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Abstract

The cyclone separator’s isolation technique was based on gas-solid
two-phase flow, and the granule was separated and swung to the separator
sidewall under the centrifugal force. The cyclone separator was an important
separafe equipment in flue gas desulphurization of circulating fluidized bed

(CFDFGD) , which shown great performance in circulating fluidized bed.
And the separation efficiency of cyclone separator directly affected the
efficiency of circulating fluidized bed desulphurization. It was a very
important content in optimizing circulating fluidized bed, and improving the
efficiency of cyclone separator’s separation, and researching on logical
structural parameter and operation parameter.

On the based of further researches on the paper of the cyclone separator’s
separation mechanism, the achievement which the predecessor had studied to
establish a set of complete cyclone separations model was summarized. The
construction of geometry model and the grid division were carried on by the
computational fluid dynamics (CFD) software, and then the numerical
simulation was calculated cyclone separator’s structural parameter and
operation parameter. It was gained that the optimum parameters progressed
optimized choice through the simulation computation. Consequently that was

established base on the instructed next step of industry experiment.
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It was used the Euler’s component granule response model in the
numerical simulation. Firstly, it had carried on the simulation comparison for
it was structural parameter-entrance form, the vent form of gas and the
granule exportation and so on, and drew the conclusion to the optimization
designed for the geometry model. Secondly, the numerical simulation of the
cyclone separator was researched by the optimized parameters. And the
velocity field distribution rule and internal component distributed rule etc.
were obtained. Thirdly, the operation parameter was compared by the
numerical simulation using optimized mathematical model and obtained the
separation efficiency of the influence cyclone separator with the operation
parameter—entrance speed, the entrance granule diameter, the entrance
granule density and so on. The cyclone separator’s influence rules were

obtained by these influence factors.

Key word: flue gas desulphurization, numerical simulation,
desulphurization efficiency,
cyclone separator, separation efficiency
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fr. BREBREHARELEHPRAETEASEEME, BEXRNEZFEBERE
HERBWRPL 1990 EXNREMREREMET TN (REHIERR 1-D
(P E TSR R RS PRA, ) 2010 EHER
ENEREEFMERPR S 0% LA 3 2000 F, BRI SEHAAS
KT 60%. ATRLTRN, ERRILTERN, ERVVEERBENEERENE
B &, REATEAE, ERIVAERZF P REMMA, #
KPR AT K.
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#1-1 BRE—KEEARES (%

Tab. 1-1 the comparison of the once energy constitutes in our country (%)

F 4 1B i RBRA A HE % B i e I
2000 ~70 19.5 4 6.0 2 -
2050 ~ 6070 5 5 6 ~10—20 5

#*1-2 REBHMEEL S 2T

Tab. 1-2 the gross estimate of the our country’s electric power and energies produce

& #
T H 4 R
1999 2000 2020 2030
RENAR/HaE
125000/90000 290000/226000 700000/490000 1040000
MNER, MW
ERBEE, 10°%kWh 6300 15100 36400 54100
% kWh & B 5
_ 400 350 300 280
(FHE), g
—REBEFEELERE
10.0 14. 6 24.9 30. 7
(FRHE), 10%
AR —RREME EE
26 36 44 46
EH, %
BAAEr-EYEK
9.1 4.5 4.0 4.0
B, %
BRdRE PR K
4.3 2.7 2.3 2.0
£, %
BEASHE, % ~70 ~78 ~170 ~60

ERE, RRAESERAMEE, R1 27 HTREBR SRS
FERAERAGETENTISE. 1995 F, AT UM kN ESE] # S0,
He B 830 i, HFAE SO HBRER 35%. FEE KBENFERH
K, BB 2000 4 SO, HE B A 3 2 B B HERER 50%, Hi 3] 2010
ERIER T HRM SO, B MBS E B HRER 65% .. BEHRKM %
R AW, EgLaEMET 2000 g, DEHAEMS. B8R, BT
sk K5 B A TSR SO HECE Y E A Talk "
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1.2 —§4# (S0, SEMeEERHARBIIERE

THABKENFRSET CEMNFERE. AVHRI KSR
HEhBmETRWEmE, BUHRBmEERE. KA 8 ARFILES
TRAABAHL. BRAAEERBEHFENWBEE (acid raind ™. BiTHRE
B 20 HLE 0 EFRAMLHBXKBRKIIUSE., FHEERERUERM
M REBEXHS X, SREHRSHELEREG 30%. LhBXPNRW
FRBEEEBEINTERGRAEENAEBK, BREBRKIER-ELD 90
%. REREHETEAR _HAEBRELETS™E, BWEH 62% WIRTTHE
FR_EMMIFHREBIEF (HFEEKEERE) “HxE. AFY
WEHEEHE (FESSAEARAE)Y ZHiE.

A HURE—MEAWHRIURBEEIRKYS % EREMRTAE
I A SR A, ZR[PZEAHKENR 0. Ippm B, B4R
FEREY:; WEET 0.5ppm i, B ARKBEEEERE W, KPRAS
CEABRSAENTSBESIEEMEANRRRAEERR. BWHEKLY “F
FIEM 7, WMAKEERGE., RIVEERE. AWESRELE. FRYUTHE
DEAGBEFASAERANAEE. BEMNAKESRENGEZERTR
MEIAKEDHEENER, EEFHRSE: BANFRESRENEEL
SRR TR, ., BT, KEF 10 2/MEXAIHTEHKRE
EAXAHERKRZEBARTIRE, FNEFEZHARAM TR 40% . ERE
BMAEBREKX, RADRMERNEFORAETIR. X ER®E
BH T, FETIEEIL 87.3%; MW ARVABTRENGE TERI AIE
RAEBVKI ™. LBk, PHMEND 3.5 BN ERREDKER". H
PH XN 4.0, 3.5, 3.0 # 2.5 WKW AENY K HEKEBIKRE S FE
f£T 2.6%. 6.5%. 11.4% 1 9.5%; PH {E% 3.5 MEET 5| A8 £ W~
13.7%, PHEN 3 M2 0 MNBWERDEZRr™ 21. 6% 34%; BRE T
S0 B B IR R ER O B T VLA D A RO B B RSk, AT A &R A
B, 2FEPAANTHS, CHERESIHINBEL. BRI AFRERN
MR BEANNEEN. B TERWERLEARRL RN LS HREER,
HEEAM Al Ca RE& BB TEWL, FHBEBHENE, RYFEDTES
E, XEEFLUNERTRUBTRERARRESBEDRFEAKE, X6
S rEAERE. AN, BAUKKEREBRERKEFN Cu. Zn. AlE
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ERE. AANEAXEREFTHEY. AL, BKAEH®RAE Cu. Zn. Al
FERMKY, BERSZIEE".

HAFRFERPHALSN —HAMFRERTTRAES S EWR. B 2011
270 FRWHFANREEAL BB —AABAERSEBLER, FEHE
e T R S AR BREN DA B R R R, IET =6
g, AREHTHEREHEARKRE, &= 5465 H B8
+ZER, BET AR B BN R A BR HE REE HE A
SEW. 1989 FEMA T “HBERPET, AT KGR BT HIR
#E: 2000 4 A 29 HBENMEBRAREZQBEI TBITH (RAUGTRE
WiEDY, T H ] AR R

HRTEFN SRR A TFHFRRERSCSHE THAORE. 2R
KA BB SRR A W HRORERITR 1-3 ME MR B, 3
ZHRUTHRBFEREROBRRASEEAE (AWRERBIER DT 0.5
%) MO B RBPARH B RRE SN .

£ 1-3 KA RBBEY RS AVFHBRE (2 mg/m®)
Tab. 1-3 the allowed exhausting destiny of sulphur dioxide of the thermal power

boiler  (unit mg/m3)

/OB H1INE %2 nf B B3 B
2005 2010 4¢ 2005 2010 £ 2004 4F
S jita B[R] _
1H1H 1818 1H1H 18 1H 1H1H
BRI R 400
2100 400
B 8% o 4% 2100 ¢ 1200 ¢ Ny o 800 “’
_ 1200 1200 o
i 1200

He (1 EREM2] FINBAORBRPTISE.

(2 EXRFHEEHER, AEPAHREBCRERBEBILA, CLRA T v HERE
KA EEE (APRERZIERS DT 0.5%) MO BT HBPRATEBIE.

(3 UEFASHEERY (APBRARBIEEERAR D TFHT 12550Ki/kg)
B PR LR A F P K R B AR AT R R AE

4 RETEREFEEARRBRASERE (APRERIERLT DT 0.6%) 1
LT R AT R AE .

BRXRFFRLF. EXLFHALZRS . BHEEAWT 2002 FREG KA
T BB SUEmHBS R RBIR”, BT K 2006 FEE
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W AR E A 2002 FREMEWHWE 10%, “FWERX” _FAFHBRRD 20
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1.3 ME B RRERER

ME_EMMBEHO LT ZFHL, BEERERE T AMNE, R
BRI . METHR. RESFHESKARUREE T RPHERES.

PABERT AR BD “HEBAR 7, BB S M EX BT A, EREET
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B AEF SRR, TEXAAMHENMALESREE™, BFHk—F
JF g (ereem 1)

BEFPEGITEEEIAEREEEPMAARON S = A B BOER
#, f# CaCO3. MgCO; M4k CaO. MgO 5S # SO K 4 Bt
i, MAGHH. AREBELALSFAPRBERRN A

CaC0; —£> Ca0 +CO; 1

Ca0 + 80, + 1/20, —— CaS0y4
HYAFPARERT. RARRERRE. EREXAER LR HRN
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HERELEEAFETRENEM. B500S B8R b K X2 BREE A
SRMEN. SHAESYKRERNESS, |

PR IS HE S R B ( Flue Gas Desulphurization i ff FGD) R EHRItHF &
ME— KA N B B F AT A A BB RIS R AT
ZHEENER, AZTHENTERBHLUER, EREMBEARE RE.
WiEEE B DA REMLI, KHF 300 HAR®EH FGD LZHHATT
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1.4 fRF AL RESBREEARBGHR
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~1.5) WiEBNBE TEMMBNE (93% —97% LL 1) ",

BERBHHANT K, XHTEHELSIEAMNBRBE KT,
EEM Wulff 27 . FHEM FLS AH . MM ABB 28U EAEARAL
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B/ 1-1v7,
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Fig. 1-1 the process chart of flue gas desulphurization of circulating fluidized bed
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P, R—REBHTHREEELE (), XitEAN:

12



TrEERsEmtid H2E RERNGEBOYEFIRRRNIEE

R-r, R+r,
S =

XF: R—EATERHEEE (m) ;
r—IER S BERESAER (m)
N, — S 1 i % B 3
v PR EE (RERREAAEDER M%) (w/s) .

AR JBURL B9 B0 A 3 h B el T R I ) R0 S A B B R R) S
L, _27RN,

R= (2-6)

W

u, u

(2-7)

¥

A u BFRLTE Stokes EHTWEWNBEOEE, WELAHKIREER,

L w400, —p)

' (2-8)
r 184
BN (2-7), BRI SR8 5 4 40 4 2 50 URE B /b 4 BR e 2
Aoy = 2uL, =3 LR x(1 —g) (2-9)
aNu(p, — ;) 7(p, — Py )N, D

A, L—SHREEE (FT#HORE) (m)
Laaple 1 Shepherd B HEE S MtE ¥ n=0.5, T &
ddmz\/ o1d, (2-10)
2N u, (P, — P, )
A d—EASESRFENEER (m).
First fR i BB Wi 4% n=—0.5, W

e =3 p#R-r) (2-11)
Wcui(p_p-—pg)
M FEAEFAE n=1.0, W
4 4
dyp0 = opd, & e (2-12)
mfcui(pp_pg) 4R

BiE LR ENETURSHB AN HIER:

. 20Gp, - p (R —rDyd .
U(dP)_l \/ quyazr’h2(R/re) (2 13)

HEMRTEMLEERA —EER, ZEHT

(1) ZEWAXERELHNBRAMER, TR T @O F X HR R
BH 77

13



I PRHER SRR B2 E RN AR S R R R

(2) FRSBRIAARERBBR#T, TR AEREERERPE
WU, AEREIHESBERE —ENEM.

(3) Rosin BEAF O HEMK ALEER, W n=0. HEF n=x0, B
SEEERSESBANEEZBE N, WEBHENER.

2.2.2 FHBERE (FRIE S EIR)

—RHR4, BN, HEEARTUmLHE LN AR FEEL
5 LS HEXE1E K Stokes BTy f, A V-4, WF@PEEEENE
EHFAETHEHBERVNEEMNSREREXRN -1 BRERE (20
2-1) « EFATEFEREHEN, ATHMER, FHESEN S E
WK, ARELHOXRTHEA, ARWELIATELL. BHEHAMLEE
MER. Rk, ERER®LLABREA 0XMITRKE, TENAT,
WM ERS, RANERREd,, FHTERL, BN ENELS

2

£ =%d:(p,,—pg)"’1 , B R R

n

RAET Stokes EiEIHE.,

fo=3muv d,,
3 f= i, PEERE 50% K 48
ME, W ! |
d;0=E_E§325L; (2-14) ; '
P, — P, | fo P
I

A p—BREEEEE () ;
v, — ¥4 r, S 4R 8 E B (m/s) ;
u, —FA% r, 20 V0 1 HE (m/s) .

B 2-1 PHEER R
Fig. 2-1 theory of equilibrium orbit

223 hREBESER®E

FHMNEHLREEIRWRT EEER, MXHEWHI THARNER
RAVK . 1972 %F D.Leith & WLicht EH T B RERN, WAELS
BUE—HWBE L, BREKENSGAEDSY, BEERLANAREN.,

14



T RHERE 83 52 F OBERS RS NVED A AR

REWTS, REHEEELRETRFEEANLIRAEAR. AW LHEHEE
FBETR, CRELAESEEIR. BEX—HE, WHAILAERS>EER
MR E LKA

da L m
7 =1- exp[—0.693(d—*’)1+n ]=1—exp[-A(Stk)?* ] (2-15)

<50

AP n—Hh T IE R B

d.,, = 3(0.3465) D E
S5(n+Dp,u,K K,

K. K, 7R ASSEHRSTAXEE G
- 1

A=20100 + MK K 1" ym=——
n+l

R, FECTRESHM Stokes M TS EE, SEMK, 4 &
BERR, B, FERIATRATHRERBEPRREK, . K, ATEH
h, ERTSEBNERE. HFRERTE, BERBAORTHEW,
CTHBHESESEERTRUTRBRIFHINR. BT K,. K, BEEH
WRA R, BT T ILMTABE 4 B 4%, HEH Stokes  —#, BN
AHEMSERR, ZAESH T oaStEL TR AN,

2.2.4 RS BRESEME

90T B T X S R R B
1= [ 0(d,)f@,)dd, =31, AR, (2-16)

AT, fE@)ANOBR SRR, ARNEBHBALKTH.

HPRKERRASER, RREEIBETSABENITE: (D HEY
Br: (2) EHE. —MBEERAEELHHAELE -0 NMERE
£, ZEPMAERERDBERENR, ARELBSERERERAREA.
HiE A AR AR AT RE DA PR R AR, B A S RE AR S
XEXEENRE, MAERE—HaRELEHT. XMHFATEHE.

MR AR m, THRBELER-Z, B

m,=m,/m, (2-17>
XA m,— LB R (ke/s)

mg—léﬁfrﬁﬂ’])ﬁiﬁ%(kgls):

15



LFFHE RS AR B2E ERSEBOHESALRYER

m—EENH.
L m AR AH, TESHTREEEAR M,
ESOWMEKFEES, T —EAReE, S EANTFYHHAR
HVARKE, WEEAMERERRN, FREKISRRY 8EARLZC
HWiHRELRE TR THAREENTMENER, BTRLERT Y5
MTBANABEHOZY. IR VASER, o BAHBEERNEE, W
HIMERESE, BRI SERTBEARDTERME M TRITEER,
REBMECHEMEHFRETETHNTH, EEFTITHRUEWNRIS H58a), %t
FAREEE, BBEHEARTERTTH:
_ KeV?

e =

(2-18)
2g2ru,

Ao K—F#, A% F107°;
e, EHEABMH DR
R—EE L,

u — W FE UL R E

MK Q2-18)F R m 5EEFEEE I RIEL.

FFE, HWEHEARNSERN, WREREERRBRAELI L, Wy
LRERSBT P EET, WA RERWEID, 7068 48 BT
R4 1 .

EEEMBRAFARXNERTIRARA, ANBER I, = Vab {5 2r,
ﬁu”RﬁﬁEﬁﬁﬂf@E g, AI{LfE 73

J_(a )m = H,\RU (2-19)

HF: K,=2~6X107;
£ =0.05(1+3.5m,);

o WM OBEHBEBSERE, o «-;— a'— chH Barth 4 H #14
BAaRXa=1-0364G/R)C, T A TR KEEEE, B) A=ab/7r?. W

(1) Hm<m b

7= fq(dp)f(dp)ddpﬁﬁﬂ=2n(dp)AR (2-20a)

(2) Hm>m b

16



P RHE R B2E BEALHBNPLEUIR IS

n=0-")+7< ['n(d,)f(d,)dd, (2-20b)

2.3 RS S ENSHEGEDSENE ™

HAERAEBROGEMEEEARYERALTRE, AINFLES
IR EER B AL K, R R AU R K o 208 HE A TR A B R
WA w ERah. BHEBREE R THAAEIWE NI REE, kR L
B o SCEUER B IR T, (8 DR 2 S BE e A Bl D v IR T I HE Ok TUET B ol
7 DX SRR D B R X .

HToFESERTHENE. BERRRSLNZHEEEEER K, FU
SMRIEARRA A IR ETI R IEHREE BRR, WRERRTRIERES,
i g 35 1 9 e .

—MEEERERENERHERRERTERNIEEIIN I = EE,
BT s A e A ) S

2.3.1 YImEFE u

MMEENTHAEAPRNBES S EEEFRIEN, SL47E TR
EEMERAT, FAobdBEmibELouE.

HAEUTE—SEDREE uiEERHR
LR 4y R = AR (R E 2-2) SEE R AT S
BEmMIRKA, VHEE u="%%. Alexnnder &
ﬂ%’%%ﬂdﬁﬂ?ﬂ‘]ﬁﬁiﬁ:

——215( )‘” (2-21)
U,

i

A u*—{‘%‘""“iﬁ)\.ﬁﬁﬂ.ﬁ%%&ﬂﬁ)\ﬂﬁlﬁ

—RE R B A OB E R (m?)
D—iENSEREEER (m); 2-2 Y & BE 5 AR
d—HREXNTEEFILTERE (). Fig. 2-2 the distributing of

tangential velocity

17



T TRHEREEL R 2 ¥ ERSEAMYLEDTLRSEIRE

HERNGTEHPOR “BAVIEEELD” WHSE T WP LR,
BERLBEERR 111. RUTRIEENEZS) . TER u SREEF
B 2 b —F Bl

r

WHEBNAAEE 0.

I XM I Kz BESEKEENERS—FMER, EWMIIK, —&
WhLEBmERE. € 1T XEUImEESaREs.

w'=HFH (2-23)
nREESAHER, —HFE0.5~0.9TCHA.

Alexander B HHHE n HW X HEA:

n=1-(1-0.668D"" )(E%)M (2-24)

AP T—HBFBEE (K, n—FEFESMIEH.
EHnHMEERLRERK, EEReBEEFER, Re AN n ¥&IET 1.
nHEEESKHERBRATRD, BHEXSEER A TEL, SHKES
HETHEEHAEEN (CHER), M n{EHIET 1. Alexander & 1 n {H & B 5E R
SEBHNHEHENATHEK, ZRETRAEBHREMATER, SHZER
EHBEEZWB K, JBRABEFEEZH.
SFBRAMEEMOAME, B “RBIRER” W2, ZBIH, L

r,,,=§rﬁmmwza%%ﬁo

2.3.2 EEiEE v

BREETTZ DTN SHEEE, KBEMORK, REPLRE
7 N4 1 S B AR | iR

EHEFELT, FREFREILGEMMERZFEAER (BHR) 5F
AL EN, AREFRHERERR > MY, TRESA:

v= 0 (m/s) (2-25)
2mrH

R Q—HARRTEBHSEWE (m¥s);
R—EE L+ & (m);

18



7P A2 EI 8 28 RS RO TR RS

H—¥%N0 r bR B A A HSE T — B A T EH B
B) (m) .
SEFRETREAERASAIRAER, QR WEREAEXT > XENE
00, $EAE 0~3m/s [, FEITHLAT & K& m 3K BB EY 3~
bm/s, EMOLEEEER 0. Nk, BRABEGFHEATNERETRA:

(
-2 rzR,
v=t-12 10 RL_>r25R" (2-26)

R 12

12r € wpy>0

R 1

| R,

2.3.3 WMmEE

FMEmEEMGTEBRER, NOERER LA ABRESR, TEHEHE
FAEE MR, EABEERA, —RTESES AU TTRS AW L
THRAKE. k. FARNSAREENSEBHERER, RS ERE
., WARERBBEUEEER, K¥E2—BREHXTHEIEN P12,
TERMETR AL ARBERETAN 0.5 L. IMITAROBEEREMPET
BWAE N o KA R IR I 0 A 1) S U T 2 W A AR AR 1) L I P JREIARL
1o T BEAK B9 KZE 0 BB B A RAV B G, B MR D LR
i) bR [ S B AR . IR E SR — ROk B3R, A BB 1
R REE - RERK, SBERERARR . ST AT A E T Rl R R —
BB RTER TR AL yIRERE, BT LUERS B8 A2 E R Bl |
F 2

it i 1 23 BE BT 0 AT RE K -

o=0Z"f (") (2-27)
HH. C'_FQJ'(J’FROZ);

L (Zih sk e
2 _{ o h R ).

Fe)RUTZEMA:
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LTRSS F2E EASHBOIERREEEE

FrYy=a,+ar +a,r* +a,r~° (2-28)

Hrre=r/R(z), B
l_rlool o2
a, = al(T),az =1.5a,n

a, = a,(=3+2r,"),a, = 2a, (2-29)
v

a, =[r1°°1(1-r1°°2)2]"; n=r/R.
234 AR EARNERESH

RGBS TN, RERELRERTGLEERIAAE, RELRE
WEEEMYE A, Bl

[R(z) =T

.
U=1ug

=y [R@)-r]* (2-30)

AF, w v~ w,AARARBAGGREUIR. BE. BEEE;
SHUTRERE.

2.3.5 SHEkkw

ERGEHEIMEE AR BIEE, EhHEEATEFASREKN,
B BT S EE AN RE MK EEZ M, SEWHOKSIELETXHATERN
8 37 T 2 Bk AR UL

u' = Y Ru,, cos(iwt~ R,a})
v =2 Ry, cos(iwit — R,a;) (2-31)

w' =3 Rw,, cos(iwt - R,a))

A, o VO WEBATIE. BE. 6k EE,
R~ R ¥ 6 A~ IE &% 2 A B BE LA

20



T REAFB R B2 E BERASERNETI AR

w, S A 5 Bk 30 48

ats al, ' REKBMARR A

Uy s Vs R AR L KB P S S 4 — 5 B AR T
O kB S 0R . AR AN AE, AT R 3K R 0 S 00 R B B 45 T LA R K
1ok A I ) B 90

2.3.6 BB

50 B DS B 38 WA I 5B BE RGO R S T R R R AR B, [
TER AR bR, A i LR BOA

é—"(i:rw,éﬂ:rv’,dw:rwdr—rvdz (2-32)
& oz

REBSWE v. waAi, EAIRUZERESEKRA Sy, HEHA
P RERMEERLMNHREE, NREZEPRATHERERS, &
AU URFREMA B[ KR, EBENE:

(D) KRBT HAARAR. EENTESHOTRT EOE —NMHIE
BRI AE, EHREEMFER WAL RERFRZENN TR, TLEIRE
MU EE BRI AR LRA AR, FTLARRAMES), &3
HS®EARMEAE T, WHESKEIETT, ARTOLIEAFHESIH, &
BT BT A MR, XAT MEE N ERY R R R XFA
) B AT — 4 B IR SR TE 4 B 4% B A 1 40 FORL 18] b 3 B TRAR &b T AR —
BCYTRRH” , FHARNBEHEAHSEA, BHER.

(2) HHREFTOMEMERRE. EFIETORE, FEE8EKH
EAREEE, XHBEAARORAZERSHEAETRTAFEIEA,
RRERR, XHARRERTEUE.

A, BERMMM D TLAREGAHAEEZSE, Ba&E LR
MR, BERETHBBELHPRETGRE, XEANTIER. K25
BHRNESBESR R SHEP nER.

2.4 ER S EZREZITE P BOSRTE R B ki [23] [241 0381 41— 451

MRS BERPFHRBREZEBERMMAS), AT AR L
REW RPN RS AT ORI 1 BE . BE M4 AR N B i M R B AR I
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R A i . H2E RASBBHNERAZREESE

Z, SEBITEMOEE T KM Reynolds W HFE R KB EHEZE HENH
BRI, I AMBER, MAXSEEE, ¥ Reynolds i 1 7 8 l #
I I 1R B RO HIE 7 2 o B B Y R A0 ok K T AT AR B o K U A i B B R
ik, MIG{F Reynolds & ¥y 57 P23 A TF K #% .

T ER F R IELEM F# . Navier-Stokes 7. FEMNHHE.
mFRE T ENEREEBRTE. WTER. A TE4H:
bt clpr

% _y (2-33)
ox,
Navier-Stokes 77 15
op 0. ou Ou 2_ou.
=~ — m—— il 5 Ly Ny (2-34>
(pu,) ax(puu) ™ Bx[ﬂ(ax 3 ”Bx,.) puul

R —pu FRAEERNHE; & j=1, 2, 3.
HTHER (2-30) FHRATHRRIELM - RRT, WEHEN
AW, B EEEREEFEFESE. I8 L - pul) TR E I B,

WARNAEMHEEATS, #TURART AR RAER.,
MEFEBIMXER EE, RS ERSAFHBROER, THBZHZ
FRVE k-e#R, RNG k-« A RSM X, RSN EIMERENSE.

2.4.1 ¥EHE k2R

FrE k-e¥R BRI T 2% 1) R i 8 5 B9 Boussinesq %, KRAWMTH
ER AVMIES S5

pu yT ipké‘y (2-35)

2

H: AEMNHRE g, =p+py, RREHERES 4 =Cp

k Fre LA HriE 7 12 6 2 -

a(pk) HpUik) _ 3 te Bk) +G, - (2-36)
Ox, 6x 0',(
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I TREBO SR b F2 B RRSESHHIEPH R E

Hps) opU,e) o .p 05, ¢
_ . _ 9-37
™ + ) ) (0'5 \ )+ —(C,G, - C, pe) ( )
. 3y, , U, U,
: 1 : = (2-38)
KA WAHBERI: G, =4 o L) o,

HR{RH: C€,=009 C =145 C,=192
g,=1.0 o,=13

2.4.2 RNG k-gfi &

RNG k-ef2 #) B t§ Yokhot 1 Orszag % AN ] E XL BF
(Renormalization Group, RNG) i, 7E k-« B AR LR B KK —
Bl koot AN o it T 3K o R L AR 96 e R L O B2 BE AL 0 M Bh B iz T AR,
BFESHESTEHEEPNDIRER, FEEEBRAFIRMEES, DR
FRERELNHETH. EREWEEYT, RNGeRESHFA k-HEA
HFHREPAKER, AALAFEPERT —AHEMAERT, HHEBREBE
B, X—HZFMM, RNG k-eBE P M k MeMHE T RS A A

ok ., O _ (2-39)
ar e, T ax(crkax) *Gi-s

o gg__a(Ta
o 'ox, ox, o,

Horp, i L HE AL RO 4

Ly (CG ~C,8) (2-40)

G, =2v,5,8 (2-41)
5, =1y oy (2-42)
2'an, " ox,

S, ATPHNEEE, FRPOBERRES DT

nd-n/m) C, =168

C,=0085 C =142~ :
1+ fin

o, =07179 o, =0.7179

K
£

Hp: g= S=.25,8; F=0015 n,=438

RNG k-eH B 5 AR HE k-e AR AA{L, {8 RNG k-8 5 #E k-efBi Y
M E T Mt
(1) RNG#EFEeHFEDTMT — &M, EHOEETHE.
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TR R 3 325 RS ER AP SRR

(2) ZRFITHARER ERTEXHFEHNEE.

(3) RNG Hi&H % Prandt] R T — MR A, TIFH k-efR
RigHm2E P RENER.

(4) Fr8E k-e BB R —F S FHBMEE, RNG BipR$ET -5 E
REEHRIHBENRTARN., FEARREERFTERRTER ML
BWREIEM.

X EAE S EH RNG k-e BB LR k- MBI EF ) EMAIFTFEER
IR AR

RNG k-ef8 B {6 4R B & %t F 7450 %0 B 4k 59 3 60 R 5T bb 3 38 R 1 G Tl
W. MAENTRAERS), BEERENARZR) . AshaBH KR
HHRENERIE. R AEREETFTEVERANBSRI KRG AEEREER
IR . RNG k-eBL B S5iaM k-e R EER HIE T

(1) RNGk-eBHB I MEHLEHBREHMAIEKELR KA RN,
HoE P E IR

(2) MUATESEERRINER, EREERBENRIIERESR
HIR TR R,

_ (3) ERPEFBRELYMT HEAZBI, IR T PN E T EEH
T 13 5 M) o

2.4.3 RSM ER

KT R IE A RO AR DU AR AL B, TRATT A R R A R
£, ERAFARENTRT, F—ASHIFRRB NN u/u] HAEGH

WMEFE, HFEIEHBRENEROLN. BR, @3B L - EREEHN
WA, MEHEFNONME RN T o, EHEEF, BEFEMNDZ
SBEWMEFENT

g(pu,.’uj.)+aa—(pukufu}) =D, +p,,;+G,; +®,, ~€,,+F, , +8,, (2-43)
-y k

K FHAD,, = _gi—[pufu;ui + p(S,u] +6,.ku;)—,u5xa—(u:u;)]
v ¢

—0u, ——ou
NAO™ED p,, =—p(u,.’u,i—a:’—+uj.u;a—ui)
(4

k
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LR RS s 2R RGBSRV R

BRAFEDG, :——pﬂ(g‘u;_¢9+gj%)

o)
EARETESRA 0, = p(Cies 20
x, Ox,
: du ou
%ﬁ]ﬁ ,":2 — :
T e o,

I RGFE IR F, | = 2002, (Ut 6, + 846 )

TS, =R R IR
St R LG, e EME AR ER R FRER:

2 P 8 ok 1 ,

— +—— Y= — e+ 1+ =(p, +G,)—pe(1+2M )+ S, (2-44)
8:‘ (pk) axf (pkuz) axj [(” G'k ) axj] 2(pu n) p ( 3 ) k

& 8 8 og 1 £ g

i G e (e e L R e S S

f
K. €,=009 o0,=082 o0,=10 C,=l44 C,=192

C,REF BN THE RS RE K,
k ’
yRT
S, SHRAFBEXWIED.
BN T EENDERE (RSM) MEERHH FEA.
EENAHE (RSM) 4 RNG k-eBE A R Aok k-e IR B KX A
BT ESERMAFTRTE B R REETER Boussinesq R, BETHE
MBS RAER, ZETRASHESROBNY, RHERERN. FH%
R, MERNZE, FREZEATHELSERATEMN LBMBNER. B
XA T 4 EEAA BT EER CPUR B RE,; K, X8
MEANBEEIEMIFREHARSRE, ERABEL, BEHE.

J £

WM DM =

2.4.4 RN HEA (ASM)
¥ RSM BRI B B &, Launder Al Rodi 31 T — A~ %% 7

FoH i tE R ( Algebraic Stress Model, 51 ASM) £ A k-ei® B 51 RSM = 8¢
cRIPIFEFE, HTERK RN AMHEFREE AR E M RIESL,
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LT R RS B2 E ERSE RN ETR RS

RN PHARREARASAREENELRE, HERESENAMNERANR
BREL, EHWFEEAERNREN K TEMTH.

5 RSM AL, ZMAXKHWT ZEKEA, WWhEFMLR
M ER WA B RSM BRI 4 ™ . {H 2 75 S HLAE o $AR & B9 9 e
e, BTEHYUBRTREAMAKER, BMS3EEFNRE.

WA BRI T S HEER (DNS) MR EKREESE, BT
MABHEHAT, EXERA——NHT.

HTRAEYE BEXRIEBHFEARERA, ¥ 2B #d
XEMARE, REBHELNERETRLSREGERMNXRTE. #
FErERRERNNATH, FENARUELMF T RERMKER, B
BENEHRNDBULHESR, TUHEEIMRIHBEEN SR, HRT
MRS RPN, HRREHRRN. BN, HEHNE, ERE
FETRBAHNRTEMi-HAENER. BRARAFENRE N KT
HEEX, BEAAFNHTENEGTESETITN.

2.5 SEFHHEERRKRE 00

HTFREFRHZEANAEERNE - BRES. S, #RIRNF
B, BAHME) R BT RAR S E RS, KT WA IR A £
EA4ABEKRE, —LEETRELFRMESEN RAEE, H£HEER
BEABUES A BB B AR B X2 E R T E#T R
REAEEA, MBREEEESSER, ABREBRIES NIRRT ERE
B ERIZEE .

2.5.1 REEAHE

By BB R A A LR, AABRSRARERFEFEMES
ER, ERNARRANAEZEREENAFETHRE. 18, RETHEY
BEATHE, MELRAELY. XXRUVLHTERBEY., MEBRE.
BB B R A b AR A X B B AR 4R R R R S [ LA UL A 3 2 90
A EER PO AN R . X T E AR AT, XA AR R I A R A [ 14
I RFRRERENBIEM.
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ITRBRFH LR B2 T RS AN EM ARG

2.5.1.1 EBBESENTRER (No “Slip” Model)

LRBESNFEMEREMEANSHAERYE, TRHEEWE T.¥MK
Spalding ##E-L+FAMEHH, HEFKBRELEMFR:

(L PR RERTrEN, ZEERTH4, ARRYARER
RE A, X T ARG, R R Y B R A A

(2) BrA U RN I BESS T L i U AR T A, BIRUR AH A 44
M2 M EA AN EE, HZPEARE;

(3) BHMARUTFREBSY P ERREL S, EEIENT R
WY R ESE A F, BAAHENRRT SR HHF,

(4) HMBZEMAEEH, NEE, IENEENTHREUTR
WREYT SA 0 Z BRAEH, BUR AR S A A8 2 16 B B 288 A it .

TRBELAM RO ERRAR, LB /&SR, #HSTHE, EX
S B W vk SOSURAR B0 RE AR T 2R ROR Y A AR o RO R AT —
de e, M EBR AR R AT . HBR OS2, B BURLAE A0 R 1A A
Z BB EH R R, A BUR AT B 446 A0 — | AH R BR A
AL XMEGFHEZHRAIGRERMRR, BAXREBEMNAHKED.

2.5.1.2 ZNBEEZNTEED (Soo-Drew Slip Model)

MATHEATTER, S.L.Soo (HEL) EFEXRRBETHI T HERHI B
WBEEA HER, B3R Drew XXM E MM s SR GHT BAMBMH
B, KEANBREEMFLE:

(1) BENEEZESNMR, HFEUWMRAT 2L, FROANAR
7 AH 5

(2) E—HAMHANEE. BE. WERENRNER.

(3) FARTBHRBFEEASTTHMARAAAEL, #FPRHEZMA
13 78 BE AN AH 55

(4) BRREaZ HAANETSIRE, FNENEEREHTHR
AR T2 HMBE R MRS BN, XM NEB BRI NREE,

(5) RHHKRADHEL KEHMZEMKR, NMRLUTEHIHEES
R R TR a1 N S
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LB AFT L 2% BRI R R LR

MABHBEEAFENHALEE, (MNEIBEEMEEEESHEL, ©F
BT PR MHABEMZ B EEMBRERE, HmEEIFEEEL, H
RMEAFELSERBNNEREARBEERRRY fN, BNKEH
KRR E AR NEEERAPBAN

2.5.1.3 BR-F BB EHEDE (Slip-Diffusion Model)

T T O /1 V8 R0 B0 WA 0 AR 2 1) AR S SRR X T P
PR W F BRI R M AR TR0, ESCRIEN . WA R B AT
KR AR ST 48 0 U B 2 8D 08 S A 9 0 B R T Ay
TN 9 R R AR S, WA S AT, TR BEEA A
EHNHEEORBIES, LHRIERNGT BUEY, #ENEHEY
AT EE, MB35 B0 TR BT AR N R TR 5 A ) B S B A
BTG, AR A

(1) SHMWERERERBBNEERS, TR THHTH
&R RT3,

(2) §REBER T WK/,

(3) BEERERTAMEE. KT BESWES H A

(1) BRE) IR,

S 46 3K B b A4 4 R PR R ) 1 5 14 5K 2 R 1) TR 9 455 TR R
2. 18] M AR LA DA 5 RS R ISR, W IR B o B 4
B, READEARKEESERLALSAST, REEHAGEEYAR
&S T Ea00, 8 I s 0K ) 5 4000 B 3, JF DA 2 679 )
ERNTRMAIEFE. FRHELES. MERE. FHER. SRRN.
BURH LSRR L, BIE S TR B B R B
1

R 31 ) 2 45 50 7 4 TR 61 A L4 PR BT , A 1B 445 0 4 LR B Cbulk
viscosity, 3Pk BRBLHLMh HUIR 4 M —FRBE D R E ) — R o S5 B 4 00 7
B s ORI BY DU RE I 5 YA BB BB A 0 SR ABL) ek BRI
i 651 71 1y 2R S
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2.5.2 IMEABRA*E

BR $7 77 3k AR 2 TR A B o B0 R AR — 4, RS — MBS
MKW, EHERFREMTRHE&M, BEHTHEME, BEMNXT
FURE X)) 26 R ~T AN 339 55 BUBRRL X ~T A B 32 46 /9 P9 A0 3t 3 45 00 4 3 SR AR [
s, AT 2 AR L SR B R B T LR AR B S 3 TR 46 23R 3 Y 9 4R A
WHRERERTMHEBRLER, ZRERTEERBRERRUT, AR
HEKGBESBERHERDEAAGE, BTR/LAFE, —HHFAERY
THRAEBE AT REESEWMAS) HE, EEaFBR RN ERE N
fik Bl 3% BE AL S IE R

2.5.2.1 BHBHBEEE

AR R R B E 7k CEIBRER RS S B B 77 ) oK B A MR Y
iEg. ETFHREMNT:

(1) SEHATEFEESENSE, TRNEAEEESREMFHBEN,
B 5B E s R

(2) BRiH AR EAREYT 8. REA T U R = &

(3) MR #HEREE RN T o4,

(4) FHEPRFEESBNNEEZY), EATH. DR,

(5) BMBHAANAE., SHENREMH LW UEREMENN
EESATHBREEFHNYRE. HERNERE.

BB ERANEERARTEN S, SPRARINELER
FmiR, RERRFMEERBRNED, HETENEASPEAT . ®
PR ERRRT RERZREMLERTE, BREREIHAARRY
TH#MBERITE, WEBHMEBIEE., LHIEENRE T XL
M E ks, BRAMKRNHERTRELSABE. A5, WHEEGTAL
HETUAMLRAALEROTRFARFER, FEEF NI ENEEERN
RE N EEE. KI)EENBRERY XA “ FHATE" LER
RRWEZNERS R, BRI R T XA EE.
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2.5.2.2 Bk SiSBEHMASEEA

ATHBABA B ERME AR M EERED BN RE, LXE
ARG LR AN BRI T Bk 3350 B B R P R R
( Fluctuation-Spectrum-Random-Trajectory Model, FSRT) , NEBHRER = H
Hh [z BV BE B G UL A o BRI R YT B R W, R BE AR AR R R~ R 7
RS EETEMNARY BEN. AN, SATEHFE, FHENHNF
EEEM CPU BRHFA K.

ZHRAHERBRDT .

(1) mESMEKSHY, HHESAF —EMiE, JSEEET
P 3L 2R BOR A

(2) WWSTFPEKSREEA G, Hk, BkahE A o 35 i 1 26 4 6
WARAMEYLK, S=4makiH, o VI W AT B ELTREER 0
A1 % B o A SR B AL 5 PrOd R

(3) BRESBAME, AREAD, FMEARARTEREMZINTAR,
HEFEERGHZ A, B{EHERRSMBURL, B B R R RS 6 E
AONENYE, Sz R HE. ol AP S AENL I8
ERRBBBEMEHBREREXFHEMREES.

HTZEREFRTHRAESROKSIEN RN S BN,
BHEET A ARABRAERRY SEn, HEBEMmEEakx MR
FEETITREER.

HEEHSERARER N, BT AARENTFERRARALE,
R R R A NS HHAER. ERAIBRFENELE TR KBS —
A, ENDMEFMERRYEERSGE—ER. KEEMNHES T KX
43 B A% T RSO P AH T AE A
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2 6 ﬁﬁ*ﬁmﬂﬁﬁm [40]1 [48]

2.6.1 AERENFHE

TR E B B TE Buler AR RPAMIFL M A, ARG Lagrange
MR FAABE RN TR, YRKERARERTE ST UER A
MR BHNEHEE. ROBRMNES FREATUEENFTTS ZEHfa8d:

dVv

mp—j=FD+FA+FB+FS+FM+FC+FG (2-46)
XA

FoAWMEE D, B/ BuAERETENESD N, AEFRH/
ki B B R, MEERN/SEARABENRENERES M.
T BRIESH DRERNERNA SN, mABRENT REN3GE,
WA R TR R /R E A G R BN, KBS RBOR/BU0h
MRABRMMT —&. FUXEHYMEAmRE D UERINEE D, 72X
M2 AEBRERAREURE . Y FREFHHERS), < AEERIZEIE D
F R/ BURL % B, TR R B B R Ay UKL/ R D A8 D A BB SRR D
f, SR UAMNESMEESKN, RWAEHATUAERE.

F, 4 Basset /1, RAUER/EHATHF LRATEETEENELZRE
i, B/ BB Z— AN RBIE Y, S e TR/ B A 0 g
2R, Basset 775 UL/ A A ME 3B KE W . Basset J1 AR A
ks, F5RIPAREET R, EREHRP, Basset A5 HEMELE
Al BLZ2E ATt

F,, 3 Magnus 71, B/ WA AFERNSBHRANSHN, HabiEm
WA e, M =4 Magnus FH ), EBHRE W5 M. KT B/
B RAEEs A RERNER, FinF g KPEEESENTFEERR
i/ Bk LT H2Z M OERARR . BOR/ Rk H TR A BN 3 2% 4k
52 B0 B TR B A BRI BEL 0 R — BE T R AR M g% . R/ BR0RL B 2 ) B 9
FEHE UL K 54 B 4% N BE (R RE 4 . PR O P AR R . BURL/MURE TR R
RZHFEM LR RN . Magnus HHFE A WTF -

E, =nd,p(V,-7,)=x02/8 (2-47)
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F, % Saffman 7, Pk /PR AEREESENOAE Tz, &
TER/BRALENREAEESETHEREEEARAR, RF\FHEES3HTT
Bam, Se/Eayd ETHEAEAESRAE, MWr~4L Saffman 775
Saffman F+ 7 &5 Magnus A, B A2 BRSO B R g S L
F. REREFHEMRKMOLRAXEE, Saffman A WA EZRBBFE. —HEL
T # AT L AR

Saffman J+ H B HEH A KW F -

Fo=klp hpv, |2 (7, -7, )14 (2-48)

F AR Z ), Bon b5 B 2 (8] We s 7= A 40 A

Fo ARG, HENFL,

F i ok 3t R A R, 2 S B IR A R R/ UKL I BT R B B TR A
RAOZAETHENEWE, F,REANTUGRWOTEN:

Z2 e (U -V,) (2-49)

He g A REESIDZERE, UV 400 BRHEMREHER,

Re, A BUHE EH, Re, = 2qu-u), C,HRNRY, Bl FR#AR:

)7
.
%— Rep <1
eP
24 1 2
Cp =4 (1.0+-—Rep)3 ISRcPstO (2-50)
Rep 6
0.424 Re, >1
L

2.6.2 BNHNTEERE

MAR (2-46) BHEMTRATLHEN, KAWL LR, AF
b, HFREOBH, REERAANH, $AFE LHFEEKHEE,
Hit, BHAERSTHES. AESSLIXMRDERENZW. 5 EH
IRk 30 % W ) R S E R R AR A RE L E B A

WK B B T AT BAR R A

w=U+u’ (2-51)
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H, UARERERER, o k0 miiks) EE.
¥ (2-51) R (2-49) v 15 2 Hikr bl B 40 o 4 7Y

dav

__‘a_xz_l_(U_}.u’_I/:px)
dt T,

dVv

——”’=—l-(V+v'-—VPy) (2-52)
dt T,

dav, 1

—E = +w -V )+
dt ‘rp( m)*te

2
Y ";8‘; S BURL B3R T 8], £ 2 IR 7 P RO 8 B 1

B M RBAN G RERE, » WUBELHRASEER, HAKX K

’2 (2 ‘2
' k ' _ = - (2_53
u—é’ —3 V—g 3k w g 3k )

Hob o AMBHLE, -1<¢<]l, d EXBHAORKIBEREHLHHN.
MW A FEFE MDD, RENKEREHEENEENIN=
MER T3 5r B1GE]:
u’=§\/u':u', v'=§\/ﬁ, W =ww (2-54)

2.6.3 SEHENBNENERER

FARAAS AR RANEEZAAET A ELHEERMAMNEL
R, EEEEM. JATPCRARS K ERS BRI, Bk is s 448
FR 5% R AT DL RS, IR A 4 3 48 A I A0 R4 Dy B RCAH B RB0RL AT AR A SR
fit, MEERBAZBBREANNEYS, AR THERREDKRBRLTH
B E, R 7 R AR B B A . 2 O N i 10 AR RS BE B RS R
PR ARMBENFE, DA EBRHER, RETEBRBEGHE
MavE., R, BIENREEHREA, XEYME R THENESHEOT
Bk, TR, £FELMABWEBEMORN, W58 T 8808 E 880
. XEBR\EHAHEESAREH TR, HE ZFHRSEONE, X,
BLSEEL T XL v

MTRASBEZBAMEAE-FRHMHEARS, ZEMBBSEARNGEE
EHMEENZH RS, MARTHRAAET R EN, ST TSN
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EgHNEHE AR, TUBLHERENIBERARRRESHILBELS
BN EE. BRI BT HREDN URE QT REAFTHH:

188uC, Re ,
F= - At (2-55)
Z{Md ”+P

Kb p B, p, ABMMERE, 4, AWK EHE, Re WMAXEHL,

w, WKL, u AMAEEE, C,IRNERE m ABRERRE, ah

rrE Pk, XM EXBREADBEFABIMEEELMOHRBITET,
AN T S B T RORL AR S AR A R R R e .

2.7 ABMGH

FEFTEFXNIERATESATANERT T REST, EE2RAEFE
i

(1) @B REALSERLERE. oELERSN,. FHIATH
BRSBNELURSBERERNTH;

(2) AWM TR ERAOHFASTE, TE2HTIHENTE
. WhimEE. 2REENLRZANEE >4 THAKS) . REZXR
5 1) B

(O RBT 4 B8R FH T 50 L F i oA B BT P T o AR B AR
FAHK B FEAE, AT - 2HIEFEMAES.
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EIE HKALSERRIBIRRISGHARL

3.1 EARER

HESEDEARRAEMETENER. BEIFEERORET KRN,
ERUMEER A EARFEUMED THEIRERRRFEIHES
R, MRBEEs R ER. ERIFEVRIZE. Bk, HHEILA.
Wi A REHFEL., HESTEEX2RNTXEME. BEVLEEHFER
MBHERATEYCRERBEZRM - e, BUERMGEN RES.
e, RSN ERRE. MEERRENEFEKRBRERS) . FH.
HHRESIFE, BHAEHNTEE. BEG. REHEESEKE ELMNEE
Shi. BEIMHARSITEZMBHASN. HHTENSHHTEN . B ELK
HEERKRG, TUSWFALBRREELEHE. KEZHUREEZPHNR
%, EHEREANEN, EHMRE FEIREENSY, BHBEENR
AR, BESEY, EERMNEMENGLERDES AR, bR
HIER, VYHLBRHTFHAL. B, #ANEREREENNE
MEHEIREFNESERL.

BETHERBEBENEABEL, BEKRAESTR 5B FESLN
WHENEG (WEEH. KEE. BEH% A RAGREIMEHA LS
ERESEARE, B —EWRNBEVEXLEEH R EHFEHEZEXRB
REFE (KRBT , REFBELERMNRBGTELURERETERN
EAUAE .

CFD (Computational Fluid Dynamics) A, B EFAE AR, HE
WEVBEARMES S EMHEFENER, LTERNEBTEINRRE.
T S AN FRRARTRMFOMRA, WmRAE. AME. fE
B EEAEE, TR, EFHURERTAEY T ERNED
YER, S CFD HABATHREZHNA.
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3.2 HEHEA

TYHEARAKERIRAEE -RAARANER. BRVAE, X
MERANMEASBESODERATERANERNERASA . AT RRA
BB, BAEEEAPBEIRREFBNMIA, SHHAMNER
REFESRUBINKENRT. BEEHTREASBRNIBITAEHRT.
ZH. NOSBEIRRAEMRK, AR RERNZ MRS . BHktEE
RAZRENRBLBEARKEES. KESH. EN5F. ANTES
MERSENLERROZHXEALENK. ORI BREHWHERF
REEEHLMEWER, IENMEERAEBENRERM, NRHAHDZ
R ESREAT R MME, RRETAIWHURERINE. BEEHHEN
HREMRE, HESEUEERANTE, RERIUXRESESFHIEXAD
SFERATE, BEXRDTEMNARSTLRTENRBAINL, ©
AERETVNHBERTREFNERESEHFM. ZXREZEELRASD
ERHFHRAMEME, oERUTHEL, FXNIERNERSHLUR
BATBHATRACE

3.3 I EHRMEER

3.3.1 " ERERHHE

TERBEMURAME=ZEE8R, ALERRBETLUTFHE:
(1) HTFTEBRASERHERAHEFSREEELTRKRT, Bz
F &, BTN AR LR P R AR UL F R W R 45 5
(2) B LEFEEMSE, RATMESE S £ 2K 4 4 &I
e, HHBEFAHSENATESASRSEELRLD, A2
BRERLTFEM TR, EXEREBTHIE PR BAEL
o B R B s R A B R MR
ETH, AXRASESSEHOEHRTOE 3-17% EXSEHR
4 Stairmand BN S HH, BHPEEESZE DN 140mm. #HERKE
K#A2D AL, BnSEAKETURRSBERNEE, BHEANMNKNENSH
B, X E A7 R A LB A A, 10U, AR
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BmTELHM BT . W, KEEFHN T OISR RERR
AK3 o F3 sk, A 13 S 4R AT U b0 S P AR R B0 T & D S B AR, AR N EY
TEBEMBMEAT .

— —
1
o0.5p {3
- ¥
L2 | {
{b) 1-1 AV
=
\ -
)]
L
{a) YO RE
B 3-1 BERr & B Rt e B 3-2 BERGER=-HSHE
Fig. 3-1 structural design drawing of Fig. 3-2 three dimensional structure
cyclone segregator chart of cyclone segregator

3.3.2 nEREIMBEHIR

3.3 1 PRBRENZKESERKEHRMAK RN, A CFD # 4
#f Stairmand FAEEM S ERFTERUENEHN S . SH45HELE
3-2 BN, PG R A I TE 44 RO RS RS T AR AR AH 45 S R O UG . IX B
¥ B S 2 R AN BB A &4, R BETE A VY (A 44 1B A% T AE DX 15K
MR SNT M, XEEEAYEEE RN mEMEELHE N
TS E v R N T E A R XA ST R R A R E G RS AR E
ToNT A M, Gath. AR S OMEE R 32153 4. BRI
YoawmE 3-3Firn5H 3-4Hn.
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i
(]

A

i

B 3-3 x=0 M Bl 3-4 z=0 M #
Fig. 3-3 the grid of surface x=0 Fig. 3-4 the grid of surface z=0

3.3.3 5, EAHEAYHESEN

AP SHEHNERET S, REDESHERE 3-1,
F 31 BERYESHR
Tab. 3-1 physical property P-list of air
# W FHE kg/m’ BE k GFE R kg/m-s
2R, (air) 1.225 300 29 1.7894 e-0§
MHlPEMAERKEREE (CaS0y) A T K T EARL RN
EwW, FEEAFETHENBRALE-NERAE, REBSHE IR 3-2,
#3-2 AitBmEsH R
Tab. 3-2 physical property P-list of calcium oxide
#F B kg/m® AFE KE kems  BUHLHE um

MBS (CaS0y) 2960 136 1. 72e-05 20
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3.3.4 WAFHESVEFRHENIRE

EHREZARAREVNHEFHENAFAZSF EXEEANAA &4
B 3-3 5@ 3-4Fim) K-

(1D SEHERAODGREAEEACORT, EEMAEERA x 1 15m/s,
B S5 EEBRAEYLEER 15m/s BEEMAADETEA; EXEKRER
HMREAODARSEREE, SEHHEYISMHONLERMBAO @A &
BN ERESEREAN 10%;

(D RFHOmBEENEIHOE, BOEAEREAKRIES; E
PERR AR SR ¥ B W% (escape), BIVAL ] kL 2] ik 1k THT B &% &5 4 b L3k
.

M) WMRHOmMEEAEABO®E, HOEAEREAKRESN: H
R M & 8 AR (trapped ), BV fof J0 Kz 200 ot T B % 45 o b 4
.

3.4 RS EFBHESHNRL

A3CK M Stairmand 305 R4 B 280 B A5 M AT R EAT HU B,
HEmMEH XIS E SRR — D8RR, EARKE - HEADER T
BEMRAERAMEH, BXDH BB Stairmand BBERGT B BEITEH
ftt. TEGBAOEIMMRAL, HSEERLMIE A B #4455 K& AR
th, URAERAHEXEBEROS ML,

3.41 AOEHERA KL
ANARKXERTHEMN, —FEIF4ER Stairmand RIIE A DO, 5—F 2

AAHRADOEL y BhAiEssm 2 A miEs 15 E. AOEBAR#&E
mE 3-5 58 3-6 Fim.
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& 3-5 ImEREAAA B 3-6 s 15 EAD
Fig. 3-5 entrance of standard form  Fig. 3-6 entrance of slope 15 degree
XWHAOEX 5D ETMERNS, HITHEFE. HEEAADRN
SEABRIS N 32163 AR, HHBA 15 EAANOKIEEMEYT N
31855 . WAMAKMEHRAAMGE NHAMBEOREG M.
HZFAOERYKXAEE uv=1om/s HITHEA. HeEOWH&HS
MHEESH 3. 4T, HEUSRELE 3-7T~3-14 fixw.

B 3-7 HRAERR x=OMEAREE H3-8 AOMA LEx-0NERREN
Fig. 3-7 velocity vector diagram of Fig. 3-8 velocity vector diagram of x=0 at

x=0 standard form the 15° angle's entrance
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Fig. 3-9 the component distribute of standard formal caso4 along z axis
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B 3-10 HFEEXNIFN z MM HE TS

Fig. 3-10 the component distribute diagram of standard formal air along z axis
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B 3-11 NP 15 8H caso, A4 z I A E
Fig. 3-11 the component distribute diagram of the casos from the 15° angle's entrance

along z axis

1.00e+00 |-®—line-z=-100
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) ]
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Fig. 3-12 the component distribute diagram of the air from the 15° angle's entrance

along z axis
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Fig. 3-13 the pressure distributed diagram of standard form along z axis
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Fig. 3-14 the pressure distributed diagram of the 15° angle's entrance along z axis

M L 2R o AR B

(D) XPAMEANTIERNES> SAEE—BREDLNBVER 18

B, WUk 53 5 A HR R HP [R) # M0 04 BRI

(2) SEHS 7 A NIEFH R, 29 6 AR 8 KB

(3 HFHEAWSIBERNSERREAOFTEFEMAENEX TS
MAREG, HARBOANSBHRBEEHEMANTBUREL,

(1) F—8BEEEASGHHER —HESH, HED S0 TmaER;

(5) MRS EBENENEELAOTHEA 15 Eo@RMUHEA

HIE D BAR, fR R X E R R A
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ERUEXHERNEIEREREL THEHRANALDERX, HEA
EAFPITRAMMESKFAFEE - 16 ERTRMA, Xy THEAAE
HoBRaBA, IRESHARKNKLKETRRTROREANPTERT
BAwL, WRREERSAERNBESEE, ERPHREROBETESH
B O, MaAEN ORISR EERHEEARD. RAEADWHH 15
FRMAN, EREEERMBZXHO, MBS RBNTNE, &
X, EABREmEREXKRT, EARREX,

W ET R TR L AT LA & ik

ADHE 15 BHEAMAN TSRO TAORETAEE KR FuHE
16 BHEAMA, XMEBAEXBNED LRERA T ERNLEENEX
M BRI EREANER, Wh%%éﬂﬁ&ﬁ%ﬁﬁ&wﬁ@
EAREML. REIEEUEHHHELIX:

MiEHA DR SETTRE LR
MDA PR

A, (D RS ERMSENEN 96.03%, (2) AOWFH 15 EH
MR BBNTEREN 95.83% . HXHDHAHLITLIRBY Stairmand
MEREANTEBBREL.

ZAHU LS, W Stairmand SRR AN S BRI BRREEY, X
Bl ERA M B IXH Stairmand FRAETE .

x100%% (3-1>

n=1-

3.4.2 HHISHEHMAL

HEABEA S BHRMSERAHR RSB MRS, a0 mRh
SERBR SRR SR ERRARR, B mHEEL. S8
BEBBAINSEEN, EE5EFRERRAEEE, FHibEERbE&
FEENSBERNSBERERMBIERNOE.

3.4.2.1 HHISHEARENM K
HSEHAGREN B RHOHEERBA, XCERTHEISHEAR

Es5% 50mm. 70mm. 87.5mm. 100mm. MM FHBESNERER.
G R mE 3-15~ 8 3-19 fiR.
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Fig. 3-15 the affect of exhaust barrel inserted depth for separation efficiency
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