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Abstract

Analysis and detection of Zn** in cells is very significant as it has multiple and
important roles in living process. But many normal analysis techniques, for examples,
UV-Vis spectrum, NMR and EPR cannot be used to detect the special metal ions in
living things. The fluorescence method is not only simple but also excellent in real
space, real time, high sensitivity and selectivity. There is important significance to
understand the multiple roles of zinc with availability of fluorescent probe systems
permitting quantitative determination and imaging of zinc fluxes and levels over a

broad concentration range.

Based on carbonic anhydrase (CA)-sulfonamide inhibition, three fluorescent probes
D1, D2 and D3 were designed and synthesized. Under physiological conditions, the
emission maximum wavelength of D2 was blue shifted from 540nm to 520nm upon
addition of Zn’*, and the fluorescence intensity enhanced nearly 4-fold. The apparent
dissociation constant (Ky) is in the sub-nM range, and its fluorescence was not
induced by other biologically important cations such as Ca’" and Mg®" under

physiological conditions.

Three compounds N1, N2 and N3 based on 4-amino-1,8-Naphthalimide were
designed and synthesized. In tris-HCI neutral buffers, both the absorption and
emission maximum wavelength of N2 are in the visible range. Upon addition Zn*",
the fluorescence enhanceinent is §5-fold and K4 is 0.8nM. Using fluorescence

microscopy, the probe is shown to be capable of imaging intracellular Zn** changes.

A series of fluorescent probes N4, N3 and N6 based on PET were designed and
synthesized with imide as reaction position of 1,8-Naphthalimide. In pH 7.4 aqueous
solution, both quantum yields of N4 and N5 are 0.004. Upon addition of saturating
Zn**, the quantum yields increased 43 and 23-fold, respectively. At pH 5, they are 30
and 10-fold, respectively. So, compared to H*, the fluorescence intensity can be
enhanced selectively by Zn®". Theoretical calculations show that intramolecular
hydrogen bonding can inhibit the fluorescence intensity, which provides a new idea to

avoid the affects of H™ for PET fluorescent probes.

A PET fluorescence probe. Bl for Zn** that utilizes
1,3,5,7-tetramethyl-8-phenyl-boron dipyrromethene as a reporting group and

di(2-picolyl)amine as a chelater for Zn’* was synthesized and characterized.
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Molecular mode!l of intermediate 2 gives a planar conformation of the boron
dipyrromethene moiety, while that of Bl exhibits a curved conformation. Upon
addition of saturating Zn”*, the quantum yield of B1 increased 11-fold, and up to
0.857. With pK ', of 2.1, up to now, B1 has the lowest pK ' in all the Zn”" probes. The
fluorescence intensity of B1-Zn** complex is pH-independent in the range of pH 3-10.
Using fluorescence microscopy, the probe is shown to be capable of penetrating into

living cells and imaging intracellular Zn*" distribution.

Keywords: fluorescence, fluorescent probes, photoinduced electron transfer
(PET), Zn**, bis(2-picolyl)amine, proton
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Fipurel-1 Principie of cation recognition by fluorescent PET senors
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Figure 1-2 Spectral displacements of PCT sensors resulting from interaction of a bound cation with &n

electron-donating or electron-withdrawing group.
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Scheme 1-3 ICT fluorescent probes
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Schemel-5 The probes based on monomer-excimer mechanism
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Scheme 1-6 A FRET fluorescent probe with two kinds of coumarins
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REERREBUER., YEEEBRAN, REWURI DEFIZEMNRN, DA
PoXRT, PO S A RBERE S, 15T D-ABES, FRET K EB LIRS,
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Scheme 1-7 A FRET fluorescent probe with two kinds of fluorescent groups:
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1.2 ETFTHERBRRX S FHEE

XEHEBREFERSTHEHEET LR EER T AR, BE %45

FRUEHBEEECERRW, EEEEHFE,

BRRMNE F R
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Scheme 1-8 A reactive fluorescent
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Scheme 1-9 A ketoaminocoumarin fluorescent probe
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Scheme 1-19 A transtion metal fluorescent switeh based on redox mechanism
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Figure 1-3 mein roles of Zn?* in biotogical processes
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AN EPEHBKR, FUATSQETERS M S EH T — SH R,
Zalewski/ éEl.ZETSQE‘(J@'i‘EJ:%l'AE?EEEEEﬁZinquinEE (25) 1, #2518 A\ 3
WEBEAE, EHOERTKERLBMEET26, 3T KA S HER
i, MTTZEEZa2 78 M M4 K M . 2pMZinquin® 5 B R 3%
56, UWWZo R ELEHABREE, RARBERKHEE, B2 KHMBD
WE (1pM) B, KRB K205, FELEYBRTEENEEERE T (U
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Ca?*, Mg, Cu®*, Fe’*. Fe’*, Mn®'. Co*"%) MRS EW26-Zn " E 5 WM
FHIBRE . 2606 MM Zn* K BT E A 100pM-100M2Z 8] . BB T H BT HEE
SH, 26520 BRI INEBAKEY, EpH 748, BEEHE S HET0
X108 M fr11.7X 108 ML,

ally

EtOgC\l -OECW
MeO O S © X Meo |
3 P AN
e
Nf N Me N Me N-"‘ Me
w HN. 1) membrane permeable HN~502 n _
*S0, SO, ~ 80,
2) hydrolysis by
intracellular esterases
Me Me | Me Me
. . 2-Me-TS
TSQ Zinquin Zinquin acid e-T5Q
24 25 26 27

F1-11 REHZa R FES

Scheme 1-11 Early Zn*" fluorescent probes
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F2INEREAMRIEFERA. X-IHREohE—PHETEEMH
), WM EFOBTEMRNEEHTE EANEFSZn* BAL.

1.42 HBEEBREBENIT R IEEEH

19404E, MannFKeilini BT HB LGB NEH S EEVHRBEFE (CA)
#13% #EU7), 19674, ChenFKernohand® Hi 4 M 41 4 o C AR % M /K 19 71 B 8t B
2BETHRLIME S Y, BHBINERTY, KT, 288 % & B K % 580 nm,
S BFARMNK0.055, HEASTCARE, WM EHBEKERS468nm, ME
FREERAR084. R RENKBEEBRET I RBRNE S ARRY
W, BKHE, FEBBEELESCARRE—AMHETF (R ASONHD. FiLl

P A B — 1R T B R B RO 4R 6 SR CATE TR T 20”9
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WA . BB -T B S 30 M dapoxyl B8 BE BL 31150 23X — & BY % Sk 5 4t
ME—-SREE. 30N EZn"HCAKE (BEHE K =23nM), RAEHE
MRS Zn WEEL10-100nMTEE A R . 3148 & CAE K J6 38 & 1 K90
T, NiEMN605nmIE B B S30nm(Ky = 0.3uM). ZIHMT LA T E LS
7E53SnmAM68SnmiAb M KA BE LA Za I E BB .

hydrophaobic
NMe- nvironment
carbonic anhydrase “ \
o
025

pH7.4 1
SO5NHa ‘!}JH
~— [ TN=\
\N\ |{H‘<NH
dansylamide NH
28 29

£ 1-12 Eﬁﬁ@mﬁﬁﬁﬁﬁf

Scheme 1-12 Three carbonic anhydrase fluorescent probes

14,3 M A5 4 0 % R B2 B A0 Zn2 o 6 2R A
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NEEF, RHEBMBOPMHZIERE. XA, NNNN-E (2-HtE FE)
7.7 f% (TPEN) 33 — M HEEM, MZa"" EREFMNENYE (K = 2.6X
107'M), BRICa I EFMERE (Kg = 4.0x107° M) BL32 grpA & I TPEN
MRS FIHEAEETCME, M2 " ERTNEEMN, DPARE EHNERT
EPETHMICTHH T HEBR TH B

i
\ 4 & B
hil.:Zn%: N N
N7 N= N N, N N==
N\ / “ | N\ /
DPA-ZnZ* TPEN
32 33

7 1-13 DPARITPENT & B
Scheme 1-13 Schematic drawing of DPA and TPEN groups

o348 R B H g B DPAN Z02 R B R B MPETE R F A Zn” R 2
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B 910 2 135184351 (Newport Green) 2 55 — 4~ 55 F 89 LIDPA Y i1 5 2 F 89 Zn™
RS FHEH. EEHEET, 8205, 3SHRABEMAIIM, HE
FCa AR, B CRUBEBLNERXBTME, T2 A T HNE T B (7
BEBRIBHAMETHE. (B33 Zn” B F W EMEBEB T X Zn W R
[69), 1= 3 g 4k & W 36184 P B AR L3S X Zn > B B L IR B MK, (B X Zn’ TSR
MEtisEE., B bitid, HE8Y34-368T R SATUHMZ B &N
BET, SHANIaCAEUE, RENZICERBRAOENE. LU, EEE
SFEFASINGEHNZEAMEE, HixSMBAXNZn 1 E M.
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Scheme 1-14 Three Zn*" fluorescent probes based on DPA
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I HRE NN BERRRSN, RO EREFUREH LR AR FRREAR
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HF—ARAFALEEFARNER, THLFER 5Zn L1128 1,
B ARREETRMZ e BOA . A TR A LR ERUR T RES &5 B %K
T, MZP4ZIZP8, RESTHFEIATR-R Q-URFE) -HFE-N-FE
#1X)-% % (BPAMP), XBZ\"5RAFH=AEET. REELHEAET
UE— KA TR ARAEEEY. FIANER L AETFHMDPALHHE
EFHFAYPETHEBRMBRTFLE, NTTHEB TPETHRE, BETRAREH
MW RN, BEZoERB T RAMBER. BOUK, B4 FRITEES,
Lippard ER TR BRNAR A RBALETF AR ABENEW: | EFAE
FE A FEAMMBELAGRETFE: 2, BFEXARTRA B KA
ET{ENPETEEMIT:, BHENE. T RAZEEBNFRUR N2 E
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R, RXEHREXpHHBEBEEIRE T EF R H A .

ZP1:X=Cl Y=H ZP4: X=H,Y=H Z=Cl
ZP2: X=H, Y=H ZP5: X=F Y=H, Z=Cl
ZP3: X=F,Y=F ZP8: X=Cl, Y=H, Z=Cl
ZPF1: X=ClL,Y=F ZP7: X=0Me,Y=H, Z=Cl
ZPCl1; X=Cl, Y = Ci ZP8: X=H Y=F,Z=F
ZPBr1: X=Cl, Y =8Br
ZPF3: X=F,X=F

34 35

R 1-15 B E K EPETZa K A FH
Scheme 1-15 Two kinds of fluorescent PET Zn*' probes based on fluorescein
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ZnAF-1FF ZnAF-2F7E ¥t bl B 55 OB 4 M TR Zn2 M S M R 0 FF o5 28

r“

W& 37O Rk E R FERR M, KR B B #E Ca T OMET RO
4TS, BAKIRADPA, ITRETFICTRERH, HTHRETNER
AT FERAL A T Z™ 2 B RN, B4 T 5 6 00 TR MG A OB Ok B
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(Rey = 365 nm, A= 335 nm) . ZnAF-lR%ﬂ ZnAF-2RABHEE T S, ZnAF-R2

GKBHR R R R — &, FEA4EMERESZO WA, (8% T pHA X
AN TFHEAMRAHRE, MPETER NS FHRE TAMR, ICTHER X5
FREEEAINE, RN BERET R R K, 8 Rk 5 8 5 0% 5
EEBRKNBE.

R R
loRlR®
N/ cooH
b ZRARY  ZaREAF COOH
8- ZnAF-2 ZnAF-2F ZnAF-R1 ZnAF-R2
36 | 37

®,1-16 NaganoW A X R LUDPAN K A MEF M Zn* H 4 F 4

Scheme 1-16 Two kinds of Zn**fluorescent probes based on DPA developed by Maganos’ group.

144 B EEETRREELIRMEARZE S FHEH

AR
W ~ 1
06 r e _
~ NH H] ij :; “‘ ;

38 39 40

£1-17 SAUBR LB AREN IR THLE

Scheme 1-17 Three Zn?* fluorescent probes hased on polyamine
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OChs HNJ©/

N{H)CH,CO.K N(CH;CO2K)

R= CHQCH;;, Na

43
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R1-18 =AU RBESTRAEMNZ RS 7Y

Scheme 1-18 Three Zn?* fluorescent probes based on carboxyl groups

a4t E SRS ERANETFRIELBLUBAPTABERE T EF —4N-
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BB PETHRE MBS TEHE . IR MAFE LR B F 8 K531,
SHCa MM REEBWESBETFTIWMN, HKAL H80nM. HEFEXR, RE
KEFREARRAERENEES, SETARNMERANBR.

1.4.6 HREMZn> R4 FHEH
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( Excited-state Intramolecular Proton Transfer, ESIPT) DOSl mEEWmA1-19
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B4 BT . BB — % 54 7 U0IAT e b ok #0354 T 0
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| L.t
. H Zn
| N‘Q X N | X' N
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proton-transfer tautomer L = solvent
X =0, NH, NCOR or NTS
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Scheme 1-19 Metal-cation-induced inhibition of excited-stated intramolecular proton transfer
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AEZEINEHEREREEEHN Lo)-DTPAL, HZo”" HERFHELEEHE, BN
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45 46

%120 RTRBOZH K4 THEE

Scheme 1-20 Zn?* fluorescent probes based on other ligands
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521omH1596nmb HHE DK IE., MAZYE, S96nmb R FEEATE, M
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CEARAHM Zn " B M IEEETEEME. |

Z| B 8k ik, TSQ. ZinquinFI Newport GreeniR 4t 4+ F B 4 it B #h [V B T 1%
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Scheme 1-21 A kind of Zn?* fluorescent probes based on peptide
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"H-NMR(400MHz, CDCl;): & 8.45 (d, 2H, J = 4.8), 7.84 (dd, 2H, J; = 3.2, J;
= 2.8), 7.75 (dd, 2H, J; = 3.2, J; = 2.8), 7.44 (td, 2H, J,= 2.0, J>= 1.6), 7.36 (d,
2H, J = 7.6), 7.08 (1, 2H, J = 6.0), 3.86 (m, 6H), 2.87 (t, 2H, J = 6.0). "C-NMR
(100MHz, CDCl3): & 168.28, 159.42, 149.03, 136.39, 133.96, 132.38, 123.27,
123.15, 122.1, 60.4, 51.8, 36.2. API-ES MS m/z(+): 373([M+H]"), 395(|[M+Na))*

0 S O
T
| S N\‘ | N\

lg, P
M2

NN-2-FF otz -Z —F (FE4fE M2) 818 8k: KM 1.1mol (65mg)
BRARS ZES, MAR 2-[2- (HIE-2-BEREK) ZH&]VFX ZF BT K
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Z(2—-he B BRAIRMBE ZaTRAD THE MR

02N ZBEBEF, BN éml ZEMBE, MAMRK I AN (MDA EFEH
ERE). BFAFE, MA 2mol/l MBEMW 20ml, FMA 12mol/l HE
Iml. EZFBESOCTHHE 2 /0, BEEE THE 24 /N, TR, #KH.
WG BEMBA Sml KP. WA ISHUHEENLNBBREINBRERLE, B
MadmRY, BER Iml W _HHERER 3K &FFHHE, BT EME
BEMRY. WE: 75.4% (1.136g).

'H-NMR (400MHz, CDCl;): & 8.54 (d, 2H, J = 5.2), 7.67(t, 2H, J = 8.0),
7.48 (d, 2H, J = 8.0), 7.17 (t, 2H, J = 6.0), 3.85 (s, 4H), 2.84 (1, 2H, J = 5.6), 2.7
(t, 2H, J = 5.6). *C-NMR (100MHz, CDCl;): § 160.55, 149.36, 135.78, 122.89,
121.71, 60.37, 51.79, 36.22. API-ES MS m/z(+): 243([M+H]"), 265([M+Na]").
233 DI EREEHRIE

\

N_._
ANV 4
N (Y
Mi 0;
e A
. X
SO,CI éb
P
| D1
F B E (75mg, 0.28mmol) M= Z ¥ (70mg) BB E CHCly(SmhF,
42 18 ¥5 10 2 b (7] 45 M1(140mg, 0.7mmol)#) CH,Cl, (6ml) B#W+, EERETH

RN 10h. BFHHE, BEESE (BITH: CH,Cl,/ MeOH =50:1) &
K BHAEEIE DI, WE: 60% (72.5mg), HA: 89-90TC.,

|H-NMR(400Hz, CDCL,): & 8.50 (d, 1H, J = 8.4Hz), 8.40 (2d, 3H, J, =
8 8Hz, J, = 4.4Hz), 8.23 (d, 1H, J = 7.6Hz), 7.54 (t, IH, J = 8.0Hz), 7.40-7.46 (m,
3H), 7.17 (m, 3H), 7.04 (m, 2H), 4.74 (s, 4H), 2.87 (s, 6H). C-NMR(100Hz,
CDCL,): 5 156.3, 151.7, 149.0, 136.5, 135.3, 130.1, 129.8, 128.2, 123.2, 122.5,

122.3, 119.6, 115.3, 53.4, 45.6. API-ES MS m/z(+): 433([M+H]").Anal. Calcd for
CyaHo4N4O,S: C, 66.48; H, 5.54; N, 12.93; S, 7.39. Found: 66.28; H, 5.52; N,
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12.89; S, 7.36.

234 D2 SR RS MERIE

SO;NHCH-CHoNH
$0,CI 2 2CHaNH;

SSNN-—HE-BEEHRBEEOAN: ZODBEESES, EAFRF, RiE
BT, A HEBE (2g 7.4mmol) FHEE SmICH,CLF, REHBAEIEE
BWHEL R, E 1Snin A MBEMEE Z - (33ml, 494mmol )BJ 50ml CH,Cl,
W, ERNBEEETHAE WG, EBHIRBIF, KL3 K. XPE
RN, AEMEHKBRECERE AN IARE. CH.Ch ALK MgS0,
T, ZEBH, EXTREBSIBEZEAEES-“HRRE-1-FBHBZ — i,
W #E . 87% (2.06g), A : 149-1507TC.

I =
NZ ~—-OH
S0,Cly

SO;NHCH,CHzNH2 )
N X N | RN
W 2N N. .=

D2

-E R EMEARBMIBAESH: KAT, B 2-8B P Eiltwe 3k ® &% 0 HE M
ZIEBETE (BRE) METERP. mERs, WHRER 3 AN, K.
BET, MAZBE~SZAH, T8® BE TR, ﬁ%ﬂ?ﬁéﬁﬁlﬁ%, =& 95%.

0.1g (0.34mmol) S-— FHZE-1-BHMZ - BBEMWE Sml Z8EH,
0.167g(1.02mmol) 2-E FEM B H BB BRE 02ml kP . ERMHBERESE

8



(22— MR E) BARMEDR Zn 0 T B 8w

—iE. W 10 08E, EBHEN 0.3mI(IMEE 8. BESYWNHER 3
M, BREEN. FRYWEBETLPEKD, 20ml ZBER I K. 2HEN
fH, K Na SO, THRERKRBEEN. ERERS (BFF: CH;Cl/MeOH =
100/1-50/1, 1% —Z i) FHRAEZZFE KA D2, E: 40%(0.064g). 15 &
129-130°C

'H-NMR (400MHz, CDCl;3): 6 8.59 (d, 2H, J = 4.4Hz), 8.51 (m, 2H), 8.25 (d,
1H, J = 7.2Hz), 8.14 (s, 1H), 7.39-7.52 (m, 4H), 7.09-7.15 (m, 5H), 3.71 (s, 4H),
3.02 (s, 2H), 2.85 (s, 6H), 2.77 (t, 2H, J = 5.6Hz); ’C-NMR (100MHz, CDCl;):
5 158.9, 151.9, 149.1, 136.8, 135.6, 130.1, 129.4, 127.9, 123.4, 123.1, 122.3,
119.7, 115.1, 59.7, 53.3, 45.6, 41.6. API-ES MS, m/z(+): 476(M+H]*. Anal.
Calcd for C36Hy9NsO,S: C, 65.66; H, 6.15; N, 14.73; S, 6.74. Found: C, 65.53; H,
6.14; N, 14.70; S, 6.73.

235D3ERREMRIT

SOH SO3H

B S-HE-FBER(7.37g, 33mmo)FEBEKREBR T RBER ETKET,
BMETHED 0% EHEBNIMDEBEBREES KIIERBHRABTZHEN L. &
N 6h, RNBEESEOISC, BRNBEESHEIALTEH (25ml, 2mol/1) B H
MBRER, EARBAWFELE., ERATHEIR, SEEEEENE, T
FERIEH. BTFKE, NICAZTREBIREAEE -H-BHE, WX,
67.3%(5.379g) .

o —

SE-EBEBMS-6ERENERABES, B (BREARFRE. ¥
W AT 80~90C, EAZEHIE. BN, ERMRIFTABTRABHEY,
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HMEIZERFERNIE. BEZEI0CEL, 47N, WMEITH. HEKRERE
g, ERTTH. SELAEERRARERKENKSE, H 200m] 30~60°C A
BIEMELE (A 8h). K%, MESFRIEECER. BRA_EFRES H.
MUBBKREESESE S-H-ZHEmE, WE: 67.6%, BE: 91-92C

| C i
BOOL_J OO’
|/

SO,C! SO,NH_~N

D3 N 7/
B 242mg BRZ.E DPA, BF 1oml B/ EMHR, A SmlEHFEERE. N
A 260mgS-E-1-HEBE. PELAKREY, EKP, MHRER 3 DT,
M, WERRY, BEET. SRAHRY, APBR_AFRER. &t
AEEESSE (BFM: CH,Cla/MeOH =50:1), B BEEMRY, EX T &,
BHECEGH K D3, WHR: 38%, B 129-130°C,

' 'H-NMR (400 MHz, CDCly): & 8.84 (d, 1H, J = 8.8Hz), 8.59 (d, 3H, J = 4.0),
8.52 (d, 1H, J = 8.8Hz), 8.34 (d, I1H, J = 4.0Hz), 7.65 (m, 2H), 7.51 (m, 2H), 7.41
(t, 1H, J = 8.0Hz), 7.16 (m, 2H), 7.05 (d, 2H, J = 7.6Hz). *C-NMR (100MHz,
CDClL;): & 136.74, 136.33, 132.90, 131.83, 130.10, 130.02, 129.96, 127.59,
127.27, 125.52, 124.61,-123.00, 122.39, 59.67, 53.28, 41.82. API-ES MS 'm/z(+):
467([M+H]"), 489.2([M+Na]*). Anal. Calcd. for CyyH33CIN4O,S: C, 61.73; H,
4.96: Cl, 7.59; N, 12.00; S, 6.87. Found: 61.91; H, 4.97; Cl, 7.61; N, 12.39.

2.3.6 AR RGEEHNTE

2.3.6.1 7% [ ¥ 7 o B0 3t R T

WHRHEBEMLEY, BEBA sml AREF, A-HNERES, EH
OB 1.0X 10 mol/l MWW . HHBH 0SmI BT sml ABRF, FHAA
KT —E TR, BARAROE. FE. 148K, NAKW. 2828,
K. L BHZEES, SRGESEME RS SKE 1.0X10mol/l FH K,
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ZO(2—mesE PR BRARMER Zn W N L FHE 0B

WERRMEE. SRAR
REAERK, MERLEHE.

!

a7 R Sh o6 B B K TR LI K 1 R 3R e Ok

2362 NAEBFFERNINE

HFRRABFFENMEUHRRET HNENR, £ IN HoS04 F &,=0.55,

ERMAGBETN, FHAFHSTFRBPMATEMN EDTA LLE & # 5
BRTEBETHER S TRABENEN. B TR FIBEEY Rk
EARINAANYBRRERLHBREERR (A<0.1). SRR RINBEHT
W, wEAR W T,

{emission

sample

P ampie = P stangars X [emission

standard

R Ogampre B Dorandand T B RBEWHRAFER UL SN R AET

R, [ A DB REANERBERBRERSEEN. SRR
A LS WE % B,

2.3.6.3 AR pH W13 668 H E

1.0X10”° mol/l M ERMKBW, 2 HAARKRENERKEAA LR
HEHEE (MAERNDTHUEFERG 1%), MESRF pH R R EILE.

23.64 WERE TR E

EpHERLEBEXARMNENEM L, ENRALEBEREN pHHHEIT&
B FiHB LY. 7£f HEPES (N-2-BZ EVRBE-N-2-ZHE) ZHERT, &
HHWE N 1.0X107mol/l, 43 MA 5.0X10°mol/l # NaCl. KCl. MgCl;.
CaCl,. CoCly,. NiCl,. CdCla. CuCly;. MnCly. FeClya CrCls #1 ZnSO,4 Jlf 52 %

N ERIREN .

2.3.6.5 Zn* ik B Xt A% A 5B B I W
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REBTREM 2R Y

WRBRNSNLEY, BESHBA Iml EEBRS, H DMSOEER, &
BRIKER 1.0X10"%mol/l IER. BN 0.Iml BHT 10ml ZEMHF,
 HESnABRERE, BE R 1.0X107°mol/l EE. 73 = Fllik &4 F AW
n A 1M ZnSO, 7K ¥ ¥, WE%W&EW%%%%E{J%%EE;

2.3.6.6 RVWBEFEH K (I E

Y& 100mM(HEPES)E MW (pH 7.4, [=0.1(NaCl)), HF B 10mM
NTA (B =Z#). Zo®**-NTA & afREF 85" % (20C, 0.1IMKNO;): pKa,
= 9.73, pKa; = 2.49, pKa; = 1.89, logK(ZnL) = 10.66. # & Zn* MK E i+t E i
T,

[Zn?], = [20%" ] o Ry
ﬁ'aM[L]ﬂcc 24yt ay

[L]&ee ~ [L]tutnl T [ZH2+ ]tutai

{IL — 1 o+ lo{pK-l-pH) + IO{PKHI+-IJK|I"2PH) + IO{FKH"'PKuIJ"pKuI“BPH)

B [Zn | RIEE Zo WE, [Zn o B Z0BWE, on BEMBNEER
B, o ERBNAS, [Llne BHBESZBEKE, Lo BR=ZZHEKE.
X B, [Llow ®H 10 mM, [Zn*' o A 0-9 mM.

BN BELE D RENMBEBDESE A 1X10°mol/l F ¥ 10ml, & XN
A Sul ZoX KW, HERARTHEBMNE 2o HIREA B % 0,0.25,0.52,
0.826, 1.17, 1.56, 2.00, 2.52, 3.12, 3.83, 4.68,-5.72, 7.02, 10.92, 18.72 oM, & /5
Bz WE A KT E. W B AR ATEE 2%. FTRE 8 HIESE sigmoidal
WEBIAERNEEFE Ko

2. 4 ERE5iTi8
41 hEBRERLEYNERAGHEE

higl ik MIFI M2 RSB ZE TSR BE. EEH M1, EXXH
By ok FEEISEEME 2- A, SXMMABMNFRR, B
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Z (-t FE) BARMUER 2R AL TR BT R

ET =YW R 5 TR AB AT .

EEHBRLEAFEF__FBRTEKEN, I XMBENELR AT ZHTT RN
. ERFMARZ_BENMHEBELN, AEEEN, KABRT RY
BE, AMUELTRNEE, MEFEBIRA.

EHTEGLAYNERE, AENASEBESEORBARE, R
MVLERR. BEBT, KERE. 7HRAR, HFHEYESEE— =
i, ZEEEERELEREW, XMERTANPRNMALEN Z Z i Ml
MM, BT RSN, XHEEE, FEAESREFE X EHRBA,
B AR 1 K B 7T 40 58 A RE BSAE B BRI T 3R

F4, HTFRABMRFEARABTRENFAYE, FRTRAERS T
THEKEBRTHNA.

AEARMEELAMSEBAY. KREE. FEREARE, &1
F. A4S D2 B 'H-NMR # PC-NMR £ B0 F .

e S IR S T e Al i Ry e il i e s Sl it A B e S it My I ERLALRA I Sl (e R e ] T e ek R R I T T TSR B
T.0 8.0 5.0 4.0 2.9 1.0 0.0

JLL_JL‘J h#__J'HL N

B 2-3 4L 24 D2 iy '"H-NMR i§
Figure 2-3 The 'H-NMR spectrum of compound D2
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1[1—1! T R

120

| 3 L 1 1 Tt 1

tho
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T S0

a0 [ 3+

S A
40

T
id

E
b

1 '
120

; L T 1

ST
1po 30

B 2-4 &5 D28y C-NMR
Figure 2-4 The 'C-NMR spectrum of compound D2

2.4.2 D1 0 D2 89 TR it B 3% 6 % &

F 2-1 D1 F D21 X 10 mol/DVE T B HE 51 R /Y 36 238

Table 2-1 Spectra data of compound Dland D2(4 X 10-%maol/l) in different salvents

H3E [IErkm BRI Z & 7 ¥ OH WL
D1 Apax 337 338 338 340 340 340
Aem 486 505 531 529 529 538
@, 0.19 0.08 0.07 0.07 0.09 0.07
D2 ... 343 343 345 345 344 344
- 474 436 500 514 512 540
&, 0.27 0.17 0.19 0.14 0.13 0.12

S e Wi

PRI B KRR ERK. BEXRAEKNET

% 2.1 % DLl D2 &R R EHE
e, BEEHREGED, DI A

D2 MR LIEELARE, MAHINIEH

HAMUB, SRFREEHTHRROBRE, UEHTFRLFREENE
BEMATFALHES. ETHBSTREA_FRERETREFFH
DPA 3 14 F R AT 565, DI A D2 4 FROR & K18 855 K T 240 80 8 4%

.
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T2k R E) RARNEER ZotT R I 4 T OEE 00 5

243 ZEWBEHT DI. D2 M DINERBE FHIEF

ATEBRMAEMESEHSIESZB pH T AMEREHPRABE R L
M, HILREFHPBEBRPHIT. £ 100mM B HEPES ZHBHEF (pH =
7.4, DMSO:H;0/1:9), IX10°"MBIEDF, S MAIENFEALEREE F (W:
Zn**, K*. Na*. Mg, Ca*', Fe™. Mn®™., Cu*"#1 Co**. Hv, k&% DI
MDIXEMERRFHEEHENWA, MAEY D23 Zo” R HFHEN
HEMIHA. AL, XBEUD2AFMER 22F, FIETEZMEER T D2

B 7% 08 B B & W .

£22ABEEBETF(5X10°M) BLF D2 (1X10°M) R 9% yeamE., °

Table 2-2 Relative fluorescent intensities of the compound of D2 (Ix10°°M) with various

biologically important metal cations.

Entry Metal cation Relative intensity
1 none 1.0
2 10 pM Zn*" 3.6
3 10 mM Na” 1
4 10 mM K’ 1
5 10 mM Ca** 1
6 10 mM Mg** 1
7 50 uM Fe’* 1
8 50 uM Cu?* 0.1
9 50 pM Ni** 1.1

10 50 uM Co** 0.2

11 50 uM Mn** |

a: Yo A 100mM HEPES £ v # W 4 #{ 18 (pH 7.4, I = 0.1 (NaCi)).
WE 22 FEAUEH, EHARTECHEEHEBE T, 0 Ca*,

Mg Na'fl K'SZEREHRETHEASEW D2HRAEERE, FARBER

BEAB) . ERXMHERER

AREERTEREMER S D2 fyF ML IE

S5, FUTTWEEARALSER In"HNRAHMEEAR. dEEBE T, W
Fel*. Cot* . NiZ*fl Mo $i %t D2 I BEREHEMEEH . Cu®f Co’

B ANE D2 AR NEK. BE

MEEy, EERE TR

TR R, D2 REAMXETEEBEE FRMEE
ZEWMBETHAEENEBEDHIE T KA%E

30



KEHETAKFE FLRX

BAEREEK

B AW DIMVERAESTFHRIBRATHE, NTEESTAY
MBS, HLAY DL, DPAESEBERBE L. B THBERE — BN
B FEMR, DPA LHREETHNN B FIAREEA e EBERE L. 5
S, SFREBREFERRFFEN., EESHARYMHE, ST02HEE
HAGTE. LEW DINEREERETER, S THNERBTHARUER
AR EFTERBRHEES. U, DIADIXNEASBEEFHREVE

B A R

2.4.4 pH %t D2 R E B W

EEMERURCHAET, $LH - VA EEN pH, BLEA A
BiAEFHRN, pH ATRSEFABENEL. FLl, WESFEKX - pH
BAREBERERSERMERNTREFRERE T RS TR
BEN—AEESFE. Bk, WET D2-Zn S EYHRILBEES pH 21
MFEF L, 3—LE WM 2-5 F R,

=t MR

o

1.0 5 - =

I |
7 B 2] 10

o

B2-5D2-Zn " S AWM R M B MpHII X B (19, vivEI DMSO/H, 0 & 1 #
e | |

Figure 1-5 Fluorescence respanse of D2-Zn*" complex as a function of pH in a8 mixed solution of

DMSQO and water {1:9, v:v).
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Z (2w ) BMABRNER I RAS TEENUH

WmE 2-5 s, WA Zn® (1x10°M) HE T, D2EpH6—9 ZH K Y
RERRY. BEYHENEpHET 68, KABERMK, pH /T 3 67 &
ARERN . XRHE, Zn”"-D2EAYHRABEELEFIHIMBRELEETT
ZopHHEW, XS pHYNARBRHERBENEOE PR EERERIE
{1 pH 124k .

2.4.5 AW EHR Zn® 3 D2 KK &

45 b
40 |-
{Zn"]
a5 |-
a0}
S
-
o 25
-
20
15 | AR
50 /’—\
5
ﬂ . { | i | [
480 480 500 520 540 560 580 800

Wavelength (nm)

2.6 200 X 10°M)IG I A B Za I E(0-5X 10°MYK B4 . X EHEL100mM
HEPES ( DMSO:H;0 = 1:9, v/v, pH 7.4, I = 0.INaCHEWH B HPUB. BEHEKE
334am.

Figure 2-6 mission spectra of 1 X 10°°M D2 in the presence of various concentrations of an'*: vanging from 0 to [ X

1 0°3M. These spectra were measured at pH 7.4 {100 mM HEPES buffer, [ = 0.1 {NaCI)). Excitation wavelength is 334 nm.

7 100mM f HEPES W% ¥+ (pH = 7.4, DMSO/H,0 = 1:9), D2 i &
KB WK Anax A 334nm, B K R H B K Aew 2 540nm, HH B T X £ 0.09,
MABH Z0*" F, Anax REBDHZRL (BB 1-20m), Aem B 2 520nm,
£ H R BIAE 20nm. MBS M KAIE 415 (B 2-6), HABTHEH
KB 0.18, Zn®'ZE 0-1X10° M FEEA, D2 WREXBETME K. % Zn 'K
EESD2MKEES 1 BE, #— 58N 2" RE, BRHRCBEEF (KR
A, BB EMIES pKa =320 pH74 0, EX EHMHAEBKRE—F
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CKEETR¥MIEMBY

RFHAN, FUBRD2E o MEE T2 BAFEN NES DPA +
M=ABEFE Zn AL, R Zo "B E&H.

0.4.6 BT E E ¥ K,

ek lewis BERIMAVMNEETRESYS T, EABERTEEEEER
AYMBBRNAMEREN AN TEE, XHEERYERLTEY, BT
AR AMNBES.. *ABEE BT E N AR, M
BEHSN, EAUBEE, USARETHEAMSIE. TS D2 5
Zn IR, MBEREAFRNE, N K EA#ITTRHR, FEXTUE
27 FioR

32

I e

If{ﬂ.u.)

1 L
to™M 107 107 107 407
Zn2+ (M)

W27 R Zn"REM I WMD2 R BEM A RME. XLHEL 25°C, pH7.4
i 100 mM (HEPES)Z@ M ¥ W R %, K+ &% 100 mM NaCl, 10mM NTA Fl 0~10
mM ZI]S-O4=

Figure 2-7 Fluorescence intensity of 1 pM D2 as a function of the concentration of free Zn?" in 100 mM HEPES buffer
(pH 7.4, 1=0.1 (NaCly) with 10 mM NTA and 0-9 mM Zn** at 25°C.

RIEME 2-7 i3 HIE, 2 sigmoidal BRI A FE, BE Ko =0.8nM. X%
FED2RAEEBRMETHERRKEEEINRE 2 . KRN RBEERTH
TURERB AR LEAN I RS FE.
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Z (- P E) RHBNER 2oV RS TERHE B H

2.5 mﬁzj{ﬂ%‘

. BTHEBREFE (CA) -FERBEODSFABIEIAERYER, RERIT &K
THEBREARXNGENLED DL, D2 F D3,

2. D2 EATELAMET (pHT.4), hex =334nm, hem = 540nm. JIA Z0** /5, Rer
EALRTE, hew BEHEE 520nm, RAREHABIE 4 F. BHEYRTEE
MERBREFI Ca¥'s Mg S D2 MRARFERW,. Zn”'-D2 F AWM RNIE
E% pHEMMBEWMAKR, FAETE pH 6-9 Z B Z W 1R /.

3. AVNMBEFEH K=08nM, AN ABEES TEELU A BB A KN
B Zn"ERX S THRE - D2AXYEURRRB R — M3 Zn" Bk #4H#
BRMRICD TR .

i
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W (2—THEFE) MY RNER Zn B R4 THS 00 57

FZE 4A-(1,8-FMIR RER S FiRs
3.1 ﬁ%?ﬁ'ﬁ"rum

UXFEFERFEE (PET) ARUTRENRAS THRHESHEB TR
SFEHEPEAMNBIEHRAOV . ABNPETHALUBA SR TRENZ
{K #8 4> Receptor, 1B id B F§ & Spacer (W -CH,-CH;3-) F13% 3 B Fluorophore 8
EMAS. EYRAEBABIENCERRARERRTNGHR, THHRISUEE
ZE, XEHSEEBERI, XERNEEHEMR —P2TF, WET —T
EEBMRHNEGORE XAERESELOBSTHR. PET BAH TR
e, KAXDESZEEARTZAFEELBTERTHER, TRAFTIEFENE
REB. BHEREEEZRLZIN, B4 TFARFIRABRKARBRHE. —EX
KEZAMHEES, LEFERTFEBERASIAY, EEwcEN, RAH
MEEFRA AT EEURLESAREBEEHNRR, EHEN X" I
RE, ZEFS XWRIERA T FIT K

BEEHA PET RERWTRASTHRHN, EBEZFRRAEAOER. H
MENESHEBUERRAAS RN EAZ BN EREXN R EHHEFEE
BE=ZSTHEE. 4 EE2-1-ZFHRIRTEYERE . XEMHFRNELE
TIrEemB. EARAUEY, EXREHDULERERT, RARNEK
EAAAR, RABTFFERATANNRERUE. SERFAERE 4K
E-L-ZEBRURKABLERATEMNREG TR FT. EZFHEOTT
MAd, RRERERRTFE. ZREHRNEENN RN FHOE TR
WEF. AEEAXFERZELERE, REXFERTEBINER T &
RAEAMMNRAAREBEMRE T THSE. WRAIN R ERSE TR
—AMETHEEHBEARABARANEHES, BN TRERATTRIN
RAGEN. TESFHRNEHETT:
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KEBT KZEM %A X

Oy Noys© Ox N0 /""“‘NH/\

B 3-1 Ko FHREMNEGH

Figure 3-1 The structures of fluorescent probes

3.2 ARG

3.2.1 4244 N1 &l N2 & Ak

Ha (I:Ha

C
Ox O O O« _N_ _.O Os _N_ .0
| ]'~,||--|2_{_"‘,H3 NHQCHQCHzNHg I I
Br Br NHCHQCHzNHz
M1 |“‘*
N \_-C
' ! \
Os. _N_ _.O
Og N0 IN, oH

N1 N2

R 3-1N1 1 N2 9 & R
Scheme 3-1 Synthesis of N1 and N2

Pl 4-8-1, 8- M A BER L SHER M AR 4-R-1,8-EB TR £
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o2 RE) BARMNER n"RAES TR WU

SEhEaMI RNEREBHEUSY N B5Z2 " EBERNMAR4-CRRT, &
BA-EZE-N-FE-1,3-SMITED, 850 2-EFEww N4 K8 Wik

- B N2,

3.2.2 &% N3 & R

r"NH’\

7 NH O ¢ O O

‘ i {NH;CHchz}zNH i i NH,CH,CHoN(CHLCH) O 0 ‘ O
Br Z

N

H32 WA NXEH 2 F NI HE K

Scheme 3-2 Synthesis of the two arm fluorescent prote N3

4-#-1,8-BE N BB R 0.5 RN ZH ALK N E R AEF
Bk M3E, BEUKAAS BN NN-CZEZBBRRACRETAIHBER
s N3.

3.3 LIwEb &2

3.3.1 B 53

4- B 1 8-EFHN IS-EFWABLLAIRNERLAG . EEeRERNAE
NPWLETTELER., HRAERRAETZEREALTI) P n (200-300 mesh).

HP1100 HPLC/MSJE X (£ EHPZA ), Varian INOVA 400 (400MHz)#
Bt (£ EVariand 8§, TMSXA KW #R), elementar vario EL ITE TR 7
N CEED, X-6EMEAMEN (bHEFEHRAF), HP-8453 4

W46, PTIO0 RS NAE, BS-2108 4 —HTRF (&
% Satorius’A ® ) , PB- 2047 # B pHF (4% B SartosiusA ¥ ) , Nikon TE 2000
R BME, HHREFEEMNTEUARAEE (0.85) FEO.1 NEELWAEKT
bR HE
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332 WEYMINIFEA NI ERESEHEL

Oa 0.0 0
NH,.CHg

o~ CC

Br Br

7E 250m] B JEEHE S, A Sg(18mmol)4-1R-1.8-FB B 1 54ml (R E X
10%) M RRR/KEBER, UUEBREK II0OEZETRMN 2.5h,. T, EHHEE
ELEREBRH4-B-N-FE-18-BFHTMK. BE: 95% (5g). BF4: 185-186
'C 4 |

oy
CHy Os _N.__O
0 N. -0
e
>® o
Br N~
N
2N
N1

110mg(0.399mmol) 4-R -N-F B -1,8-FF B L X A 83mg(0.41 7mmol) ¥ |8 K
MLEBEASHEME 20ml Rokuteed, MHBER 24h, MEBBEF, H4EE
Bl EAEE NL. BHH: CH;CL/MeOH = 100:1~50:1, WWE: 40%(65mg).
¥ A 123-123C,

'H-NMR(400MHz, CDCl;): & 8.91(d, 1H, J = 8.0Hz), 8.62(2d, 3H, J, =
6.0Hz, J, = 4.4Hz), 8.39(d, 1H, J = 8.4Hz), 7.74(t, 1H, J = 7.2Hz), 7.62(t, 2H, J =
7.6Hz), 7.36(d, 2H, J = 8.0Hz), 7.22(m, 3H), 4.75(s, 4H), 3.52(s, 3H).
“C-NMR(100MHz, CDCl,): & 166.2, 157.3, 149.6, 136.9, 132.1, 131.3, 130.5,

130.1, 126.0, 123.3, 122.6, 122.5, 117.7, 60.0, 27.1. API-ES MS m/z(+):
409([M+H]"). Anal. Caled. for Ca5HzoN<O;: C, 73.51; H, 4.94; N, 13.72. Found:
C,73.29. H, 4.93: N, 13.68.



R C2—MHEE P X)) BRABHNER Za?™ R 45 T HE 1%

(?Hs CI:HS
Os N O Ox N_.O

NH,TH,CHoNH,

Br NHCH,CH,NH,
4- % -N- FF & -18- &F B ¥ F 1gdmmol) « 24 Z f& (2.4ml) H

CuS04 5H,0(0.25e) B & 7E 2-FE L Z M, MHBERK 1h, BHBAKF, 2B

HEECEE 4 EZE-N-FEEHRIK. AXELFLHBIHECHRES. W
F: 753mg(70%), M= 125-126C.

N2
4- B Z K -N- B B ZE B T B 100mg(0.37mmol) « 2- | B & Mt W

152mg(0.12mmoDFI L K BB (153 mg) B S B MA IOmI T K ZEF, ERAR
RIFTFTm#HERI6h, REXEZBBPHER, MLy ARLERTHE, 83
HEEEN2. BFH: CH;Cly/MeOH = 100:1. W : 84.3mg(50%). &R :
163-164°C.

'H-NMR(400MHz, CDCl,): 6 8.82(d, 1H, J = 8.4Hz), 8.64(d, 1H, J =
7.2Hz), 8.57(d, 2H, J = 4.8Hz), 8.43(d, 1H, J = 8.4Hz), 7.82(s, 1H), 7.72(t, 1H, J
- 8.0Hz), 7.58(t, 2H, J = 8.0Hz), 7.41(d, 2H, J = 7.6Hz), 7.16(t, 2H, J = 5.6Hz),
6.54(d, 1H, J = 8.4Hz), 4.03(s, 4H), 3.54(s, 3H), 3.42(s, 2H), 3.09(s, 2H).
B C-NMR(100MHz, CDCI,): 6 165.2, 164.6, 156.7, 148.8, 137.4, 134.7, 131.2,
130.9, 129.6, 128.9, 128.1, 124.6, 124.3, 123.0, 122.7, 120.9, 112.0, 59.5, 51.2,

40.7, 27.1. API-ES MS m/z(+): 451([M+H]+). Anal. Caled. for Ca7H;5NsO,: C,
71.82: H, 5.58; N, 15.51. Found: C, 71.53; H, 5.56; N, 15,453,
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IAINIWERSEHWELL

0 N O Q N O
| l (NH,CHoCHg),NH i ‘ i ;
Br Br Br

0.135m! (2.5mmol) ZZH=FEM A £0.69g(0.02mol}4-%-1,8-ZF B A5 50m1
TAKZBEET, MABRKIOmin. AHNEZEBE, EHEBEKFRIEMI, Z8
Ve, TREZBES &. WE: 80% (1.24g) .

/”“NH/\ Ogy N 20

© O NH,CH,CHN(CH,CHa), O l I I
‘ i HN NH

) o S

M

100mg(0.1mmol) M3%11.46g(12.6mmol) NNN-ZZ & Z —j#F 100mlZ =
EEERPMHMERSh. BREBEAKT, SKAEREECARA. 282
BRERN G, TKKCO;FHR. ERELE, BAN: —H€EHK/LBZEQ0:1,
viv), BENREBHEMENI. WHR: 53% (36.6mg) , HBA: 104-105C.,

'H-NMR(400MHz, CDCl,): 6 8.43(d, 2H, J = 7.2Hz), 8.35 (d, 2H, J =

8.4Hz), 8.14 (d, 2H, J = 8.0Hz), 7.56 (d, 2H, J = 8.0Hz), 6.60 (d, 2H, J = 8.4Hz),
6.32 (s, 2H), 4.34 (t, 4H, J = 6.4Hz), 3.39(m, 4H), 3.11(t, 4H, J = 6.4Hz), 2.47 (s,

3H), 2.35 (s, 12H), 2.18 (s, 8H). *C-NMR(100MHz, CDCl,): 6 164.2, 163.5,

149.4, 133.9, 130.3, 129.2, 126.6, 123.8, 122.0, 119.8, 103.6, 56.3, 46.9, 44.6,
39.3, 38.9, 30.4. API-ES MS m/z(+): 692 ([M+H]"). Anal. Calcd. for C4oH4sN70y4:
C, 69.44: H, 7.14; N, 14.17. Found: C, 69.30; H, 7.13; N, 14.13.

3.3.4 BIPKRAER
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RO TRE) RARMNERD RS THRE OISR

3.34.1 AEEBERNFAEAR
LR HER2.3.6. 1R,

3342 RABFFEHNNE
LR HTER 2.3.6.2 ik,

3.3.4.3 N[ pH B 28 5% 6% M 2

F1.0X10° mol/l IR EERKKBEER, 2ABRTRAKENEBIETEAK
MEATEREE (MABDTRUBARK 1%). WEARE pH B 8% 66,
ERNBE. B I-pH 14, BT KD pra @l

Lﬂg[(IFmax‘ If)fr(lf-IFmin)] = pH - pK’a

EQEI:H IFmax'~ IFmin‘- IF%%UE%%?&E‘DH EH%E:’E{]%X{E\ E’J‘ﬁfﬂﬁﬂx
) pH ST R B K YR EH .

3.3.4.4 ﬁﬁﬁ}%?aﬁiﬁﬁﬂiﬂﬂﬁ
S H R 2.3.6.4 Fiik.

3.3.4.5 an*%éﬁﬁﬁj’tﬁﬁﬁaﬁ Al &
s iy 2.3.6.5 k.

3.3.4.6 RN ETHEH KW E

W& 10mM =B FEEEPE (ris)-HCl B E® (pH 74. 1 =
0.1(NaCl)), X+ f# 10mM NTA (HZZH). Zn*"-NTA M & &2 & K
% (20°C, 0.1M KNO;3): pKa; = 9.73, pKay = 2.49, pKa; = 1.89, logK(ZnL) =
10.66. HE Zn® IR E T HE M TP

16q7 [Zn 2+ Jiota : K‘{Zn]..}
[Z0*], = pie
' Blay L. e
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[L]ﬁ'ee = [L]tntal o [Zn2+]:ntal

a, =1+10(PK“1-[JH} +10(pKﬂ+pK“l'-2pH} +10(pK“3+pK“2+pK_“—3pH}

P [Zo" i B E Zo™ R E, [Z0")ow £ Z0 BIRE, ov RELNE R
ﬁr UL%@%E%%! [L]freeﬂiﬁ?%ﬁfﬁz;@mﬁr [L]tutalﬁEZ@xﬁwEn
ii@:.r [L]tntalﬁﬁ 10mM, [21'12+]tuta|yg 0-9mM,

¥ 4 U A VAR 7E bR B v S M R IR0 AX 1 X 105 mol/) B9 ¥ 10m1, 4 7
ASul ZIn KB, RERAKXITHEHBEE Zo MWRESHNH: 0. 0.246.
0.52. 0.826. 1.17. 1.56. 2.00. 2.52. 3.12. 3.83. 4.68. 5.72. 7.02. 10.92,
18.720M, BEM Znt WERAL B, W ABRMKRET 2%. F707E 0
¥ | = sigmoidalﬂl%ﬁ?ﬂfﬂﬁ@%ﬁ'ﬁ K4 |

33SN2EEHARF R RARESE

EDEMES B FPCI2A ML, 10%FCSE M W. BT —K, HRT24
FLAR 4k 45 55 57 24 /N B L«‘impM N2 W HFEAPCZAMAEITC T RABIDE,
DEME# ¥ /5, A& 10uM ZnSOMIEHE, EMAXRELTHHE NS
THHERE. BREKTEER450-480nm, KX F 10007 .

3.4 BFEREITiE

3.4.1 ERMUHEYR S A% EE

EHMIBRLEZIREMNS, KPP EEBRUEANRE T LM4-2E-1, 8-
EMTBERARE CMHARESTUAREMAMEY. N1, N2AIN3R &
RBRRARARMANNRENFA. AEERNEEFYSHUEE. ¥
BB MEREE, SHER. REFUNEREENT.




R (2—MERE) BARMNER Zn®" R 4 7 H 4 051

B 3-4 {b&4 N2 & 'H NMR i
Figure 3-4 The 'H-NMR spectrum of compound N2

IJJl_J.ULLMI I N 1

™ ‘I‘"'I"-I'-r'l“'""l '-r-r-r-r-'r-r-r"r'r il ol "t"f"r" T '“r"1 bt B | "‘I‘T‘I el el B T"l P
14& o

s B Rl S R s e e MU ey
190 180 tTD 180 30, 140 138 120 Pl 158 a0 a4q TO ED an 40 ap Fd

3-5 {h& % N2 /9 "°C NMR i
Figure 3-5 The '’C-NMR spectrum of compound N2

3.4.2 N2 B TR 0 #5258 618

MR R, AEA S B R R BRI B 8RR R A
AL RS AE R AR, Ll N2 Sh B, 78R PR A R A R b R 341 A
T BMBHEEERARENEN, N HREHRFERKTRLE. XL
ENTFREEHRRATFNERS FPOHLAR.
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REETRKEMLIELRX

£ 3-1N2(IX107mol/DEF R B F b i ¥ it & 8

Table 3-1 Spectra data of compound N2 (1 X 10 °mol/1) in different soive

nis

BRSO ORE NEAKM ZEBZE WE Z k& ZBE ZHFTUM

Amax 430 427 435 435 435 445
Aem 494 494 503 518 523 531

3.43 tri-HCl Z W& W N2 ;m“s%fé%?— 5 iR Fi)

444
531

ATEBEMAEHSEREASIEBB pHEUTMBREFEHARAEARERES
i, HASBREZMBHEPET. EXWNL. N2 NIFHFITTELEETH
AL, ERIAH N2t ZnX B BHIRS, M NLAM NI EAELES

FEEIRS . L N2 X6, 7 10mM 1 =13 5 2 B £ (tris)-HCI *

A (pH = 7.4,

DMSO/CHsOH =19 ¥ A& RBREF (M. Zn*". K*. Na*. Mg**. Ca®*. Ni**\

Cr’*. Fe*'. Mn*'. Cu**#l C02+E@iE%'J_ﬂU & 3-8 AR

Lot

aLuou
uz i _
s m_ 
MAWLG | |
o s _. _
DHAWS -
o -
00
H'no .
"~ —
&2

A NS V2

BNWW G + U2 " | e N—
EONW S + U7

v
+
h
2
z
=
0

" M

3-8 N2(IX10°M)MI 3 6 3B X A F & JB B 7 (5X 107 M) ¥ 1Y
tris«HC! buffer (pH 7.4, 1= 0.1 (NaCi)) W 18 .

Figure 3-8 The relative fluorescence intensity of N2 (1 X 10°°M) in the presence
cations (35X 10°°*M). These data were measured in 10 mM tris-HCt buffer (pH 7.4

- 65
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W (2—MEPE) BRYRAEFT a9 T EH YR 5

In" R IABELEY N2 RCBEHE K SE.T Cu™ M Co” F N2 1%
KEKXK, RRATBESBE TN R LA HFERTFREEERSIEH. &
NERTEEMNRESBETF (K. Na®) IRLLEET (Mg*". Cca’™) BIf§
EREHKE (SmM) F, 5 N2OXI0MBI R A BEFRECME g, Hih
—EiFEESBEF (Cr't. Fe?. Mn?. Ni?") B EMHUME &,

i

3.4.4 AREBEEE Zn* 3 N2 %58 5% i K & o

100

80

60

1(a.u.)

40

20

$00 950 600 850 700

Wavelength (nm)

B3-9 N2 (IXI10°M)MI R B eI Zo® " R (0-5X107°M) MIEE4 . 4% 48 & pH
7.4(10 mM tris-HC1 buffer, I = 0.1 (NaCD)H §i % . #5 & &£ % 480-700namZ B F & Zn**
WE FRSES A BBARNBE R, MBEELE Y (XZn'") FHEHE.
Figure 3-9 Emission spectra (excitation at 433 nm) of 1 X 10°*M N2 in the presence of various
concentrations of Zn®" ranging from 0 to 5§X 10°°M. These spectra were measured at pH 7.4 (10 mM
tris-HCI1 buffer, I = 0.1 (NaCl)). Insert: fluorescence response obtained by intergrating the emission
spectra between 480 and 700 nm, subtracting the baseline {(no Zn®") spectra and normalizing (o the
full scale response (5 X 107°M).

I 3-9 iR, € 0—1X10° MIREFEEN N2 5 2o HiRHNE B FH
GHEXR. N2OXI0O°M)MEH Zo " BN AR BEELEHER, £ Zn''5
N2 ZRB/RIKEN, HHRBEMMBBR. SEMATEY Zo*, N2 BT
BEREHENN K. EEEFT N2 R R ERABENRSEREEL

L
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KEBIXKFH 2R X

EEHRIEH-ES In"MKEXR, HEBE N2 LY Zn" 8 LI BEXER.
RN Zn 28, N2 B KB K hnax B 453nm, BREFHEEK Aen £
549nm, B FFEE Oy K 0.04, M MAER Zn' 5, Amax 3555 B 443nm, Aen
HE#F 539nm, O W KE0.17. H4-EE-1S-EBRMUKXIESTAREHEN
RPN RABEMHUBENRES FEHRSI, E5ER TS & 0 M BOKEL
AN BOEBARZLER AN, BB TH 22" 5 RABES W,
BB THFHRAERNAE TN, 2BHAEER.

345pHX N2 fI N3 IR AREME I,

EXSTFHEE NZANIHIRHNERFHESEFENEAERT, ElIRRSER
FESFERRBERETIL. B, WMET N2A NIBHRXEELS pH Z 1§
MXEsg, R 3-10 78 3-11 iR | |

Figure 3-10 N2 A B SpHEZ AN X R & (FE1:9, v:i«aﬁnmsomzom R ]
B,

Figure 3-10 Effect of pH on fluorescence intensity of N2 in a mixed solution of DMSO and water
(1:9, viv).
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Figure 3-11 N3 R LR E SpHEZMMHXFE ML (£1:9, viviIDMSO/H,0M B & #
.

Figure 3-11 Effect of pH on fluorescence intensity of N3 in a mixed sotution of DMSO and water
(1:9, viv).

N2MRHABES pHZ AW X E ML WA 3-10 FioR, HEXBITEFE,
A GHE W N2 B pKa=6.4. SWMM pH AT 75, WHMO KA BELIR
MMEHGHEE (7-10. MR BREN pHEK B R K SHEWE R pHE
B, X N2HITEN AR,

NI NI pHZ MM %R # % M 3-11 B % 77 LB i, 75 pH 2-11
2, RABERNAT. ERHEEAGTORABERBESMETH 274,
BENIRE—AREFNA pHEBNAETF R KD TIF X,

3.4.6 RNMBEE R K

HTREN2E Zo™ M FMGEAREE 3-12 8 Zo' WA 1X10°MN2
HHEBEBENXEREHIE, 2 sigmoidal HERH AT, B3 K = 0.830M.
EEENESEERANKETHERKECENRE Zn®.

14T N2EEWERP N 2o R A B HAR
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I(a.u.)

I 1 { .
a 5 10 15 20

20y nM

12 ZoRE M IXI0SMN2RABREBX R ML, XLHFE 25°C, pH
7.4 f9 10 mM (tris- HCD@ A EH T HA, A+ EH 100 mM NaCl, 10mM NTA, and

0~10 mM ZnS0,.
Figure 3-12 Fluorescence intensity of 1 X 10°°M N2 as a function of the concentration of free Zn® in 16 mM tris-HC

buffer (pH 7.4, [ =0.1 (NaCl)) with 16 mM NTA and 0-9 mM Zn* & 25°C. -

N2 REARERAMBORAS TR, RERFHAENE. ¥ 20
RIFHEBENEERYE, MAREURSERETREST Zn" RS

M 3-13 FEPCI2 AMBE ZnSO BB MK RBMER . PCI2 HAE 10puM K N2 # 5
WMAPER | ANIE, WA 10pM 8 ZnSO . HABKR WB 450-480nm. () A

ZnSO. B (YA ZnSO. fi .

Figure 3-13 Fluorescence microphotographs of ZnS04 uptake by the living PCI2 cells. The cells were
incubated in 10uM N2 cultured solution. (a) Fluorescence images of PCI12 cells untreated with 't
{b) Fluorescence images of the PC12 cells loaded with 10pM Zn®. The excited light is W13 450-480 nm,
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W (2—miE A ) B RAER 2o RED T HE BT H

R EET . N2 #7280 PCR ARG EST (AEZERIFIZ) K HHSS
%3 (R0 3-13a FTR): M Zod' /B, MR A MM R BT %
% (U0 3-13b FiR). MM T M EMRBER, N2 4518 0 ik A M
PHEFHBEPN Zo* " RMH R SWE. T, N2 ZEBHEFEEHTHEN
WML Zo R AL, i — S B ZntEE A AT R R R A

3.5 AE/NIT

1. W EMT UL 4-HE-D, SSEHMIKAIRAAMFK LD FHEE N1. N2 H
N3, = ™MMEMHERRBXEAME.

2. UDPAKRHBIER, BZENEEEN R THE N2 tris-HCIH F %
ErhEETHEEEREE. EEEN B SRR AMBIRMNZ. BE5Zn”
G, N2HIR HEBE M KSHE, MWL MMRA I EH >IN EB 10nm. Ki=
0.83nM, REN2EEB CERIETHERKECENBEEZ . EHER L,
ST REH N IEERPITHRLRERN.

N3 EBUHAH FHRABERBEEMATN 27, BANIR—IHE
HIKTGBERNERFRAELDT T HK. . . -
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FENE 1,8-ZBEBEVERRICH THE

4.1 it E

LSBT ETAERREMG. WEREKT, BEFEEBHE X
AFEEFABERA, SERATEHRAS THESF. RRADELR
MEGHEHARAERGRMEA S, A ERRNERETHE. —RKHE, N
FHRAENRRLEWETURERELS FHEIVESER, BLFLTRAR
Wl Wz BB FRENE KR, U— KRN AW N T BRI 0H R
CHETR R AR EN. HERRANRNERANEEREFEEE 4
HE ISEEBTRAAGLEEL, ERANXRECTHEBRTR, THKHY
%I EBR.

de Silva "I Samanta RN DAPSIE 1 8-BEB TEAEBKOCE L, &
TEHEMEEN “EE-ERE-HXEA” XBESBFHEH (PET) AT TH
B, BFRET, BRATH -8 18- EBRTRGEDETNENE, £5
HESBEFNEFT T M EBERA. EFHEKRBP, S mMmAKE B,
Ni2*#0 Cu®", Fe i8R 320 4%, 227 B AM 283 {5 A4, EELERMRHEM pHE
g, EHEEBE/KBEBT, pH8.06-10.65 Z [, RIEWK 56 &,

BE, PREHAVNSBEETHEEFKEREE, HEFXEWLY, EHNE
Fild, BB RANE XD -ERE-FAXUNRAS TREINLIESRE T
FX/ER, TEHELAELESBRETARA S THRIMEZMEHANER, MEH
FENBRNIEEMEKR, RIEEBRAKES, HEBEKNEFERBIER
BETFHKE, KEFEHNETERESTFHRIZAKNERBEILET PET I,
i B B ok 1 38 0

HTEXRE LD TEL TREHEBBELEA4BRET, HANAEH
DA MEREETEERMETZARREE, M5 pH A EBH A TRARE
MBI, EATFRWLE, %8 EARARRE- 1S BHIKREIRKTTH
N BEHREERHED, REXSSATHBNBEEREB L BT Z£%H

L
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N
N4:R = Cl "/
NS:R=H

N6: R = N(CHa),
B 4-1 I FHEITHSGE

Figure 4-1 The structures of fluorescent probes

4.2 KRS TR S B

bl 4-BRAfR-1,8-ZBF A EB M E gk M2 RN, ErREHIEWKEY N4, NS
F1 N6.
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| N
N _ N
B 9 St
o) Ny 7 O N
N4:R = Ci \_ 7
- N5:R=H

N6:R= N(CH3)2

A 4-1 K7 TEHEHBE K

Scheme 4-1 Synthesis of the fluorescent probes |
4.3 KWEb o
4.3.1 BH 51X %

A 18- EHM 13- ENWERBLULTRGFERLAE, 2-EF &M, At
- E Aldrich 27, REABREMRBER O ATELE K. £ B iR
BAHESBEALT =M (200-300 mesh).

HP1100 HPLE/MSE X (% EHP4A &), Varian INOVA 400 (400MHz)#
B R (FE VarianA 8, TMSAHAIF), X-6EWMMB AW EN (bR TR X
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(2 MEOE D) RAERNER ZntT RN 4 T B 8 WA

A A A ), elementar vario EL AT E 7 (EE), HP-8453 %k 4h.
T4 % B, PTIO0 R HEEH, BS2108HH2 —HFRF (EHE
Satoriusy @) ) , PB-204R E BRI pHt (18 E Sartosius A8 ) , RMEEFFEH
FHEURBZET (0.55) fFE0.05 NTREBRF A in .

432 RADGFRIAMWERN G HRIL

4321 hWEH NAWEREEHWRIE

C' T C'J: '\:L“%
Ny 4

O

N4
B 125mg(0.52mmol) R E & M2, ET 10m! BI/RFEMF, A SmlfEFH L

BEY R, TN 100mg (0.43mmol)4-F-1,8-FEH, EAEY, TKHEMER
BAH. MBBHERN 24 /D, RETERIR, BEET, BREHMRY
RE - REYVRE CE_EFRES BARERKRESE . BITH: CH,Cly/MeOH
=25:1(viv). ZF BN, BIEEACHMRY, EFTH, BIXKACEAEYR
K N4. WE: 35%(68.6mg), BH: 116-117C,

'H-NMR (400MHz, CDCl3): & 8.63 (dd, 2H, J; = 8.4Hz, J; = 7.2Hz), 8.44
(dd, 3H, J, = 8.0Hz, J» = 4.8Hz), 7.89 (dd, 2H, J; = 8.0Hz, J, = 7.6Hz), 7.34 (m,
4H), 7.00 (t, 2H), 4.41 (t, 2H, J = 6.4Hz), 3.91 (s, 4H), 2.96 (t, 2H, J = 6.0Hz).
3C.NMR (100MHz, CDCl3): & 163.64, 163.40, 159.76, 149.00, 139.09, 136.21,
132.08, 132.19, 130.70, 129.46, 129.24, 128.02, 127.54, 122.95, 121.91, 60.51,
51.76, 38.29. API-ES MS m/z(+): 457, 459 ([M+H]"); 479, 481 ([M+Na]™). Anal.
Caled. for Cy6H,CIN4O;: C, 68.34; H, 4.63; Cl, 7.76; N, 12.26. Found: 68.48, H,
4.64; Cl, 7.78; N, 12.28.

4322 e NSHIERAGEMERIE
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| 0 O | t
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N5
B 145mg(0.6mmol)F 6] 45 M2, BT 10ml BEEBRF, A Sml Kl 28

W%, A 100mg (0.51mmol) 1,8-ZF &, MADBIEKFERY, ERP.
m#ER 21 NEf. S, BERBRH, BERET, SEEAEBERYRE. BY
MRLPE_HEFRER, BAXHERESE, BITH: CH:Cl/MeOH = 20:1
(viv)e BFEN, BHREAERY, EFTR, AHEAEARK NS, K
. 32% (68.9mg), A 122-123°C.

'"H-NMR (400MHz, CDCl;): 8.56 (d, 2H, J = 7.6Hz), 8.40 (d, 2H, J = 4.4Hz),
8.26 (d, 2H, J = 8.0Hz), 7.80 (t, 2H, J= 7.2Hz), 7.36 (d, 2H, J = 7.6Hz), 7.27 (1,
2H, J=4.1Hz), 7.00 (t, 2H, J = 5.6Hz), 4.44 (t, 2H, J= 6.0Hz), 3.92 (s, 4H), 2.96
(t, 2H, J = 6.4Hz). BC-NMR (100MHz, CDCl3): 8 164.15, 159.80, 148.96, 136.27,
134.01, 131.74, 131.32, 127.13, 1.22.95, 121.92, 60.52, 51.91, 38.15. API-ES MS
m/z(+): 423 ((M+H]"), 445 (IM+Nal™). Anal. Caled. for C36H2:N403: C, 73.92; H,
5.25; N, 13.26. Found: C, 74.14; H, 5.27;, N, 13.30.

432302 W N6 14 BB &4 R

O |
0 2
O M2 | N
/ 0 / 0 — |
0 O N
N6
ANN-—_FHEN18-FEFNER: W 25ml AEBE+FRIMA 0.506g 4-{R-1,8-

HE, BEMALY 1SmINN-—REFEER (DMF), X DMF BR4Eh R N R ¥,
RAEABR. MHER 4 . RESEAHNZEER, BREBHEAKKT,
MU ABECEG, TH., REY, XFTH. STRNEFETLE-K
R, AERESE, BFM: CHCl/MeOH = 50:1(v:v),
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—o(2-mEFE) BARMNER Zn"RAS TRV WK

105mg (0.43mmol)F (A& M2, BT 1ml BIEEM, H smlBHIEE
A2, A 100mg (0.41mmol) 4- (N.N-ZHE) FE-1,8-BE, mMALBILK
s, EXEP. WHAEKE 6 M. T, BEET, BECHBRY. H
LR _CEHFREMR, EEESE, BT CHCL/MeOH = 50:1~30:1(v:v).’
BEYERNBRNET, BREAHERY, KT T&, BHEEAE AN K N6. W
40% (76mg). B HE: 106.0-106.2°C

'"H-.NMR(400MHz, CDCl3): & 8.51 (m, 5H), 7.67 (m, 1H), 7.40 (d, 2H, J =
7.6Hz), 7.32 (t, 24, J = 7.6Hz), 7.15 (d, 1H, J = 8.0Hz), 7.02 (t, 2H, J = 5.6Hz),
4.24 (t, 2H, J = 6.0Hz), 3.93 (s, 4H), 3.13 (s, 6H), 2.95 (t, 2H, J = 6.4Hz).
BC.NMR (100MHz, CDCl;3): 8 164.56, 164.05, 159.86, 157.06, 148.91, 136.32,
132.73, 131.25, 131.12, 130.42, 125.49, 125.08, 122.99, 121.89, 115.33,113.52,
60.50, 53.59, 44.98, 37.97. API-ES MS m/z(+): 466 ([M+H]"), 488 ([M+Na]").
Anal. Calcd. for C;3H27NsO,: C, 72.24; H, 5.85; N, 15.04. Found: C, 72.10; H,
5.84; N, 15.01.

4.3.3 IS RERAENAE
SR HFERE_EHR.
4.3.4 BFAFEITE &

e LAMEETRL, BRAOBEZEIRLES, FHARSHE
M E TR, ATRHEEIERBBEITREMNER, &
B3LYP/6-311+GRAp VK F LA ERUAMILAMBETTREARUTE. £
#83  T fE 4 Fi Gaussian 9818158 /¥ &b fy B3LYP # i, % K7-600 H M L%
RS o

4.4 R 5

441 BHSFRENESREZEEE
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KEZEITXKFMITENRI

N4, NS HI N6 &R RNEER 4 LA L8-FRMEMRNE, Kk
ABRIEMURN, RNNEKER. FURZHALZKBERATK, &
EREMERET. EARFAERTRIERNYERNIBFEIRFTER.

FESRMFEFYLZMEE. ®RiE. HIEXRME, SHWIERH. RE™Y
&Y NaRIRZ BB E I T

T e e R T e e e e S e e S e  E e e e G R R R e T - "R I TN T T MY
17.0 190.0 9.0 Ao 1.0 8.0 5.0 4.0 1.b z.a 1.a p.0

B 4-2 LAY N4 'H NMR i
Figure 4-2 The 'H NMR spectrum of compound N4

] J__u_j_JJLlJL.M _ ' L S | _
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4-3 &4 N4 i) PC-NMR i
Figure 4-3 The *C-NMR spectrum of compound N4
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oC2— ke dE R BEHIRAKE Zn? I R A T8 B

4.4.2 B XT N4, NS 51 N6 )t i 1 & 0y

Z4-1 AN4. NSFIN6EARBHRPHEBERABRKEK. BRXEKSTEKH
FE 3T B (1 X 107°M).

2 4-1 N4. N5 Fl N6(1 X 10 °mol/D)EEF B ¥ 7 ch #) Yo ift $038
Table 4-1 Spectra data of compound N4, N5 and N6(1 X 10> mol/1) in different solvents

hok FE DAKE LMK AM LK LM

N4 Amax 361 363 364 - 368 366 360 380

Aem 404 407 427 435 431 421 429
Abs 0.037 0.07 0.049 0.022 0.028 0.106 0.106
N§ Amax 291 294 297 341 329 342 341
Aem 355 345 331 378 395 387 379
Abs 0.0427 0.0427 0.0319 0.0118 0.0945 0.0962 0.1055
N6 Amax 395 406 411 419 420 420 420
Aem 460 491 511 521 519 530 527
Abs 0.1579 0.1118 0.0862 0.1201 0.1235 0.0946 0.1129

MNE4-1PEUER, EEBAREREIN, L&Y N4, NS H N6 B
KEWHEEHBREETALB, 95BET 20nm. 50nm f 25nm; KHFEKBE S
B4 % 25nm. 24nm 1 67om. MAFE B HNEHE NSRS, RICBEFEEFENNR
MR TIRR{R. LW EBFA R, N4, N5 N6 ST B FIREH — F S RM,
HEEXNBARSEKEANREZTHUDFRRBOWEN,

443 tri-HCl E ¥+ N4. NS F1 N6 X & B = F 8918 7

HTHAMASHEBRSIAREN pH HEATMFERH WK ABRE
BAERET, RUCREBHABRTET. LEY N4F NS ZE 10mM R =52 F
£ B &5 (tris)-HCl # (pH = 7.4, DMSO K LM E RN EREF (W: Zn™\
Ccd?*. K*. Na*. Mg?*. Ca?*. Cr¥*. Fe?*. Mn*', Cu*" 0 Co” " #H B & 4-4
F 4-5 Fim. Ho, {L&4%) N4 70 NS HX In ZIL BT E RS B
5, BN CATHERIH—EMRAER, AR-BEGEFEIHSRET
MEBEE, REM Zn?" BN EEW. A Ne X EAERE THE
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KEBT KEE ¥/

PRMHEIER, RABRERTHENTL.

35

A0

Iefly

none Na* K' Mg ca* Mn® Fe¥ o G N Co¥ n* cd*
Metal Cations

B 4-4 FREIESEBET(X10°M) A F N4 (1X10°M) 35698 B 8 31k . Y6 ik
A 10mM tris-HCIL Z HE R FME (pH 7.4, 1 = 0.1 (NaCl)).

Figure 4-4 The relative fluorescence intensity of T X 10°°M N4 in the presence of various metal
cations (5X 10°°M). These data were mcasured in 10 mM tris-HCI buffer (pH 7.4, I = 0.1
(NaCl)).

14

12 -

none N K° Mg® Ca® Mn® Fe* O G N Cot zn® o
Metal Cations | |

B 4-5 TRAEEET(5X10°M) F4£F NS (IX10°M)RRBEME L. K EHRE

T 10mM tris-HCI S v @ W - 1l ¥ (pH 7.4, 1 = 0.1 (NaCl)).

Figure 4-5 The relative fluorescence intensity of 1 X 10°°*M NS in the presence of various metal

cations {$ X 10°°M). These data were mcasured in 10 mM tris-HC) buffer (pH 7.4. 1= 0.1 (NaCl)}.



2 R BORBIEE ZaM RN S T B %

R BB FTHERAREZ - FRRTEB (PET) RECEESR —
fEdBRR. RABFBMRAAAZENEGSEHRE (HOMO) HEEE XL
B BABIETHDRBRXENERER. B, HIIATLUM PET JL&IRY
AN ERRN LRXBRERERDBER.

A NI NS HOMO BB S B FUEVWHEE RIE PETIRE/EE 4-6.
MWEBFATUEL, DPARNEE SF HIEMHOMO)MEBRE(-5.01eVBBE R T &
) N4(-6.59eV)FI N5(-6.48¢V). Bk, FE#H HE LH-EY N4 0 NS 2] &
ERESRTFHEBTREEDN: ML AT Zn*' /&, DPA 1 HOMO # 4 K
5|-14.45¢V, BEMN TR GEAL HOMO H4, PET SEHMHIE, RaEm
S HAKE. FLL, N4FINSRAEM PET 58 Zn® R4 FHEH .

LUMO

+ HOMO /[fj

-5.01 eV —N

b
..-"‘

6158V —N- HY
-6.48 eV %N)

-8.58 eV

p

l

HOMO

| S

- -14.45 eV

| @

® 4-6 LS YWNIFINSHHOMOBE R MPETIE & . SR E{HAB3LYP/6-31 G*it H .

Figure 4-6 HOMO energy level and PET process of N4HINS. These values were obtained from
B3ILYP/6-31 G* calculation.
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KEBT XEWEFRRX

i 44%%,W?%%%N@&MMZ$E§%WE%%En@?ﬁ%,
h NN-“EEESESFAL, SRUMKALTFSH. XERTEIGESE
MEBBRAS FTARTEBANBYANERER (EBENN-ZFE ). ¥

L1
1

M 47 ERFANIBLFAB(LEARTESH) ZHANICTHREASUL IR T
% 7

Figure 4-7 Schematic representation of electron transfer to an ICT excited state of a
fluorophore from aa intramolecular but “external” electron donor (which is also a proton

receptor). _

EAKXGBRESETEBUMAMAERTFEIEE. SMEFEEST A AT
TN6 AMHBFHRE. Bk, BRUSGY Ne WPETERBAERNF ERUT
B, ERBRTREFULHAEHFABRBAEHAARICHE, £ PETIERE

50

40

io

[f (zLu.)

20

10

0 . -
400 420 440 480 480 S00 520 540

Wavelength (nm)

W48 NA(IX 10 MY e BB Zn* B (0-5X 10°MIKI 4L . A EHIEA0.01 M
tris-HCI( DMSO:H;0 = 1:9, v/v, pH 7.4, I = 0. INaCHEH B R T B BMERKE
3B0nm.

Figure 4-8 Emission spectra of N4 {1 X 10°¥M )Jin the presence of various concentrations of Zn®" ranging from 0 to 1
X 10°5M. These spectra were measured at pH 7.4 (10 mM tris-HC! buffer, I = 0.1 (NaCl)). Excitation wavelength is
3R0nm,
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Z(-mMERRE) RAYAHER IR THRENHESR

THBRAE, HEH AEY NCEZRESRBETHERABE R ENEEL
(91

444 ARIMER Zo® 3 N4 1 N5 5 6 6%t & 0

30

25

20

If( au)

15

0 1 I 1 T -
380 380 400 420 440 480 480 500

Wavelength (nm)

B 4-0 NS(1X 10 MBI 3 6 J B Zn® IR B (0-5X 10 ° MMM 4L . R MIE 001 M
tris-HClI( DMSO:H,0 = 1:9, v/v, pH 74,1 = O.INaCI)))QH’ BHRAPMB, BREBEKE
348nm. ‘

Figure 4-9 Emission spectra of [ X 10°°M NS5 in the presence of various concentrations of Zn™ ranging from 0 ta 1 X

10*M. These spectra were measured at pH 7.4 (10 mM tris-HCY buffer, 1 = 0.1 (NaCl)). Excitation wavelengths are
348nm.

RS 4-8 MIE 4-9WMR, RS NIBNSFIIA Zo™ /5, HIAEE
BE, BHAEREBD. £O0-IXI10°MBEER, ME ZVHREREM, N4
1 NS R ABERKEX, FAARENEEXR. 4 2o’ WESE N4 &
NSHIWRES LIE, #—58Mm 2z RE, FHRNEABEEERES

4.4.5 pH 7F N4 Rl NS % He ot 2 o

DPAER L ET A FAMMGA Bl pHHELLSN RS THRIEHI
WMEFABH., Hik, MET NN NSHRABRES pH 2 M XREE,
B 4-10 BT &
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a b

B 4-10 Na(@)RINS(OHM KK BE LS pHEZ MM EHE (£1:9, viviIDMSO/H,08)
BEBBHFO.

Figure 4-10 Effect of pH on fluorescence intensity of N4 (a) and N5 (b) in a mixed solvtion of
DMSO and water{1:9, v:v).

— R PETRHENEREFRABFTHERKBERAFT HIRNEBEE T E
MEHRBRAEBEREELUN, CERFERE4 T TH _EREREINER
V. MAME 4-10 RATLAEH, pH6-12 28, HAEY N4 HIRARER pH &
WA 6, BERNT NOER " FREMBRMEE (33#£). RET
BE, HTDPAZMLEREKERTFRTHE, A—Iwm bt EETFZHE
RTEE EHEURLEMCETRAT —PHTAGEW, 48T H'OIFBH,

B o4-11 FEHZEMA Za® 5 N4 FI NS 5 PET 1T 78 #1400 %1

Figure 411 PET inhibition of N4 and N3 upon addition protons or Znt
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SR TE) BARMNED oV R RS TES 05

B {F R FIE B DPA 1 HOMO B2 R (-6.15e VMR B A T %X 2 H HOMO £
B(-648eV M -6.59eV) (B 4.6 FiR), TENA S FH PET IHARAEBE
BT, BT, REMREFHULERIEN N4 RABEMNETHFIK: &
pH 4-6 ZH N4 B TR B RAK, XA BT DPA L —Nubse & B 74
ERTA, BATEREZEGHEE, SEETSBER I VEERTRREEAR,
EXECETEEBIT M EaAgEw (LS TFRELE T Gaussian 45
MtEEEY ¥ RE, T NS HUBITHUNESRE. BIFE N4 FNS
RABEFEESpHZ M XRMK LB XRFETUTEE N4 § pKa=8.17,
NS pK', =693, ZELABEMREBRWE 4-11 Fix.

WA Zo™ 4G, pHX NAFINS RABEMNEWXER 4-12. TLUE
W, fE pH4-9 208, pH LN Zo* MMM E W, pH 7.4 B, N4 NS
FHARKEAZETZE 0.004, MAMRA Z0*E, O 43 KE 0.17(Oned/0o =
43)80 0.09(@ns/Do =23). pH S B, IIAN Zn?" &, ©'ne/Dg = 30 1 @’ ns/Dg = 10,
B, N4 FINS 2L DPA HRFIEE, Z—F pHREEA, X Zn”A H%E R
MR IRB B Zn® R 4 T A,

S pT—e—o
hd T » »
15 |
10 b
5
2 Q Q
o ¥ AR AT WA s o Ao
4 5 [} 7 8 ]
pH

B4-12 MAZn"H 7, pHX NAFINSRABEMEW: ¥V, 10uMN4; ¥, 10uM N4
+10pM Zn®'; O, 10pM NS; @, 10pM NS+10pM Zn®". B A ¥ K4 5 & 380nm Al
348nm.

Figure 4-12 Effect of pH on the fluorescence intensity of N4 and N5: ¥, 10uM N4, ¥, 10pM Nd + 10pM 20™; O,
1opM NS, @, 10pM NS + 104M Zn?". The excitation wavelengths are 380nm for N4 and 348nm NS,
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446 EMEEE I Ky

NS RABER KR

HTRENIFINS 5 Zo BRI, METHE Zo W EF 1 x10°°M N4
12k . XEHIELE 25°C, pH 7.4 B 10mM (tris-HC)

iy

ZrmREPAE, P4 F 100mM NaCl, 10mM NTA, and 0~10mM ZnSO4.

P

$ 4-13 Fﬁ?ﬁ‘ﬁﬂ: gé Singdal %%M%E: ?—%EU KdN4 = (.63 nM, Kde =

05nM. XEE NIFINSEB T ERMNETHERMKEEEMNESE Zn® . N4
NS ELSFRHABERA Zn" BN EHR.

35

30 -

~ 0F N4
3 K,=0.63nM
o 15 B8
V‘/-"‘"T
10 |
S N5
K,=0.50 nM
} ]
10" 10" 10* 10°
FreeZn2+mmcnﬁ*a£ion(M}

B4-13 HEZo?EWERL x10°M NINSKABMBH R RME . ZBEEAEL °C,

pH

7.4 B10mM (trissHCHE MM EWR P B, X+ FFH 100mM NaCl, 10mM NTA,

Fo~10mM ZnS0Oy4.
Figure 4-13 Fluorescence intensity of 1 x10°°M N4 (square) or N8 {roundness) as a function of the

concentration of free Zn?'. These data were measured at 25°C, pH 7.4 (10mM tris-HCI) in
buffered Zn2* solutions containing 100mM NaCl, 10mM NTA, and 0~10mM ZnSO,.

4.3

1.

AENE

WHEMTEAUAAETARAMAEN 1, -FEHMIERK ARIETE, DPA

HIRBIEF RIS N4, NS HI N6, BRI XERRE .,
2. pH 7.4 6, NAFI NS HA R KB TZE 0.004, MAWA 205, ©
4 B8 K B 0.17(Dna/®o = 43)F0 0.09(Ons/Po = 23). pH S B, A Zn*'J5,
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o2 mevE ) BOAIRMER ZotTR N T8 & 0BT

O’ Na/Dg =30 FI O’ns/Do=10. X#, N4 FI NS A HY, ¥ 2o FH H B T
EEERAEE., B ERY, S THSBRTHG TR AEBFERZ W,
XAPETHHRERHBEWERT —1M2FTm B,

3I.NAFMI NS 5 Zn* BB E S B 4 Kava = 0.63 nM, Kgns = 0.5 nM, F B
NAFINSEES EBRNETHERKECENRE 20, Bk, £4XET
SEREFHEEMEER, N NSEERBHEMERERE 20" R LD T H
¥ o
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EREFTRERE 4T, REPAKERE, TKKCO; T, S8, &F
wH. TR EREERESE (BFN: EER/ZMZE =161, BEY
EEE 2, =E: 35%(169mg), HA: 176-178°C.

'"H-NMR (400MHz, CDCl3): & 6.08 (s, 2H, CH), 4.78 (s, 2H, CICH,C), 2.53
(s, 12H, CH;). > C-NMR (100MHz, CDCls): & 156.83, 141.31, 136.14, 131.57,
122.46, 37.33, 15.69, 14.86. "F-NMR (400MHz, CDCl;, CFCLy): 8 -146.73 (q, !

= 36 Hz). Anal. Calcd. for BC4ClI F3H sNz: C, 56.70; H, 5.44; N, 9.45. Found: C,
56.81; H, 5.51; N, 9.50.
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4.34 (s, 2H, CCH;N), 4.32 (s, 4H, PhCH,N), 2.58 (s, 3H, CH3), 2.51 (s, 3H, CH3),
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(400MHz, CDCl;3, CFCl3) & -144.92 (q, J = 36 Hz). Anal. Calcd. for BCy¢ FoHy3Ns:
C, 67.98; H, 6.14: N, 15.25. Found: C, 68.12; H, 6.22; N, 15.34,
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Figure 5-2 The parallel 'H-NMR of compound Bl and intermediate 2 (a) the partial 'H NMR spectrum of intermediate 2 in
CDCly; (b} the partial 'H NMR spectrum of BDA in CDCl
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Figure 5-3 Simulated structures of 2 and B1. The top and bottom are the side-view and bottom-view of the geometries of 2
and B1, respectively. Side-view illustrates plangness of 2 and curvature of the B1.
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Table 5-2 Selected calculated structural data for 2 and B1
Z 2 B1
r{Ci3-Cq, nm) 0.1463 0.1464
r(C7-Co, nm) 0.1463 0.1475
f(C16-C1o, num) 0.1475 0.1476
1(C)5-C1z, nM) 0.1475 0.1463
1{C9-Cs, nm) 0.1463 0.1487
r(H-Cg, nm) 0.1084 0.1084
r(H-C;, nm) 0.1084 0.1084
$(H-Cs, H-C11) 0 3.2
0(C13-Cy, Ci5-Ci2) 0 15.8
$(C17-Cy, C16-Ci0) 0 7.9
$(C15-C7, C19-Ce) 7.5 -9.1
¢(Has-Cs, Co-Cis) 5.1 -17.0
__&(H36-C11, Co-Cig) -5.1 19.6

5.4.2 tris-HC1 £ %W B1 A TR ¥ 70 5% ok o |
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B 5-4 SEmBERPAE ZnWE T Bl (1 X 10°M) 8845 — R Y. Zan  BIRE S5 0,0.1,

0.2,0.3,0.5,06,0.7,09, 1.1,2.0,3.5,5.0 & B1 #1IkfE.

Figure 5-4 Absorption spectra of Bi in buffcrcd solution by trtratmn with Zn?". The concentrations of Zn*" are 0. 0.1,
0.2,0.3,0.5, 06,0709, L.1, 2.0, 3.5, 5.0 equiv (I equiv=1.0x10 M),
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Figure 5-5 The fluorescence response of Bl to various cations and its selectivity for Zn*". The
colourless bars represent the integrated emission of BY in the presence of 5§ equiv of the cations interest;
the dark bars represent the changes in integrated emission that occur upon subsequent addition of 5
equiv of Zn®" to solutions containing B1 and the cations of interest. The response was normalized with
respect to the integrated emission intensity of free dye (ly); excitation was provided at 491 nm and
emission was integrated from 497 to 600 nm.
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Figure $-6 The normalized integrated emission intensity of BI versus pH. Insert: The normalized integrated emission intensity
of B1-Zn** complex versus pH. Excitation was provided at 491nm.
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Figure 5-7 (a) Fluorescence emission spectra of BI in buffered Zn* solutions with free Zn™" concentration. (b) The
notmalized integrated emission intensity versus the p[Zn?*] free. Insert: the Hill plot of B complexation with Zn*,
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Figure 5-8 (a) Fluorescence images of TCA cells loaded with BY. The cells were incubated with 10 uM B1 for 5 min, 37°C,
under 5% CO,. Then the cells were washed with phosphate buffered saline (PBS, pH 7.4) for 3 times; (b) Fluorescence image

of B1 stained cells loaded with 50pM Zn®* for 30 min; () PC12 cells untreated with Zn®*, (d) the PC12 cells preloaded with
Zn?*. The excited light is WB 450-480 nm.
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FRE -FEURBERLRLS TR
6.1 5 Figit B8

NAXABREHTFEBRECENRITHREST THRERZIA PET R4
FHRH. BEMHRAXEA, . B, URAEXTEYFHETUELIR LA -ERE
HA-HZHHEPETRERR D TR BER. RAEM 4.2 E-1 8-
TPREEHENIRE A ENMR AR HLEBREETRALR, AEYNHER®XETE
MEMERE. TXESFHRANEFEAPNRMEARNNEKBE T RIER, HE
ERXRNCBESHNADERRANBNELETTFEFTEEN XK. ML, %
KEHHARNE P REBPETRBERATFRIRBERLER.

EHELEFRMNEZATHELNREEARE T PET £BRAHTH
H, FTRBAEZEREORNEDRFHRN TS TR RIB R 0
KHERE. -EEKBEBREPIAQET RHX (lem = 515nm) & H 535 7 79 3%
M, HBREF, PIAQRHEMWETRHA, FHWE PIAQ A XM & ¥
PET X0 FH4. Fibl, ZFESRHIFHFAT L PIAQ ARIEE, DPA 4
HEER, TEFEREZEFIEBEAMBRNR LT FHRE A1 T A2 8
KR, FETFEHUOT:

N N N
0 HNA\(Q/‘ \EN; . ‘ o HN‘?\gO/H | L
Seea

O O
Al A2

B 6-1 304 T EH M £ 44

Figure 6-1 The structures of fluorescent probes
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6.2.1 9 [Al 1K M4 B & Y

12--EREEEMN p-EAFEXFBR NS B 4 B-ALF0 o-, B-X B A4
4RSS XA EHEATLLERMERA TEEMK RN, RE—9F
KAERKRFEE M4, SERRBEZIN 6-1 FT7.

CH,Cl
CH,CI CH.CI OYQ/
SO,Cl, | o NHz T
e s )
COOH COCI |
2 3 - O
4
| CH,CI
NH
GOSMEL T NS
= O H
refiux N
0 90®
\ 0 Y,

1

Na(QH,925% ethanol N

N
e LU

M4
T 6-1 A4k M4 K& KBk &

Scheme 6-1 The synthesis route of immediate M4

622 BEWHLEY AL R A2 B & Ak

oS RN P EE MLA M2, 5858440 RNEER T E K M4
EHEREEEFHEEULENBILESY AL A2, KNP KRR SF L
WhEEF, NI AEN.

—

6.3 LWLHH
6&1Eﬂﬂ&%
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N
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_(©/CH2Q o HN‘(Q/‘ z
N
.
O : !N/
N
M4 -< NN N
H | h
o HN =
L

A 6-2 T4 TR ALA A2 K& R

Scheme 6-2 The synthesis routes of fluorescent probes Aland A2,

e (&] 4k M1 MM2ESE —EFHFEAM. 12-“HEEEEBMWAE Aldrich, H
CERYATELER. Eé%%&%ﬁ&ﬁ#klf‘?ﬂ& (200-300 mesh).

HP1100 HPLC/MS it {¥X (=2 E HP 24 8 ), Varian INOVA 400 (400MHz)
MR (£ BE Varian 28, TMS B ®#R), elementar vario EL I &Y T
Eadi{e (BEE) X6EBEHBEAMNEN (AEFRRFXEFHFRLF ), HP-8453
S 4h-F) LAY 66, PTIO0 PB4 A, BS-2108 AHZ—HFRFT
(# & Satorius 28 ) , PB-20 {r# & pH + (#HE Sartosius 27 ) .

6.3.2 FEEMIBERREHURL

S0.Cly
COOH . Cocl
2 3

ESOm BBAEERTMANTFESFR 2Q2g), HFMAZH L (6.98g,
4.2ml), BE 5-6h. B LEIHRAGE, KREKEE, MHER 6h. RETE
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Z (2 MEERRE) BARMIER ZoTRRAL TFHRENTR

P ZEHIEWR. 2 HHEBITEHRBENERFETFBE 3. | x,
92.7%(2.05g).
CH,CI

NH. 4

O
NH |
2 3, THF, K,CO; < o @/CHQCI
reflux CH5Cl
N
’ 40P
O s

O

e

¥ 3 (0.79g, 4.2mmol) WML 30ml B THF F, ZBHEME 1,2- 28 F
BHE 1 (lg, 42mmol). =2 (0.43g, 4.2mmol) # THF(180m)R & & F .
maEKLIR, BREBEH. TRE, ERESE (BIFH.:. _&FR/ZRZ
s =3:1), oHBIBgEEHE4INECRES. BETHE: 4, 20% (25.2
mg), JEA: 256-257C; 5., 40% (0.91g), A 232-233C.

4: 'H-NMR (DMSO, 400MHz): §12.18 (s, 1H), 8.28-8.34 (m, 4H), 8.21 (d,
1H, J=8.4Hz), 8.11 (d, 1H, J = 8.4Hz), 7.84 (t, 2H, J = 4.0Hz), 7.61 (d, 2H, J =
§.4Hz), 7.46 (s, 2H), 4.69 (s, 2H). API-ES MS m/z(+): 391 [M+H]".

5. 'H-NMR (DMSO, 400MHz): §10.81 (s, 1H), 10.18 (s, 1H), 7.57-8.46 (m,
14H), 4.88 (s, 2H), 4.82 (s, 2H). >C-NMR (DMSO, 100MHz): § 171.4, 162.9,
154.2, 143.0, 141.5, 137.1, 134.5, 133.6, 133.0, 132.1, 131.6, 129.8, 128.9, 127.9,
126.9, 56.1. API-ES MS(+) m/z: 543 [M+H]".
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CH,CI
O HN‘(Q
NaOH,95% ethanol
4,5 - COO
reflux

M4

HEDARSHEERTENARUNBREEISHHZES, IN#A R 1.5h,
AHNBERE, AEBEBERTNME pH 7. BTEN, MEWHKE, T
BEEESBE (ZEFR/ZB 28 =5:1), B3BEEE M4, R E.: 49.3%,
e 151-152°C,

'H-NMR(CDCl;, 400MHz): 511.32 (s, 1H), 8.37 (d, 1H, J = 6.4Hz), 8.31(dd,
2H, J=7.2Hz, J = 8.4Hz), 8.19 (m, 3H), 7.84 (1, 2H, J = 3.2Hz), 7.63 (d, 2H, J =
8.0Hz), 4.69 (s, 2H). '*C-NMR(CDCl;, 100MHz): § 156.0, 149.5, 140.9, 134.6,
133.9, 133.4, 129.6, 128.9, 127.8, 127.6, 126.6, 125.9, 122.,2, 118.3, 53.6. APCI
MS m/z(+): 373 ([M+H]").

633 BHALFY ALF AZ AR B EMBE

|
.

M4 | Al

1 (5] 4£ M1(100mg, 0.5mmol). M4(186mg, 0.5mmol), = ZEEBR & &
WMEKEEIR 100ml THF &, MAEKERE 24h. BTEME, RHKEH, =
FERER. aHENMHEE, TARBRETR. ERETRE, BITH: Z«
H/Z B0 = 20:1, BHEEHK A1, WE.: 50% (133.8mg), #H:
232-233C.
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'H-NMR(400MHz, CDCl3) & 11.31 (s, 1H), 8.57 (d, 2H, J = 4.0Hz), 8.36 (1,
1H, J = 6.0Hz), 8.30 (t, 1H, J = 6.0Hz), 8.26 (d, 1H, J = 8.0Hz), 8.14 (d, 3H, J =
8.0Hz), 7.83 (t, 2H, J = 4.0Hz), 7.73 (t, 2H, J = 7.6Hz), 7.66 (d, 2H, J = 8.4Hz),
7.60 (d, 2H, J = 7.6Hz), 7.20 (t, 2H J = 6.0Hz), 3.91 (s, 4H), 3.85 (s, 2H).
BC-NMR(100MHz, CDCl3): & 187.0, 158.6, 149.4, 141.5, 141.3, 139.4, 139.2
136.3, 135.9, 135.0, 133.8, 131.9, 129.8, 129.5, 126.7, 126.3, 124.2, 123.0, 120.6,
118.8, 58.9. API-ES MS m/z(+): 536 [M+H]". Anal. Calcd. for C33H,sNsO1: C,
76.24; H, 4.70; N, 13.08. Found: C, 79.53; H, 4.68; N, 13.03.

—(@CHZC! A(g\l\l ~3
H |
o
O HN \N 0O HN \
SO0 e008t
0O O

M4 | A2

b [} /& M2(242mg, 0.5mmol), M4(186mg, 0.5mmol), = Z ¥ BREBE
RERSGH 100ml THF §, MAEBERKE 24h. ZTHENE, HKER, =
FHERER. FFNRAE, TAKRBRETR. ERE2E. BITHA: —&
FR/IZBOE =201 . BREAEEE A2, W E . 30%(87mg), B K : 193-194
C .

'H-NMR(400MHz, CDCl3): & 8.53 (d, 2H, J = 3.6Hz), 8.34 (d, 1H, J =
5.6Hz), 8.26 (m, 2H), 8.11 (t, 2H, J = 6.4Hz), 7.80 (s, 2H), 7.66 (1, 2H, J =
7.6Hz), 7.51 (m, 4H), 7.34 (d, 1H, J = 7.6Hz), 7.18 (1, 3H, J = 6.0Hz), 3.86 (s,
4H), 3.77 (s, 2H), 2.83(s, 4H), 1.25 (s, 1H). PC-NMR(100MHz, CDCl3): 182.7,
159.5, 156.7, 149.5, 149.1, 136.5, 134.5, 134.0, 133.8, 133.3, 129.8, 128.0, 128.6,
127.6. 127.1, 126.5, 125.6, 123.1, 122.0, 118.0, 60.7, 53.9, 53.2, 46.7. API-ES
MS m/z(+): 579 [M+H]", 601 [M+Na]*. Anal. Calcd. for C3¢H3oN¢O3: C, 74.72; H,
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5.23; N, 14.52. Found: C, 74.42; H, 5.21; N, 14.46.

6.3.4 H 4 RN E W E

6.3.41 ARB P H I EFR

WHRHERFENLEY, BEBAN Sml ZEHY, E_EPKREE, BE#
B E 1.0X10"mol/l WM. BN 0Sm BHET Sml1ZEET. HEAS
WFBEMN_ERKE, AFE. 28, NEAKW., Z8ZEB. NE. k. Z
M. _FEIREEE, AEARBERBESRERE 1.0X 107 mol/l B,
REXEN - LR E. FEARBRFEIN — 5NN EXREK
K, EARMEEHBRERK, AEREHE.

6.3.4.2 A pH B YT E

LOX10” mol/l B BERNAKBE, *MNATRKEN BRI ILA
THERYE (MABSATEHENREARE 1%). MEARR pH & 8 5 6 #%.

6343 RHAEBFEHRE

SR FERAS=ERAE.

6.3.4.4 & BE FHRHME
63441 FRALGS A1 A2NSEE TR

#% B AgNO;3. CoCly. NiCly. CdCly. CuClz. MnCl,. FeCls. CrCly # ZnS0y,
R R EREAE(10%aq.)(98:1, viv)REBBFTAE AL F A2 £ K5
FIE i, ©BETKREN 5X10°mol/l, ﬁﬁﬁ%sﬁm!ﬁ% 1 X 10°mol/l.

BEU LR, MEBERINEREF A #THEBELE. #H
WHEMLEY AL, BEBA Inl ZBMAT, ADMSOEE, MEMARKE
B E 1.0X 10" mol/l KB . BE 0.1ml _t:ﬂi%ﬁ% 10ml ZBMEF, FE-
BB E AL (10%a.q.)(98:1, viv)BABBERFEAI AR 1.0X 10 mol/l #
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(2P H) BAHRMER Zn"RESTHEH O A

W MULEBPAEMA IMAgNO; KB, AR Ag ik E R HRE 7 F
Al ) REBE .

6.3.4.42 ZBHBEEF Al %ﬂ A& BE FHIRA

FEpH- RN BEAXRNMEWEM L, EERLRBREREN pHERITERE
BFRMER., EEMEEF, HEBPKREN 1.0X107mol/l, S HIMA 5.0
X 10 °mol/l # NaCl. KCl. MgCl,. CaCly. AgNO;. CoCly. NiCl;. CdCl;,
CuCl;» MnCly. FeCly. CrCl; F1 ZnSO, ¥l 52 2R )6 36 i B & 4L

B B, WEEBRMNOEBETFT 2o, HTRESERR. #
ALY AL BEBA 10ml FEMT, F DMSO £%, BERKEX
R 1.0X10%mol/l IEW. BE 0.lml HERE T 1oml BERAP, ZEHEEE
KERER 1.0X107°mol/l B, MBEBEBEPAEMA IM ZnSO4 KB
MEAR Zn* " WERNTH S TF AIHNRALEEE.

6.3.4.5 BTHEWEFTZ

A = £ B Gaussian 98 & RHF H ¥ STO 3G KF LHE S TREFEN
ERKEBURDTAZRRTHBRE M.

6.4 FR5i1T1iE

6.4.1 T[E)1E M4 1 & B

B AL M BB R A 7 R T b e R R R N-BR AL R B A
R ERAEETFH AT AEEABLANEAESE, URETAMANREE
MER, EEIMATFEEERA, TEEBRSS, WRMEESRRE. 1, 2-
~EEEBOBRLRY, EXEEYNSGEE P BB, TEXR
BB o P SR - LM EBRATY 4 EE. RETR
- MABELE, ot FEENBTEHEEMANMBA, ATIMKT o-fE
£ {1 R R0 HE -
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Scheme 6-3 The synthesis machanism of immediate M4

RiL, B EY 4 EEEALPBROIERT 85 0 8B 55 40618 Hon & B
B K A R B0 B P Ak M4 A SRR . A mgijﬁw“
WaY s HITHRKMTEMd, thHAB o N=

NH

MS, EgHMXmEe2r. RETRENL 1

45 ZE WAV IR SR K AR HE oo O B B A M3

Y, #TEREU L RNES S E AR M4, B 6-2 & MS B4R
Foh, FERSFHREROBE, RE o e
Gaussian 98 F RHF A ¥ 7E STO-3G /K L4t |

BB, MSEBSRBREEAENBRAEREL M4 & 17.34 kl/mol, ATLEL,
*ﬁﬁgtﬁu%ﬁﬁﬁ&‘ﬂ’]?‘%m{“ Bhad M4, TRFABEALEYRE
R BB E LI AER.

b 8] & M4 ] '"H-NMR BB K 6-3 Firz. ANBEFRUEH, -NH#EEK
% 611324 b I, XREN-NHHIRESHKEFRMNEREINMT, 5RERET
THERB S FHEEFREY, X—AETUALEY AR BEETEFR,
o B 6-4 BT 7R
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Figure 6-3 The |HNMR spectrum of immedtate M4
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B 6-4 &% A1 ) 'H-NMR i# B
Figure 6-4 The '"H-NMR spectrum of compound Al

6.4.2 BRI A1 FI A2 Y& i #) = M

FMRTRR, FESROEHFRLEY ALA A2 ERARBERNFEIND
U AR S 2B WIEEHEL. AL AE, £FBER S RER RS
YiEIME 6-1 B~
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Z 6-1 AL(1 X 107 mol/DE A B 75 7l o £ % i % 38

Table 6-1 Spectra data of compound AI1(1 X 10 °mol/l) in different solvents

—

A - S ——

solvent A max Abs Aem
toluene 416 0.114 488
diethyl ether 409 0.074 481
THF 409 0.131 510
ethyl acetate 400 $.126 519
acetone 404 0.135 524
ethanol 401 . 0,118 537
DMSO 402 0.138 530

P bl e oo

Mg ELETHRARANRES TEHAAEANE, MEEUREROE L, AL
BRI EARERS, B EFIHAB., —RIEX, B TFRELER Y -t

BRI A n- n* BRI A WAL S, WA M X IR B 2 BRT R 4

R AP

ﬁj%ﬂ

LEAEREE A, #f o RETEERNESBARETR, SHER, &
REAMRERE, W o REERRSBRER AR, DELR

2 131
6.43pH X A1 Fn A2 RLBBEHEW

HEW AL W REBES pHE 29 MM XRFHELWNE 6-5 . BX
BEEK Lex £ 400nm, BRXKMNEK dew £ 560nm. AZEHATUEL, BE
pH I K, Al IR BELAEER, EpH 6-8 2 HF—TREE. ME Al
1% JC IR B 48 T B8, Aoy A 400nm 4% 3 4240m, Aey A\ 560nm E # 3| 5250m.

ZEpHZRE 11 UJE, B THFHBERREAEANE LGB, 2 pHIZ AH, WE

6-6 FT7Ro BA Aoy = 424nm METTU B BNE S I Aew = 525nm A 617nm 25
HHME, T hex = 466nm WRRK, TERIHE Aem = 617nm & 858 ¥ 362 F0

EFEY S25nm e YL UE .

HEER, EHEFLTFRGRG S, EXBHESITRERERTESR
ZEP, 3-3BE-2-
HZERBEKE 329nm “RRBHBHRN, HBBRPMAERENEREAE
TR, PEREARTENSES AcO4E, WRETHFHEBRATFES. ik

FEBREN), EERBWR 6-4Hr. EFERTFHERN
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K64 TTHEEREASRTFEBFHREZY

Scheme 6-4 Example of Intermolecular excited proton transfer

BERENERERET, ALFBEED OHZ R L TREEMNH T
BT, R HY, AR N K, Aem = 617nm &% 36 36 # 6
RRAEFRMEE: BET (ATHETHSE) FHESME (Ao = 466nm)
FRBRTFHOED (he=424nm) B ETFHEES .

3 kL
\\.—-—-I—-—-—-I .“"'*--.ﬂ.
2 \\l
I | | | [| 1
2 3 4 p 6 7 8 9
pH

Figure 65 A1 A B EF SpHEZ MM X E WL (E1:9, vivlDMSO/H,0M K& %
v LD

Figure 6-5 Effect of pH on fluorescence intensity of Al in a mixed solution of DMSO and water
(1:9, viv).

(e A2 R ERE pH B UM ELEYW AL BT FHRLAER,
XERABER. |
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Figure 6-6 The fluorescence spectrum of A1(1 X 10 mol/l) at pH 12

644 FHE-BEEFT AN AREEBEE FHRANTAR

HTRETESBE T A& ENETX PET BEMNTLES RINE
Wi, KB E — AR PR TR F EE ML R A A IR A E ALK
EROHT, UEBRETHER.

6441 WM AREBREFHRINFAR

BEREWMESEET, TLUBIKBKHFTE AN EUR R L EHNEERE L
| Akg Stokes LB . BARMNTUBE HX A1l X SHERANER, £F
B-UEREFELEFCRZRFREAINEEE THRA.

#6-2 0 ALTE S -TU T BB A (10%a.q) O DEHF AR RET
& B4R A TR R B Y6 B AL 1B L |

R 6-2 FRE-U0 R B B AL (10%a.q.) O: DB P& B E T3 AL (1 X 10 mol/)WR i
% AR e 6l R B R
Table 6-2 Absorption and fluorescence spectrum data of compound A1(] X 10" *mol/l) with different

metal ions
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o2-mtop ) MARMNER InVRES TR VYA

EE F:] Zn2+ Cu2+ th— C02+ Cr3+ Fej+ Ag+ Ni2+

A 462 464 460 460 460 460 462 438 460
Abs 0.1007 0.1149 0.1357 0.1054 0.1517 0.1018 0.1235 0.1572 0.1018
Aem . 616 616 611 611 615 616 616 608 616

[¢1q 1.0 0.96 0.75 0.96 0.87 0.96 Q.85 0.21 0.94

LFE 62 FHEETUEE, Zn?. Cd¥. Cr'7. Ni**. Co?'. Fe''. Cu*
AR Al R REREREE. AREETSS SR RM, HREX
MBWER D, RE A 5LEREFRERTHAIE: WA Ag'/F. A1 KR
YA, BARKNCEER 24nm,; BABHK 80%, KANLEEK 8nm,
MEBBBREHAEBERRESR

1

60
50 - Ag
40 |

30 /"

Ty
0 | .

0 i ] i ! ]
500 550 600 650 T00 750

Wavelength (nm)

B 67 BAL U0 R A E AT AgTR B R AL(IX 10 mol/1)HE M Y6 i B0 B

Figure 6-7 Fluorescent spectra of compound Al1(! X 10 °mol/1) with the different concentration of

Ag* (from top to bottom Ca,.: 1 X 107 mol/f-4 X 10 mol/1)

6.4.4.2 Ag W EIT Al IR E B E W

ERERBRMERLE, #—SHRAT AgREXN AL WA ENRZW. &
PE-NEEASLEERET, MARRKEN Ag KB W, RIERKEHKIE.
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M 6T HTLLE M, M AgENN, BALERNES, HARK.
LR, MMM Ag R BRI R 4 B0, HREARETI. T
EBWEAL, GRS EM ACRERE, NACEAKETERS
o, AR ELES. RITEN ACRABETSN NETERE, Ak
REFRANERCEERERLEHE—SRE.
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