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a2N ?1)/22b

(6.5)

N

a2 (? N2 217 (N2 ?1)/2)?b?x,
a?2N ?21)/2?b (6.6)

S, (X) ? Lim Sy (k) ? Ligno
2% X272 0% ? %)

N

k71

rk)?27?2 % ?%.(6.7)

?

(6.6)



Jacobin

s(x)

X, ? 1% ?0(i ? p) (6.8)

75:(X)

(6.9),(6.12)

Ps

2% 22% 20 (6.9)
%(j,j?k
B 502 %y 2x) 229 x (6.10)
?Xk + o0 k + j20
6.8)  k>p 2 0
20 whenx ? 0
2075 o (61D
7l dse
A0, 272k ?p) ?272(f, 2 f,) (6.12)
Hamming
Jacobin
DS(0) ? diag(2? (f, ? f,),22(f, 2 f,),2 22(f, 2 f.)) (6.13)
& &S
(6.3) (6.4)
P g (g 21 N221%x )(q"% 2
?..0'(9?1) @ 2
g 9?0,



SGA

exp(in g, 72 7 %)(0™* ?9)

? ?
S (X) ? sy (K) “ 021 (6.15)
(6.8)
i?7k Xy
B, o0 2 X 291G Lo (61
X, 17k |yo s o ?1 x2ps
25, (%) , &plin g, 2217 % ) 2" Ay (6.17)
%, Qo ?1
k>p fo 2 f, ?2%6x ?1 ?2%x ?0
?,'”201 when f, ?
f ? :
k) ? 2 ?qol (6.18)
’ X?ps ’)M dse
30,71
Hamming
Jacobin
DS(0) ? diag(sd(0), sd(1),? ,sd(m)) (6.19)
4.6.2
t
t (tournament size)
t=2
[20] t
t ) t
s (K) 2?5 x 22 % (6.20)



t

%37 ?ik?oxit ??:(??olxi
t=2
5?2?25 % ’>7 X ”xk7(2"f? % ?%)  (62D)
(6.6)

%,(x) 30 Whenj’7k

.7k

o1 21 (6.22)
- Rt X2

j<p 2L x?227% 20  jpp 2 x??0x 21

" i?0 " i?0

%, (%)

20 6.23)
?Xii?k
' X? ps
?S;—(X) 27 % ;O;N;e”k Potnk2p) 2t2(f, 2 1,)
Xk X?ps ;
(6.24)
Jacobin

DS(0) ? diag(t?(f, ? f,),t2(f, ? f,),? t2(f, ? f,))  (6.25)

4.6.3
Jacobin (6.13) (6.19) (6.25)
6.1
GA p
?,?77?c 7?5 ?Li?1l.mi?p (6.26)
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25 2 £/,

5
7% \yhen'f, 2 1,

2
25 2 5% 71
30,71
?s 2tR(f,?2 1))
1 GA
GA
p 1 GA p
GA Jacobin 1
Jacobin (6.19)
Jacobin (6.25) 31 GA
?, ?7?c 75
6.2
GA p
Ham(p,j)?1, f,?f,
Ham(p, j) ?1 inh(p, j) ?1 ?,?7s
k ?s; 71
?s; 2 f, 1,71 f,?f,

Ing, 70, 71 qylng, 7, 71

sd(j)?1 when f, ? f_,sd(j) ?1 else
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SGA

25, 2t2(f, 2 f,) 21

Hamming 1

6.1 (6.26)

f(0000)=x

f(0001)=4 f(0011)=6

f(1111)=10

41
x<10
(0001) 52

4.1 (1112)

(0000) (1111)

f, ?f,

] Hamming

4
Hamming
(0000)
(0000)
f(0111)=8
x>4
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pn=0.8 q0=1.5
t=2
(0000) ?,
0001 0011 0111 111
f 4 6 8 10
inh() 1 2/13 1/3 0
?¢; 1 0.733 0.467 0.2
?c; 7?s, 4/f0 4.4/f0 3.73/f0 | 2/f0
2 1.467 0.933 04
1.217 0.892 0.568 0.243
4.1
f, ? 1, ?s; ?1
f, ? 1, ?¢; 775,
?],7¢; 7?5, ?1
x>4.4 x>f(0011)=6
x>f(0001)=4
X
4.7 GA

GA
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Exploitation

4.7.1

SGA

4.7.2

f(x)

h)  f(a)>f(b)

[130]

c=1

h(f(a))>h(f(b))

f(a)>f(b) h(f(a))/h(f(b))>f(a)/f(b)

Exploration

inf



4.7.3

GA

(59]

Hamming

Gray
Hamming 1
Gray

7.1 GA

Gray

474

Gray

Hamming

01111 10000

GA

GA

Gray

inh inh
inh inh
inh
inhy inhy, inhy inhy,

61



4.7.5

Hamming

4.8

43) (5.1)
GA
45
GA

inh

(o1]

SGA
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5.1

GA
GA
Densty-Dependent Mutation
GA
Bigint [112]
Two-Max
2-bit
5.2 2bit
2-hit

1 f(00)=sl f(11)=s2

1-hit
[136]
2-hit
[1]
GA
SGA
0=[0,1]? 01
si<1, s2>1

[135]

One-Max



s1>1,s2>1

p (1,07t 23
X? P Y? Psly 2Pl 7P,
SGA
1 g 9
2
3 C
4 N
g c M SGA
220 10 2 0S 2P 7P, 2 psS(21)
S(p) ? p; ?f, It (2.2
2-hit C
4 2 2
2 0 2
col (2.3)
42 2 0
000
Pi? P"?P Wi ? Py PP, fOr 021723 (24)
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2c(X) X X2y 2?1722
3c(y) ? y? X772 217727

25
oC(?1) ? ?217? X7y ?? 2177227 (25)
3c(?2) 2 2272 XYy 2A7% 27
1-bit c/l
1-hit
M
1?7 2? ? ? 0
? 1?2? 0 ?
M, ? (2.6)
? 0 1?27 ?
0 ? ? 1?72?
M(p) ?M,p(2.7)
2-hbit pO
M (x) 2 (12 2?)x? 21, ? 2r, (2.8)
SGA  2-hit
SGA(p) ? C?M ?S(p) (2.9)
01 10

p,?p, C?M?S(p,)?C7?M ?Y(p,)(2.10)
01 10
r,?2r,2rl/2 (2.5

? 2 1 2
2C(X) ? X? X2y ?r /4?2(1?x’? y)
I)

,'7
'?c(y)?y?x?y?r2/4?711(1?y?x)2 (2.11)
5

A 212x?Yy
7
?

2.7)



2m(x) ? (1?3?)x??2y??

, (2.12)
om(y) ?(1?3?)y??2x?7?
SGA
5.3 SGA
SGA  2-bit
531
GA
1 g?21c?12 20 22) (211)

?
26 2 x(n) 75 2 y(0) %, 2 A2 X(0) ? y(n)
221 L XNE LY, (3.1.1)
? 4 f f
2 1212 Lar XL OB,
2 4 f f

2

31

(3.1.2) (x(N) 2 y(n)?222Ax(n) ?2 y(n)) 21?0 forn?21(3.1.2)

x(n?1D)?2 y(n?1) 2 x2y, x(n?D)? y(n?1)? %(x'?y‘)2 ?%
(3.1.2)
y?2x21? 22/x (3.1.3) (3.1.1)
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si1

?)f 2 x(n) %, 2 (x(N) 21?2 22/x(n)) 25, 2 2 A X(n) ? x(n))

;x(n’?l) %(1? x(n]z?s,l ) (x(n) 21?22, /x(n))?52)2 (3.14)
?

f

x(n?1) ? x(n)

0
X? 1 (3.15)
o (5?0°
T (875,727
0O 1
(3.1.1)
3.2
311 si>1s2>1 3 (3.15)
0 1 XS sl<l s2<1,
2 0 1 s2<1 1 0
0 1
02x, 2?1 0?y(x)?1 s, ?1s2?1(3.16)
25,7
jm 9909 5 L 4y 909 5 1 d909] 2857, 75, (3
20 dx s, 0l dX 8 dX | ss, ?1

0

25?978 5155 21)(s, 21)2 0

sS, 7?1
(3.1.6) 1
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X<XS g(x)<x

X>p 9(x)>x
x?p |90?20?x-0 x?p |g(x)?1?x?1
1.6 /“-\.I
/N
hoo !/ \\
S AN
S - N
/ |
O 07 05 1
0 X 1
5.1 (3.1.1)
s, 71,5271
3.3
=1
; 2%, (s, 1) whensl ? 2
(5,2 ?s,2?s ?25,)(25,2?3s,?s,) '
ar(s,s) 25 TS %5% > %) (3.1.8)
22 2757 (s, ?1)

) 2 2 2 d%
3 (s775775,25)(257 235, ?5,)

2
ﬂ?—fﬁﬂ—?@?ﬁ?iiﬁL@lm
(s,?s,?2) S ?7s,?2
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S,?s,

X?y?x ?y, ?—2——
S ?7s,?2

X'Sl?y'sz ” S 78
f f S ?s,?72

Is(x,y) ? X(225° ?3%, ?5,)? ¥(2%5,°?23%, ?5,)?5 ?s, ? 0(3.1.10)

2
S
=1
Is 0).44
1] x 1
5.2 1 (s1=1.5,52=1.3)
S ?S,
s1>s2 e e ——
Y Y & 25, ?3s, 75,
‘ ?
x+y=1 B X B, ?— %2 (282 2D
S 7S, 7?8 75,
Sy 22(A17A)" B, ? % (5 20 (3111)
2T t(s°7?5,°75,25)(2s,° 735, ?5)
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x=0 y=1

(3.1.9 XOY
(3.1.8)
sl<=s2 Is XOY X
s’ (s ?1)°
Sy ? (3.1.12)
(s 25, 75, 25)(25 735, ?s))
(3.1.8)
532
g<1
c=1,u=0
?

2f 2x(n) %5 2 y(n) %, ? (12 x(n) ? y(n)

Ix(n21) Loy X 0B X020 079 320)
?

? 1 X% y(n) %,

2y(n?1) ?=297A1? )22 (12 9)y(n)
? 4 f

x(n?2) ? x(n),y(n?1)? y(n)

(3.1.1) g
(3.1.1)

0

X ? 1

X 2 (SZ?:D2
T (5,?5,22)

(3.1.1) (3.1.2)

Jacobin
34
(3.2.1) 0 1 XS
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(3.2.1) Jacobin

(x=1,y=0)

A?29?4qg/ 217 2s,)/ s, ?
g?9/s, 9gA1?2s,)/ s (322)

Jio(sL,s2,9) ? -
10( 9) g 0 129 g

?,?71?9?9/sl?1?79?9g?1?,?1?9g?1

(x=0,y=1)
? 17?g9 0

Ju(shs2,9)? 2

2 (3.2.3)
29A1?2s,)/s, 1?79?49/s,?

2,?71?29?g/s2?12g?9g?12?,?1?2g?1
1

o) 2 ? ? 207
1700935, ?9(5,7%)?5%,?9?) 5, 4
ss,?1

(
9.2

? ? ? ?
(1 77232705705 72072 (3.25)
ss, ?1
21 2
(2,?20(2,?9?22,2(2,272,) ?1?4|JS||?tr':JS':?1

[3,]2tr2, 2212 288205 2] (326)
ss, ?1
2 1 1

(3.2.1)

35

Is(x,y) ? X(275,° ?3%,?25s,)? ¥(2%5,°?3%,?5)?25 ?S, 20

(3.2.1)
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(3.1.10)

9
p ’)Xs?ys?ﬁ
f f §7?7s,?2

X% Y%,

(s°?2s,°25,2S,)(x?y)?2(5,?25,)(5,?S, ?2)(x?y)?s,?s, ?0(3.2.7)

)2 x(nf)?sl , y(ni?sz

gx(n ?D?y(n?1 ? gu(n) ?@?g)(x(n)? y(n)) (3.2.8)
5

2122 y(n?) ? g(% ?%u(n)Z) 212 g)(x(n) ? y(n)

x(n),y(n) (3.2.8) (3.2.7)
Is(x(n?1),y(n?1) ?0

Vo ?2X,?Y, ? (31(';3)925? 2822)?21) 2 v(n) ? x(n) ? y(n) ? v,

v(n?1) 2 g@?u(n)?)/2?2 @? g)(v(n) ?Vv,) ? 12 g)v(n)

n? 2  v(n? 0

(3.1.1)
(3.1.8)
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5.3.3

r)

c<1 g=1,u=0

28 2x() %, 2 y(n) %, ? 02 x() ? Y(n)

)%, ¥

?
Zx(n?1) Laqur X0
f 2

f

]2?52)2 ?(1?c)@ (33.0)

? L2 X0 YD g YOO,

2y(n?1) ? =2 2A1?
2 4

ZWM?ﬂm?wm
v(n) ? x(n) ? y(n)

(3.

f

3.2)

74



?
?f 2u(s,?s,)/2?Vv(s, ?s,)/2?1?Vv

%u(n°1>°x(”i”51 MO 2 2 uts 25 2u(s 7)1/ (339
?

%v(n ?21)7? %(1? ofu(s, ?s,) ?Vv(s, ?s,)] ?Ec(uz(n ?1) 7?1

?
24(s,8,) 2 (5.8, 20)2¢? 2 4(5, ?D)2(s, 22212 0)
2 s, ?s,

? 2 27 ?1 ?1)?./d(s, 3.34
Ok rererere LIRS CEORR RN (U
2. 70,7578 205 PUss; 72
3° s, 7§ U8 ?US, ? 2U,

u??Lv?1l

3u'?],v?1

x(N?1) 2 y(n?1) ? (x(N) %, ? y(n) %,)/ f

Is4(x,y) ? (x?5,?2y?s,)/ f ?2u,(3.3.5)

(3.2.1)
3.6
sl,s2 sl<s? (331 x=1y=0
(3.2.1)
S,?s,
sl<s2 Uy ? —2—— (3.2.1) X-y
S ?7s,?2
319 u, ?0,u, ?0 u,/u, 21?0

u,/u, ?1? 4cL? c)tt,(t, ?t, ?2tt,) 20
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t, ?s ?Lt,?s,?1
(3.3.5) (3.1.10)

5.34

g=1c=1
?2f ?2x(n) %, ?y(n) %, 717 x(n) ? y(n)
. 2L (1,,x<n)?sl y(n)%z)z

?X(n 21?2 (1?3?)x, ?2?y, ??

; 2= (19X(n)°31 Y(ni')s)
2y

2y(n?1) ? (1232)y, 27X, ? ?

(17 27)°
1747

(x?y)*/k?2*(x?y)?1?20 k ?
y 2 x 2k 2[4kx? k2 2k (3.4.3)

2y(n) 2 x(n) ? k 24/akx? k? 7k
3f 2x(n) 25 2 y(n) %, 212 x(n) ? y(n)
2272 (x(n) %5 2 y(n) 75,)/ 1

217D 2 5(1737)172) 252022)° 27

€1?715¢<s271.2

>0

(34.1)

(3.4.2)

(34.4)
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x ? (0.0058,0.053,0.941)

? ?70.01

© 1)
dx ? (0.9151.0710.7)
27202 x 20.311,y ? 0.193
1
(3.4.4) 34
o<1
321 3.3
35
1
i
=000 5
L, (6.8
0.5 \ \|/
R,
A ; £y
N u=0.2
M
e
[
0 0.5

34 (344

3.5
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GA

5.4

2-hit

2-hit

SGA
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6.1

6.2

(selection intensity)”
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1N?l fi
f g 7_? fiipi ?

* N % favg
[24]
P(0) N
S
t 2 min{ P(t) 2 s'(P(0)) ? (?x, ? X )}
P(0) t
[98]
N t p* (1)
x 1
p* (t) 217 N
2.1
o(x)={ x>Mf(x)>f(M);M<1} P(M)
t* P(M) ? 1?%
2.2: f(M)=f(1-1/2) o)

2.1)

(2.2)
P(t)
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ts*

6.3
| N=2
X 1 Fit(x)
Fit(x)
Ft(x) x 2
[0,1] f) (X
x? (011, f (x)? (0], f'(X) 20, f'(X)
n Pn(X)

Po(X)
3.1

Po(¥)* (%)

(0 2
2P0 " (x)dx

favg

p.09* (X
20.09% (0x

Peoy (X) ?

31

(3.1)

P (¥) ? P ()™ F(X)/ fopy

2P, (9* T ()l
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1

X)* f"(X)dx
?ipO( ) ( ) 512 1
20,00* (o N

B py()* (%) dx
G(n) ? 3 ? (3.2)
PPo () * F(X)"dx
p(x)=1 f(x)=x (b )
x«oly INN 1, InN
b ?2InM b 1?M
ts 2 Lx 21 2N N
b
(98] t¢ 2 15 N*InN
b
N
12!
Po(X)=1
3.2
O(InN)
b f(X)" 1,71 mb?
’)fx dx’>’) df (x) ? —— *’)f df (x) ? * o =% f(X
(%" 00 (X) ) (X)“df (x) f@) kol (%) a?
a<¢ <b
3-2)
.1 *gi*f Xn?lMg [f(M)]n'?l
Fe) %l , 1), F ™2 (™, £'?,), (0
G(n)? ? * 21 n?1 ? '
1,2 21 ,ml? f'(2,)  f@™?f(0) f'(2) [ﬂ]n?l,:
f'(?z) 7k’>1 Y 09 f(0)
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f(1)>f(M)>f(0) n [%] n?1 ??l[%]rm 991

),
(), 10,10, f(M)
") Hom Ty 1) 3
£(0)

0<E <M O0<E <1 ' (x) 20, f'(X)

£'(2,) - F2)
f'(?) f'(?)

. INN?Inc
(3.2 t*? N T 2in f (V) ?0(n N) (3.4)

3.2
f(x)=x
3.3
O(InN)

k .
Po(X) Po(X)?? ax ,k??2

i?0

M n % X i
P D% F(X)"dx X" 7 ax
G(n) ? 0 ? - |k?0

(0" T e ax

i?0

k k
XK'*? axdx?? a*
AN L3 el
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s 1 ’io K 1 |
?ai* o *Mn.|.1 731* — *M'
G(n)?i?o kn.l.ll ?Mn?l*i?ok n.l.ll
? 8 —- ?a
20 n?i?1 i20 n?i?1
M? 1 G(n)? M™
InN
3.2 t*? ?21?0(n N
(3.2) ?InM ( )
INN
6.4
41
ts(N) InN
g? lim w
N??? |nN
q? L ? 1

“nf@2mnfM) Inf@)2inf@22")

In f(2)?In f(M)

f@?c , f@

f(M)?2C ~ f(M)



6.5

O(InN)
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7.1

GA
Multimodal Function

(13]

p??’ 1/i? pANnp??) p
GA
GA
GA
niche
[100]
7.2

??0.577

(niches)

Euler

GA
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(carrying capacity)

Logistic ?N?2m?N, A1?N, /K) (2.1)
m K
GA

[86] (niche)

q
(Niching rug) N, 2 f,/?2% f,(22) i
(88] fi ;
(niche proportionate
population)
GA
7.2.1
De Jong 1975
CF
GA
[84]

87



&5 & Determinigtic Crowding, DC

DC De Jong [84] DC
GA -
&5 & (Probabilistic Crowding Algorithm)
PCA (6] X
ps ? £(X)/(f(x) 7 f(y)) y
1.2.2
Holland [
Goldberg Richardson 6%
[ fo: 2 f /m, fi
mi i
N
m 22" sh(d, ) d,
| J ? sh
0 1
0
5
* sh
?2 d.
A?(=H)%if d . 2?2,
sh(d ;) ?? 7?4 "’
?70, otherwise
q
) [61]

* sh
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* sh

(22]

7.2.3

[101]

Hamming

[101]

(22]

q

5

* sh

0](15)

Dynamical Sharing, DS

m
PMBGA [22]

K-means
GA
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7.3 (BCRC)

GA Based on
Clustering and Resource Competition, BCRC

7.3.1

7.3.2 K-means
K-means

[19,73]

K-means
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0.8

K-means

3.a

7.3.3

fc ?(1?c?x)?f,
c

O<c<1

Logigic

2.1)

K-means
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O(n*) (n )

7.4
BCRC
7.4.1
q
0 q i
X
2 2 2
F(X)? = (L7 C2%) % k21971 (41
? (12¢2) X 2f, 2(12¢2x,) X, ?f,
i71
q 1 o-1
F (X)? xS s
f1f,AL?ex)?12¢% (4.2)
i 1 q
a f. q
(1?2c¢?x,)?? —?7? (1?2¢%)?q?c (4.3)
in T, i71

q
m? ? i(4.4)

i71 1

92



m' f ?2c? 2
s?l—q?l?(l?q'c) (4.5)
. m?c?f, C m?f,
J J
0
71.4.2
0?7 x°?1
m?f. A1?c) 2q?c? m?f.
BCRC
r
c 1
g?m?f, ?c?1(4.6) fi
1
M(n)?n?? —2?f  M(n) r
71 Y
n (4.6)
M()?M(n21) 2 (f.,.2 f) 77 fi?o M(1)=0
i71 1
M(n) q n>q
M(n)>c
(4.6) c q
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f.2h3L? (i ?1)),d?0,d??1

m?29 229 1 2012020 1 o 47
Wt mhAL?23G?DA) % h h 2
46) q7ma, 2r202d?)2d¥2c 2%
! 2 2 d
vJ2c/d
(4.5)
1 g?c, .1 h, .1
XS 2= AL? =) 2 = (1?7 —) 2 =AL? 229 ?),i ?1.4/2c/d
' 07( m?fi) c( hi) c?( 1’>(|’>])’R:i) cf)( )
X521 ? X5i ’)E’)l’)(Lf')
c f.
(o 1
|’7l : Xl 7q ’K—’? )
fi?l
7.4.3BCRC
(2.2)
BCRC (4.5) (2.2)
(4.5)
(2.2)
BCRC
of of

avg
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f, 2 1/(b?of,) b?qf,,/c

g q
m? ’? io ? boOf' OC](b'?Ofan) (45)
i?71 1 i
XS q C Ofi Ofi
7oA 22— b2 of )] ? ? 48
7( mar) Ju qb7of Ly 0O o E (48)
o
BCRC
7.4.4BCRC
Fk().(’) X ? x*
7
( 20)?
X X ? X f, AL?Cc?X%)
F) 21 21720
X X ? x° K
7.5
F(x)’?exp(')zlnz,)(X 01) )N (52x), x? [01) 1228483 71
5
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d(x1,x2) ? |x1? x2

50

N | X |Fx) | VR | mn) 220 17 £(x) | F(x,)MM(n) | M(n)
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ABSTRACT

In many realms, large-scale optimization problems and other
complicated problems have presented a serious chalenge to the
traditional optimization technology and artificial intelligence theory
recently. A set of algorithms named as evolutionary algorithms (ECs)
are brought forward for solving these problems. Evolutionary
algorithms imitate thought of recombination, mutation and the
survival of the fittest in nature evolution. These agorithms have
several advantages. they don’'t depend on domain knowledge; they
are not restricted by the limited factor of search space and they have
the internal parald character. Thus, the ECs are used in many fields
successtully. In evolutionary algorithms, the genetic algorithm (GA)
istypical, and used very widely.

The basisof GA'’s theory isnot perfect compared to its obvious
biological background. A series of theories are brought out to
analyze some essential problems, such as convergence, convergence
rate and applicability. As GA is pardld, stochastic, especidly the
crossover operator is nonlinear, so a consistent, completed, and
practical theory anadysisframeis ill not constructed up to now.

In order to analyzing genetic algorithm, a lot of mathematics
models are put forward. The early scheme theory doesn't function
meeting with limit conditions. The limiting convergence conclusion
Is drawn for traditional GA and elite GA applying Markov chain
method which depends on the unreduced character of mutation
operator. Making practical application is a long distance to go. In
course of proving, the effect of crossover operator is discussed, but
it is just one factor acting as model status exchange operator, the
function of crossover operator leading to final convergence god is
not put into consideration. In recent, some results are proved by
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using dynamical system method on the population of unlimited
individuals. It is shown that unlimited individuals population has
close relationship to the limited. The traditional linear analysis tools
become invaid because the crossover operator is nonlinear, so it is
hard to modeling and analyzing the interaction of al evolutionary
operators.

The model of standard GA, in which selection and crossover
operator are included but mutation is not included, can be
constructed using dynamical system method. The eigenvalues of
Jacobin matrix must be calculated at each normal fixed point (the
status that the population is filled with only one genotype) for
analyzing the attraction character of this model. Because of the
resolvability of model, the Jacobin matrix can be solved through the
matrix of each operator. It is easy to determine the matrix of
selection. This matrix is diagonal. It is the main obstruction former
research meeting with for the matrix of crossover is difficult to
calculate. However, the matrix can be converted to an upper triangle
matrix under a new permutation based Hamming distance. Thus all
eigenvalues of completed model can be calculated. The normal
fixed point can be distinguished between repulsive point and local
peak toward which model can be converged depending on whether
each absolute value of eigenvalue is less than 1. The exact
mathematics definition of local peak, which is usually mentioned in
publications, is given basing on anaysis.

After checking the conditions of above proven theory, it is
clear that the theory is applicable for other familiar evolutionary
operator. The smilar conclusions are proved for other selection
operators which are based on ranking and tournament. By the way,
it is found that the limiting behavior are equivalent between linear
ranking selection and tournament selection whose scaleis 2.
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The mechanism of GA includes not only limiting behavior but
also the globa running shape before convergence, in one word, the
existence and convergence of nonnormal fixed points. The
dynamical shape of GA, which is used to solve for a representative
simple problem, is exhibited. The stability of this shape is discussed
on when control parameters are changed. From these analysis, the
shape is dmost certain for this problem when the mutation operator
is omitted. There are local peaks and saddle points (if perhaps) in
the dynamical shape. The arrived peak is determined by initial
distribution. It is also not sensitive to the shift of initial values.
When there are two loca peaks, the convergent domain can be
caculated. The modd is not changed when mutation probability is
smal enough. When this probability beyond a boundary, the
dynamic shape generates saltation. These conclusions is helpful to
select appropriate parameters.

The conception of takeover time is usualy used to estimate the
performance of selection operator, that is to say, selection pressure.
Many papers confuse the number of population with the number of
genotypes, thus, the definition of takeover time should be re-defined.
Moreover, a lot of quantitative results are based on some specific
fitness function and uniformity initial distribution. In this paper, the
takeover time of selection operator based on fitness function
proportion is analyzed. It is proved that the rank of takeover time is
O(InN), and it does not depend on specific form of fitness function
or initial population distribution. The takeover time coefficient is
given to measure the performance of different selection operators.
Each type of fitness function and its transform will only influence
on this coefficient. The effect that some familiar transforms of
fitness function have on selection pressure is discussed.

It is difficult to solve the multimoda function optimization
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problem using standard genetic agorithm. Some improved
algorithms are brought out, including niche GA which is based on
sharing or crowding. The purpose of these agorithmsis to maintain
the diversity of local peaks through the creation of niche in running
progress. A new niche GA that based on clustering and resource
competition (BCRC) is approved, which is composed of clustering,
sharing and crowding technology. A multimodal function can be
optimized efficiently through BCRC without assurance of the count
of niche and the value of niche radius in advance. This algorithm
has the ability to exclude sdf-adaptively the loca peaks whose
fitness is small enough. The computation complexity is much less
than the algorithm based on sharing. This algorithm is competent for
multimodal function optimization from primary mathematical
analysis and experiment test.

In al, the running mechanism of genetic algorithm is analyzed
in this paper. There are some conclusions as follows:

1. In the standard GA that uses fitness function proportion
selection operator, for each i 2 0.m,i ? k, if any genotype k satisfies
f. ? (inh(k,i)?? 21?2 ?)?f , the point in search space that the
frequency of corresponding genotype is equals to 1 is called locd
peak. In the neighborhood of local peak, GA will converge toward
the stable status that the population is filled with this genotype.

2. The above proof is also adaptable to other selection
operators, such as linear ranking, exponentia ranking and
tournament selection.

3. There are two loca pesks and one saddle point in the
dynamic shape of GA for the 2-bit problem. The state space is
divided into two domains by the unstable manifold that passes
through the saddle point. All points in each doman converge
entirely toward the local peak belongs to this domain.
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4. For 2hit problem, if mutation probability is small enough,
the dynamical shape of model will have a little bit change. If
mutation probability is big enough, the model will generate saltation,
and have only a globa attractor in state space.

5. The rank of takeover time is O(InN) for selection operator
based on fitness function proportion, and it does not depend on

specific form of fitness function or initia population distribution.

6. The niche GA that based on clustering and resource
competition (BCRC) is competent for multimodal function
optimization. If the fitness of a locad pesk can not
satisfy n??i”?lfi?fn?c?l, this pesk will be discarded

automaticaly.

These conclusions are helpful for us to understand the running
mechanism of GA deeply, to design new evolutionary operator and
new agorithm structure, to improve the efficiency and effect of
genetic algorithm.



