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ABSTRACT

ABSTRACT

Riding comfort and control stability has been required more and more
strictly with the improvement of our life, and they have become two important
performance indexes by which the vehicle succeeds more easily in the
competition. The commercial vehicle with ECAS (Electronically—Controlled Air
Suspension) has better performance in ride performance, tire earthing ability,
control stability, less damage of road and more protection of good compared
with those of leaf spring suspension. So, it is very important to research on the
Inflation/Deflation, matching and control of ECAS.

Firstly, the working principle and running characteristic of air spring and
air suspension were introduced. Based on the parameters,such as the effective
volume, internal gas pressure, effective area and bearing mass and so on , the
thermodynamic basic theory was adapt, the gas state in the air spring was
analyzed, the non-linear elastic model of the air spring was built.

Secondly, the mathematic equations and dynamic models of 2
degrees—of—freedom of quarter vehicle model and 8 degrees—of-freedom of
whole vehicle model were created by Newton, the frequency analysis was done
to the whole vehicle model. According to the whole vehicle model, the RMS of
acceleration in the seat was regarded as the objection, the damping coefficient of
front and rear suspension was treated as design variable, the suspension damping
ratio, the dynamic flexibility and dynamic load were accepeted as constraint
condition, in order that the matching of suspension stiffness and damping was
optimized. The optimization results improved the riding comfort and dynamic
load of tire of the vehicle.

Thirdly, inflation/deflation characteristic of Isovolumetric vessel and
variodenser vessel were used in research on inflation/deflation of ECAS bus. the

theoretical derivation of inflation/deflation working conditions of height—positon

m
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holding the line + variable load and working condition of height—positon
switching + constant load was carried out. In the previous working condition,
the curve of air spring stiffness—period of intake/exhaust(switching time of
solenoid valve) was gotten by theoretical derivation, and the function was fitted
out of the curve.In the latter working condition, the curve of air spring
stiffness—period of intake/exhaust(switching time), height—period of
intake/exhaust and height—stiffness were by theoretical derivation, and the
functions were fitted out of the curves. The test of the latter was done late on it.
The results of inflation/deflation in ECAS bus were different matchings of
height and damping, and the processes of them had relations with the processes
of controlling.

Lastly, on the functions of air spring stiffness, height and period of
intake/exhaust , the relation of air spring stiffness and optimal damping
coefficient of adjustable damper, Fuzzy—PID control system was designed, then
controller experiment was done in the bench test and vehicle test. The control

effect was better that performance index—vertical acceleration value in the seat

of ECAS under Fuzzy—PID control was obviously decreased.

Key words: ECAS, Ride comfort, Matching, Fuzzy-PID control,
Inflation/Deflation.
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RRARFREMGIIE M. BETHOH KA B B 1/4 B4R, JU(F) B i 12 AT,
IERRHO\ WEH)EaEREEER ., SRBEREHFERRI N RS, R4 L
G248 %, BAEREEER, BB MSEEE . S TRERMAR &,
ACHRRER A = HE 14 FERA\ B B R,

211 ZBEHE 1/4 &R

HRARTE, AXESRERDEETSBEFLEATBEEREMAKER
T, MR TESBERLEN 14 ERRNEE, OEERRENERRTRHNEHE.
B RS T R

© FrfFuRESERRR TR, Y8, RENERRTE 0.8~1.2 2 F(BHF
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@ RBTENEERRE L HRIE, HLEERH IR,

@ KB EFH M, ZREHERIRPMEBE, FELyEAs
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© FRBREAIFBOTTHRENRIRE, BREBEHEONE AR R
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B2l —AdE /488
Fig.2.1 The model of two degrees of freedom and one-quarter
Hah AR AR RN
M +AX, —% )+ (5, ~%,)=0
m, — (%, ~%,) -k (x, —x)+k(x, —9)=0
HTREREBERAZH BN WA, SHARAREHBRM RS, BUREHE
X={x, X-. X, X‘u]! mﬂjﬁ’]%Y=[y1 Y, Vs y4]r Hep. Yi=X,» yz=x’_’ Y3 =X,
v, =x, o RARZKEBIHD TR, BREREFE:

Q2D

X=AX+BUCE) () g ik, X'
Y = CX+Du (t)
" o 1 0 0]
L Y T
A= m, m, e
0 o0 0 L
_5.— i _(kt+ka) —ﬁ.
[ m m oo M,
r-o 0_ — ] i i
1 1000 00
— 0 0100 00
g=|" €= °
I 0 0 0 1] 0 0]
_mu -
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212 \BHERBEFER

BENNNAHESHNA: UM FRBRENEAME. BRRZHNBIH LS.
imAs . ORI EEMNBURERRENEENE.

ERVAFEBEN\BHE PR, SEEUTRE:

O BINREALIERG, BRI B B RGEFT MR

Q@ BREMEWERARTHENRIEK, (5B, H0RR 0L EE R
BT RE W, 208 IR X IR i

® %ﬁiiﬁ%&?@iﬁﬁﬁﬁ&f&ﬁ%ﬁﬁb AR EI N EERIBE JE #OE 1 5L

@ BEHRERBEIHENBRSESESELEE R, RERLEQNFE.

® ERERETEIES, FNEZEHpHE.

FTRAET R ER R 2.2 Fram¥E/\ B EER,

B2.2 NAhEEEHY

. Fig.2.2 The model of eight degrees of freedom and full vehicle
Ko omy s om, SRR, FERNERRRE (kg) ; m, WAENERFER

(kg) s J, ARBERBLIFON ML NHHNE, DWHBE (gm) ; J, 4%
BRBLEH RO L S SR, BRI (kg -m s m, R RZHRR (ke )
ky~ k, SHRARET BRI EERIE (Nm) s k, « k, S 5R T JFREMRIE (Nm) ;
kAR RERRE (Nm) : C, C, ARAEEN. 5B M 155 00 BB &%
(N-sm) : CHBMRLMIBNMERY (Nsm) : g+ dus s g P HH
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HFAKEWREFEHL: ECASELERAANLERYS AXAHE

BREXTE AR, BAR. WAR. FAREEE A EMEBEG (m) s Z,. Z,.
Zp~ ZRAATER. RER. WGR. FAREEEFELMLE (m): Z,%
BRBRMEEEAT A LM (m) ; ¢ ABBREHWBARYE (rad) 5 o HEBR
BEMHVALE (rad) 5 Z ABRKRRERET W OB (m) 5 1. 1, 55044,

EREBIRBER OB EMENKTER (n) ; dRA. ERRHHE (n) GXEBER
BIEREEARSE) .
RIS R, A AR R T\ B IR R R
BUNBREFESERMERZEET A LRRBIKKRNZ 1y« Z,0 Zpgs Zopos
BERSESERMENEENBAZ,, BE:

d
Zg, =Z¢b+5¢—l/(0

ZrLO =Zcb +%¢+1r¢

) d 2.2)

Zpo=2, ‘5¢"1/‘P
d
ZrRO =Zcb —5¢+1r¢’

L ZcO =Zcb +lr¢

AR R ERT RGN S E R VER A

(Fy =k (2, -2,,)+Cy2, -2 ,,)
FrL kr(ZrL rL0)+Csr(ZrL Zrlo)

\Fa sf(Z/R Z/R0)+C (Zm’zmo) (2.3

F, =k, (ZrR R0)+C (ZrR"ZrRo)

L Fc =kc(Zc0 Zc)+Cr:( c0 Zc)

XUUNER ., G RERRSES e E e ®s:

( myZ, ~k @ﬂ‘zﬁ)+Eﬂ=
mwrZrL klr (qu _ZrL)+FrL =0
mwz kv@ﬂ Zm)+Em=O
wr rR ktr(qu rR)+FrR =0

md,Zd, ~-F,-F, FJR -F,-F =0

1.6-2(F, +F,)+ 2(F,R+1~*) 0

J,p- l,é',,+F,R F)+1,(Fy +Fg)=0

mZ, —F. =0

(2.4)

<
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R (2.2) « R (2.3) RAR (2.4 , BEAE/\ B b RH R ),
[MYz}+ [cHz}+ [k Kz}= K, Yo}
Hos [M]—RBSYERE, [Cl-MHESEEE: [K]—RIESHER, [K ]—HhRI

E%EM:W E.:
r
k,+k, 0
0 Kk +k
0 0
[K]=| o 0
+*, -k,
d d
-k -k
27 2
Lk, -k,
| o 0
-
C, 0
0 C,
0 0
[€l=| o 0
-, -,
d d
-—C, --—C
27 2"
Ic, Hc,
| o0 0

¢
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m; 0 0 0 0 0 0 0
0 m, 0 0 0 0 0 0O
0 0 m, 0 0 0 0 0
[M}_o 0 0 m, 0 0 0 O
1o 0 0 0 m, 0 0 0
0 0 0 0 0 J, 0 O
0 0 0 0 0 0 J, o0
0 0 0 0 0 0 0 m
d
0 0 —*, —Ek,
0 0 —*, —gh
2
d
k+k, 0 ~*, 2k
0 k +k -, 1&
2
~+*, &, 2k, +2k +k, 0
d d & &
—k, =k 0 —k, +—k,
27 27 27 27"
Lk, -k, 2k -2k +1k 0
0 0 —*, 0
d
0 0 -C, —;c;
0 0 -C, -gc;
2
d
c, 0 -C, Ec;
2
<, -C, 2C, +2C +C, 0
d d d ?
—-C, —=C, 0 —q+iq
27 2 2 2
Ic, -C, 2C,-2AC,+IC, 0
0o o0 - 0

(2.5)
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Lk,
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2k, +2k + Ik,
k.
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0

2
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C
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k, 0 0 0 0000
0 k, 0 0 0000
[x]=
0 0 k, 0 0000
0 0 0 k 000 O

{Z}:[Zﬂ Zy Zp Zy Zy $ @ Zc]r
{0}=[qﬂ, 9w dn qu]T
B {Z). ) Elomiaes. Er. mEEnsing.
22 %E&ﬁA*ﬁiﬂ[lo&“O}

REALMTHEED ZBMBREATE. MRRSESHREENEN, AXH
ZERBEATEAEWN. BEA TR R EUR 16 B AR M F R AR g VKRR R 1
B2k g(1), E2. 3FT7R:

M.—
0 1

B2.3 S dE e &
Fig.2.3 Vertical curve of road surface
B T U B SR AN RIS 4R T K E B X HUE TR RS 2 B AN R o 38 % L BR T AN
BERBORF AR, BUBHNKEREAFEMILEIELCES R RE IR
E. EFRPRAECAZRTE M ISO/IC108/SC2N67 i “BRIE A B R R kB R
FMEAKFERETRITEER GB7031 (FHRIIMA—BEAFEERR) bt
HFRBREA T ERRNTEN:

Gq<n>=Gq(no)(;l’1)'W (2.6)

P, nAZERGER (m™"), BHEKMBE, RRSRKEFRIEIIAEK;: n b
SEZMBE, n=01m"; G, (n,) HBEZRME n, FHRTHREEEE, NEE
RVEEREL AR m’s WOBBRES, RO Ht EREIAE, EiEBiEmy
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F=% FHEA PN

BT LR L .

ARG R E H IO LA TS A A~H, 3£ 84, K21 MET A-E &%
BREANFERE Gy (np) WRTERE R PHME, S EBTEEMRRES w=2.
. REAHBE DR IEHEALE A, B. C 1D WLEHEAN, B. C 45 FHHLERKM,

A21 BERFEFEAFA _
Tab.2.1 Grading standards of road surface roughness

—— G,(n,)/(10°m’)(m, =0.1m™) o, /(10”°m)(0.011m™ <n<2.83m™)
JUfTEEE JUAISEE34E
A 16 3.81
B 64 7.61
C 256 15.23
D 1024 30.45
E 4096 60.90

2.2.1 S a R

BEMAR (2.6) W EMAERAR, NEREESNRDERES X, 557,
W 6. HPEAMTR B P TR MR AR L= A IRERY , A% PR AT
BT W ERUE AT BT, WEE N, WEESEY G, (n) 50T
ISR G, (f) 2 MM BT b

G
G,(f)=2

XA fAREME, B AHHz, v HRETEEE, B A m/s,

Q2.7

2% n SRR f 2 WX RH
R FXC28)RAK(Q2.7), B

G,(N =26, oLy (2.9)

nyv

HW =28, KEIYNAURRNH

G(f)= n:G,,(np)—;—z (2.10)
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IAKFHEFERL: ECASEFBRAAN ElS AXIHKR
3 (2.10) ATLVEH, WRMEABRRENMARS BREWH, RETFENNY
R EAFERE, XWNERNBREMEFAN.
X FEMEWERORE, K (2. 10) FRMERE G A E BRI T N R S
Ao R, WMREMRAFERFH LU NHIR, MESHFOTRES, Bk
TR R DA J5 A I S BB B S A R

222 BRI

G,(f) RHIRBEAFEEEMBIRETE, X (2100 X2, 77H

pr i BrES R G,(f)=Qxf)'G,(f)=2rn,)'G,(n,)v (2.11)

ER, BEERENREEEIEMERANERN, B MAIREEANI—EHK, B
WRER B IEEMA N — R AE. ARSI VRN MEEE AR, WH
—HR AR Ry SR — H AR R e A .

1. Rapags

WX (2.11), BThZEH IR 0B E AT B AR T — ANkt Rk
B, WE 2.4 PR, HPREMANBAIRER | FEEVLABRA o, W ABREATE
fr# Zg, BESKEREEDSE ¢ o) B,

%mﬁﬁﬁmAﬂ.qu) %ﬁmvgﬁﬁé

B 2.4 MAGEREGREBBER
Fig.2.4  Road surface model of stochastic filtering flat noise

BEATL I i 11168 75 2 3 B T 0 2 S 3
Gq(f)=n§G.,(no)%=lG(f)l2 o (212)

Z =G(jow (213)
R, o HBEHLAES w2, BEN 15 Z, ABE AP,
MAUESER o X2z, WK (2.12) FRH:

G,(0) =271 Y i
(0)= ;mqu(no);;=|Gq(m)| = (2.14)
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F=F LHBAfPiRHH

BRI

IG(@)] =i”—25’2—6;'("—°)" (2.15)
HREH G, Go) TURFEH:

Gq(iw)=2L°.@ (2.16)

Jo
PR R T AN BE L8 AT DA i R RIA T R, B
Z,(t) = 27my\[G, (ng)yw(¥) (2.17)
A (2.16) RRHRRBIANEEE R R AR AR ERR.
2. WHH%RA
AT RE S EL S b I R T 38 (R AR B P AR A /K S B RS 08, T A B T A

RIPFFIA—ANTBILER f,, B3

=n? v __ 2 2
G =Gy 0) lG,(n| @ (2.18)
FFE, RBEHEERERG o) A:
271,\[G
G (joy= NG (2.19)
]a)+0)0

B (2.19) BHBEEANPEABREEERA.
Z,() =27 f,Z,(8) + 272m,[G, (n, )yw(?) (2.20)
BRREWUR — EETHN, EXBTURTR:

Z,()+avZ,(f) =w(t) (2.21)

Hep ZRAERFE R o WEWE 2.2 Fix:

£2.2 FRAFBABGTARLEK
Tab.2.2  Spatial frequency of different grade road surface

B WRG, (ny) ZRFET Ba
A 0.132
o B 0.1303
C 0.12
D 0.1007
i E 0.09




TAERXFHLEFE#HL: ECASEFEER ALY LEE AAAHE

A SO ST N B K B TR A AR BRI B 0 4 75, 75 Matlab/simulink AR sCBU(h 5

HIAEE A -

Band-Limited
White Noise1

B25 REAREGFAIER

Fig.2.5 A frame of filtering flat noise simulation

ERITHREE N 50kn/h, FTHI7E B HES MRS, HEBRBEEELBHEGS WA

2.6 FiR.

003

SRR EN B ITRES

002+

om

EME (m)

0021

-0.03

0.01

| Y J f
q ‘ ‘ i

L
5

1
10

1 1
15 .1} p-1 0
BEfEl (a)

B 2.6 50km/h, BAKEHEEEBHAMNKES

Fig.2.6 Time domain signal in simulation of speed input at a speed of

50km/h and on B grade road surface

2.3 AN{RXSHiRah Al S Bz B Tt i 4

2.3.1 AEREIEY N

USRS NN, Bk FIEIME. B, fER T mmEgetE, mas
MAROCEMSEERAR, MEHGEREERERAER.

1502631-1:1997 (E) br#EME T B2, TR AR BT I RS, ZE3EAT P ImTE VEHr
B, ERT B EEBRSEE LM SN BMERS), &% 8% KRS,
PAR e SE T A B ST A M LB 3NN M 3RS,  FE3ANMEIA s 125 A 9

2;ch:



FoF BN RATHIES

(1)
L1] te n AL

B2.7 Ak RLRAER B2.8 Bt E R B (HEX)
Fig.2.7 Model of human body-seat experienced vibration
Fig.2.8 Frequency weighting function in different axial direction

SEARHEN 9 N AR A RIS R 50 (K BUR A2 AN R, 7EE2. 8_E 44 T 10, 5~80Hz
MR RS, FNEZERAFMAR. RAMARDNAGCHERER, TAHT
WIS R L ko K2, 3B H T =AM A 124N 1543 B 2% B b — A 3522
WERBRMN IR RS b, I T —European/ NFZELEIRTT A B EATRERT, el
BH P BUINE R TR e, , REEHBMBUINEES B, .

HR2 I LR MM KB RLTLUE Y, HERASX,. Y, Y,EMRE I
A RSk =1, RI12ANHE P AGBRBKN. H5b, 1S02631-1:1997 (B) brHel 82,
IR AR RN, REEX,. ¥,. ¥, =AMlE, BX,. Y, B AN
I RS k=14, HEEHMERR.

K213 FEMREK. SEAARRYKE A Buropean i E LR FHRFHEE

Tab.2.3 Vibration measurement result of frequency and axial direction
weighting function in European car

g BIRHAT | RMRS | HORREK | SR e | RN
X, Wq 1.00 0.080 5.0
B Y, Wy 1.00 0.114 47
ﬁi Z W, 1.00 0.407 55
™ R, W, 0.63 0.106 49
il R, w, 0.40 0.085 5.0
R, W, 0.20 0.011 45
Xo W, 0.80 . 0212 43
ﬁ Yo Wq 050 0.087 44
Z, Wy 0.40 0.140 49
X ™ 0.25 0.090 5.4
] Y, Wi 0.25 0.093 5.1
Z ™ 0.40 0.319 6.2
a, 0.628




EHFXFH LR ECASELRRAGY EEE AAAHR
AR T 2 EL A 1) Z B A BB 3w, B U AR R T B AR HE B <2 4 ~12. BHz, 7E4~
BHZIX MR TG, ARIAMESE =R, MIE8~12. SHz AR F iRl *t A i
RERWRK. FHEATFHEX, Y, F5E MR L w, BRI R I E H0. 5~2Hz,

REGEMUT, KPR EERDTHE, HREES I EREHE N4 LR,
WX K IR B4R F R B

232 FIRtERSIFEM A

1S02631-1: 1997 (B) M MLAE, 4 3RENBUMEE RACO (MfE TR MU ATAL ik P e
Il B a, (¢) ROV 5 DIV 397 4L, IR B, PR ACHRI VP4 7 VAR s
R R TP RS A RSB R BRI W . U IR, R FAE (RIEBEIAE)
FEERATH T T RIE R — k.

(1) BAFH

SKREAFN AR, S SRS AR R, R RR

@ SHERBTIEBEN (578 a () » S HR AR AT B8 2wl 1) B i P 25 49 B0
BN IR a, (1), 3% F R S I R 7 AR 4

a, = B [« (z)dr]3 (2.22)
o, SEMBES ) TRAUTARET RASERN BRI AH) -

0.5 (0.5<f<2)

_] f/4 (2<f=<49) |1 (0.5<f<2)

w ()= 7 (4<f<125) w“(f)_{z/f (2< f <80)
125/ f (12.5< f <80)

(1 (0.5<f<8) (1 (0.5<f<1)

w”(f)'{z;/f (8< f <80) w‘(f)_{llf (1< f <80)

@ XICHMIERL i1 a (1) HATHE S BRI REH LRI G, (f), #F
Kt
1
aw=[f:w2(f)Ga(f)df]2 (2.23)
R2AGHT AN E T iR E e, SAREREEZ BFXE.
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F=F FHENSPRMEN

£24 a, HAHIABEIAH XA
Tab.2.4 The relation between @, and human’s subjective sensation

oA g & 4 RS

o2 PNGES Y 3o
< 0.315 BHATE
0.315 - 0.63 HHEARREE
0.5 - 1.0 HUAEE
0.8-1.6 ANREE
1.25 - 2.5 BAFE
> 2.0 RA &

MITERE, EREEAF 45 T E/R B RIS K ko 5 1 e A REOR S AN
W, SLECRARBIEN ARSI R AN

1

VDV = [faj (t)dt:l; [ ms7 (2.24)

2. 4 RFNIER B SRNEES T

2.4.1 RGUH0EEBEIFIA

B FRER R MRS K BB EREHUAAN, BRI MRS K5t Bl
PUSR, T BEALE FRARHE SR L', 76 TR o I 3 7 B I e A A D S 1
FARR G2 2R 1 b0 Tk HE R S5 0 50 A TSR 1 o 8, e B O R S R S e 5 4
AERIR & 3 e 2 LU RE XA AR iR 4

PURERI B £ () RMANE, F(s) WHMBIR KBS, RERSMAE W&
)RR, X(s) AHAMAR R, 0 RLHI 8 R BOR -

H(s)=X6) (2.25)

- F(s)
B (2.25) FH s BBABH jo , WHRZBRRE RN HRTHR, %K
PSRRI, FERE THWREBUE, TS LR B R GRS T rm
REARBE o

B

(jo
(o

N’

(2.26)
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EHEXFHEFEAL: ECAS B5 BR A% LERS LA
RAKHRRENRT RAL SO ESH (BERESHERE. ERESHEE.
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Fig.2.9 The power spectral density of vertical acceleration on the surface of seat

Fig. 2.10 The power spectral density of vertical acceleration on center of sprung mass
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Fig. 2.11 The power spectral density of dynamic suspension sroke of left front wheel
Fig.2.12  The power spectral density of dynamic suspension sroke of right back wheel
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Fig. 2.13  The power spectral density of dynamic tyre load of left front wheel
Fig. 2.14 The power spectral density of dynamic tyre load of right rear wheel
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Fig.3.7 Cutaway view of diaphragm type air spring
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Fig. 3.8 The comparison between static characteristics
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Fig.3.9 The comparison between dynamic characteristics
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(EXERFGMEREFERMERA T A7 H YBL6891 RE %, MERTEAHRSH,
ZEENAK 644N B TSR 0.25—0.5MPa i W), FSBEL TR

o ERBWETHETHERERET, BEXRENRELREEIFERFHAE. £
iﬁﬁnmﬁﬁ¢,&E%&&ﬁ%&ﬁ&%%%ﬂ%ﬁ.W%%ﬁﬁuﬁn

323 FREENHIOKEER
ARBBEAFABERLREI LN ES FHZAER, RAI—EREE
12X EMER-—2SAENERRERR A, BMTEXRENARIFRBAEA
HRIES) p AN, FRABEXBMER. WELI0PTRESHEZNFTURTN:
A =F/p, (34)
EFSHAXMTEZTIRBERKIES EEROEMERYE D IR mR", |
RE 3 EEROERATRRSENR KBRS XHE A A XK.
PLEMBRRE U S B EA MR ARG, BRETEARENREL
HitE, RHTHESEE 025—0.7MPa HENK, KM TEALNSHERSEER
M, WS BHEAEREL; RAEEFIEFRRAALSHHBANTIME, £F
AT L, RAMEREUEBRR. ERABHE = E—, BRSEPHARNMELRE
MAEAE, H=, SRBERERENLAER™,
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Fo¥ FARFHEALYAS
HAZERA—AEH, AEREZAHBARVEENSERERNEL, NTeeT
MRFAHRFERERM IR BRREARGERYE, MY TN RERELHE
HZESEEN S, RFEBRKRE, PRESHRIRMAME.

A E A BRREBRRIHIN R, BHEOR— M S R ERE LN
g E", BERAFSHBROERER, TEIVHRETREBRER. FRT
AEFFREPEELMBRRLE, WERNZZIBENEREBTUERTR N

A =A,+Px 3.5

FRBEARFFMEEMBREZR", BRARSHUART BT AR

%, AEREERBERNERERRUERER. o RABERAPHEEEMBHEN

E, UEEREARR, x RABREEANYE, EHVIE, HHLHA, WEFSHERL
REARFRATH T ARR:

V=V,-ax (3.6
B ERANESARTENTESHOME, ACELERERFEER, Wk
3.7 B
(F=p,-A

V n
‘pe=(peo+p.,)(;°] - P,

A =A,+px
V=V,—ax

37D

3 EREENENEUERELIES

FRBETESBHEATERENEFE. Bt Entl, SKBERIEET A
BB F A8 x KSR/, HERIIF=pA, (34), FLAH:

k=£=pedAe+ edpe
de dx T dx
AF: p—FREBENBUERES, BFRAAISEHBUEHSAXNIE S,
A, — SRR NER.
HEANTRBEN L AR IBRAHELUEREFTE: pr =const (B %), K

o p AERRENTARLNES), p=p,+p.r p WKAEH, VIEER, n £H#

(3.8)
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NFER(FE), BHAUNEY xRS, B3

dp _dp.__rpdV __mpd, (3.9
& & Vde Vv

HARSTREN RN EBMER R EEMR, BARRAEN, &
THHRIEERNRILENE, HXGIHRAR (3.8) B

dF dA A2
=p, == +p,)=< (3.10)
& P P,

Hr, —ﬁﬁ@ﬁﬁ%i —ﬁﬂﬁﬁiwﬁ E——

ﬁ%#ﬁ#ﬁi%%?w%%@ﬁ% HCRIEA . TR P 2 22 /5030 5 O 1
koo MBIRIE & ,,, o BTIHERNIRE R 6 2B BRSRS N MNIE (—BEAREIR <0.2) ,

BT FARBRALRER, FEEEAHRA ARG R RS,
AR BRI, RN 2 n=10. ZHE ORI R I
BREM A (502), MTRAMBRALER, BETHE R DA R
Sk, HABSENRN E MR ARG, B n=14.

fE bR TR A AT 5 M2 2 R B B e R IR ) F
BN F AL x X R, BH—E 2SRRI, ISP B,
B A SRS, BANHERREETHEN.

EER (3.10) %, pdA,/de FFEMER A, BUEHEHFREHLW, BT
BRBEUER AR, — B FERAARER A NER A, FRHAR R
t, TIERRSHRRNZARE, FHERA WELERRG. B 312095555
TOMBER | 5 9 TV e LA s 0 T B R L B AT
ASRIELE, B RTHEANT 3 ARANME. TTFH, AT 500
RERMBER TSRS, A,/ o%TE, KRS RRRETEAR (100
8

2
=2 4
dx

=n(pa+pe)7e (3.11)
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B 312 FRLHHXHELRFARER LMEHGEABEFER
a) AXEAHK b)) BAZAEK (AENEEA) c) EXTRLRF (BEEXAE)
Fig.3.12 A schematic diagram of change curve of active area as
displacement change of air spring with different structure
a) Bellows type air spring b) Diaphragm type air spring(cylindrical piston)
¢)  Diaphragm type air spring(curved surface piston)
ABALTFEELRE, ZERENERD: ABSELTARE SR, &
HHEAER K.

3.4 ESHERIFMEGNEXRILHS

ERATEIHRBLRA IR, Ao 23R B A SR B a4
BE. BFIR AR IR AR, x2S SRR G R i W R R AT
BRI, B (33) KRN 34) KHBRZSHE LOERHFY:

F={(peo+pa)(%) -pa]Ae . (3‘12)
B (3.12) ARNESRENMBRS, BRFTHBEHNIE R

dF 1dV  ddA
k="—=-4 +p)——4p—t (3.
i L.n(p m%,m P 13)

b dﬁ—ﬁﬁ@fﬁ%%% %—ﬁ%mﬁm

FRBMBNIEERGE B RO FC AR M H IR A, X 5 S SR A i
FIERHE PR X338 5. FEFEMLE (x=0) LHRIESY:

14av dA
: =-A +p )——+p,(—= 14)
ok Lo Py p.) v, & Dol ; )0 3
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ZRBHEAR I F=mg, MU BIHENRNETUHZIREABENAE, W
RF3.150R.
Do=mg/A, (3.15)

BRAREURRRE, o =-dVidx, BA3ISRAR3.1459, BEsAREREAEL
IR R

Lme dA
€ p)— £ (3.16)
Ao pa)V Aeo(dx)x-o

e

WRFERS S E R, LSRR EHENZSRERENEEHEA:

k,=4 ona(

f=2-_ % (3.17)

# 316) AN 317 K, BE:
fi= (ﬂ———(’"fn;%"“) jw(d‘if)d, (3.18)

(3.16)+ (3.18) AR B i EZ M BEAR GBI A B RN MEH 5%,
M E i

O tERELESIEERIERRERAR, —H2RHTABS %%FE‘&%%IEE‘J
NIBEAE4L, H—8a B2 BB MEBRLGHERRIERLL.

@ AMEBAREN BB MINIERIRIAERA W K TEZAHES
MERBBRISHRIEZME AR, BERESBEGMEHRURRAD,

@ EAMBENWIGRE —En, FERBEALTENYN, ESHBEARUE
BEZ 38N, TS RMIRIE RGN, SRR AR 0 2258 3 10 T 3R R e I
AHE, BRRENRTRGHWSY, EZSHEARTNTLELSRENHEER. F
UERRUEEFEUBY, RIEFIREEEHHENE K,

@ [AHFZRIEHNF[HZNNENEERERAEE. ©EERRT KR
RN % T WA SR S AR (K KD o

3.5 FER/E

AERENAT EAHREN TR RN, UEEZIBERE ZRARESX
FRERAMANE, BTEIREHUAR. ABRES. ARERRASRES
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Brif ECAS FZESMEHFRMS, Bl ECAS FIA ECU(BIZ B TT), RIEFR L%
Ml ERERUKGES, Bl AR, EHTESRENE.
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Z, RERBRENS, LDAREERNBEEOELE. BMABERA: © &%
B WTLHAERREEHNESERE, REEE. BESIR, URTSHRESE
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WF, ERREREFETRANNIEEREME L, REAE. BEENERRER
AZBEHEARGRUE, FEAEZSHEARHRENREABREINRN, BEK
BEMY, FIREEE LT, WRSHEIAESESTEERE: BRREMAN,
WRkZ. REBERFESBEIR.

FWITHIARET, ECAS RAZBMEMBIBMTHHERKS), FRAEWN, Kb
B

ECAS ZBAMIARYE: © WH ECAS SEBHESWHEM R, HA%MER.
FRMERBIFE. SR AR RN © B R R
[): @ HEAHE. AL KE, LR, @ EEARESELERE
AZ+ZRTHIT, WEHERE—FERDHERER: © EFIMERE T 8+
REIHT, fEFHE—~(RRONEXR; @ ETIEBRAE B+ R IHT,
B 52 B (TR E—GEBUS) R 18 X R A & BE—3h(EHRIE K &

4.1.2 ECAS 5ETH TR

RBSHR S, LRYKEE| ECU MR, XERMRITE SRR AREE TR
HXH) ECU BjfE. ECAS RS RE AR HENXEE: © AN, Bl RL S,
® kneeling iF, HRITHME.
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PAZTRSOAHI, R,

L 3 TJFRUKTFR, BRIERCKRIEITITHN, BHRETFHIE.

2. ECAS N5z,

3. RMEARFRFERNES SEFOMAXTEERL, 1A% & B
RERERA, I ECU BB ARERES. £EERAENR, BCU BESEE 8 M hifs
RBRYOH RN RMAE. O 2HSACUE BN A H R RS LmmE; © 2HSA A
RIS LR @ 1HSA HEARBLHME: @ EHAERBRLHE; © 2HSA L
BB IERE: © 2HSA AEEABRIEIFE: @ 1HSACEHEEREF)EES
BIEME: ® LEIEWEE (LT TRESBEZHTHES) ; © NIHLERES.
BiJE ECU R th#s 4 # il re I ZE 180

4. AfFErEE S EREENES<EEmEEN, O ECU @il mBR R HiH
Fihkeh, BREEETR, WORBSE. RstEg0hmsanRg), SRTFSR
fEM . ECU & kK E:

Bk K= B BT X LG 3 — B FHE R X 2 5 R %

FF Bk P SR B — K R E R 5, A ot B K B 1) o S Bk e R s i i
S HEHR S PUT R EE R 0.075 £, R % FHAT ARk v it () 235 55 0 G R (4 7F
KIEVRE, BRKHCEEANT 0.075 #00F, MBARA T, LUGRHIE s m il A o itk Bt i) .

@ ECU B —NHBRBER X BENH; AELEATCR TR, REEX LMY
CEN, ETHEEEER.

5. ECU FH#FHO R 2HSA WiErmEL/ARE; © RWF/MES RS HE
WREEAWE:; @ AWF/BERSHERREN/EME. R BCU RIA RS
g, BHIT=AIRPE.

6. JAERFEE=NREABRBHTEPATH, ANIREERT, HELES.

4.1.3 ECAS BISEEHIThEE

ECU KRR E, XBERY REEFH I,

1. fehrm B

ECAS HIEAThAE, RAFE G REEBRBREOMNEREE SMIEME BCU By
R EE(ERRENTERENSEE). BEERT—EMAZTEE, BCU BBR mil
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BEEAEEMBFEERENER, CERBEELIEEREN, BRABRELR
R Bibide. B ISR AL R R R AR AT S BT

2. E¥&EE /I

EERE I REMEFBERENEETREE, X—EERERE T ESHENT
B BRZAMHNARGEE - BRNESRE. FRERE I MNTFATXTEEE
FRBEREMBERPAL.

EXREIRARTHREEESE [NEE, RELEREINSETHRENEY
M, WWEEREET 20/30Km/h.

3. afzmEl

RILRERERAH EBREREN, 4XMBEERENTERNFHENEIREE.

4. A RAEEIT S MR

5. BR&

—HERFMANRENEALE, BECUKBIEREERY.

6. Kneeling('T )

Kneeling RRITEEH—MIEEKIIGE: BEEEESHEFERE L. TE. 65
=R © BEENX: BEESTH: @ KR —NES TR © BiFg.
MR A RSB E R BT L @ RREK: 7. B0 —NESLE
5TH, SRENFEN—NES. P00, ON@BEBXE RN “MH”, @FLFFM
RYHE, EHBERHFRE L. Kneeling IHEEW RFETSHNRE, LiniIME.
T BCAS MM F &R Kl 2 iy (RE BRI B  2 et RS MEERETR
FERN, REEERIEERE.

7. BAMESES

WXt T kneeling ThEE, BHALBHIRSES, HBETHHEEREEIERS
B WRENFREMBIBSENE T —EH, ECAS KBAMIT Kneeling.

4.14 ECAS SEEH RGN EELHY

1. ECU(F-T#EH|#8) A CAN
(1) Phee
ECU £ ECAS RZHH O, B MAERTERL 35pin BUHE1ES ECU 4. ECU &
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FMRABELEAESHME RS, BEFHEOTET AN EELEBRE, i
WA MR E S A T AR

(2) %

O EZRMAMAGES: @ BESHENIE: © KERMAEEE: @ HA
MERBLT, SHHFFENEFIRN:; © BRHEHRA.

(3) HeHR%g

O FREFENEESMEEE&E, Bi2%): © 5k EMITXEETH
EXH: @ RAMA WA THRERKNAMENEN: @ WMBHEBIE N ERE);
® ATHERNMERESHITREEERE; © RINKKE.

2. FAHLR

ECAS AT HHMRAN, BENIANHHRASHE—EER, 8T TRMEE
A REERXAERERT, HRFEN: HRTARMRE, ARENSETAS
BERF .

X EZFEEH ECAS I kneeling THEEHI BRI, B—AAELE S LS
maeemaEknE. BACEEXNAESXARRGEERRNERAR: £SR—K
RERPE A RHE, BEKERED. SEH. ADRVIBRERS AN &
FAFRALMSES, BEEEHNEESHED ERSHRAMBIFRY TR, SEeet
B IR S SR I R SRR SRR 1Y .

ECAS I1 77 kneeling Tf BE Y FREE IR R385 58 S 18 ERA—AN ) ECU HESHINES
W, i B3 R HI AN B B R AR S5 RRESSIFBRIRBRRNER L.
R B AT X A /MR R OMESR, REESERIEBHSIESRRX
KB IT R R(ER)EER LR, BdEREESHSERORE. BN ARRARE
- BE RS RARSN T

BREHIREARBRET S, ECASIIH kneeling B HE A LB I8 ki B R AR IR 41 &
Mm: @ %HEH—ERE 2HSAG R E AL A0 KR, IR K% /55 b i i
W BE2NERM—MERR. @ 5—#E IHSACE FEE KB mm, B
EERZAN LB, WH AT R R RGBT R B2 AR
—AMEHTREER 22 @) E R ESR. Eh RN 22 BEEgS,
2HAS FREGIPHISERIRA 32 A =@) @i, 1HAS R MES RN 22
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E Wi, (ECASII A kneeling RIBZHITT, 1HAS PRGN HEE K Ha, 2
2 /N EH)

WA 4.1 Prs, 11 ARSI, 3 WA 27 IR AC 5, 26 ARG %, 23 8
JaMF/EEE, 22 HIEHTAE: R R 61.1, 61.2, 61.3, 614, 62.1, 62.2, 62.3, 62.4,
63.1, 63.2, 63.4. /cillj& 1HSA MR NERER, A—FMAE=T BN ER,
Jo TR A HBNIR), 471402 2HSA MBI AN T HBER, ZSAmA R 22 ¥, 4
AN 312 S5 IRy B A 2 A R P ) PR B P R 1 Y R S
MIPAN R, E IS R LR R 6.3.1 #2555 3 I 10 7 VAR Ba T /A38 . 6 ANIRITEAR AR
R KA o

a) b)
B 4.1 Mk shed A
Fig. 4.1 Solenoid valve with ‘kneeling function
3. mLAREGE

A RS LRAE R b, BT SRR, UG AN S AL,
F AR P IR R, B S 3] BCU(HLR . IT), ECU %I &5 B A4k 5 Ak 1
BOE F T IO, 48 R S BOR B IR xS 7RIS .

B RIB A 20 2RI R 5, B MR 23 ECAS, 5 2 AN A5 I
#%. ECAS B K SUV ALK ik, BIAT. JEHFIIDUAL 2S5 4p ) 2o
—AN AL RS

BUERUR IR 53 % 4 R B I R GE R i AR S 38 = AR, B0 = G, 13
UEZRJRIE IR 3 /™ 125 B4 W B 42 Pl 52 4 PAT . SRV b, 23 i At 52
Bo =Rt ERCteRaSCERAAT . JEHR b AT B B AR R LA i (4
W MR RAE, BUERT—E =, BRERT )R —, AP TR RS R
—JE .
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WP GE, AL AR AL BCHRF AR R . i B Lhae, WIS s A s A
B —0, A EEA RS A EAL ) s R A A A B AR PR AMU,
ATBEIEAN, EHBE ) T g,

c)
B4.2 ZHEHEE
Fig. 4.2 Height sensor
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A RALR, WA AR IFECMIEE, P& &, TARREMF.
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FAEK, DMRIETE Sy KP4 . SITE ARSI, T UL Lt f I ) A M—— B
RS NSBB8 S e [ N BRI MBI . T4 & e, Ky B
b N BRI R I SIS 58 e, T RAL TR R
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2/2 ¥Rz, z5H, SfEaE LG RE<EENEEN, SFAREESTE,
ECU it — AR AR Rk, ZMARBREN BEATHSRME.

4.1.6 THSIEH IR

AXFHREERE, AERBANTZRIHENERTEZL, BRSNS
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ARl ERAARASL 6 MEHBRN RS, BN ESFRNARBRTE. Kb
®. OHNO®¥IN kneeling HEEWEA . O. OROHERHFME.

ECAS RE UL Z MM EEREE S, XM ECAS BLA] LAX 2 7E#5 IR & T RIES
FPRE TR AR, WTXX ARG 5L S AT AL AL 2R

4.2 SEhiEA A2

4.2.1 ESHMEMER

1 ZREERRESH

(1) EE: BUEBRARSSAENEER, HpoRr, Afkgm’;

(2) [£1: Rk TREBEHMERE, 7580 PR ER N5 FY
16, Apxw, B HPa. kPafIMPa. EHTRMAXE S RESMESHSHE.
LRI TETT pops B AR LMK IR S I ME: RIE ) p, BT 4K S ) FE H A
HEARMBOENEARES . TRES, #4494 K5 EHFRERSEDR
#, B4 pa=101325Pa 5 pa=0.1 MPa.
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B,,_T
RE
i L PGt
Rzs
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I 337 BHEEN
y

4.3 BHEA. AEAFATEZANLA
Fig4.3 Relationship of absolute pressure, gauge pressure and vacuum degree

(3) BE: RyE[ESTFREFNFRALEFE, FERDERBEFET R, B4
ATF(K): ) BERBERE KRR, BAHERKE (C)). SRBEFH ! £R, BALH%E
KE (F) Y&, BEK=273+1.

2. E4atE:

—EAEHFESAE, B TEARENIBSER SERRATMNRS, KA
W EGEtE. SALLRIA S R, MERBEARTERERE, SBITEERE. S
WEG LS, AMTIENCSE, B IEHIIT TN FREsIAEEES.
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422 RAENFEAHIA
422.1 BRERGMEER S L
1. BERG. RARFRIE. TESEREHEE. REKEIER, BERZ
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RIS, WREENEERIEEN, TTRRILERE. SAERELET, WR
iz RS E RN, AT DUS A BAR R A B S R A E
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4. AEGERARAAEGRS) BABFRAEEREZMNL N : RGN
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4222 ReE4R7REN
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LAY TRy q,=u-A . 4.
Ijig= ik q,=pu-A (42)

Rif A—WERER, o
u—ENRE N THRE, s ;
p‘—mﬁiﬁﬁr kg/mso
N IR 48 33 3 0 PR AR s T P4 R 0 A P R
1 K _qm
FRMERA T R B %-/Q (43)

AP p,— HHERETHSSEE, p,=1.185kg/m’.

2p9=p4,» P.,=P.RT,, p=pRT, THHEERETE—EEIRET)WHRE
q BHAFFHER A TR E g, B

T
g, = ;’T; (4.4)
K ps T— B ERE TR LSRN ZRIE, p MBALh MPa, THISAIN K;
Py T—HERE T ERMANENRMBSI B, P=0.1MPa, T=293K;

— A EHEFE RS, BRREREAE. ERRNERRE 1 f 2 2 Kk
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—ILW LR RS, RERBFEFAE. BHARESLREE 1 72 ZRHEset
HBHg, =q,, B
= s
R w, u— IR L REE 2 1T
A, A—HTE 1 AT 2 MER
o pp AU 1 MEIE 2 MESRBEE.
2. 1AZFE
FRE—TERTRIN, JARERE CNTF 68~70m/s), EHRACHE. EH.
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BB ERIAT RS RS XEEBIFELEE, FHESRRDEEEDR
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K. MHHERTELRE, BMEESHRASATERMLL:

2 2
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R¥:  p~ p,— EEEE L 20HEMESD, IRHEARE, ERURRLASER
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P Py
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S
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Pno— BRYHERREE 1. 2 MHEHBRK.
3. B
ETERTHES, RBRENER (BRI RBRERN, BEEHR
ROAWK: WESKR RRBH KR, . EREROETERLE, RENEREHELR
2, FRAWFEM Y RIREEEDSIRNERRAKRAGER K. EaTRNER L,
FEH EE MR AR IR R, RARI S 7R AR AR N
JRFEBHK o
ENMEROBRRASTERNSEERANEL BHEILR SR, B
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REBRAREKR, WH:

2
HRE SR p,=ﬂ.£x—p;— (4.9)

) 2
JRERIE Bk P, =;”"7 (4.10)
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d_%m'/fé, ms;
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A—WEEEARE: BEES Re MEE A BEARN IR RE R B E .

F—RMENRE: —BNRTRRRAILAR, 5FER Re £%: EEFE
BBEMULFENLLZR), E5BHERAX, BERRE.
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4223 WEGERE

1. & c MOFH M

FERIAEVET RSN, BESREHEERK.

i M=ulc (4.11)
A u—FRFARGIE;
c—RLHEE, c=nRT .

M<02~03, AART LGRS M<1, AEFEERS: M=1, JIFEERS; M>1,
AW FEERF

2. mFRENEEZRNR

FRTARFE L B 20 R BRAF Y M FRE . LTI FRA AR TR b s
FEE. WAEE ENSELSRBENZHFRARREAL b. B8R, RBEL M=1,
25 5=0.528.

EHZSETRBMERNILRE . BPBREEFEN, & LHEEEN po MAEE
ToREF—E, TREFFEEE FRNESD, EdEENRERBHEAISHK, HRIZE
ERR . FRRRAET FEE AR

423 SHERTEFE

] 249 BB BT LA SRR T 4 SF BRI B0 B8 RT3 o - IBK B R BRI B 2 el 5
M TUHARN . HARSSFER SN T A RER, TRESSHN®RMS
BRI

1. FBXEIR

n MBI, BRESANTAARTESRA T A RRTRA NERRETH
ERBEBRS,, FHOARAOESN p - AQBETARE, HOENR p,, HRHFTHEERE
ERMREE, HAHERERIRsIBIK.

RitB R RN, BT n M X LRGN RER g, 2, &

q, =§n:q,,,,. (4.12)
i=1

HEKEBA DL ap = p - p, EFEM L LTHFRHRERE p =(p-p.)» B

AD=ap, (4.13)
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ST GRS, HREE R A R AR A F i A R A Y
A=Y 4 (4.14)
AT TAHMETEERET, HEKPBREEERSTHESRAEX@DHEY

s=3's, (4.15)
i=1

2. HREKIEIER
n NMETTFREK, REFRBAOEN p - AORETAE, HOEA N p,, HE
FHERERREE .
B BKEBRAAERE g, FTEL RN AN AR R g, B
n = D (4.16)
FKEIEN S EEap=p -p,, FTENHPREREp, =p,-p 2R, &

aAp= z":APi 417
i=1
XN EGATEN, BB AR ERRA T HE A BER N

1.yl (4.18)

RECEI A TEERS THERARERS ER TR ER, AREHETHTS
ARHE

1 &1
S_2=ZIS_2 (4.19)
B

A XE & A BB S [ ERRE .

424 FTHREHH

AIUERAAEEH ST RE LAR. SHEEER (FR) RARSATE
BOER) ARS, ZRHBEREMEREAZN, WYREEAR, SEMLEIR
it WHRZEER. RRUVRETIARFORENE, MARN S FH#TRETYS.
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ZREH,

1. BlRAERNTE G

BRI 27 BT B A e AR RRR AR, A H RS R
BHREEIBIGHEAR

HRB LI u BB ERT RS, TR (4.20) HERSEE
B (4.21) wHEBS A

pV + pult = pV (4.20)
PV = pV + puAt 4.21)
AH: pv p— RABRAEE[SHBENSENEE, kym’;

p— RN ZRBEGSBEE kg/m’;
A— RAHR %‘,‘%ﬁﬁﬂ, m’
V— ZFEHERER, m
I — RA/BSESE, so
2. REBERIRBOX
MRS KRE S RERAIHEAR
HE P RE u X B [SEMBERAT RIS, TR (4.26) SHE RSN
B (4.27) HEBS R
pV + puAt = p(V +AV) | (4.26)
PV =p(V-AV)+ puAt 4.27)
A p g~ RABREEZSHEBEASRNERE, kgm’;
p— BN SHENS %%’Ekg/m
A— RABRE %ﬁﬁ%ﬂ,
— ZERBENHR,

F— FESUBSRTEL, s
AV — RSN B RERRNEAE.

4.3 ECAS TSIt 8"~

ECAS BE BB RE LSRR, 6/ EE SA%eERNER -, SmTiEE
JRIRHR 38 = BB JB AT RIS B A UCAE . TR, B, B, Wi B,
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AR E RN TR EE G MANRRSARBRERZNEENESH
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@ FRMENFHIERRRBL,RLBERE—E, RUHBHITF, FHRY
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4.3.1 BESHEEERIZ
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B (TR0 SEH. R, R BT RR) . FHTF % (EASHE) | RS
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I 7t ] o

ECAS S/v

8

B 4.4 ECASABERAEE
1 ZEM 2 ZRATRE 3 weBEPH 4 TREFAR 5 AL
6 ZRAMRAMAE 7 £EH 8 BCAS LA
Fig.4.4 Layout diagram of pneumatic pipeline in ECAS
1 Compressor 2 Air dryer 3. 4-pv(protective valve) 4 Line filter
5 Charge valve 6 Reserver for air bellow 7 Check valve 8 ECAS S/V

(D) FEREREA A MREZ I AEER, HEXTENEABAZEN,
HR NSRRI AR RS AE S  IMER SIHLINE) A FENL, 4 = e k830,
BILEM IR REFEARS), TR EETER, WiEEFESE)IEEAmAN
HAHEREZES), SIEHERENK. REEEF, BTFSETEBNENETASE
71, BUHSBEE AL ZRIEER (HFS) FARE, ERTHREY, SETHR
BRGEH/N, BASEBES: #RdBS, BTRETEBERNSDN, THEBA
EhmTHaBEENES, #SBTHF. MEgEERXTENE AT 0.3~0.7MPa [E 1178
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AR T A LABIT R BN, SRREHRIKEK, BEKRERRIFE, KT
A EFEFEHT O FABSHT SRS (MEKROCENERN), FEEHRR
KRk, 22 bl hE ) — R E LSBT & IE 5 # 15~20%.

BEEEZNBRRINZENRBEN KT 600L/24h, 2EHHEARMTF 400cc.
FERBRRENPSUESDT 0.8MPa, EFEHMESENRBMBERT, Bk RLE
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FRXP, AAZEVMEENESK, HEE.
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B, A, AEENGEEXNNKN 4 £EEAHK, TAGENLEELEBR
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HIEBEEE, n=1234,56), F

Ppsg < Prne <Dy > (4.28)

R, p. —EHFFRRENER;
— BB ERETES, B% p, =06MPa.

EEEZSABAFANASILS, EHOFRSFHEBEEEE, MRASHES
HEHEBE, HEERES p,,, WEBK, #SHERES p, B&, FAHE

K. BRIAT, SNRBAESKEEIAE, BUHHES 64568 ED RBUE B
BHEX.

2. SEEBREE

SEEBRANEERAESRE, ZREEAE. ESEETSHK. BE. KRy E.
SEWT, AL, EEE DD, B5EK, FEEHEMEH, MGG, BREAE
—ERME, EATHEE, WES. WEET. BSERABTADT 10m, HEERN
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B, SHEBENBK, ZREHABREBR, AESHERSHERESBD, L5
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4. RB[IERHBBEE

B E3C ECAS RS HRRMIEN, Bit: © ECAS FABRMSEHBHIME
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432 SEUERBAT+THTATHERS
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Fig.4.6 Isovolumetric inflation
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Fig.4.7 Isovolumetric deflation
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Fig.4.8 Inflation of variodenser

EMENHER AR ERNEE S, AXES p =06MPa, BENT,, &
SAAREY =0; EIEEBERSHRRERS . FBRERENLS . KENIME
STARTHTIE R u, BISEEEE, FIEARESIN pyy» VIHBRE N T,y (BT, =T,),
VI A by » VIBRBARAV,NEARERS, WA 4.8 Fin. RARENJE, F5
BMENTERNREEANT,, ENES A p,, BERL, BBRAYV, BEZWE N,
BREWUA AV

WEmEAENZIRERSER, TUSNTEEARASHE:

EMESBERSAESEENERSE, AWES p =06MPa, BERT, &

[T E Y =0; BAEBIERERERBEAS . FBREREN LS . KERIFZ
KRBT GIE R u, BB OB, FVIRLENESIA py =0, VIHREEE A T,y (R T, =T;),
ERER KAV, BERNZSHEERR. RAHE G, ZRRBRNTEERREE
HEAT,, EXEHHp,.

HB=Em

u2,qm

V=V,—-ax (3.6)
ZBHEZRBRLTHEN, ZRABAREBRFAVHENERREELMN, B
RYAR, TAMNEREUSBKXSENTENER HEARN N E) AR R 23R R,

RE, B

Pr=Pn-7rx (4.43)
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AF: y—RRBARBELENENEREAMBOBUE, DIREEENES, » T
HENAE, EHANE, BAhH, WESHEBRLREETRARTATR

RIR:
NTFE-BSBSHE, UF
ﬂ=—idK=ot=const(":%—':"§fl) (4.44)
dh «x

WHdV Mdh %D, ERFNENMREA, FEREETEERSE.
1. REHER 432 BERBAHRSIBRORELR, RUEEERY v W<
&, [EAFRKE g, WEB AV — %R,

2. 2 = =const, MBI dh—1XF, H—PRAEAAEEE—FANTX
%, B
h=hy+ot (4.45)
K o —FHE R EHT SR,
BB (3.11)(4.43)(4.45), RBESAEHNIE—FESNEXE;
4. HXR2H0 3, BEEE LA+ERTH, FEREDRE—SSKHEBELE.
4332 WS

Vi

P2=Pa
L \ P1 RIS

Tlo\ O ul, qm

H49 BREBRKA

Fig4.9 Deflation of variodenser
BRESHERBAV,, BENh,, VIRAHENN p, - VIHBRENT,: BiEs
BIEIHE B & AT S . PR A RES b . KR I RER R TIIRE R o, 195
HEl#, [MEHNNp, =p, =01MPa, ZSFEHRu, =0 WS FBS, WE 4.9 Fir. K
KA B, EIRBNBEENT,, AWNENNp, BERA, BENV, BED
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#w¥E ECAS AXEAHT

thdn, BRELAAY .
W BE PR B 2 R BRSO AR, P DA 38T e 2 88 TS )
BRESHEFRAW , ®WEHdh, YIRERENH p, VIHHEEHNT,; @i

SHE A RBRERS « EHARENS . KN IR AR E b u,
SR FEHH p, = p, =0.1MPa, ZCHUEH u, =0 HISM TR MACRH A 3 ¢ B,
FAMBNAESIEE p,=p,, WENT,.
W dv Fldh B, FEMAMEAKIERN, 2R TR % .
. HiR 432 RARSSERUTEORELE, RUTAEY I HESEE,
EHEWFENEY , MRy — %5,
2. E!H%=a=const, MBE dh—1 %R, BRI E—IR A%

%, Bp
h=h+ot (4.46)
R o ZBREEE B RRLE;
3. BREA(3.11)(4.43)(4.46), REBZ[HEFHRIE—AH LR
4. HPR2M 3, BERETRE+ERE, ZANEINE—SIREREXER.

4.4 LHHHE
ACFHRAET, LFHMTE YBL6SIL BIR 4 K sef,

441 SEMEBERBEAT+THIRTHRERS

THPNEE, E—RNERRBENTRT, 2REBEEENEEE— N,
FERRFRMATL, TIRREEAE, K, ANSCRRNE AR, S
BRRRBR SN ANAGRRTR, FORRRECN S AE N A
BFHIA 1 R R B2 1 R B IR«

4411 FRE—FHS)FEXE

AR ZE/CRTHALH 644N BB AA JEHTAL 644N PO4 5 BB N RN R, 1A
AESRAARMEHRRRSTRE.



AARFHLFLHL: ECASREARZGH RS LRAHR

P— y

]
- "
- g
i -
L Lt
- em - B
2280 tmax 3300 [ S
h - P 2260 -
- oy 8325 e B30T
a) 644N b) 644N P04

410 644 B FTERBF
Fig.4.10 Air spring of 644 type

UTHO®OMH, BIER (4.7) AUERLFRSHRBREROLRAEREA=02

125 £ 0 90° BAFERA MO R B KR RM S =107, BIRABAHES BN AR
Y, FUSKRERESHARFK)0.05MPa hitht s, HHEAINRRENHnE
4.1~4.4 Bi7Rs.
1. THOPAEEMFRBS
A4l EAMASENRRES A %R
Tab.4.1 Realationship of air inlet period and gauge pressure of left front air spring

FAMMEG) | 0 [ 176 | 3.48 | 522 | 6.99 | 8.90 [ 11.05 | 13.74 | 18.62
EFMPa) [01]015] 02 [025] 03 [035] 04 | 045 | 05

4.2 KAMELENEUERSE X A
Tab.4.2 Realationship of air exhaust time and gauge pressure of left front air spring
BUSRTE (s) 0 079 | 167 | 264 | 375 | 501 | 650 | 875 | 10.60
F (MPa) 0.5 0.45 04 0.35 03 0.25 0.2 0.15 0.1

2. THOTABERAZERRS
#4.3 RAAMEELEFFESE LR
Tab.4.3 Realationship of air inlet period and gauge pressure of right back air spring
FAHE (s) 0 [234 ] 462 | 691 (928 | 11.81 | 14.66 | 1823 | 24.71
K Hs (MPa) 01]015) 02 ;025 | 03 0.35 04 0.45 0.5

A4.4 HRAMALLEFAENE XA

Tab.4.4 Realationship of air exhaust time and gauge pressure of right back air spring

HURE (s) | 0 [ 1.05[221 (351497665 862 | 11.02 | 1407
FKH (MPa) 051045 | 040 [ 035 | 03 | 025 | 0.2 0.15 0.1
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WEAR (3.11), WHLHHLEZSBBENGEREPA(ZKE 25Tmm), WHikS
7t soft B, AESETHIRIEE:

k=n(p, +pe)1:,—“=1.33x(0.1+p,_,)

HHERNEK 45

2

4.5 AENEHUNELMBEHGE X R
Tab.4.5 Realationship of dynamic stiffness and initial pressure of left front air spring

0.056° x10°
7.95x107

P (KN/m)

104.93

131.16

157.39

183.62

209.86

236.09

262.32

288.55

314.78

341.02

367.25

I (MPa)

0.1

0.15

0.20

0.25

0.3

0.35

04

0.45

0.5

0.55

0.6

P R B R 255mm), AR B7E soft B, RFSUE F IR :

k=n(p,+p,)

HHERWK 46

A2
| 4

=1.33x(0.1+ p,)

4.6 EEBEFHUELMEEHGH £ E

Tab.4.6 Realationship of dynamic stiffness and initial pressure of right back air spring

0.056% x10°
10.55x107

P 1 (KN/m) 79.07

98.84

118.60

138.37

158.14

177.90

197.67

217.44

237.21

256.97

276.74

FRIE (MPa) 0.1

0.15

0.20

0.25

0.3

0.35

04

0.45

0.5

0.55

0.6

H& 4.1~4.6, BESHABERBSASHRIBRXER, WK 4.7-4.10 FiR.
ITHROFEMBEHARBR
k4.7 AAMASLNEDRNEE £ %

Tab. 4.1

Realationship of air inlet period and left front air spring dynamic stiffness

FEAURTE] (

s) 0

176

348

522

6.99

8.90

11.05

13.74

18.62

RIAE (KN/m) | 104.93

131.16

157.39

183.62

209.86

236.09

262.32

288.55

314.78

A 4.8 AAIE L £ FHREAEE R
Tab. 4.2 Realationship of air exhaust time and left front air spring dynamic stiffness

B (s) 0 0.79 1.67 2.64 3.75 5.01 6.50 875 | 10.60
WIEE (KN/m) | 314.78 | 288.55 | 262.32 | 236.09 | 209.86 | 183.62 | 157.39 | 131.16 | 104.93
THREOFEEEMNERERKRS

4.9 AAMASEERHREALE LR
Tab. 4.3 Realationship of air inlet period and right back air spring dynamic stiffness

FeAME (s) 0

2.34

4.62

6.91

9.28

11.81

14.66

18.23

241

M (KN/m)

79.07

98.84

118.60

138.37

158.14

177.90

197.67

217.44

237.21
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A 410 KAWELLEFKHREA L4 E
Tab. 4.4 Realationship of air exhaust time and right back air spring dynamic stiffness

BRI (s)

0

1.05

221

3.51 4.97

6.65

8.62

11.02

14.07

R (KN/m)

23721

217.44

197.67

177.90 | 158.14

138.37

118.60

98.84

79.07

B 411 ARFRAAR S LA %R BLE
Fig.4.11 Relationship graph of air inlet period and left front air spring dynamic stiffness

..................................

4.12 ERTFAABT AL AR H % A i,
Fig. 4.12 Relationship graph of air exhaust time and left front air spring dynamic stiffness

B 4. 13 HRFARBIE L LR B, 4 LA
Fig4.13 Relationship graph of air inlet period and right backt air spring dynamic stiffness
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414 LBFAAMREEAREGX 0L
Fig4.14 Relationship graph of air exhaust time and right back air spring dynamic stiffness
HK 4.5~4.10, HERTHEB KT ] 52 BN R X R R A LABLA
WS BBE RN B 5 HRERZL R, W 4.11~4.14 FTR. B8 4.11~4.14 T LA

AR LA ERB ST
RARFE:
K =-0.3607¢> +18.34¢ +100.9 (4.47)
iy Gk sa e
K =1.14¢* -31.34¢ +312.6 (4.48)
AREEAB T
TR
K =-0.1546> +10.42¢ + 76 (4.49)
B |
K =0.4857¢* -17.9¢t +235.8 (4.50)
A ¢ — BE, s;

K— H“Er kN/m.

442 SEMEVHR+EHTATHRERS
44.2.1 FRE(FERS)HEXFR
PHMBRD ORI, RRERFE. M, AT EBERARAR,
BUARTEAD, HIER (4.7) FBRIETS KRBT A R YA =02 A
5 1 90° RAEERANIE LIRS E =11, 2 LA 8 0458 o BEIE AL,
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BRRNPRBEREE, MEAR 311), HELMHLETSREER—S8F
RAE . ARISETHRIZE, MESHAERBSNESERBRXER, WFR 411, 412
iz

A4 ARMEASEARRRASE £ 4

Tab.4.11 Realationship of air inlet period and air spring dynamic stiffness

AKfEE) | 0 045 | 09 | 135 18 | 225 27 | 315 3.6

KEMPa) | 0.2186 | 0.2352 | 0.2405 | 0.2538 | 0.2680 | 0.2815 | 0.2950 | 0.3023 | 0.3213
MIEE(KN/m) | 167.15 | 175.86 | 178.64 | 185.62 | 193.07 | 200.15 | 207.23 | 211.06 | 221.03

A4.12 RAMALZAREREMNEEE
Tab. 4.12 Realationship of air exhaust time and air spring dynamic stiffness
BUREE (s) 0 0.45 0.9 1.35 18 225 2.7 3.15 36 4.05 45 495 54

&K (MPa) 0.31 | 0.297 | 0.2846 | 0.2757 | 0.268 | 0.2601 | 0.2533 | 0.245 | 0.237 | 0.2293 | 0.2205 | 0.2121 | 0.2039

RUEE (KN/m) | 215.10 | 208.28 | 201.78 | 197.11 | 193.07 | 188.92 | 185.35 | 181.00 | 176.80 | 172.76 | 168.15 | 163.74 | 159.44

H H H H H H
o os h 1.5 2 285 3 as

B 415 ZREFRE LB XA BHLE
Fig. 4.15 Relationship graph of air inlet period and air spring dynamic stiffness

nus MM

B 4.16 ZRBFRE—HABTEG 4R L
Fig. 4.16 Relationship graph of air exhaust time and air spring dynamic stiffness
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$wE ECAS AKAHME

HE 4.11~4.12, F B R H B B M 7S 8 52 S BN B X R X R T RS
HESHEBERRSA B SERERNZLNE, mE 415, 4.16 Fis. B8 4.15. 4.16 7]

DA B =S BRI T

WIBE— 78 S 18] B 52 2R R K -

K =0.3796t* +13.18t +167.8

NI —FE S Rl R R R A «

itqﬂ= t — Hi“ﬁ]i S;
K— RIfE, kN/m.
4422 SEMUBVBR+EINNEE(HRS)HEORNE—SELR

HERITHEBRESHESEESNIE, k413 7414,
£4.13 AAMASEARERNERSESE L E

Tab. 4.13 Relationship of air inlet period and dynamic stiffness and height of air spring

K =0.2961¢ —11.42¢ +213.3

(4.51)

(4.52)

TR RTA(S) 0 045 0.9 1.35 1.8 2.25 2.7 3.15 36
RIBE(KN/m) | 167.15 175.86 178.64 185.62 193.07 200.15 207.23 211.06 221.03
#4 & (mm) 215.55 23717 256.44 270.95 284.36 298.71 314.58 328.60 333
A 414 BAMEE TR ARG AT A
Tab.4.14 Relationship of air exhaust time and dynamic stiffness and height of air spring
WA (s) 0 045 09 135 18 225 27 315 36 405 45 495 54
WIRE(KN/m) | 215.10 | 20828 | 201.78 | 197.11 | 193.07 | 18892 | 18535 | 181.00 | 17680 | 17276 | 16815 | 16374 | 15944
B (mm) 3325 | 32456 | 31953 | 31356 | 30270 | 29257 | 28325 | 27532 | 26390 | 25450 | 24485 | 23528 | 22425

W 4.17

83

TRRKHE AN EE LR
Fig. 4.17 Relationship graph of air inlet period and air spring height
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IR AT

4.18 ZARKGEMAMHEGXEBHLE
Fig.4.18 Relationship graph of air exhaust time and air spring height

C H H H
220 290 280 280 300 =0
BRI ()

H4.19 ZREFAANRE—ZEGXEBE
Fig. 4.19 Relationship graph of dynamic stiffness and height of air spring in air iniet period

AU (KN

4. 20 RARTAANRIE—FAN L EBE
Fig. 4.20 Relationship graph of dynamic stiffness and height of air spring in air exhaust time
& 4.17~4.20 4> 5118 5
RE—RAN MK R BN
H =-3312¢" +44.82t +216.7 (4.53)
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FW¥E ECAS AHAHL

BE—RU R B R R EECH :

BUS S,

45 BERANSAR

UTFSHEE RS EAE B+ B TR AF, WA ERITBESRRAR.
1. RKEK

(D BRWBESTHROEERN . RHERENNSIEES, TUEERRY

[ETZAH BRI,

(2) B RBERKHZTHBENIRE . B S TR BRI T X (] LK R,
ERIESRERNRURR, USHREHE, DEbse R e L.

2. RERAHE

H =-0.7883¢* ~16.09¢ +333.5
FERBY, NIE—RERI KRR

K =0.0014614
RIE—R R IR R B ER -
K =0.0014674

RIS 7E T 2 F50h YBL68I1 RIK 4= |47
3. RBRRAR

—-0.375h +180.7

—-0.3417h +163.5

(4.54)

(4.55)

(4.56)

i}

A 415 RRMEEZRHARNEAG A E X A
Fig.4.15 Relationship of air inlet period and dynamic stiffness and height of air spring
7o it El(s) ] 0.45 0.9 135 1.8 225 27 315 36
& E(MPa) 0.2133 | 0.2326 | 0.2333 | 0.2507 | 0.2677 | 0.2791 | 0.2908 | 0.3012 | 0.3176
P B (KIN/m) 16437 | 174.49 | 174.86 | 183.99 | 192.91 | 198.89 | 205.03 | 210.49 | 219.09
/% (mm) 216.02 | 237.17 | 256.44 | 270.95 | 284.36 | 298.71 | 314.58 | 328.60 333
R 416 AN AL ZAREERZEAH £ A
Fig.4.16 Relationship of air exhaust time and dynamic stiffness and height of air spring
BUREIfE (s) 0 0.45 0.9 1.35 1.8 2.25 2.7 3.15 3.6 4,05 4.5 4.95 5.4
FJF(MPa) 0.31 | 0.297 [ 0.2846 | 0.2757 | 0.268 | 0.2601 | 0.2533 | 0.245 | 0.237 | 0.2293 | 0.2205 | 0.2121 | 0.2039
RUBE(KN/m) | 215.10 | 208.28 | 201.78 | 197.11 | 193.07 | 188.92 | 185.35 | 181.00 | 176.80 | 172,76 | 168.15 | 163.74 | 139.44
6 5E(mm) 333 [ 328.61 | 320.22 | 310.27 | 300.10 | 290.75 | 281.91 | 273.18 | 264.80 | 256.40 | 246.73 | 236.08 | 225.36
4. H&RlE
Wi A

HRBRBSN, BESRIEEKZnE 4.25 714.26.
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EIHRRFHLFEAL: ECASELBRRAGH LR AKAHE

o o8 1 15 2 25 5 35
FEApitake)

B 4.21 ZREFAE—EABEGX A BEZE
Fig. 4.21 Relationship graph of air inlet period and air spring dynamic stiffness

AU G

4.22 ERBRAE—AABTE G54 R 0K
Fig. 4.22 Relationship graph of air exhaust time and air spring dynamic stiffness

B3O

8§ 8

3

g.“

B 4.23 ZARFHEAANANHEEHLZE
Fig. 4.23 Relationship graph of air inlet period and air spring height



#wE ECAS LHEAAME

N N
A (@)

4.24 ZABKHEARMEAGLEBL
Fig. 4.24 Relationship graph of air exhaust time and air spring height

M 4.25 EARBFAAMHEREGARGL
Fig. 4.25 Relationship graph of dynamic stiffness and height of air spring in air inlet period

RiX (KNmM)

230 240 250 200 270 80 200 300 310 320 330
FAAREE (mm)

B 4.26 ZREFAA BE—AEGXEBE
Fig. 4.26 Relationship graph of dynamic stiffness and height of air spring in air exhaust time

H1FE 4.21-4.26 5183
R~ U IR RER B
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K =0.1361£" +14.4¢ +165 (4.57)
WIBE—TR S T (R R R RN «
K =0.2961¢* -11.42¢ + 2133 (4.58)
A E—FE R R X R R E A
H =-32421" +44.5¢ + 217 (4.59)
R RIS R R E R .
H =-0.32261* -18.43t +335.1 (4.60)
TR, FERIERXREECH:
K =0.001314h —0.282h +164.6 (4.61)
B, RE—RIE X RS
K =0.00097094" —0.0606Ah +124.2 (4.62)

5. RRERMT

(1) AN R RS T80 Tl B S T e 2

(2) FRHEONERZ SRR LEEY KT K, B TR
A, BREFE—EmdEg .

(3) BRERBE—EN, ZAREFEMITEEIYNATAS, BITEREDFEG
(%, BA—EmIEgit.

(@) BERB—EN, FEIHBREHRERNYEKEED, ERREMHLE.

(5) BRMBHZSHBNOREESBLHEEERE, XIEFY: RESE
FERSIAG RS BE AR B 2 2 A B SR A B 22 A3 3 4o e it
B, W n=1.33.

(6) 7E 0.2~0.4MPa i, %% JI75 )R B 51 FE 4575 Contitech 43 &)48 iy 1% 285 30
RORIEFEEA, THAAAKRRBBMESEBENIE. BE5. R 8 5%
%‘IFE%?TSEE‘JEEﬁﬁ%’E%MS&%

4.6 ECAS TS 5 H ARG LA fniz )

ERBRETUPN AR A R RRAESE . B TRAR MR, Xk
RER BRIABIRAERA, RITR K5 0.0 8 B 5.
AXMEREFETARBYE, BERABSERRERERERESHEE, BilK
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£w¥ ECAS AHAHE

R KH ECAS RAMFER S, BIFRBALREINA RY w0 RIE) 5B HAR
ILAE, FEBUREES BECAS #2HIEBMR, mpyid.

4.7 KENG

ETEIHRFENEM L, BT TEAAERRANERES, BdTSH%
Fe. AR, RET ERMBENIBE. HRE S 7R R T SR TR 5K R ik
RIFE SRR R ML, R HEETHE, BRSHRRE. BESHBKHRE
RI=EXRRAH, ABLFSBRRARE MERRERME T K.
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Fr¥ TRERAALER

FLE FRERRGIE

REBRSHHIER, BIBERIEMERHARFRILE, 77UERIRR KRR
RABR, TRZERATEFIRSE X R T EERIORE) . T, KEBERYES
HIGLE R EET R RRS: RABTHRRS Y, HITRELRSHINR.

HESBBRFET AT, TIHENEREEYE, ETEIRYEAEL, B
W, WikFEBA AT A RS ERAENENRIER LA BELAR, NTXEZSE
Rpvmmttae. AEERTE/\ B HEEAKEM L, SEERLTEARTA TSR
FAFERINIRE, ol i PELJE ek % 28 (I BB R BUHEAT T IR %3t

5.1 Ehir

FRRRAFLUEEUSNE, REANBRABNELTIBEEHNER. X
FER AR LR, ZRREHRNENEEESBESBERERE N IE
Stk

B AXMAMNEE, ERBBRERS=RE S 175524 108 52 R R g
TREHEE. F&. BRONVEEAES. WBREE. FHEARE—E: BERRERSE
Bf, BTRREEE, ENERELRE TR, NEHATK YEERBETHN
W BZAE, BEAE, MAERAREFSHSE, PRI MRS, DOEN KSR
Bi&it.

FRRRAZHERAREHFAERNRENELNE. EWETERS, TBLRIE
MEFEREF TOMRMARE: A, EHEM. TUEE MR, fe%
5RRBRALRIE BRI B R ARG B B2 AP A SR A o
JEYRaE, FIH LT RGERE IR, BRI R A2 00 LR T IR R T A/ PR (BRI T
HE), LA BEBEHEBEE TS, BBRKSHN, ZEELBERRT. N
TR B B T S RN R 23, AEARAG BB, 36 5 5 T B s B 38 7 UL R B

e
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AHRRFWE L ECASELRRZLHERS AXAAR
5.2 LEHR

AESRINEERRIERG . RRKEVIENES (RERD k. RERHR
BRI BAT . RRKERAREY, BRWESEA SRR EM
RINBIRITH . R, EABRAKMMELET LA ER=THRFRETERIEN, 1R
RTHHEWMRIOAFRERER.

EWETHERET, RANES (SEBH) MEEERFBE T REZREA—HEN,
RAGEENRAOBEZ B~ BEGRE, £5 B MELMAD, TR
B, RRASFEWRLF. FTUANES (B s RS BEILR N E R,

EWETHRRES, RIGFRNAZBEIRBRAEM. ISR IR
R, JTAETR, R HE R g, BRI T B S, B AT
HEZRAR: i Ery, REKREHE RS TR, BT HRREEREOE, X
R—FAEHERIEN. BT/ NMEIREHEA R ESBLEL RN — AN EE B 5.

FRBRIE RIS BT AL G EHEREB R IR B) BT I R, BARH BT
EHIEAVFEERN, HERLSREEHEREL. ME. §3), #TETAMNESE
AFEEBHER,

Bk, A 3CIER S B SRNIBEFIR B F K BARIT RS, AR 8 by Rk & E
75 ) I B MBU T AR BN AR B AR, CARSRRSI B AT R B BB TR A AR 4 AF

5.3 AERSBAREMMKILIZIHER

AL B R A ARG R BRI LB AR B e B 7 R TR R Bh%
TREER BRI OB, RIERIEERS I, G SRR
BEREFR, REENE. RN EEE I EAERITEER, BIRRY. OREH
EA%{}ﬁv ﬁu?:

BARE%: min(max)z = f(x),

LREM: (s1) g (x)=0k=12,..m;g, (x)<0,k=m, +12,..,m. &,
x=( % .. ox,) ARUHER, BEXEARLAENAGHEEIRRH TR
X5 Xp5--5 X, BUE, fE75 HAFRBIE BMRAE.



F2¥& TRAERRGLR

5.3.1 BFrE#H mino

B AR R B AL B AR G- B2 iR, BE A RE AT X BRI
bro ASCRUIREESA TOUT HEATH N fE#F L7 B Ab 2 1 o BE i BUg 5 AR B 1E
AE—RACE R, B DU KR B 2 I Z SR Ve A AL B 47

mino=o, -[f’wk(,s df] (5.1)

532 gitELEx=[c, c.]

R ZER U ERTRENENBISY, HARED, EX AfrRRALAHRE
HHEEEER. ACHHT. ERROBRSNEERBIEARIRE, MEXE—TIHT
MBRESHENONE. RIEKRIEUREHRAZNEENE. HEREEHRLEM.

533 HREH s

witP, ATREZSBRARNZ 2. SHAE. DeelS, KRR
HPREZBUIEE — KM, ZMEMFRRBAREMS. BIMRETRA G AEER,
FERUTIANARENS.

1) KEZAR %%%%WEEET¢ME,—&R$%%%%MEE

0.15<2<0.45, fi¢= s AIRLAREMN:

2@

0.15< Oy

2k, / (2( +1.))
C,
2\/k my/ (2(1 +|)

srocb f

<0.45

(5.2)
0.45

(2) BBEXR A, WFREE, BEORAATE[F,] 84 50~80m, AL
B 70mm. 24BN ATRRHG I R o, <[f,]/3= 23mm B, BT MR BRI AL ATRE G
BEEADT 0.3%, ATHLAREMR:



EHRRFHTFEAL: ECASELARAGRYERE ARAHE

o, <0.023
o, <0.023
o, <0.023
0, . $0.023

fa

(5.3)

() ER E5BRERMMBHF, /G, EIRERITRLEMERB KA., AN
BEKRT 1W, ERBATAEG BT, RERSKREMEME S, MTikEWE). .
HIBIKIRES), XA FRRREERE, EREMTRIRTBER LI, 54,
PSSO ALK, $E R T B T AP RO A 2, R B 8 12 5 B T i XU AR O B 7
SN BB TR E 0, /G <1/35F, ZERBREHTT AR K 0. 15%, 7 LA NI
F RS, FRAAHEM: '
[ / ngI,\'
2, +1)
mygl; )
L 2(1+))
: ) Lgl,\ (5.4)
= \2(+1)
/ M\
L 20+,)

RERUT N B AR R R AR R MR AR, BB TIRE IR R R,

A
W —

IA
W=

IA
[A N

IA
W=

5.4 EEHNREEZMAL™

5.4.1 CECAYEERXE Y

Wt 7% (Genetic Algorithm, GA) B — A8 5 ) 7 15 AR BE4E AT 15 AR AL M50 B B
PR, HARR—FEN. HTNSRERINYE.

BIEHILRGE, G, REMWR, MY TFHERLEE, BHOTFEA: O 48
WNEARBYAS, MEANSHEEITRDBOME, TMEHNR (&S, 5o, &
FE. B B SRR #TRE. @ BREEEN—ABREIH S —HE, FHRN
RRERHEPEANNMANITEE, BIET BARBREBHO T, BHTFHTh. @ F
FIBER M AT NRE IR, TARAHEHEREAN. @ MR REIE
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FEF FAERALALE

FIRBRER (EEE. 1S, AARENRRGER, FRESHELTHBGE,
TENTEES .

BAEEENER PR T:

O %ib%: GA FEHEATIE TR Z A Fo K A% 2 18] () A B HE R RIS A% 7 [R) R 2 (R 7 e 5 4
B, XL MBI A A R T RFK .

@ WIHBHARIAER: BENLIFEE N MG R SHEE, S48 EREERI—M
&, NAIMMERIERT — AN, GA LLIX N A8 & R 4R A0k S PR EAR.

@ EMHEIHERN: ENERBRANMEROR SN . RRKEE, &N
HEUE X RBAA .

@ HEHE: EENERRNT NLRTE AR B AR R EAMME, FENENSEIR
RAT—REFFH. BEFEETERSRAIX—BA, HTEENENREN
PRI MEA T —RIER—AHENEROBER. EHFLATIERNEEEER
.

® XX: XXBERBEEETRFENBRERE. BT EETUBEIH —
KMME, FMEEE T HRXEMEME . REBAT ERTHIBHE.

© ZR: BRELERETEIEE—MME, STFEPHMEU—E KRR
PUBSR B S HBRE S EANENE. REYR—H, A PEREAENBREMRE, E¥
BUATE 0.001~0. 01 Z[A]. R AFMERFEARE TS,

@ Zab&MH: BHERBERE —NBRIGAREEMEHIEEEE L E DR
J&» FREERERA U] B BUA R 2L

542 EEREERREZIT
HEABEHE (Simple Genetic Algorthm, SGA) IS MR AT 2 X —A 8 o4 :
SGA-(C,E,B,M,®,I,¥%,T)

A, C—MERIGRES T s
E — K& N VP R
P,—HIIR T B s
M —FEER /D
O—IEHH T
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AHARFHEFEAL: ECAS K EERZ %6 REE AR

r—RXHF;
Y —ERHET:
T e k& L&,

1. b4

Gy B ot L PR e Sk R R P S e, AT S R FR A B A B ) R 8 R R A
ZATREA BT Gt T HE— B AR RS, RF S R S (s
Bwrg) . RIS RIERT S SR R HIRFS 0 F1 1 FrARKN —ER S50,
1}, REHBEANMERMRE A" HHHGFSE. RARO fE; @ 5FLm;
@ ETHACEMT. BRARO BHBE: © KWK HERT MRS,
@ HEHMEERER _HFREFRKN, BEERAERK.

AT ZH BRI, AMISIATEARRB. Fa8RD, MRS,
EREAR—EHAR MR RERER, MOEBKESTHARTRNN %5
BT AT R ) R R AR BB ST, BT UAVE RO RS 7 vt I A G 7 ik o LR 5
O E&TREFEPRFERBANE: © EERERNBRETE @ ETRAE
IR BEAERER; @ W& TREFZENTEERE, RETEEMR: © FTHEHEE
58 fAHENRAER; © EFRAMRENEISRNaREEEET, @
BT BRI RERBLREM

ARIEICAC B MBS B S T B A, ZEAS IR L FCAR A A v B8R 4 SRR S 3
TP

2. VIGEF R

BAEH R B ET, SWBR EREARB AN BE. BHRNRE I h B
BHA%H (Population Size) HIFHE, tHARNBHAMBINHE. FITRALE KM
FREMBROEEE, BEKENZD, T REKMERIEE %R EER W
HABEAD, KRR HRAREARK, SERLEMNE I,

VISH BRI A S — AR dk, AR A REBHE . —BURE L PV BRI
FER, —FAMH=E, B—FldERREFE. —MERTIRR AR g
FHE, ELRRERHREERERE. BAKE M 05 E T8 e b ik H ek
MWK, 1% Goidberg B HTIlTH, —MUBIFRIBEESE I M =25, Hhs %
BAKE.




F2¥ ZRIRRALR

5S=(l__1_)(ﬂ)_ (5.5)
P.

A, I—HwIBKE;
p.— XX,
P,— R RBE.
3. ENERE
M4 R G R R R B K X 4 B AR rp MR SR AR E, B BT8O B FF) o PR
HIENERE H, FEEERIE (WHETENRE B G FERE) ERENE R
i, T BN AR MERI PR Rk, ST Hbr ek SO/ MOA A AL R
B, R OE N R BT B RS B AR R B E AR e, DL AR KIE T,
F# HAREE S .
MEBENERHFREER: © NMERIDEFDLEE, EIMEMERRE,
@ HMEMRABTHE BN NAMER BARREUE; @ RESINMEEPLR, dER
R EE —ERERANKRENMERENE. SEMNENERBIAHL: O BE. &
g, ERBEXE; @ SR8 @ HHE/N: @ EAHKR.
R E P R ER, XPAMERENE £ oA A At
@ BUAMAE BB R P E A3 %, BP.

£ =1/F= 1/(Z+H X Pw) (5.6)
@ EUAMEBIE N FE R R 25 (8 P R E I B R S AMARIEME R =, B,
f =Emax —F (5.7

AA: Lmax REZEPIFMERN LR, #F fnax K5, EHETUH LSRRI H
il A 1B B A AR VAT E ) B KR AU

4. GEFHE

EHEREORNFEETREHE 7, XERRERUIMEER AR T —REE
AR X = AR MAF B L2 T — A R E LT T R0 O 0 1% 5 5K 08
@ FHMbIEFEHNE: @ ETHAKEHERK: @ BT REEFIHINLERE G &
PRAMERAFEREKIE . BFITEN T B HENELN BEERNERE AR, £
AR, ROARAE R BUK R R B R ORI B S E N T EEE R BN SRR EH. &
3C 3 TR W RO SO AN B AR AMA DRI SR
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EHRFHLFERT: ECASEEBRAGHERY LALHE

SRS . O R RPN E o B S AR A
£/ 300 % b WRAHBE R (5, =12, N}, B AEEARN B, Hoh

iITRHIT AR 2rp, . FEBATIERT I, TTCMBEAEHS— TR, HESRAKIE
iR, WEEAME . XP RS RRE AT LU ARSI SBAE—AN0, 11 HIBENLE 7,
EHpo+p+A+p <r<p+p,+A+p,, MESEMEi, LR =0 , XFEEHR
FERUTREAE DS, MEXOEREX, WRFEALFHERGEL, B
HEN R, BEHREERMI SRS, MHERS MR EES T~
BEK, ALK S5 EHME R ER AR FAZ T BHAR A TEE 5 50K
THREBEENIS: MEEHMERERT, BER/NENE MG T EEN
A

BRI RS . EREREENEBITERY, B ME#ITREN. & REwE
BRAETOA W= 4 BT AME. BURBEHE BHARIBEL &7 4 R R Z 1A MK, B
HTES, XX, BREGEREGREILE, SOH TR 4 3T B A & N R
RAME. MIXHARAFEREN, BAESRERIAKTENRE, 3 EXBEEsE
RIBATRCR . WA HA AR M. L, #EiE N AN E R T et (R B 5
TR BTERAXANEH, o LMEFABEMEREER (MFRRMREFEEER)
RFATRBESKRIE, LR EHENERBINMAZERXNEENEREE,
RACKEHEARBAPLEERN . ZBREBAERER LRGN ERLINME. B
HAELRA: © 25K L5 8P ENERRNRERNIME @ H45iBHit Bt
MMAERIEN B IRES H LB MR E RN R B &, WL ST BA T R AME
YE B RIIE S A ERBIFME: @ AN IEHIBIF MBS B TR AT B ZEAMA.

5. AXEAE

X, XHEMH, &L KKMENBEPEFERINME, TERBNAMEREAN R
RN, TXBHFET HAIRFENTR. EXETHRITEHRL: O EFARX
BT REXE TR, BIRXETFHRIEG—RPRB MR AT —
REF AP BIRENARZ: @ XNRHENRB R HHABRERE, —&M0
W RUMERAT: @ IXNHEFNIZFERTRESHMENER. HANTXEF4ER
X (ERER) « RS ARX. WEAXXMERE . ALHENATRE.,
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FAr¥ THERAGLAR
HSTAE, HER AR AR T - 0 B A R 3 S 73
WTTBBAGIAME. RS TN : () BN~ SR S KR K R R
W= ww,-w,-w,, HHLAIMERGEKE: O EFAMIMA. BFEARMA
A F AT TRAMEARE . @ Bw, =0, WA S MEFEME FLEEL%A
A WKNHEE, B RS MEERE LR EEEAK B OX NEEE: © w=1, I

ATERINERE EEEMESE B WX NERE, B 7EES MEFRE LR FEES%
& A fIx R EE.

6. ZXRBRME

ZREHREDNEYEBRNEEARETHTERHERRESIEHERRE, B
— MM ERE RGN (RRPEEANFSENE D) E. HEREE
A, MAERFRE, RELEEVNHERA S USNZRBITER, SdBE
B BN BT P LS, WA SR 2B AR S B REE,
AR RS EEER N, UEEREERTRRNZRSHT, BRER
ERRPHARBREERTBARTRER, RERAERENREH.

BROEARFENR: © ZRETFHNEZAGENE, NERZRPE—RHE, N
RERBETMUIZFERZRAMER —R; © BRETFNZAE R LR ER,
@ ZRHETHNAFMRBENRHERES. '

FELP MBI RIET, ZREEEERAHOZR. HOER, H2NRA/E
E—HEABIP BN, PE—B /OB RN ARG E AN E R
FEAE. HRGRIELRAY: © KKEEMREFEFHENEREATR N @ X
EANEFR A, URRFENN MR IEEE ARk REE H. %R
BIEESBERENVIZEITHR, ERERAELRZTN N E LB, ®inTBE
ME A ERE ) £ FEE

1. EHSEIERF

BILHEPEGSHINER, FWiREEENEEIRAYE. BXSKaOER kK
BM . ®WiSKEI. TXHEP .. BRHEEP, NEENRIEEME.

X TRARRBHRN, KREEKESRETHRNN %,

FEEMRADM o M—ABARNEE, BEERERERBITNATEEMBERR,
BRI R F, FRESE R — BORE TS — R M =10~1600 . ZA<SCH M =200
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AHRFHEFLERL: ECAS F4 AR 4 LEE ARAFE

XXMEPR . TXBMERATHEHTXEENHE, — B2 UREEHEEZ
B, =0.0001~0.12Z 8], Z&3CHP, =0.065

RABEP, . ZREFEYWIFRORAEMBABH R, — @I MBE T
HEP =04~099. £XH P, =0.73.

FERZIERM. —RRAE - NBROEEHEARR, LBIEIMER, REEIHE
17, 4 LRTBA B AEAAE R BT R W R R . — R BE TR
T =100~1000 . Z3CEH(T =300,

5.5 HRILTEpH"™

XERGMEREERRA RA T ALK YBL68I! BB EMSEHITHREH, K
RHESREENTAHEN T AR BA R, w1 8RR 2,
AR TR SLBEAT AT, ASUIRYE YBL68O1 RURZE M EAKIEM, i T-HFuR T,
i Pk
50km/h . B BRI W, O
S0km/h . CKERIE . W B,
50km/h C¥&TH. T8, &L
80km/h\ B KERE. W, HiL,
80km/h . B BRI FH, WL
110km/h + A HPETH B AL
110km/h\ A ZEE . ZH. F4HL.

QO @ © ® ® ® ©

551 ZEMN|ETE

1 fitk
S ERE LR G Contitech 644N FRMBHRIE X B L THMBERAR
FREREX, RARERES. 1.

& 5.1 Contitech 644N ERBEHR AL TH{zE. ABKEHLE
Tab.5.1 The relations between the stiffness ,position and load of Contitech 644N air spring

W ol
=02 144000 109000
iy 113000 85000
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FE% FTARAARAGIE

HILAT R LR P TR TESBRARIEME, REKS. 2.
. AR52 BIATERRRMRAIE(L

Tab.5.2 The stiffness value of air suspension unde all conditions

. BS50, [C50, [Cs0, [Bgo, B0, [ A110, [A110,
LA BN IR R 25 | &7 | %

k., (va) |[113000 | 144000 | 109000 | 144000 | 109000 | 113000 | 85000

k,(N/m) | 226000 |288000 |218000 | 288000 | 218000 | 226000 | 17000

TR BB, Sokmvh L ALK TRRA BRI,
- BREARMHEIR A x=[5496, 11992], WURTLAIA % TR BEJE ok i 28 BEJE R
BALILAC R C, =5496Ns/m » C, =11036Ns/m . B4R, J5BS2 AT PELJB Wi fic 22 o FELJE

REAFTHERRTHAMERRBENAMLE, SEISHFEFNLTE, W
C, =2C, =10992Ns/m .

B R LU 2B F A 8 BELJE ok % 48 M DT AT A5 0 .28 5. 3.

A 53 RUEEIATTHERERBAMEELK
Tab.5.3 The damping coefficient of adjustable damping absorber

under all conditions after optimization

TH B,50, [C,50, [C50, |B,80, |B,80, [A110, |4, 110,
L T - T T e

Cy (Ns/m) 5506 | 6355 | 4670 | 8087 [ 5856 | 6865 4994

C, (Ns/m) 11036 | 12710 | 9340 | 16174 | 11712 | 13730 | 9988

BT R 2= %%EEE%E%ﬁWﬁﬁﬁEH%,WE51~57%T

;4;;,( A . g Y

R e i R MR o
—&an : — RN
P SN SN AORUPORE SRR O Lo wALms b e thAess
§ a5t ¢- 28+
§ 04 - g 2
§ o3t g 158 3
e 5 , e
oaf bt 08
° : ) i ] % T . ° I = ™
b M . & MRz ‘

B 5.1 BA#SE, S0km/h. #&. ¥4 BS5.2 CE%H. SOkm/h. H&. A
Fig. 5.1 B-grade road surface,50km/h ,full load,meso position.
Fig. 5.2 C-grade road surface,50km/h,full load, high. positon
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AHARFHLFERL: ECASEFEERAGNERE AAAINR

s BN AR AT S o8 | RN SRR TR
—— A o - Raw
S ISR SNSRI SRS SRS UM L2 L - 1 L o e s A A Ittty oy KRS -tetens
»u 07 AR e = e i i A i
§ 25 os
§ 2 06 -
g PIY O & DU SUUO g oaf {1 E
é L H o3l J
o8 \ o1 f --------------------
a = N ol
10 15 a F3 0 0 16 20 » 0
aAkrn [ 2™

5.3 CA%EH. S0kmh. £H. H1 BS54 BAKEH. 80kmh. #HK. FHid
Fig.5.3 C-grade road surface.,50km/h,idle load, high. positon
Fig. 5.4 C-grade road surface,80km/h..full load, high. positon

555 3k N 20 T AT R U f b Lzt ot gt

—— A
as <o RALE

—fin
e tkAbsA

§ ' gms
05 ]
15 :
04 i g 61 .
03} \.‘
02 \ =
01 } %-
[ L e L L . 0 e
L 18 E 0 0 10 16 E- % -
LT Mz .

B 55 BAKE. 80kmh. FHK. &L B 56 ALRE. 110km/h . HK. ¥4
Fig.5.5 B-grade road surface,80km/h,idle load,high positon
Fig.5.6 A-grade road surface,110km/h,full load, meso position

24 . EME AN e

0 15 20 % 4
s

S5 7A8%EH. 110kmh . ZH. P42
Fig.5.7 A-grade road surface.110km/h,idle load, meso position
& 5.1~5.7 ATLLEH, MURTHEEE REEMER R EERLNEEESR T
R HH YRR, PR .
R 5. 4 /T HATOFRAETE R AR BUE.
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BE¥E TREFRLALIER

& 5.4 BIATRALIE BLRIgrstib

Tab.5.4 The comparison of concrete index before and after optimization under all conditions

. BERYSE T RS | SRR m{ﬁl(cm) AR AN B B 35 7 A (%)
Ik 5 dt n/s2) [ ke | ok Wi |k | ik |k Luidi| ok

B, 50, [ALAL. 5 0. 3436 0.64 10.42 ]0.54 lo.69 | 7.5 1 6.9 7.3 7.6
e A LR AT 0. 3020 0.81 10.52 10.69 {0.87 | 8.6 | 7.9 ] 8.5 ] 8.4
PHEHE S 12% -27% | -24% | —28% | 26% | -14% | -14% | ~16% | -11%
C, 50, | MLtk 0. 7949 1.28 10.83 [1.07 }1.37 |15.0 |13.8 [14.6 |15.2
A LA 0.7144 1.69 10.94 }1.28 J1.68 17.3 ]15.0 [16.5 |17.0
PEREIR & 10% ~32% | -13% | -20% ] 23% ] -15% | -9% | -13% | -12%
C, 50, | Lt i 0. 9066 1.23 10.75 10.97 |1.21 §20.1 ]18.1 J19.3 ]19.9
ZH RS 0. 7355 1.65 ]0.99 §1.35 [1.64 {24.0 {21.7 |23.6 [22.9
PEHER 19% ~34% | -32% | -39% | -36% { -19% | -20% | -22% | -15%
B80 YA 0. 4552 0.63 10.55 |0.75 10.87 ]18.9 {88 [|9.2 |97
LA 0. 4256 0.72 10.59 ]0.81 [0.97 19.2 [9.1 9.7 |10.3
r&ﬁmfa] 7% -14% ) -7% | 8% | -11% ] 3% | -3% | -5% | 6%
B, 80, | {L4k i 0. 5432 0.61 ]0.50 ]0.66 [0.76 J11.9 [11.6 J12.1 [12.7
& | its 0. 4674 0.71 J0.61 J0.82 10.96 |13.3 |12.9 ]13.6 ]13.6
HEAER i 14% —16% | —22% | -24% | -26% | -12% | -11% | -12% | -7%
A, 110, A4k i 0. 2550 0.32 [0.33 ]0.46 |0.51 |52 |52 |55 |s5.8
W A 0. 2305 0.36 [0.37 ]0.53 10.59 [ 5.6 |55 [59 [6.0
e 10% —13% ] -12% ] -15% | -16% ] -8% [ 6% | -7% | -3%
A, 110, 4k i 0. 3268 0.31 ]0.30 J0.41 [0.45 16.9 [6.8 |7.2 |75
B, ULH:J— 0. 2349 0.37 10.39 ]0.54 0.59 | 8.4 [8.0 |8.6 |83
e 28% -19% | —30% | -32% | -31% | -22% [ -18% | -19% | -11%

MR SATUFEY, RAEERCIEZENFREE THEN TR, Ry
AT MELRET 20mm, FRAANZEAHRBEL 30%, HRARLEHTSE
R LRABIR R TR, R BRI

2. RALERKAE

FICRRERME RO EE R B AR — B —RIIBR A, BNMEHEA
RELJE 2% S0t B F) s 5 ALk 2 L7 [0 AR FE AU MR, RESESRAL )G O BEL B BB 138
FRMERE RN

DR B BRI, SOkmvh . PALEITHAE], 235IEGIFEE REnE 5.5, /FM
JERBOARIFRE RBAIBIEE, F4 BTt H%E O e A b ) IS FE A AR A, AT

A5.5 FRAM— AL E Gk A AR FRIE

Tab5.5 Damping coefficient—RMS of the vertical acceleration in driver seat

1 BELJ¢ 2 5 (N /m) 3000 | 4000 ] 5000 | 6000 | 7000 ] 8000 ] 9000
4 b Ji Bt (/s2) 10.3243 [0.3096 [0.3056 ] 0. 3045 | 0.3065 |0.3123 |0, 3289

£ MATLAB LU EEJE RECHBRAR, D0 B A8 A ARG 0 A AL b i b3k
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AHKFHE R ECASEEERALGHER L AKAME

- C ) okl R e

%% )

-
000 5000 7000 000 8000
LS B )

B 5.8 BA%E. S0km/h . A Anik B —AT LR A S A
Fig 5.8 Curve of the acceleration—front damping coefficient under the condition
B-grade road surface,50km/h,full load

ATCLE Y, A R M B AR AL IR AL bR A S468Ns/m , SHRALEE R 5506Ns / m 1R
i, YRR H0.302m/s*, SMUERMRA, HATSBLRIERENITERE
EE@O

5.5.2 THIEE

Ll kR 2SR BEENIE— & it LB REGHTIL ML, (BELEER S, ER#HE
MRS T3 TT SE R 2Bk, Btk 52 TLRC AP B R At B B R A R (R IE B 22 7 A
B, XHEEEL A SNIE—RAMRILAREE R X B B %M. SOKm/A .
WEL PAIMTERAE.

HEFW 551 TR TR TESBLNEFERAL: £, =113000N/m .
k, =226000N/m + C,, =5506Ns/m + C, =11012Ns/m . BUAT B 2L M LA HER K45, X

FRARENERHEEILR, SRS ENRERRIEERS, WE 56, HRlEH
RIE—REIL AP e REHILR, AR mBRER.

%5.6 RE—RETERERAK
Tab.5.6 Stiffness- optimal damping coefficient of matching

ZEERIEE (N/m) | 90000 | 100000 | 110000 | 113000 | 120000 | 130000 [ 140000
| SR {l:PEACRR)E (Ns/m) | 4825 | 5106 5395 | 5508 | 5733 | 6015 | 6254

B3R 5. 6 18 2RI —B 3 VL ACBH B R B £ & 5. 9:
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Fr¥ ZARBRAKLER

p  RUBMAN BESTEREEN o G

—— Wi
e SRR

ey

TR LR Num)
S BBEEBBERE

y=-005° + 43°x + 1 4a+003

0 % 100 B 1 1% 1R 1A % o
B Gavimy

B 5.9 BAIE. 50kmmh. HH. KT TFRE—REERMR AL ERE
Fig5.9 Curve of stiffness- optimal matching damping coefficient
under the conditions B-grade road surface. 50km/h.full load.low position

MEE 5. 10 FrfLLE M, BEEHNZSE8RNIE—RELRHEE RERBRER N
C,, =—0.0594> +43k_, +1400 (5.8)

ﬁﬂP, k‘f ﬂ‘]fﬁ'ﬁyg kN/m -
FREMLENIRLE G ERL, FEA——%H.

5.6 AT/

A5 HITE-ER O T 32 RS2 ST 1 I BE A0 v 5 BELJE e 2% ¥ PELJE 2R
BT T IR R RS REFRFRITHEMO T, EIRL R RIERN, LA
REHEN. AZEEBRARITRITT T Eh.
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FAF  Fuzzy-PID # 4| B4t BHF AT

FNE Fuzzy--PID =5 BT RIGFE S

6.1 Fuzzy—PID I=#ITEi8

6.1.1 PID #4384 90511401

1. #g

PID(P, proportional tt#l; I, integral #14}; Differential 44} REF XK ER
ki dIsag 2 —Y, PID BB MR IR MBI MR M, ET TRNA;
BT ZRATFERBENZ BT, BHRREERT. |

2. 1841 PID $24

PID#ZHI88 & — R &2 HI28, RIEL EEr() 5L B EHc)WRESI R Ee t):

e(t) =r(t) —c(?) (6.1)
H APIDHIE B RGUHE E W El6. 15T LA

B6.1 PIDEH ALREIER
Fig.6.1 The principle diagram of PID control system

HAz iR
- 1 de(?)
u(t)—Kp[e(t)+]: _Ee(t)dt+TD " ] (6.2)

A: K, — HHIRE;
T, — B
T, — PR RS
PID#EHIB =M EATERHWT:
@ WHIER: BRI R R R RERS Be), RE—Hitk, B8
ST R, DR RE.
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IHARFHLFEHL: ECASEFERAANERL ARAHMR

@ MoHAY: FERTHREE, RERENLEE. ROEARRBIRTHR
RSB EET, THK, RAMEREES, RNsR.

® WAHN: BB RBMERS S HRLEHRENEE), HRERERFSHELEBX
RZHl, EREFFHIA-NERMEBIERSS, NFMRARERSNIEERE, wWDRE
8] o

3. =PID

FEHEHEHIRSES, EHE LT PID #H18 . K3 PID 25138 #H 5HATHLH
KX KRR, HEART PID Hik AAr & PID BHIHEMHERX PID BHIELAH
e SEAXRVINBHIARSE, MRAMER PID BHIE RS TES, RAERNT:

BT BN R AR A S, B R BERE RN 2 w2 s R, Eik
X (62) PHRRGMUSBAREREN, TERTHBULLE. IS T HREAY,
PA—ZRBUBRAE R 2 /L kT RRIELERS (8] ¢, UAAAERS, UWHBREMUS, BT
R (6.3) EURHK:

{ twkTe (k=01.2,.)
L’aa)du-?'gnon- POk (63)

det) ek -ef(k-DT) _ek)-e*k-1)
L at T T

Ko, c ARHEFS, BAXERABE T ULHRESE, FRFIEELBIEE. Y8
B, % ekD)FEURRE e()F, BIZET. BR (6-3) AR (6-2) ,7]HEFH
) PID Rk A

u(k)=K, {e(k) + Zie(j) + L)-[e(k) —e(k~ 1)]} (6.4)
I, =0 T
B u(k) =K ,e(k)+K, ie( )+ K [e(k)—e(k -1)] (6.5)
X T EIE R R T
u(k) =K ,e(k) + K, e(k) + M s + K [ (k) e(k —1)] (6.6)

AF uk) — Bk KRHERZI T E LS AE
e(k) — 5B k YCRFER ZIH I 2 1
e(k-1) — B (k—1) KRENZIBNKREMS;
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FXF  Fuzzy-PID 84| BiL i A5 A o#

Ki— BARH, K, =K,T/T;;
Ki— WS RS, K,=K,T,IT:
M, — PID [EIE&H B MIWIMAME .

MK (6.6) TLLEH, BITRME 1 ANKHE A2 2450 KA B BT 1R 2 T A R
B, ORGSR AT — IR R R, TR ST R R . TS
P, PMREFERRER, ARERFMEMENRITAE, T4 REAR
EZI, FHETENMES LR,

6.1.2 PID 124 5 8 &5 2 g (142143)

PID I X B R B2 —R PID 240w, BlizHBMECrEN PIDER, #A
BIBHIRSY, 7 REHIXT R FEHIxT G S A R R % ) 3h A v R SR R
B, XBEAEEH E.

HHPID BEEEHARE: FERITHBENIEREE, WIAIBE. iELE
FoEt S BEHA, MBS PID S8, WRSUEERMFERSIREN:. 5E
ERFETIEERES, ETHREOFTFAMRFERARGRRGE H2BAXKA.
A PID SRR EEEMTRAARHEFER, ENBHREN S EEH, KEEsH
AEEANE, EHIBR—REEHEEK.

LRI REE, gEdENEER, BAREELYE. HERHEHmXE
B, MZREMABMFNR, SRSHEMEREHIENL, TR
BRI

KRR TREZEP, dRREMNIIE S A B RIg RN R TSR ER, B
EA TR E L KE PID BHISH, B4 3T AT 5 RAE LB iTFEREA A%,
B PID N THE T ERARETT: MARE; LIS EETUN, BHRTEE
FIATESRSE. ATV IREHGFRET PID AR EEH%.

HREMEFHFZSHTRERENREE T A EE. PID BHRSKA%E
EMEEGHNREEFENAZIMNER, EBEESH.

PID BB EHRERA =% H—, ETLARHER (R, Nyquist HiZh%)
%, W Z-N (SR ELBIRE ) 1 Astrom v (BRAHSE RS MEVR) ;. B, BEFIRARLHE
WARE, MEKESE: H=, EFATERE, WEK PID A¥EE. Fuzzy—PID
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AARKXFHE R ECASEFEREZA M RS AREAHE
B8 EENMHE M PID HEEE.

6.1.3 Fuzzy i) (92.144,145)

1. BRI I HR

AEORA 22 6 R A AR B IR o B S ZE AR B SR R b B — P T8 35 400 S5 0
HEREHEL, ERHEERHN—AEES L,

BRI 52 BB RN AX E T EHAFTER BN S (R MK
FRE, MREEEEANMHNEK, NATANBERZEEEFEX “HN” #H
BHATES. BhERWER: “RU—E— T RRIFHEH “H5—EE
—RIE—IIT”. 5K PID BHIEFRBE Fik LSRR, ¥ H S g an
IR T, EARMBRZREAL. BEML, TR ENT SR EsaR,
M ETHEHURER AR AT A 2 et 44,

BRI EARET A 6.2 KR, BRI MRS, mEhRER
BN . BRI SRR BT E LR RS, SRS A B AR Tl
LR RNEEHROEHE ARBLESAEEEREIRERESe. — ik
CBWERS e (EABRMIEHB—MIAE, ORERSS e KT RIHTEN LT
BAERME, WEe MEHMETAMNAKHESRR, B TREHEMESES
BT B R 7 SRR 2 B A AR BOMTHE BE A0 & ORI AT R e s, 78
BRI A -

u=eoR 6D

Aeb, uh— M.

Ho6.2 HBuisirEA
Fig.6.2 The principle diagram of Fuzzy control

2. REERH
KEARRE EAFEMSENRNTE TRORANMENES . RBERSE
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¥ x¥ Fuzzy-PID #4| Bkt B4 A 54
BEWSHBREAANBREENMS, XREAEHESRHREERLEME, EHESH
EFEEHR A RBERECRHET. €0, WARKEILITEE, MTTHRIESESHERL
W%iﬁﬁ%ﬁrﬁ%%iﬁﬁ&ﬁﬁmﬁﬁﬁﬂ‘E%ﬁﬂﬁﬁwiﬁﬁﬁﬁyﬁﬂ&

W2

0<u,(x)<1 (6.8)

(1) i
SMEE B AT LR R A AL B RS HE, X T BRIES A Rk

Ut~ MR, HARENA, W,

4= Ju, 69)

Aclo,1]

fo, |J BTIHEH.

SEEBLEHT —MLRANNFESEAT R, ERMEHSNRT oM@ eE
PSS HIRER SR BEBOARME, fEVEREHIEREA.

(2) ¥keH

yokE BN TS EESRET REEMESTE: RIFELERY f:X >Y,
TBES Ae F(X), WEBS f MERT, A

f:F(X)- F(Y)
A- fl4) | (6.10)
B fl4) iR Ech:
SUP#® ()
u f(t‘)(y)_ {JEI (yz) )= (6.11)

FERRIE BB BETH P Y 5K R B AT ORI 6 5 L O B MR &
AT HIEN BT

3. BOHIX AR AR

BEHXRREHMZHNEERSZ — BERIRTHMEHIESZ R KRR,

BWIXR: UESANBRERAB AREN MM FER, FRAESAZBH
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AHFRXFHEFE#L: ECASEEBR ALY LAY AKAHE

KFo WE(x,y)e AxB MK ﬂg(a,b)ﬂ? (@.b)REXR RO
B RFERRA={a,,0,,,a,}, B={b,b,,,b )}, W AxBHHHM%
R RATLARIRH mx n Wy 5B -

}f(al,bl) R(anbz) If(al’bn)

E(az’bl) {}(az,bz) {?(az,b”) (6.12)

R(a,.b) Ra,,b,) - Rla,.b,)

AT B ROIE R . BOWAERE R I RO BT, B G BN —R
FA MR 0,

4. HERIHER

ERMBHHARREBEDR “SA BB C” B4, —RERATFTREMAAR
R, RETWER B IR, WEHERCER.

BT ARRTRERE X, B RBFRETUERE Y, i C £BFHHELH Z.
BHZTEMXER

R =AxBxC (6.13)

Mamdani #EBVE 2 —F7EBUH £ 60 W B i, TR E—FELERES
. XF “if Aand Bthen C” iE4], H¥ AR 4.
13 = AxBxC

5. MR RA MR T

S RGHRGE Y B H B R B I T it Bt S EE R
#: RROTERCENR RSN T 2 AR, RGBS UL R Sk
WL RERATREYE T 3 R i R PR R T I X ) R G A TR e P AT

6.2 Fuzzy—PID =4l 88i&% it

6.2.1 15 PID &# K PID S & E

BRI BRI R A RN E S0 R RS M e A LB ARE LR (TAE
BRMPEER)E BT IR E5%. Harss5 2 248 PID &, A
] Fuzzy—PID #H| £ ¥HEMHEEZH T PID 2% H 8, StBIA PID S35 1 545,
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F 7<%  Fuzzy-PID # 4 Bikit B 45 A 47

{42138 A PID B/ m0Es H0R B R BB 5 RIS T E N R0 S, EE TRAA S
HANTAHEREN KBS, Fuzzy—PID S4B HIR AL EHNE 6.3:

(]
W

Kp| Ki| Kd

y
ﬂ.?_ PIDEHIZ LIUN ey

B 6.3 Fuzzy-PID EAOME4IBRALIER
Fig.6.3 The diagram of Fuzzy-PID compound controller system

B F PID A KRR A:

u(k) = Kpe(k) + K, [ e(k)dt + K, %ec(k)

AP: e(k) —RARE: eck) —RHERETE; K, —HHIRYK, WAL EE
AR K, —BOMERRE, BWALRARE: K, —MOMERAENR, EWEA
GAASPERE.

6.2.2 EMIIEHISRAVEIL
1. BERANHLER
EWBHMERFNEGE. BREREMER. BENTRIRIEHEN, BE=%
MEFE. AUREBEFITRARB R, BRI RINEE S R AT
mﬁﬁauiﬁﬁﬁgﬁﬁﬁ%@L&%&%%%wm=@@éomnﬁw¢wﬁm

EHIRAWMAZE, PID ZHIRM=ZNSHOBLE AK, . AK, F1AK | H BB EH 521
WHRE.

K, =K, +7,4K,

K, =K, +7,AK,

K p=K ,0+7,AK |,

Kros Ko RIK 0 5 AK,  AK, FIAK (0416 8: 7, 7, Ry, AR ERER.
2. BN R SR L T
KRG RMANTR e Mlec (BB A cec=[-3 3], HEHTFEY
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AHAKFHE R8T ECASEFER A4 LR L LXAHE

e,ec={NB,NM,NS,0, PS,PM,PB}, K,.,K,,K, ={NB,NM,NS,O, PS,PM, PB}

EABUETFK, K, K, (RES 5% 1. 15 50.

3. ESTARIEHI

MW AR R Maxmin 828, X TR0 e Alec], K, + K, RIK , %52 TR

(1) Hle|BeKRT, HMRARA BRI MIRERIELE, MIBAR K, MBANK ,, A
38 S R GE tH DUB K R, REBRIRAMER, Bl Bk

@) BTSN, HEREWOL A B R, B K, M, [N, &,
R R MEK, K, BB EE Y.

@) Hle| B, HERGRERGNRELE, K, MK SEAS. [y
B R BE EROEHIRT K, BRI ec RHIE: Llec AR, K, T
Kk,

@) Hlec| ERAR, K,IB/ME, WK, BFERAN,

Fh 78 B ) 1451

£6.1 HHEANA
Tab.6.1 The table of control rule

Ec
NB NS z PS PB

AK, | AK, | AK, | AK, | &k, | AK, | Ak, | ax, | Ak, | AK: | Ak, | AK, | AK, | AK, | AKX,
NB|PB |PB|NB |PB [PS|{NB |PB|PS|NS| Z [NB|NS| Z |NS|NB
NS|PB [PS{NB |PB |PS|NS |[PS|Z | Z | Z |[NS[NS | NS |NS|NB

E Z|PS|Z|NS|PS|Z| 2z |z |Z|PS|NS|Z]| Z |NS|Z]NS

PS{PS|Z| Z | Z |NS|PS|NS| 2z |PS |NB PS | NB [PS | Z

PB|{ Z [NS| Z [ Z |[NB|PS [NB|NS|PB |NB|PS  PS|NB|PB| Z

4. B RKPERIL
BRI B0k, WIRBRE PID #H88%K, . KK, .

6.2.3 PID = #I35891& 11

PID #HIBUESERREEIEHR, RELABHBHSHEE.
£ Matlab7.1Simulink F{58) S K$(RGE %) M Fuzzy Inference System Toolbox
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F 5%  Fuzzy--PID 44| &t B 45 L o#f
Hii PID—Fuzzy #ifk. 2o S REUIRAERBALK T RBR RS, KAHRA

XATAMAERRENIAR. TR, ZARNEERRDEREMEFRR, B2l
HASCHUER B2 o

Derivative  Gaint

M 6.4 Puzzy-PID #24|B&4
Fig.6.4 The structure of Fuzzy-PID controller
B 6.4 %, outl RANRGHHME, ou2 RBEHIBSH ML . S KK fuz pidm
Y Fuzzy—PID ARSI, ¥ 56 F T 85 PID SHOVILAE S 2000, 1510, Ri5HE
PR RERB (K, K...7,, 7 Var K,) REIE.

6.3 1/4 FHWRIEBAE ST

6.3.1 EHISHBAE

7E Simulink HE KA, WERESEESH n~1010kg, n~175Kg, K=756KN/m,
Ks=1000KN/m.

ZEAXTHAMRFEEEZEURREABBRE LKL LAEABRCELTEEN,
Hrh B, CEBEAKHERK, RCRIKEE A HHE L V=110Km/h HHEETY,
£ B ¥ PA V=50Km/h KIEEATHE, 7 C ALl V=50Km/h KEEITY, M
AR PSR R, |

6.3.2 (HEL R

WEZRERZE M b RAFEN (HERFEEE R NEET
). BYRREE (BEITR) MIKEYE GEIRIEBH).

FEHEA 110km/h B, ZEVRHE A BRESEATHN = B0 BE3E AR I () P RE AR, 4]
6.5~6.7 Fi 7.
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EHRFHEFEAL: ECASEEERALN LR ARKAHRT

AR PRI 110Km/mh ~——— Fuzzy — PID

3 - —PIB —— Fuzzy— PID
~o, s AR W 110KmMh — —pID
B i E sf l< ‘ ] -:;-rnm -
s ﬂ } W | $ *
-, it | 1' &% ]
“w 1 1 i
-2 ,
“s z 4 5 5 10 o
B 6] /s
B 6.5 REFEMiEE o6 AR
Fig.6.5 Acceleration of the sprung mass Fig.6.6 The dynamic stroke of suspension
s, 000 AZE 110Kmh ::’
6.000 Fuzzy-PID
4 OOD 1] b d Ll !
,ﬁ. 2. ooo v ™} ol L U ;
ﬁ -2, ooo ! 7"‘3 i v. }
sg—tt ooo i
-68,000
-8, OOO
4 B E) /e -] 8 10

B 6.7 HHHEH
Fig.6.7 The dynamic load of the tire

ZE 33 S0km/h B, ZEARHE B 5% B T AT b f =050k B Fig b 00 I ) 5 R2 i, 401 P9 6.8 ~
6.10 FT7~.

4 BREBE Sokmh . P10

3 e D
o2 %
& 4
=
E o
'.! -1
-2 )

-3 -

o 2z a4 e ] 10 0.015

ot fe
B6.8 ¥BAEMERE B69 BRHITAE

Fig.6.8 Acceleration of the sprung mass Fig.6.9 The dynamic stroke of suspension

s000

soco s P so ___— rfe

4000 | | PiD,
= 2000 “ : fx Wb
- l
E -zooz gg gk f % ‘
= -4000 { 5(

-e000f

B 6.10 #mahEH
Fig.6.10 The dynamic load of the tire

EA SOkm/h B, FEARAE C ERTEATHh AT SIRME REFR AR A0 RS (8] FHREMIRL, 1]
6.11~6.13 Fi7n. '
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FxF  Fuzzy-PID # 4| Bik it B A5 Ko7

3
™~ 2
£,
¥ o
=
-
-2

“a

B6.11 FHEATRE B 6.12 BRHITH
Fig.6.11 Acceleration of the sprung mass Fig.6.12 The dynamic stroke of suspension
8000 CAEM I SOKmMh ——gEnn

u}zz‘y-P{ID'l
i
B 6.13 4Rz

4000| 1. b o ; ,._‘ o
o0 i ] "} ¥ d
o B T
f.&ﬁ ”w
Fig.6.13  The dynamic load of the tire

MEEREKY, £ A. B CEZ4BEE, N TFU—EEFRTR=FTHRTFHXE
&%, Fuzzy—PID BHIZRBRNBEHEMEEFSH /DT PID EHIBSBLEME
HERBRE: RN, BEDTRUBIFFBRENSE, RASEMIEHEL.

i
1
3 8
r.

6.4 EXE/NGE

AR T Fuzzy-PID BIEIE, I3 1/4 EMERMEST T 81 K. SRR
T Fuzzy-PID BI85, &R EMEEABEETRYE FR, %9 Fuzzy-PID #4&
BN A B AT BT I AR
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ARUERETEIRBR V4 FRERGEPFTRAR Fuzzy—PID #HIEEN S BN
MEHIRR, AT THAEHEEEREERR G MHSNERE. EHF®RE
WINIRIIR T, ETHEM Fuzzy—PID ¥4, PID #HIAMARMEBHIMLREIE, B
B IR B BRI AT AT

7.1 KB FE

7.1.1 #hA

(1D 11010

B7.1 ZREREAEE A4 IARTER
1-RAE 2-ihdr 3-ipk 4-SBER S-WREK -ERBAEERE T-4AS
R S-RHALFES 10-24 1-FRRK 12-£854 13-&EH
Fig.7.1 The diagram of the main body of air suspension test-bed system
1 Base 2 Hydro cylinder 3 Vibration generator 4 Connection tray 5 Coil spring

6 unsprung mass 7 Shock absorber 8 Beam 9 Linear rolling guide sleeve
10 Upright post 11 Air spring 12 Connection tray 13 Loader box

FRBRARERHEHAR. FREAR. TRE. MRS, BERE. &
REURMNKESR, TN F ALK, 0871 iR, © RRE EERERITHE
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AHXFHEZERL: ECAS BEERAGWYRHRY LKEAANE

REH . @ “AIANANRY) B FERME N EBTE M@K T U, 2504 AL
BORFER B A b, RERBTRAEEE T MR8, @ FETE & &5
RO BRI AR, 8 I A 7 F o ] AR A B AN ) (K SR B 4R 3, @ 4
MR Jje o S SR B 5 B R AR I NI EE O RE AR s B I /SR AP R e b, %4
S ERALE L WA B AT HAT 0, B R 3 5 R R . B 7.2 2
FRBHRAR G R E R R

Horp i B2 (G Bl BR) Bl AR (B 20) B A 4l R IR A R B R B BRI A H
G REAE SN Z WA IRFRES, REFESEEH S A B FIRSANER, T TCRRATRE 5 B A4
FES A o OREFAS K P LA N BRI P (8 5, 7 - ALAMBRAZ ) T AR IO BRI 7 W
& A ORUEARBANER 5 B 1R IR BN i e, WU AR /N o AR AR /I 14 185 ¢ FEL 7 g
¥, MIMREIRME REEERIPAGZS), T2 TRHER %K. EARMAZER, SR L
B —Hek. HAEAHEN, WERTTREAITE, UG R AR, T ot B 2k i
BRI N % 2 S BCAE Ak b, IR ACZ IR B i, NS AN £
KA . ELECHAN AR IEEAT, HAT LS BRI

B7.2 1/4 6 RKBA%KLEMNE
Fig. 7.2 The structure diagram of one-quarter bench-test system
FRER G LG, REBERENFESHINE 71 Fix. KRR ARLNE
B, AFEBTUR. RAGNIBE R ke 28 5 B R B W — BTG A R, 2
B, ARARKKBEMNEGMER: 1.58Hz M 11.4Hz.
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FEF ZREARERER
211 BRAGHIRAH
Tab.7.1 Main parameters of air susoension system
A AR G BN WA BB A
(kg) (kg) (kN/m) J(kN/m) (kN - s/m)
1010 175 756 100 6.6

7.1.2 #E A%

RKAE 8800 Huiw ULk ] Ak ik % & _LHEAT, 8800 H% W H A7l iiic i % & thiisk
Bl TRl . AL AR . i, FEhles . AR, Bk, DU A2 A/D.
D/A ¥ AR e . B R A5 K SRS [ B ) 7.3 o, scE e 7.4.

e IR % 21 3% 5’8 ———— AD E———
X .
W B % 4
¥ Bl
* — fal R 1) (—— #HI% K— DA (———
|

B 7.3 8800 I A/EAMBIKRTE G LM REIER

Fig.7.3 The structure principle diagram of the 8800 nc hydraulic servo excitation Test bench

4

b) 8800 #ixie

a) #HHEA ) #ikk
Bl 7.4 8800 & A/EARMIKE L
Fig.7.4 8800 nc hydraulic servo excitation system
a) PC b) 8800 numerical control cupbard ) Vibration generator

713 S EG122127.149

L. RBRFEM B
TR LAERATIR T, 630K THR AR G KRR BE I 8 0 8 25 e A BR L, A4
Ao AEKE. FENR. GEME. FEERANSE. THlENS. Tk A
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IHARFHEFERL: ECASEEBR ALY LRSS ARAHR
FOMEETUTRN: H—, HESHAKN RSN KBTI, K=,
REREERBERRRREN B RARHOM TR, K=, Sa%ERSNES.
FRRENATREREHHE; KU, REFSERRSELNEHRE.

2. SERGRARL

B1.S EREBZAAHETRE
VZEM 2ERAF(: 3%6H 4 FHRE SHEAR 6HAH 7HKA
8 BCAS N 9ZA¥HK 10 BCU 11 BAXRFEZRAMA 12 BCAS ZAHAE
Fig.7.5 The system diagram of the gas path

1. Air compressor 2. pressure switch 3 Holding valve 4 Airer
5 Spillover valve 6 Air holder 7 Drip valve 8 ECAS II'solenoid valve 9 Air spring

10 ECU 11 Pressure transmitter and secondary instrument 12 Height sensor of BECAS

0 RPERE

RATrE4. SBEMCF—ERBNERESNRE, WESERHNAESI%.

© ZEHLESESVLD: KBS TRESHEN S DRI RS,

@ (REM)MAH: LFE—ERERHZS. ATLAAREE S EESENRGE
BRI, GEMIDRAGRELBHTHSE, HEEET TR KIELEERT
J&E, Wi BIBOKRHEA KRS

@) [IRLEE T

RATEREEANTENREOERZPRKS . 5. BAREES5RY.

© #WKS BaR: KEARPIA BRAHIER, HEEEESFHKS. R
B TRES: WRELRKS: BE—ERERES.

@ BBVHKE: AIHREEMA. B R, SRS R I A Y
KBRS H.

®) KT ITH

RSB BB — RS T, RN AR IE. B
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FL¥ ZERARERER

BesiEs), mEKBBENEMIRRE R BNZHEE.

@ S EhiElTH

ST AR EHRYEETANES. RERRS AR, FEKFHPITT
HHBEAFBHARAEAEEFHTIEE TE. BFEEHEHIR. RELSRA T R
.

RSB ENEFRPERLER. KERARKRE.

O HWERGER): #BEEKEOSSEHREIFSFERAMERES, HRFRIE
HOZESEAMRE.

@ HwRE: FEEBEANEDEREEOTER, BELBRRENN, BHSHE
MHES DR B —Fh A AT RS 4 50 1R

@ “4&W: PEaHnEREHEE, TRHERTEEES, BdHBEEES
REFHA.

77 i R 2 R SR S A s 7 I ST LRAET AR RR. FEHEREA
% 25 F PR IR B

@ B AT ERELEAABER, AP GBS OERNNESS S
BEAHER, ROAI”ER.

® BHR|: EHRNZSAER, B ER.

® FEAGHRER: BHEERATSBENR. BS.

ORI E 2 T

EHEEBR R IRNER: BREAHBRBUE: RPERBE, PEAEL R
BAE.

AEARR AEEZASMABEXBNEEAREERE, FAXHETSEYE
AT

©®) S HBTH

ENTFR. BEREELERS TR, EEEEH,. RENRESS. HPEHF
KBRAEEHES B ME3SE (R .

2. HHRFEMLE A L

BT RERBRBI R BRALZ —

O AHRAMEER TS, AT FENTHHRE. BERIESITTERE.
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IAXFHEFHET: ECAS BEERAGNERE AXEAHE

fREGHE. ZRTEIEH. &85 EENE.

Q@ BRI ERWTHRAN TR, LH. tesmEeEFE. W, 459
HITEBB TR REE.

@ S[BNRAMANT, PARIE R SRR LI RE RSB .

@ P TERBEFR REEASI) REBETROERSS: SHEENTHE
Bzl REFEMER THEEMT, [SPATHRINIES T,

HEORER, REABOFHSHRING, SHERSS RS R AN
BE. BIRESN TN ROTSHRBENIERRS, NTEKTENERAESREXE
g[l%}o

3. RHRZEERENTH

BRARGRANZINE, FUEEHL. FIERH SR B RS RS RS HOL
R 12~15; SHREMEER LR THELE 7.6.

A2 BRBRESAHE
Tab.7.2  The type and parameter of the air spring

By 644N R PR B A 2900kg

THRE 225-295mm THEKH 0.3~0.7MPa

ISPk S 1.25-1.45HZ K= P41 Contitech /3 )

A 1.3 EREGNYFAHE
Tab.7.3 The type and parameter of the air compressor

BE: w-0.9/125 HA#: 0.90m%min HSHAN: 1.25MPa
Ih%: TKw WUEFH: 2900r/min EFET DRI ERAR

T4 ERNSEBRSFAKA
Tab. 7.4 The type and parameter of the oil seperator

# 5. FI1-200 BEMERKE)): 1IMPa WHEME: 0.05~8.5MPa
MERE: 0.1-0.48% RHEKEE: 01em BB AR R 99%
A HrRswiR AR WL AR AR

A5 LEALAYTAEAKE
Tab. 7.5 The type and parameter of the electric magnetic
. 2w &7 FERA: £ 34 B #ER
Rk HTEE: 0—10V W& <15W THE#HAE: -5—80°C

EFET: W Whaco (ALHI50) AT
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FLF ZAREREREE

a) ZEABRRBEBIKE

d) HmKyHE e) WAL
B16 ZARRABLERAIZRE
Fig.7.6  Test bench of air suspension and main equipment of it

1 Air spring and shock absorber 2 Air storage tank
3 Air compressor 4 Water oil separator 5 Soleniod valve

7.2 RIENI= R

KRH RGE K PR 4 B E INSTRON A 8800 B i J& 47 IR $ 20
RARL. TRE. WIS PRV EIRS . IR RS, MBS, kAL se,
FHRZ S B EEARKIS . BATHOKAS. Wavebook 155 48, MK, Rk EHE
7.7 iR

I RS
P HATBORE AL |
el P
AR
s BB
T /
55
PHBRERSG [ 4%
11 |
Instron8800 %! F—y— Wavebook
s [ p—

B/7.7 KEAAHI/ERER

Fig.7.7 Work principle diagram of the test system
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THAKRFHEFIEHI: ECASELER ALY LRSS AXAHE
7.2.1 iR RS

GARRRMBORER, FENREL. FRARREERIMERE. BEHF
B (EL. FRERBOMMES) URRIRERH, LIRIEAHTEH Fuzy—
PID 555 BT FIR MAEWT R VI OER, RN THRIERB RS RS HEY
BT A, BRI A BB P BRI F7, BRI S5 (P 13 P 28 4 5
BE L. FRGREEARDMERE, MBEHENER L, FERFROHNAE,
EAEBEMREBENNOKE . £BRE KA RN S ER LY 5 0%
7.6~7.8 F1E 7.8,

1.6 #MEANXEBETEAKER

Tab7.6 The type and parameter of pressure transmitter

B 53k : TANGE-1000 EAHEE: 0-1.6MPa THEHIR: 24VDC
|55 0-5vDC BRI <02%FS gt <0.15%FS
feifFitdR: 120 %FS AR 1/4NPT ENIRE: -20'C—70C

&= HRAEBRNBHERAH

AT GHEESYITAME

Tab7.7 The type and parameter of displacement sensor

BY: TGZ-200 E#2: +100mm BA: ETRBR
YL fE: 24V BWHES: 05V GEWIE: <0.5%
ARt <1KHz A=) T PUMREABROGE AR A E

R1.8 MEEHEABETREK

Tab7.8 The type and parameter of the accelerationsensor

5. YD-122194/2152

B KA VFMERE 104m/s>

A7) R BUE 1.61PC/mes-2

#i 2% fifH>10.00M Q

H 510PF

B MEG
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a) AATER

c) LEBEHEE d AFAZAERZEARE
B7.8 REBBRERSE

Fig7.8 Transmitter and sensor
a) Pressure transmitter b) Acceleration instrument
c) Displacement transmitter ~ d) Height sensor of ECAS

AICFTERIE 50 R —BEAUTE AR IEE (8RR IR
Ja) MZSFE LI5S, BidfE 5 BN S WU TS5, e 7.10 iR,
B E b AFRER R EE BRI SR L R R R (EEhTRD
55, WILAAHBORAS, h Wavebook {55 RS KAt Dasylab A HEIT(Z 5 4
PR ALEE, FTRIKMLSE Fuzzy-PID #5148 M4 HIR0R, ik 7.9 s

7.9 wHAKESL Wavebook 125 RER
Fig.7.9  Eletic amplifier and Wavebook signal gathering
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AAKRFHEFEBI: ECASELERE AL LAY AREAMAE

Wavebook 15 5 R &% thE H lotech A 7477, HE 512™, BR—FE S RELX
R, UK HRERA R ORGSR B TFES, BEBREERTIHNL, 2
REBHE. EREZTLUFER IR 8 MEENERESAA.

Dasylab 3B —F & AEHKESREMNKGE, &7 LB RMRE
Wavebook & MEEEERMMEEE S, HXRFRENE T HAT LN B F IR
BT o

7.22 EHERES

ALAMBARKITE TR FATSSREOREMRIE, FERIHRMAE SR
Gt AXEHIREH B TEHET (BCU) KRAEE Freescale (WEER/R) K 8 frigis
28 MC9S08GB60.

MC9S08GB60 /2 HCS08 5[ 5K/, & HCS08 #3 MCU f—A4 L &=,

. HCS08 AJi3ttE: O 40-MHz HCS08 CPU(f R 4L#28); @ HCO08 154 4EM
BGND KifnfE4: ® HRARRL: @ LA LR M A REG A AR
BRI KR © WiAERGER N LREMAMMAER, KK FIFO F
KRIFERE PRSI BRI SRR A, © X
FEIE 32 MPWYEAIR: @ RIEER: SHEEIN=MELER; © RERPHE
1E: PR ELEE B E(COPYS AL, K FU A A 1 52 A 58 BT J 34 & B A 0 457
FEi kA T B AL (F iR B FR ik L)

MC9S08GB60 K14 55 : :

@ 60K HH{Ry MR BB AT F EAEL IR FLASH 776538

@ 4K K LFEHF 2R (RAM);

® 8 HiH, 10 FIH%HH#(ATD);

@ PN SRATIENS B OB (SC);

® EBATHMEE: DB (SPI);

© HEIRTERARG S, WEERS. SN EEZREH NVM AL P 3Ret o

@ & 100 kbps ) IC & £(IIC);

—A3 EER—A 5 BB 16 G RAREERTPMBR, & NEET
PLEEMATE. i BRI X 5 PWM S hRe. SN ERBRNE M EETRE
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FLEF ZRERERER

e G 1 o L BB 5 A S (CPWMYRE R
© 8 5| AL W H(KBI);
16 AR HLTE S BI85 B )
O OB B R, 7T U B BT PR, S A — BT

B7.10 #4%%
Fig.7.10 Control system
PEHIRGRE th AL % (55 ABEES, ECU. D/A H¥MPAT LS A K, WA-E
H CiEFHE, SEIIfE.

1.3 REHERDA

AR LR P BUE S R B BT . 438 S0kmy/h f) e A BEH LA S 5
RIG T[] 30s, KAEMIRE 0.01s, 2/ THE TAERAE 257Tmm, 4 HIREW 2 F B2,
I Fuzzy—PID #%|45 B RN H BT & BRI IEEE . BRI TR, W
Kl 7.10~7.12 fi7R .

— F-PIDRE
S L

HERFMEY (e2)
BRHTR (m)

. L S S S S— P
0 2 4 3 8 10 12 14 16 18 6 8 10
Bffal (s BHiE (0

B7.10 FHFE2 AR wikZR B7.11 ARHpiTA
Fig.7.10  Vertical acceleration of spf’ung mass Fig.7.11 The dynamic stroke of the suspension
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ERRFHER(583; ECASEERR A4 M RS AALHE

ST

bziaétﬁfzﬁﬁlﬁm
0 ()

B 712 £8%3EH4
Fig.7.12 The dynamic load of the tire
KRBT, FEBREE RS IERE KRR ST LR, B3% . 3
REARFBBWNE Y, BT OERRENETNEE 15H £4, EBRRFEN
BIEMEE 127Hz 54, SERTHERRYE, RHSREORHEERN.
WRERE B ABE. 8 S0km/h M5 B4 B3 L LE 7.9,

A9 EB. HAKEILA
Tab7.9 The contrast between the test data and the simulation data

X% UK
BHIRT | #E (<33 P | BlE -
(#3) | Fuzzy—PID | #% (¥izh (Fuzzy #’eE
/%) | =D B —PID
)
- &% SRR
B | wqg | 08832 0.7693 12.89% | 1.048 0.8443 19.44%
B (mis?)
- 0,
ﬁiﬁlj(]m) 2{7; 2.0049 0.00457 748% 000538 | 000456 15.24%
T4 ¥y —069% -
&K (N) By | 1714 1735 —1.23% | 1826 1855

B BA B 36 B PR R T 40 .

(1 AREER T RSB BAL, KRS A RREORE, )
PREAREERININERMHTRETHT 12.89%, BLIAF I HEHIRE %
M E T R IR R

(2) AR REMH AR R R P g AR D — L, X EBHTHEM, %
BRRGLATTHM, WHERZSHE. RBNRIERRREROME, BELRER
HERAGIIPLE A RIS HIRIE, B0 AR R S H L B R . iR}
RAVIFABAR BRI, MR EE. FRRRENEE ML OERTHEE 5 R0
HBYIE, U T TR ER
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1.4 BENG

AR RBESSRLRE b, DRI E BB A 2 BIS s Z SR

1/ Fuzzy-PID #HIMZIBRHAT TR, HxTRREIETREMT. NRRER

ATUE N, BEEA Fuzzy-PID #5188, FILARIBIFH BN, NTABMIES T
FERAT B .
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PANF EEZR

FNE BEXE

8.1 RIIUBEAE

RKXT%: W2 YBL68ITH BI% % (i#E)
RICTEHE: FHYIH BRI E A B )
HERA: W
WK ZF#: % 50Km/h
REGALAS: e 0 B A5 I 2%

SD-5A HifJHCK 2%

MR-30C Rl

SD380 47 kb ¥ 25

Wavebook {55 K4E#s

Dasylab &t

B 8.1 SD380 ZhASRHESAAAAEA B8.2 EaXipZtAR
Fig.8.1 Tape handler and the dynamic frequency spectrum analyser of SD380
Fig 82 Piezoelectric acceleration sensor

A B R 2 5 PR AT T T 1) TS R R N, A S BN R - 2 S
BUr R R RGN A%E), I H 5 T 2B Mg AL 4 . AR S A BAE S EM Ly
JERUER — A BERT AL o X5 s EA% IR 8% 2 B AE T A 52 (AL B, (R A 2% SV AE e B vl

WA B TR A2 PR ARG & F R B B, 3 T B SR T BRI B ML N AR
RGP ERER: RBBRHTRYE, AEAKT 1%, REEHSLERE, KE
ANT 3km, B¥EA 30m~50m FIFSIEN . BRI AT A GB/T7031-86 ( EMidR5) M %
A BEFRRTTE) MUER) B R . RILEHER T FH#AT, ERRAYBIENM i,
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IHXFHEFIEHL: ECAS B4 ER A% 60 RS AKEAR,
[ € 25, Y GB/T4970—1996 (VX4 TIRPERENIAATHHRK Y ISR, RIS 4 N

50km/h.

A 8.3 % YBL68II K% B 8.4 BAHRE
Fig.8.3 YAXING YBL6891-TYPE bus Fig.8.4 Road surface of B-grade

BIRS, NEEREBRNFREZE, RIFUL S0km/h AJHOE T R BB, B IAK
B BUR R HIAL S . FEARFKEART 3min.

8.2 1REVIGIF

8.2.1 HEALTE
W SRV SR PR 5t T R ) . ) S 16 5 R S MATLABRR AT AL B, (RIS, 54 A%
FH2V ) J5 B A0 B [ ARBI AN B B2k, P18, 6k 1% s fR I BB 1 Il R i s

o
®
h

X 1054
Y 03483

o
=
w

Q
g

Q
@

DO (mis2)

DO SETH i B R misZ)2Hz

20 % 30

5 10

25 3 10 Bﬂﬂ{sm % 0 . 1(5H1>
B 8.5 XEAFF| 0 EH L BAA B 8.6 RKIATE| 6B HF Loy BAAL
EH G @ik EET E TPy E S

Fig.8.5 Vertical acceleration signal in the seat abovethe rear axle from the test

Fig.8.6 Vertical acceleration spectrum in the seat above the rear axle from the test
APRFR I 19 K B 28 5 R 00 R0 2043 20 A4 ih 2% 2 B ZE R AR o 3 e,
8.7, 8.8:
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0 53 E %= % 5 10 T3 E) F3 E
7. g . e, - R (He) .
EH F e ik £ 155k & 3 5 &) hoik B o) BT 521k

Fig.8.7 The comparision of vertical acceleration signal between the test
and simulation in the Seat above the rear axle
Fig.8.8 The comparision of vertical acceleration spectrum between the test

and simulation in the seat above the rear axlet

MWE 8.8 PEILAEH, AR GHEMEBIMHFEE R KB EL KRR LR, S5
L, (AR BB KEME MR 1.057Hz, JHRAITHREF K 0.362(m/sY), T
RRA BB REELNIEEN 1.054Hz, XN IEFFEME N 0.3445(m/s)’, Bk
AR, ACBIHER R IESR.

8.2.2 IREN

8.7, 8.8 AILUEH, REMTEMNERNEEHN, FTERUTERHE:

(1) TEERRBREEERENBEALE, K LXZSBRRENRERE
BK (BhE N4, 33m), ERENIFER, KHFEEHREDD FBERBITHRREREMN
W

(2) AN EERFREEH B (WRFBIIES) SHEEFREREH, X
BRI RS R SRR ERFEEN.

() HTBALMARER B, TRUARSEERMEENEESENRS
BN, FERFEEIMOEEEN, XUEERITESRNRE.

@) LPRAEMRERIN BERNF YN, EHEFXMEEEREEE, Xt
R R A 2= o

8.3 THIAIE

XEMBAERTEE YBL6SI RHEERNSH (BLE), B HKHE. 50km/h.
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AFRFREF4HL: ECAS B4 AR A% Bl AXAAE
WE AL THUHAT Fuzzy-PID #6134 E3h S BB MBS B LR IRR, LK
SbEE (R L B 8.9, ZRTRARSHATIEM L WA 8.10, ARIRIEIBAAL
£k WL 8.11,

o
o}
&

15 - x
B (1 . "o
B89 FEAEmkE H8.10 ERHiTE
Fig.8.9 The accelertion of sprung spung mass Fig.8.10 The dynamic stroke of suspension

%

R (V)

B 8. 11 ez iA
Fig.8.11 The dynamic load of the tire
RIGBHTHREAREHRT, BINRES Fuzzy-PID B4 3134010k
RIsL TR IR . BT RIGHRTOHTRME. RRLEEEY, Fuzzy-PID #
A SRR B B T AL 2 1) I EE A B B B Bk, WM T Fuzzy-PID #3164
ERBREE T EWOTE, e,
481  #ZHER 5Puzzy—PIDI 4| &R ML 1k

Tab 8.1 The perfomance compa rision between the passive suspension

and the Fuzzy—PID control suspension

PR b ik BRMITR REGNBAT
HhELERTR )
BHRE (n/sh) BWHHRE (m) | WHBRE N)
&4 0. 4081 0. 00803 2017
B gk, BABR
Fuzzy-PID
50km/h, . .
o 0. 3134 0. 00757 2127
W, &M
a4 A1 23. 2% 5. 73% -5.5%
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FANE ¥ELB

HIABEWERTUES: ERLCERMEEYTRETRET 23.2%, FRHERS
TRKERA, ASBRITENRBIHBRF N TRESR TR LR, BRELHR
FUAA . B SR U ASCHTR T Fuzzy-PID #5138 R85 A 20t 06 E R ROAT 0
WG o
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BLAE LZitfiRE

BRMREURERERE R LNEERY, EEREROTEPRERRARE
t. HAE[RRRUEAHRE BT . TR RERRRREM, LAHERAER
BB AR RS

FARRKRBEARCHE: FAMEEHERAR. LRER, BREET. 2R
PRI AR AR, BRASBEMANBATRZ —. KA RTL/BREEH
B BIRFAHIETE. ZRREN¥. HEREAR. BRELESER. G %050.
BRF M SIERT EWRRERE . ZXUBIBEY I ERBATANE, &4
FEEE, RGBSR HIEIE, BT T HFRHZ BN TR SRR,

9.1 #ip

WA LB AR A
1. AREBARUEAHSBETRELNNE, AEHEAR (AL NEAR
(B3 MRS RS R B 52 B R B, BB A
HWHEAER . BRREHZEE, 9 TEAEER) MART 0 U AR, T
BESRE (TAED THE AR RN, FUREEBA IR, 5K
R RS MEAR (A AR EA TSR B M. AR 2
WEETEUEBENENERFENIRET, YSSBENELEREN, 8%
SRTFETARAS FELEREN, SRRSATEARAE.

2. ZNEEAG IR, LHECEREAE SR TR T, BTEiit
B, BARARE T 2 BRI — SRR X R AR R RN, R
BTSRRI IR

3. BRI, BEBEL RO R R TR T, B HEARY,
S RIE YA TR T &SI RI B — A R R FE U ] 25— S
e R SRR — B X R MR X R RN, ARSI AR
.

4. FABAT PID BHR Fuzzy ERHRA, HEMEREAT PID SHMAEL

139



AHKFHREFERIL: ECASEERR ALY LS AR

BEE, 38 KM% Fuzzy-PID BVEEH FESBERGIT . BB FIEgi, "k,
R RRMIANGE RARE RF MG MRS, T8 T RIFHEHIRER.

5. BT /A MAEEREGEHEN T W ENRA, BEHZEMIBIT 1/4 %
WAL, RURITHEHLIR S 8800INSTRON MUK AR RA LR T 1/4 FRBERR & 1R
T ZERFR. EZRRE EEE Fuzzy-PID HEMEREEEERTRY, R4
REYZIEHEEN G RAR RAM BRI .

6. B TEENAHERE, K@ TRIIBEE TN, HETERREME
K. BRITENBEEMTN DRSNS TRE, #1TTHEMT

7. LT ULRL AR LUBE R AL 2 5 8 R B NS AR B bR, LR AERE B
. STR RRIESIBA ALREM, TELRH TR TSRS RERSHRIBERIEE
RATFESERIL R R, A T RIE—BE TR fL.

9.2 RE

FRBRRAERENERE, KRENRTEHNSYE. REHPEEHE.
AR RN B R B S XA AR RISIRIE 2.5 . RSN ASRE Y %R,
KB— %%ﬁ%%@%wETmmMEﬁiﬁzmigo

SEEABRRTRIE. BESRBRENXR, DHREARE P
Hn%%oKﬂ%ﬁé%%ﬁ$§%ﬁﬂ%§%$%@%,EE%E%%%%%%*%
SHYEMER. RAOEMER. ZRBHTERENMATESRD . RRARISE. |
Bt R AR ER S, UEEFRNL SR B5E.

3. A Fuzzy-PID % PID WS A4k A ¥ B BB EE 0N, Hrm
FRRNHE, EMARNEER S, 7LMRIE Fuzzy-PID #HI8S0PHIME; HHEH
RALHMER, BHERERS, HHERME TR, TS —PREMSRR5, &
OBERA RS, AT A5 ABERA 42 28 /5 1 Y ey 42 SRR O A 000 F 1R 4 LR o 1 R AT st
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