-I知童和x均分别拆成了x(t-f2)之后的项M、只，及x(t-f2)之前的项地、

元，因此(7．11)中的托8+吒)、Y2(t+r2)不违反因果性。另一方面，由于系统不可测才引

入了观测器，因此观测器状态向量茸是可测量的，(7．11)是可实现的自适应律。

注7．2和前几章一样，在求解线性矩阵不等式(7．12)时，为简单起见，可令nt=l，而用

搜索法求解如：即对％设一初值，每经过一微小变化(如0．01为一间隔变化)，直至

LMI(7．12)有可行解为止。同理求解线性矩阵不等式(7．13)时也是令焉=匾=1，而用搜索

法求解而、瓦。

注7．3尽管从以上的推导过程来看，控制器矩阵、观测器矩阵确实可以通过算法l得到

可行解，而且由于符合分离性原理，可以先求解(7．12)得到控制器矩阵再求解(7．13)观测

器矩阵——这看似给设计带来了方便，但是要得到观测器矩阵￡的可行解就必须先得到

控制矩阵E，i=1，2的可行解，这实际上给工的求解带来了保守性，真正的不影响保守

性的分离性原理应该是三与F，，=l，2的求解互不相关：此外由于在(7。13)中需要同时调

整n2、焉、瓦，如果逐值调整会耗费很长的时间，因此根据算法7．1求解很难得到所有

未知量的可行解，实用性较差。在下一节中，通过使用输出反馈带记忆的观测器(7．5)。

并使用【111])及[33]qh的一种“凸规划算法”同时求解工与E，i=l，2的可行解，而不用

引入算法7．1中需要调整的参数q、曩、焉，f=l，2。

7．3．2使用输出反馈带记忆的基于观测器的对时滞参数的自适应控制

由(7．1)，(7．5)及引理2．5可得系统(7．1)在使用输出反馈带记忆观测器下的闭环系统：



—————————墨主兰二型望垡堕塑竺堕妻墨篁堕茎王要苎堡塑翌堕塑堡墼壁旦垩鏖丝型

谢：剖蹦枷矧+[捌
隆二斗匕嚣幢：薯三二煞：冀1+[篡篡]
隐糍：绷

。aJ4’

扑∽甜州一棚
其中P(f)=螂一i(f)为观测器状态误差。使用【28】的“clescrlptorform”，令

阱A 1删，及阱加朋此

∽■0+．嚣措驯驰"西仃嘲I L 彳+4一(厶+岛+厶)cl|efrl f台qh7”7”

l山嚣∞卜刊
u“叫

其中互2殴斗互=啵习t互=匕划，互=瞄捌，
^ ^ ^ ‘

岛2qn(f)+(fI(f)一^)2)， ‘=口2fI(f)+(f2(f)一噍)2)。 取闭环系统(7．15)的

Lyapunov-Krasovskii泛函为

y(薯)=巧(墨)+K(‘)+巧(薯)+粤【2(幺(力一曩)+毒】：+冬f2(；：(，)一岛)+吃】： (7．16，

其中巧瓴)=≯既《r，]摩7[习，％(‘)=善4￡L如)7Q,y(s)asa口，
巧(t)=萋Lio)’s置o)as，‘、^、q，f=l，2为正常数，矩阵尸>o，QJ>o，s>o，
i=1，⋯，4。K(玉)沿闭环系统(7．】5)的导数为

一鲥．



雌y7][言狮’
=2[妒y7][矧t[未yH北加油 (7．17)

=zP y7][：瓢未y捧巩

枷2f“小0一A+4‘磁麓列⋯zP列户0瑞¨蛐，L 一(上J+厶+上，)cl’。’一‘L^
7 J J 另JJ互Jjl八"“’

¨满足这样的徘把[：习，户=瞄习¨满足砰螂棚r理

叫绷_。●3矽脚凼 小，，⋯川，邯，
2 L烈s)7墨y(，胁+2L“矿(巧-[o刀]jir弦(f)凼+fJio)7五i(f)

其中M7=∞7妁7]，[：狰。，矩阵墨鲋枷月，巧鲋“，互利一。注
意到 L以s)as=膏(f)一j(f一-) (7．19)

i(f)7五蕈(f)=P 叫之1纠圈
哦一z锄可叫衍印，职吲阱z嘞帆川引
训A‰轨p啪7舱：：：][纷瑰y吡∥

’

‘

(7．20)

而 fj+：(f)=口I；以)+(；·(f)一岛)2=三{【2(；，o)一^I)+q】2一砰+4^lq)，，=l，2 (7．21)
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除此之外， ，i=3．4，

t(f)·L J，(s)7Qyo)as+￡Ly(f)7Q)，(f)一Hf+占)7Q。y(t+e)]de

由于；，(r)【2(≥(f)一^)+口f]so，f：1，2，可得

％∞：坐掣 小啦⋯
=口f“(f)+2(f，(r)一．11)“(f)=“(r)【口j+2(r-(f)一．11)】s0

嘶)≤磐)，(f)协(f)一L)，∽Q州捌 (7．22)

而巧(薯)沿系统(7．15)的导数为

吃(‘)=∑舅(f)7置i(f)一jo—t)7sj(f—f，) (7．23)

令日=Q，f=l，⋯，5，由(7．16)-(7．23)及引理2．4可得

矿(班-r(f)rEo'ir(f)+；|；【q+2(施圳m孙+扣+2(锄圳】缸)7‰¨翻
(7．24a)

M=[0珈，i=1,---,4 职撕，

其中 训7《㈨7 y(f)7 i(卜f1)7⋯j(卜f4)7]，

岛=

甲乒卧彳
·—＆

甲=乒[兰二]+[三一1，J-itr-r+台．Ltz：+砉亏[乏1

+湘+酮7

4

∑s 0
tlI

o ∑tQ

巧一

●廿。，：q

—P．
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％=[z：。主薹]，毛=[：乙Z,lj，1j，；=置4。由以

定理7．2对于带未知时滞参数的系统(7．1)，如果存在矩阵霉∈R2“”，互∈R4“”，

丑∈R2“”，足∈R2”“，K∈肿”，厶∈R4一，f=l，2，3，及正定矩阵，∈R2w“，

墨eR2“，Q∈矗2“4，，=1，⋯，4使得线性矩阵不等式(7．26)成立，其中参数^、q，

f=1,2根据相应的未知时滞参数‘及其接近值亏。f=l，2按引理2．5取值，且对未知时

滞参数‘，f=l，2的白适应律取为(7．25)，则系统(7．1)在基于观测器的动态输出反馈控

制器(7．5)作用下是渐近稳定的。

证明Eh(7．24)可以看出，如果对未知时滞参数t，fzl，2的自适应律取为

A 1 “ ^ “

n(r)2一右【q-I-2Cr-(f)一啊)】z(f)2‰)lJx(r)，f=1,2 (7·25)

则有矿@)s矿(f)7三。矿O)，这样令s垒量o，如果在^‘20，f=l，⋯，4满足的情况下使

臂o<0，那么由此得到的基于观测器的动态输出反馈控制器(7．5)可使系统渐近稳定。显

然，Vt sf，f=l，2有s(fl，r2)ss(玎，f；)，因此s(百，‘)<0即能保证一o<o成立。令

量垒联‘，f；)·则置<o且M20，，=I，⋯，4成立时有矿“)<o，这时对滞系统(7．I)是

渐近稳定的。根据引理2．5把^=√亏+亏2，q=2(√亏+亏2一亏)代入巨<o及M≥o，

f=l，⋯。4可得如下矩阵不等式

其中

巴=

斗
?
●

M-[譬
币：Ff!

L,'-o

”可廿
·· 0

· 一蜀

<O

O+

一

y
．，1●●J

乩

，√c；卜k．引引．纠



。=∑2t-I‘互+圭t-3瓦[乏。主：]+o=∑‘互+∑瓦I之。≥2 l+
I’ 厶^I

∑墨0

0 ∑fQ +缃+缃7
证率

注7．4和注5．3同理，对于ff+2=q；，(f)+(；，(f)一吩)2)(f=l，2)，；。(f)∈[靠，‘]，可得

掣=2；以)一2噍+q=o，因此当；，(f)=型等旦，f=l，2时‘+2(f)能达到极值点，
d(ftO)) 2

而f『+：(型写旦)：2>o，因此；．(f)：型车旦：瓦，f：l，2是f，+2(r)的最小值点，因此

t：=m缸{ff+：(；，(f)={ff．，‘)])，j=l，2。如果亏取的是‘和靠的中间值，由函数的对

称性可知如=％(；∽=f)％：(；l(f)％)，i--1,2．
由(7．26)可以看出这是双线性矩阵不等式BMI，而现在所用的数学工具MAn，AB软

件只能解决线性矩阵不等式LMI的问题，因此有必要把(7．26)转化为可解的LM／。对此，

通过引理2．8，及【11l】和【33】中的类似证明，把(7．26a)中的量<O写成如下形式

J(K，￡)’j9U+u霄，(K，￡)+|Ⅳ<0 (7．27)

其中u_[：；：：渊，Ⅳ=
⋯一吁
··。0

’． ；

·以
一瞄 刁⋯

．，cED2[2：；主：：：!；：]，霄=[0三]，由于c，．·，)eex寸e,、最只要求满足
磷7=露互，因此不妨设露、只均为正定矩阵，Jg样(7．26a)按(7．27)的分解就与引理2．8

吻合了。由引理2．8可得如下定理：

定理7．3对于带未知时滞参数的系统(7．1)，如果存在结构为2nx2n的矩阵，>0，

五>0，五>0，写，E，S，Q』≥0，f=l，⋯，4，4nx4n的矩阵五，i=l，⋯，4，2n×4n

的矩阵巧，f=l，⋯，4，及％。聆的矩阵K、撑。玛的矩阵三、正常数口>0使得线性矩阵

不等式(7．28)成立，其中参数^、q，f=l，2根据相应的未知时滞参数r,ZL其接近值Z，
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i=l，2按引理2．5取值，且对未知时滞参数‘，i=l。2的自适应律取为(7．25)，则系统(7．1)

在基于观测器的动态输出反馈控制器(7．5)作用下是渐近稳定的。

r鼍州，期地㈨⋯，4 。zs曲

[譬》卢””，4 @：脚
【·zfJ一”～’’。

V—w

其中x=[言羔]，r=[：羔]，x=口2y一。·
注7．5定理7．3把原来不能用LMI T具箱求解的不等式(7．26)变成了LMI(7．28)，但

是X=口2y-1是一个非凸限制，这对(7．2s)篚J通过LMI T具箱求解仍能造成困难，对

此，可采用如下的类似T'[33]qh的算法来求解这一非凸问题，在求解过程中可以利

用LMI工具箱，非凸可行性问题(7．28)也就转化为如下的线性最小值问题。

算法7．2

1)选择正参数口的初值；

2)对于LMIs(7．28)及(7．29)求解该组问题的可行解xo，K

[；口讣。 仃z∞

3)令乃=一∥巧=巧．1，求解如下LMI最小化问题的下一组可行解矗t、‰：

满足(7．28)及(7．29)的最小化问题￡，：rain trace(■y+弼)；
4)如果程序结束的条件满足，则结束执行程序；如果不满足则让．，=-，+l，此时如

果，<c，其中c为一设定正数，则执行步骤3)，如果／=c则适当增加口再执行

步骤2)。

注7．6如果算法7．2中的trace(z，】，+秽)的最小值恰为8nxa_2，那么满足

Z=口2y-1的(7．28)的可行解中的K和上能使系统(7．1)在基于观测器的动态输出反馈

控制器(7．5)及自适应律(7．25)的作用下渐近稳定。但实际上，要使trace(x，】，+姗：)

的最小值恰为$nxa-2是非常困难的，因此可把(7．28)作为算法结束的条件，即把算

法7．2步骤3算得的X、y代入(7．28)检验是否可行。

注7．7与定理5．2同理，自适应律(7．25)有两个优点；首先，未知时滞参数估计值fJ∞，
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f=l，2不用被限制为不小于其真实值，即“(f)≥q，f=l，2；其次，由于廿，、鸟，f=l，2

均根据未知时滞参数‘及其接近值i按引理2．5取值，因此当fI(f)，f=l，2趋于稳定即

；，<f)一2hi．一as：亏，i：1，2时观测器(7．5)变为

未)；彳妇)+^二(r一亏)+Bu(t一弓)+／-aLP(t)一c氧f)】+主厶。【夕(f—fj)一c三。一亏)】
，-l

即表明观测器中输出反馈的滞后常数与fI，i=1,2已知时的滞后常数相差在有限范围内，

即 o≤I弓一f』I=I亏一fJI=m∞卅亏一‘J，l亏一‘．I)=max(_m；，：)

由于基于观测器的动态输出反馈控制器能同时反映当前及滞后的观测器状态，因此本节

的结论要比f49，109，110】保守性要小，而f82】中的基于观测器的动态输出反馈控制器虽然

在时滞参数已知、未知的情况下相同，但实际上是一个非时滞相关型控制器，因此在小

时滞情况下保守性较本节的时滞相关型控制器要大，此外本节不需要像[62，81，s2]那样需

要实现估定观测器误差FO)=x(t)一i0)的欧式范数上晁值(该值实际上在控制前根本无

法估算)，因此本节的结论更具实用性。

7．4本章小结

本章首先利用前人的“对滞系统的可分离性原理”设计控制器、观测器矩阵，同时

对未知时滞参数进行新型自适应控制，尽管不需要像以往基于观测器的对时滞参数自适

应控制那样需要实现估算观测器误差的欧式范数上界值，但是在具体计算时分析可知观

测器矩阵的值仍依赖于控制器矩阵的值，要求解的LMI中需要调整的参数较多，保守

性、实用性较差。因此在后面的新方案中，采用输出反馈带记忆的方法，不仅使结论比

无记忆情况下保守性要小，而且闭环状态方程的结构也较为简单，在计算控制器、观测

器矩阵时通过一种非凸的线性化方法，能够同时计算控制器、观测器矩阵。只需调整一

个参数，是真正可行的基于观测器的新型自适应控制。

本章的部分结果己整理并发表于《中国第24届控制会议论文集》，还有部分结果已

整理成文并被International Symposium On Neural Networks 2007录用，并即将发表于论文

集Lcctu∞Notes．m Computer Science。
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第八章分布时滞系统的Ⅳ。控制与对分布时滞参数的新型自适应

控制

摘要

本章研究较为复杂的分布时滞系统，当时滞参数精确已知的时候，对一类具有“有限时滞最普

通的线性系统”特点的分布时滞系统进行Ⅳ”控制，根据该类系统的特点制定相应的基于"descriptor

form'’的Lyaptmov-Krasovskii范函．在求导时能充分发挥该种系统的特点。针对以往对分布时滞系统

只能使用无记忆控制的缺点，通过同时加入以包含分布时滞参数为滞后常数的带记忆项，及分布对

滞记忆项，经过推导得到了带记忆控制的非零矩阵；当时滞参数未知的时候，首次在分布时滞带记

忆控制的积分下限中引入对未知分布时滞参数的新型自适应控制，相应的带记忆控制项也包含未知

时滞参数的估计值。最后通过仿真示例以说明本章方案的有效性．

8．1引言

前几章已经分别对线性时滞系统、带与时滞相关的非线性环节的多时滞系统进行了

H。控制、新型自适应控制，本章研究另一种较为复杂的时滞系统——分布时滞系统。

已有的结论[36,42,,44,46,．56]说明，在分布时滞系统中使用基于”descriptor form"的

Lyapunov-Krasovskii泛函仍有效，而在此基础上对于以往的分布时滞系统的镇定控制及

日。控制，往往采用无记忆状态反馈控制[36,42．44]，即使采用了含分布时滞的带记忆控制，

得到的带记忆控制矩阵却为零解f聊，这会在分布时滞参数对系统性能影响较大时无能为

力。此外，以往研究的分布时滞系统中分布时滞环节的特点往往不具有“有限时滞最普

通的线性系统”的复杂特点，比如文献【1171研究了一类具有分布与离散时滞的控制系统

的绝对稳定性的时滞相关准则问题，但所选取的分布环节形式过于简单，问题的一般性

较弱。文献[118～120]从神经网络模型的角度研究了一类具有连续分布时滞模型的稳定

性，但对分布时滞环节提出了众多约束条件，结论的保守性较大。因此有必要研究该类

比以往对象更具有一般性的系统。

本章首先对分布时滞环节具有文献【5】中的“有限时滞最普通的线性系统”的特点的

分布时滞系统进行日4控制，在分析以往对分布时滞系统进行带记忆控制为何只能得到

零矩阵后，找到了如何提高可解性的方法，即让分布时滞参数同时出现在带记忆控制的

记忆项，及分布时滞记忆项的积分下限中，并让这两种带记忆状态反馈控制项的矩阵增
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益相同，这样在推导得到的矩阵不等式中，该矩阵增益就不再为零项，从而表现出比无

记忆状态反馈控制要高的可解性。而对于具有“有限时滞最普通的线性系统”特点的分

布时滞环节，为能在求导过程中充分体现该环节的特点，需要制定出与以往不同的

Lyapunov．Krasovskii范函，最后得到的线性矩阵不等式也是与该特性相关的时变的线性

矩阵不等式。接着，对于一类含未知分布时滞参数的分布时滞系统，仍用上面所述的两

个带记忆状态反馈控制项，但其中的分布滞后常数(包括直接带记忆项的滞后常数、分

布记亿项的积分下限中的滞后常数)都由原来确定的分布时滞参数变为其相应于第五章

中新型自适应控制的估计项，这是首次在分布时滞的下限中引入对未知分布时滞参数的

自适应控制，为在分布时滞参数未知的情况下仍能进行带记忆控制带来了便利。最后通

过两个仿真示例验证了本章关于上述两类复杂的分布时滞系统控制方案的有效性。

8．2问题的提出

本章研究如下两类分布时滞系统：

雄)=喜4砸一‘)+￡4仉p净(f+p)棚+马wo)+B“(f一由 (8．1)

其中d>O为输入时滞参数，t>0，i=o，⋯，Z为各状态时滞参数，约定ro=O·为推导

简单起见，我们现只考虑如下只含一个状态时滞的系统

童(f)=呜x(f)+4颤f—fI)+．￡爿(f，护)x(f+O)dO+且wo)+岛“(f一『2)，f>0
z(f)=＆(f)+Ou(t) (8。2)

工(f)=矿(f)，Vt∈卜r，O】，f=max{r,，r2，，}

其中颤f)∈R”是状态向量，材(f)∈R“为控制输入向量，wCt)为定义在【-，，+∞)--7,R1上的

函数，：O)ER’为系统受控向量，A、Al、马、B2、C、D为具有相应适当维数盼矩

阵。vf，矩阵函数A(t，刃在口可积，且存在映射在(一，4．00)HR上的函数a(t)>0在

(—∞，+∞)的每个紧集上Lesbesgue可积，使得下式成立

os 8r，钟，O)qo(O)d08≤酬训，f∈R，妒∈c(【_，，oJ，R”) (8．3)

其中0叫I；嘴．8矿(D0··，舶‘O

针对系统(8．1)研究的目的是：对于给定的常数，>O，如何设计一个带记忆的状态反

馈控制器
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u(t)=Kix(t)+K2x(t-r1)+K3[x(t-，)+￡石(f+p)d印 (8．4)

使得系统(8．1)是渐近稳定的，且满足㈣：<rllwll：(这里||．II：是岛范数)·

另外考虑如下带未知时滞常数的分布时滞系统

』j(f)=4石(f)+4石。一fI)+￡4川+O)dO+曰越(f—f2)，r>o (8．5)

【jO)=矿(f)，vtE卜f，o】，f=max(q，f2，，)
其中x(t)∈胄4为状态向量，u(t)ERl为控制输入向量，A，4，4，B为适当维数的矩

阵．『l≥O为状态时滞参数，f220为输入时滞参数，分布时滞参数，>O不能精确已知，

但已知它的上下界，即已知时滞参数‘和r+使得‘≤，s，’成立。烈f)∈c【叶，0】为系统初

始向量，并能找到，的接近值F，及正常数巧，和弓使得0<，’一芦≤丐与0<巧一‘≤丐，

f：l，2成立，一般F可取为‘与，。的中间值，即有F；上箬．

针对系统(8．4)研究的目的是：如何设计一个带分布记忆且记忆常数含未知分布时滞

参数估计值的状态反馈控制器

Ⅳ(o=KI并(f)+IC,x(f—f1)+局【x(f一口；(f)一(；(f)一妒)+r口；IIH；。H，x(t+e)de](8．6)

其中口、^，根据未知时滞参数r及其接近值F按引理2．5取值，，(r)为，的实时估计值，

且满足；o)【2(；(，)一聊+口】so，vf≥o，使得系统(8．5)渐近稳定，同时制定对r的自适应

律。

8．3主要结果

8．3．1对含分布与离散时滞的线性时滞控制系统的日。控制——时变LMI方法

对于系统(8．2)，我们为得到使系统稳定且满足日。特性的控制解t要选取适当盼针

对系统特性的Lyapunov—Krasovskii泛函，以往的研究没有考虑到系统特性(8．3)，因为这

样的特性会带来Lyapunov-Krasovskii泛函选取的难度，根据(2)和(4)可得闭环系统的状

态方程如下



文(f)；4工(f)+／|Ix(t—fI)+B2K2x(t—fl—f2)+岛玛【x(f-r-f2)+￡x(t--T2+e)dO]
I 1)+lo n(t， +Bw(t)+B2Ktx(t O)x(t+O)dO—f2)+上， ，

+

z(f)：(c+D墨)x(f)+．D心茗(f—fI)+DK3[x(f一，)+￡j和+o)ae]
x(O---驴(f)’Vf∈卜f，O】，f=max{fl 4-f2，72+r'

用[28]中的”descriptor form”，令

)，(f)：局工(f)+4工。一f1)+B2K2xo一毛一f2)+B2lq[工(t--r--f2)+￡工(『一『2+力d印
+岛墨印-r2)+e a(t，O)x(t+O)da+B1w(t)+岛墨印 )+j=，，

。=叫(f)+且“f)+(以十^+岛K)x(f)一喜互【。y(s)凼+岛墨￡工。一毛+印d口
+￡，彳o，印xo+O)dO

(8．7)

(8．s)

其中K：∑3局，『3：一+f2，f4：r+毛，五=4，五=岛墨-，，f=2，3，4，对于系统(8．8)，

由于原系统(8．2)的特性(8．3)的影响

y(薯，嵋)=Vt(Xr，w1)+巧(‘，嵋)+巧(xf，wf)

其中 K(‘，嵋)=xrpx，巧(‘，Ⅵ)=
r
X(s)7Sx0)as，

％(‘，哪)=壹t-!￡L贝s)7刃Q『1互y(s)凼d口+￡eox(D7刀91互叫护)蒯a
+f￡f4口2(f’搋№俐≯dO

P、Ql、R>O，iffil，⋯，4，f>O为正常数。则H(再，嵋)沿系统(8．8)的导数为

巧(‘，Ⅵ)；2工’Py(t)

=2Ixr，]

=2Ix7)，r]

P

O

尸

0

最

最

毋

昱

(8-9)

一二日托嘲∽凼+㈧￡x(t-r2+O)枷
+[￡A。，8：。+日，d8])=z[x7 y7][言主][互。一；，十尽。]一喜仇+岛+岛

(8．10)

其悟¨郴=努把醐小[：孙肌昱满足以勋·

rM州牡
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对于聃∽=一2L,[xr y’]乒I：l五如)凼，由引理引理2．1得

珥st[x7)，7]芦[；]置【。，】声7[；]+【。y7cs，刁耳。互ycs，d，，，=·，⋯，。 cs．，-，

州r,,lifoM删留dO @埘

s，[，y7]芦[o]Bf。Jp--T[yX]+巴“∥刀辱1互x(口)册‘

岛≥7毒融’稿穿盈而㈤m叫@m≤[，厂]歹阱¨旷卧忙而㈤m叫： 一

由(8．2)可知，对于每一个，，分布时滞项￡4(f，O)x(t+口)d口中的m+力都∈ct—r，o]Ilp

岛<[“唧p妒协砍‰(呐恶M印《 (8．·4)

吃(薯，哆)=妻E【y(f)7刀簖’五y(r)一儿+印7刀Q『’五如+剀d护+
+rx(t—rp7刁g‘互地一吒)一罡，工(口)7刀g‘互x(O)dO+ (8．15)

f￡【口2(t)_SrUPoll酬p(t)一sup。IIz(f+O)ll；IdO

矿(‘，嵋)=哎(薯，WI)+吃(‘，嵋)+吃(‘，w1)s[石r Yr j．(f一巧)r wT]毫。

工

】，

x(t一吒)

W

(8．17)



第八章分布时滞系统的日。控制与对分布时滞参数的新型自适应控制

其中岂o=

6

，￡。=墨j+j7置+rla2(f)J+∑‘置弓彳+蜀，
-·I

z：=户一日+矛最+∑t只置只r，

z，=一昱一巧+∑ff刀Q,-1互+∑‘墨墨碍，z．=留91互一s，f，=，，％--1·

为研究系统(8．1)的日。特性，令初始值妒(f)=O，则对丁>O及给定的常数，>0，有

山=r(，z一，，2w7"．西
≤r orz-y2wrw+l；：(薯，嵋))廊=

r{【(c+DK)x(，)+DK2石(f—fI)+DK3(了(f—r)+￡颤f+口)d口)】r
【(c+D墨)x(f)+DK2工。一rt)+DK3(x(t一，)+￡xo+e)de)]-r2Ⅵ，7w+步(‘，嵋))出

(8．18)

其中矿=矿+f,[oxr(s)岛xo)dsdO+￡。x(s)7sxo)ds+￡，x(s)7文xo)as，其中曩为正定
矩阵，可得

矿=矿+￡h7p)最“，)一，(f+O)S2x(t+O)]d8+x(f)7(墨+墨)x(f’ (8．19)

一xO—fI)7S,x(t—f1)一柙一，)7S4x(t-r)

把(8．19)代A(s．1s)W得

矗≤r￡{【，(c+D墨)x(，)+m如石(f—rj)+DK，(rx(t一，)+x(f+刚7
【，(c+—c％)j时)+，峨工O—fI)+D必3(，并O一，)+工(，+回)卜，，2W丁w+
r／Z+x7p)(岛+，岛+，瓯)x(O—x，p+秽)最x(f+目)一，育p—fI)7墨工(f—f1) (8．20)

一rx(t一，)7S1．x(t-r)}dOdt

≤r￡Fo，目)三(r)i(f’O)dOdt
其中ffr(t，印=『x7)，’xr(t—f1)xr(t—f2)xr(t—r)Xr(，+力w7]，故当三(，)<o时
可得^<0，由Schur补引理可得三(f)<O等价于如’F矩阵不等式成立：

聃明o
o

O

O&．邑写。。夏。。。
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巨(f)=

宴 巨l ⋯巨，

管M

鸳 鸩

<O f8．20

其中壹j=Eo五Ol⋯0。]，i=l，⋯，4，M；一一)’1QJ，t=l，⋯，4，帆；-，49，

鸠=一∞2(f”。，，霹=【，0，⋯o。。】，壹：--Eo 0 0互Ox⋯08]，

^毛=—，，鸯；=【r(c+D喝)0 rDK2 0 rDK3 DK3 0I⋯071，

品=

。。ll。‘12

·
互22

⋯巴I．7

⋯品2．7

‘． ；
一

·
苴7．7

。其中

6

誊lI=嵋j+，j7与+，∑t丑足墨，+—S+岛+^sj+^叉
J-I

豆。；炉一嵋+历7最+r∑‘墨R譬，豆。=—吗，置。=—喝，豆。=一n写，鸯。=—是，
fIl

雹。=-，只一僻+r∑ff昱足覃，置，J=川2J，置¨=异马，雹：．，=昱马，其余项为0。由
l·I

以上推导可得如下结论：

定理3．1对于一类含同时分布和离散时滞的输入时滞线性时滞系统(8．2)，如果在

te[--r,,o]存在矩阵U『(f)，i=l，2，3，正定矩阵z(，)，Q(f)，，=l，⋯，5，墨(r)，，=1，⋯，4

使得线性矩阵不等式(8．23)成立，则线性时滞系统(8．2)内部是渐近稳定的，且口”性能指

标小于给定的界，。每一时刻的反馈增益矩阵：K(f)=弘∽X(f)～，i=I，2，3．

证明可以看出，由引理2．4可知w(t)=O时(8．21)成立包含了系统内部渐近稳定的解

(宣。<O)，因此此时线性时滞系统(8．2)内部是渐近稳定的，且圩。性能指标小于给定的界

，，。对壹<O两边同乘以矩阵砸g(墨⋯五．)，其中墨=彳’，五=y=巧1，置=x=F-J，

i=3，⋯，6，一=I，，=7，⋯，14。由于(8．10)中只要求只、最满足E_r=声E，而没有其

他限制，又考虑到要兼顾保守性和运算简便，可借鉴【321中的方法令暑=naln：P，

最=lln2P·即x；啊／n,x,；l／thY，其中啊、他为正常数。此外，注意到童<O中对应

于颤r—f2)的项只有关于该向量的二次型项，2刁Qf互一嚆，而没有该向量与膏(，'毋中其



第八章分布置|滞系统的嚣”控制与对分布时海参鼓的新型自遁应控期

他向量的交叉项，为方便求解，可令r2刀g‘互一埚so，即

院，孙。
1

jj’结合以上的分析可得壹<o等价于如下时变um组

昱(r)=

兰
二

吾7
。。l

：
●

舌r
‘。‘

一l⋯瓦
M

MI

哩霹1≥o
，-2Q5j

<0

其中鸯i--[o心4z 0。⋯041，鸯j=【o％岛H。0，⋯03。】，i=2，3，4，

篝=k纯x 0，⋯0，】，羁=M，f=1，⋯，5，磁=-I，

童：=【啦／啊，(cx+Dq)0帕％rDU3 DU 0。⋯0。】，

置：p
冒
一Ij

‘。2．6

●

。。6．6

，其中

重ll=％／氇(4+4)x+他7，ll∑岛u+％／啊x(4+4)7+
j-l

3 ，
’

％7啊∑(县配)7+r∑t Qf+f。1j+(，12，玮)2【嘱+是+焉+成】
，_I ，·l

三"=一，墨，三44=一，墨，旦"=-s,，

置。：；％／啊(n2-n。)x+惕／吩z(4+4)r+他／玛壹(Bu)r+，杰‘Q』+，一-J，

(8．23a)

(8．23b)

置。；—2吩饼+，壹f『Q+f一·，，氡。。：一，，，2J，量¨：旦：置：j，置；xs,x，f：l，⋯，4，

用Matlab软件中的LMI T具箱可算得矩阵V(f)，正定矩阵x(t)，即可算得

置(f)=配(f)。r(f)一，f；l，2，3。 证毕

喜?‰，
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注8．1式(8．22)为时变的LMI，这是原系统在分布时滞参数上的时变特性(8．2)，(8．3)带

来的，在求解时要先求解a2(f)的值，再代入(8．23)求解得到满足该时刻的LMI(8．22)的矩

阵K，，．，=l，2，3。

注8．2本文为研究一类含分布与离散时滞的线性时滞系统(8．2)提出了一种新的镇定方

法及求解日。问题的方法，与前人结果相比，系统更趋于一般性。以往对于分布时滞的

研究对象大多是分布时滞矩阵为常矩阵彳，或时变矩阵A(0，这均与本文“有限时滞最

普通的线性系统”分布时滞部分的复杂性(8．3)93有一定距离。而且以往的研究所用的反

馈控制大多是无记忆控制【114，115】或者无记忆积分控制控制K[x(r)dr【56】，这不能充

分反映分布时滞环节J：A(t，口)x(f+力d口，而且以往的结论即使用了足f工(r)ar·得到的
结果却是K=0[56】。从[56]e0可以看出这是因为加上该项后要求的LMI尽管包含足，

但是其可解性与不包含置是一样的，而本文通过带记忆状态反馈控制器(8．4)，让反映分

布时滞的最大时滞常数r的记忆项x(t一，)与分布时滞记忆项厂x(t+O)dO反馈矩阵都

为墨，这样我们从(8．21)和(8．23)均能看出。如果不加这两个记忆项，则当这样的不等式

有解时，相应的加了这两个记忆项的不等式一定有解(只要令墨；0)，反之却不一定

成立。因此，本文的可解性要比以往的结论要好。

注8．3尽管由注8．2可知，加了带记忆项的控制器比无记忆控制器的可解性要好，但是

如果带记忆控制器中没有分布时滞记忆项即控StJ器(8．4)变为

“(f)=K工(f)+K：x(t-r1)+墨x(t一，)

那么经过和定理8．1类似的推导，可知最后要求解的线性矩阵不等式中没有有关g、墨、

是的项，而体现昱。特性的(8，23)中的D以只有对应xp—r)的位置才有(对应瓤f+毋)的

位置没有了)，因此无法直接判断这样求解的可解性是否要比带了分布时滞记忆项的控

制器(8．4)要好。在具体实践中，应该通过具体计算比较这两种带了分布时滞参数的控制

器到底哪一种能使日”特性常数，较小。

8．3．2含未知分布时滞参数的分布时滞系统对时滞参数的自适应控制

由于口，h，根据未知时滞参数r及其接近值F按引理2．5取值，由(8．5)和(8．6)，及

引理2．5中的(2．22)可得闭环系统如下



第八章分布时滞系统的灯。控制与对分布时滞参敷的新型自适应控制

使用【28】中的“descriptorform'’，并令sc(O=y(t)+z(，)，其中

y(f)=4x(f)+4z(f—q)+．cr4j．(f十e)de。

。(f)=研K≮‘一乃)+恐。(f一‘一吒)+巧xo—f2一口r(f一屯)一(70-tO-h)2)(8．25a)
+K L；∽：H；0吨卜h’|x(t—fo十回d明

即

删叫忡妒(凡忡BKI+瞄+瞄斛喜互¨卅删凼(8．25b)
+互￡。童@)d秽+￡4工o+0)dO

其中五：4。五。；BK,，f=1，2，3，rat)：吒+ar(t一『2)+(；O一屯)一∞2，f3=v。+r2．

对于系统(8．26b)，取Lyapunov—Krasovskii泛函为

y(‘)2巧∽+K(‘)+巧(薯)+圭【2(ro—f2)一功+口】2 (8·26)

其中巧(f)=，段，巧(‘)=￡。《s，gx(s)ds，

K(‘)=宝￡f+。o，(s)+耶))7刀簖‘互(y。)+砸))dsde+
￡”。￡Xx(口)7刁9171．x(O)dOa口+￡f。工@+口)747簖14x@+O)dadO

P，Q>O，i=l,---,6，g>0为待定正定矩阵，Z为正常数，巧∽)沿系统(8．25a)的导数

攻(f)=2x7Po，+z)

出”∥][矧吲
．2[，删][涮《之i；]一鲥L㈣哪”凼
+㈦‰一+蝴删凇

X

卜

翰

勘％

．¨

咖卜

)

_)

岛

∞彳一—L．-

f

-～

“

巧了

墨

十i篇丽
+

知

姗

汕∥伽砧卜

堋

∽斤

研．㈤
毗

4

一

m哆=

+

一

『

咿．俨
妒

一

口

√■一那

《

墨吐

削

饯
蚴
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邓∽∥][涠[嚣：]一扣一

其怀¨州墨脚舢E=醐，声=瞄a珥昱满足廖琉
，z=z[工7 cr+z，7][：是][三]￡。cycs，+=cs，，—出，
纠[“胖)r][Ⅻ嘲跏啪
岛=z[工7 u+z，7][言是]￡[三]x。+p，dp·

由引理2．1可得

慨卜～卅F脚叫P喇+L㈣删佩1裥叫呦凼

删秒渺知]乒m。，]pT㈨+艮研列棚舢力)
岛sr[x7 cy+力7]乒[：]民【。，】乒7[y：：]+￡工o+力747巧14工o+口，c坩 cs·，∞

注意到

P㈣r堋-0呻妒怃]
=工7丑R最7工+2，J{墨巧(y+：)+o，+：)7BR只r(y+力 ，，=4,5 (8．31)

----X7P,gP[x+2x7P,gg％v+z)+227岛墨碍y+_y7墨墨巧y+，与足只r2

r4(t)=f2+4；(f—f2)+(；(f—f2)一^)2=丢{【2(；(f—r2)一^)+口】2一口j+4ha}+f2 (8·32)

‘∞￡f．(，，童∽7刁g’互膏∽西+￡．‘f)【膏(，)7笱g‘互童(f)一i(t+Oy7玎Q．,-‘五加+o)]ao



第八章分布时滞系统的H甘控制与对分布时滞参数的新型自适应控制

d(￡。，卜。E，z(∥刁g’互耶)dsde)

‘(f)￡f)《s)7刃91互“s)ds+L”。h(f—f2)7刁g。互x(f—r2)
—x(f—f2+oyT(Q；1A4x(t—f2+印】d曾

—。 。，n—d(r2+a．r(t-r：)+(r(t-r2)-h)2)而 矗(，)2—————i———一
^ ^ ^ ^ ^

=ar(t—rD+2(r(t一吃)一h)r(t一毛)=r(t—f2)[口+2(r(t—f2)一^)】s0

由于幺(f)变化的方向与[2(幺(f)一啊)+q】的符号相反，也即；。(t-r2)变化的方向与

h+2(a(f—rD一魄)】的符号相反，因此

唬(薯)s喜【ff(y(f)+印))7刀砑1互o(f)+z(，))一L(y(s)+邢))7刀Q『‘五0，(s)+小))西】
+(_o)一f2)z(卜f2)7刀劣‘互x(卜f2)一E1)工(口)7刀簖1互x(e)de+
rx(t)747Q≯4x(f)一￡xo+占)7479‘4xo+O)dO

此外 吃(t)=工O)7Sx(t)一x(t—r07威(f—f2) (8．34)

取足=Q，，=l，⋯，5，(4ha_a2)刁91互≤蜃，由引理2．5及(8·26)‘(8·34)n-l得

矿O，)≤膏70)’基。王(f)+【D+2(；(f一岛)一^)】{，rA(f-rD+

去陋+2(；o—f2)一^)】【：r最(E+B)覃：+工(f—f2厂刁g-互xo—f2)】>
‘8‘35a)

彬卜 刁 ]

∥2b中1№2)】-l幺J如
@35”

舯 州⋯1弘睢碧
兰。=置互+互7异7+∑‘丑Q最7+珥7簖14+雪，星，：=P一日+j7只r+∑‘丑Q，鼍=三。，

f，=r4(t)-r：，f‘=，，兰：，=∑I最Q巧一昱一彳+∑t刀簖1五=勘，
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冒3，=∑‘最Q1只r+f6县幺只r一墨一掣+∑t刀簖1互+三(4蛔一a2)最(Q．+幺)巧
t=1 J-l 1 o

+r2P2QI男

由上述推导可得如下结论：

定理8．2对于含未知分布时滞参数，的分布时滞线性时滞系统(8．5)，如存在正定矩阵x，

Q，f=l，⋯，6，夏，矩阵c，，，．，=l，2，3，使得线性矩阵不等式(8．37)成立，可取形如(8．6)

的带记忆的状态反馈控制器(其中的参数a、h，根据未知时滞参数r及其接近值F按引

理2．5取值)，且对r的自适应律可取为式(8．36)。反馈增益矩阵为：五=Ux一，≠=L2，3．

这时整个闭环系统(8．5)的解是渐近稳定的。并且当≯(f)趋于稳定时，带记忆状态反馈控

制(8．6)中以墨为系数的带记忆项的时滞常数、带记忆的分布时滞项的时滞常数与，的差

值在有限范围内．

证明根据以上推导我们可以看出，若戡<O成立且对r的自适应律取为

^ 1 ^
． 一

’o一7z)2一玄【n+2(，9一r2)一“)Ⅱ。2B(R+R)霹。，即
+x(t-r2)7刀9-；12,x(t-r,)l

，(f)=一亩【甜2(，(，)一蚓㈨+f2)7B(Q．+Q)譬z(‘+『2) (8．36)

+x(f)7(BK3)79’B93x(t)]

且当枣垒星o<O及∥s0时系统是渐近稳定的。显然V，，r≤，’有季’(，)s蜃’(，。)，因此令

巨△季’(，’)，则E<0Rs’sO成立时有矿(t)<O，这时时滞系统(8．5)是渐近稳定的。对

g<O两边同乘以矩阵diag(Xl五墨)，其中五；彳。=x。五=墨=巧‘．由于(8．27)

中只要求毋、昱满足E，=乒E即可，考虑到计算简便和不影响保守性，可令五=一／n2P，

昱=l／n2P，把引理2．5中的^=√F+F2，代入口=2(√F+F2一F)并由引理2．4可得葚<o

等价于如下不等式：

巴=

品I⋯二5

Mj
<O (8．37a)



第八章分布时滞系统的圩。控制与对分布时滞参数的新型自适应控翩

[二i t。4妇rJ一[矿B，r+吒r。g]s。 cs．s刀”

其中壹j=Io％4x他4x】，壹乙=【o吩岛U啦岛U 0。⋯0。】，i=i，2，3。

彳=，1，M---(r,)。1Q，i=1，2，3，鸩=一(‘)一1Ql，M=七’)。g，

篝=【他／啊4z ol⋯o，】，q=tx，j=l，2，誊=I· 量。置。I，
隅，誊。：曼。31

L’ ·屯J

氟2鲁(4+4Ⅸ+鲁喜岛UJ+薏x(4+4)7+鲁喜(岛q)7+喜百Q+(卺)2童，
营-z=n2In-(n2一码)z+％7啊z(4+4)7+％／啊∑(岛v)7+∑fQ=置13，

量∞=∑fQ一2％．r=量22，誊3，=∑fQ一2心x+(F+f2)Q4+死另+，‘酝，S一=XS’X．

用Matlab软件中的LMI工具箱可算得矩阵q，i=l，2，3，正定矩阵x，Q．。即可算得

墨=配z。，i=1，2，3。f扫T'a，矗按引理2．5取值，由引理2．5可知，当；(f)趋于稳定时，

带记忆状态反馈控制(8．5)中以局为系数的带记忆项的时滞常数、带记忆的分布时滞项的

时滞常数f垒口；@)+#@)一彬：寸F，即

o slf一，j=lF—rI s maxl3F一，’j，lF一‘I)=ma)‘(；-，；：)． 证毕

注8．4与注5．3同理，畦t-T-r,(t)=口≈一f2)+(；(f一％)一^)：，因此对于≈一f2)El，，‘]，

鱼《删：2；o—t)一2h+a=o，因此≈一乇)；三冬竺时气④取得极值点，而
。仁笔竺)=2>o．因此；o一乞)：型每旦：F是‘(f)的最小值点，因此

‘：max{。f；◇一≈)：{，‘，‘)、I)．如果F选取的是r·和‘豹中间值，由函数的对称性可知

‘=％(；(f一勺)=，’)=气(；9一乃)=r．)，且‘=c一勺。
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中的z(t+r2)并不违反系统的因果性，(8．36)是可以实现的。

注8．6与5．3．2小节同理，本节实现的对未知分布时滞参数的自适应控制不需要对时滞

参数估计值进行必须大于其真实值的限制，而且带记忆控制能一直反映未知时滞参数，

特别是带记忆的分布时滞状态反馈控制墨￡≈H^I，MPx(t十D抛也能一赢反映未知分布
时滞参数，充分体现了分布时滞系统的特点，因此为在分布时滞参数未知的情况下进行

带记忆控制带来了方便。

8．4仿真示例

例1考虑与(8．1)相符的时滞系统，其中

f-0．15 0 0 0 1 一．85 0 1 0 1

4：k，6。0．。．羔，6。．未。l，4：l。0--0。．85榔0，。0 I，
1 0 1 -1 0 f 1 0 0 0 -0．85 I

耳=fo 0 1 0】，霹--[o 5 0 0】，C--[o 0 0 1】，D=I，rt=o．1，f2=o．008，

(8．23)，令愧=l，n2=O．1按小间隔变化(O．01)直到该时刻的LMI(8．23)有可行解

墨--u,x。1=【-0．1 156-o．5625 0．4739 0．7844】，

局t U2x一=1．0e-003+f．0．0362-0．3002 0．1 165 o．1558】，

局；％z一=1．0e-004+【-0．0115-0．1922 0．0107-0．1534】。如果控制器中没有反映分

布时滞的记忆项玛【砸一，)+￡茗(，+O)dO]，SU当r=O．47时才能有解。

倒2考虑与(8．1)相符的时滞系统，其中4=I卸-0．兰1556：0-o．曼0 56。．三0 61I，
r ．

。

f-0．85 0 1 0 1

似=l：05二，ol，肛【05 oo】。已知时滞参婶¨，
l 0 0 0 -0．85 1

．112．



第八章分布时游系统的日”控制与对分布时游参数鲍新型自适应控制

毛=0．008。分布时滞参数r未知，，’=1．2，‘=0．8。取r的接近值为F=上#=I．而

根据引理2．5取h=√F+F2=1．414，代入口=2(√F+F2一乃=o．828。把这些数据代入

LMI(8．37)。令nt=1，n2=0．1按小间隔变化(O．01)直到LⅦ(8．37)有可行解为：

『o．0328-o·0059_o肿18 0．0315]

肛I-0．0059
o．0370

o．0064-0n．0229 I，U：№12舢318．o．0045 o．0439]，I-0．0018 0．0064 0．0032 ．o．0042 I
‘ -

【o．0315．o．0229．o．0042 o．0407J
％=1．0e4)03 10．4648_o．4776-0．0676 0．6566】．
U，=1．0e-005‘Io．0819-0．6863-0．1251 0．3896】，

Q．=g=

O．o002

O．ooOl

0．0000

0．0001

0．0001

0．0030

O．O005

．0．OOl2

0．0000

0．0005

0．0002

-0．0002

0．0001

-0．0012

-0．0002

0．0008

。这样，可得

墨=UtX一--[o．4061-0，6115 0．6988 0．4917]t
Ks=％x～=【o．0059-0．0091 0．0102 0．0075】，
坞=以X一=1．0e．003+fo．0263-0．2024-0．0243．o．0409】。取初值F(o)=o．85，初始函

I旃(，)l I 2sin(41r—f)，f I

粉俐02(0=旧篆嚣I壕朽一h枷‘(厨硼姆2．035确
LCRt)J L-3sin(4石一乃，刊

真过程中经过调整得到f=o．04，所得系统状态工(，)和参数估计iO)分别见图8．1(a)、(b)。

图8．1(a)系统状态 图8．1(b)未知时滞参数估计

Fig．8．1(a)stateVectorofthe system Fig．8．1(b)estimatevaluefortheullknowrtdel叫parameter

从图中可以看出，在带分布时滞的记忆控制器作用下，即使分布时滞参数未知，在分布

·113一
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时滞记忆项的积分下限引入对分布时滞参数的估计值，仍能实现较好的自适应控制。

8．5本章小结

本章对同时带离散时滞和分布时滞的系统进行了日”控制和自适应控制，在分布时

滞参数已知的情况下，不仅让系统的分布时滞部分更一般化(泛函也为在求导后充分利

用分布时滞部分的特点而进行了针对性的选取)，而且通过让反映分布时滞的最大对滞

常数的记忆项与分布时滞记忆项的反馈矩阵相同，这样最后求得的带记忆分布时滞状态

反馈控制阵不为零，让系统分布时滞能反映在控制中比以往的无记忆反馈控制保守性要

小；在分布时滞参数为知的情况下，继续使用该种带记忆反馈控制，只是记忆常数不管

是直接的带记忆状态反馈控制的滞后常数，还是分布时滞带记忆的状态反馈控制的积分

下界，都采用第五章中的经过改进的新型自适应控制的形式，泛函的选取对于该种控制

也具有针对性。最后的控制矩阵均能通过求解一个线性矩阵不等式组获得，这就使得在

时滞常数无论已知、未知的情况下均能采用反映系统分布时滞特点的带记忆控制带来了

方便。

本章的部分结果已整理成文章并投至《系统工程理论与实践》，还有部分结果己整

理成文章投至“Time．Delay Systems”Special Issue ofDynamics ofContinuous，Discrete&

Impulsive Systems．Sedes B：Applications&Algorithms



第九章总结与展望

9．1全文总结

第九章总结与展望

本文主要研究时滞系统的Ⅳ。控制与自适应控制，主要有如下创新点：

①对在使用基于’'descriptor form'’的Lyapunov．Krasovskii泛函方法，及徐胜元的不需要

放大任何交叉项的泛函方法的基础上求解时滞稳定界、控制矩阵的各种算法进行了保守

性，实时性的比较，对有问题的算法进行了改进，对可行性进行了分析，最后得到各种

具体情况下该如何选择适当算法以使得保守性、实时性的组合达到期望值。在后面的内

容中，主要使用一般情况下较简便的算法来解决时滞系统对未知时滞参数的自适应控

制。

②对以往的自适应控制进行了三步改进：采用基于”descriptor form”的

Lyapunov-Krasovskii泛函方法，并通过选择适当的放大形式体取出以未知时滞参数与估

计值之差为系数的二次型，消除了以往自适应控制中为得到适当形式的自适应律而附加

的不等式放大，并应用在线性时滞系统及含与时滞相关的非线性环节的多时滞系统中：

第二步改进是通过一种新型的带记忆反馈控制，使得对时滞参数的自适应律能与其当前

值和该时滞参数的一接近值之差成反方向变化，从而实现了新型自适应控制——民要时

滞参数估计值落在其上下界之间，最终总能趋于该时滞参数的接近值，突破了以往自适

应控制必须限制估计值大于其真实值的保守性，也不用计算为使该限制在整个控制过程

中始终保持而需要事先估计的很难计算的“调整常数”：在此基础上进行了第三步改进

——分析该种新型自适应控制方法的利弊，通过增加两个可以确定的参数使带记忆控制

始终能反映未知时滞参数，实现了带记忆的新型自适应控制。

③研究了一类较复杂的非线性时滞系统——不仅输入时滞参数未知，而且非线性环节

的范数上界与各时滞状态范数相关的系数未知，要同时对这两种未知参数进行新型自适

应上r控制，除了在带记忆控制的滞后常数中实现对未知时滞参数的新型自适应日。控

制，还在带记忆控制的控制矩阵中实现对非线性环节上界的新型自适应日。控制，不仅

把新型自适应控制从对时滞参数拓展到了对其他参数组成的向量，而且为该类较为一般

的非线性时滞系统在两种参数未知的情况下实现带记忆控制提供了方便。

④在状态不可测的情况下对时滞系统进行了基于观测器的新型自适应控制，不仅无需
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计算以往结论中需要事先确定的观测器状态误差的范数等未知常数，而且分析了分离性

原理在计算控制器、观测器矩阵过程中的局限性，弃用前几章使用的较为简便的算法，

选用一种cone补线性化算法从而避免了原算法{9|}要调整多对参数的困难，同时在观测

器中使用带记忆的输出反馈控制，闭环系统的结构也更加简单。

⑤研究了另～类复杂的时滞系统——分布时滞系统，在分布时滞环节满足“最一般时

滞系统”特点的情况下进行旷控制，针对以往结论中只能进行无记忆分布时滞控制的

缺点，采用直接带记忆控制与分布时滞带记忆控制的控制矩阵相同的方法，实现了能体

现分布时滞系统特点的带记忆控制；在分布时滞参数未知的情况下，仍采用该中带记忆

控制，而且其中的未知滞后常数部分无论是直接带记忆控制还是分布时滞带记忆控制都

使用之前提出的新型自适应控制形式，为在分布时滞参数未知情况下仍能进行自适应控

制带来便利。

以上的研究内容最终的控制矩阵都是通过求解线性矩阵不等式来获取，均可以使用

Matlab软件中的LMI工具箱。本文对主要的设计方案进行了仿真研究，仿真结果表明，

本文所提出的关于时滞参数的新型自适应控制方案以及关于复杂时滞系统(非线性时滞

系统、分布时滞系统、状态不可测的时滞系统)的日”控制方案、自适应控制方案均可

以获得良好的控制效果。

9．2尚需进一步解决的问题

尽管我们研究解决了一些时滞系统特别是时滞参数未知情况下的自适应控制问题，

但我认为仍有一些不足之处以及有待于解决的新问题值得研究：

①本文所研究的新型自适应控制需要知道未知时滞参数的上下界，或者与该时滞参

数较为接近的值，否则无法实现该种自适应律．如果第三个参数与前两个参数中至少一

个参数同时未知时，该如何实现对未知时滞参数的自适应控制，此时是否需要引入自适

应辨识，如果解决了该问题即能在镇定系统的同时最终得到时滞参数的值，具有很高的

理论、实用价值。

②本文研究的时滞系统中的各系统矩阵均为确定的常数矩阵，如果系统矩阵为不确

定矩阵，除了很多研究中的不确定形式，还存在与未知时滞参数的不确定部分，此时该

如何进行自适应控制，是一个相当困难的问题，如果解决了将使得研究对象更一般化·

③本文所研究的三r控制中定义的控制输出y均为系统状态鼻、控制输入越的线性组
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合形式，在较为复杂的工程背景下(特别是对于非线性、随机时滞系统)，Y与善、掣的

关系是否可以采取为非线性控制的形式，如果出现该种情况该如何解决，这对实际应用

有很大的意义。

④本文研究的时滞参数均为常时滞参数，如果时滞参数为时变参数，该如何进行日。

控制及该时滞参数未知情况下的自适应控制，如果该时变时滞参数可用一定的状态方程

来描述，又该如何解决，这又使研究对象趋于一般化，对实践有着重大意义。

⑤本文研究的均为连续状态下的时滞系统，对于用离散状态方程描述的时滞系统，

本文的相关结论又该怎样，因为在实际应用中，离散控制比连续控制更方便实用，如果

解决了这类问题，将具有很高的实用价值。

⑥本文所给出的设计条件都仅是充分的，能否找到控制器存在的充要条件，这将是

一个全新而有意义的问题。

除此之外，还有诸如关于时滞系统的鲁棒控制、优化控制，以及所有这些控制在实

践中的应用(如网络控制)，都需要我们去不断研究和完善。
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