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Abstract

In-process adjustment of the blank holder force can lead to
higher formability and accuracy, and better part consistency.
There are many studies on the application of process con-
trol to sheet metal forming. However, process controller de-
sign has not been thoroughly addressed, and is studied in this
paper. A constant gain proportional plus integral (PI) con-
troller with approximate inverse dynamics will be presented
to achieve small tracking error regardless of model uncer-
tainty and disturbances.

1 Introduction

Sheet metal stamping is an important manufacturing process
because of its high speed and low cost for mass production.
Figure 1 shows a schematic of a simplified stamping process.

Figure 1: Schematic of a stamping process

The basic components are a punch, and a set of blank holders
which may include drawbeads. The punch draws the blank
to form the shape while the blank holder holds the blank to
control the flow of metal into the die cavity. Some process
variables are also shown: Fj, is the punch force, F} is the blank
holder force, and F; is the restraining force within the blank.
The good quality (i.e., no tearing, no wrinkling, and high di-
mensional accuracy) of stamped parts is critical in avoiding
problems in assembly and in the final product performance.
Consistency (i.e., dimensional variations between parts) in the
stamping process also significantly affects subsequent assem-
bly in mass production. New challenges emerge from the use
of new materials. For example, lightweight materials (e.g.,
aluminum) are essential for reduction of car weight to achieve
high fuel economy. However, aluminum has reduced forma-
bility and produces more springback [1, 2].

The control of flow of material into the die cavity is crucial to
good part quality and consistency. Previous research showed
that variable blank holder force during forming improves ma-
terial formability {3, 4], reduces springback [1, 2, 5], and
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achieves part consistency [1, 2].

One strategy (i.e., process control) for the application of
variable blank holder force is shown in Fig. 2 [1, 2].

Blank Material + Distarbances

Process Variable (e.g., Punch Force)

Figure 2: Process control of sheet metal forming

In this strategy, a measurable process variable (e.g., punch
force) is controlled by following a predetermined (e.g.,

punch force-displacement) trajectory through manipulating
the blank holder force. A similar approach has also been re-
ported [5, 6, 71.

Recent work on process control in sheet metal forming led to
the following conclusions [8]:

1. Consistency of part quality can be improved through
the tracking property of feedback control.

2. Better part quality can be achieved through selection of
the reference punch force trajectory.

It is important to realize that a badly designed process con-
troller cannot ensure good tracking performance, and, in turn,
cannot guarantee good part quality and consistency. Clearly,
the process controller plays an important role in the feedback
control system and needs further investigation.

Issues of process controller design for sheet metal forming
have not been properly addressed, especially, from a control
point of view. Modeling sheet metal forming for process con-
troller design has been investigated [9]. Hsu er al. [10] re-
cently proposed a first-order non-linear dynamic model for u-
channel forming which can capture the main characteristics of
the process dynamics observed during experiments. Propor-
tional plus integral (PI) control has been used for sheet metal
forming and controller parameters were typically determined
by trial and error {11].

The disadvantage of PI control is that high controller gains
can achieve good tracking performance but cannot maintain
good stability robustness while low controller gains can main-
tain good stability robustness but cannot achieve good track-
ing performance. Since sheet metal forming is a highly non-
linear process, it is difficult to tune a PI controller to stabilize
the closed-loop system with good tracking performance. Hsu
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et al. [8] investigated constant gain PI control with feedfor-
ward action (PIF). Although PIF control worked well under
dry condition, it generated a huge peak in the blank holder
force under lubricated condition.

The purpose of this investigation is to systematically develop
a process controller for sheet metal forming to stabilize the
closed-loop system with good tracking performance. A con-
stant gain PI process controller with approximate inverse dy-
namics for sheet metal forming will be proposed. The first-
order non-linear dynamic model for u-channel forming [10]
will be explored to obtain the approximate inverse dynamics,
which is related to tracking performance. The constant gain
P1I control will be designed to ensure the tracking performance
regardless of disturbance and model uncertainty. Numerical
simulation results will demonstrate the capabilities of the pro-
posed controller.

2 Systematic Process Controller Design

A schematic of the constant gain PI controller with inverse
dynamics is shown in Fig. 3. The block “Plant” refers
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Figure 3: Schematic of the constant gain PI controller with inverse
dynamics.
to the real stamping process or its process model. Fjq is the
reference punch force trajectory, Fj is the blank holder force
applied to the plant, and F, is the punch force generated by the
plant. A systematic development of the proposed controller
requires the following steps:
1. Model sheet metal forming (i.e., “Plant”) for process
controller design.
2. Design the process controller (i.e., “Inverse Dynamics”
and “PI”).
3. Adjust and test the performance of the process con-
troller through simulation.
4. Adjust and verify the performance of the process con-
troller through experiment.
Adjustment and verification of the performance of the process
controller will not be presented in this paper.

2.1 Modeling of Sheet Metal Forming
The process model for u-channel forming can be represented
by the following first-order non-linear dynamic model [8, 10]:

. 1 o(Fp) OF, .
AR Ak M TS NG
where
B = alF) By (1~ exp(~ze) @
a(F;) = 1.3537-1.8511x1072.F, 3)
+1.2340 x 107*- F?
©o(F) = 1.5689+5.6906 x 1072-F, )

—1.2669 x 1073 F} +1.0279 x 107> F}

193

o(Fp) and T(Fp) are the DC gain and the time constant, de-
rived from constant blank holder force experiments.

2.2 Design of the Constant Gain PI Controller with Ap-
proximate Inverse Dynamics
For a given reference punch force trajectory, a controller is
designed to generate the blank holder force to achieve:
1. Stabilization of the closed-loop system.
2. Asymptotic convergence of the punch force and the ref-
erence punch force trajectory.

The proposed controller consists of two parts: approximate
inverse dynamics and PI control. The approximate inverse
dynamics tracks the reference trajectory while the PI control
ensures good tracking performance regardless of disturbance
and model uncertainty.

2.2.1 Approximate Inverse Dynamics: A schematic
of the inverse dynamics is shown in Fig. 4. Fpy is the out-
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Figure 4: Schematic of the inverse dynamics.
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put of the inverse dynamics and also part of the calculated
blank holder force through the proposed controller, and e is
the tracking error due to using the inverse dynamics alone. In
fact, the inverse dynamics is feedforward control.

The tracking error is defined by
e(t) = Fp(Fy,t) — Fpa(t) )

The tracking error dynamics, obtained from the derivative of
e(t) with respect to time, ¢, and the substitution of Eq. 1,
becomes

. 1 o(Fp) OF o (Fp,t) .
=— e+ Fp+ F,—F,
AR TR T TR T o
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Lyapunov theorem is applied to prove the asymptotic stability
of the tracking error dynamics, which means asymptotic con-
vergence of e to zero. Choose a candidate Lyapunov function
as

=3¢ )
Its derivative with respect to ¢ is
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then Eq. 8 becomes

. 1
V=c—uV 10
T(Fp) (10
Equation 10 is negative definite because t(F;) > 0 [10]. Ac-
cording to Lyapunov theorem, the tracking error dynamics is
asymptotically stable if Eq. 9 is satisfied. Therefore, Eq. 9 is

the inverse dynamics since Fj, can be solved for a given Fpy.

Solving F;, from Eq. 9 depends on fe%iﬂ because yzfg:ﬁ"")

could be zero. Figure 5 shows contours of 9525%’1. The

-
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Figure 5: Contours of a—‘refg:ﬁ”").

figure shows that éﬁ’g%") could be zero. This will cause nu-

merical problems about solving Fy, because F}, could be very
large or become indeterminable, which implies that Fj will
change abruptly or cannot be found. To reconcile this prob-

A OFpc(Fi ) —2 i :
lem, that F, = 0 when I_%E_| < 107° will be a.ssumed in
simulation. The inverse dynamics (i.e., Eq. 9) with this as-
sumption will be called the approximate inverse dynamics.
Later, Fpg will denote the solution of Eq. 9.

2.2.2 Constant Gain PI Control: Generally, the in-
verse dynamics or the feedforward control cannot sustain any
disturbance or model uncertainty. A feedback control us-
ing a constant gain PI controller is built to reject disturbance
and improve robustness to model uncertainty. The constant
gain PI controller is designed based on the perturbed process
model.

The perturbed process model is derived as follows. Assuming
that the disturbance, F;, comes at the input of the process
model in Fig. 4, then

Fy=Fp+Fy; (§9))
The tracking error, €, becomes
e=Fp(Fp,t) — Fpa 12)

¢ consists of e and the error due to F;. Assuming that Fy
is much smaller than Fjg, then Fj,(Fp,t) in Eq. 12 can be

approximated by

Fp(Fy,t) =Fp(Fp,t)

Fy=Fyp

anc (Fba t)
+ oF;,

(13)
“Fy— Fpqy

Fy = Fpo

where g;f ~ %f,% is applied [10]. Substituting Eq. 13 into Eq.
12 leads to

OFpc(Fp,t)

gE=e+ 3F,

Ky a4

Fy=Fp

Although e decays asymptotically, € is still influenced by F.
The perturbed process model is

_ anc(Fb,t)

oF, Fq 15)

Fy=Fy

To maintain tracking performance (i.e., € approaches e), a
feedback loop is designed to force &4 to converge to zero.
A constant gain PI controller is investigated here. Figure 6
shows the block diagram. K, is the proportional gain and

Perturbed
Process Model

+ 9 Fp(Fyo, 1)
Fy

Figure 6: Block diagram for feedback loop design.

K; is the integral gain. dFj is the output of the PI controller
and also part of the calculated blank holder force through the
proposed controller.

Assuming that the perturbed process model is a constant gain,
Gy, then for the constant gain PI controller, the dynamic equa-
tion of the closed-loop system becomes

Go K; Go

= F,
156K, ¥~ T+GoK, © (16)

]
Its solution is
—t t t—t\ Fi(t)
=¢g,4(0 — — ) —=d
ealt) =2a(0) exp () + [ exp(20) 2 ae
an

where

_ 1+Go K,
" Gok;

To is the time constant and T is the dummy variable. For a
given Gy, choose K; and K, such that 1 is as small as possible
and 1o K; as large as possible. Hence, €; will decrease as
quickly as possible. However, €4 generally depends on Fj.

18)
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2.3 Constant Gain PI Controller with Approximate In-
verse Dynamics

The block diagram for the constant gain PI controller with
approximate inverse dynamics is shown in Fig. 7.

F Approximate Fi
Inverse
Dynamics

Process
Model

I;‘p (FbO ’ t)

Figure 7: Block diagram for the constant gain PI controller with
approximate inverse dynamics.

3 Simulations and Results

The simulation is used to show the performance of the pro-
posed controller on disturbance rejection and robustness to
model uncertainty. In the following simulations, the refer-
ence punch force trajectory, Fpy, is generated by Eq. 1 using
the constant blank holder force, 60 kN.

3.1 No Disturbance and No Model Uncertainty

Fyin Fig. 7 is 0 kN. The mathematical relations for the blocks
of “Plant” and “Process Model” in Fig. 7 are identical. Fig-
ure 8 shows the simulation results.  Figure (a) shows that
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Figure 8: Performance of approximate inverse dynamics: (a) mea-
sured Fj, (i.e., Fp), (b) reference F), (i.e., Fpg) and mea-
sured Fy (i.e., Fp), (c) tracking error, [€| = |F; - Fpy), and
(d) relative tracking error, Y = |g|/ Fpq-

F, is very close to 60 kN. The maximum overshoot is less

than 0.03 kN. The reasons for F;, # 60 kN are the previously

mentioned numerical problem (i.e., when la—lr%’:’”ﬂ( <1, F

changes abruptly or cannot be found) and calculation errors.
Figure (b) shows that F,, can track F,4 very well. Figures (c)
and (d) show very low tracking error (less than 4 x 103 kN)
and relative tracking error (less than 2 x 1074,

3.2 Disturbance Rejection

F;inFig. 7 is set to be 20 kN. The mathematical relations for
the blocks of “Plant” and “Process Model” in Fig. 7 are iden-
tical. Figure 9 shows the simulation results. Figure (a) shows
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Figure 9: Performance of disturbance rejection: (a) calculated Fp
(i.e., Fpo + dFp,), measured Fj, (i.e., Fp), and disturbance
(ie., Fy), (b) reference Fp, (i.e., Fpq) and measured F,
(i.e., Fp), (c) tracking error, |€| = |F, — Fpy), and (d) rel-
ative tracking error, Y = |g|/Fp4.

that the controller output (i.e., Fyo + dFp) can be adjusted to
compensate the disturbance; therefore, the measured Fj, fi-
nally approaches 60 kN. Figure (b) shows that F, can track
Fp4 tegardless of disturbance, Fy. The tracking error, €, in
Fig. (c) asymptotically decays and its maximum value is up
to 0.9 kN. The relative error, Y, in Fig. (d) also asymptotically
decays. After 5 sec, the relative error is less than 1073,

3.3 Robustness to Model Uncertainty
F; in Fig. 7 is set to be 0 kN. The uncertainty is shown by
varying model parameters in “Plant”:

o“Plant”) =
t(“Plant”) =

(1+84) - o“Process Model”) (19)
(1+ 8¢) - T(“Process Model”)  (20)

Figure 10 shows the simulation results for 8y, = 0.1 and
8. = 0.1. Figure (a) shows the measured Fp, which is in fact
the same as the controller output (i.e., Fpp + dFp). The mea-
sured F, or the controller output can be adjusted to compen-
sate model uncertainty. Figure (b) shows that F), can track F,g
regardless of model uncertainty. Figure (b) shows that F, can
track F,4 regardless of disturbance, F;. The tracking error,
&, in Fig. (c) asymptotically decays and its maximum value
is up to about 0.2 kN. The relative error, v, in Fig. (d) also
asymptotically decays. It is less than 0.01.

4 Discussion

In Fig. 5, the area where ‘szs%'ﬁl > 0.01 allows Fj, not to

be zero while the area where B—FE“;(,,{"—”) < 0.01 assumes Fj,

to be zero. This assumption in fact limits the upper bound of
|Fp|. According to this assumption, the approximate inverse
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Figure 10: Performance of robustness to model uncertainty (8o =
0.1 and §; = 0.1): (a) measured Fj, (b) reference Fp
(i.e., Fpq) and measured Fp (i.e., Fp), (c) tracking er-
ror, || = |Fp — Fpgl, and (d) relative tracking error,
v=[€l/Fpa-

dynamics can successfully generate a blank holder force tra-
jectory (i.e., Fpo) corresponding to a given reference punch
force trajectory.

The tracking error, €, can be divided into two parts: e due
to the inverse dynamics and €4 due to the disturbance. (See
Egs. 14 and 15.) When there is no disturbance and no model
uncertainty, € is in fact the same as e. When there is distur-
bance or model uncertainty, € will be larger than e. For ex-
ample, Figs. 9(c) and 10(c) show larger tracking errors than
Fig. 8(c). Therefore, the inverse dynamics will determine the
tracking performance.

As shown in Fig. 4, the inverse dynamics is actually feed-
forward control; therefore, it cannot maintain its performance
when disturbance or model uncertainty appears. The feed-
back control (i.e., the constant PI controller) is designed to
maintain the tracking performance regardless of disturbance
or model uncertainty. Although the tracking errors in Figs.
9(c) and 10(c) are larger than the tracking error in Fig. 8(c),
they decay asymptotically. Therefore, the tracking perfor-
mance can be maintained through the constant PI controller
regardless of disturbance or model uncertainty.

5 Summary and Conclusions

A constant gain PI controller with approximate inverse dy-
namics is systematically designed based on the first-order
non-linear dynamics. The proposed controller has a feedfor-
ward loop (i.e., the approximate inverse dynamics) and a feed-
back loop (i.e., the constant gain PI control). The feedforward
loop determines the tracking performance while the feedback
loop relates to disturbance rejection and robustness to model
uncertainty. Simulation shows that the proposed controller
can track the reference regardless of disturbance and model
uncertainty. Future work will include experimental imple-

mentation and validation of the proposed controller.
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