
摘要

当今社会，嵌入式系统的应用越来越广，需求越来越大。传统的嵌入式系统

开发方法不利于修改设计，丌发成本高，设计周期长，不能满足激烈的市场竞争

的需要。一种新型的嵌入式系统设计方法一陕速样机生成技术应运而生。使用
SOC技术可以进行快速样机设计。在SOC基础上，Altera公司推出基于NIOS

的SOPC设计。使用基于NIOS的SOPC技术，可以快速地进行嵌入式系统的设

计，并且玎发的系统易于修改，开发成本低，丌发周期短。

SOPC是Altera公司提出的一种灵活、高效的片上系统设计方案。它将处理

器、存储器、I／0口等系统设计需要的组件集成到～个PLD器件上，构建成一个

可编程的片上系统。NIOS是Altera公司丌发的可进行SOPC设计的RISC型处

理器软核。进行SOPC设计的环境是SOPC Buitder，集成在Altera公司开发的

EDA工具Quartus II里。进行SOPC设计的关键是使用IP核。Altera公司除提供

自己开发的IP核外，也提供了使用第三方IP核的简单接口。

本文蕾先对嵌入式系统设计做了简要介绍。第二章详细介绍了A／tera公司推

出的基于NIOS的SOPC技术，包括对NIOS软核的介绍和对SOPC技术的介绍。

第三章介绍了复旦大学CAT实验室研制的快速样机平台，介绍了样机平台的主

要组成部分及样机平台的特性。第四章介绍了本人对样机平台进行的A／D、D／A

功能扩展的工作；第五章介绍了在样机平台上进行的应用丌发，汽车运行信息、记

录仪。文章最后对本文进行了一卜总结，并对实验室今后的工作做了展望。

关键词：嵌入式系统，SOC，NIOS，SOPC

Abstraet

Nowadays the embedded system is becoming more and more popular and its

applications call be found in many aspects of industry．In the heated competition the

traditional developing method fbr embedded system is being driven out because of its

drawbacks：hard tO debug，relatively higher cost and long developing cycle and SO on

Meanwhile，a new developing method is coming into being--Rapid Prototyping

Technology．By using SOC technology a rapid prototyping design can be made NIOS

based SOPC design is developed by Altera Corporation．By using this technology，

embedded system can be designed in a rapid way and earl be easily modified，the cost

can be reduced and the developing circle gall be shortened．

SOPC is a flexible、efficient SOC design methodology，which integrates

processor、memory、I／Os and other peripherals into a PLD NIOS is a soft core

microprocessor，which can be used to build a SOPC design．The SOPC design

environnleflt is SOPC Builder,which is integrated in the EDA tool Quartus It The

key issue of SOPC design is IP cores．Altera provides not only IP cores but also the

interface to make possible to use IP cores developed by the third party

In chapter one，the embedded system design is introduced briefly In chapter two，

NIOS based SOPC design is introduced in detail，including the introduction of NIOS

soft core and SOPC technology The rapid prototyping platform，which is developed

by'CAT lab of"Fudan University，is introduced in chapter three In chapter four，the

function of A／D、D／A conversion expanded to tile platform is introduced油detail in

chapter five，the application--Vehicle Information System that is developed based

the platform of CAT lab is presented．At the end of this article，a summing up of this

article will be given and the expectation of the future research work of CAT lab is put

forward

Key words：embedded system，SOC，NIOS，SOPC

．4一

第一章Bl言

第一章引言

1．1嵌入式系统概述

数字系统(digital system)可以分为两种：通用系统(general—system)和专

用系统(special-purpose system)。通用系统就是传统的计算机，范围从Pc机，

手提电脑，工作站，，一直到超级计算机。这些计算机的特点是用户可以在其上进

行编程，并且通过可执行的软件，可以支持很多不同的应用。在80年代及90

年代早期，通用系统是设计方法革新的主要推动力。然而，随着几种新型应用的

产生，比如MPEG4，通用计算机不能高效地实现这些应用，上述情况有了改变，

专用系统变得越来越重要．因为它们是专门为实现特定应用而丌发的。嵌入式系

统就属于这类系统。

一般来说，嵌入式系统是以应用为中心，以计算机技术为基础，并且软硬件

司以被剪裁以适用于应用系统对功能、可靠性、成本、体积、功耗有严格要求的

专用计算机系统。在嵌入式系统中，操作系统和应用软件集成于计算机硬件系统

中，即系统的应用软件与系统的硬件一体化。嵌入式系统具有软件代码少、高度

自动化、响应速度快等特点。

如今，嵌入式系统的广泛应用，已经渗入到我们同常生活的各个方面。在手

机、电视机、数码相机、洗衣机、电冰箱、空调，甚至电饭锅、手表里，都有嵌

入式系统的身影。嵌入式系统小到一个芯片，大到一台标准的Pc板或者一台独

立的设备，种类繁多，让人顿生目不暇接之感。微型计算机虽然占据了全球计算

机工、世的90 04的市场，但事实上，嵌入式系统在数量上远远超过了各种通用计

算机。Pc机的各种输入输出和外部设备均是由嵌入式系统控制的。每台Pc的

外部设备中包含了5～10个嵌入式处理器。当今工业界的自动化、信息化和网络

化已经发展成为一种不可逆转的趋势。在工业自动化控制、通信、仪器仪表、汽

车、船舶、航空航天、军事装备、消费类电子产品等领域更是嵌入式系统的天下。

一般来说，嵌入式系统具有如下一些特征⋯：

1．通常嵌入在其他产品中。

2．独立工作。

3．通常不被重新编程，它们的功能很固定。

4．通常在反应模式下工作，对于外部的输入要频繁地做出反应。

5，由夫量并发的工作进程实现，这些进程之阳』需要通信。

6．自严格的时洲要求，比如实时限制。

7．常常是I／0密集的。

8．对于成本、功耗、体积、重量等性能指标有一定的约束。

9．有严格的可靠性、正确性限制，比如ABS(Anti-lock Brake System)必须在

第一章引言

任何情况下都可以无错工作。

上面的特征只是嵌入式系统的一般特征，并不是所有嵌入式系统都要具有上

面的特衙。实际上，不同的嵌入式系统在设计要求上是有一定差异的。例如，某

些系统对实时性要求f‘分严格，如粜系统在规定的u,h、白J内不能对输入做出适当的

反应，则会导致严重的错误甚至灾难性的后果，比如跟踪导弹的雷达系统。这类

系统称为强实时或者硬实时嵌入式系统。相对的，有些系统虽然对实时性有一定

要求，但并不十分严格，即使在规定时间内对于输入没能及时做出反应，也不会

造成重大损失，比如ATM提款机。这类系统称为软实时嵌入式系统。

嵌八式系统又可以被分成两个子类：嵌入式控制器和嵌入式数据处理系统。

嵌入式控制器是专用于控制功能的。它们是面向控制流的(data flow

dominated)，对于外部事件起反应。因此，嵌入式控制器常被称作反应系统

(reactive system)。反应系统对于环境的刺激所做出的反应是改变其内部状态和

产生输出结果。通常地，它们支持一组模式和设置，并且它们的实时艰制一般在

毫秒范围内。因此，性能需求通常是低等到中等。由于这个原因，微控制器对于

实现嵌入式控制器就足够了。嵌入式控制器典型的应用在以下方面：

1．控制器(例：电梯，电子窗帘)

2．家用电器(例：微波炉，洗衣机)

3．汽车工业应用(例：发动机控制单元，燃料喷射器，防锁刹车(anti—locking

brakes))

4．工业机器人

嵌入式数据处理系统专用于数据通信和处理。因此，它们常被称为转换系统

(transformational systems)。这些系统是面向数据流的，通常是实时系统，要在

一个预先定义的时间窗内执行一个特定的功能。与嵌入式控制器相比，它们需要

更高的性能。因此，微控制器已经不能满足要求，需要更强大的微处理器

(microprocessors)和ASICs。数字信号处理和高层综合是它典型的应用领域。

以下应用领域包含了典型的嵌入式数字处理系统：

1．多媒体(multi—media)

2．消费电器(consumerelectronics)

3．无线通讯(wireless communicmion)

4．通用电讯(general telecommunication)

1．2嵌入式系统设计现状与前景

传统的嵌入式系统的丌发过程是一种“瀑御”式12l(Waterfall Mode)的设计

过程。这种设计方法的最大特点是从系统设计的丌始就将系统所要实现的功能划

分到用硬件实现或者用软件实现，然后分别进行硬件设计和软件设计，最后进行

第 章引言

硬件和软件的集成。这种设计方法不利于修改i殳计，而且成本相对较高，设计周

期较长，不能满足激烈的市场竞争的要求。

为了解决上面的问题，近年来，一些基于硬／软件协同设计的嵌入式系统自动

化设计技术，即所谓的快速样机系统(Rapid Prototyping System)，成为嵌入式系

统领域的研究热点。这种嵌入式系统的设计方法不同于传统的嵌入式系统的设计

方法，最主要的有两点：一是硬件和软件的设计不是各自独立进行设计的，而是

从系统级设计到最后的综合均采用硬／软件协同设计的方法。二是系统设计是从

与具体实现无关的系统级开始的。采用系统级设计的好处是一方面可以通过对所

设计系统的功能和性能进行验证，及时发现和纠『F设计中的错误和问题，否则到

对系统进行综合实现时再发现错误就将对整个设计付出很大的代价：另一方面，

由于系统级设计与具体实现无关，所以即使今后的硬／软件划分方法、协同综合

方法、快速样机平台发生变动，都不会对系统的设计造成任何影响。

除设计方法外，嵌入式系统设计领域还有其他一些研究热点：

1．处理器

为了满足不同的应用，半导体厂商提供一些具有不同处理能力及寻址能力的

处理器，如8位、16位、32位处理器。为了专门进行数字信号处理，数字信号

处理器DSP(Digital Signal Processor)也应运而生。另外，还有基于知识产权核

IP Core(intellectual Property Core)的、用户可以进行修改的处理器——软核(Soft

Core)处理器。本文后面将要讨论到的NIOS就是一种软核处理器。

2．存储器

随着ROM和RAM存储设备存储容量的不断提高及价格的不断F降，在嵌入

式系统中可以存储大量的数掘及程序。另外，随着闪存的技术和容量的提高，很

多嵌入式系统使用闽存作为存储设备，这使得嵌入式系统可以包含“巨大”的操

作系统。

3．操作系统

现在，很多嵌入式系统使用操作系统。这种操作系统与桌面操作系统相比，

比如Windows系列操作系统，它们占用的存储空Il白J更小。但这些操作系统也提

供应用程序接El API(Application Programming Interface)，这使得嵌入式系统开

发人员可以在操作系统层面进行开发，减少了开发时间与付出的努力。对嵌入式

系统的操作系统进行相应的更改与裁减，使其适合嵌入式系统的要求，这也是现

在嵌入式系统设计领域中的一个研究热点。

4．编程语言

以前人们使用汇编语言来编写嵌入式系统软件，但现在人们更多的使用的是

高级语言来进行嵌入式系统的开发，比如C语言。另外，随着面向对象技术应

第一章引言

用越来越广，一些面向对象的语言也被用来进行嵌入式系统的丌发，如c++语

言。另一个重要的发展是Java的使用。山于Java的平台无关性，它在嵌入式系

统软件开发中变得非常流行。由Java编译器生成的字节代码能够被移植到任何

平台卜，只要该平台上运行了Java虚拟机JVM(JavaVirtualMachine)。

5．丌发工具

众多电子设计自动化EDA(Electronic Design Automatic)丌发工具的发展J下

在加速嵌入式系统没计的开发。这些丌发工具一般包括交叉编译器、调试器、仿

真器等。利用这些工具，开发人员可以在主机上编写程序，测试软件，最后移植

到目标硬件上。

1．3后续章节的安排

本文主要介绍一个快速样机生成技术，基于NIOS的SOPC技术。在后续的

章节旱，内容安排如下：

第二章：具体介绍基于NIOS的SOPC技术。2．1节对SOC技术进行简要介绍；

2．2节对基于NIOS的SOPC技术进行详细介绍。2．3节介绍SOPC的开

发过程；2 4节介绍本人对SOPC的高级特性的研究。

第二章：介绍复旦大学CAT实验室研制的快速样机平台。其中3．1节对复旦大

学CAT实验室研制的快速样机平台做概要介绍；3．2节介绍这个样机平

台的特性。

第四章：详细介绍了本人对样机平台进行的功能扩展——A／D、D／A转换板的设

计。

第五章：介绍在复旦大学CAT实验室开发的快速样机平台上开发的一个应用实

例——汽车运行信息记录仪。其中，5．1节对汽车运行信息记录仪做了

简要介绍；5．2节介绍了汽车运行信息记录仪的具体实现；5．3节介绍了

系统模拟运行的情况。

第六章：对本文进行总结，同时对复旦大学CAT实验室在快速样机生成技术研

究方面的今后工作做一下展望。

第二章基于NIOS的SOPC设计

第～：章基下NIOS的SOPC设计

2．1 SOC概述

随着大规模集成电路设计技术的进步和制造工艺水平的提高，单个芯片上的

逻辑门数的增加，嵌入式系统设计变得日益复杂。与此同时，上市时间的压力也

越来越大，传统的嵌入式系统设计方法已不能适应当前嵌入式系统设计的需要。

单个芯片卜-的逻辑门数的增加在使设计任务复杂的同时，也为设计人员的开发设

计升辟了新的天地——可以把整个系统集成到一个芯片上，这就是所谓的SOC

技术，即片上系统(System On Chip)。使用SOC技术可以快速地进行嵌入式系统

设计，从这点上来讲，SOC技术属于快速样机生成技术。

虽然sOc一词多年前已经出现，但到底什么是socN有不同的说法。在经过

了多年的争论之后，专家们就SOC的定义达成了一致意见。这个定义虽然不是非

常严格，但明确地表明了SOC的特征pI：

1．采用复杂系统功能的VLSI：

2．采用超深亚微米工艺技术；

3．使用～个以上嵌入式CPU／数字信息处理器(DSP)：

4．外部可以对芯片进行编程；

5．主要采用第三方IP进行设计。

从上述SOC的特征来看，SOC中包含了微处理器／微控制器、存储器以及其他

专用功能逻辑，但并不是包含了微处理器、存储器以及其他专用功能逻辑的芯片

就是SOC。SOC技术被广泛认同的根本原因，并不在于SOC可以集成多少个晶体

管，而在于SOC可以用较短时问被设计出来。这是SOC的主要价值所在——缩短

产品上市周期。因此，SOC更为合理的定义为：SOC是在一个芯片上由广泛使用

预定制模块IP而得以快速丌发的集成电路。从设计上来说．SOC就是一个通过设

计复用达到高生产率的硬／软件协同设计过程。从方法学的角度看，SOC是一套

极大规模集成电路的设计方法学，包括IP核可复用设计／N试方法及接口规范、

系统芯片总线式集成设计方法学、系统芯片验证和测试方法学。

为了快速设计生产出SOC产品，设计人员必须利用预先定义并验证好的IP核。

IP核是SOC设汁的关键技术之一。虽然IP核～词在众多场合被使用，但它并没

有一个统‘的定义。从概念上可以这样理解它：IP核是指将一些在数字电路中常

用但比较复杂的功能块，如FIR(Finite ImpusleResponse)滤波器，SDRAM控制

器，PCI接口等等设计成可修改参数的模块，让其他用户可以直接调用这些模块，

这样就大大减轻了工程师的负担，避免重复劳动。lP核设计一般可以有三个来

源，一是EDAU。商提供，=二是用户自己定义，{是第三方提供。

lP核一般可以分为三类【4 J：

第二章基于NIOS的SOPC设计

1．软核C soft—core)

软核用硬件描述语言写成，可以是对设计的算法绂描述，或功能级描述，也

可以是仅仅用于功能仿真的行为模拟。

2．固核(firm—core)

固核在软核基础上开发，是一种可综合的、并带时序信息及佃局布线规划的

设汁，用硬俐：描述语言写成。

3．硬核l hard．core)

指和特定工艺相联系的物理版图，设计的正确性已经投片验证，可以在新设

计中作为特定的功能模块直接调用。

2．2基于NIOS的SOPC设计

2．2．1NIOS软核

2．2．1．1NIOS软核概述

Altera是世界知名的可编程逻辑器件公司。过去，Altera作为可编程逻辑器

件供应商，他提供PLD器件。如今，Altera同时又是系统方案的供应商。他现

在为客户提供的服务是，如何把一个系统所需要的嵌入式功能块，也就是IP核，

放到可编程逻辑器件j：组成系统，这就是SOPC(System On Programmable Chip)

技术。

在进行SOPC发计时，最重要的一个IP核是一个CPU的软核，这就是Altera

公司自行研制的NIOS CPU软核【51。NIOS CPU软核是一种采用流水线技术、单

指令流的RISC处理器，如图2．1所示，其大部分指令可以在～个时钟周期内完

成。NIOS软核处理器家族包括32位和16位两种体系结构的版本，见表2．1。这

旱主要介绍32位的NIOS CPU，并规定字节宽度为8位，半字宽度为16位，字

宽为32位。

表2 l

NIOSCPU规格 32位N10S CPU 16位NIOSCPU

j数据总线宽度(位) 32 16

ALU宽度(位) 32 16

内部寄存器宽度(位) 32 16

地址总线宽度(位) 32 16

指令宽度(位) 16 16

NIOS CPU采用16位指令系统，其指令集有以下特点：

·捌有较大的窗口化的寄存器文件

NIOS CPU包含512个内部通用寄存器，编译器使用这些寄存器来加速子程

序调用和本地变量的访问。

第二章基于NIOS的SOPC设计

·简币完整的指令集

32位和16位的NIOS CPU都使用16位宽的指令，减小r代码文件的大小和

指令存储器的带宽。

●强大的寻址模式

NIOS指令集包含加载(Load)和存储(Store)指令，编译器可用来加速对

结构和本地变量(栈)的访问。

·可扩展性

用户可以真接将自己的逻辑堆元(作为用户定制指令)加入NIOS算术逻辑

单元(ALU)中。在软件开发包(SDK)中，系统会相应生成访问该定制指令的

宏(用C语言或汇编语言‘编写)。

图2．1一N10S CPU框架

2．2．1．2内部寄存器

N10S CPU中的内部寄存器包括：一个通用寄存器文件，多个内部控制寄存

器，一个程序计数器以及一个用于前缀指令的K寄存器。

1．通用寄存器

在32位NIOS CPU中的通用寄存器是32位宽的。寄存器文件的大小可以配

置为128个、256个或者512个寄存器。软件通过滑动窗口(32个寄存器宽度)

来访问内部寄存器，每次窗口的滑动步长为16个寄存器。滑动窗口能够遍历整

个寄存器文件并目可对其子集进行访问。

寄存器窗口被分为4个相连的部分，如表2．2所示。最低8个寄存器(％rO

第二章基于NIOS的SOPC设计

--％r7)是全局寄存器，也被称作％90--％97。全局寄存器并不跟随窗口位置的

移动而变化，而是一直作％90--％97被访问。寄存器文件中上丽的24个寄存

器(％r8一r31)可以通过当前的窗口访问。

表22一寄存器组

输入寄存器 ％r24一％r31或％i0一％i7

局部寄存器 ％r16一％r23或％L0一％L7

输出寄存器 ％r8一％ri5或％00--％07

全局寄存器 ％rO一％r7 或％90--％97

2．K寄存器

K寄存器是一个ll位的寄存器，除PFX及PFXIO指令外，其他指令会把它

置为0。PFX及PFXIO指令可以将一个11位的立即数置入K寄存器，然后紧接

在PFX(或PFXIO)后的指令爿可以使用K寄存器中的非零值。

PFX和PFXIO使中断失效⋯个周期，因此PFX(或PFXIO)和其后的指令

构成原子操作。它们也会被SKP类型的条件指令跳过。

K寄存器不能通过软件直接访问，只能『白J接访问。例如，MOVI指令把K寄

存器的所有11位的内容传送到目标寄存器的位15—5中去。只有当前面指令是带

有非零参数的PFX指令时，K寄存器的读操作才能产生非零的结果。

3．％r0(％90)寄存器

该寄存器被显式地用作以下指令的参数或者结果：STSl6S、STS8S、ST8S、

STl6S、ST8D、 STl6D、FILL8、FILLl6、MSTEP、和USRl一USR4。

4．程序计数器

程序计数器(PC)寄存器包含当前正在执行的指令的字节地址。因为所有指

令必须是半字对齐的，所以Pc的最低有效位一直为0。

除非跳转，否则每条指令执行后PC的值加2(PC<--PC+2)。以下指令可

以直接改变PC的值：BR、BSR、CALL、JMP、LRET、RET和TRET。

5．控制寄存器

NIOS中含有5个独立寻址的控制寄存器，RDCTL和WRCTL指令是唯一可

以读写这些控制寄存器的指令(这意味着％ctl0与％90是无关的)。

％ctl0为状态寄存器。该寄存器内部各字段的作用如下

DC：数据缓存使能位。

IC：指令缓存使能位。

IE：中断使能位。

第二章基于NIOS的SOPC设计

IPRI：中断优先级。

CWP：当前寄存器窗口指针。

N、V、z、C：状态标志位。备标志位含义如衷2．3所示。

表2．3一状态标志位意义

标志 位 结果

N 3 结果的符号，即最高有效位
V 2 算术溢出，即结果的符号位与按照

无限精度计算时的符号不一致

Z 1 结果为零

C O 加法的进位，减法的借位

● ISn盯US寄存器(％ctll)

IS玑虹US是STA]、US寄存器的拷贝。当处理异常时，STATUS寄存器的内容

被拷贝到ISTATUTS寄存器内。这种机制使得在中断返回时能够恢复STATUS

寄存器中的内容。

·WVALID寄存器(％ctl2)
1 5 1 4 13 12 11 1 0 0 8 7 6 5 4 0 2 1 O

WVALID寄存器包含两个值：HI LIMIT和LOW LIMIT。当SAVE指令使

CWP由LOW LIMIT减小到LOW LIMIT～l时，寄存器窗口产生下溢异常(异

常#1)。当RESTORE指令使CWP由HI_LIMIT增大到HLLIMIT+1时，寄存

器窗口产生上溢异常(异常#2)。WVALID是可配置的，既可以只读【乜可以进

行读／写。当CPU被复位时，LO—LIMIT被置为l’HI—LIMIT被置为最大的有效

窗口指针((寄存器文件大civil6)--2)。

·ICACHE寄存器(％ctl5)

ICACHE是指令缓存的行失效(1ine．invalidate)寄存器。向ICACHE写入一

个地址后，会使得包含该地址的缓存行失效。ICACHE是一个只写寄存器。要注

意在写ICACHE之前1‘定要禁止指令缓存(STATUS寄存器的IC位要置0)。

·CPU ID寄存器(％ctl6)

CPU ID包含⋯个16位的常量，用于标识NIOS处理器的版本。

·DCACHE寄存器(％ctl7)

DCACHE是数据缓存的行失效(1ine—invalidate)寄存器。向DCACHE写入

一个地址后，会使得包含该地址的缓存行失效。DCACHE是一个只写控制寄存

器。要注意在写DCACHE之前一定要禁止数据缓存(STATUS寄存器的DC位

要冒0)。

·CLR_IE寄存器(％ctl8)

对CLR IE寄存器进行WRCTL操作都会将STATUS寄存器的IE位置0

第二章基于NIOS的SOPC设计

(WRCTL的值会被忽略)。

●SET IE寄存器(％ctl9)

对SET IE寄存器进行WRCTL操作都会将STATUS寄存器的IE位置l

(WRCTL的值会被忽略)。

2．2．1．3流水线

NIOS CPU是采用了流水线技术的RISC体系结构。除延迟槽和当CWP被

WRCTL改变外，流水线的实现对于软件来既是透明的。

·甑接CWP操作

每一条改变STATUS寄存器(％ctl0)的WRCTL指令必须紧跟一条NOP指

令。

·分支延迟槽

分支延迟槽被定义为紧跟在BR、BSR、CALL和JMP指令后的指令。分支

延迟槽在分支指令之后、分支目标指令之前被执行。

2．2．1．4存储器组织

NIOS处理器的数据访问采用小端对齐方式(1ittle—endian)。数据存储器的地

址空间必须是连续的且字对齐。如果存储器的数据宽度小于字宽，则数据总线可

采用动态地址对齐方式(dynamic．bus sizing)来模拟NIOS CPU的全宽数据。如

果外没的寄存器宽度小于字宽，则在高位填0，这样CPU看来仍是一个字宽的

数据。

●读存储器(外没)

NIOS CPU只能进字边界对齐的存储器访问。32位的读操作只能从4的倍数

的字节地址开始读取1个全字。对存储器进行读操作指令总是认为地址的低2

位为0。为了读取字节和半字，N[OS提供从字中提取特定字节和半字的指令。

从存储器中读取数据的最简单的指令是LD指令。这个指令的典型例子是LD

％93，[％04]。该指令把％04作为间接寻址寄存器，把它寻址的数据装入％93。地

址的最低2位被当作O。

然而，编写软件时经常遇到读取的数据小于32位的情况。NIOS CPU提供指

令来从字中提取字节和半字。EXT8D指令用来提取1个字节，EXTl6D指令用

来提取半字。EXT8D指令的典型例子是EXT8D％93，％04。EXT8D指令使用％04

的最低2位从％93中提取1个字节，然后把提取结果存入％93。

·写存储器(外设)

NIOS CPU可以对存储器进行宽度为字节、半字或者字的对齐写操作。一个

字可以用一条指令写到任意一个是4的倍数的地址内。‘个半字可以用两条指令

写到任意一个是2的倍数的地址内。一个字节可以用两条指令写到任意地址内。

第二章基于NIOS的SOPC设计

将寄存器内容写入存储器时，最低字节写入的地址为4的倍数：第二低位的

字节写入的地址是4的倍数加1：其他字节依此类推。而低位半字的写入地址是

4的倍数：高位半字的写入地址则为4的倍数加2。

sT指令可以把寄存器内容写到字对齐的地址内：ST8D和STl6D可以把寄存

器的字节和半字按照上面描述的方式写到相应地址内。

通常软件需要将特定的字节或者半字写入任意地址。该字节或半字在寄存器

内的位置可能没有按照上面的要求与要写入的地址对应，为此NIOS提供了

FILL8和FILLl6指令。FILL8指令和FILLl6指令可以分别复制寄存器的最低字

节和半字并占满整个％r0寄存器。

·缓存

NIOS CPU可以通过配置决定是否含有指令缓存和数据缓存。数据缓存影响

NIOS的存储器访问。数据缓存存储最近被访问过的数据字，只要可能就使用缓

存中的数据值，从而减少了对存储器的访问。NIOS CPU使用r最简单的直接映

象方式，即地址的低位被用来选择缓存的行。在直接映象方式中，如果数据地址

的索引(index)部分相同，这些数据字将被映射到缓存中相同的行中。为了检

测在缓存同一行中到底存储的是哪个字，字地址的最高位作为标识(tag)。为了

检测缓存中的数据是否有效，在缓存中每行还对应一个有效位。

当执行装载指令时(LD、LDP和LDS)，NIOS CPU比较装载地址的高位和

选中的缓存行的标识。如果高位与标识匹配并且该行有效，则处理器将使用缓存

中的数据而不再读取存储器，因此加速了处理性能。当处理器使用缓存数据时，

称作“命中”(hit)。当缓存不包含所需的数据时，称作“失效”(miss)。

NIOS CPU的写策略采用了最简单的写直达法(write．through)。即数据不但

写入缓存，同时也写入存储器。向缓存写数据时，缓存行的地址由写入地址的索

引部分决定，这样随后对于相同地址的读操作就会命中。此外，地址的高位作为

标识被写入，并置有效位。

当缓存失效时，处理器执行一次存储器读传输，找到所需的数据字，把这个

字写到目的寄存器中，同时写入缓存。这样，下次从相同地址读数据时就会命中。

2．2．L 5寻址方式

·5／16位立即数寻址

很多算术和逻辑指令采用5位的立即数作为操作数。例如．ADDI指令带有

两个操作数：一个寄存器操作数和一个5位的立即数操作数。5位的立即数代表

了范围为O～31的常数。为了指定6～16位(数字32～65535)的常量，需要用

PFX指令来设置11位的K寄存器。它的值与5位立即数的值连接起来。PFX指

令必须直接放在它所改变的指令之前。

第二章基于NIOS的SOPC设计

为了支持把16位的立即数常量拆分为ll位(装入PFX寄存器)和5位立即

数，汇编语言提供Y％hiO．flJ％100操作。％hi(X)把常量x的高11位(5～15位)

提取出来，％low(X)把常量X的低5位(O～4位)提取出来。

· 全宽(full width)寄存器问接寻址

LD指令和sT指令可以从存储器中装载一个字到寄存器中，或者从寄存器中

存储一个字到存储器中，存储器地址由另一个寄存器给出。地址首先要向F与字

地址对齐。K寄存器被看作带符号的地址偏移量，以字为单位。偏移范围是(一

4096～4092)字节。有效地址是：K×4+(间接寻址寄存器的值&0xFFFFFFFC)。

如果NIOS处理器包括数据缓存，读取外设时在LD指令前需要PFXIO指令。

· 部分宽(patial width)寄存器间接寻址

32位的指令不能读取一个字的部分内容。为了读取⋯个字的部分内容，需要

把全宽寄存器问接读指令与提取指令(EXTSD、EXTgS、EXTl6D或者EXTl6S)

结合在一起。

有些指令可以写一个字的部分内容。这些指令分为静态和动态两种类型。在

动态情况下，源寄存器的内部位置与存储器中的字的内部位置由地址寄存器的低

位来决定。在静态情况下，内部位置由指令的1或2位立即数来决定。和全宽寄

存器问接寻址一样，K寄存器被看作带符号的偏移量。

部分宽寄存器阃接寻址的指令都使用％r0作为源操作数。这些指令可以很容

易地与FILL8和FILLl6指令一起使用。

●带有偏移的全宽寄存器间接寻址

LDP、LDS、STP和STs指令可以从存储器中装载一个字到寄存器中，或者

从寄存器中存储⋯个字到存储器中，存储器的地址由寻址寄存器指出的地址加偏

移量形成。

不像LD和sT指令可以使用任意一个寄存器来指明存储器地址，这些指令使

用各自专有的寄存器束寻址。LDP和STP指令仅仅使用％L0、％L1、％L2和％L3

寄存器来寻址。LDS和STS指令仅仅使用堆栈指针，RlJ％sp寄存器(相当于％06

寄存器)，作为寻址寄存器。这些指令每一个都带有1个有符号的立即索引值，

这个索引值指出了一个字大小的偏移量。

·带有偏移的部分宽寄存器间接寻址

使用STS8S和STSl6s指令可以通过立即数来指定相对于堆栈指针的一个字

节或者半字的偏移量，写入源寄存器％rO中相应的部分字。这些指令只能使用堆

栈指针，目P％sp(相当j二％06寄存器)作为地址寄存器，并目．只能使用％r0寄存

器(相当于％90寄存器，但在汇编指令罩必须称作％r0寄存器)作为数据寄存器。

这些指令可以很容易地与FILL8和FILLl6指令一起使用。

第二章基于NIOS的SOPC设计

2．2．1．6程序流程控制

·相对分支(relative—branch)指令(BR和BSR)

NIOS指令集中有两条相对分支指令：BR和BSR。分支的目标地址由当日口程

序计数器(也就是BR指令本身的地址)和IMMll指令计算得出。BR指令和

BSR指令都是无条件转移指令。条件转移可以在BR或BSR指令前设置SKP类

型的指令来实现。

●绝列跳转(absolute-jump)指令(JMP和CALL)

NIOS指令集中有两条绝对(计算的)跳转指令：JMP和CALL。跳转的目

标地址由一个通用寄存器给出。寄存器的内容被左移l位然后送到PC中。CALL

指令除返回地址保存在％07寄存器外，其他与JMP指令相同。条件跳转可在JMP

或者CALL指令前设置SKP类型的指令来实现。

● 陷阱(trap)指令(TRET和TRAP)

N[OS处理器为软件异常的处理提供了两条指令：TRAP和TRET。不像JMP
和CALL指令，TRAP和TRET指令都没有延迟槽：跟在TRAP后的指令直到异
常处理返回后才被执行。紧跟在TRET指令后的指令根本不被执行。

·条件执行(condition)指令(SKP、SKPO、SKPl、SKPRZ和SKPRNZ)

NIOS指令集中有五条条件执行指令(SKP、SKP0、SKPl、SKPRZ和

SKPRNZ)。这些指令都有相应的伪汇编指令(分别是IFS、IFO、IFl、IFRZ和

IFRNZ)。这些指令都要测试CPU的条件码，然后依据测试结果决定是否执行下

一条指令。除了不同的测试对象外，五条SKP类型的指令(包括它们的汇编伪

指令)的操作是相同的。无论测试的结果怎样，紧接着的指令都会被从存储器中

取出。根据测试结果，下一条指令或者被执行，或者被取消。

2．2．1．7Avalon总线

NIOS体系结构中的总线采用的是Altera公司开发的Avalon总线结构【“。

Avalon总线通过端口把连接到它上面的主、从部件联系起来，通过指定时序，

部件之间就可以进行通信了。Avalon总线的显著特点是把连在它上面的部件分

为主、从部件，并且通过总线自身提供的仲裁部件来协调部件间的通信。主部件

是指那些含有主端口(master port)的部件，它们可以启动总线的传输过程；而

从,、lht二只能在总线上进行接收，不能启动总线传输。例如，连接在Avalon总线

上的NIOS处理器是主部件，而连接在Avalon总线上的SDRAM是从部件。使

用Avalon总线的一个例子系统如图2．2所示。

第二章基于NIOS的SOPC设计

量u里璺触趟地叫
_．—◆栅“铲“

C引市叫Sgnals

●——} R蚍碰。锺。

H凛器留尉＆。

图2．2一使用Avalon总线的例子系统

2．2．2 SOPC设计

SOPCtll是Altera公司提出的一种灵活、高效的片上系统设计方案。它的实质

是SOC设计技术，它利用FPGA或CPLD器件的可编程性来进行SOC设计。

减轻设讨者负担的最佳途径是把所有和处理器子系统相关的底层详细资料

集中到单个工具中。这个：[具就是SOPC Builder，它需要有两方面的考虑：第一，

它必须具有直观的图形用户接口GUI(Graphic User Interface)，便于设计者准

确地添加和配置系统所需的外设——包括存储器，定制外设和IP模块。第二，

它必须自动完成系统集成工作，这样设计者不必拘泥于定义存储器映射，中断控

制和总线控制这样的“制造商工作”。

通过GUI，用户可以从Altera提供的IP库中选取一些组件，如处理器、

SDRAM、Flash、各种I／O口等，并可通过选择配置相应的参数。如果用户有特

殊功能要求，但IP库中没有，则用户可以加入自定义的逻辑束实现。在选择并

配胃好系统所需的各种IP后，点击GUI中的“Generate”按钮就可以自动生成

系统了。当用户点击“Generate”按钮时，SOPC Builder会生成每个硬件部件以

及连接部件的片内总线结构、仲裁和中断逻辑。SOPC Builder也会产生系统可仿

真的RTL描述，以及为特定硬件配置设计的测试平台，能够(可选)把硬件系

统综合到单个网表中。

捌有了这些合适的部件．硬件设计人员剥自动硬件生成过程基本满意，但

第二章基于NIOS的SOPC设计

是还需要满足软件设计者的要求。利用设计过程中采集的信息，SOPC Builder

能够生成C和汇编头文件，这些头文件定义了存储器映射、中断优先级和每个

外设寄存器空问的数据结构。这样的自动生成过程帮助软件设计者处理硬件潜在

的变化性。如果硬件改变了，SOPC Builder会自动更新这些头文件。SOPC Builder

也会为系统中现有的每个外设生成定制的C和汇编函数库。例如，如果系统包

括一个UART，然后SOPC Builder就会为访问UART的寄存器定义一个C结构，

生成通过UART发送和接收数据的C和汇编例程。

SOPC Builder运行时的GUI如图2 3所示。在GUI界面的／c：侧显示出的是各

种IP，右侧是系统中选中并配置好的各种IP。

在SOPC Builder的GUI中，通过Component Wizards来选择系统所需的组件，

然后生成组件，再由组件组成系统。其中，组件的信息来自Class PTF文件，

Class PTF包含SOPC Builder配置和生成部件所需的详细信息。在整个设计过程

中，每一步都会与System PTF文件进行交互来交换组件及系统的信息，该文件

是系统的配方，它定义了SOPC Builder生成完整系统必需的详细信息。在组件

生成及系统生成过程中，会产生输出文件及相关的库，其中包括HDL文件、软

件文件、模拟文件及用户自定义文件。SOPC Builder架构如图2．4所示。

图2-3一SOPCGUI界面

在进行SOPC设计时，用户需要先通过SOPC Builder选择IP组件，然后用

SOPC Builder产生所选择的系统组件的VHDL或者Verilog源文件。之后，用

Quartus II编译整个系统，编译成功后，把编译文件下载到丌发板上进行验证。

第一章基于NIOS的SOPC设计

用SOPC进行开发的一般流程如图2．5所示。

图2．4一SOPC Builder架构

2．3开发过程

图2．5--SOPC-j：r发流程

．20．

第二章基于NIOS的SOPC设计

2．3．1概述

本小节介绍基于NIOS的SOPC开发过程㈣。它介绍使用SOPC Builder和

Quartus II创建和处理NIOS系统模块设计，这个模块设计与NIOS丌发板上提供

的组件之间有接口联系。

本小节介绍如伺一步步地创建并编译一个32位NIOS系统模块设计，这个模

块设计叫做nios system module，然后把它下载到NIOS开发板上。这个系统模

块有一个NIOS嵌入式系统处理器，还有与系统相连的外设和它们之间的互联。

在创建完nios system module设计并把它与外部引脚相连后，把它下载到

NIOS丌发板上的Altera APEC设备上。之后，APEC设备与NIOS丌发板上的其

他殴备相互连接，这样，NIOS嵌入式处理器就可以与RAM、Flash、LED、LCD、

扦关和按钮相互通信。

2．3．2设计入口

F面的部分按照所需步骤创建nios—system—module工程(project)，然后解释

如何创建包含NIOS系统模块的顶层(top—level)BDF。通过SOPC Builder，可

以创建并实例化NIOS系统模块。

1．创建QuartusII工程

运行Quartus II，使用New Project Wizard创建I：程，为工程和项层设计入口指

定名称，这里使用nios system module。

2．创建NIOS系统模块

创建包含NIOS系统模块的顶层块设计文件(Block Design File一．bdf)。创

建了设计文件之后，使用SOPC Builder创建NIOS嵌入式处理器，配置系统外设，

连接这些组件组成NIOS系统模块。之后，把NIOS系统的端121连到APEC设备

的引脚，这些引脚连接了NIOS开发板上的硬件组件。

我们创建的NIOS系统模块包括NIOS CPU、boot—rom、RAM、Flash、
Avalon Bus、UART、LED、7段显示码、Button PIO等组件。

2．3．3编译并下载文件

创建完NIOS系统模块后，我们把它加入到系统顶层文件bdf中，并为模块

加入输A．／输入引脚，把这些引脚分配到APEC设备上。完成的顶层文件bdf如

图2．6所示。在指定完器件并分配完引脚后，我们可以编译整个工程。编译的结

果会生成一个．sof文件。这就是要下载到APEC器件上的文件。我们使用Quartus

II提供的T具把生成的nios—system_module．sof文件下载到开发板上的APEC器

件上。

2．3．4编程

使用NIOS SDK环境来编译软件程序，然后把编译完的软件程序下载到

第二章基于N10S的SOPC设计

APEC器件|：二运行。这罩，使用Altera提供的例子程序hello nios．c来进行演示。

1．编译软件

使用如下命令来编译软件：

nb hello—nios．c

如果编译成功，会7l二成 个可供下载的文件，hello nios srec。

2，F载文件

使用如下命令把编译的结果下载到丌发板上的APEC器件中去：

nr hello—nios．srec

程序在NIOS SDK中的运行情况如图2．7所示。

图2．6一系统项层文件图

图2．7一NlOS SDK中软件运行情况

2．4 SOPC高级特性的研究

第二章基于NIOS的SOPC设计

进行SOPC设训的关键是使用IP核。使用现存的大量的IP核可以减少重复

劳动，进而可以加快进行系统的设计，这也是SOPC或者晚是SOC的魅力所在。

Altera公司推出SOPC设计技术的同时也为用户提供了一些可以选用IP核，其

中除最重要的NIOS处理器软核外，还有诸如SRAM、Flash、PIO、Timer等IP

核。

然而，在实际丌发中，由于系统的需求是多样的，这就导致系统所需的功能

是多样的，从而进一步要求有实现这些功能的各种IP核，而Altera公司提供的

这些IP核是远远不能满足人们设计各种系统所需的各种IP核的要求的。针对这

种情况，Altera提供了使用第三方IP核的简单接口，只要符合这些接口规范，

就可以使用各种IP核进行SOPC设计，这就给广大的开发者提供了一个广阔的

开发空阳J。

在使用第三方IP核力‘面，SOPC中提供了两种方法：用户自定义逻辑和定制

指令。由于这两部分功能很重要，而在Altera提供的文档里介绍的又不是十分详

细，所以本人专门对这两部分功能进行了研究。下面对这两部分功能进行详细介

绍。

2．4．1 SOPC设计中的用户自定义逻辑

2．4．1．1概述

在进行SOPC设计时，有些系统功能可以由IP库中提供的组件来实现。虽

然IP库中提供的组件可以完成系统所需的功能，但有时显得不够灵活。比如要

并行处理几个输入源的输入数据，用PIO作为输入源实现时，每个输入源每次

输入都要产生一个中断。当输入源较多时，对这些中断源的处理，增加了处理器

的负担；，为解决这个问题，可由用户自定义逻辑【91来实现这个功能。

2．4．I．2实例简介

下面的实例是一个小型的嵌入式系统的实现，并不涉及到从系统说明到最后

实现的所有步骤，主要介绍了其中的硬／软件划分及最后的实现部分。这个系统

主要包括以下功能部件：

1．一个处理器，用于运算及控制功能。

2．⋯个用户自定义逻辑，对Excalibur丌发板上的三个按钮动作的并行计数。

3．用户程序，读取用户逻辑对按钮的计数并显示其结果。

其中第l、2项由硬件实现，第3项出软件实现。

2．4．1．3 Excalibur开发平台

本实例是在Excalibur开发平台上实现的。Excalibur开发平台是Altera公司

的一个样机平台，上面除集成有一块APEX EP20K200 EF C484—2X可编程芯片

外，还有SDRAM、Flash、Contl·oiler、PIO、JTAG接121等外设。结合Altera的

第二章摹j二NIOS的SOPC设计

Quartus II应用软件及SOPC Builder，可以把设计的嵌入式系统下载到Excalibur

开发板上进行验证。如果各项标准符合设计要求，就可以投片生产‘。

2．4．1．4实现桐哭
1．硬／软件划分

首先，我们要考虑一个硬／软件划分问题。硬／软件划分是嵌入式系统硬／软件

协同设计方法中很重要的一个步骤。目前在硬／软件协同设计领域中已经有一些

成熟的硬／软件划分算法，比如GCLP(Global Criticality／Local Phase)算法、遗传算

法(GA：Genetic Algorithms)、混合整数线性规划(MILP：Mixed Integer Linear

Programming)算法，等等。当然，在某些设计中，设计人员的经验也大量应用于

硬／软件划分过程。在这个实例中，由于系统小，实现的功能少，所以没有应用

复杂的硬／软件划分算法，而是设计人员的经验在硬／软件划分中起了主要作用。

这个实例中硬／软件划分的依掘是实现的复杂度与代价。这个实例中需要一个处

理器来执行计算、凋动等任务。这个处理器当然要由硬件柬实现。同时需要实现

的一个功能是三个按钮并行计数，考虑到硬件的固有特性，很容易实现并行功能，

并且占用的硬件资源也不多：相反．如果这个功能用软件来实现，其实现复杂度

相对硬件实现来既要高得多。这样，经过复杂度与代价的综合考虑，系统的这个

按钮计数部分也由硬件柬实现。并行计数的结果存储在系统中的暂存器中，等待

后续处理。后续处理只是读出汁数结果并显示，虽然用硬件也可实现，但软件实

现比较简单，而且不用占用硬件资源，所以这个功能可以用软件来实现。这样，

考虑到系统所要完成的功能以及硬／软件的各自特性，完成了该实例的硬／软件的

划分。
2．硬件部分实现

接下来，用集成在Quartus II中的SOPC Builder生成一个NIOS处理器，还

包括一些外设，如SDRAM、Flash等。这里所涉及的一个问题就是选择什么样

的NIOS处理器。假定我们所要实现的系统需要的是32位的处理器，而且需要

大容量的寄存器文件，那么在配置NIOS处理器时，可以选取32位的NIOS处

理器，5 J2个寄存器柬满足要求。

最后，用VHDL编写用户逻辑，实现3个按钮并行计数的功能。考虑到用户

逻辑要与NIOS处理器进行通信，所以要增加2个信号：chipselect和Mdmss信

号。其中chipselect信号是片选信号，当其值为“l”时NIOS处理器选中用户逻

辑。address信号是地址信号，NIOS处理器用地址信号来寻址用户逻辑。而且，

只有通过address信号，用户逻辑才能『F确的连到总线上与NIOS处理器进行通

信。

由于片选信号(chipselect)和地址信。，号(address)在用户逻辑与NIOS的连接中

尤为重要，下面再进行一F详细说明：

第二．章基于NIOS的SOPC设计

对于独立的用户逻辑，如果不需要与NIOS进行通信，则片选信号和地址信

号是不需要的。比如，在这个实例中，如果只是实现一个并行计数和显示的功能，

那么片选信号和地址信号都不需要。当然，在这种情况下，NIOS也是不知道这

个用户逻辑的存在的，二者是并行对等的关系，即NIOS在工作的同时，用户逻

辑可以并行的独立工作。

当需要用户逻辑与NIOS进行通信时，则必须加入片选信号和地址信号。只

有这样，用户逻辑才能『F确地连接到NIOS总线上与NIOS进行通信。

前面说过，当片选信号为“l”时NIOS选中用户逻辑。那么片选信号什么时

候被设置为“1”呢?这就要与地址信号一同来况明。当在用户逻辑罩加入片选

信号和地址信号后，SOPC Builder会自动给用户逻辑分配、6+个基地址。SOPC

Builder对于系统中包括1日；j|户逻辑在内的所有组件统一进行编址。由于这个实例

中要处理3个按钮并行计数，则地址信号需要2位。2位地址信号可以处理4个

地址，这里只用了3个：“00”，“0l”和“10”。这个地址信号在VHDL中所形

成的地址，比如“00”，“0l”，是相对地址。这个相对地址与基地址结合在一起，

形成绝对地址。比如，第一个按钮的计数值分配到相对地址“oo”，那么它的绝

对地址为0x4A0+O+4=Ox4AO，第三个按钮的计数值分配到相对地址“10”，则它

的绝对地址为0x4A0+2*4=0x4A8，其中0x4A0是系统分配的基地址。在计算绝

对地址时，为什么要给相对地址乘4呢?因为这个实例实现的是32位NIOS处

理器，所以每个寄存器占据32位，而地址是按字节分配的，所以32÷8=4，即

每个寄存器使用4个字节地址。当应用程序访问这些地址时，无论读还是写，首

先将片选信号设罱为“1 P$o比如在应用程序中有如下代码：

asicl=(int*)0x4a0；／／手旨定要访问的地址

read datal=*asicl；／／读取地址中的内容

则在读操作时片选信号chipselect置为“1”。

列于地址信号的选择，则要在应用程序中明确指定，比如上面代码中指定访

问的地址是“0x4A0”。

下面附上实现用户逻辑的VHDL代码。由于篇幅限制，详细代码略去，这里

只附上一些重要部分：

一以下是实体说明部分

ENTITY test IS

port(

clock ： IN STD LOGIC；

pb gen countl： IN STD LOGIC；

Db gen count2： IN STD LOGIC；

第二章基于NIOS的SOPC设计

IN STD LOGIC；

rN STD LOGlC；

IN STD LOGIC；

IN STD—LOGIC—VECTOR(1 downto 0)；

OUT STD LOGIC VECTOR(7 downto 01

END test；

一以下是实体的结构部分中的输出部分

～其中的templ、temp2、temp3是内部信号

一用以保存三个按钮的计数值

一这三个信号并不出现在实体说明部分中

一使用的是并行语句，保证三个按钮可并行计数

count_out<=templ when(chipselect=’1’and address=”00”、else

temp2 when(chipselect=-’l’and address。”01”1 else

temp3 when fchipselect=’1’and address2”10”)else

”00000000”：

接下来要做的是把用户逻辑加入到NIOS处理器中去。在SOPC Builder的图

形用户界面中，有一项选项用来添加用户逻辑。选择该选项后，加入用户编写的

VHDL文件，同时指定实体说明中各个信号的类型。clock被指定为“elk”类型，

pb gen countl等被指定为“export”类型，chipselect被指定为“chipselect”类

型，address被指定为“address”类型，count—out被指定为“readdata”类型。之

后，生成一个NIOS处理器软核及相关外设。

最后工作是编译整个项目，并把生成的后缀为sof的文件下载到Excalibur开

发板上的可编程芯片中。
3．软件部分实现

软件部分工作是编写一个应用程序，其功能是读出各个按钮的计数值，并把

它们显示出来。这个部分主要要考虑的问题是访问连在NIOs总线上的用户逻辑。

前面介绍过，通过定义chipselset和address信号，SOPC Builder会自动分配给用

户逻辑一个地址，那么对于用户逻辑的访问，其实就是对分配给用户逻辑的地址

的访问。

下面附上应用程序的部分代码来说明如何与用户逻辑进行通信：

／／三个按钮的地址

int asic l=(int 4)Ox4aO；

int asic2=(int+)0x4c0；

-26-

亿

r

∞d．吐

吡盖黧帅曲曲曲甜∞

第二章基于NIOS的SOPC设计

／／读取计数值

mt read—dataI=+asicl；

int read_data2：幸asic2；

int read—data3=+asic3；

／／显示结果

p“nt《”pbl：％d＼tpb2：％d＼tpb3：％d＼n”，,read—datal,read_aata2．，read—data3)；

在生成的NIOS处理器上编译并运行该应用程序。我们可以随意按动按钮，

然后检查显示的汁数值，验证结果的lF确性。

2．4．2 SOPC设计中的定制指令

2．4．2．1概述

在进行SOPC设计时，系统设计者可以将费吲、复杂的软件算法作为定制指

令舯1加入到NIOS的指令系统集中。使用定制指令这个特性可以大大提高系统的

性能，它的用途也是十分广泛的，比如可以用来优化软件的内部循环、计算耗时

的应用等。

定制指令包括两个核心部分：

1，定制逻辑块：实现定制指令的硬件，通过HDL来实现。NIOS微处理器最多

可包括5条定制指令。

2．软件宏：允许系统设计者通过软件来访问定制指令。

实现定制指令的HDL源文件一般按照表2．4来定义端El。HDL源文件中的

端口名称必须与表2．4中的名称相同。

在进行SOPC设计加入定制指令时要为加入的指令进行命名，例如加入了一

条定制指令，为其命名为“cust—inst”，则在软件中按如下格式使用软件宏来调

用定制指令：

nm一<name>pfx(prefix,dataa，datab)，

或者

nm一<name>(dataa．Aatab)；

其中的“name’’就是定制指令的名称，比如上例可以用如下方法调用软件宏：

rim一<cust_inst>pfx(prefix，dataa．datab)，

或者

n rll<cus【．insl>(dataa，datab)。

第二章基于NIOS的SOPC设计

表2．4一定制指令中的端口

端口名 宽度(位) 方向 说明

dataa cpu宽度 输入 操作数

datab cpu宽度 输入 操作数(可选)

result cpu宽度 输出 结果

clk l 输入 时钟信号

] reset l 输入 时钟重置信号

clk e11 1 输入 时钟使能信号

l start 1 输入 操作丌始信号

prefix 11 输入 参数(可选)

下面对于表2．4中的端口再进一步进行一下说明：

定制指令有两个操作数：dataa、datab，其中第一操作数dataa是必须的，第

二操作数datab是可选的。这两个操作数的位宽和NIOS处理器的位宽相同。

result是定制指令的运行结果。

clk、reset、ctk en、start这4个端口是起时序控制作用的。

prefix这个端口的位宽是11位，它可以作为额外的信息传递到定制指令中，

也即通过prefix可以实现最多256种功能。例如可能有这样的定义：prefix为0

时执行dataa与datab相乘的功能；prefix为l时执行dataa与datab相除的功能。

对ji上述假设，在软件中可以这样凋用软件宏：

／／dataa=50，datab=25；

／／训算dataa与datab相乘的结果

tmpl=<nm cust>(0，50，25)；

／／计算dataa与datab相除的结果

tmp2=<nm 1， ，25)；_cust>(50

调用软件宏执行的结果为：

tmpl=1250；

tmp222：

另外，在加入定制指令时要指定执行定制指令所需的时钟周期数。这可以通

过币独模拟实现定制指令的HD[，文件来获得。

2．4．2．2丌发实例

下面通过一个具体的实例来介绍如何在SOPC没计时实现定制指令。

在NIOS上浮点数的乘法一般是用软件方法实现的，效率不高。下面的实例

分别用软件方法和定制指令方法实现了浮点数的“乘4”运算。这个实例的重点

在于介绍如何实现定制指令，而不在于它的实用性。这个实例在说明如何实现定

第二章基于NIOS的SOPC设计

制指令的同时，通过软件实现方法和定制指令实现疗法的比较，可以看到定制指

令提高了软件的运行速度，进而提高了系统的效率。

首先要实现定制指令的HDL源文件，这里使用语言是的是VHDL。由于篇幅

有限，这里仅给出VHDL源文件中的一些重要部分并予以解释。这个实例只用

到第一个操作数dataa。

一下面是实体说明部分

一，j‘以看到声明的端口名称与表2．4相同

entity cust is

port

(

dataa ： in std—logic vector(3 1 downto O)；

result ： oUt std—logic—vector(3 1 downto 0)；

ctk ： in std—logic；

reset ： in std—logic；

clk—en ： in std—logic；

start ： in std_logic

)；

end cust；

一下面是结构体部分

一具体实现定制指令的功能

一本实例实现的就是“乘4”功能

～“乘4”可以用左移2位来实现

architecture a of cust is

begin

process(clk)

begin

it clklevent and clk=’I。then

ifreset=’1’then

result<=”00000000000000000000000000000000”；

else

ifclk—en=‘1’then

result<=dataa(29 downto 0)&”00”；

endif；

endif；

第二章基于NIOS的SOPC设计

endif；

end process；

end a：

用VHDL实现了定制指令的功能后通过SOPC Builder的图形用，二1界面把这

个源文件作为定制指令加入到NIOS指令集中，并为其命名为“cust”。

在加入定制指令时要指定执行定制指令所需的时钟周期数，为此单独把定制

指令的VHDL文件编泽并进行模拟，其模拟波形图如图2．6所示。从其模拟波形

中看到，定制指令的结果存第3个时钟周期开始后爿丌始稳定、『F确地出现，故

』以确定该定制指令需要3个利钟周期。

霾鬟{
：t吖t ； ： ：

一 ： ；clk e“

团dlta9

图2．6一定制指令的模拟波形图

在应用程序中通过软件宏来调用定制指令。下面给出应用程序的部分代码。

void main()

{

volatile float a=5．O：

volatile float resl，res2；

volatile DWORD dwStartTick；

volatile DWORD ITicksUsed；

volatile DWORD our_dwStartTick；

volatile DWORD otlr ITicksUsed；

／／软件实现浮点“乘4”

／／记录开始时间

dwStartTick=GetTickCount0；

／／软件执行结果

resl=a44：

／／已录结束时间

ITicksUsed=GetTickCount0；

／／计算实现功能所需的时间
CheckTimeStamp(dwStartTick．1TicksUsed)

第二章基于NIOS的SOPC设计

／，定制指令实现浮点“乘4”

／／记录开始时削

our dwStartTick2GetTjckCount()：

／／定制指令执行结果

res22nrn—cust(a)；

／几己录结束时削

our ITicksUsed=GetTickCountO；

／／计算实现功能所需的时问

CheckTimeStamp(our—dwStartTick，our_lTicksUsed)

}

运行该程序的结果显示，软件完成这个功能用了“2048”个时钟周期，而定

制指令完成这个功能只用了“758”个时钟周期。通过指令完成功能所需时间的

比较，司以看到定制指令的实现方法要比软件的实现方法效率高很多。

第三章复旦大学C足r实验室快速样机平台设计

笫三章复旦大学CAT实验室快速样机平台设计

3．1复旦大学CAT实验室快速样机平台概述

3．1．1样机平台主要组成部分

本小节对复旦大学CAT实验室研制的快速样机平台做一下简要介绍。在后

面的章节罩，如无特殊晚明，则样机平台均指复基大学CAT实验室研制的这台

快速样机平台。

复旦大学CAT实验室研制的样机平台实物如图3．1及图3 2所示。这个样机

平台分三层：底板、主控板及配置板，分别如图3．3、图3．4及图3．5所示。

图3．1一样机平台俯视图

图3．2一样机平台『F视图

第三章复旦大学CAT实验室快速样机平台设计

图3 3一样机平台的底板

图3．4一样机平台主控板

第三章复旦大学CAT实验室快速样机平台设计

图3．5一样机平台配置板

样机平台主要}白以下几部分组成：

】．底板部分

底板部分主要有存储模块，输入／输出模块、串口通信模块组成。存储模块包

括两部分：SRAM及Flash。SRAM采用的是IDT(Integrated DeviceTechnology)

公司的IDT71V416芯片；Flash采用的是Intel公司的StrataFlash芯片。

2．控制板部分

控制板部分主要由FPGA和电源组成。其中的FPGA是Altera公司最新推出

的Cyclone j吝片族的EPlC6芯片。样机平台的输入电压是9v的，经过转换，可

以为样机平台上的器件提供3．3V或者5V的电源。

3．配置板部分

配置板的作用主要是对主控板上的FPGA进行配置。为了对FPGA进行灵活

配詈，增加了两种配胃方式：主动配置与被动配置。为此，进行主动配置采用的

芯片是Altera公司的EPCSl：进行被动配置采用的芯片是Altera公司的

Max7000A芯片族的EPM7128AE芯片及Atmel公司的AT45DB04lB芯片。对于

主动配置与被动配置在后面会进行更详细的介绍。

下面对样机平台的组要器件做一些详细的介绍。

3．I．2样机平台主要器件特性

1．Cyclone芯片族及EPlC6芯片

Cyclone芯片族是一款低价格，中等密度的FPGA，采用O．13um，全铜SRAM

工艺，容量从2，910个逻辑单元到20，叭0个逻辑单元，1．5v内核。Cyclone在设

计初期，针对成本做了认真的优化，根据网上(www．altera．tom)公布的价格，

Cyclone仅为Altera现有主流器件价格的30％一50％。Cyclone采用和Stratix器

件相似的结构．有着和Startix相似的性能，但去掉DSP块、MegaRAM，降低

LVDS接l I速率等指标，以适应大多数设计的要求，同时分担用户所面临的成本

第三章复旦大学CAT实验室快速样机平台设计

压力。

我们样机平台使用的是Cyclone芯片族中的EPlC6芯片。该款芯片具有5，980

个逻辑单元LEs(Logic Elements)、1个锁相环、20个M4K RAM块。

2，IDT71V416芯片

Cyclone芯片虽然可以使用片内SRAM，但容量有限。所以我们的样机平台

增加了片外SRAM，使用的是IDT公司的IDT71V416芯片。该SRAM具有

256K*16-blt的存储容量。

3．StrataFlash芯片

为了氏久保存数据、程序等资料，我们在样机平台上加入了Flash存储器，

采用的是Intel公司的StrataFlash芯片。陔芯片的存储容量为128Mbit，也即

16Mbyte的容量。该芯片被组织成128个128一Kbyte模块，也即共含有128个模

块，每个模块的容量为128Kb”e。

4．EPCSl芯片

EPCSl是一款基于Flash技术的FPGA，这样，存储在它罩面的数据会长期

保存。它的容量是1，048，576bits。由于Cyclone芯片族使用了新的数据压缩技术，

这使得设计者可以使用容量较小的串行配置器件，如EPCSl，来配置容量较大

的FPGA，如Cyclone的EPlC6。

5．EPM7128AE芯片及AT45DB041B芯片

我们样机平台上采用EPM7128AE，卷片及AT45DB04lB芯片是为了对

Cyclone的EPlC6芯片进行被动配置。EPM7128AE芯片是一款基于Flash技术

的CPLD，它属于Altera公司MaxT000A芯片族。EPM7128AE具有2，500个可

用门，128个宏单元，8个逻辑阵列块及100个用户IJO引脚。EPM7128AE主要

由各种逻辑门组成，不能存放数据，所以我们的样机平台配置了AT45DB041B

芯片来存放数据，以便配置Cyclone的EPlC6芯片。AT45DB04lB是一个Flash

存储器，它的容量是4Mbit。

3．2样机平台特性

我们的样机平台具体有如下一些特性：

1．可扩展性

通过主板上扩展用连接什(双排插钊)叫’以对样机平台进行功能扩展。Cyclone

EPlC6一共有185个用户管脚，除了样机平台上使用的用户管脚外，还有剩余的

用户管脚。我们把这些剩余的用户管脚作为功能扩充用管脚，把这些管脚做成了

双排插针JP3和JP4。JP3为50脚扩展用双排插针，JP4为34脚扩展用双排插针。

利用这些扩展用的双排插针，可以方便地对样机系统进行功能扩充，加入各种新

的功能模块。例如，在样机平台上开发的应用实例——汽车运行信息记录仪就是

第三章复旦大学CAT实验室快速样机平台设计

利用了JP3扩展了A／D、D／A功能，使系统有了数／模、模／数转换功能。

2．易维护性

如前所述，我们的样机平台山三层组成

板层主要由输入／输出模块、存储器模块、

底板层、主控扳层和配置板层。底

串口通信模块组成：主控层主要由

Cyclone EPlC6 FPGA组成；配置层主要由用于配置Cyclone EPlC6 FPGA的器

件组成。这样设计的目的是为了今后易于维护考虑的。分层的结果是不同功能的

部件位于不同的层上，这样如果今后希望更改什么功能部件的话，不用改动其他

的层。

3．多种配置方式

样机平台对于Cyclone EPlC6 FPGA的配置方式有三种：

·直接配置

在主控板和配臀板上都有一个JTAG接151，这两个JTAG接口是直接相连的。

使用这个JTAG接121，可以把配置文件真接下载到FPGA中。在平时的实验中多

数使用的就是这种配置方式。

●主动配置

使用配置板上的EPCSl可以对FPGA进行主动配置。使用这种配置方式时，

当第一次把配置文件配置到EPCSI中后，下次上电时FPGA会主动到EPCSl中

寻找配置文件，找到的话就用EPCSl中的配置文件配置FPGA。从FPGA角度

来讲，是FPGA主动去EPCSI寻找配置文件，所以称作主动配置。使用这种配

置方式的好处是对EPCSl配置一次后就可以不再另行配置FPGA了，因为FPGA

可以主动的从EPCSl中找到配置文件配置自己。

·被动配置

使用配置板上的EPM7128AE芯片及AT45DB041B芯片可以对FPGA进行被

动配管。使用这种配置方式时，FPGA不能主动的到EPM7128AE芯片及

AT45DB041B芯片中去哥找配置文件，而是由EPM7128AE：苍片“通知”FPGA

来找配置文件。从FPGA角度来讲，是FPGA被动去EPM7128AE芯片及

AT45DB041B芯片寻找配置文件，所以称作被动配置。在没有主动配置方式之前

使用这种被动配置方式来对FPGA芯片进行自动配置。

第四章样机平台功能扩展——A／D、D／A转换板

第四章样机平台功能扩展——A／D、D／A转换板

如第三章所述，我们研制的样机平台具有易扩展的特性。通过样机平台提供

的功能扩展接口，本人对样机平台进行了功能扩展，通过增加A／D、D／A转换板，

为样机平台加入T A／D、D／A转换功能，即使样机平台具有了模／数、数／模转换

功能。本章详细对这部分实现及功能做详细介绍。

4．1A／D、I)／A转换板

4．1．1 A／D、D／A转换板组成部分

图4．1一A／D、D／A转换板

A／D、D／A转换板的实物如图4．1所示。转换板主要由以下几部分组成：

1．输入、输出部分

这部分主要包括模拟信号输入、输出接口，数字信号输入接口。图片上部的

8个金色的器件(JPl～JP8)是SMA模拟输入、输出端子，通过它们可以进行4

路模拟信号的输入和4路模拟信号的输出。左侧的2个插孔(JPl0、JPll)也是

模拟输入、输出端口，通过它们可以进行2路模拟信号的输入和2路模拟信号的

输出。其中一个作为模拟信号输入的插孔(JPl0)与SMA端子中的2路(JPl、

JP2)通过跳子共享A／D转换芯片AD7811的2个输入引脚。右侧的16引脚插排

是数字信号输入接口。

2．功能转换部分

功能转换部分主要由A／D转换芯片AD7811和D／A转换芯片AD7305组成，

同时还有几个辅助芯片，它们是为AD7305提供参考2．5V电压的芯片1009；将

第四章样机平台功能扩展——A／D、D／A转换板

模拟输入信号进行运算放大的芯片AD822；将模拟输出信号进行放大的芯片

LM4880。

3．与样机平台接口部分

进行A／D、D／A转换的芯片AD78ll利AD7305的控制信号通过转换板下方

的50，卷插排与样机平台的Cyclone芯片连接，通过这个插排，Cyclone芯片可以

对转换芯片进行控制。

4．1．2 A／D、D／A转换板功能实现

1．AID、D／A转换器指标中，精度与分辨率

在A／D、D／A转换时，将最低位增1所引起的增量和最大输入量的比称为

分辨率。而转换精度可分为绝对转换精度和相对转换精度。所谓绝对转换精度是

指每个输出电压接近理想值的程度。相对转换精度是更加常用的描述输出电压接

近理想值程度的物理量。在A／D转换时，转换精度反映了A／D转换器的实际输

出接近理想输出的精确程度。通常用数字量的最低有效位(LSB)来表示。而

A／D转换器的分辨率表明了能够分辨的最小的量化信号能力，通常用位数来表

jF。

2．AiD转换

对理想的A／D转换器，其模拟输入值和数值量输出的关系是：

N=[VA／VR】

式中：N：二进制数字：VA输入模拟信号幅值；VR模拟基准参考电压。

例：一个A／D转换器，VR=SV，分辨率为10位，则：

VA=0V． N=0000000000：

VA=5V， N=111111111l：

VA=2．5V，N=1000000000：

VA=1．25V‘N=100000000；

VA=0．3V'N—111101：

3．D／A转换

D／A转换与A／D转换的原理正好相反，它把离散的数字输入量转换为连续的

模拟输出量。例：一个D／A转换器，VR=5V，分辨率为8位，则：

N=00000000，VA=0V：

N=11111111．VA=5V：

N=10000000，VA=2，5V：

4．A／D转换器AD7811

AD7811是Analog公司的一款A／D转换器，它具有如下一些关键特性：

第四章样机平台功能扩展——A／D、D／A转换板

4个模拟输入通道

1个数字输出通道

分辨率为10位

串行接口

2 5V内部参考电压

外部参考电压范围为l 2V～VDD

模拟输入范围为0～Vref

可通过控制寄存器进行软件控制

电源供电范围为2．7～5v

AD78ll它的引脚如图4．2所示。

TFS

图4．2—781l引脚图

AD7811通过它的控制寄存器来进行A／D转换。控制寄存器是lO位的只写

寄存器。当AD7811的TFS引脚收到一个下降沿信号时可以开始往控制寄存器

罩写内容。控制寄存器内的内容一直保持到下一次写入新的内容。

AD7811的转换时序及其串行接口如图4．3所示

图4．3一AD7811时序

AD78I 1进行模／数转换的关键就是控制好nCONVST、SCLK、RFS、TFS、

DIN、DOUT这几个信号之削Ft的时序关系。

‰=黧|l

k喑‰㈨‰‰‰M

第四章样机平台功能扩展——A／D、D／A转换板

5．D／A转换器AD7305

AD7305是Analog公司的‘款D／A转换器，它具有如下～些关键特性

·4个模拟输出通道

·8个数字输入通道

●分辨率为8位

●并行接口

·外部参考电压范围为VSS‘-VDD

·模拟输出范围为VSS--VDD

· 电源供电范围为2．7～5V

AD7305引脚图如图4．4所示：

图4．4--AD7305引脚图

图4 5是AD7305的转换时序图。

f-咖 厂——一
●t^e‘■ tAH}●
1 ，

)|(J L

●tt)g-11- tw k
、 ， X√ 、

弋
。钆8——■ 轧H卜r—ts—一
>(1

图4．5--AD7305的转换时序图

AD7305进行数／模转换的关键就是控制好nWR、A1、A0、nLDAC这几个信

号之闯j的时序关系。

c

D

小

惭嘶‰一削黼嗽吲苣|嗽卅讲‰黧=|IliⅫ

黼

川

旧

鼢

Ⅲ

黼

㈣

一

黼

‰

^

D

_L

第四章样机平台功能扩展——A／D、D／A转换板

6．LM4880：音频放大器

LM4880把由AD7305输出的VoutA、VoutB模拟信号进行放大，然后把放大

后的模拟信号送到模拟输出——耳机(转换板上的JPll)。

7．AD822：运算放大器

由麦克风(转换板上的JPl0)输入的模拟信号有负电压，而AD7811的模拟

输入端只能接受正电压，故对于麦克风输入的模拟信号要通过AD822进行放大，

把输入信号进行线性“加法”处理：把输入信号“加”2．5V的电压(输入信号

电压范围：一2．5V～2．5V)。故经AD822放大后的模拟输入的电压范围为：0～

5V。

经AD822放大后的模拟信号作为AD781l的模拟输入，AD7811的模拟输入

的电压范围为：0～Vref，而这个A／D、D／A转换板上的AD7811的Vref接的是

VDD(5V)，故可以满足其输入范围的要求。

4．2 A／D、D／A转换板功能验证

对设计完成的转换扳需要进行功能验汪。本人通过如下实验对转换板进行了

功能验证：由JPl0输入2路模拟信号，经过AD7811转换成数字信号，之后，

将转换后的数字信号经由AD7305再转换回模拟信号，由JPI 1输出。比较输入

模拟信号和输出模拟信号，二者相同，说明转换板工作正常。具体实现是通过麦

克风(JPl0插孔)，将由计算机声卡输出的音频信号输入到转换板，经过A／D、

D／A转换后由耳机(JPll插孔)输出音频。

图4．6一转换板与样机平台的连接

第四章样机平台功能扩展——～D、D／A转换板

如前节所述，控制转换的关键是控制好转换芯片的控制信号。通过转换板上

的50芯插排，由Cyclone中的逻辑来控制转换芯片。转换板与样机平台的连接

实物如图4．6所示。

通过编写VHDI_。代码来实现控制转换芯片的逻辑。实现的VHLD代码如下

所示：

LIBRARY IEEE；

USE IEEE．STD LOGIC 1 1 64 all：

USE IEEE STD LOGIC ARITH．all：

USE IEEE STD LOGlC UNSIGNED．all；

一一}{十}}}}{}}{}}{}}}$十}{}}十{女}${}${十}{}}{{}}{十}{}}{十$}{女}{十{}十{{

ENTITYAD IS

PORT

clk 20M

SCLK

nCONVST

DIN

RFS

TFS

DOUT

DBO 7

AO

A1

nLDAC

nWR

std_logic；

std_logic；

std—logic；

std—logic；

std—logic；

std—logic；

std—logic；

std—logic_vector(7 downto 0)

std—logic；

std_logic；

std—logic；

std—logic

)；

ENDAD；

一一十十}${}}{}}{}{十}}}{十${十{十}{}{十}{十}{{十}$十}{}}十女{}{十$}}{}{十$}十}}

architecture a ofAD iS

signal clk count

signal DIN—TMP

signal DB TMP

std—logic—vector(4 downto 0)

std_logic—vector(9 downto 0)

sfd—logic_vector(9 downto 0)

42-

m

刚

叭

㈨

㈨

㈨

．m

叽

叫

∞

帆

叫

第四章样机平台功能扩展——A／D、D／A转换板

begin

．．．．count clock

process(clk一20M)

begin

if clk一20M’event and clk_20M=’1’then

clk count<=clk count+1：

if elk count=-29 then

elk count<=’’00000“：

endif；

endifl

end process；

一7811

SCLK<=clk一20M

process(clk一20M)

begin

if clk一20M’event and clk 20M=⋯1 then

ifclk count>=1 and clk count<=13 then

D1N TMP<=”0011000011”：

elsifelk—count>215 and clk—count<。27 then

DIN TMP<=”0011000111”：

endif；

endifl

end process；

process(clk■0M)

begin

if clk_20M’event and clk_20M2’1’then

if(elk_count>=1 and clk_count<210)or(elk～count>315 and

elk count<=24)then

foriin 9 downto 0loop

．43．

第四章样机平台功能扩展——A／D、D／A转换板

DIN(=DIN TMP(i)；

end loop；

endit

endif；

end process；

nCONVST<=’1

RFS<=⋯0 when clk—count214 else

～1：

TFS<=⋯1 when clk—count=O or(clk count>=1 1 and clk_count<214)else

⋯0：

一7305

process(clk一20M)

begin

if elk 20M’event and clk 20M=’l。then

if(clk_count>一and clk—count<=13)then

nWR<=’0’：

nLDAC<=’1’：

AO<=’0’：

A1<=一0：

elsifclk cotmt>=l 5 and clk count<=27 then

nWR<=’0’：

nLDAC<=‘1’：

AO<=’1’：

A1<一’0’：

else

nWR<=’1’：

nLDAC<=’0’：

endit

endit

．．44．

第四章样机平台功能扩展——A／D、D／A转换板

end process

process(clk一20M)

begin

if elk一20M’event and clk一20M。’1’then

if(clk—count>21 and clk count<210)then

foriin 9 downto 0loop

DB—TMP(i)<2DOUT；

end loop；

endif-

end证

end process；

DB07<=DB—TMP(9 downto 2)

end a：

VHDL代码编写完成后，模拟其波形，可以看到，模拟出的波形符合转换芯

片的控制要求。把VHDL代码编译后生成的配置文件下载到Cyclone芯片，由

计算机放出音乐，通过麦克风进入转换板，经过A／D、D／A转换，由转换板上的

耳机可以昕到计算机中放出的音乐，说明转换板可以正常工作。

第五章汽车运行信息记录仪

第九章汽车运行信息记录仪

5．1汽车运行信息也录仪概述

汽车是当今世界上使用最为广泛的交通工具，同时，汽车交通事故也是对人

类危害最为严重的事情之一。全世界每年会发生2400万起交通事救，2．4亿人会

因此受伤。据估算，每年车祸中死亡的人数相当于每天坠毁一架波音737。

当发生交通事故后就要进行事故鉴定来分析事故原因、主要责任人等情况。

然而，在我国，甚至在世界范围内，鉴定汽车交通事故的方法还很落后。比如当

一辆汽车超越另一辆汽车时，在后车超过前车之后，一定要给被超车辆留足安全

停车距离，如果车距太短，从而引起追尾事故．则主要责任应由超车的车来承担。

但实际情况恰恰相反，这样的追尾事故的责任通常由被超车的那辆车来承担，原

因就是鉴定交通事故方法的落后性，因为还没有办法来鉴定超车的那辆车是否在

并道时保持了足够的车距。显然这样的事故鉴定是不合理的。

这种情况使人们联想到1毛机的“黑陌子”。飞机发生事故后，人们做的第一

件事是寻找“黑匣子”，因为飞机的“黑匣子”记录了飞机运行中的一些重要数

据，从而当飞机发生事故时人们可以通过飞机的“黑匣子”记录的信息来分析事

故原因。为什么汽车不能有“黑匣子”呢?至少它可以让警察和汽车制造商明白

车祸前一刹那到底发生了什么。而传统的还原事故的方式是观察刹车痕迹及车身

撞毁的程度，这其实很不可靠、很不科学。在飞机“黑匣子”的启发下，一种用

于记录汽车信息的系统应运而生，这就是汽车信息系统。

汽车信息系统，办名汽车黑匣子，是用于监测、记录、储存汽车在行驶中各

种状态和数据的智能装置。它将微机应用的先进性、实用性与车辆运行状态统一

起来，可以完整、准确地记录汽车行驶状态下的有关情况，将汽车行驶轨迹完整

记录，并通过专用软件在电脑上再现，为分析、判断汽车驾驶状态和处理交通事

故提供可靠准确的科学依据。汽车黑陌子在记录汽车运行数据的同时，还可以约

束汽车驾驶员的行为，使汽车驾驶员在丌车时会比平时更3n，J,心，从而可以更多

的避免交通事故。

汽车黑匣子的问世，为交通管理部门准确了解界定交通事故发生原因和公正

处理提供了科学、权威的依据，如行驶速度、车辆所处的地理位置、电器系统、

制动系统状况以及发动机系统的温度、油压等进行连续较长时削的记录。为汽车

的科研、生产、F1常维护以及对于及时查找突发性交通事故的原因，减少车辆故

障提供有效的测试手段，为产品设计与故障分析提供依据。同时，汽车黑匣子也

规范了汽车驾驶员的行为，可以有效的避免交通事故。汽车黑匣子对深入研究各

类车辆的完善设计、故障分析、降低成本和交通管理、避免交通事故具有重要的

实际作用及意义。

第血章汽车运行信息记录仪

复旦大学CAT实验室在自行研制的样机平台的基础上，对样机平台的功能

进行了扩展，设计了“汽车运行信息记录仪”系统。我们设计这个系统的目的是

力图使得NIOS的特点和优势在汽车信息系统中得到最大的体现和发挥。

5，2系统设计与实现

5．2．1系统组成

整个系统可以分为两个部分：黑匣子和模拟器。

模拟器是为了在实验室中模拟实际中可采集的各种汽车信号。我竹]系统设计

的模拟环境是使用一个连到计算机I二的游戏用的方向盘，用这个游戏方向盘来模

拟实际汽车的‘些信号输入，如速度、方向、油门、转向灯等。

黑匣子部分是汽车信息系统的中心框架，主要是完成对各种信号的采集存

储，有条件的判断事故，与主控中心通信等任务。

1．模拟器：

主要由主控板与A D转换板组成，如图5．1所示。主控板通过串口接收上位

机汽车力向盘f游戏手柄)的行驶信号，然后通过A D转换板向黑厦子系统发

送模拟信号(模拟汽车上的模拟量信号，如速度、方向等)和数字信号(模拟汽

车上的数字量信号，如各种灯的状况，在模拟器中，由指示灯的明灭来显示)。

2．黑摩子

图5．1一模拟器

第五章汽车运行信息记录仪

整个系统由主控板、配置板、A—D转换板和状态板组成，如图5．2所示。通

过A—D转换板的采集线与模拟器相关A_D转换板连接，完成信号的接收与存储。

通过GPS卫星定位，给全系统对钟和定位信息。通过GPRS无线接入，发送事

故报告短消息。通过串口将信息数据上传做进一步地分析处理。主控板通过缆线

完成配置板中FLASH的固件数掘更新。

图5．2一黑匣子

5．2．2具体实现

I。完整、独立的N10S系统

我们利用片内ROM保存事先编好的Bootloader程序，并把Reset地址指向

该ROM，这样在系统上电时，由Boottoader程序负责把用户程序从片外的Flash

装入SRAM中，并跳到指定地址运行。

除了该系统能独立工作外，整个系统还是一个比较完整的嵌入式系统，包括

了SRAM，FLASH，显示，按键，串口，GPRS无线接入，GPS卫星定位等等，

这样整个系统就证明了NIOS处理器是完全能够适应嵌入式系统开发的。

2．利用上位机软件可以实现系统软硬件更新

系统升级可分为固件升级和软件升级，软件升级在很多产品设计中已经得到

应用，主要是采用通信链路把程序代码写入非易失存储器的方法来完成的。类似

的方法也可以借鉴到固件升级当中来。Quartus I】软件可以生成多种描述硬件系

48．

第五章汽车运行信息记录仪

统的文件，如POF、SOF、RBF文件等，其中RBF文件内保存的是配置FPGA

时输入到其配置接口的原始比特流。如果把该文件保存到FLASH中，升级时只

需更新该文件就可以完成硬件升级。

ALTERA的试验开发板上采用的EPM7128+AM29IⅣ065的方法，其中

EPM7128中事先固化了一个状态机，用于上电时来配置FPGA。但是AM29LV065

是一款并行的FLASH，不可避免的体积要大一些(相对串行FLASH柬讲)，由

于汽车信息系统中对体积的要求是越小越好，所以我们决定采用串行FLASH，

这样我们就不能照搬原有状态机的设计，为此我们自己设计了一个用于配置

FPGA的状态机，上电时从串行FLASH中读出数据送到FPGA中，配置完成后

即释放对FI．ASH的控制权，这时FLASH可以由FPGA中的N10S来控制，实

际上，汽车信息系统中的汽车标识数据和其他一些信息就是保存在该FLASH中

的。

3．定制用户IP并已集成到SOPC中

如前所述，NIOS系统的优点表现在它的灵活性和可裁剪上，不仅仅是指它

可以对系统提供的IP核进行取舍，而且在低层也提供了开放的IP接口，使得高

级用户可以把自己的IP集成到SOPC BUILDER中去，有效地解决了系统设计中

的复用问题。

在我们的系统中，SRAM和FLASH的接口SOPC都没有提供相应的IP，但

是提供了类似的IP，在对已有的PTF文件(SOPC的配置文件)考察后，我们

写出了自己的IP，并集成到SOPC中。

4．模块化的硬件结构，方便用户定制

我们在进行系统设计时，一个主导思想就是模块化，以尽可能方便用户定制。

在硬件设计上体现在系统分成了配置板，底板，控制板，A—D转换板四块。

目前市场上的类似产品一般都是功能完全固定，这样就会造成一些用户不需

要的功能也被强加其上，增加了产品成本同时也加重了用户负担，例如对于有些

应用是完全没必要使用GPS和GPRS这种较昂贵设备的，但产品一旦定型就不

便修改了，所以要解决这个问题，从产品设计阶段就应开始着手考虑，这样不可

避免要增加设计复杂度，但如果因此而获得用户的认可，也还是值得的。

5．利用GPS对采样数据校正进行定位

在方案设计中我们加入了GPS全球定位设备，主要是用于给全系统对钟，另

外也参考它给出的方位和速度，和采集到的信号做比较，进行取舍。此外也可采

取信息融合的算法来加强定位的精确度和可靠性。

由于整个系统是分御的，终端在汽车E，如果采用分离时钟，再经过一段时

间后，车辆之间就会产生计时偏差，这列于事故鉴定和模拟是不允许的。所以只

第五章汽车运行信息记录仪

有采用全球定位系统的报时，／4唷可能将各个离散点的时钟统一起来。不过，由

于GPS信号不能保证每时每刻都被接收到，所以实用的系统应该自备一个高精

度独立时钟，这样就能保证系统在没有GPS的情况卜I也能够『F常工作。

6．可调整的数据采样率

目前市场上的类似产品都采用固定采样率进行信，宫、收集(每秒一次)，这样

在出现意外或者紧急情况时，会显得数据量过小，对事故状态的细节描述能力较

差，在事后进行分析和鉴定时，显得比较苍白。但过快的采样率会造成数据存储

量的成倍增长，提高了成本。

考虑到以匕问题，我们在设计时进行了折衷，在正常工作时，系统按照每秒

一次的采样率开始采样，一旦出现事故(按照预设条件判定)，系统会自动加快

采样率，一旦判定条件失效，仍然恢复到默认采样率。这样就较好的解决了数据

存储量和采样率问的矛盾。

5．3系统模拟运行

系统硬件连接成功后，运行控制黑匣子的计算机上的软件，对“GSM通信”

进行设置，如图5．3所示。一旦出现事故，黑匣子就会向该号码发送短消息，并

报告经度和纬度。

图5 3一设置“GSM通信”

执行模拟器部分软件，软件下方会给出速度和方向的历史曲线，用于和车载

信息系统描绘的曲线进行对比，如图5．4所示。

启动控制黑匣子的软件，选择菜单“联机通信／采集数据操作”，出现如图

5．5所示界面。选择读取全部数据，程序会从下位机读出采集数据并显示出来，

点击保存文件按钮，把数掘存入文件。选择菜单“事故管理／数据分析”，出现

如劁5．6所示界面。也可以选择菜单“事故管理／现场模拟”菜单，界面如图5．7

所示。

第五章汽车运行信息记录仪

图5．4一模拟器界面

图5．5一控制黑匣子软件界面

第五章汽车运行信息记录仪

图5．6一“事故管理／数据分析”界面

图5．7一“事故管理／现场模拟”界面

第六章结语及展望

第六章结语及展望

本文首先对嵌入式系统设汁做了一下概要地介绍，接下来对Altera公司提出

的基于NIOS的SOPC技术做了比较详细地介绍，其中详细介绍了NIOS软核及

SOPC投术。之后介绍了复旦人学CAT买验研制的 台快速样机平台及对样机

平台进行的A／D、D／A功能扩展。最后介绍了在这个样机平台上丌发的一‘个基于

N[OS的SOPC技术的实例——汽车运行信息记录仪。

复邑大学CAT实验室目前主要研究快速样机生成技术，具体的说是SOPC

技术，这在嵌入式系统设计方面属于新的领域。实验室希望在sOPc技术的基础

上进行扩展，完整地开发出一套快速样机生成系统。

目前，实验室已经成功地丌发出一款样机平台，并且在样机平台上成功地开

发出具有实际应用意义的系统——汽车运行信息记录仪。在这个快速样机生成系

统的其他方面，实验室的科研工作也取得了部分可喜的成绩，比如在系统建模方

面，实现了UML部分功能向SystemC的转换工作；在处理器软核方面，对RISC

IK软核向AlteraFPGA的移植工作也耿得了较大进展。

在今后的科研工作中，实验室的工作重点会放在系统建模、IP核接口技术及

Linux操作系统的移植方面。

在系统建模方面，现已有～些建模语言，如UML、SpecC、VHDL、SystemC

等。这罩考虑用SystemC进行系统建模，是基于如下考虑：SystemC就是在C十+

中加上硬件类库和仿真核，这使得SystemC既可进行软件建模，又可进行硬件

建模，使其成为一个统一建模语言，而且任何一个熟悉c++语言的用户只要了解

类库中各种类引入的语义就可以用SystemC编程。这充分利用了现有的条件，

如知识的积累、各种工具的支持等，使得用SystemC进行系统建模成为一个很

好的选择。

IP技术是快速样机生成技术中的～个核心技术，这是因为现存大量可用的IP

核，使用这些现存的IP核，可以避免重复丌发，这样可以缩短系统的开发时间，

进而达到快速生成系统的目的。但是，现存的各种IP核并不都是来自同一丌发

商，所以在开发系统时，如何把来自不同_丌发商的IP核集成到～起是个关键问

题。实验室今后的一个工作重点就是研究IP核之间的接口技术，在这种技术的

基础上，可以方便地集成来自各方的工P核，达到高效、迅速地开发系统的目的。

嵌入式系统如果有了操作系统的支持，则可以在其上开发出更多的应用，使

嵌入式系统更具有生命力。目前，嵌入式Linux己经成功地被移植到一些嵌入式

系统中，例如基于ARM的嵌入式系统。但在基于NIOS的嵌入式系统中，嵌入

式Linux的移植工作还是一个崭新的任务。所以实验室也把嵌入式Linux向NIOS

的移植作为今后科研的一个工作重点。

第六章结语及展颦

我们骚信，在实验室师生的一致努力下，实验室一定能研制出一套出色的快

速样机生成系统，为国家计算机领域的科研贡献一份力量!

参考文献

[1 J Ralf Niemann Hardware—Software Co—design for Data Flow Dominated

Embedded Systems，Boston：Kluwer Academic Publishers，l 998

[2]Carolyn Kutnter．Hardware·Software Co—design Using Processor Synthesis IEEE

Design&Test of Computer．Vol l 3，No 3．Pages：43—52．Fall 1 996．

【3]Rochit Raj suman著，于敦山，盛世敏，H1泽译著。SOC设计与测试。北京航

空航天大学出版社，2003年。

[4】Rincon，A．M，Cherichetti，G，Monzel，J,A．，Stauffer,D．R and Trick，M．T．Core

design and system—on—a—chip integration．Design&Test of Computers．IEEE．Volume：

14，Issue：4，Oct—Dec．1997．Pages：26—35．

[5]Altera Corporation．NIOS Embedded Processor 32一Bit Programmer’S Reference

Manual．http：／／wⅥw altera．corn／literature／lit·nio．html

[6]Altera Corporation．Avalon Bus Specification Reference Manual

http：／／www．altera，corn／literature／lit—nio．html．

[7]Altera Corporation．SOPC Builder．http：／／www．altera．cam／literature／lit—nio htmi．

f81 Altera Corporation NIOS Tutorial http：／／www．altera．corn／literature／lit—nio．html

[9】方茁，彭澄廉，陈泽文。基于N10S的SOPC设计。计算机工程与设计。2004

年，第25卷，第4期，P504．P507。

f10】方茁，邱卫东，彭澄廉。SOPC设计中的定制指令。Altera 2003年全国大学

教师会议。

55．

致谢

首先感喇我的导师彭澄廉教授。在学业上．彭老师对我们谆谆教海、悉心指

导，我们在学业上每前进一步部倾注着彭老师的心m。彭老师严谨的治学态度、

认真的工作作风将是我们今后工作、学习的典范。在生活上，彭老师也是时时刻

刻关心我们，尽量帮助我们解决各种生活中的困难。可以说，在我三年的研究生

学习、生活期间，彭老师无论是从学业上还足从生活上都给予了我巨大的帮助。

感谢吴百锋教授。是老师治学严谨，对待工作严肃认真，学术造诣深厚，这

些都给我们留下深刻的印琢。在做吴老师的助教期I'Bj，吴老师更是对我进行了悉

心地指导，使我顺利完成助教工作。

感谢陈泽文高级工程师。陈老师对待工作认真负责，在计算机硬件方面的造

诣深厚。陈老师在工作上给予我很大的指导和帮助，使我在实践工作中学到很多

知识。

感谢孙晓光副教授。孙老师严谨的治学态度和平易近入的作风给我们很深的

印象。孙老师在讨论班上给我们讲述的知识使我们受益匪浅。

感谢周博博士。周博搏士对待学术严肃认真，对待工作热情积极，对待同学

热心帮助。周博博士在实验室工作中起着重要的带头作用，在他地带动下，实验

室的工作成绩卓著，大家从中都受益匪浅。

感谢周湘蟹、邱卫东、陈燕三位博士。三位师兄、师姐在学习、工作中都给

予了我很大的帮助。

感谢梅宏亮、黄新生同学。我们三人是实验室中同一年级的同学。在学习、

生活中三人相互关心、相互帮助，结下了深厚的友谊。

感谢周学功、薛志军、朱琦同学。在学习、工作中多次和二i位同学进行讨论，

使我深受启发。

特别要感谢我的父亲、母亲和姐姐。家人给我的无穷的支持和关怀是我工作、

学习、生活的动力、保障。他们是我永远的精神支柱和前进动力。

最后感谢所有关心和帮助过我的人。

方茁

2004年5月于复旦园

论文独创性声明

本论文是我个人在导师指导下进行的研究工作及取得的研究成果．论文中

除了特别加以标注和致谢的地方外，不包含其他入或其它机构已经发表或撰写

过的研究成果．其他同志对本研究的启发和所做的贡献均已在论文中作了明确

的声明并表示了i封意．

论文使用授权声明

本人完全了解复旦大学有关保留、使用学位论文的规定。即：学校有权保

留送交论文的复印件．允许论文被查阅和借阅：学校可以公布论文的全部或部

分内容，可以采用影印、缩印或其它复制手段保存论文。保密的论文在解密后

遵守此规定．

作者签名 张 一：羝喃一

	封面
	摘要
	Abstract
	第一章引言
	1.1嵌入式系统概述
	1.2嵌入式系统设计现状与前景
	1.3后续章节的安排

	第二章基于NIOS的SOPC设计
	2.1 SOC概述
	2.2基于NIOS的SOPC设计
	2.2.1 NIOS软核
	2.2.2 SOPC设计

	2.3开发过程
	2.3.1概述
	2.3.2设计入口
	2.3.3编译并下载文件
	2.3.4编程

	2.4 SOPC高级特性的研究
	2.4.1 SOPC设计中的用户自定义逻辑
	2.4.2 SOPC设计中的定制指令

	第三章复旦大学CAT实验室快速样机平台设计
	3.1复旦大学CAT实验室快速样机平台概述
	3.1.1样机平台主要组成部分
	3.1.2样机平台主要器件特性

	3.2样机平台特性

	第四章样机平台功能扩展——A/D、D/A转换板
	4.1 A/D、D/A转换板
	4.1.1 A/D、D/A转换板组成部分
	4.1.2 A/D、D/A转换板功能实现

	4.2 A/D、D/A转换板功能验证

	第五章汽车运行信息记录仪
	5.1汽车运行信息记录仪概述
	5.2系统设计与实现
	5.2.1系统组成
	5.2.2具体实现

	5.3系统模拟运行

	第六章结语及展望
	参考文献
	致谢
	论文独创性声明和论文使用授权声明

