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摘   要 
实际工程中的闭环控制系统为非线性系统，自激振荡是非线性系统的重要特

征，有效的避免和控制自激振荡是保障系统正常运行的重要因素。相平面法和描

述函数法是两种经典的研究方法，但都具有局限性。相平面法以分析奇点为中心

思想，只能处理二阶微分方程，通常用于处理自激振荡的定性问题；描述函数法

以正弦波为非线性环节的输入信号，将非线性环节线性化，可以处理高阶方程，

完成定量运算，在大部分闭环控制系统中更为适用。但除了正弦波信号还具有其

他输入信号时描述函数法将无法适用。可以证明在很多情况下非线性环节拥有外

部输入（主要是指缓变干扰）时对闭环系统控制自激振荡是有益处的，因此寻找

一种既可以研究只有正弦波输入的自激振荡又可以研究同时拥有外部输入和正弦

波输入信号的自激振荡的方法是很有意义的。波波夫谐波线性化是由前苏联学者

波波夫提出来的一种可以满足这种需求的理论。波波夫谐波性化基于描述函数法，

同时认为外部输入可作为不变分量，正弦波可作为周期分量分别计算，不变分量

和周期分量合起来成为自激振荡的振荡值。  

本文首先从描述函数法的理论展开阐述，其中描述函数法对自激振荡稳定性

与系统稳定性的研究是重点，包括幅相稳定判据、米哈依诺夫判据和霍尔维茨判

据，它们基本都源自线性系统的特征根判据。其次通过实例说明波波夫谐波线性

化的理论与具体使用方法。应该注意不变分量产生的原因除了外部输入，还有可

能是因为非线性环节的特性是非奇对称的，这种情况也是描述函数法无法解决的，

但在实际工程中也是非常常见的。因此在这一部分中按以上两种产生不变分量的

原因分别进行讨论。然后按照非线性特性的不同分为对称的非线性特性与非对称

的非线性特性，总结性的运用波波夫谐波线性化完成这两类特性中几种典型特性

的自激振荡参数的求解过程与图解，包括不变分量公式，传递函数的实部公式与

虚部公式等，对于今后工程计算具有很好的参考性。在接下来的章节中将直流矿

井提升机系统作为波波夫谐波线性化处理自激振荡的典型的闭环控制系统进行讨

论。矿井提升机主要采用了晶闸管-电动机系统结构，具有晶闸管和速度环比例放

大环节两个非线性环节同时存在，都有可能产生自激振荡，本文针对以上情况进

行了详细讨论，主要包括运用波波夫谐线性化计算自激振荡参数，运用幅相稳定

判据和米哈依诺夫判据分析自激振荡稳定性，然后设计系统参数进行调整并进行

仿真。在讨论的过程中，运用 MATLAB,Mathematica 和 MAPLE 作为运算工具，

解决高阶微分方程求解及求导的问题，弥补了波波夫谐波线性化在过去的运用方

程运算过于复杂而不易实用的缺点，编程代码与思路对今后工程实践具有很好的

实用性。  

进一步选取电动摩托车双闭环调速系统作为多非线性环节系统的讨论对象，
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从速度环和电流环的功能与运行阶段说明了在很多多非线性环节的闭环控制系统

中，由于各个环节不同的工作性质使得它们往往不会同时产生自激振荡，而是分

别在不同的时段产生自激振荡，因此可以分时运用波波夫谐波线性化对不同的非

线性环节进行分析。弥补了以往大多数针对自激振荡的研究只考虑单个非线性环

节的空白。最后文章拓展了波波夫谐波线性化的使用范围。以飞机偏航角闭环控

制系统为对象，分析非线性系统的绝对稳定性问题。首先通过李雅普诺夫直接法

获得系统绝对稳定性的条件。由于自激振荡为非线性系统的临界稳定状态，因此

通过波波夫谐波线性化求得系统的非线性环节的放大系数的极值；将此极值运用

到波波夫稳定判据中，从而证明由李雅普诺夫直接法得出的系统绝对稳定条件是

正确的。  

在结论中本文针对以上的内容提出在今后的研究中需要加强波波夫谐波线性

化在多非线性环节同时产生自激振荡方面的研究，这种情况虽然处理与计算更为

困难，但是更符合非线性系统多变复杂的本质的。同时为了推广波波夫谐波线性

化的在实际工程中的运用，应该引入更多的先进算法与其相结合，提高运算的效

率与精度，同时可以从数据分析与挖掘方面着手，向自激振荡模式的分析与预测

方向发展。  

 
关键词：波波夫谐波线性化；自激振荡；闭环控制系统；描述函数法；直流矿井

提升机系统 
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Abstract 
 

Closed-loop control system is nonlinear system in practical engineering 

application and self-oscillation is the important characteristic. Therefore it is very 

important to ensure the system operating regularly that put self-oscillation under 

control. Phase plane method and describing function method are two kinds of classical 

research methods for self-oscillation. Both of them have limitation for the research of 

self-oscillation. Based on the principles of singularity， the phase plane method deals 

with differential equation of second order to solve in most cases qualitative question. 

While the describing function method could be applied to solve the higher order 

differential equation and deal with quantitative problem by linearization of nonlinear 

element with only one sine wave signal as input. Therefore the describing function 

method is more suitable for self-oscillation research of closed-loop control system. At 

the same time it is noticeable that external input (referring mostly to slowly varying 

input) apart from sine wave signal as input of nonlinear element always brings about 

significant benefits to self-oscillation control of closed-loop system, so we should 

look for a certain kind of method satisfied with the self-oscillation research with or 

without external input. Е.П.Попов harmonic linearization proposed by Е.П.Попов 

from former Soviet Union meets the requirement, which combines the constant 

component coming from slowly varying input and periodic component coming from 

sine wave signal as self-oscillation value. 

Firstly this paper discussed the research of describing function method as 

theoretical foundation of Е.П.Попов harmonic linearization. Especially the criterions 

arising from characteristic root criterion of linear system used by describing function 

method for stabilities of self-oscillation and nonlinear system were presented. Phase 

stability criterion, Mihajlovic's criterion and Hurwitz’s criterion were included. 

Secondly the practical examples were given to illustrate the concrete usage of 

Е.П.Попов harmonic linearization. This section mainly included two parts according 

to the reasons for generating constant component of self-oscillation. One was external 

input; the other was non-odd symmetric nonlinear characteristic. Thirdly the paper 

studied the typical self-oscillation parameters of both symmetric nonlinear 

characteristic and asymmetric nonlinear characteristic, which provided detailed 

calculation and diagramming process of amplifying factor equation and constant 



博士学位论文 

V 
 

component equation. It could be used as a reference in the engineering self-oscillation 

computation. In the following sections the paper introduced DC mine hoist systems as 

closed-loop control system with self-oscillation solved by Е.П.Попов harmonic 

linearization. The V-M system (thryristor-motor mine hoist system) was chosen as 

typical DC mine hoist system because thyristor and amplifying element of speed-loop 

coexisted in the V-M system as the oscillation elements which rarely discussed in the 

former research. Calculation of self-oscillation parameters by Е.П.Попов harmonic 

linearization, stability determination with phase stability criterion and Mihajlovic's 

criterion and adjustment with system parameters to self-oscillation were core contents 

in the discussion. MATLAB, Mathematica and MAPLE were used for solution and 

taking deviation of high-order differential equation, which made up for the 

over-complication of computation of Е.П.Попов harmonic linearization. The code 

and procedure were proved to be helpful in the simulation and calculation. 

To develop further research toward self-oscillation of more than one nonlinear 

element in a certain system, an electrical motorcycle model with permanent magnet 

brushless DC motor (PMBLDCM) was constructed in an upcoming chapter. Because 

the current loop and speed loop undertake different roles in the operation of 

PMBLDCM at different stages, they would generate self-oscillation at different time 

instead of the same time. Therefore Е.П.Попов harmonic linearization was applied to 

solve nonlinear oscillation issues for each of them. These contents were be helpful for 

the self-oscillation research of multi-components in the future. Finally the paper made 

an expansion of Е.П.Попов harmonic linearization to analysis the absolute stability of 

an aircraft yaw angle control system. The Lyapunov direct method was introduced to 

obtain absolute stable condition. Considering the self-oscillation represents the 

critical stable condition of nonlinear system, the popov stability criterion was applied 

to simulate the absolute stability with variants of system parameter settings 

considering the maximum value of amplifying factor provided by Е.П.Попов 

harmonic linearization. Simulation results indicated that the absolute stable condition 

could guarantee the stability of the system. 

Based on the contents above this paper proposed that the research on the 

self-oscillation caused by multiple nonlinear components at the same time should be 

expanded using Е.П.Попов harmonic linearization. Although the process would be 

more diffcult the results will be more consistent with the complexity of nonlinear 

system. To promote the Е.П.Попов harmonic linearization in engineering research we 

should introduce more advanced algorithm into this method. Especially the data 
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analyzing and mining for the prediction of self-oscillation should be brought into 

important consideration. 

 

Key Words：Е.П.Попов harmonic linearization；Self-oscillation；Closed-loop control 

system；Describing function method；DC mine hoist system 
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第 1 章 绪论 
 

闭环控制系统基本都含有非线性特性的元件，可以归类于非线性系统 [1-3]。自

激振荡是非线性系统的重要特征，有效的控制自激振荡是保障系统正常运行的关

键因素 [4]。本论文以闭环控制系统中的自激振荡为研究对象，以探讨相关自激振

荡研究理论为研究目标，展开讨论与分析。  

1.1 研究背景 

1.1.1 提出问题 

闭环控制系统由信号正向通路和反馈通路构成。基本组成框图如图 1.1 所示。

反馈原理主要是根据系统输出量变化的信息控制与调节系统的运行，即当输出量

偏离输入预期应该得到的规定值时，就产生相应的控制作用去消除偏差，以获得

预期的系统性能。因此，它具有较强的自我调节，抑制干扰的能力，在实际工程

中广泛运用。同时由于反馈回路的引入增加了系统的复杂性， 其组成环节不可避

免的带有某种程度的非线性，因此在回路中有可能会引起系统的自激振荡 [4-6]。  

 
图 1.1 闭环控制系统的基本组成框图  

自激振荡的本质可以概括为：因为非线性环节输入特性中具有死区、失灵、

饱和等无法与输入形成线性关系的区域，在与系统其它环节耦合作用之下，在无

持续输入的情况下，产生的一种使系统电压、电流波形产生畸变的持续振荡，具

有周期性的固定频率与固定振幅。不受控制的自激振荡可以引起机械磨损、能量

消耗并带来控制误差；经过调整的自激振荡又可以克服间隙、摩擦等非线性因素

对系统造成的影响 [7-9]。在各个时期的对闭环控制系统领域的研究中，对自激振荡

的研究都是非常重要的，例如动力机车 [10-15]，航空飞行 [16-20]，机械制造 [21-27]等诸

多与时俱进，快速发展的行业。可以注意到这些研究大部分都建立在对相平面法、

描述函数法等经典方法上，并在其基础上采取了一定优化算法，例如单传法、临

界阻尼比法、频率重合临界阻尼比法、分岔法等等。但这些经典方法由于本身具

有局限性，因此它们的研究对象也就具有局限性。本文希望能够研究一种可以更

为全面地，从闭环控制系统结构出发研究自激振荡状态的理论，即波波夫谐波线
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性化。  

1.1.2 经典方法 

1.1.2.1  相平面法  

相平面法是 Poincare. H 于 1885 年首先提出来的，是一种在研究线性系统稳

定性的过程中求解一、二阶常微分方程的图解法 [1,6]。设 x 为系统的误差值，典型

的系统方程如式(1.1)所示：  
                 ( ) ( ) 0=++ xfxx ϕ                               (1.1) 

可知 ( ) ( )xfxdtxdx −−== ϕ ，式(1.1)可降为一个一阶方程，如式(1.2)所示：  

                        ( ) ( )
x

xfx
dx
xd −−
=

ϕ                           (1.2) 

相平面法中最常用的是等倾线法。以 x 为横轴，以 x 为纵轴构成相平面。对

于相平面坐标系 ( )xx, 中任意一个满足式(1.2)的解， ( ) ( )[ ]Txxfx ,−−ϕ 都为其规定了  
一个方向场。方向场一经给出，系统在该点的运动轨迹一定于方向场相切。如给

定一系列值 [ ]nmmmm ,, 21∈ ，设定 ( ) ( )[ ] xmxfx =−−ϕ ，在相平面上就可以绘制出

一系列的等倾线，最终可以绘制出从任意给定的初始点出发绘出系统解的相轨迹

线。如图 1.2--a 所示。  

在将相平面法运用到非线性系统的自激振荡研究的过程当中，对照式(1.1)，

以振荡物体相对于自然状态下平衡静止的位置产生的振荡为 x ，振荡变化速度为

x ，振荡变化加速度为 x 。 ( )xϕ− 表示使振荡物体的振荡衰减的阻力或者是摩擦力；

( )xf− 表示相对于 ( )xϕ− ，保持振荡物体振荡的恢复力。在很多情况下可以采用 

“分段线性法”。即根据非线性特性的分段情况，用几条分界线将相平面划分为几

个线性区域，列写各自区域的线性微分方程，运用等倾线法绘制各自区域的轨迹

线，然后根据系统状态变化的连续性，在各个区域的交界线上，将相轨迹彼此衔

接成连续曲线，即可得到完整的非线性系统相图。在产生稳定的自激振荡的情况

下，相轨迹将形成一条闭合曲线，也称为极限环 [28]，如图 1.2--b 所示。  

从极限环可以看出在坐标原点近旁分段出发的相轨迹会呈螺旋式的背离原

点，同时，从离坐标原点很远的点出发的相轨迹就呈螺旋式的趋近原点。总之系

统的运动随着时间呈现出趋向单一的周期运动。极限环说明了当系统自激振荡时，

阻尼力 ( )xϕ− 的特征是当速度υ很小时，这个力的作用使振荡的振幅增加，x 增大；

当速度υ较大时，则会使振荡的振幅减小， x 减小。最终形成了某一定态振荡，

即自激振荡。  
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(a)线性系统相平面图                           (b)非线性系统相平面图 

图 1.2 等倾线作图法  

相平面法采用较为简单的二维平面作图法，很直观的展现了非线性系统的运

动趋势，特别是通过极限环展示了自激振荡的运动本质，在很多领域都有很好的

研究成果。但也正因为如此，又无可避免地表现了其局限性，本文认为主要包括

以下两点：  

1、只能对一阶或二阶的非线性系统进行研究。这是相平面本身的定义限制了

的，因为它就是依靠振荡物体振荡与振荡的变化来分析最终的振荡趋势的，所以

这两个变量就一定只能形成一个二维平面，因此非线性方程的阶数就不能超过二

阶。张德祥 [29,30]、韦根原 [31]等人曾经对于相平面法运用到高阶非线性系统中做了

改进算法。但是这种在高阶非线性系统的相平面法其实最终还是要依靠以下两点：

①从高阶到低阶，每两阶层构成某一个层次的相平面，可绘制出当前两个阶层的

相轨迹图；通过坐标变换，将当前层次相平面的横坐标变为下个层次的纵坐标，

直至推导到由一阶和二阶变量构成的相平面为止，如图 1.3 所示。②除最高阶以

外，需设定各阶层导数的初始值，通过初始值获得一个最基本的方向场的值，也

就是该点的切线值，设定微小步长，获得相轨迹第二点坐标值，依此类推，一步

一步获得当前相平面的相轨迹图；因此，从这种高阶的变换来看，有以下限制：

①对自激振荡的分析结果最终还是要到二阶相平面才可以得到，并没有真正摆脱

相平面法仅适用于较低阶层非线性系统的局限性；②各层相平面的变换计算量较

大，需要通过多次重复计算才能最终得出二阶相平面的相轨迹图。   
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图 1.3 ( )1, +ii xx 与 ( )ii xx ,1− 相平面变换图  

2、对奇点的研究较为复杂。从式(1.2)可以看出，会出现一种特殊的情况，就

是 0=dtxd 和 0=dtdx 同时成立的时候，也就是式(1.2)会变成 00=dxxd 的形式。

这种情况反应了系统处于一种运动状态相对不变的情况之下，相平面上这种状态

的点称为奇点，也称为平衡点。线性系统中只会存在一个奇点，而在非线性系统

中可能存在多个奇点，这最直观的就是表现在 ( ) ( )xfxdtxdx −−== ϕ 这一部分，如

果是线性系统，那么这个等式中 x 、 x 和 x 都应该是一次的，而在非线性系统中，

就至少有一个变量不是一次的，在 0== dtdxx 的前提下，这个等式所求出来的 x

就有可能不会只有一个值。如果把二阶非线性系统的全部运动轨迹比喻成一个河

面，那么奇点就象是这个河面下分布各地的旋涡，会驱使它附近的区域做本质相

同的运动。相平面法之所以可以对二阶非线性系统的运动作出了一个“全息”的

图像解析，就是因为对奇点做了充分的研究。所谓的非线性特性分段研究实际就

是根据非线性的特性，将式(1.2)分成几个线性微分方程来组合表达，这每一个线

性微分方程就表示了一个子线性系统，其中都会存在一个奇点，通过对奇点的研

究获取当前子线性系统的运动特性。如果以原点为奇点作图，总体来说会形成图

1.4 所示的六种奇点及该类奇点附近对应相轨迹图，而且这其中还可以根据相轨

迹随时间变化的具体方向而再作细分。虽然不同的奇点附近有不同的相轨迹，但

这些不同的相轨迹并不是彼此孤立地存在于各区域内，而是既有独立性，又是有

机结合，各区域边界的相轨迹彼此衔接成连续曲线，最终构成一幅完整的非线性

系统相平面图。而在自激振荡的情况下所获得的极限环就是在这种拼接过程当中

所获得的一种特殊的相轨迹，它很清晰的将它所在区域的相平面分为了内、外两

部分，而且这两部分是绝对不会相交的。  
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图 1.4 非线性系统中可能出现的奇点类型  

这种获得极限环的方法十分直观，只要通过观察相轨迹就可以知道是否会产

生自激振荡，但必需包括以下过程：计算奇点，做等倾线，绘制相轨迹，衔接整

合。而且现在凡是用到相平面法对自激振荡或是非线性系统稳定性做定量研究的

大部分研究文章都几乎无法简化这一过程，因为相平面法是建立在绘制相轨迹之

上的，而绘制相轨迹就必需要先确定奇点，在相平面确定有极限环后，再参照奇

点的位置与极限环的大小来确定自激振荡的振幅等数值。  

如果简化对自激振荡做定性的研究过程，即只确定极限环的存在和个数，也

脱离不了对奇点的研究。1900 年 Hilbert 提了的著名的“23 个数学问题”，其中第

16 个问题的后半部分就是寻求平面相量场上极限环的最小上界是多少，其可能出

现的位置如何 [32-34]。1959 年董金柱给出了二次系统的奇点指数分布与极限环的位

置分布 [35,36]；1979 年年秦元勋、蒲富全给出了以二次多项式为奇点出现三个极限

环的例子 [37]；同年史松龄和陈兰荪、王明淑分别举出平面二次系统至少存在四个

极限环的例子 [38,39]；90 年代至近年张祥，梁锦鹏，Ali.Elamin，陈成美等人对二

次系统极限环的相对不同奇点的存在性、个数及其分布问题做了更为系统的研究

[40-42]。而对于极限环动态变化的研究更是现今的研究热点，Hopf 分岔理论就是其

中的代表方法 [43,44]。通过研究改变系统参数从而在指定点产生奇点从而引起相平

面上的运动趋势发生改变，这种研究方法在预测和分析群体机动变化问题时取得

很多的成果 [45-49]。  

如果希望对极限环做定量的研究，人们也发展了一系列近似的解析方法，可

以注意到这些方法通常是以求解弱非线性系统的渐近解为目的。最典型的是

Poincarè 在研究小天体对大天体运动影响的过程中提出的摄动法，这种方法将二

阶非线性微分方程中的各个变量用一个无量纲小参数 ε 的幂级数来表示 [50,51]， ε
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就代表了与非线性函数相关的一个正的参数值，通过这个共同的无量纲小参数可

得各级近似方程，依据这些方程可确定幂级数的系数，对级数进行截断，从而得

到原方程的渐进解。但这种方法最大的问题就是存在与时间相关的长期项，这使

得求出的渐进解将随着时间的变化而不再可用。通常情况下渐近解的截断误差为

( )1+nO ε 级，因此只有 ε 越小，渐近解才能越近似的反映真实解。尽管发展了各种

方法消除长期项，但是这对于实际工程中对于自激振荡的研究依然是有局限性的。 

从以上分析可知在自激振荡的研究中，相平面法是一种对二阶非线性系统的

比较直观的作图分析法，运动的定量变化并不重要，关键是了解其运动方向和特

性。但其局限性是显而易见的：①主要适用于二阶非线性系统定性分析，现有相

平面在高阶上的应用还不普及；②以奇点分析为基础，处于理论不断发展的阶断；

③对自激振荡振幅和频率的求取主要建立渐近法上，因其前提条件限制或是运算

过于繁琐也有待进一步的改进。  

1.1.2.2  描述函数法  

描述函数法于三十年代提出，四十年代以后移植到了非线性控制系统中 [52]。

如果从它本身所具有的物理秉性和数学处理手段来看，应该叫做非线性特性“谐

波线性化原理”，来自前苏联联学者的 Kpцлов 和 Боголюбов 的渐近方法 [53]。1940

年前苏联学者 Гольдфарб 将这一原理应用到高阶非线性控制系统中，并称经过振

荡线性化之后的非线性函数为“非线性元件等效复数导纳”[54]。而现今更为广泛

使用的是在 1940 年是达尼尔(P.J.Damiel)提出的描述函数法的概念  [1]，即认为系

统在具有低通滤波性质的系统中，在非线性环节的输入是正弦波输入时，可以保

证其输出是一个与输入信号周期相同的周期函数，输出的一次谐波将占有输出量

的绝大部分值，因此可以用一次谐波量与输入量相比较，从而得到一个等效近似

频率特性，即描述函数，这个获得描述函数的过程也称为谐波线性化。在本文后

续的讨论中描述函数法是指达尼尔所提出的描述函数法概念。  

经验指出，在对非线性系统的稳定性和自激振荡的研究中，描述函数法在很

多情况下可以得到满意的定性的、常常也是定量的结果，不仅对弱非线性系统，

而且对于强非线性系统都能得到满意的结果。这种方法不受系统阶次的限制，对

系统的初步分析和设计都十分方便，因而获得了广泛应用 [55-61]。虽然这种方法是

研究系统的频率响应特性，并不能给出时间响应的确切信息，但是应该认识到闭

环控制系统的稳定性是其平衡工作状态的稳定性，当系统偏离平衡状态出现了偏

差，当偏差消失后，在长时间内会保持一个恒定振幅与频率的振荡临界稳定状态，

这就是自激振荡的状态，这说明是否可以求某个时间点的系统值并不影响对自激

振荡的研究，描述函数法是适用的。  
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本文认为描述函数法在研究闭环电机系统的自激振荡方面，相对于相平面而

言，除了没有二阶系统的限制，没有求取奇点的繁琐过程，描述函数法本身还具

有以下两点优势。  

1、非线性环节的输入为正弦波的设定在较多闭环电机系统中可以实现 [52]。

严格的讲非线性系统的自激振荡波形是非正弦波形的，但是它常常接近于正弦波。

一个典型的闭环控制系统结构图如图 1.5-a 所示。其中非线性环节设定为具有无

死区的对称继电器特性，根据这种特性，非线性环节的输入 3x 无论在什么输入波

形下其波形都会是方波，即使在输入本来就是是正弦波的条件下，如图 1.5-b 所

示。但是可以证明即使在这种非线性特性之下，也可以推导得出非线性环节的输

入最终可以用正弦波来表达。  

x

−

2x 3x 4x1x
−

5x
11

1

+pT
k

12

2

+pT
k

ock

m
m−

       

x tω

tω
3x

0 π π2

0
m

m−
 

             (a)系统结构图                   (b)非线性环节输入输出波形图 

图 1.5 典型的具有非线性环节闭环电机控制系统图  

不论非线性环节的输入 x 是何种波形， 3x 用傅立叶级数表达，如式(1.3)所示： 

                   ( )∑
∞

=
+=

1
3 sin

i
ii tiax ϕω                          (1.3) 

式中， ia 为 i次谐波的幅值， iϕ 为 i次谐波的相角。  

此时线性元件输出端上 4x 的表达式如式(1.4)所示：  

                   ( )∑
∞

=
++=

1
4 sin

i
iiii tiacx φϕω                     (1.4) 

式中， ( ) 11 222
2

2

2

2

+
=

+
=

= ωωω iTi

k
pTp

k
c

jip
i ；  

( ) ωπφ
ω

iarctgT
pTp

k

jip
i 2

2

2
21

arg −−=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

=
=

；  

由 ic 的公式可知高次谐波的振幅通过线性环节后随着次数的增大会越来越

小，如图 1.6 所示，这个线性环节实际上起到了一个低通滤波器的作用，结果就

是高次谐波实际无法通过这个线性环节，当然这也是描述函数法的限制条件之一，

也就是描述函数法所适用的系统必需拥有低滤波特性，而且事实上大部分实际工

程中的闭环控制系统都具有这样的结构特性 [62-68]，因此是可以满足条件要求的。 
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0

ic

ωω ω3 ω5  
图 1.6 ic -ω关系图  

由于方波的输入量 3x 的高次谐波的幅值 ia 随着 i值越大越来越小。因此可以

认为 4x 实际上接近由基波确定的正弦波，如式(1.5)所示：  

                ( )11114 sin φϕω ++≅ tacx                          (1.5) 

当 4x 近似于正弦波时，则根据系统结构图可以列出 2x 和 x 的公式，可以发现

它们也是近似于正弦波的。 2x 如式(1.6)所示， x 如式(1.7)所示。  

                  ( )1111112 sin γφϕω +++≅ tacdx                   (1.6) 

式中， ( ) 11 22
1

1

1

1
1

+
=

+
=

= ωω T

k
pT
k

d
jp

； ωπγ 11 arctgT−−= ；  

  ( ) ( )[ ]11111111

42
sinsin φϕωγφϕω ++−+++≅

−=
tktdac

xkxx

oc

oc                 (1.7) 

最终可以看到不论 x 最初的波形是什么，在经过闭环系统中各个线性环节的

处理后，它最终形成了与正弦波振幅和频率相关的类似正弦波形，它不包含高次

谐波，只包括基波。最终自激振荡的求解就成了寻求由 x 、 4x 和 2x 等变量中的正

弦基波的解。而继电器的输出 3x 决不能说出是正弦波形的，也不必要说成是正弦

形的，因为只需要定出变量 x 的振荡频率ω，就可以确定出 3x 的全部曲线。因此

可以设定所要求解的非线性环节输入值 x 的形式为正弦波的形式，即 tax ωsin= 。

这个过程说明了描述函数法在大多数的闭环控制系统中都是适用的。  

2、在输入量是正弦谐波的情况下描述函数只与自激振荡的振幅相关。这一点

可以通过以下分析过程论证 [69]。设非线性环节的输入输出关系经过拉普拉斯变换

之后如式(1.8)所示：  

  xb
dt

xdb
dt

xdbyd
dt

ydd
dt

ydd m

m
mm

m
mn

n
nn

n
n 01

1
101

1
1 ++=++

−

−

−−

−

−           (1.8) 

式中， tax ωsin= 为非线性环节的输入量； y 为非线性环节的输出量；  

将式(1.8)简写为式(1.9)所示的形式：  

              ta
dt
dDx

dt
dDy

dt
dM ωsin⎟

⎠
⎞

⎜
⎝
⎛=⎟

⎠
⎞

⎜
⎝
⎛=⎟

⎠
⎞

⎜
⎝
⎛                         (1.9) 

式中， 01

1
1 d

dt
dd

dt
ydd

dt
dM n

n
nn

n
n ++=⎟

⎠
⎞

⎜
⎝
⎛

−

−

− ； 0
1

1 b
dt

db
dt

db
dt
dD

m
m

m
m ++=⎟

⎠
⎞

⎜
⎝
⎛ −

− ；  

将非线性环节的输出 y 展开为傅立叶级数，只取基波分量，得到式(1.10)：  
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              ( ) ( )[ ]taqtaqay ωω cossin ′+≈                         (1.10) 

取 tωψ = ，式中， ( ) ∫∫ ==
π

ω
π

ψψ
π

ω
π
ω 2

0

2

0
sin1sin dy

a
tdty

a
aq ；  

( ) ∫∫ ==′
π

ω
π

ψψ
π

ω
π
ω 2

0

2

0
cos1cos dy

a
tdty

a
aq ；  

将式(1.10)代入式(1.9)，可得式(1.11)：  

          ( ) ( ) ta
dt
dDtaqa

dt
dMtaaq

dt
dM ωωω sincossin ⎟

⎠
⎞

⎜
⎝
⎛=′⎟

⎠
⎞

⎜
⎝
⎛+⎟

⎠
⎞

⎜
⎝
⎛            (1.11) 

⎟
⎠
⎞

⎜
⎝
⎛

dt
dM 与 ⎟

⎠
⎞

⎜
⎝
⎛

dt
dD 是带有微分算子的公式，现设定一个类似的变量 ⎟

⎠
⎞

⎜
⎝
⎛

dt
dL ，进

行以下运算，如式(1.12)所示：  

( )( )

( ) ( )[ ]( )
( ) ( )[ ] ( ) ( )[ ]tjLtjLjtjLtjL

tjtjLjjL

tjtjLe
dt
dL tj

ωωωωωωωω
ωωωω

ωωωω

cosImsinResinImcosRe
sincosImRe

sincos

++−=
++=

+=⎟
⎠
⎞

⎜
⎝
⎛

(1.12) 

可得 ⎟
⎠
⎞

⎜
⎝
⎛

dt
dL 分别与 tωsin 和 tωcos 的乘积如式(1.13)所示：  

        
( ) ( )

( ) ( )
⎪
⎪
⎩

⎪⎪
⎨

⎧

−=⎟
⎠
⎞

⎜
⎝
⎛

+=⎟
⎠
⎞

⎜
⎝
⎛

tjLtjLt
dt
dL

tjLtjLt
dt
dL

ωωωωω

ωωωωω

sinImcosRecos

cosImsinResin
               (1.13) 

如果仿照式(1.13)，可以分别得到在式(1.11)中 ⎟
⎠
⎞

⎜
⎝
⎛

dt
dM 与 tωsin 、 tωcos 相乘的

结果， ⎟
⎠
⎞

⎜
⎝
⎛

dt
dD 与 tωsin 相乘的结果。再将它们带入式 (1.9)中，可得到式 (1.14)：    

( ) ( )[ ] ( ) ( ) ( )[ ]
( ) ( ) ( )[ ]tjMtjMaqa

tjMtjMaaqtjDtjDa
ωωωω

ωωωωωωωω
sinImcosRe

cosImsinRecosImsinRe
−′+

+=+
  (1.14) 

式(1.14)中等号左右两边的 tωsin 和 tωcos 项系数应该是相等的，所以可以得式

(1.15)与式(1.16)：  
              ( ) ( ) ( ) ( ) ( )ωωω jMaqjMaqjD ImReRe ′−=                  (1.15) 

              ( ) ( ) ( ) ( ) ( )ωωω jMaqjMaqjD ReImIm ′+=                  (1.16) 

以 j 乘以式(1.16)再与式(1.15)相加，可得式(1.17)：  
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( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( )
( ) ( ) ( )[ ]
( ) ( ) ( )[ ]
( ) ( )[ ] ( )ω

ωω
ωω

ωω
ωωωω

jMaqjaq
jMjMjaqj

jMjjMaq
jMaqjjMajq

jMaqjMaqjDjjD

′+=
+′

++=

′+
+′−=+

ReIm
ImRe

ReIm
ImReImRe

               (1.17) 

由此可得：  
                  ( ) ( ) ( )[ ] ( )ωω jMaqjaqjD ′+=                    (1.18) 

根据式(1.9)，已知非线性环节上的描述函数是 ( ) ( )ωω jMjD ，再参考(1.18)，

描述函数即是 ( ) ( )[ ]aqjaq ′+ 。如果再参考式(1.10)，将其写成式(1.19)所示，也可以

得出与式(1.18)相同的结果，即以 ta ωsin 为非线性环节输入量时， ( ) ( )[ ]aqjaq ′+ 为

描述函数的表达式。  

                 
( ) ( )

( ) ( )[ ]aqjaqta
td

tdaqtaqay

′+=

⎥⎦
⎤

⎢⎣
⎡ ′+≈

ω
ω
ωω

sin

sinsin
                      (1.19) 

以上从拉普拉斯变换的角度和傅立叶级数展开式的角度两方面说明了非线性

环节的描述函数总是只与振幅 a 有关。那么在对自激振荡相关变量的求取过程中

间，可以以振幅 a为中心变量来进行求解，求解过程相对相平面来说是简洁的。  

综上所述，可见在研究闭环控制系统的自激振荡时，相对于相平面法，描述

函数法是更适用于实际工程的。但是描述函数法是定义在非线性环节唯一正弦波

输入下的，当非线性环节具有外部输入时，描述函数法就无法适用了 [1,6]。在实际

情况中，是否可以在描述函数法的基础之上找到一种更为普遍适用的研究方法

呢？即无论非线性环节是否具有外部输入都可以对其自激振荡的状态进行分析，

本文认为可以采用波波夫谐波线性化法来解决这个问题 [70]。  

1.2 研究对象 

描述函数法认为非线性环节的唯一输入是正弦波。但实际情况中闭环电机控

制系统的非线性环节的输入输出图通常会以图 1.7 的形式出现，即非线性环节的

输入量除了正弦波还包括了外部输入变量，这是因为外部输入的存在往往是必要

并且是有益的 [52,70]。在以下两点的说明当中，可以证明当外界输入以相对于自

激振荡频率高得多的频率工作时，外部输入称为缓变干扰，可以改变非线性环节

的传递特性，改善非线性系统的动态性能，可见对具有外部输入的自激振荡研究

是非常重要而且有意义的 [71-76]。如何找到一种即可以对唯一正弦波输入产生的

自激振荡进行分析，又可以对具有外部输入的非线性环节的自激振荡进行分析的

方法是本文的主要研究对象。  
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tax λωsin′=′

tax ωsin= ( )tataF λωω sinsin ′+ y
++

 

图 1.7 具有外部输入的非线性环节输入输出图  

1、从计算方法方面进行分析。非线性环节具有多输入时，可以采用双输入

描述函数法进行分析 [72-74]。以描述函数法为基础，参考式 (1.8)，此时非线性环

节的输出 y 表示为：  

( ) ( ) ( )[ ]taaqtaaqatataFy ωλωωλωλωω cos,,,sin,,,sinsin ′′+′=′+≈         (1.20) 

式中， ( ) ( )∫ ′+=′ ω
π

ωλωω
π
ωλω

2

0
sinsinsin,,, tdttataF

a
aaq ；  

( ) ( )∫ ′+=′′ ω
π

ωλωω
π
ωλω

2

0
cossinsin,,, tdttataF

a
aaq ；  

式(1.20)即是双输入描述法的基本公式。可见描述函数 q与 q′均与 a、 a′、ω

以及 λ等值相关，计算复杂，这也是双输入描述函数法应用不广的主要原因。现

将 q化为式(1.21)所示：  

  

( )

( )( )

∑ ∫

∑ ∫

∫

−

=

−

=

+

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛ +⎟⎟

⎠

⎞
⎜⎜
⎝

⎛ ′+⎟
⎠
⎞

⎜
⎝
⎛ +=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
′+=

′+=

1

0

2

0

1

0

21
2

2

0

2sinsin2sin

sinsinsin

sinsinsin

λ
ωλ
π

λ
ωλ
π

ωλ
π

ω
π

ω
λ
πλωω

λ
π

π
ω

ωλωω
π
ω

ωλωω
π
ω

k

k

k

k

dttktatkaF
a

tdttataF
a

tdttataF
a

q

           (1.21) 

设 tλωτ = ，可得：  

  

∫ ∑

∑ ∫

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛ +⎟⎟

⎠

⎞
⎜⎜
⎝

⎛ ′+⎟
⎠
⎞

⎜
⎝
⎛ +=

⎥
⎦

⎤
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛ +⎟⎟

⎠

⎞
⎜⎜
⎝

⎛ ′+⎟
⎠
⎞

⎜
⎝
⎛ +=

−

=

−

=

π λ

λ π

ττ
λλ

πττ
λλ

π
λπ

ττ
λλ

πωττ
λλ

π
λπ

2
0

1

0

1

0

2
0

12sinsin12sin11

12sinsin12sin1

k

k

dkakaF
a

dkakaF
a

q

         (1.22) 

设
ωλ
π2ktk = ，

λω
π2

=Δt ，可得当 ∞→λ 时， 0→Δt ，根据黎曼积分定理，式

(1.22)中出现了极限求和的形式，可以化成定积分的形式，取 tωψ = ，可得式

(1.23)：  



基于波波夫谐波线性化理论的闭环控制系统自激振荡研究 

12 

          

( )

( )

( )∫ ∫

∫ ∫

∫ ∫

⎥⎦
⎤

⎢⎣
⎡ ′+=

⎥⎦
⎤

⎢⎣
⎡ ′+=

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
′+=

∞→

π π

ω
π π

π
ω
π

λ

ψψττω
ππ

ωττω
ππ

ω

τωτω
π
ω

π

2
0

2
0

2

0
2
0

2
0

2

0

sinsinsin
2
11

sinsinsin
2
1

sinsinsin
2

1lim

ddataF
a

tdtdataF
a

dtdtataF
a

q

           (1.23) 

同理可得当 0→λ 时， q′如式(1.24)所示：  

            
( )

( )∫ ∫

∫ ∫

⎥⎦
⎤

⎢⎣
⎡ ′+=

⎥⎦
⎤

⎢⎣
⎡ ′+=′

∞→

π π

ω
π π

λ

ψψττω
ππ

ωττω
ππ

ω

2
0

2
0

2

0
2
0

cossinsin
2
11

cossinsin
2
1lim

ddataF
a

tdtdataF
a

q
         (1.24) 

根据以上推导过程，可知在 ∞→λ 时 q 与 q′的值均已将ω与 λ化去，不再明

显表示在公式中，因此，即 tt ωλω >> 时，则式(1.20)不再与ω及 λ 有关，只决定

于 a 与 a′。在这种情况下研究和运算将比较简洁。当 ∞→λ 时，  ta λωsin′ 为常

数，一般被称为缓变干扰，可以将其表示为非线性环节的不变输入分量 x 。  
2、缓变干扰对系统自激振荡的有利影响。参看图 1.8 所示两个典型闭环控

制系统示例，图 1.8 a)显示了在液压控制系统中适当的高频附加输入可以用来克

服干摩擦的影响，使磁滞非线性环节产生的自激振荡趋于消失，系统转速趋于平

稳；图 1.8 b)显示了在液位控制系统当中由于添加了附加输入，使得继电器非线

性特性产生一种线性化效果，从而自激振荡振幅趋向减小，调节水位趋于平稳

[74]。再参看在具有直流分量 x 的前提下，可列出 3种典型的非线性特性的自激振

荡幅值 a 相对于 x 求偏导数的公式，参见表 1.1 所示。可见这几种自激振荡振幅

极值公式都可以在 0=x 时获得 0=∂∂ xa 的值，也即获得了 a 的最大值（在可以

证明 022 <∂∂ xa 的前提下）。这说明了当外界缓变干扰作用于具有自激振荡的系

统时，自激振荡的振幅随着外界的干扰变化，大部分情况下是逐渐减小的，而在

没有缓变干扰时自激振荡的幅值达到了最大 [72]。  

t

0=x
bx 5.1=

bb−

 t

0=x
1=x

 

a)汽轮机调节系统自激振荡图             b)液位控制系统自激振荡图 

图 1.8 缓变干扰对自激振荡的典型影响图  
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表 1.1 具有外部输入的典型非线性特性的自激振荡振幅极值公式表  

非线性特性  非线性特性图  xa ∂∂  

理想继电器

特性  
x

( )xF

0

m

 

2

2

1 ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−

−

a
x

a
x

 

有死区的继

电器特性  
x

( )xF

0 b

m

2

2

2

2

11 ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛ −
−

−

+

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛ +
−

+

−

a
xba

a
xb

a
xba

a
xb

 

对称失灵区

特性  
x

( )xF

0

k

b
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛ +
−−⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛ −
−−

22

112
a

xb
a

xb
a

 

综上所述，从运算可行性的角度和对非线性系统自激振荡的影响角度两方面

来看，都需要找到一种可以研究包含了正弦波分量和不变分量的自激振荡的方

法。本文采用了波波夫谐波线性化法作为这种研究方法做为主要讨论对象。  

波波夫谐波线性化是由前苏联学者 Е.П.ПОПВ 在 1979 年的文献中明确提出

来的 [70]。这是一种基于描述函数法，允许非线性环节的输入端包含正弦波和不

变分量，并采用基于线性系统频域稳定判据的非线性系统自激振荡研究理论。它

摆脱了系统微分方程阶数的限制；明确了非线性环节的输入可以包含不变分量

（需要注意这个不变分量除了是可以由于上文所讨论的外部输入，即缓变干扰所

引起的，也可以是由于非线性环节本身的非线性特性是非奇对称的而引起的）；

将系统的自激振荡求解分解成不变分量部分与周期分量部分（由正弦波引起）两

部分。波波谐波线性化实际是前苏联学者对于“描述函数法”这一概念的更深层

次的理解，它突破了达尼尔所提出“描述函数法”条件的限制，可以很简便的通

过分析闭环控制系统的结构，为绝大部分类型的闭环控制系统自激振荡现象提供

求解方法。但一直以来国内外对波波夫谐波线性化的应用比较少，主要原因有以

下两点：由于波波夫谐波线性化不考虑系统微分方程降阶，不舍弃不变分量，因

此计算过程比较复杂；通过图 1.8 和表 1.1 可以发现非线性环节不具有不变分量

时自激振荡是比较强烈的，这在设计系统时无疑是一个设定系统各个参数极限值

的思路，因此人们在对闭环控制系统的自激振荡研究中就较少的考虑了不变分量。
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但本文认为如果考虑不变分量对自激振荡的影响，可以更为细致和全面的对闭环

控制系统的自激振荡及系统稳定性进行研究；实际上在本文研究过程中运用波波

夫谐波线性化法对典型的闭环控制系统的自激振荡进行了一系列计算分析，获得

了较好的结果 [77-84]，因此在现有的科技水平上，将波波夫谐波线性化进行重新

的研究与应用是有实际意义和效果的。  

1.3 研究内容 

1、阐述描述函数法对自激振荡的研究。波波夫谐波线性化基于描述函数

法，对描述函数法进行完整详细的研究是非常必要的。描述函数法以谐波线性化

为理论基础，对非线性环节的特性进行线性化，推导出自激振荡的相关参数。运

用线性系统的稳定性理论推导自激振荡的稳定性。以自激振荡为系统稳定状态与

不稳定状态的临界点，讨论如何划分非线性系统的稳定域。  

2、阐述波波夫谐波线性化对自激振荡的研究。波波夫谐波线性化突破了描

述函数法的限制，可以完成输入量同时包含正弦波与不变分量的非线性环节或者

是非奇对称非线性特性的自激振荡的求解。对上面两种非线性特性分别采用典型

系统举例的方式，详细阐述运用波波夫谐波线性化对其自激振荡相关数据的求解

过程与系统稳定性的分析，说明波波夫谐波线性化的运用原理。同时波波夫谐波

线性化可以包含描述函数法对自激振荡的研究成果。因此结合描述函数法，根据

非线性环节的输入量与非线性特性奇对称与否将自激振荡分为对称非线性的自激

振荡和非对称非线性的自激振荡两种。分别选取这两种非线线特性中的典型性特

性，对其自激振荡参数及参数之间的相关关系进行详细的求解与讨论，完成运用

波波夫谐波线性化对自激振荡求解的总结工作，为以下实例讨论奠定基础。  

3、典型闭环控制系统的自激振荡与波波夫谐波线性化的结合。矿井提升机是

连接井下井上的运输工具。它担负着人员、矿石、材料、设备等多种提升运输任

务。矿井提升机的运行安全直接影响到矿山的正常生产以及到人身与设备安全
[85,86]。国内矿井提升机大致分为交流提升机系统和直流提升机系统两种。其中国

产的交流提升机系统大部分仍采用较老的控制方式：它是在线绕转子异步电动机

的转子回路，串入多级电阻，逐级切除电阻，实现分级调速。这类系统的控制性

能不够理想，而且消耗大量的电能，成本偏高。这类系统一般仅用于容量不大、

控制要求不高的单水平矿井提升机 [86-88]。在复杂的、要求较高的、多水平、大容

量的提升机中，直流矿井提升机系统仍占有一定的地位。该系统具有典型的闭环

控制系统的结构，包含多种非线性元件，具有不同特点，具备引发自激振荡的可

能性。本文选取晶闸管-电动机型提升系统为讨论对象，具体分析其中可能产生自

激振荡的非线性环节，可能产生的自激振荡参数值，以及控制自激振荡的方法。  

4、波波夫谐波线性化计算环境与方法的优化。由于波波夫谐波线性化考虑
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了较多外部因素，也未对非线性系统做过多简化，因此所得的系统微分方程往往

是高阶方程，从而导致公式复杂，运算庞大，限制了该方法在实际工程当中的运

用。本文中引入了 MATLAB、MAPLE 与 Mathematica 相结合作为计算与仿真平

台，大大提高了线性化过程中分析与计算的能力，包括高阶非线性方程求解，高

阶非线性方程组求解，高阶偏导数求值等方面函数应用。  

5、对多个非线性环节的自激振荡的分析。现今许多工程控制相关的著作与

文献在讨论自激振荡的研究与控制方面，仍然以具有单个非线性环节的闭环系统

为主。实际上任何一个闭环系统在它的环路内都不止一个非线性环节，而是多

个。对于在什么条件下应该考虑什么样的非线性环节，对于系统的自激振荡有什

么影响是一个重要的课题。本文主要以晶闸管-电动机矿井提升系统和电动摩托

车双闭环调速系统为讨论对象，根据其构成原理与运行情况，运用波波夫谐波线

性化对具有多非线性环节的系统产生的自激振荡做了较为完整的分析与研究。  

6、波波夫谐波线化与其他非线性稳定性判据的结合研究。当前实用的工程

闭环系统无可避免的都带有非线性特性，而非线性环节因为其输入输出关系的复

杂与多变性，也一直是研究的热点与重点，其中有很多对其稳定性分析的经典方

法。李雅普诺夫直接法是一种对非线性系统稳定性判断的经典方法，是一种类似

“黑箱”操作的算法，它绕开了对非线性环节本身构造的具体分析计算，而是采

用根据系统结构创建与系统误差相关的“能量”函数及其导数（也就是李雅普诺

夫函数及其导数），从误差及其误差的变化趋势来分析系统的稳定性。特别是当

稳定性条件与非线性环节参数无关时，更可以得出系统的绝对稳定性条件。考虑

到自激振荡是系统稳定的临界状态，系统很容易从这个状态变成稳定或变成不稳

定，那么寻找系统稳定性条件与求解自激振荡应该是相关的。这与本文前述部分

中运用自激振荡求解过程划分系统稳定区域的想法是相似的，核心思想都在于自

激状态是临界状态，所不同的是前面所述的内容从自激振荡出发直接划分区域，

计算工作大，分析步骤多；而在这一部分从李雅普诺夫直接法出发，重点在正确

的构造“能量”函数，波波夫谐波线性化对自激振荡的求解主要是给予了参数支

持，最终对李雅普诺夫直接法的判据结果给予判断与验证。  

1.3 研究目的与创新 

波波夫谐波线性并不是一种最新的方法，但是它是一种理论上运用范围很广

的经典的非线性特性线性化的方法，该方法不需要非线性系统简化成为一阶或二

阶系统，而是保证了最大限度还原非线性系统的构成情况，同时考虑了非线性环

节具有外部输入或是非奇对称的情况。这种做法必然导致了非线性方程的阶层比

较高，一般会需要运算 7 阶到 10 阶左右的方程。可想而知在过去的运算条件下，

这几乎是不太可能完成的，因此使得波波夫谐波线性化的推广应用具有局限性，
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所取得的成果比较少。在当今先进的数学演算平台的日益发展的情况下，波波夫

谐波线性化的缺点得到了改善，因此可以被引入到实际的工程运算当中去。本文

的目的表现在以先进的运算手段，拓展的运用思维，将一种经典的自激振荡的研

究方法进行再一次更新与实际运用。  

本文的创新表现在以下几点：  

1、对若干种典型的对称非线性特性与非对称非线性特性的自激振荡相关参数

详细进行运算，绘图与分析。包括自激振荡不变分量公式，周期分量放大系数实

部与虚部公式，输入输出关系曲线， aq − 关系曲线等内容。其中对称非线性特性

部分的求解实际是与描述函数法求解的过程是一致的，这说明了波波夫谐波线性

化即包括了描述函数法的功能，同时又具有求解非对称非线性特性的系统的自激

振荡的功能。首次完成了波波夫谐波线性化对自激振荡求解的总结性工作。  

2、在将结合实例求解自激振荡参数的时候，将 MATLAB、Mathematica 与

MAPLE 相结合，作为计算与仿真平台，列出高阶非线性方程求解过程，高阶非

线性方程组求解过程，高阶偏导数求解过程等的相关算法与代码。由于波波夫谐

波线性化较为全面的考虑了对称的非线性特性与非对称的非线性特性，不受系统

微分方程的阶数限制，计算过程往往比较复杂，限制了其在实际工程中的使用。

以上多种先进的计算平台结合使用，突破了此局限性，为波波夫谐波线性化今后

使用的数学模型化打下了基础。  

3、提出了在多非线性环节的情况之下，根据闭环控制系统的不同运行阶段，

对各个非线性环节分而治之的运算方法。在诸多针对自激振荡的文献中，都只是

提到了某一个非线性环节引起振荡时的状态，但在实际运用的系统中是不太可能

只拥有一个非线性环节或者是一种非线性环节的。因此本文根据具体系统的构成，

对每个非线性环节的运行原理及工作阶段展开分析，并对其导致的自激振荡进行

计算与仿真，是一种对闭环控制系统更加完整的研究。  

4、将波波夫谐波线性化与李雅普诺夫直接法、波波夫稳定判据相结合，提出

了结合多种非线性稳定分析方法对系统稳定性进行分析的思路。在非线性稳定性

的领域，很多学者都取得了很优秀的成果。我们应该认识到这些研究成果不是相

互独立的，而是相互支撑和影响的。本文将以上三种研究理论相结合，尝试了一

种加深非线性稳定理论认识与发展的新途径。  

1.4 本论文的结构安排 

本论文是作者运用波波谐波线性化对变速控制系统中自激振荡研究的工作总

结，全文的组织如下：  

第 1 章 绪论。阐述闭环控制系统自激振荡的研究现状。从对相平面法和描述

函数法这两种经典方法的基础理论和局限性的阐述推导出波波夫谐波线性化在自
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激振荡领域的可研究性。  

第 2 章 描述函数法对自激振荡的研究。通过第 1 章的分析可知波波夫谐波线

性化是描述函数法的扩展延伸，因此首先引入描述函数法的研究。详细说明了描

述函数法的理论构成及其在自激振荡上的应用，主要包括描述函数法的原理阐述，

相对自激振荡的几种稳定判据，以及以自激振荡作为系统临界稳定状态从而进行

系统稳定性的分析等方面。  

第 3 章 波波夫谐波线性化对自激振荡的研究。在第 2 章的基础上展开了波波

夫谐波线性化的理论研究，以实例的方式，分为有外部输入的非线性特性和非奇

对称非线性特性两种，具体说明了波波夫谐波线性化的基本使用与计算过程，说

明了波波夫谐波线性化可以完成描述函数法所不能完成的自激振荡的情况。然后

将非线性特性分为对称的非线性特性与非对称的非线性特性，分别选取了其中若

干典型的特性，对其自激振荡相关参数的求取与图解进行了详细阐述，完成了波

波夫谐波线性化对自激振荡研究的总结性的论述。  

第 4 章 波波夫谐波线性化对矿井提升系统的自激振荡的分析。在第 3 章的理

论上运用波波夫谐波线性化对晶闸管-电动机型矿井提升机系统的自激振荡进行

计算与分析，并采用了第 2 章中论述的自激振荡稳定判据进行自激振荡稳定性判

断，然后具体指出如何通过调节系统参数的方法控制自激振荡的状态。特别的提

出了多非线性环节存在的情况下自激振荡的分析思路。  

第 5 章 波波夫谐波线性化的扩展研究。首先在第 4 章的基础上拓展了多非线

性环节的研究，以电动摩托车双闭环控制系统为分析对象，说明了分时研究多非

线性环节自激振荡的可行性。然后结合波波夫谐波线性化与非线性系统其他的稳

定性分析方法，主要包括李雅普诺夫直接法与波波夫判据，以某飞机偏航角控制

系统为分析对象，综合分析了绝对稳定性的条件，扩展了运用波波夫谐波线性化

的分析思路和运用范围。  

结论 针对前 5 章的论述，提出了本文作者对波波夫谐波线性化今后研究的思

路。主要包括加深多非线性环节的研究与拓展波波夫谐波线性化与其他先进的理

论相结合的思路，可以往数据分析与挖掘方面进行探索。  
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第 2 章 基于描述函数法的自激振荡的研究 

2.1 引言 

在工程计算中，由于不可能精确的考虑全部现象，总是用方程式对非线性系

统提出某个理想化的数学描述，以便在保留系统的主要本质的同时，得出最简单

的计算方法。线性方程是最简单而且研究得最充分的，所以通常采用的方法是把

全部实际的非线性环节加以线性化，然后用线性系统中的分析方法对非线性系统

进行近似的研究与计算。 

2.2 谐波线性化的概念 

2.2.1 普通线性化 

普通线性化是基于泰勒级数的，即把非线性环节 ( )xFy = 的传递函数用泰勒

级数展开，略去除第一项以外的所有高次项，即用式(2.1)代替，非线性特性曲线

被与输入变量的形状与大小无关不变倾角的直线来代替。  

                     kxy = ，
0=

⎟
⎠
⎞

⎜
⎝
⎛=

xdx
dFk                             (2.1) 

如图 2.1 a)所示，非线性特性曲线被切线 kx 所代替。几何上说， k 是曲线在 0

点的斜率（倾角的正切）。因此当 x 与 0 点偏离很小时，系统的这个环节就成了传

递函数为 k 的线性环节。这个线性化方法在所有的线性稳定性理论中应用，也在

自动调节的线性理论（所谓当偏离量很小时，一次线性逼近的稳定性研究）中应

用。有时不用(2.1)式的切线而用具有某种不变倾角的割线，如图 2.1 b)所示。但

不论是切线还是割线，传递函数一旦确定就不再改变，对于较为简单的非线性特

性曲线还可以适用，但较为复杂的曲线就无法较为完整的表达其特性了。  

xkmax

kx
y

kxy =
( )xFy =

x0

      

kxy =

x

y

0

( )xFy =

 
a) 切线图                            b) 割线图 

图 2.1 非线性特性普通线性化  
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2.2.2 谐波线性化 

设非线性环节输入量 x 波形为正弦波，如式(2.2)所示：  

                           tax ωsin=                           (2.2) 

式中， a为正弦波幅值；ω为正弦波频率。  

实际情况中非线性环节的输出量 y 并不是正弦波，而是更为复杂的周期图形。

但是既然要进行近似处理为线性环节，那么设定 y 应该是输入正弦波幅值放大后

的正弦波形，设定一个等效的传递函数 q，可得 y 的表达式如式(2.3)所示：  

           ( ) tatqaxFy F ωω sinsin ===                           (2.3) 

式中， qaaF = 。  

式(2.3)说明了当输入量 x 正弦变化时，主要与输出量 y 的一次谐波分量相对

应。获得式(2.3)的过程被称为谐波线性化，这说明在谐波线性化的情况下，对输

出量的一次谐波的分析是占主导地位的。  

傅立叶级数说明了任何周期函数都可以用正弦函数和余弦函数构成的无穷级

数来表示。当非线性环节具有单值对称奇对称特性时，式(2.3)的傅立叶级数展开

式只有正弦项而没有余弦项，因此 y 的幅值 Fa 可以用式(2.4)来表示。  

 ( ) ( )∫∫ ==

=

π
ω
π

ψψψ
π

ωω
π
ω 2

0
1

2

0
sinsin1sinsin daFtdtntnaFna

n
F           (2.4) 

式中， tωψ = 。  

将式(2.4)代入到式(2.3)，可得的表达式 q 如式(2.5)所示，可见 q值主要是与幅

值 a相关的。  

                  ( )∫=
π

ψψψ
π

2

0
sinsin1 daF

a
q                       (2.5) 

当非线性环节具有非单值奇对称特性时，傅立叶级数展开式既具有正弦项也

具有余弦项，式(2.3)转换为式(2.6)所示：  

          ( ) ( ) xpqqxafxFy ⎟
⎠
⎞

⎜
⎝
⎛ ′

+=⋅==
ω

                           (2.6) 

式中， ( )af 为非线性环节非单值特性情况下的传递函数； ωj
dt
dp == 为微分算子； 

tapx ωω cos= ； ( )∫=′
π

ψψψ
π

2

0
cossin1 daF

a
q 。  

与普通线性化法相比，谐波线性化所得到的传递函数与输入量 x 的幅值 a 有

关，也就是说当 x 有不同的幅值 a 时，就会有不同的传递函数。设某个单值对称

奇函数非线性环节经过谐波线性化后非线性特性曲线如图 2.2 所示，以 ( )aq 表示
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非线性环节的传递函数，可见图中非线性特性曲线并不是用一条直线来近似的，

而是一束直线。这说明非线性环节不同的工作时段里，幅值 a 是不断变化的，相

应的 ( )aq 也随之变化。很明显与图 2.1 相比，非线性环节不同阶段的工作过程与

非线性性质更为完整的保留了下来。这种特点使得谐波线性化与普通线性化方法

有着本质的不同，因为谐波线性化能够更为完整的描述某些特殊的非线性现象，

而这些现象又是普通线性化无法完成的，因此谐波线性化对非线性系统的动态过

程具有很珍贵的价值。  
y

( )xaqy=
( )xFy =

x0

 

图 2.2 非线性特性谐波线性化  

2.3 描述函数法的概念 

描述函数法的本质就是谐波线性化，被广泛运用在非线性系统自激振荡的研

究中。描述函数法基本思想可以描述为：在一定的限制条件下，如果非线性系统

中的非线性环节产生自激振荡，则自激振荡波形可以表示为非线性环节的正弦波

输入信号，非线性环节的输出量采用输出量的一次谐波分量来近似，这个过程即

谐波线性化，并导出非线性环节的等效近似频率特性，也就是非线性环节的传递

函数，被称为描述函数。在本文以下的讨论中，做以下定义：  

(1)以式(2.2)作为非线性环节产生自激振荡时的正弦波输入信号的表达式，其

中 a表示自激振荡的振幅，ω表示自激振荡的频率；  

(2)当非线性环节的非线性特性是单值奇对称时，则式(2.5)即是相应的描述函

数；  

(3)当非线性环节的非线性特性是非单值奇对称时，则式(2.6)中的 ( )ωpqq ′+

即是相应的描述函数。  

在讨论式(2.3)的过程中提到希望能够在输入量是正弦波的情况下，输出量也

会是正弦波型，也就是说保存输出量中一次谐波，尽量减小其它高频谐波的比重，

这样才能达到谐波线性化的目的。要达到这种效果，就必然对非线性系统有一定

的客观要求，在描述函数法中就是对系统的限制条件，一般包括以下三点：  

(1)系统的线性环节与非线性环节可以分离，图 2.3 表示了最典型的系统结构。
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图中 x 所代表意义与式(2.3)相同；如果非线性特性是单值奇对称的， y 所代表意

义与式(2.3)相同；如果非线性特性是非单值奇对称的， y 所代表意义与式(2.6)相

同；  

y x

 
图 2.3 运用描述函数法的典型非线性系统结构  

(2)非线性特性具有奇对称性，且输入输出关系为静特性，即不含储能元件。

如此，当非线性环节输入为正弦波时，其输出为周期函数，其直流分量为零；  

(3)线性环节具有良好的低通滤波性，以衰减高次谐波，输出仅存在一次谐波

分量，这是非线性系统可以运用描述函数法最重要的条件。  

2.4 基于描述函数法的自激振荡稳定性的分析 

描述函数法的最终的目的是获得非线性系统自激振荡的定性定量数据，因此

以下从基于描述函数法的自激振荡的稳定性分析及常用判据展开阐述。  

2.4.1 线性系统的稳定性分析 

线性系统的稳定性可定义为在系统经过外界扰动后偏离平衡状态又最终恢复

到平衡状态的能力，如果系统可以在一定时间内逐渐恢复到原来的平衡状态，则

是稳定的，反之则是不稳定的。线性系统的稳定性是系统自身具有的一种恢复能

力，是一种固有特性，只取决于系统的结构和参数，与外部作用无关。系统特征

根判据是稳定性分析的基础，即设线性系统在初始条件为零时，输入一个理想单

位脉冲 ( )tδ ，即在零平衡状态时受到一个扰动信号的作用，如果 ∞→t 时，系统的

输入响应 ( )tc 收敛到原来的零平衡状态，如式(2.7)所示，则系统是稳定的 [89]。  

                        ( ) 0lim =
∞→t
tc                              (2.7) 

设系统的闭环传递函数为如式(2.8)所示：  

          ( )
0

1
1

0
1

1

dpdpd

bpbpb
s

n
n

n
n

m
m

m
m

+++

+++
=Φ

−
−

−
−                         (2.8) 

则系统的特征方程为：  

            00
1

1 =+++ −
− dpdpd n

n
n

n                          (2.9) 
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如果特征方程的所有根互不相同，设有 Q 个实数根 iP 和 R 对共轭复数根

21 ζωωζ −±− nknkk j ，则在单位脉冲函数 ( )tδ 的作用下，系统输出量的拉氏变换

可表示为：  

   ( )
( )

( ) ( )∏∏

∏

==

=

++−

−

=
R

k
nknkk

Q

i
i

m

j
jR

ppPp

Zpk

pc

1

22

1

1

2 ωωζ

                        (2.10) 

将式(2.10)用部分分式法展开并进行拉氏反变换可得：  

    ( ) ( )∑∑
=

−

=
++=

R

k
dkkdkk

t
Q

i

tP
i tCtBeeAtc nkki

11
sincos ωωωζ               (2.11) 

式中， 21 ζωω −= nkdk  

根据式(2.11)可以得出系统特征方程的根有以下三种情况：  

(1)当系统特征方程的根都具有负实部时，则该根所对应的瞬态分量都是衰减

的，且有 ( ) 0lim =
∞→t
tc ，此时系统是稳定的。  

(2)如果特征根中有一个或一个以上具有正实部，则该根对应的瞬态分量是发

散的，此时有 ( ) ∞→
∞→t
tclim ，系统是不稳定的。  

(3)如果特征根中具有一个或一个以上的零实部根，而其余的特征根均有负实

部，则 ( )tc 趋于常数或做等幅振荡，这时系统处于稳定和不稳定的临界状态，称

之为临界稳定状态，自激振荡就是处于这种状态。  

因此可以得出线性系统稳定的充分必要条件是：闭环系统特征方程的所有根

都具有负实部，或者说闭环传递函数的所有极点均位于复平面的左半部分（不包

括虚轴）。  

这种根据特征根的值确定系统稳定性的方法虽然十分直接，但实际求取难度

较大，特别是对于高阶而言。因此在实际的分析运算中，以特征根判据为基础，

是采用其它更加间接易求的方法，例如绘图（奈奎斯特判据），分析系统特征方程

参数（劳斯-霍尔维茨判据）等方式完成分析。  
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2.4.2 自激振荡的稳定性分析 

以上对线性系统的稳定性分析为自激振荡的稳定性分析提供了一个很好的解

决思路。这个思路实质可以看成描述函数法的具体使用过程。  

(1)将系统划分为线性环节与非线性环节，如图 2.3 所示。采用谐波线性化的

方法将非线性环节近似表示为一个线性环节。  

(2)在没有外部作用的情况下，如果产生自激振荡，特征方程的根为一对纯虚

根 ωj± ，特征方程可以被分为带有 j 的虚数部分和不带 j 的实数部分，由于特征

方程是等于零的，因此虚部与实部必然都为零，所以可以将虚部和实部联立成为

一个方程组，求解振荡频率ω和振荡振幅 a，从而得出 x 的周期解。这就是描述函

数法求解自激振荡的主要过程。  

(3)在求解出自激振荡振幅与频率之后，需要对自激振荡的稳定性进行分析。

比较经典的做法就是在所求解的附近引入足够小的增量，然后运用线性系统稳定

判据分析这一增量是否收敛，如果收敛则对应的 x 的周期解是稳定的，反之则是

不稳定的。观察式(2.3)和式(2.6)，会发现传递函数 q或 f 实际仅与振幅 a 相关，因

此，以下将主要以 a为增量对象说明在描述函数法中常用的几种稳定性判据。  

2.4.3 幅相稳定判据 

根据图 2.3，当产生自激振荡时，非线性环节经过谐波线性化，系统闭环方

程如式(2.12)所示：  
                    ( ) ( ) 01 =+ afjG ω                            (2.12) 

式中， ( )ωjG 为线性环节的传递函数； ( )af 为非线性环节的传递函数；  

根据式(2.12)在复平面上可以绘出 ( )ωjG 与 ( )af1− 的曲线，它们的交点就确定

了可能的自激振荡的振幅 a和频率ω。当受到扰动后，设振幅为 aaa Δ+=′ 。如果

0>Δa 时开环幅相特性 ( ) ( )ωjGaf ′ 所对应的闭环系统稳定，而当 0<Δa 时开环幅相

特性 ( ) ( )ωjGaf ′ 所对应的闭环系统不稳定，那么 0=Δa 时所对应的自激振荡是稳定

的，否则就是不稳定的。以上方法被称为幅相稳定判据 [90]。  

幅相稳定判据来自于线性系统的奈奎斯特判据。奈奎斯特判据设定一个反馈

控制系统，其闭环特征方程正实部根个数为 Z ；开环幅相特性曲线逆时针穿越负

实轴上 [ ]−∞− ,1 区域的次数为 N ；开环传递函数在右半复平面上的极点数为 P ；可

得 NPZ 2−= 。当 0=Z 时闭环系统稳定，当 0≠Z 时闭环系统不稳定。根据线性系

统特征根稳定判据，可知在自激振荡的情况下 0=P ，所以只需要考虑开环幅相特

性曲线穿越负实轴上 [ ]−∞− ,1 区域的次数 N 就可以判断系统的稳定性。相应的在非

线性系统中幅相稳定判据的实质就是将非线性环节和线性环节的传递函数相乘，
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得到新的开环幅相特性，而这个新的开环幅相特性可以近似的看成一个线性系统

的开环幅相特性，从而用线性系统的幅相特性穿越复平面中负实轴上 [ ]−∞− ,1 区域

的次数来判断稳定性。但在线性系统中开环幅相特性曲线是一条曲线，而在非线

性系统中必需要同时考虑 ( )ωjG 与 ( )af1− 两条曲线，因此就必需要分析两者之间

如何等价转换。在以下的讨论中，将 ( )ωjG 与 ( )af1− 的曲线原本所在的复平面称

为原复平面，将转换成新的开环幅相特性后的复平面称为新复平面。可见运用幅

相稳定判据的核心内容就在于原复平面与新复平面的坐标转换。以下根据非线性

环节的特性分成两种来分析：  

(1)非线性环节特性是单值对称奇函数的情况。参看式(2.3)，非线性环节的传

递函数 ( )af 只有实数部分 ( )aq 而没有虚数部分。由于 ( )aq 在实际情况下必然是正

实数，因此的曲线 ( )aq1− 就必然在负实半轴。现在就是要考虑如何能用 ( )ωjG 和

( )aq1− 的关系表达在有 aΔ 的情况下开环幅相特性和负实轴的关系。 ( )ωjG 如式

(2.13)所示：  

                   ( ) ( ) GjejGjG θωω =                          (2.13) 

( )aq 如式(2.14)所示：  

                     ( ) ( ) 0jeaqaq =                            (2.14) 

新开环幅相特性 ( )ωjW 如式(2.15)所示：  

             
( ) ( ) ( )

( ) ( ) GjejGaaq

jGaaqjW
θω

ωω

Δ+=

Δ+=
                       (2.15) 

假设 ( )aaq Δ+−1 的曲线上的某一点坐标在新复平面中为-1，由此可得从原复

平面到新复平面的坐标变换遵照以下原则：相角不变，幅值乘以 ( )aaq Δ+ 。可以

发现如果把这个原则使用到如式(2.13)的 ( )ωjG 中，则 ( )ωjG 在新复平面所得的坐

标值正好与(2.15)相符，由此可由此推导出开环幅相特性的稳定性。参看图 2.4，

可见在复平面上， ( )ωjG 与 ( )aq1− 相交确定了自激振荡点，即图中点 1 和点 2。      

011−21−

ω

a

c b

( )ωjG

( )aq
1

−

 

图 2.4 具有单值奇对称的幅相稳定判据分析图  

考虑到无论在原复平面还是新复平面，坐标原点都没有发生改变，而且向上
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向下穿越的方向也不会改变，因此可以根据 ( )aaq Δ+−1 的新坐标-1 来判断系统的

稳定性。很明显当 0>Δa 时， ( )ωjW 在 [ ]−∞− ,1 没有穿越，开环幅相特性所对应的

系统是稳定的；而很明显当 0<Δa 时， ( )ωjW 在 [ ]−∞− ,1 有一次穿越，开环幅相特

性所对应的系统是不稳定的。由此可知点 2 的自激振荡是稳定的。同理考虑点 1，
可知当 0>Δa 时， ( )ωjW 在 [ ]−∞− ,1 有一次穿越，因此系统是不稳定的，从而对应

的自激振荡是不稳定的。  

(2) 非线性环节特性是非单值奇对称非线性特性的情况。参看式(2.6)，非线

性环节的传递函数 ( )af 即有实数部分 ( )aq 也有虚数部分 ( )aq′ 。这时就无法确定

( )af1− 一定在负半轴上，而是和 ( )ωjG 一样分布在复平面中，但一般情况下是在

复平面第三象限中。 ( )ωjG 如式(2.13)所示， ( )af 如式(2.16)所示：  

                   ( ) ( ) ( ) ( ) fjeafaqjaqaf θ=′+=                  (2.16) 

由于只需要计算在 a 产生了微小扰动 aΔ 的情况下 ( )ωjW 在新复平面 [ ]−∞− ,1

区域内的穿越次数，因此只讨论知道 ( )ωjW 在负实轴上的变化情况。因此只需要

找到使得 ( )ωjG 在新复平面中的负实半轴上的幅值可以表示为 ( ) ( )ωjGaaf Δ+ ，相

角表示为 π− 的变换方法由此可得新的开环幅相特性 ( )ωjW 如式(2.17)所示：  

             ( ) ( ) ( ) πωω jejGaafjW −Δ+=                         (2.17) 

具体变换方法是：在 ( )af1− 上确定一点为 ( )ωjG′ ，该点是对自激振荡点（也

就是 ( )ωjG 与 ( )af1− 的交点）的振幅 a施加微小扰动 aΔ 后得到的一点。将 ( )ωjG′ 与

原点连成一条直线 G′0 ，将 ( )ωjG′ 的坐标设为新复平面坐标系中的-1，把 G′0 设为

负实轴。在这种情况下 ( )ωjG 与 G′0 的交点在新复平面的坐标系中将会得到以下数

值：因为 G′0 是负实轴，所以 ( )ωjG 与 G′0 的交点相角一定是 π− 。因为 ( )ωjG′ 在原

复平面的幅值是 ( )aaf Δ+1 ，在新复平面的幅值是 1，所以新复平面与原复平面

的幅值比值为 ( )aaf Δ+1 ，可得 ( )ωjG 在新复平面的幅值为 ( ) ( )ωjGaaf Δ+ 。以上

正好满足开环幅相特性新坐标的要求，可据此判断稳定性。  

参看图 2.5， ( )ωjG 与 ( )af1− 的交点确定了自激振荡点，即图中点 1 和点 2。

可以在相对点 2 取振幅增大 0>Δa 的方向取一点 c，并做直线 c0 。把直线与 ( )af1−

的交点处标为-1，把 c0 当作负实轴。可见当 0>Δa 时， ( )ωjW 在 [ ]−∞− ,1 区域间没

有穿越，系统是稳定的；当 0<Δa 时， ( )ωjW 在 [ ]−∞− ,1 区域间有一次穿越，系统

是不稳定的，因此相对点 2 的自激振荡是稳定的。对于图点 1，在相对点 1 取振

幅增大 0>Δa 的方向取一点 b ，并做直线 b0 。把直线与 ( )af1− 的交点处标为-1，

把 b0 当作负实轴。可见当 0>Δa 时， ( )ωjW 在 [ ]−∞− ,1 区域间有一次穿越，因此相

对点 1 的自激振荡是不稳定的。  
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b

( )ωjG

c

0
1

1−

2

1−
a

ω

( )af
1

−

 
图 2.5 具有非单值奇对称非线性特性的幅相稳定判据分析图  

2.4.4 米哈依诺夫判据 

参考式(2.12)，根据特征根判据，在系统具有自激振荡时，特征根是一对纯虚

根。因此式(2.12)可以分解成实部和虚部，而且实部和虚部是都等于零的，所以可

以将实部方程和虚部方程联立求解 a 和ω。根据以上，米哈依诺夫判据的具体内

容为以下内容 [72]。因为在存在自激振荡的状态下非线性系统闭环方程存在纯虚

根，所以将闭环方程分为实部方程与虚部方程，可分别对应某一复平面 ( )YX , 中

的实轴和虚轴。可在复平面 ( )YX , 中绘制出一条随着自激振荡的频率ω的变化而变

化的曲线，这条曲线被称为米哈依诺夫曲线。这条曲线一定会通过原点，即实部

和虚部都等于零的时候求得的自激振荡点。如果如果自激振荡的振幅 a 产生一个

很小的偏差 aΔ ，那么自激振荡点就一定离开了原点，而相应可能会出现在图中点

1 的位置，也可能出现在图中点 2 的位置，如图 2.6 所示：  

X

jY

s 0=ω

∞→ω

0
r r

 

图 2.6 米哈依诺夫判据图  

设 r 表示振幅有偏差时米哈依诺夫曲线相对原点的位移，则 r 在 X 轴与 Y 轴上
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的投影如方程组(2.18)所示，式中星号表示偏导数取值在原点：  

                  

⎪
⎪
⎩

⎪
⎪
⎨

⎧

Δ⎟
⎠
⎞

⎜
⎝
⎛
∂
∂

=

Δ⎟
⎠
⎞

⎜
⎝
⎛
∂
∂

=
∗

a
a
YY

a
a
XX

r

r

*                              (2.18) 

同时设ω有小偏差 0>Δω 时，米哈依诺夫曲线在原点位移用切线向量 s 表示，

则 s 在 X 轴与 Y 轴上的投影如方程组(2.19)所示，式中 ∗表示偏导数取值在原点：  

                  

⎪
⎪
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⎧
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∂
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∗

∗

ω
ω

ω
ω
YY

XX

s

s
                             (2.19) 

如果周期解是稳定的，则当 0>Δa ， rΔ 按逆时钟方向转到向量 s 的夹角小于

π ；而当 0<Δa 时，此夹角大于 π 。如果用
∧
sr, 表示此夹角，则可得到：  

         

sr

aX
a
YY

a
X

sr
XYYX

sr srsr

ω
ωω

ΔΔ
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛
∂
∂
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∂
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∂
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∂
∂

=

−
=⎟⎟

⎠
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⎜⎜
⎝

⎛

∗∗∗∗

∧
,sin

             (2.20) 

当自激振荡稳定的时候可得米哈依诺夫判据为：  

            0>⎟
⎠
⎞

⎜
⎝
⎛
∂
∂

⎟
⎠
⎞

⎜
⎝
⎛
∂
∂

−⎟
⎠
⎞

⎜
⎝
⎛
∂
∂

⎟
⎠
⎞

⎜
⎝
⎛
∂
∂ ∗∗∗∗

a
YXY

a
X

ωω
                      (2.21) 

对以上判据进行解释如下：当自激振荡点移动到点 1 时，很明显只会有实部

为负数的解，这时候系统是稳定的；而自激振荡点移动到点 2，很明显只会有实

部为正数的解，这时候系统是不稳定。如果要得到稳定的自激振荡就希望当 0>Δa

时可以往稳定区移动， 0<Δa 时可以往不稳定区移动。实际上就是要从 r 的变化观

察到 aΔ 的变化，而 r 与 aΔ 的关系最终可以表示为式(2.20)，因此可从该式入手分

析。式中因为 r 与 s 是 r 与 s 的模，一定是正数；设定 0>Δω 是一定成立的。因为

点 1 是在稳定区的，那么最好出现 0>Δa ，所以在这一部分 0>Δ⋅Δ ωa ；相应的点

2 是在不稳定区的，最好出现 0<Δa ，相应的 0<Δ⋅Δ ωa 。而当参数确定以后，可

以根据图 2.6 看出 r 与 0>Δω 的逆时针角度变化，在点 1 一定是小于 π ，在点 2 是

一定大于 π ，如果计算 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ ∧
sr.sin 所得的结果要保持的和 ωΔ⋅Δa 一致，就一定要求式

(2.21)成立，所以可以将式(2.21)作为确定稳定自激振荡的条件。  
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2.4.5 霍尔维茨判据 

霍尔维茨判据指出非线性系统可以根据劳斯-霍尔维茨判据中倒数第二个行

列式 1−Δ n 来判断是否存在自激振荡以及自激振荡是否是稳定的。霍尔维茨判据实

质是自于来自于线性系统中的劳斯-霍尔维茨判据，因此可以从劳斯-霍尔维茨判

据的具体算法展开分析 [91-93]。劳斯-霍尔维茨判据是一种代数判据，是以系统的特

征方程的系数为依据的。已知系统的特征方程如式(2.9)所示，把各系数列成行列

式(2.22)所示：  

       

( )
( )
( )

in

innn

innnn

innnn

d

ddd
dddd
dddd

−

−−−−

−−−−

−−−−−

000

0 3231

2242

12531

                         (2.22) 

如果式(2.22)主对角线子行列式 nΔΔΔ ,,, 21 都大于零，且各次系数都大于零，

则系统是稳定的。但是对自激振荡所运用的霍尔维茨判据为什么以 1−Δ n 做为核心

判据内容，可以从对一至五次特征方程的行列式值分析进行说明。  
(1) 一次特征方程为 001 =+ dpd ， 01 >d ，则系统稳定判据如(2.23)所示：  

                       001 >=Δ d                             (2.23) 

因此具有一次特征方程的系统稳定条件是特征方程的系数全为正数。  

(2) 二次特征方程为 001
2

2 =++ dpdpd ， 02 >d ，系统稳定判据如(2.24)所示： 

             
⎪⎩

⎪
⎨
⎧

>==Δ

>=Δ

0
0

0

01
02

1
2

11

dd
dd

d
d

                            (2.24) 

因此具有二次特征方程的系统稳定条件是特征方程的系数全为正数。  

(3) 三次特征方程为 001
2

2
3

3 =+++ dpdpdpd ， 03 >d ，则系统稳定判据如

(2.25)所示：  

                  

⎪
⎪
⎪
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⎪⎪
⎪
⎪

⎨

⎧
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d
dd
ddd

dd

dddd
dd
dd

d

                    (2.25) 

因此具有三次特征方程的系统稳定条件是特征方程的系数全为正数而且

02 >Δ 。  
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(4) 四次特征方程为 001
2

2
3

3
4

4 =++++ dpdpdpdpd ， 04 >d ，则系统稳定

判据如(2.26)所示：  
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d
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dd
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dd
dd

d

         (2.26) 

很明显 01 >Δ ；如果观察 2Δ 和 4Δ ，会发现只要 03 >Δ ，那么由于 1d 、 3d 和 0d

大于零，则 2Δ 就必定要大于零才有可能会得出 03 >Δ ；而 4Δ 在 0d 和 3Δ 都在大于

零的情况下是大于零的。因此具有四次特征方程的系统稳定条件是特征方程是系

数全为正数而且 03 >Δ 。  

(5) 五次特征方程为 001
2

2
3

3
4

4
5

5 =+++++ dpdpdpdpdpd ， 05 >d ，则系

统稳定判据如如(2.27)所示：  
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    在方程系数都为正数的前提下，依旧可以发现 04 >Δ 是确定整个系统稳定的

重要部分。由于在 4Δ 中出现了系统系数相减项，因此不能仅依靠系统系数的正负

来判断其它行列式的正负了，一定需要引入另一种因素才可以。观察其它行列式，

发现 2Δ 出现的比较频繁，所以可以尝试以 2Δ 为突破口。如果确定 02 >Δ ，说明

(2.27) 
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2534 dddd > ， 如 果 想 与 4Δ 联 系 上 ， 可 以 写 成 025034 dddddd > ， 从 而 得 到

4

025
03 d

ddd
dd > ，那么当 04 >Δ 时，可以推出：  
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可见如果 ( ) 00514 <− dddd ，则 ( )⎥
⎦

⎤
⎢
⎣

⎡
−−

Δ
0514

4

22 dddd
d

d
在 02 >Δ 和各系数大于

零的情况下肯定是大于零的，那么与 04 >Δ 不符；只有在 ( ) 00514 >− dddd 时，才

有可能实现 04 >Δ ，同时也可以发现 ( ) 00514
4

22 >⎥
⎦

⎤
⎢
⎣

⎡
−−

Δ
dddd

d
d

实际就满足了

03 >Δ 。至此，所有主子行列式均满足了大于零的要求。最终可推导出具有五次

特征方程的系统稳定条件是特征方程是系数全为正数而且 02 >Δ ， 04 >Δ 。  

从以上分析可以得知 1−Δn 对于各个行列式的正负值起到了很重要的作用。因

为如果 1−Δn 是负的系统肯定是不稳定的；但如果不用 1−Δn 作为稳定判据的核心部

分，而采用其他的行列式值 in−Δ ，从以上的展开式可见 in−Δ 无法或者是很难推出

其他的行列式值的正负。所以可以认为只有分析 1−Δn 的正负才是最简单推导系统

稳定的途径。四阶及四阶以下系统，在系统参数全部为正的前提下，如果 1−Δn 为

正系统一定稳定，如果为 1−Δn 为负系统一定不稳定，所以当 1−Δn 为零的时候，系

统会处于系统临界状态，即自激振荡状态；如果是五阶系统判断系统稳定还需要

判断 2Δ 是否为正。由此霍尔维茨判据对于五阶及五阶以下的非线性系统的自激振

荡稳定性判断具体包括以下两方面的内容：  

(1)判断系统内是否存在自激振荡。如果满足式(2.29)说明系统中存在自激振

荡。还可以进一步根据式(2.29)独立的求出振幅 a ，并可以结合米哈依诺夫判据中

的米哈依诺夫曲线做图，获得自激振荡点，把 a 代入周期分量的实部或虚部方程，

从而求出自激振荡的频率ω。  
                 ( ) ( )[ ] 0,1 =′Δ − aqaqn                             (2.29) 

(2)判断自激振荡是否是稳定的。如果振幅产生一个较小的偏差 aΔ ，如果要

获得稳定的自激振荡，应该满足下面的两个条件：  

i. 如果 0>Δa 时，希望系统处于稳定状态，此时应该有：  

             ( ) ( ) 0,1 >⎥⎦
⎤

⎢⎣
⎡ Δ+′

Δ+Δ⋅Δ − ω
aaqaaqa n                     (2.30) 

ii. 如果 0<Δa 时，希望系统处于不稳定状态，此时应该有：  
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               ( ) ( ) 0,1 <⎥⎦
⎤

⎢⎣
⎡ Δ+′

Δ+Δ − ω
aaqaaqn                      (2.31) 

根据式(2.30)和式(2.31)，可知在系统自激振荡稳定的状态下 aΔ 与 1−Δn 是同一符号

的，因此可得到式(2.32)：  

         ( ) ( ) 0,1 >⎥⎦
⎤

⎢⎣
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aaqaaqa n                         (2.32) 

( ) ( )
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aqaqn ,1 由于产生微小扰动 aΔ 后形成的，所以

1−Δn 的微小变化 1−Δ∂ n 可以写成：  
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但很明显以上讨论都是基于有自激振荡的前提之下的，所以 ( ) ( ) 0,1 =⎥⎦
⎤

⎢⎣
⎡ ′

Δ − ω
aqaqn 是

一定成立的，因此 ( ) ( )
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⎢⎣
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aaqaaqnn ,11 。式(2.32)可以化成式 (2.34)所

示：  
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所以，最终可以得到式(2.35)，该式是霍尔维茨判据判断自激振荡是否稳定的充要

条件。  

              011 >⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
′∂

′∂
Δ∂

+
∂
∂

∂
Δ∂ −−

a
q

qa
q

q
nn                          (2.35) 

2.5 非线性系统稳定区域的划分 

以上对以描述函数法为基础对非线性系统的自激振荡及其稳定性的判断进行

了分析。如果系统存在自激振荡，则非线性系统可以等效为一个处于临界状态的

线性系统。如果稍微变动系统的参数，系统就可能会偏离临界状态而变得稳定或

者是不稳定。因此非线性系统是否存在自激振荡的边界也就近似的看成了平衡稳

定的边界，在具有自激振荡的系统参数空间之外，就会存在稳定区和不稳定区。

因此，以上三种判据也就成为了对非线性系统稳定区域划分的有效理论 [72]。现以

霍尔维茨判据为主要分析方法展开讨论，讨论对象是五阶及五阶以下的非线性系

统。  

稳定区域的划分的主要思路是：参考式 (2.12)，其中振幅 a 的取值范围为

[ ]βα , 。选取区域划分参数（考虑到区域划分平面作图的要求，一般选取两个系统

参数）作为讨论对象，同时也作为区域划分图的横轴与纵轴。首先在区域划分图
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中找出 ( ) 01 =Δ − an 的 参 数 区 域 ， 在 它 的 邻 近 区 域 就 会 存 在 ( ) 01 >Δ − an 或着

( ) 01 <Δ − an 的区域。要进一步准确的确定系统自激振荡、稳定和不稳定的状态，

需要研究 1−Δn 在 [ ]βα , 区间内变化的情况，即对 1−Δn 进行求导。以下根据 ( )an 1−Δ 与

a 之间的关系分别进行讨论。  

2.5.1 ( )an 1−Δ 是 a的一次多项式时的稳定区域划分 

当 ( )an 1−Δ 是 a的一次多项式时可设 1−Δn 与 a的关系式如(2.36)所示：  

                      BCan +=Δ −1  ( )0≠C                     (2.36) 

由于 1−Δn 是 a 的一次多项式，所以系统如果有自激振荡，则可得式(2.37)。这

是因为代数中可以证明，如果满足式(2.37)，刚 1−Δn 在 [ ]βα , 区间内 01 =Δ −n 一定存

在一个根，也就是从正数变为负数，一定会经过零点，所以会存在自激振荡。式

(2.37)采用绘图的方法也很容易证明。因为从式(2.36)可知 1−Δn 对 a 求导等于 C ，

从而不会存在极值，因此 1−Δn 与 a 的关系曲线一定是条单调递增或单调递减的直

线，所以当 ( )α1−Δn 与 ( )β1−Δn 不同符号时，一定会有一个 a 值使得 ( ) 01 =Δ − an 。  

                 ( ) ( ) 011 <Δ⋅Δ −− βα nn                           (2.37) 

如果系统没有自激振荡，则可以得式(2.38)。类似的可以证明 1−Δn 与 a 的关系

曲线一定是条单调递增或是递减的直线，在不存在一个 a 值使得 ( ) 01 =Δ − an 的情

况下， 1−Δn 在 [ ]βα , 内一定都保持了同一符号。当 1−Δn 是全为正数时，系统是稳定

的；当 1−Δn 是全为负数时，系统是稳定的。以上可总结为系统保持了一种状态，

稳定或是不稳定，不存在临界状态。  
                 ( ) ( ) 011 >Δ⋅Δ −− βα nn                           (2.38) 

因此，产生自激振荡与不产生自激振荡的边界线如式(2.39)所示：  
                 ( ) ( ) 011 =Δ⋅Δ −− βα nn                           (2.39) 

以下分别以有静差和无静差的飞机驾驶仪滚动角稳定回路为例说明该方法。  

(1)有静差的飞机驾驶仪滚动角稳定回路。参见图 2.7，为某一飞机驾驶仪滚

动角稳定回路的系统框图。图中环节 1 为舵机非线性环节；环节 2 为舵机线性环

节；环节 3 为角速度陀螺仪环节；环节 4 为自由陀螺仪环节；环节 5 为角速度反

馈环节；环节 6 为角度反馈环节； ri 为驾驶仪角度传动比； ri′ 为驾驶仪角速度传

动比； x 、 1x 、 2x 、 3x 和 4x 表示各环节的输入输出量。图中舵机的非线性特性为

具有失灵区的饱和非线性特性。舵机有硬反馈包围，称为有静差式的驾驶仪，因

为对作用在飞机上的干扰力矩而言，系统是存在静差的。现以 ri 和 ri′ 为区域划分

参数划分稳定区域。使用描述函数法对非线性环节谐波线性化后，系统的各环节

关系如方程组(2.40)所示。  
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图 2.7 有静差飞机驾驶仪滚动角稳定框图  
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式中， ( ) ( )aqkkak PMOC= 。  

现将方程组(2.40)的第一式和第五式联立，可得系统特征方程为：  

( ) ( )[ ] ( ) ( )[ ] ( ) 01 234 =+′++++++ rrrrrPMrrPM kakipkakiakpTakpTTpTT      (2.41) 

式中，
OC

ZT
r k

k
i = ；

OC

WT
r k

k
i =′ 。  

这是一个四阶方程，可求出倒数第二个霍尔维茨行列式 3Δ 如式(2.42)所示：  

( )( )( ) ( )( ) ( )[ ]PMrrrrrPMrrPMrrrrr TTkikiTTakTTkiTkiak +−′+++′−′+=Δ 11 22
3  (2.42) 

由于 ( )ak 是 ( )aq 的常数倍，而且在式(2.41)和式(2.42)中 ( )ak 都是直接出现的，

方便起见，以下讨论中将以 ( )ak 代替 ( )aq 。而且在式(2.41)和式(2.42)中 a只与 ( )ak

有关系，而且 a 并没有直接出现在式(2.41)和式(2.42)中，所以以下讨论中将以 ( )ak

代替 a讨论其与 3Δ 的关系从而分析自激振荡的状态。参考图 2.7 中非线性环节的

单值奇对称特性， ( ) 0≥ak 是一定成立的，所以 ( )ak3Δ 的符号与 3Δ 是一致的，方
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便起见，设定 ( )ak3
*
3 Δ=Δ 代替 3Δ 。 *

3Δ 是 ( )ak 的一次多项式，由于非线性环节具

有失灵区，所以可以设定 ( )ak 的取值范围是 ( )[ ]max,0 ak 。由此可得产生自激振荡的

边界如式(2.43)所示：  

                      ( ) ( )[ ] 00 max
*
3

*
3 =Δ⋅Δ ak                      (2.43) 

可以实现式(2.43)的条件有两种可能性：或者如(2.44)所示 ( ) 00*
3 =Δ ；或者如

式(2.45)所示 ( )[ ] 0max
*
3 =Δ ak 。  

        ( ) ( )[ ] 01 =+−′++ PMrrrrrPMr TTkikiTT                      (2.44)           

( ) ( )( ) ( ) ( )[ ] 011 2
max =+−′+++′−′+ PMrrrrrPMrrPMrrrrr TTkikiTTTTkiTkiak     (2.45) 

式(2.44)和式(2.45)里面都包含了 ri 和 ri′ ，如果以 ri 和 ri′ 分别做横、纵坐标，

可以根据两式画出两条曲线将坐标平面划分为四个区域，如图 2.8 所示。图中的

区域 2 和 4 中 ( ) ( )[ ] 00 max
*
3

*
3 <Δ⋅Δ ak ，所以是可能产生自激振荡区；区域 1 中，因

为 ( ) 00*
3 >Δ ， ( )[ ] 0max

*
3 >Δ ak ，说明在这个区域中取值 ri 和 ri′ ，系统是稳定的；在

区域 3 中，因为 ( ) 00*
3 <Δ ， ( )[ ] 0max

*
3 <Δ ak ，说明在这个区域中取值 ri 和 ri′ ，系统

是不稳定的。而在可能产生自激振荡的区域是否能产生稳定的自激振荡还需要近

一步分析。  

ri′

ri0

PMr

r

Tk
T

rk
1

−

 
图 2.8 系统稳定区域划分图  

在自激振荡的区域，根据式(2.45)写出式(2.46)。可知式(2.47)是影响式(2.46)

的关键。如果 ri′ 大于式(2.47)的值，式(2.46)是小于零的，对应于图 2.8 中的 2 区；

如果 ri′ 小于式(2.47)的值，式(2.46)是大于零的，对应于图 2.8 中的 4 区。  

          
( )[ ]
( )( ) ( )( )rPMrrrrr TTkiTki
ak

ak
′−′+=

∂
Δ∂ 2max

*
3 1                  (2.46) 

                        
PMr

r
r Tk

T
i =′                            (2.47) 
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然后需要考虑 a与 ( )ak 的关系，才能判断 ( )( )
( )( )
a
ak

aka ∂
∂

∂
Δ∂

=
∂
Δ∂ *

3
*
3 的正负。已知非

线性环节的 ( )xF 、 x 、 ( )aq 和 a 之间的相互关系如图 2.9 所示。  

x

( )xF

1a 2a

                
a

( )aq

1a 2a
 

       a) ( ) xxF − 关系图                        b) ( ) aaq − 关系图 

图 2.9 系统非线性环节各变量关系图  

从图 2.9 中可见 a 与 ( )ak 的关系可以分为两个部分：当 21 aaa << 时，

( )( ) 0>
∂

∂
a
ak

；而当 2aa > 时，
( )( ) 0<
∂

∂
a
ak

。由此可对图中 2 区和 4 区进行自激振荡的

稳定性分析：  

i. 在 2 区式(2.46)是负值，因此如果要出现稳定的自激振荡，一定是在 2aa >

时的情况下，所以在 2 区出现的自激振荡是由于非线性环节的饱和区而

产生的。  

ii . 在 4 区式 (2.46)是正值，因此如果要出现稳定的自激振荡，一定是在

21 aaa << 的情况下，所以在 4 区出现的自激振荡是由于非线性环节的失

灵区所产生的。  

因此如果希望选择较大的角度传动比以提高系统的快速性，则将参数选在 4 区是

比较合适的，此时的自激振荡振幅是比较小的。  

(2) 无静差的飞机驾驶仪滚动角稳定回路。参见图 2.10。这种驾驶仪的舵机

没有硬反馈，因此对作用在飞机上的干扰力矩而言系统是无静差的。为了改善系

统的品质，除了引入角速度反馈以外还引入了角加速度反馈。  

( )1
1

+pTp PM 1+pT
k

r

r

p
1

−−−
2k

pk3

x 1x 2x 3x 4x

 

图 2.10 无静差飞机驾驶仪滚动角稳定回路框图  



基于波波夫谐波线性化理论的闭环控制系统自激振荡研究 

36 

图中环节 1 为舵机非线性环节；环节 2 为舵机线性环节；环节 3 为角速度陀螺仪

环节；环节 4 为自由陀螺仪环节；环节 5 为角速度反馈环节；环节 6 为角加速度

反馈环节； ri 为驾驶仪角度传动比； ri′ 为驾驶仪角速度传动比；x 、 1x 、 2x 、 3x 和

4x 表示各环节的输入输出量。  

将非线性环节谐波线性化后，系统的各环节关系如方程组(2.48)所示：  
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               (2.48) 

式中， ( ) ( )aqkkak PMOC= 。  

联立方程组(2.48)的第一式和第四式，可得系统的特征方程为式(2.49)所示：  

( ) ( )[ ] ( ) ( ) 01 12
2

3
34 =++++++ akkkkpakkkkpakkkkpTTpTT yryryrMPrMPr    (2.49) 

与分析有静差的飞机驾驶仪控制系统时一样，以 ( )ak 代替 ( )aq 与 a进行以下分

析。可得 3Δ 如式(2.50)所示，可见 3Δ 为 ( )ak 的一次多项式：  
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32
3  (2.50) 

设定 ( )ak 取值范围是 ( )[ ]max,0 ak ，可得 ( ) 003 =Δ 如式(2.51)所示的条件，或者

( )[ ] 0max3 =Δ ak 如式(2.52)所示的条件。  

            ( ) 0
1

2 =⎟⎟
⎠

⎞
⎜⎜
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⎛
−−+ rPMPMr TT

k
k

TT                         (2.51) 
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设 21 kkTr =′ ；以 rT 和 rT ′为区域划分参数，可绘图 2.11，以 rT 为横坐标， rT ′为

纵坐标，以式(2.51)和式(2.52)为边界，可将图分为四个区域。图中 2 区和 4 区内

取值 rT 和 rT ′，可以得到 ( ) ( )[ ] 00 max33 <Δ⋅Δ ak ，在此区域中就一定会出现 ( )[ ] 03 =Δ ak

的情况，因此是可能产生自激振荡的区域。图中 1 区内取值 rT 和 rT ′，会得到

( ) 003 >Δ ， ( )[ ] 0max3 >Δ ak ，由于 ( )[ ]ak3Δ 是 ( )ak 的一次多项式，在 ( )ak 的最小值与
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是最大值时都会得到正数，所以 1 区内无论 ( )ak 的值如何变化都可以得到

( )[ ] 0max3 >Δ ak ，因此 1 区是稳定区。而在 3 区内取值 rT 和 rT ′，会得到 ( ) 003 <Δ ，

( )[ ] 0max3 <Δ ak ，同理可得到 ( )[ ] 03 <Δ ak ，因此该区是不稳定区。  

1

2

k
k

rT

PMT

0

式2.51

式2.52

区域1
稳定区 区域3

不稳定区

区域2
可能产生

自激振荡区

区域4
可能产生

自激振荡区

 
图 2.11 系统稳定区域划分图  

在分析了系统可能产生自激振荡、平衡状态稳定和平衡状态不稳定的区域划

分后，需要进一步确定可能产生自激状态的区域中哪一部分是会产生稳定的自激

状态的区域。首先要在 2 区和 4 区中考虑 ( )[ ]ak3Δ 与 ( )ak 之间的关系。式(2.51)与

( )ak 无关，因此可不做考虑，而式(2.52)与式 ( )ak 有关，因此可得式(2.53)。已知

非线性环节的 ( )xF 、 x 、 ( )aq 和 a 之间的相互关系如图 2.9 所示。  
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32max3            (2.53) 

因此可得以式(2.53)为零为边界线，可得在 2 区和 4 区内的自激振荡稳定区。 

2.5.2 ( )an 1−Δ 是 a的二次多项式时的稳定区域划分 

当 ( )an 1−Δ 是 a的二次多项式时，如式(2.54)所示：  

             ( ) BCaDaan ++=Δ −
2

1  ( )0≠D                       (2.54) 

因为 ( )an 1−Δ 是 a 的二次项函数，所以 ( )an 1−Δ 与 a 的关系曲线会是一条抛物

线。很容易想象当这条的抛物线的幅度不是很大时，就有可能会形成近似单调递

增或递减的直线，但如果弧度很大时，就不会是单调变化的直线了，而是可能带

有极值。与 ( )an 1−Δ 是 a的一次项函数时的情况相比，当 ( )an 1−Δ 是 a的二次项函数

时 ( ) 01 =Δ − αn 和 ( ) 01 =Δ − βn 依然是进行区域划分的重要依据，但是并不完全准确，

有可能会损失一部分自激振荡的区域。应该采用其它方法（例如极值法）进行辅

助判断。以下以一个继电随动系统为例说明具体的分析方法。  

某一继电随动系统的结构如图 2.12 所示。可得系统各环节的关系如方程组

(2.55)所示。由于该系统只是做方程计算用，因此各个模块的具体功能不必确定，
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x 、 1x 、 2x 、 3x 、 4x 和 5x 表示各环节的输入输出量。  

1
1

1 +pT 12

2

+pT
k

+−

−

2

1
k

x 1x 2x 3x

4x4k

1k

3k

p
1

−
+

5x

 

图 2.12 继电随动系统框图  
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⎧
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2
2

2
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                       (2.55) 

式中， ( ) ( )aqkkak PMOC= 。  

将方程组(2.55)中第五个方程左边全化成 1x 的表达式，然后代入第六个方程的

左边，然后与第一个方程联立，可得系统的特征方程如式(2.56)所示：  

 ( ) ( )( ) ( )( ) ( ) 01 213
2

242321
3

21 =+++−+++ akkkpakkpkkakTkakTTpTT        (2.56) 

式(2.56)为三阶方程，因此可得 1−Δ n 为 2Δ ，如式(2.57)所示：  

    ( )( ) ( ) 212
22

321311324232 2 TTTakkTTkkTkTkTkak +++−+−=Δ            (2.57) 

由于 ( )ak 是 ( )aq 的常数倍，而且在式(2.56)和式(2.57)中 ( )ak 都是直接出现的，

方便起见，以下讨论中将以 ( )ak 代替 ( )aq 。而且 a 并没有直接出现在式(2.41)和式

(2.42)中，只与 ( )ak 有关系，所以以下讨论中将以 ( )ak 代替 a讨论其与 2Δ 的关系从

而分析自激振荡的状态。设置 ( )ak 的取值范围是 ( )[ ]max,0 ak ，现需要判断 ( )02Δ 与

( )[ ]max2 akΔ 的正负。从式(2.57)易知 ( ) 212 0 TT +=Δ 是一定大于零的，所以系统不可

能同时出现 ( ) 002 <Δ 和 ( )[ ] 0max2 <Δ ak 的情况，以 1k 和 4k 为区域划分参数。因此系

统的状态可大致划分为两种：一种是稳定状态，无论 1k 和 4k 如何进行调整都不会

产生自激振荡；一种是自激振荡状态，其中如果对 1k 和 4k 进行适当的调整，又可
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以划分为会产生稳定的自激状态的区域和产生不稳定的自激状态的区域。因为已

知 ( ) 002 >Δ 是一定成立的，所以判断 ( )[ ]max2 akΔ 的正负就是划分系统的稳定区域

和自激振荡区域的关键了。可得 ( )[ ] 0max2 =Δ ak 如式(2.58)所示：  

( )[ ] ( ) ( ) ( ) 02 212
2
max

2
32121132423maxmax2 =+++−+−=Δ TTTakkTTkkTkTkTkakak    (2.58) 

可得式(2.58)中 ( )ak 的二次项、一次项和常数项系数如方程组(2.59)所示：  

               

⎪
⎪
⎩

⎪⎪
⎨

⎧

+=
−+−=

−=

21

2121132423

2432
2
3

2
TTB

TTkkTkTkTkC
TkkTkD

                     (2.59) 

现以 1k 和 4k 为调整参数，那么将式(2.58)中与 1k 和 4k 有关的分为一部分，与

其无关的分为一部分，分写在等号两侧，可得式(2.60)：  

        
( ) ( )[ ] ( )
( ) ( )[ ]2113max23max2

2
3

2
max

1212max42max23
2
max

2 TTTkakTkkTkak

kTTkakkTakTkak

++++−

=−−−
               (2.60) 

如果观察方程组(2.59)可知当 0>D 和 0>C 时，式(2.58)一定是大于零的，如

式(2.61)和式(2.62)示，则此时系统在任何条件下都不会产生自激振荡。  

                      0
3

24
2

2
3 >⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−=

k
kk

TkD                          (2.61) 

          ( ) 02121213
3

24
23 >−++⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−= kkTTTTk

k
kkTkC                   (2.62) 

因此可以首先根据在调整 1k 和 4k 的参数使 0=D 和 0=C 时划分系统的稳定

区和自激振荡区，如图 2.13 所示。  

0 1k

4k

 

图 2.13 继电随动系统稳定区域初步划分图  

由图可知 1 区部分是 0>D 和 0>B 的部分，可见是无法产生自激振荡的。而

在 1 区之外的区域则有可能产生自激振荡，现暂称之为 2 区。但是因为 2Δ 是 ( )ak

的二次多项式，所以它们之间的关系不会是一条简单的直线， 2Δ 也就不一定会随
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着 ( )ak 的变化而单调增减，那么就不能简单的以 ( ) ( )[ ] 00 max22 =Δ⋅Δ ak 作为边界线，

因此到底在 2 区哪一部分才是产生自激振荡的区域还需要进一步确定。  
首先根据式(2.58)在图 2.13 中做一条 ( )[ ] 0max2 =Δ ak 的边界线 1，然后通过寻

找极值点确定存在单调函数的区域，最后确定自激振荡区和稳定区。具体步骤分

为以下四步：  

(1)因为 ( )[ ]ak2Δ 是 ( )ak 的二次多项式，所以求 ( )[ ]ak2Δ 对 ( )ak 的一次导数

( )[ ]ak'
2Δ 就一定是 ( )ak 的一次多项式， ( )[ ]ak'

2Δ 就一定是与 ( )ak 单调增减的，如果

在 [ ]βα , 的区域中， ( ) ( ) 0'
2

'
2 >Δ⋅Δ βα ，则极值不会存在于区域 [ ]βα , 中。在本例中，

可得 ( ) 00'
2 =Δ 如式(2.63)所示， ( )[ ] 0max

'
2 =Δ ak 如式(2.64)所示：  

             ( ) 020 2121132423
'
2 =−+−==Δ TTkkTkTkTkC                (2.63) 

( )[ ] ( )
( ) ( )

0
22

2

2121132423max2432
2
3

maxmax
'
2

=

−+−+−=

+=Δ

TTkkTkTkTkakTkkTk

CaDkak

        (2.64) 

可以用边界线 2 代表式(2.63)，实际就与图 2.13 中 0=C 的边界线重合了；用

边界线 4 代表式(2.64)。由于上两式是一次项，所以具有单调增减性，因此必然在

这两条边界线的两侧有不同的正负。在边界线 2 的右侧，很明显 1k 和 4k 都会大于

边界线 2 的左侧，因此边界线 2 的右侧 ( )0'
2Δ 一定是小于零的，而在左侧一定是大

于零的。同理边界线 4 的右侧 ( )[ ]max
'
2 akΔ 是大于零的，而左侧是小于零的。所以两

条边界线所包围的部分 ( ) ( )[ ] 00 max
'
2 <ΔΔ ak ，所以存在极值，统称为 3 区；而没有被

包围的区域不存在极值区，统称为 4 区。  

(2) 在 3 区内可分为可产生极大值区和产生极小值区。要区分哪一部分是产

生哪种极值需要对 2Δ 进行二次求导。可得 2Δ 的二次求导即为 2Δ 的二次项系数 D。

所以取 0=D 为区分极大值和极小值的边界线 3。由于在边界线 3 的上方 4k 是大于

下方的，所以上方部分应该是 0"
2 <Δ 的，下方部分是 0"

2 >Δ 的。所以相对应的 3-1

区可以取到极大值，而 3-2 区可以取到极小值。  

(3) 在 3-1 区可以取到 ( )[ ]ak2Δ 的极大值，而边界线 1 又将 3-1 区分为两部分。

在边界线 1 上方的称为 3-1-1 区，下方称为 3-1-2 区。在 3-1-1 区由于存在极大值，

并且 ( )[ ] 0max2 <Δ ak ，而 ( ) 002 >Δ 是一定成立的，所以极大值肯定不会是负数，一

定会从负数部分越过零轴而到达正数部分，所以一定会存在 ( )[ ] 02 =Δ ak ，因此

3-1-1 是自激振荡区。在 3-1-2 区， ( )[ ] 0max2 >Δ ak ，极大值也肯定不会是负数，
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但是就不会穿越零轴，所以就无法找到可以满足 ( )[ ] 02 =Δ ak 的 ( )ak ，因此 3-1-2

是稳定区。  

(4)在 3-2 区可以取到 ( )[ ]ak2Δ 的极小值。因此可以根据 ( )[ ]ak2Δ 一次导数求出

极小值时 a的取值：  

                  
( )[ ]

D
BaBDaak

2
02'

2
−

=→=+=Δ                     (2.65) 

将式(2.65)代入式(2.54)，可得极小值如式(2.66)所示：  

    

( )[ ]
[ ]

( ) ( )
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4

2
4

21
2432

2
3

2121132423

2
min2

=

++
−

−+−
−=

+
−

=Δ

TT
TkkTk

TTkkTkTkTk
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D
Bak

              (2.66) 

以该条曲线为边界线 5，与边界 1 一起可将 3-2 区分为 3-2-1 区、3-2-2 区和

3-2-3 区。其中 3-2-1 区中 ( )[ ] 0min2 >Δ ak ，所以该区中所能取到其他的 ( )[ ]ak2Δ 就

一定是大于零的，因此 3-2-1 区是稳定区。在 3-2-2 区中 ( )[ ] 0min2 <Δ ak ，而 ( ) 002 >Δ ，

( )[ ] 0max2 >Δ ak ，这就必然会有某两个 ( )ak 值使得 ( )[ ] 02 =Δ ak ，因此 3-2-2 区是自

激振荡区。而在 3-2-3 区中， ( )[ ] 0max2 <Δ ak ，同时会产生极小值，那么这个极小

值一定是小于零的，而 ( ) 002 >Δ ，所以也一定会产生 ( )[ ] 02 =Δ ak ，因此 3-2-3 也是

自激振荡区。  

根据以上的分析，可得出最终的系统稳定区域划分详细图如图 2.14 所示：  

4k

1k0

( )[ ] 0max2 =Δ ak
( ) 002 =Δ′

( ) 0min2 =Δ a
( )[ ] 0max2 =Δ′ ak

图 2.14 继电随动系统稳定区域详细划分图  
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2.6 总结 

描述函数法是一种以谐波线性化为主要理论，正弦波为主要分析对象，能够

有效还原非线性系统系统本身非线性特性并能够在实践中得到很好实践效果的近

似方法。本章主要阐述了以下几个方面的内容：  

(1)阐述了描述函数法的主要概念和内容。  

(2)阐述和分析了描述函数法对自激振荡稳定性分析所使用的三种判据：幅相

稳定判据、米哈依诺夫判据和霍尔维茨判据。  
(3)以霍尔维茨判据为主要方法，根据 1−Δn 和 a 的关系式，分为一次项函数和

二次项函数两种分别举例说明描述函数法对非线性系统稳定区域的划分的详细流

程。说明了对于自激振荡的分析不仅作用于自激振荡现象本身，由于其具有临界

稳定性，因此对于非线性系统本身的稳定性分析也是有很大作用的。  
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第 3 章 基于波波夫谐波线性化的自激振荡的研究 

3.1 引言 

波波夫谐波线性化与描述函数法最大的不同点是允许非线性环节的拥有外部

输入或者非线性环节特性是非奇对称的。在这种情况下系统各环节变量在存在正

弦波的周期分量的同时，也存在着一个不变分量。这种分析方法无疑是更符合实

际工程现象的。  

3.2 波波夫谐波线性化的概念 

根据第 2 章中所述，在描述函数法中非线性环节经过谐波线性化后系统闭环

方程一般如式(2.12)所示。式(2.12)成立的前提条件是非线性环节的特性是奇对称

的，而且没有外部输入。在波波夫谐波线性化中这两种前提条件是不必要的，因

此式(2.12)可能并不等于零，可以转换成如式(3.1)所示：  

                
( ) ( )

( ) ( ) ( )
C

xFpRxpQ
xafjGx

=
+=

+ ω
                              (3.1) 

式中， ∗+= xxx 为非线性环节输入变量； tax ωsin=∗ 为周期分量； x 为不变分

量； ( )pQ 为线性环节传递函数分母； ( )xR 为线性环节传递函数分子； ( )xF 为非线

性环节输出变量； C 为代表系统外部输入或者非线性环节非奇对称特征的常量。  
( )xF 中不仅包括周期分量，还包括了不变分量，因此表达式也与式(2.6)不同，

如式(3.2)所示：  

                 

( )
( ) ( )

( ) ( ) ( ) ∗

∗

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡ ′
++=

⋅+=

=

xpxaqxaqaxF

xafaxF

xFy

ω
,,,

,                    (3.2) 

式 中 ，
 

( )∫ +=
π

ψψ
π

2
0

sin
2
1 daxFF ； ( ) ( )∫ +=

π
ψψψ

π
2
0

sinsin1, daxF
a

xaq ；

( ) ( )∫ +=′
π

ψψψ
π

2
0

cossin1, daxF
a

xaq 。  

如果说描述函数法主要解决了奇对称非线性的自激振荡的问题，那么波波夫

谐波线性化就在解决奇对称非线性特性引起的自激振荡的基础上，进一步解决了

非奇对称非线性特性引起的自激振荡的问题。以下根据 C 的产生原因，采用实例
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分析的方法分成两类进行阐述。  

3.2.1 具有外部输入的非线性特性的系统实例分析 

具有外部输入的非线性特性的成因可分为三种：一种是线性环节上具有恒定

的外部输入；一种是线性环节上具有变化的外部输入；一种是非线性环节上具有

恒定的外部输入。典型的具有外部输入的系统闭环方程如式(3.1)所示。在这种情

况下非线性环节的输入变量 ∗+= xxx ，其中出现了不变分量 x 。 x 的出现说明

了外部输入 C 导致了恒定静态误差。在这种情况下，典型的有外部输入的非线性

环节输入输出图如图 3.1 所示。以下将以图 3.1 所示的输入输出图做为非线性环

节特性图，根据以上分的三种系统分别讨论如何计算与自激振荡相关的振荡频率

ω和振荡幅值 a 。  

x
ψπ π2 π3

0

( )xF

m

x0

( )xF

x0

m

m−

m−

r2+π r2−π
ψ

非线性特性

 
图 3.1 典型的有外部输入的非线性环节输入输出图  

(1) 在线性环节上具有恒定的外部输入。参看典型的在线性环节具有外部干

扰的非线性系统如图 3.2 所示，系统各环节的关系式如方程组(3.3)所示：  

( )xF

OCk 4x

x2x1x( )tC1 3x
( )11

1

+pT
k

− −

( )xF
x 非线性特性

m
m−

ppT
k

12

2

 

图 3.2 在线性环节有恒定外部输入系统框图  
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                         (3.3) 

设外部输入 ( )tC1 为常量 1C 。不变分量如方程组(3.4)所示，此时 0=p ：  

                       

( )
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⎪
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xCkx
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oc                              (3.4) 

可得 03 =x 。根据式(3.2)中 F 的算法，再参考图 3.1 中的非线性特性，可得

0=x 。从而可知 42 xkxx ococ == ，最终推出
ockk

Ckx
+

=
1

11
4 。由于 0=x ，所以自激  

振荡只存在周期分量，并且在周期分量的求解过程中外部输入为零，所以振幅 a 与

频率ω都与外部输入无关。  

各环节周期分量的关系如方程组(3.5)所示。根据(3.5)写出系统的特征方程，

实际就是将系统各环节的关系最终表达成非线性环节输入量 ∗x 的关系式，并最终

能够将 ∗x 消去，如式(3.6)所示：  
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                               (3.5) 

     ( ) ( ) ( ) 01 2121
2

21
3

21 =++++++ qkkkpqkkTpTTpTT ococ                (3.6) 

可将式(3.6)化为 0=+ jYX 的形式，其中实部 X 与虚部 Y 两部分如方程组(3.7)

所示：  

          ( ) ( )
( )⎪⎩

⎪
⎨
⎧

=−+=
=+−+=
01

0
3

2121

2
2121
ωω
ω

TTqkkTY
TTqkkkX

oc

oc                        (3.7) 

根据式(2.6)中 q的算法可求得：  
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a
mq

π
4

=                           (3.8) 

将式(3.8)代入方程组(3.7)的第一个方程，可得振荡频率ω的平方如式(3.9)所

示，可见其中振荡幅值 a 仍是未知量。  

              
( )
( )21

212 4
TTa

kkkm oc
+

+
=

π
ω                            (3.9) 

将 q代入方程组(3.7)的第二个方程，可得：  

         ( ) ( ) 0441 21
21

21
21 =+

+
−+ kkk

TTa
TmT

a
mkkT ococ ππ

               (3.10) 

从而可求得 a的值为：  

                   
( )
( )21

112124
TT

kTkTTmk
a oc

+
−

=
π

                      (3.11) 

将式(3.11)代入式(3.9)，最终可求得ω值为：  

                   ( )oc

oc
kTkTT

kk

1121

1
−
+

=ω                         (3.12) 

 (2) 在线性环节上具有变化的外部输入。仍以图 3.2 为参考，各环节关系式

依然如方程组(3.5)所示，所不同的是此时在线性环节上加上的外部输入 tC1 不是

恒定不变的，而是以 1C 固定的速度值改变的。如果会产生稳定的自激振荡，那么

x 与 3x 一定会是稳定的振荡值，只包括不变分量与周期分量，而不会包含一个类

似于 ( )tC1 的随时间变化的分量。但是其他的变量，比如 2x 和 4x 就有可能因为 ( )tC1

的存在而产生一个类似于 tC1 的分量 tC2 和 tC4 ，所以系统内各环节输入输出的变

量可表示为方程组(3.13)所示：  

              

⎪
⎪
⎪

⎩

⎪⎪
⎪

⎨

⎧

−=
++=
+=+=

+=
++=

∗

∗

411

*
2222

333

*
4444

sin

xtCx
xtCxx

taxxxx
xxx

xtCxx

ω                          (3.13) 

可知 *
444 pxCpx += ，参考方程组(3.5)第 5 式，可得以下推导：  

             
2

4
3324 k

CxxkC =→=                               (3.14) 

参考方程组(3.5)第 4 式，可得以下推导：  

⎪⎩

⎪
⎨
⎧

++=+
+=→+=+= ∗ *

4422

42
42

sin xktCktaxtC
xkxxxkxxxx

ococ

oc
ococ

ω
           (3.15) 
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可知 *
222 pxCpx += ，参考方程组(3.5)第 1 式，可得以下推导：  

                   11221 xkxCT =+                             (3.16) 

再结合方程组(3.5)第 2 式，可得：  

                   41221 xkxCT −=+                            (3.17) 

根据式(3.2)中 F 的算法可以求得 3x 的值：  

                  
a
xcx arcsin2

3 π
=                              (3.18) 

观察推导式(3.15)中的第二式，可以发现该式可分为两部分：一部分是自激振

荡的周期分量，另一部分是由外部输入引起的随时间变化的分量。这两部分的分

量应该是各自左右相等的，如方程组(3.19)所示：  

              
⎪⎩

⎪
⎨
⎧

=
+=
tCktC

xktax

oc

oc

42

*
4

*
2 sinω                              (3.19) 

如果用同样的想法考虑推导方程组 (3.5)的第一式，首先将其展开后可得式

(3.20)；该式可分为三部分：一部分是自激振荡的周期分量，一部分是自激振荡的

不变分量，一部分是由外部输入引起的随时间变化的分量，如方程组(3.21)所示。 
( )

( )*
44411

*
222

*
222222

1122 10

xtCxtCkxtCxpxTCTpxT

xkxpT

−−−−+++++=

−+=
        (3.20) 

                ( )
( )⎪

⎩

⎪
⎨

⎧

=−−
=++

=++
∗

0
0

0

4112

41
*
222

41222

tCtCktC
xkxxpT

xkxCT
                             (3.21) 

由此可求得 2C 和 4C 、 1C 之间的关系为：  

            ( )4112 CCkC −=                                   (3.22) 

根据式(3.18)，并代入式(3.14)可得：  

              
2

43
2

sin
2

sin
mk
C

m
x

a
x ππ

==                            (3.23) 

通过以上运算，可知与自激振荡相关的参数已经化成只与系统参数相关的式

子，但是 4C 并不是已知条件，而设定为由于外部干扰 tC1 而产生的连锁反应，因

此还是要将 4C 化成 1C 的表达式。如果观察方程组的(3.19)第二式和式(3.20)，可以

发现将两式相等就可以得出 1C 与 4C 的推导关系式如下所示：  
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              ( )
oc

oc kk
CkCCCkCk
+

=→−=
1

11
44114                  (3.24) 

根据式(3.2)中 q的算法可求得 q的值如式(3.25)所示：  

                     
2

14
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−=

a
x

a
mq
π

                          (3.25) 

把式(3.25)代入方程组(3.7)，求得 a与 x 的值分别如式(3.26)和式(3.27)所示： 

 
( )
( ) ( )oc

oc
kkmk

Ck
TT

kTkTTmk
a

++
−

=
12

11

21

11212
2

cos
4 π

π
                         (3.26) 

 
( )
( ) ( )oc

oc
kkmk

Ck
TT

kTkTTmk
x

++
−

=
12

11

21

11212 sin
2 π

π
                         (3.27)  

可得 x 与 a 相除如式(3.28)所示：  

( ) ( )

( )
( )oc

oc

ococ
kkmk

Ck

kkmk
Ck

kkmk
Ck

kkmk
Ck

a
x

+
=

+

++
⋅=

12

11

12

11
12

11

12

11

2
sin

2
cos

2
cos

2
sin2

2
1 π

π

ππ

       (3.28) 

如果将式(3.24)代入式(3.23)可得到与式(3.28)相同的结果，从而印证式(3.28)

的正确性。将式(3.28)代入式(3.25)可得 q值的表达式如下所示：  

        ( )ockkmk
Ck

a
m

a
x

a
mq

+
=⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
−=

12

11
2

2
cos414 π

ππ
               (3.29) 

将以上求出的 q与 a 值分别与上一节外部输入恒定时所求得的 q与 a 相比，会

发现这两个值都同时增加了相同的倍数，所以这里所求的ω值保持不变，与式

(3.12)相同。  

(3) 在非线性环节上具有恒定的外部干扰。参考如图 3.3 所示的系统图，外部

输入 ( )tC3 作用在非线性环节上，可得系统各环节关系式如方程组(3.30)所示。  

( )xF

OCk 4x

x2x1x

( )tC3

3x
( )ppT

k
12

2

+( )11

1

+pT
k

− −

( )xF
xm

m−

 
图 3.3 在非线性环节有恒定外部输入系统框图  
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( )
( )

( ) ( )
⎪
⎪
⎪

⎩

⎪⎪
⎪

⎨

⎧

=
+=+

−=
=

−=+

4

33242

2

3

4122

1

1

xkx
tCxkpxpT

xxx
xFx

xkxpT

ococ

oc                              (3.30) 

设 ( ) 33 CtC = 为常数。各环节不变分量如方程组(3.31)所示，此时 0=p ：  

                      
( )

⎪
⎪
⎪

⎩

⎪⎪
⎪

⎨

⎧

=
−=
−=

=
−=

4

332

2

3

412
,

xkx
Cxk

xxx
axFx

xkx

ococ

oc                               (3.31) 

各环节周期分量如方程组(3.32)所示：  

                     

( )
( )

( )
⎪
⎪
⎪

⎩

⎪⎪
⎪

⎨

⎧

=
=+

−=
=

−=+

∗∗∗

∗∗

∗∗

*
4

*

*
32

*
42

2

3

4122

1

,
1

xkx
xkpxpT

xxx
xaxqx

xkxpT

ococ

oc                            (3.32) 

根据式(3.2)中 ( )axF , 的算法可求得 3x 的值如式(3.33)所示：  

                   
a
xmx arcsin2

3 π
=                            (3.33) 

根据方程组(3.31)的第四式可得 x 如式(3.34)所示：  

                     
2

3
2

sin
mk
C

ax
π

−=                           (3.34) 

比较方程组(3.32)和方程组(3.5)会发现两者是相同的，因此由方程组(3.32)推

导出来的系统特征方程也如式(3.6)所示，可得相应的实部虚部方程组如(3.7)所示。

q 的值如式(3.25)所示。将式(3.34)代入式(3.25)可得 q的表达式如式(3.35)所示：  

                     
a

mk
f

m

q
π

π
⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

=
2

3
2

cos4

                            (3.35) 

根据方程组(3.7)，如果消去ω，可得 q的另一种表达式如式(3.36)所示：  

                    ( )ockTkTkT
TTq

11221

21

−
+

=                             (3.36) 

将式(3.35)与式(3.36)进行比较，可得最终振幅 a 如式(3.37)所示：  
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( )
( ) 2

3

21

11212
2

cos
4

mk
f

TT
kTkTTmk

a oc π
π +

−
=                         (3.37) 

将求出的 a 与 q 值和式(3.26) 和式(3.29)所表达的 a 与 q 值相比，会发现这两

个值都同时增加了 23 2cos ckfπ 倍，所以这里所需要求的ω值与式(3.12)相同。  

3.2.2 具有非奇对称非线性特性的系统实例分析 

当非线性环节的非线性特性是非奇对称时，即使没有外部输入，非线性环节

的输入变量最初是 tax ωsin= ，在非线性环节的输出端也会出现不变分量 F 。一

般来说，此不变分量又会通过线性部分达到输入端 x ，又产生了输入端不变分量

x ，最终形成了 ∗+= xxx 的形式。因此在非线性系统中即使无外部输入时因为

非线性环节的非奇对称性也会发生恒定静态误差。典型的具有非奇对称非线性特

性的非线性环节的输入输出如图 3.4 所示。  

( )xF

x0 0 ψ

tωψ =

ψsinax =0

π

π2

( )ψsinaF

π π2
F

 
图 3.4 典型的非奇对称的非线性环节输入输出特性图  

典型的具有非奇对称的非线性如图 3.5 所示。  

( )xF

OCk 4x

x2x1x 3x
( )11

1

+pT
k

− −

( )xF

x 非线性特性
1m

2m−

ppT
k

12

2

 
图 3.5 具有非奇对称的非线性环节的系统框图  
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系统各环节的关系式如方程组(3.30)所示；各环节变量的不变分量如方程组

(3.31)所示；各环节变量的不变分量如方程组(3.32)所示。参考图 3.6 所示的非线  

性环节输入输出图，根据式(3.2)中 ( )axF , 与 q的算法，又因为 rax sin−= ，可得

3x 与 q的值分别如式(3.38)和(3.39)所示：  

x
ψπ π2 π3

0

3x

1m

x0

3x

x0
1m

2m−

2m−

r2+π r2−π
ψ

非线性特性

 

图 3.6 3x - x 输入输出特性图   

           ( ) ( )[ ]

a
xmmmm
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dmdmdmFx
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210 23
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π
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=

−−+−+−=
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⎤
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           (3.38) 

               

( )

( )
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21

12

cos2

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−

+
=

+
=

a
x

am
mm

r
a

mmq

π

π
                        (3.39) 

根据方程组(3.31)，可知 03 =x ，再参考式(3.38)，可以得到 x 的值如式(3.40)

所示：  

         
( )
( ) 21

1

21

21 cos
2

sin
mm

ma
mm
mmax

+
=

+
−

−=
ππ                     (3.40) 

将式(3.40)带入式(3.39)，可得 q如式(3.41)所示：  

                 ( )
12

112 sin2
mm

m
a

mmq
+

+
=

π
π

                      (3.41) 

又因为系统的周期分量方程组保持与方程组(3.32)一样，因此特征方程式(3.6)

保持不变，所以可以把式(3.41)代入特征方程实部虚部方程组(3.7)，可求得自激振

荡的振幅 a如式(3.42)所示：  
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( )( )

( ) 12

1

21

1211212 sin
2

mm
m

TT
mmkTkTTk

a oc
++

+−
=

π
π

                 (3.42) 

同时可以用方程组(3.7)的第二式求周期解的频率ω。现将式(3.42)与式(3.26)

相比，将式(3.41)与式 (3.29)相比，可知它们的比值是一样的，如式(3.43)所示，

因此ω的值将保持与式(3.12)一致。  
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cos4
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π
π

π
π

π
π

     (3.43) 

在以上的内容中，根据产生非对称自激振荡的原因分为具有外部输入系统和

具有非奇对称非线性特性两大类，对带有不变分量的自激振荡参数求解过程进行  
了分别讨论。这几种过程是利用波波夫谐波线性化进行研究的典型计算过程。在

求解的过程中可以看到对于 F 、 q 和 a 等自激振荡相关参数的求解都是根据式

(3.2)所示求解，并没有写出具体的公式求解过程。其中只要求出了 q，一般就可  
以就可以求出 a 。因此以下将非线性特性分为对称的非线性特性和非对称的非线

性特性两类，分别列举出若干种典型的非线性特性，具体阐述自激振荡相关参数

具体的计算与图解过程。  

3.3 典型的非线性特性引起的自激振荡参数的运算 

3.3.1 对称的非线性特性引起的自激振荡 

对称的非线性特性是指非线性特性是奇对称的，并且在没有外部输入。这种

情况下求取自激振荡参数可以使用描述函数法。以下说明几种常见的对称非线性

特性引起的自激振荡参数的计算过程。  

(1)三次非线性 ( ) xxF − 特性曲线如图 3.7 a)所示。 ( )xF 如式(3.44)所示。可知

为单值对称奇函数，可得 0=′q ， q 值如式(3.45)所示。可得 aq − 曲线如图 3.7 b)

所示，在具体运算中可根据此图在得出 q的具体值后得到 a的值。  

                     ( ) 3
31 xkxkxF +=                           (3.44) 
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x

( )xF

0 a

( )xaq

          0 a

q

1k

 
a) ( ) xxF − 图                           b) aq − 图 

图 3.7 三次非线性特性图  
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          (3.45) 

(2)磁滞回线非线性 ( ) xxF − 特性曲线如图 3.8 a)所示， ( )xF 波形如图 3.8 b)所

示。本例讨论中 ba ≥ 。当 bx = 时非线性环节断路，可得 ab :
2

sin:sin 1 =
πψ ，因此 

可用 ab=1sinψ 计算 1ψ 值。因为 ( )xF 是非单值奇对称函数，当 ma ≥ 时可得 q如式

(3.46)所示， q′如式(3.47)所示，由此可得 aq − 曲线如图 3.8 c)所示。当 ∞→a 时，

∞→q ，因为在输入信号 x 不受限制增大的情况下，输出信号会被控制在上限值

内，即 ( ) mxF ≤ 。在式(2.6)中 q′带有导数算子 p ，在输出端正符号给出超前信号，

同时磁滞回线给出滞后，因此可得出 0<′q 。同时随着 a 的增大，回线所占的特性

曲线部分就越小， q′的绝对值随着 a的增大而减小。  

( )xF

xb− b0

( )xaq

a

m

tω

( )taF ωsin

1ψ 1ψπ +π0

m

m−

 

a

q

q

q′

b
m
π
2

b
m
π
2

−

b
m
π
4

−

b 2b0

 
   a) ( ) xxF − 图           b) ( )xF 波形图               c) aq − 图 

图 3.8 磁滞回线非线性特性图  
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                  (3.47) 

 (3)对称单值的继电器 ( ) xxF − 特性曲线如图 3.9 a)所示， ( )xF 波形如图 3.9 b)

所示。本例讨论中 ba ≥ 。 ( ) xxF − 曲线显示为单值奇对称函数从而可得 0=′q 。当

bx < 时 非 线 性 环 节 断 路 ， 可 得 可 得 abb ::
2

sin:sin:sin 21 =
πψψ ， 因 此

ab== 21 sinsin ψψ ；很明显 21 πψ < 而 22 πψ > ，因此 21 coscos ψψ −= 。由以上分

析可得 q值如式(3.48)所示。由此可得 aq − 曲线如图 3.9 c)所示，在具体运算中可

根据此图在得出 q的具体值后得到 a 的值。当图 3.9 a)中 0=b 时， ( ) xxF − 特性曲

线如图 3.9 d)所示。按照式(3.48)此时 q值等于
a
m
π
4

，如果再绘制 aq − 曲线可得到

图 3.9 e)所示的图。图 3.9 e)与图 3.9 c)的不同说明了如果 0≠b 时非线性存在死区，

死区作为一种非线性特性对自激振荡产生很大的影响。  

x

( )xF

0 b

m

 

( )taF ωsin

tω0 1ψ 2ψ π

m

m−

3ψ 4ψ

π2

13 ψπψ +=
24 ψπψ +=

  
a

0 b 2b

q

b
m
π
2

 
a) ( ) xxF − 图            b) ( )xF 波形图              c) aq − 图 
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x

( )xF

0

m

                
a

0

q

 
         d) 0=b 时 ( ) xxF − 图               e) 0=b 时 aq − 图 

图 3.9 对称单值继电器非线性特性图  
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(4)具有对称死区和饱和非线性特性的 ( ) xxF − 特性曲线及波形综合图如图

3.10 a)所示。  

( )xF

x
1b 2b

x

0

1ψ
2ψ
3ψ
4ψ

ψ
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π

π π2

( )taF ωsin

0

k

tω1ψ 2ψ 3ψ 4ψ
2
π

1 2

1 2
( )21 bbk − ( )21 bbk −

 

a) ( ) xxF − 特性曲线及波形综合图                       
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a

q

0
1b 2b

1 2

 

   b) aq − 图 

图 3.10 具有对称死区和饱和非线性特性图  

由于是单值奇对称特性得 0=′q 。对应于死区和饱和两种非线性特性，可以根

据自激振荡振幅 a的大小分别进行讨论。当振幅未达到饱和区时 x 曲线在 3.10 a)
中表示为曲线 1， q 值如式(3.49)所示；当振幅达到饱和区时在 3.10 a)中表示为曲

线 2， q值如式(3.50)所示。可得 aq − 曲线如图 3.10 b)所示。  

当 21 bab ≤≤ 时，可知系统有死区，但未进入到饱和区，在图 3.10 a)中对应的

x 的波形是波形 1，同时 ab :
2

sin:sin 11 =
πψ ，因此可用 ab11sin =ψ 计算 1ψ 值，可

得 q值为：  
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         (3.49) 

当 2ba ≥ 时，可知系统即经过了死区，也进入到了饱和区，在图 3.10 a)中对

应的 x 的波形是波形 2，同时同时 ab :
2

sin:sin 22 =
πψ ，因此可用 ab22sin =ψ 计算

2ψ 值，可得 q值为：  
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 (5)具有对称饱和或死区非线性特性分析如下。 ( ) xxF − 特性曲线、波形图及

aq − 图如图 3.11 所示。很明显这是单值奇对称特性，因此 0=′q 。对应于具有对

称饱和区的非线性很明显需要考虑振幅的大小；而对应于对称死区的非线性则只

需要考虑当振幅超过死区范围时的情况。  

x

( )xF

0 b
k

kb

   

π π2

( )taF ωsin

0 tω

1 2
kb

  
a

0 b

q

k
1

2

 
a) 对称饱和 ( ) xxF − 图    b) 对称饱和 ( )xF 波形图  c) 对称饱和 aq − 图 

x

( )xF

0
k

b

 

π π2

( )taF ωsin

0 tω1ψ 2ψ 3ψ 4ψ

13 ψπψ +=

24 ψπψ +=

a
0 b

q

k

 
d) 对称死区 ( ) xxF − 图    e) 对称死区 ( )xF 波形图       f) 对称死区 aq − 图 

图 3.11 具有对称饱和或死区非线性特性图  

当具有对称饱和非线性时的自激振荡幅值 ba < 时， ( ) xxF − 特性曲线如图 3.11 
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a)所示，很明显 kq = ； ( )xF 波形图如图 3.11 b)中曲线 1 所示。q值也可用式(3.51)

求得，从而印证了 kq = 是一定成立的。  
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                          (3.51) 

当具有对称饱和非线性时的自激振荡幅值 ba ≥ 时， ( ) xxF − 特性曲线如图 3.11 
a)所示，此时 kq = 是不应该成立的； ( )xF 波形图如图 3.11 b)中曲线 2 所示。因为

ab :
2

sin:sin 1 =
πψ ，所以可用 ab=1sinψ 计算 1ψ 值，可得 q值如式(3.52)所示。  
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                (3.52) 

当具有对称死区非线性时， ( ) xxF − 特性曲线如图 3.11 d)所示。当自激振荡幅

值 ba < 时没有输出，也就不存在 q值；当 ba ≥ 时， ( )xF 波形图如图 3.11 d)所示。

根据 abb ::
2

sin:sin:sin 21 =
πψψ ，可以得到 ab== 21 sinsin ψψ 。根据图 3.11 e)很

明显可得 21 πψ < 而 22 πψ > ，因此 21 coscos ψψ −= 。根据以上分析可得 当 ba ≥ 时

q 值如式(3.53)所示。  
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                (3.53) 

对比对称死区的 aq − 曲线和对称饱和区的 aq − 曲线，分别如图 3.11 c)和图

3.11 f)所示。当自激振荡的振幅进入到各自的饱和区后，图 3.11 c)与图 3.11 f)中
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的 aq − 曲线正好形成了一个以 k 为对称轴的对称关系，如果对比式 (3.52)与式

(3.53)也会发现这种规律。参考图 3.11 a)与图 3.11 d)就可以明白以上对称的关系

是因为死区出现的位置正好是对称的。  

3.3.2 非对称的非线性特性引起的自激振荡 

非对称的非线性特性是指非线性环节有外部输入，或者非线性特性不是奇对

称的。使用波波夫谐波线性化可以完成这种非线性特性所引起的自激振荡参数的

求解。实际上对称的非线性特性是非对称的非线性特性的特殊情况，因此，波波

夫谐波线性化不仅可以完成描述函数法所解决的问题，还可以完成其不能解决的

问题。以下说明几种常见的非对称的非线性特性引起的自激振荡系统的计算过程，

在这一部分的讨论中 taxxxx ωsin+=+= ∗ 。  

(1)有外部输入的三次非线性 ( ) 3
31 xkxkxF += 。由于 ( )xF 是奇函数，可得

0=′q 。 ( )xF 波形图如图 3.12 a)所示。可得 F 值如式(3.54)所示，根据该式绘制

xF − 的波形图如图 3.12 b)所示。 q值如式(3.55)所示，根据该式绘制 aq − 的波

形图如图 3.12 c)所示。可见由于 x 的存在，使得 x 产生了零点漂移，使得 ( )xF 成

为一个类正弦的不规则的波形。由于 x 立方项的存在，使得 3k 的值十分敏感，它

的变化很容易就导致 F 和 q产生改变，是分析自激振荡稳定性的关键参数。  
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0 π π2
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 a) ( )xF 波形图                          b) xF − 图 
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c) aq − 图  

图 3.12 具有外部输入的三次非线性特性图  
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式中，  
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式中，  
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(2) 有外部输入的磁滞回线非线性 ( ) xxF − 特性曲线如图 3.6 a)所示，设
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xba +≥ 。 ( )xF 波形图如图 3.13 a)所示，注意到由于 x 的存在，出现了坐标零点

漂移，可知
2

sin:sin: 1
πψ=− axb ，因此可得 ( ) axb −=1sinψ ， 1

2
1 sin1cos ψψ −= 。

同理 ⎟
⎠
⎞

⎜
⎝
⎛=−−

2
sin:sin: 2

πψaxb ，因此可得 ( ) axb +−=2sinψ ；从图 3.13-(a)可以很

明显观察到 0cos 2 <ψ 是成立的，因此 2
2

1 sin1cos ψψ −−= 。将 1sinψ 、 2sinψ 、 1cosψ

和 2cosψ 的值代入 F 、 q 与 q′的公式，可得 F 如式(3.56)所示， q 值如式(3.57)所

示，q′值如式(3.58)所示。 xF − 波形图如图 3.13 b)所示； aq − 波形图如图 3.13 c)

所示； aq −′ 波形图如图 3.13 d)所示。可见 xF − 图中 a和 b 都可以做为调整参数，

aq − 图中 x 和 b 都可以作为调整参数，各个参数是互相影响的。而在 aq −′ 图中影

响最大的参数的是参数 b ，这与 q′公式也是符合的。  

 
a) ( )xF 波形图 

x0

F
ba 2=
ba 3=
ba 4=

ba 5=

m

2
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 b) xF − 图 
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          c) aq − 波形图                          d) aq −′ 图 

图 3.13 具有外部输入的磁滞回线非线性特性图  
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(3)有外部输入的对称单值的继电器 ( ) xxF − 特性曲线如图 3.9 a)所示，设定

xba +≥ 。 ( ) xxF − 波形图如图 3.14 a)所示，注意到由于 x 的存在，出现了坐标
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零 点 漂 移 。 可 知
2

sin:sin: 1
πψ=− axb ， 因 此 可 得 ( ) axb −=1sinψ ，

1
2

1 sin1cos ψψ −= 。按图很明显可得 12 ψπψ −= ，因此可得 12 sinsin ψψ = ，同时

12 coscos ψψ −= 。可知 ⎟
⎠
⎞

⎜
⎝
⎛=−−

2
sin:sin: 3

πψaxb ，因此可得 ( ) axb +−=3sinψ 。

因 为 很 明 显 πψπ
2
3

3 << ， 因 此 3
2

3 sin1cos ψψ −−= 。 按 图 可 知

( ) 334 32 ψππψπψ −=−−= ，因此 34 sinsin ψψ = ， 34 coscos ψψ −= 。将以上得出的

sin 值和 cos 值代入 F 、 q 与 q′的公式，可得 F 如式(3.59)所示， q值如式(3.60)所
示， q′值如式(3.61)所示。可知式(3.59)与式(3.56)结果相同，式(3.60)与式(3.57)

结果相同，因此 xF − 波形图如图 3.13 b)所示； aq − 波形图如图 3.13 c)所示；  
0=′q 无需绘图。可知在具有有外部输入的对称单值的继电器非线性特性系统中各

个参数的综合调整是非常重要的。值得注意的是当 0=b 时， ( ) xxF − 特性曲线如  

图 3.9 d)所示， xF − 波形图如图 3.14 b)所示； aq − 波形图如图 3.14 c)所示。此

时由于缺少 b 的作用，参数的互相影响相对要简单。  
 

 

a) ( )xF 波形图 
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b) 0=b 时 xF − 图                     c) 0=b 时 aq − 波形图  

图 3.14 具有外部输入的对称单值继电器非线性特性图  
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(4) 具有外部输入的对称死区和饱和非线性特性的 ( ) xxF − 特性曲线 3.10 a)
中左上部分所示，该图右边的波形图是在无外部输入的条件下绘制的，而在这一
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部分的讨论中包含外部输入，并设定 xba +≥ 2 ，重新绘制 ( ) xxF − 波形图如图 3.15

所 示 。 图 中 注 意 到 由 于 x 的 存 在 ， 出 现 了 坐 标 零 点 漂 移 。 可 知

2
sin:sin: 11

πψ=− axb ，因此可得 ( ) axb −= 11sinψ ， 1
2

1 sin1cos ψψ −= 。可知

2
sin:sin: 22

πψ=− axb ，因此可得 ( ) axb −= 22sinψ ， 2
2

2 sin1cos ψψ −= 。因为

23 ψπψ −= ， 所 以 23 sinsin ψψ = ， 23 coscos ψψ −= 。 因 为 14 ψπψ −= ， 所 以

14 sinsin ψψ = ， 14 coscos ψψ −= 。 可 知 ( )
2

sin:sin: 51
πψ=+− axb ， 因 此 可 得

( ) axb +−= 15sinψ ， 很 明 显 πψπ
2
3

5 << ， 因 此 5
2

5 sin1cos ψψ −−= 。 可 知

( )
2

sin:sin: 62
πψ=+− axb ，因此可得 ( ) axb +−= 26sinψ ，很明显 πψπ

2
3

6 << ，

因 此 6
2

6 sin1cos ψψ −−= 。 因 为 67 3 ψπψ −= ， 所 以 67 sinsin ψψ = ，

67 coscos ψψ −= 。因为 58 3 ψπψ −= ，所以 58 sinsin ψψ = ， 58 coscos ψψ −= 。将以

上 sin 和 cos 值代入式中计算，可得 F 如式(3.62)所示， q 值如式(3.63)所示， q′值 
如式(3.64)所示。由公式可见这种综合了对称死区的饱和特性的非线性特性是非常

复杂的，系统由死区进入放大再进入饱和自激振荡的性质都会有所改变。  

 

图 3.15 具有外部输入的对称死区和饱和非线性特性图  
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(5) 具有外部输入的对称饱和非线性特性的 ( ) xxF − 特性曲线及波形综合图

如图 3.11 a)所示，在讨论中设定 xba +≥ 。 ( ) xxF − 波形图如图 3.16 a)所示，注意

到由于 x 的存在，出现了坐标零点漂移，可知
2

sin:sin: 1
πψ=− axb ，因此可得

( ) axb −=1sinψ ，  1
2

1 sin1cos ψψ −= 。按图很明显可得 12 ψπψ −= ，因此可得

12 sinsin ψψ = ，同时 12 coscos ψψ −= 。可知 ⎟
⎠
⎞

⎜
⎝
⎛=−−

2
sin:sin: 3

πψaxb ，因此可得

( ) axb +−=3sinψ 。因为很明显 πψπ
2
3

3 << ，因此 3
2

3 sin1cos ψψ −−= 。按图可

知 ( ) 334 32 ψππψπψ −=−−= ，因此 34 sinsin ψψ = ， 34 coscos ψψ −= 。将以上各个

sin 和 cos 的值代入 F 、 q 与 q′的公式，可得 F 如式 (3.65)所示， q′值如式 (3.66)

所示，q值如式(3.67)所示。 xF − 波形图如图 3.16 b)所示； aq − 波形图如图 3.16 
c)所示。  
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a) ( )xF 波形图 
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b) xF − 图 
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c) aq − 波形图  

图 3.16 具有外部输入的对称饱和非线性特性图  

 (6) 具有外部输入的对称死区非线性特性的 ( ) xxF − 特性曲线如图 3.11 d)所

示。其波形综合图如图 3.17 所示，如果将其和 3.16 a)对比，会发现如果将图 3.17

中 ( )xF 的正半边波形向上位移 m ，负半边波形向下位移 m ，两张图合在一起就是

完整的具有外部输入的正弦波放大波形，这和它们各自的非线性特性互补是相对

应的。在讨论中设定 xba +≥ 。  

注意到由于 x 的存在，出现了坐标零点漂移，可知
2

sin:sin: 1
πψ=− axb ，

因此可得 ( ) axb −=1sinψ ， 1
2

1 sin1cos ψψ −= 。按图 3.17 很明显可得 12 ψπψ −= ，

因此可得 12 sinsin ψψ = ，同时 12 coscos ψψ −= 。可知 ⎟
⎠
⎞

⎜
⎝
⎛=−−

2
sin:sin: 3

πψaxb ，因

此可得 ( ) axb +−=3sinψ 。因为很明显 πψπ
2
3

3 << ，因此 3
2

3 sin1cos ψψ −−= 。

同 时 按 图 3.17 可 知 ( ) 334 32 ψππψπψ −=−−= ， 因 此 34 sinsin ψψ = ，

34 coscos ψψ −= 。将以上各个 sin 和 cos 的值代入 F 、 q与 q′的公式，可得 F 如式 

(3.68)所示， q 值如式(3.69)所示， q′值如式(3.70)所示。如果把式(3.66)中 x 的值

进行处理，即上半边的新坐标是 mxx −′= ，下半边的坐标是 mxx +′= ，将 x′代入

式(3.66)，与式(3.69)相加，会得出新的 q 值等于 k 。  
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图 3.17 具有外部输入的对称死区非线性特性图  

以上的讨论是针对具有外部输入的非线性特性而言，在没有外部输入的情况

下，非线性特性可能单值也可能非单值，但都满足横轴正负区域对称的特点。如

果把外部输入 x 去掉，会发现就与前一部分讨论的对称的非线性特性引起的自激
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振荡系统的参数讨论是一样的。接下来要讨论的内容是初始条件中没有外部输入

x ，但由于非线性特性本身就是非奇对称的，通过系统反馈最终导致出现 x 的非

奇对称情况。以下将讨论两种典型的非奇对称非线性特性的自激振荡的相关参数

的求取过程。  

(7) 在前一部分的讨论中，曾提到过对称单值继电器的自激振荡参数求取方

法，其中当 0=b 时，也就是无死区时的 ( ) xxF − 特性曲线如图 3.9 d)所示。现在讨

论的是当无死区时非奇对称的单值继电器的自激振荡参数求取过程和图解。无死

区时非奇对称的单值继电器的 ( ) xxF − 特性曲线图如图 3.18 a)所示， ( ) xxF − 波形

图如图 3.18 b)所示。观察图 3.18 b)，同样由于 x 的出现而出现了零点漂移，但是

与前面部分有外部输入的对称非线性的叙述中不同，这里出现零点漂移的原因首

先是因为非线性特性的非奇对称性而产生了 x ，然后产生了零点漂移的，而不是

本来就具有 x 从而产生了零点漂移，当然在本例的讨论中这种 x 产生的原因的改

变表现的并不明显，在下一例中将会有更加明显的表现。  

可 知
2

sin:sin: 1
πψ=− ax ， 因 此 可 得 ax−=1sinψ ， 按 图 很 明 显 可 得

12 ψπψ −= ，因此可得 12 sinsin ψψ = ， 12 coscos ψψ −= 。将以上 sin 和 cos 值代入计

算式，可得 F 如式(3.71)所示， q如式(3.72)所示， q′值如式(3.73)所示。  

( )xF
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a) ( ) xxF − 波形图                       b) ( )xF 波形图 

图 3.18 无死区时非奇对称的单值继电器非线性特性图  
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(8) 更为典型的非奇对称非线性特性曲线如图 3.19 所示。这种曲线并不象图

3.18 中非奇对称性所表现的明显，有时必需通过公式才能得到更为具体的表达，

但这种非奇对称性无疑是实际工程中更为典型的类型。  
在本例中，设非奇对称非线性特性的 ( ) xxF − 公式如式(3.74)所示。 ( ) xxF − 波

形图如图 3.19 a)所示， ( )xF 波形图如图 3.19 b)所示， xF − 图如图 3.19 c)所示，

aq − 波形图如图 3.19 d)所示。  
从图 3.19 b)的 ( )xF 波形可知，虽然也出现了 1ψ 和 2ψ ，但是要注意的是应首

先根据式(3.74)绘制出 ( )xF 的波形，再根据 ( )xF 的波形在横坐标轴的位置可以确

定 1ψ 和 2ψ 的位置。再根据式(3.74)，当 ( ) 0>xF 时，即 0>x 时，也就是 xa −>ψsin  
时，向上延伸至 x 波形中确定 x 的高度，这与前面部分的各例中先根据 x 波形中 x  
的高度，然后再向下延伸确定 ( )xF 波形中的 1ψ 和 2ψ 的位置的过程是相反的。这说  

明了在非奇对称的非线性系统中 x 的产生是由于非线性特性的非奇对称性产生

的。 F 、 q和 q′都不再需要根据ψ 角的大小分区域计算，而是将 ( )xF 的公式直接

代入即可。其中 F 如式(3.75)所示， q如式(3.76)所示， q′值如式(3.77)所示。  
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c) xF − 图                             d) aq − 波形图  

图 3.19 更为典型的非奇对称非线性特性图  
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3.4 总结 

在实际工程运用中，非线性环节具有外部输入或者具有非奇对称非线性特性

是很常见的，如果使用描述函数法就无法完成对系统自激振荡的分析。波波夫谐

波线性化是以描述函数法为基础的一种对非线性系统的线性化近似方法，可以解

决在有外部输入或者非奇对称非线性特性情况下的非对称非线性特性产生的自激

振荡的求解。与描述函数法最主要的不同体现在系统各环节不仅有周期变量，还

有不变分量。本章对于波波夫谐波线性化的概念和基本使用方法做了详细阐述。

主要包括以下内容。  

(1)阐述了波波夫谐波线性化的主要概念和内容。  

(2)根据非对称非线性特性成的原因，分为有外部输入和非奇对称非线性特性

两大类，以实例的方式，分别阐述了如何在拥有非对称非线性特性元件的系统中

使用波波夫谐波线性化求解具有自激振荡的参数的过程。  

(3)将非线性特性分为对称非线性特性和非对称非线性特性，在其中各选取了

若干种典型的非线性特性，运用波波夫谐波线性化完成了这些非线性特性引起的

自激振荡相关参数的计算与图解分析。完成了波波夫谐波线性化对自激振荡参数

求解的总结性工作。  

(4) 描述函数法对于系统的稳定性和稳定区域的划分方法同样可以运用到波

波夫谐波线性化的分析过程中来。鉴于内容的重复性，在本章并未进行讨论，将

在下一章对于具体工程系统的分析中进行详细阐述。  
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第 4 章 波波夫谐波线性化对晶闸管-电动机型矿井提升

机系统自激振荡研究 

4.1 引言 

直流矿井提升机系统是一种典型的闭环控制系统，是现代矿山企业运作的核

心部分，由于系统中诸多环节具备非线性特性，比如电磁饱和、电阻非线性等等，

都会使运行过程中可能出现自激振荡的现象。如何控制甚至是消除自激振荡，维

持系统稳定对于处于复杂环境下的矿井生产与人身安全是十分重要的 [85-86]。本章

选取晶闸管-电动机型提升机闭环控制系统作为典型的直流矿井提升机系统，提取

其中主要非线性环节，运用波波夫谐波线性化对系统中可能产生的自激振荡进行

分析、运算和校正。在前面章节内容的基础上主要采取以下步骤完成本章的研究

工作：  

(1)确定系统构成与参数，列出系统各个环节的输入输出量的关系式。  

(2)用波波夫谐波线性化的方法得到非线性环节的传递函数的表达式。该表达

式一般情况下是与自激振荡的振幅相关的。  

(3)根据系统结构写出系统的特征方程。当系统产生稳定的自激振荡时，特征

方程就一定会有一对纯虚根的解，由此可将特征方程分为实部与虚部两部分，形

成了一个方程组。该方程组一定包含了非线性环节的传递函数和自激振荡的频率

值，可以以这两个量做为方程组的未知数进行求解，从而得出这两个量的数值，

进而进一步求解其他未知量。在这一过程中往往会需要解决高阶微分方程的复杂

运算，可运用 MATLAB 等数学工具平台进行编程解决。  

 (4) 根据第 2 章中阐述的自激振荡的稳定性判据，包括幅相稳定判据、米哈

依诺夫判据和霍尔维茨判据，完成对自激振荡的稳定性判断。而后选取适当的系

统参数进行调整，完成自激振荡的校正。  

4.2 晶闸管-电动机型矿井提升机的自激振荡研究 

伴随着电力电子技术的飞速发展，晶闸管整流装置供电的直流拖动系统得到

迅速发展和普及。调速方法一般以调压为主，调磁为辅。电枢可逆需改变电动机

电枢回路电流的方向，由于电枢回路电感较小，时间常数小（约几十毫秒），反向

过程进行快，因此适用于频繁启动、制动的多水平提升系统。晶闸管整流装置供

电的直流拖动系统具有功率放大倍数高、快速响应性好、调速范围宽、设备费用

低等优点。是我国大型矿山企业最为普遍使用的提升系统。在研究晶闸管-电动机
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型矿井提升机的自激振荡问题时，本文选取了两个非线性环节做为研究重点，以

下进行原因说明。  

1、晶闸管装置可能产生的自激振荡。矿井提升机的工作环境恶劣，电路设计

复杂，使用频率高，载重负载大，工作功率高。这些因素都可以引起寄生反馈。

寄生反馈又分为内部反馈和外部反馈两种。外部反馈主要是通过公共电源内阻、

馈线或元件的寄生耦合以有输入端与输出端的空间电磁场的耦合引起的。内部反

馈主要是晶体管的极间电容产生的内反馈。这些现象都会最终使晶闸管出现老化

的趋势，从而导致晶闸管电流调节不受控制，使输出电压不稳，产生自激振荡，

甚至最终击穿或损坏晶闸管。  

2、速度环比例放大环节可能产生的自激振荡。晶闸管-电动机系统采用了典

型的速度环和电流环双闭环控制系统模式。其中速度环接收速度给定输入信号，

以及由与主提升直流电动机同轴连接的直流测速发动机输出的速度反馈信号，综

合两者构成速度闭环，即外环；电流环接收速度环的输出信号，并接收接于交流

测的电流互感器输出信号，综合两者构成电流环，即内环。电流环的输出信号作

为晶闸管触发装置的移相控制信号，由它控制晶闸管的控制角以调整电枢电压。

综合可见速度环的输出对控制速度变化起到了直接作用，也对晶闸管控制角的控

制起到了间接作用，是十分重要的。值得注意的是矿井提升机系统为往复运动的

生产机械，当提升机正向提升和正力减速下放时时，拖动电动机工作在第一象限；

当提升机为负力减速下放时，工作在第二象限；当提升机反向提升和正力减速下

放时，工作在第三象限；当提升机负力减速下放时，工作在第四象限。如果要满

足提升机系统可以在四个象限工作的要求，通常采用调节电动机电枢电流来改变

电动机电磁转矩的大小，通过改变电动机电枢电流的极性改变电动机转矩的极性。

就必需要改变直流电动机转矩的极性，一般采用改变电动机励磁电流的极性（即

励磁磁通的极性）来实现，如图 4.1 所示。电动机转矩极性的改变是靠改变励磁

电流的极性实现的，如图中变流器 1V 工作时 2V 关闭为正向提升运行，反之即为

反向运行。在换向过程中，励磁电流由额定值下降到零时，如电枢电流依然存在，

电动机将产生飞车现象。为了避免这种情况，通常在励磁电流下降接近于零时，

控制电枢电流为零。当磁场换向过程中，有一段磁场电场脱离满磁的变化过程，

此时磁场电流是变化的，而且小于额定励磁电流。但速度环的动态校正方法一般

仍采用电枢换向（恒定磁场）的直流调速系统的校正方法，由于磁通的减小使得

速度环的开环增益减小，致使速度环的截止频率减小，响应变慢，则电流环 PID

部分中的比例放大环节的放大系数变大，而比例放大环节的放大系数在逐渐变大

的情况下具有饱和非线性，就可能出现自激振荡。  



博士学位论文 

77 

 
图 4.1 V-M 直流拖动系统磁场换向主回路接线图  

针对晶闸管-电动机的运行原理和特点，以上两个非线性环节可能产生的自激

振荡原因进行了分析。需要指出的是，波波夫谐波线性化主要把非线性系统划分

为了线性环节和非线性环节两部分，在讨论自激振荡时主要是针对系统中存在一

个非线性环节进行讨论的，如果推广到两个或两个以上的非线性环节，必需进行

非线性特性合成，特别是存在非线性特性不相同的非线性环节的情况下，将会带

来较大误差，计算与分析也十分复杂。而且在晶闸管-电动机系统中，由于晶闸管

装置是整个提升系统的的源头，如果它产生了稳定的自激振荡现象，那么整个系

统势必将无法正常工作，也就不存在对速度调节器进行分析研究了。对晶闸管的

自激振荡讨论的意义主要是如何运用波波夫谐波线性化计算其特有的传递函数，

还有就是可以确定整个系统结构是否会具有维持晶闸管装置振荡的条件，如果存

在这样的可能性，那么后续的讨论也就无需进行了，因为这既可能是系统各环节

耦合的结果，也可能是晶闸管内部老化的现象，那么整个系统都会处于无法正常

运行的边缘，最好的办法就是进行晶闸管装置的更换，而不是进行参数的微调。

所以在把晶闸管作为自激振荡产生的对象时，其他环节应该是处于正常工作的状

态，可作为线性环节处理。而当速度环比例放大环节产生了持续的自激振荡还处

于可控范围，通过参数调节可以使系统恢复。综上分析，在分析晶闸管引发的自

激振荡时，可以认为速度调节器并未引发自激状态，以线性环节视之；在分析速

度环比例放大环节引发的自激振荡时，可以认为晶闸管并未引发自激振荡，以线

性环节视之。  

4.2.1 系统的构成 

晶闸管-电动机型矿井提升系统的系统结构图如图 4.2 所示。图中各环节的意

义为：环节 1 为速度滤波环节；环节 2 为速度环 PID；环节 3 为电流滤波环节；

环节 4 为电流环 PID；环节 5 为晶闸管装置；环节 6、7、8 为电动机环节；环节
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9 为电流互感器；环节 10 为测速发电机环节。 1x 、 2x 、 3x 、 4x 、 5x 、 6x 和 7x 表

示各环节输入输出量。 
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图 4.2 晶闸管-电动机型矿井提升系统结构图  

图 4.2 中的相关参数值如表 4.1 所示：  

表 4.1 图 4.2 中相关系统参数表  

4.2.2 晶闸管的非线性特性引起的自激振荡研究 

晶闸管是一种有源开关元件，平时它保持在非导通状态，直到由触发脉冲对

其触发使其导通。图 4.2 中晶闸管整流整流器平均输出电压为 dU ，控制电压为

kU ，它们之间存在着非线性的关系 ,其比例系数随着控制角 θ 的变化而改变 [94]。

当晶闸管可控整流电路为三相全控桥式，触发电路为锯齿波同步触发电路时，输

出如式(4.1)所示。  
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⎠

⎞
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⎝

⎛
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⎠

⎞
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⎝

⎛
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sin
22

coscos
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k

k
ddd U

U
U

U
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UUU
πππθ             (4.1) 

式中， 0max == θkk UU ； 20 34.2 UU d = ； 2U 为电源电压有效值。  

这种非线性特性在第 3 章中并未讨论过，并不是一种典型常见的特性，但仍

然可以参考式(3.2)，计算出晶闸管装置输出不变分量 dU 如式(4.2)所示：  

参数名  参数意义  参数值 参数名 参数意义  参数值

Tm 机电时间常数  0.18 kpn 速度环比例放大系数  10 

Ts 晶闸管滞后时间常数  0.00167 kpi 电流环比例放大系数  0.1022

Toi 电流滤波器时间常数  0.002 ks 晶闸管装置放大系数  66.348

Ton 速度滤波器时间常数  0.01 α 测速反馈系数  0.007 

Tl 电磁时间常数  0.03 β 电流反馈系数  0.0365

τn 速度环时间常数  0.0867 r 主电路总电阻  0.5(Ω)

τi 电流环时间常数  0.03 ce 电动势常数  0.132 
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式中， tau
U

U
u k

k

k
k ωsin
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⎞
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⎛
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为 BesselJ 0 阶函数。  

注意到该式中积分展开式中包括项 ψψπππ
π
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2
sin ，以往人

工计算较为困难，本文利用 MATLAB 中 Mathematica 符号计算功能  [95-96]完成求

解，关键代码截图如附录 B 中图 1 所示。  

输出周期分量放大系数 ( )auq k , 如式(4.3)所示：  
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式中， ⎟
⎠
⎞

⎜
⎝
⎛

21
aJ π

为 BesselJ 1 阶函数。  

积分展开式中的 ∫− ⎟
⎠
⎞

⎜
⎝
⎛ ⋅⎟

⎠
⎞

⎜
⎝
⎛ ⋅

π
π

ψψψππ dauk sinsin
2

sin
2

cos 项采用图 4.3 所示的代码

上述完成求解，只需将 Integrate中表达式改为当前积分内表达式即可完成求解。  

根据系统框图 4.2，可以知道图中包含了三个完整的闭环，可根据此列出波

波夫谐波线性化后的系统特征方程如式(4.44)所示。  
                03211 =+++ looplooploop                             (4.4) 

式中， ( )1
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+
=
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；      
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如果将式(4.4)化成实部虚部方程组的式样，可得如式(4.5)所示的方程组。  
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可见方程组(4.5)的 p （也就是 ωj ）的最高阶数已经达到了 11 阶，而且各个

系数的表达式也相当复杂。这种方程组系数的罗列，变量的求解如果采用一般算

法或是人工求算是非常繁杂甚至是不太可能完成的，这也是波波夫谐波线性化虽

然可以较为完整的描述非线性系统的运行状况，但在过去却很难实用的主要原

因，没有了微分方程阶层的限制，使得方程求解过于复杂。采用现有计算机数学

计算软件 MATLAB 和 MAPLE 相结合可以完成这一过程 [97-98]。获得方程组系数

的步骤基本如下：  

1、整理特征方程，为提取 p 的各阶次系数做准备。将特征方程(4.4)中各个

闭环分式的分子与分母多项式分别列出。运用 MATLAB 中的 collect 函数，对于

含有 p 的多项式进行同阶次的系数合并。式 (4.4)中有闭环分式 1loop 、 2loop 和

3loop ，其中 1loop 的分子是 1，不做考虑，因此需要分子、分母多项式就一共有

五项。为式(4.4)左边式子做分母通分的操作，由于有四个相加式，因此可以形成

1part 、 2part 、 3part 和 4part 四部分，这四部分由以上五个分子分母多项式构

成。整理出最后的特征方程后，再运用 collect 函数，对于含有 p 的多项式进行同

阶次系数合并操作。关键代码截图如附录 B 中图 2 所示。  

2、在 MATLAB 中调用 MAPLE 函数，运用 sort 函数对 p 各阶的系数按阶次

进行排序，运用 degree 函数求出 p 的最高阶是多少。关键代码截图如附录 B 中图

3 所示。  
3、依次求出 p 各阶次的系数。在 MATLAB 中调用 MAPLE 函数 coeff 获取 p

从低阶到高阶的系数，并将其依次放入一个数组中，以备求取 ( )auq k , 和 ω 时可

用。关键代码截图如附录 B 中图 4 所示。  
4、以上完成了获得如方程组(4.5)所示的所有系数的工作，求得方程组(4.5)

中 ( )1b ~ ( )11b 的值。需要联立方程组中实部方程与虚部方程。此处调用 MATLAB 

中的 solve 函数完成联立实部方程和虚部方程求解的过程，求得 ( )auq k , 与ω的值

分别为 ( ) 349.66, =auq k ， 779.24=ω 。关键代码截图如附录 B 中图 5 所示。  

根据表 4.1 系统参数设定，求得式(4.2)中 72.260=du ， 8.2800 =dU 。联立式

(4.2)和式(4.3)，求得 901.0=ku ， 315.0=a 。  

5、求取米哈依诺夫判据的值。对于这种高阶的微分方程求偏导数的运算可

以采用 MATLAB中的 jacobian函数。需要注意的是在实部 X 和虚部 Y 中都明显包

含了ω和 q ，但没有明显包含 a 。参考式(4.3)，需要将 X 和 Y 中的 q 化为 a 的表达

式，即可完成偏导数的求解。关键代码截图如附录 B 中图 6 所示。求得米哈依诺

夫判据的值为： 610036.1 −×−=
∂
∂
⋅

∂
∂

−
∂
∂
⋅

∂
∂

a
YXY

a
X

ωω
。根据米哈依诺夫判据的结果，

晶闸管的非线性特性无法形成稳定的自激振荡。 

6、根据式(4.4)在 MATLAB 中绘制幅相特性图，关键代码截图如附录 B 中图
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7 所示，最终可得幅相稳定判据如图 4.3 所示。 

 

图 4.3 晶闸管装置自激振荡幅相稳定判据图  

从图 4.3 中可知如果 0>Δa ，则振荡点将出现在 ( )ωjG 曲线的右侧，处于被

( )ωjG 曲线包围的区域中，系统应该是不稳定的，即振荡振幅将趋向无穷大；如

果 0<Δa ，振荡点将出现在 ( )ωjG 曲线的左侧，处于 ( )ωjG 包围的区域之外，系

统是稳定的，将使振幅将趋于 0；总之这两种运动趋势都将使被扰动的振荡点远

离 ( )ωjG 与 q1− 的相交振荡点，从而再次说明晶闸管装置无法产生有效的自激振

荡近似为线性元件，将速度环比例放大环节作为非线性元件继续下一步讨论。 

4.2.3 速度环比例放大环节的非线性特性引起的自激振荡研究 

速度环比例放大环节具有饱和非线性特性，可以用来改善系统的动态特性。

根据图 4.2，该环节输入量为 2x ，如式(4.6)所示；输出量为 3x ，如式(4.7)所示。

输入输出特性如图 4.4 所示，其中 101 =k 、 02 =k 、 1=b 。 

3x

2x0 b

1k

2k

 
图 4.4 速度环比例放大环节非线性特性图  
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               taxxxx ωsin2
*
222 +=+=                          (4.6) 

式中， 2x 为 2x 的不变分量； *
2x 为 2x 的周期分量；  

                           *
333 xxx +=                          (4.7) 

式中， 3x 为 3x 的不变分量； *
3x 为 3x 的周期分量。  

根据第 3 章中对非对称非线性自激振荡参数的详细求解方法，求得 ( )aeF y , 值

如式(4.8)所示， ( )aeq y , 如式(4.9)所示， ( ) 0, =′ aeq y 。  
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系统中产生自激振荡的非线性元件发生了改变，由晶闸管变成速度环比例放

大环节，原来比例放大环节的参数 pnk 已经被 ( )axq ,2 替换，而晶闸管环节传递函

数则采用 sk 来表示，相当一个线性环节。系统特征方程将与式(4.4)有所不同，如

式(4.10)所示。然后采用附录 B 中代码截图 2 至截图 5 的关键代码进行 MATLAB
编程，只是其中特征方程由式(4.4)变成了式 (4.10)，变量由 ( )auq k , 变成了 ( )axq ,2 。

求 得 ( ) 10,2 =axq ； 779.24=ω 。 根 据 以 上 值 ， 联 立 式 (4.8) 与 式 (4.9) 求 得

494.02 =x ； 915.0=a 。 

                  03211 =+++ looplooploop                          (4.10) 

式中， ( )1
11

+
=

pTpT
loop

lm
； ( )( )11

2
++

=
pTpTpr

kk
loop

soii

spi

τ

β
；  

( ) ( )
( )( )( )111

,1
3 2

+++

+
=

pTpTpTppTpc
axqpkk

loop
oionsmine

nspi
ττ

τα
；  
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根据以上结果采用附录 B 中代码截图 6 的关键代码可求得米哈依诺夫判据结

果为 051.0=
∂
∂
⋅

∂
∂

−
∂
∂
⋅

∂
∂

a
YXY

a
X

ωω
，由此可推导出速度环比例放大环节可以产生稳定的

自激振荡。采用附录 B 中代码截图 7 的关键代码，可得幅相稳定判据图如图 4.5
所示。可见如果 0>Δa ，则振荡点将出现在 ( )ωjG 曲线的左侧，处于被 ( )ωjG 曲

线包围的区域之外，系统应该是稳定的，即振荡振幅将趋于 0；如果 0<Δa ，振

荡点将出现在 ( )ωjG 曲线的右侧，处于 ( )ωjG 包围的区域之中，系统是不稳定

的，将使振幅将趋于无穷大；可见这两种运动趋势都将使被扰动的振荡点又重新

回到 ( )ωjG 与 q1− 的相交振荡点，从而再次证明速度环比例放大环节所可能引起

的自激振荡是稳定的。  

 

图 4.5 修正前速度调节器比例环节自激振荡幅相稳定判据图  

实测系统晶闸管装置输出电压 dU 、电枢电流 dI ，速度调节器输出 3x ，测速

发电机输出 fnU 波形如图 4.6 所示，说明当系统参数取表 4.1 中参数值时，系统各

环节均有较明显的振荡波形，与上述对自激振荡的状态分析基本符合。  

t

dU

dI

3x

fnU

0

3x
fn

U
dI

d
U

 
图 4.6 修正前实测系统波形图  
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从图中可以看出测速电压的波形的振荡是相对较小的，这是由于有飞轮惯性

的存在，抑制了较大的振荡，但这需要消耗系统能量来维持，对系统的稳定性依

然是有较大影响的，因此需要改善自激振荡特性。此处逆向波波夫谐波线性化的

过程，即先确定合适的自激振荡振幅，修正系统某些参数从而保持系统稳定。  

4.2.4 对速度环比例放大环节引起的自激振荡进行校正 

参考第 2 章第 2.5 节中对非线性系统稳定区域的分析过程，选定系统参数对

自激振荡进行调整及消除，主要包括以下几个步骤：  

(1)确定若干个系统参数为可调整量，考虑到后面作图分析的方便，一般是两

个，一个调整量是横轴坐标，一个调整量是纵轴坐标，即形成一个调整参数坐标

图。其他系统参数保持不变。将这几个可调整参数看做是稳定装置的参数值，通

过控制它们的值就可以确定系统的稳定状态。需要注意，确定调整参数也可以在

后面两个步骤中进行，因为以哪几个系统参数作为调整参数并不是盲目进行的，

而是要考虑系统本身的性质和运行方式来选择的。  

(2)确定非线性环节输入值的不变分量 x 和自激振荡的振幅 a 。这是因为从第

3 章中对采用波波夫谐波线性化时求取各个自激振荡的参数的过程中可以看出，  

不论是 F ，还是 q或 q′，都是用 x 和 a和各个已知系统参数来表达的。考虑到系  

统参数是由客观条件限制的，所以只要确定好 x 和 a 的值，自激振荡和系统的稳

定性质实际就已经确定了。  

 (3)写出系统特征方程，由于在自激振荡的情况下方程具有纯虚根，因此特

征方程可以为分成实部方程与虚部方程，形成一个方程组。但这个方程组包括的 

未知量就不再是 x 和 a ，而是需要进行调整的系统参数。首先通过 x 和 a 求出输

出不变分量 F 、谐波放大系数 q和 q′。然后一般采用绘图法，即针对振荡频率ω
从 0 一直变化到一个比较大的数（一般是指向无穷大），通过实部方程与虚部方程 
所形成的方程组求出的调整参数值也会随之改变，从而在调整参数坐标图中形成

系统临界稳定边界曲线，进而可以判断出系统稳定和不稳定的区域。  
在本例中选定测速反馈系数α 、电流反馈系数 β 为待修正系统参数；要求自

激振荡振幅 02.0=a ，不变分量 99.02 =x 。根据表 4.1 中其他参数的设定，通过式

(4.9)可以求出 ( ) 654.9,2 =axq 。 

根据实际情况可以设定振荡频率ω的变化范围为 501→ ，增值步长为 0.5。采

用附录 B 中代码截图 7 的关键代码，只需将非线性方程组的变量改为α 和 β 即可，

求得相应边界曲线如图 4.7 所示。很明显在曲线之上，系统形成稳定的自激振

荡，振幅为 0.02；在此曲线之外的区域取α 与 β 值将使系统具有稳定性或是不稳

定性。现分别取该曲线右侧和左侧的一组α 与 β 值，其余系统参数保持不变，计

算相应的霍尔维茨判据 1−Δn 值，所得结果如表 4.6 所示。根据所得的 1−Δn 值，如
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果α 与 β 值落在边界左侧，振荡将无法敛从而产生危害正常运行的大幅度振动，

系统将处于不稳定的状态；如果落在边界右侧，振荡趋于消散，振幅趋势于零，

系统将处于稳定的状态，也正是修正希望达到的结果。 

 

图 4.7 α-β变化曲线  

表 4.2 图 4.6 中α-β变化曲线右侧和左侧的参数值表  
边界曲线 α β ∆n-1 

右侧  0.009 0.036 5 3.166 6e-081 
0.007 3 0.034 1.061 5e-081 

左侧  0.005 0.0365 -5.020 3e-081 
0.007 3 0.038 -1.992 9e-081 

现取 0073.0=α ， 027.0=β ，可得修正后实测波形图如图 4.8 所示，可见所测

环节的振荡幅值有了较大的降低。再加之系统本身的飞轮惯量，测速电压已趋于

相对平稳，振荡幅值达到了可以接受的数值，系统已处在较为稳定的区域，避免

了自激振荡对系统的影响。 

t

dU

dI

3x

fnU

振荡幅值

0

（
10

V
/格

）
3x

fn
U

（
10

V
/格

）

dI
（

1A
/格

）
d

U
（

10
V

/格
）

（40ms/格）

 

图 4.8 修正后实测系统波形图  
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4.3 总结 

以晶闸管-电动机型矿井提升机系统的自激振荡为研究对象。根据系统的运行

特点，分别选取不同的环节作为产生自激振荡的非线性环节。采用波波夫谐波线

性化对自激振荡进行了计算和研究，并加入了自激振荡的稳定性判断和利用系统

参数调整自激振荡的部分。主要包括以下内容。  

(1)分析晶闸管-电动机矿井提升机系统的系统构成，写出特征方程，求解自

激振荡相关参数值。其中运用 MATLAB、Mathematica 和 MAPLE 相结合，编写

相关代码，完成以下工作：首次求出了晶闸管装置的不变分量的数学模型表达式；

求取特征方程高阶非线性微分方程系数；求解高阶非线性微方程解；绘制幅相特

性图，求解米哈依诺夫稳定性判据值。  

(2)运用米哈依诺夫判据分析通过波波夫谐波线性化计算所得的自激振荡数

据的稳定性，并绘制相应的幅相稳定判据图进行佐证，证明结果是相符的。说明

了在第 2 章中描述函数法所使用的几种自激振荡稳定判据的分析在波波谐波线性

化的计算过程中也同样适用。  

(3)采用第 2 章中描述函数法运用霍尔维茨判据划分系统稳定区域的思路，设

定自激振荡幅值和输入量不变分量；再确定可调整系统参数；通过 MATLAB 编

程在调整参数平面绘制由自激振荡幅值与输入量不变分量所确定的临界稳定边界

线，由此确定系统的稳定区域和不稳定区域。  

(4)根据系统的实际运行情况，提出了在多非线性环节的情况下，根据不同非

线性环节的功能与工作阶段分时处理自激振荡的思路，该思路将在下一章中进行

深入探讨。  
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第 5 章 波波夫谐波线性化的扩展运用 

5.1 引言 

本章是对波波夫谐波线性化的扩展运用，包括以下两个方面的问题：1、在第

4 章对晶闸管-电动机的矿井提升机系统的自激振荡的讨论中，涉及到了存在多个

非线性环节的问题。在闭环控制系统中存在多个非线性环节的情况下，采用一个

时间段只对一个非线性环节进行波波夫谐波线性化的分析的方法，也可以达到很

好的实践效果。2、在运用其他非线性系统分析方法的时候，波波夫谐波线性化可

以与其综合使用，提供有力的分析数据，从而最终得到研究结果。本章在前几章

的基础上以实例为依托，详细阐述波波夫谐波线性化在以上两个方面的扩展应用。 

5.2 多非线性环节的自激振荡分析 

实际工程闭环控制系统大多包括几个非线性环节，因为各环节功能及性质的

不同，如果要运用波波夫谐波线性化进行非线性环节合并计算将是一个很复杂并

有可能导致较大误差的过程。而且实际上这些非线性环节的非线性特性一般会在

不同的运行阶段展现，并由此产生自激振荡。现以电动摩托车双闭环永磁无刷直

流电机为研究模型，以其中速度环的比例环节和电流环的比例环节为非线性环节，

对在具有多非线性环节的条件下运用波波夫谐波线性化分析系统自激振荡进行实

例性的阐述。在以下的阐述中可以证明速度环和电流环进入饱和区域的工作阶段

并不是一样，因此在讨论这两部分可能产生的自激振荡的过程中是独立讨论的，

也就是当一部分作为非线性环节，另一部分就作为线性环节进行讨论。  

5.2.1 电动摩托车双闭环永磁无刷直流电机的构成及分析 

电动摩托车大量采用双闭环永磁无刷直流电机，采用脉宽调制（PWM 调制）

策略，实现调压调速 [99]。电动摩托车的行驶要求是频繁起动，较快加速以及具备

灵活的克服路障与爬坡能力。电机中的速度环与电流环保证了以上功能可以稳定

实现，其中：为了保证实际速度与预定速度相符，采用了速度环；为了实现理想

起动和加速，采用电流环。速度环与电流环内都具有 PID 环节，其中的比例放大

环节具有饱和非线性，有可能产生自激振荡。可以注意到在第 4 章对晶闸管-电动

机的讨论过程中并没有选取电流环的比例放大环节作为可能产生自激振荡的环

节，正是考虑到不同的闭环控制系统有不同的结构和功能，很明显晶闸管所可能

产生的自激振荡的可能性与危害性在晶闸管-电动机系统中要比电流环比例放大

环节大得多，因此选择了晶闸管作为讨论对象。  
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永磁无刷直流电机结构原理图如图 5.1 所示，其中包括了电力电子开关电路，

电机本体和磁极位置检测电路等部分。搭建实验用电动摩托车无刷电机如图 5.2

所示。由蓄电池，车轮，控制电路板与转把构成。  

 

图 5.1 永磁无刷直流电机原理图  

 

图 5.2 实验用电动摩托车永磁无刷直流电机图  

结合图 5.1 与图 5.2，蓄电池提供直流电源；驾驶员通过扭动转把控制车轮运

转。车轮内包含永磁无刷直流电机，由多级绕组定子与永磁体转子组成，定子绕

组轮流进行导通，将直流电源转换成为交流电，从而产生旋转磁场，与转子磁势

产生电磁转矩，带动转子旋转；转子的磁场方向随着磁势通过转子的运动不断变

化，需要通位置传感器获取当前转子的位置；根据转子位置，由开关电路控制定

子进行换相，从而达到转子可持续旋转的效果。而转把对转子的控制则主要通过

电机内的开关电路、控制器与位置传感器，组成控制电路板，根据转把信号，然

后经过速度环与电流环双闭环反馈调节，提供 PWM 脉宽调制信号从而控制了定

子绕组的旋转磁场，最终达到控制转子运转的目的 [99-102]。  

设电机定子采用 A、B、C 三相绕组，按星形连接，每时刻只有两相导通，

如图 5.3 所示。  

AI
相A

相B BI
相C

CI

R相电阻

R相电阻R相电阻

 
图 5.3 电机定子三相星型绕组图  
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工作时，假设磁路不饱和，不计涡流和磁滞损耗，三相绕组完全对称，线电

压平衡方程如式(5.1)所示：  
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        (5.1) 

式中， ABU 为 AB 相间线电压； BCU 为 BC 相间线电压； CAU 为 CA 相间线电压；

AI 为 A 相相电流； BI 为 B 相相电流； CI 为 C 相相电流；R 为各相相电阻； AE 为

A 相相反电动势； BE 为 B 相相反电动势； CE 为 C 相相反电动势； L为各相绕组

自感； M 为各相绕组之间互感； D为微分算子。  

根据图 5.1，控制信号所产生的 PWM 脉宽调制信号决定相电压大小（最大不

会超过直流电源），从而决定了线电压的大小。根据式(5.1)所示，调整线电压将导

致相电流产生变化。电机稳定运转时，电磁转矩与相电流大小成正比。这说明当

相电流发生改变时，电磁转矩将发生改变，从而调整转子旋转速度，最终实现车

轮调速 [103,104]。同时注意到导通的两相绕组反电动势大小相等，方向相反；相电

流大小相等，方向相反，根据以上分析可写出式(5.2)。  
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式中， eT 为电磁转矩；Ω为机械角速度； mΦ 为主磁通； P 为电机极对数； N 为

总导体数； E 为实时导通两相的反电动势； I 为实时导通两相的相电流。  

根据以上分析，再结合图 5.1 所示实验电机，得双闭环动态图如图 5.4 所示，

图中各环节表示意义为：环节 1 为速度环 PID 控制器 1；环节 2 为电流环 PID 控

制器 2；环节 3 为 PWM 环节；环节 4 为等效线电阻与线电感；环节 5 为电流限

幅环节；环节 6 为电矩转矩；环节 7 为转子转动惯量与黏滞；环节 8 为角速度转

换环节；环节 9 为电流负反馈环节 ；环节 10 为速度负反馈环节；环节 11 为转动

惯量负反馈环节。图中各参数如表 5.1 所示。  
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图 5.4 永磁无刷直流电机双闭环动态图  

表 5.1 永磁无刷直流实验电机参数表  

参数名  参数意义/单位  参数值

T I1 环节 1 积分时间常数  0.08 

TD1 环节 1 微分时间常数  0.02 

TP1 环节 1 比例放大参数  10 

T I1 环节 2 积分时间常数  0.03 

TD2 环节 2 微分时间常数  0.02 

TP2 环节 2 比例放大参数  10 

Kd PWM 环节放大系数  5 

Tm PWM 环节机电时间常数 0.001

ra 定子相绕组电阻 /Ω  0.4 

La 定子相电感 /H 0.064

TP3 限幅环节时间常数  1 

KT 电磁转矩机械特性常数 1 

J  转子转动惯量 / kg·m2 0.02 

BV 转子转动粘滞 / kg·m-1·s-1 0.025

Kn  电动势常数  9.55 

α  速度负反馈系数  0.01 

 β  电流负反馈系数  0.25 

5.2.2 速度环比例放大环节产生的自激振荡分析 

速度环的作用是调整电机转速，维持电机转速与设定转速一致。根据图 5.4，
在速度环内速度给定信号 gnU 与反馈信号 fnU 经过电压比较环节后，产生的误差

信号经过比例放大环节（P 环节）放大，生成电流环的输入信号，最终调整 PWM

脉冲信号。可知速度环中的比例环节的非线性特性图可参考第 4 章中图 4.3，具

有饱和非线性，可能产生自激振荡，其中 101 =k ， 02 =k ， 4=b 。  
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设图 5.4 中速度环的比例环节的输入是 taxx ωsin11 += ，输出是 *
222 xxx += ，

根据第 4 章中对图 4.4 的自激振荡相关参数的计算方法，设电流环比例放大环节

输出量中不变分量 ( ) 21 , xaxF = ，传递函数虚部 ( ) 0,1 =′ axq ，传递函数实部为

( )axq ,1 。可按照式(4.8)写出式(5.3)，按照式(4.9)写出式  (5.4)。  
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根据第 3 章和第 4 章中对自激振荡的实例分析，可知必需要获得系统的特征

方程才能完成分析。此时系统中包括电流环在内的其他部分为线性环节，只有速

度环处在非线性状态。在本例中，通过观察得图 5.4 中所有的反馈环，并将其相

加从而得到特征方程。可知其中有三个反馈环，环节 1、2、3、4、5、6、7、8

和 11 构成了反馈环 1temp ；环节 2、3、4 和 9 构成了反馈环 2temp ；4、5、6、7

和 11 构成反馈环 3temp 。如式(5.5)所示：  

                    0321 =++=Δ temptemptemp                       (5.5) 
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由于系统具有自激振荡时特征方程的解是纯虚根，因此特征方程式(5.5)可以

化成实部方程 X 与虚部方程 Y ，将实部方程 X 与虚部方程 Y 联立成一个方程组。  
在本例实部方程中的 p 最高可达 10 次方，虚部中 p 最高可达 9 次方。需要联

立实部方程和虚部方程即可求解出 ( )axq ,1 和ω的值，通过 MATLAB 计算求解方程

组，可求得 ( ) 9993.0,1 =axq ， 1.47=ω 。根据电动摩托车运行实际情况，设 9.31 =x ，

由式 (5.4)可得 1011.0=a 。由此可得到米哈依诺夫判据如式 (5.6)所示，从此判据

可知不会形成稳定的自激振荡。  
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ωω
                      (5.6) 

为了再次求证以上对于自激振荡的稳定性判断，可再采用在第 2 章第 2.4.3

节中讨论过的幅相稳定判据进行判断。试求线性环节 ( )ωjG 与非线性环节 q1− 的

相交情况，MATLAB 仿真结果如图 5.5 所示。  

 

图 5.5 速度环比例放大环节自激振荡幅相稳定判据图  

根据图 5.5 设曲线交点 s，该点振幅 sa 为可能行成的自激振荡振幅，结合 G

曲线走向，在振荡振幅有扰动 aΔ 时，可得出以下两个现象：  
(1)当 0<Δa 时，振荡点处于 ( )ωjG 曲线的包围区域之外，系统处于稳定状态，

因此振荡振幅 0→a ，系统趋向稳定；  

(2)当 0>Δa 时，振荡点处于 ( )ωjG 曲线的包围区域之内，系统处于不稳定状

态 ，因此振荡振幅 系统功率限制最大值aa → ，系统处于不稳定状态，此振荡将对系

统产生极限危险。  

根据以上结论，可知交点振荡是不稳定的，只要有扰动都会使振幅远离交点

振幅 sa 的值，因此速度环的比例放大环节不会产生稳定的自激振荡。同时观察式  

(5.4)，可知当 ( )axq ,1 确定时， a与 1x 是成反比的。再结合电动摩托车的运行情况  
和以上自激振荡的稳定判据结果，可以得到以下分析结果：  

(1)当电机运转在低速时，即 1x 较小时 sa 将会比较大，此时如果产生可能的自

激振荡，起始振幅一般会比 sa 小，振荡点会处在 ( )ωjG 曲线的包围区域之外，因

此振荡将会逐步减小，直至恢复到稳定状态。  
(2)当电机运转在高速时，即 1x 较大时 sa 将会比较小，说明如果产生可能的自

激振荡，起始振幅很大程度上会比 sa 大，振荡点会处在 ( )ωjG 曲线的包围区域之  

内，因此振荡会逐渐增大，甚至达到对电机有危害的大幅振荡。这也就是为什么

当电动摩托车运行在高速时，当路面颠簸时容易使驾驶者感觉较强振动的原因。 

总之，在速度环对系统工作时，其比例放大环节的饱和性可能产生自激振荡，

但不会产生稳定的自激振荡。  



基于波波夫谐波线性化理论的闭环控制系统自激振荡研究 

94 

5.2.3 电流环比例放大环节产生的自激振荡分析 

为了满足电动摩托车快速启动的要求，在这个过程中电机会充分利用允许过

载能力，使电流达到最大值满足响应。在这个短时提速的过程中，为了避免电机

被烧坏，就要采用电流环保护电机。电流环工作原理参考图 5.6。图中电流截止

值为 bjI ，摩托车额定传速为 0n 。设电流环中采样电阻为 ir ，基准电压 ibjbj rIU = 。

设 A 相正向导通，此时电流环负反馈信号为 bjiAfi UrIU −= 。可见 AI 越大, fiU 反

馈作用就越强，电机将按比例减小 PWM 的占空比, 使 AI 最终不会超过 bjI ，最终

达到保护作用。电流环中比例放大环节（P 环节）具有饱和特性，其作用与速度

环比例放大环节基本相同。但是该比例放大环节与速度环中的比例放大环节相比，

其增益对速度的影响要比速度环大，这是因为其中串入了采样电阻 ir
[105,106]。  

 
图 5.6 电流环比例环节饱和状态分析图  

设电流环中的比例环节输入输出特性图参考第 4 章中图 4.4，其中 11 =k ，

02 =k ， 24=b 。设图 5.4 中电流环的比例环节的输入是 taxx ωsin33 += ，输出是

*
444 xxx += ，根据第 4 章中对图 4.4 所示非线性特性的自激振荡相关参数的计算

方法，可知电流环比例放大环节输出量的不变分量 ( ) 43, xaxF = ，传递函数的虚部

( ) 0,3 =′ axq ，传递函数的实部表示为 ( )axq ,3 。可按照式(4.8)写出式(5.7)，按照式(4.9)
写出式 (5.8)。 

   

( ) ( )

( ) 31

2
333

21

2
0 134

1arcsin
2

2
2
1,

xk
a

xb
a

xb
a

xb
kka

dxFaxFx

+
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛ −
−−

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛ −
⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛ −
−−=

== ∫

π
π

ψ
π

π

         (5.7) 

 

( ) ( )

2
332132121

2
0 33

1arcsin
2

sin1,

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛ −
−

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛ −−
+

−−
+

+
=

= ∫

a
xb

a
xbkk

a
xbkkkk

dxF
a

axq

ππ

ψψ
π

π

        (5.8) 

需要求出系统的特征方程，此时系统中包括速度环在内的其他部分为线性环

节，只有电流环比例放大环节处在非线性状态。通过观察得图 5.4 中所有的反馈
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环，并将其相加从而得到特征方程。可知其中有三个反馈环，环节 1、2、3、4、

5、6、7、8 和 11 构成了反馈环 1temp ；环节 2、3、4 和 9 构成了反馈环 2temp ；4、

5、6、7 和 11 构成反馈环 3temp 。虽然反馈环的构成与将速度环比例放大环节作

为非线性环节进行讨论时是一样的，但非线性环节的改变也使得反馈环的内部构

成有所改变，因此最终可得特征方程如式(5.8)所示。  

             0321 =++=Δ temptemptemp                              (5.8) 
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通过 MATLAB 计算无法根据式(5.8)求得有效的 ( )axq ,3 和ω的值。这说明电流

环比例放大环节是产生不了自激振荡的。绘制幅相稳定判据图如图 5.7 所示。图  
中可见 q1− 被 ( )ωjG 完全包围，说明如果只考虑电流环比例放大环节的饱和非线

性，系统即不是稳定状态也不是自激振荡状态，而是不稳定状态，再一次证明了

电流环比例放大环节的非线性特性无法获得正常的自激振荡参数的结果。  

 
图 5.7 电流环自激振荡幅相稳定判据图  

5.2.4 实测波形分析 

图 5.8 为示波器所测电机在高速稳定运转时的 A 相电压波形，此时电流环实

际处于开环状态，而是由速度环在起作用。其中图 5.8 b)所示波形的速度已接近

电机运转额定值，图 5.8 a)所示波形速度要较图 5.8 b)稍低一些，此时波形已表现

为较为理想的梯形波。可以观察到转轮与支撑机架有明显振动，排除实验电机是
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单独固定在实验机架上，不如原装在电动摩托车内那样牢固的原因之外，这种现

象说明了速度环的比例放大环节饱和非线性可能会引起不稳定的自激振荡，特别

在高速时，将表现为大幅度的自激振荡振幅扩散。  

                  

    a) 较低速时波形              b) 较高速时波形  

图 5.8 高速时 A 相电压波形图  

图 5.9 为示波器所测电机在刚起动时的 A 相电压波形。图 5.9 a)所示波形为刚

刚起动，图 5.9 b)则已稍微加速。可见两图的相电压波形均为非理想的梯形波，

带有很明显的谐波阴影,这表示电机换相不稳定，便随着速度的提高波形有越来越

规则的趋势。忽略工艺影响，这反应了在起动阶段主要由电流环在快速提速，速

度环处在开环状态，电流环比例放大环节较高的增益虽然能够让转速快速提升，

但根据式(5.2)，在电流的快速调节过程中，电枢反应使气隙磁场发生畸变，与各

相绕组电流相互作用，呈现出磁通量的快速变化，这种变化最终造成转矩波动，

造成系统的不稳定。此时肉眼观察转轮与支撑机架，并未出现振动，可想而知在

更为牢固的车体内就更不会产生明显的振动了。以上可证明波波夫谐波线性化计

算所得，电流环比例放大环节的饱和非线性虽能造成系统的不稳定，但不会引起

有效的自激振荡，这对于让电机安全过渡到高速，确保速度环开始工作是有利的。 

            

a) 刚起动时波形                  b) 稍微加速时波形  

图 5.9 低速时 A 相电压波形图  

5.2.5 总结 

在具有多个非线性环节的系统中，必需要仔细分析各个非线性环节的工作阶

段，因为这些非线性环节往往在系统中起到不同的作用，因此它们的工作阶段往

往在时间上错开的，这样就可以采用与分析单个非线性环节自激振荡相同的方法，

依次分析其中某一个环节，将其他非线性环节作为线性环节处理。这样所得出来
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的结果往往也是与实际运行情况相符的。在本节的分析中，电动摩托车为了保证

运行稳定，采用了速度环与电流环的双闭环模式。其中速度环为外环，对电机的

稳定运转时，对转速的稳定起到决定作用，具有较强的刚度和稳定性，由于其比

例放大环节具有饱和区非线性，可能产生自激振荡，但由于电机参数的选择恰当，

并不会产生稳定的自激振荡，加之实际运行中电机和车体本身较大的惯性，因此

不会对电机稳速有影响。电流环为内环，对速度环起跟随作用，其比例放大环节

有较高的增益，在电机起动与变速时有较快的响应速度；但也正因如此，比例放

大环节的饱和非线性可能会造成转矩波动，从而使电机转矩在换相时不平衡。但

其造成不稳定性最终会随着速度的提升与稳定，被速度环逐渐控制，从而不会产

生自激振荡。由上分析可知速度环与电流环的比例放大环节分别会对系统的稳定

性造成一定影响，这也正是其调节功能中非线性的必然表现。但在实际控制过程

中，各环节是相互影响，相互制衡的，因此最终能够达到电机平稳运行。  

5.3 多种非线性系统稳定判据的综合应用 

波波夫谐波线性化提供了一种对系统自激振荡较为完整的分析方法，它不仅

可以单独运用，还可以与其他非线性系统分析方法综合在一起运用，从而完成一

些较为复杂的研究。本节以讨论非线性系统的绝对稳定性为目地，综合李雅普诺

夫直接法，波波夫稳定判据和波波夫谐波线性化，以某飞机偏航角控制系统为讨

论对象，完成相应的模拟，计算和分析。  

5.3.1 李雅普诺夫直接法的基本思想 

针对某一非线性系统，可以通过分析因某种原因引起初始偏差后的自由过去

特性，从而推导其稳定性。在此基础上李雅普诺夫对非线性系统的稳定性研究引

入了“尺寸”的概念，实际是对系统状态变化的度量。如图 5.10 所示，设某非线

性系统初始状态以平衡状态 ex 为球心，半径为 δ 的封闭球域 ( )δS 内，如式(5.9)所

示。  
                           δ≤− exx0  0tt =                        (5.9) 

如果系统方程的解 ( )00 ,; txtx 在 ∞→t 的过程中，都位于以 ex 为球心、任意规定的

半径 ε 的封闭球域 ( )εS 内，则称 ex 是稳定的，并被称为李雅普诺夫意义下的稳定

性 [107-110]，如式(5.10)所示。  
                  ( ) ε≤00 ,; txtx  0tt ≥                       (5.10) 
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1x

2x

nxx ,...3

ex

δ

ε
( )εs

( )δs

 
图 5.10 李雅普诺夫意义下的稳定性  

“尺寸”的变化又可以直观的反应在“能量”的变化上。求得一个能量函数，

一般与 1x ， 2x … nx 以及 t 有关，记为 ( )xV ，被称为李雅普诺夫函数；能量衰减特

性用 ( )xV 的导数 ( )xV 表示。李雅普诺夫函数及其导数有以下两个特性：  
(1)当 021 ==== nxxx 时， ( ) 0,,, 21 =nxxxV 。  

(2) ( ) dtdVxV = 可以化为式(5.11)所示。式中 ( )nxxx ,,, 21Φ 是投影矢量，即

dt
dx

dt
dx

dt
dx n

n =Φ=Φ=Φ ,,, 2
2

1
1 ，实际可以看作是状态空间中各个状态变化的速

度矢量。  

               

n
n

n

n

x
V

x
V

x
V

dt
dx

x
V

dt
dx

x
V

dt
dx

x
V

dt
dV

Φ
∂
∂

++Φ
∂
∂

+Φ
∂
∂

=

∂
∂

++
∂
∂

+
∂
∂

=

2
2

1
1

2

2

1

1                    (5.11) 

设 gradV 函数表示函数V 的梯度，如式(5.12)所示：  

                     
⎭
⎬
⎫

⎩
⎨
⎧

∂
∂

∂
∂

∂
∂

=
nx

V
x
V

x
VgradV ,,,

21
                     (5.12) 

( )xV 可以化成(5.13)所示：  

                           ( ) ( )xgradVxV Φ⋅=                       (5.13) 

gradV 垂直于V 为常数时的平面，并指向V 值增大一侧。根据式(5.13)，如果

( ) 0>xV ，则速度矢量 ( )xΦ 与 gradV 形成锐角，即状态的变化是朝着增大的方向发

展的，而当 ( ) 0<xV 时，状态的变化是朝着减小的发向发展的。  

根据以上讨论，如果在 0≠x 时，保证 ( ) 0>xV 与 ( ) 0<xV ，说明系统处在储存

一定能量的状态，同时系统能量的变化趋势是越来越小，不会大于初始变化值，

此时系统满足李雅普诺夫意义下的稳定性要求，可对系统稳定状态进行判断。  

5.3.2 飞机偏航角控制系统的构成与分析 

飞机的偏航角可以定义为飞机纵轴在水平面上投影与地面坐标系之间的夹
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角，如图 5.11 所示：  

 

图 5.11 飞机偏航角示意图  

以飞机偏航为主要控制对象，某飞机航向控制系统如图 5.12 所示，其动态控

制图如图 5.13 所示 [111-113]。  

ψ u δ

ψ

u
δ

 
图 5.12 飞机航向控制系统图  

ψ ( )uF

δ

u
P
1

ock

pkk pψψ +

( )ppT
k

11

1

+
−

ψpk ock

1k 1T
ψk

 
图 5.13 飞机航向控制动态控制图  

被控部分的动态方程如式(5.14)所示：  
                       ( ) δψ 11 1 kppT −=+                            (5.14) 

控制部分的动态方程如方程组(5.15)所示：  

                      
( )

⎩
⎨
⎧

−+=
=

δψψ
δ

ψψ ocp kpkku
uFp

                       (5.15) 

( )uF 表示传动装置的非线性特性是对称死区非线性特性，如图 5.14 所示。  
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u

( )uF

bb− 0

β

β

 

图 5.14 传动装置非线性特性图  

其中 0≥
du
dF

，并且设定：  

                          ( )
⎪
⎩

⎪
⎨

⎧

≤=

−<<
>>

=

bu
bu

bu
uF

,0
,0
,0

                        (5.16) 

将式(5.14)转换成式(5.17)所示：  

                             ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+−= δψψ

111

2

1

111
T

p
kT

p
k

              (5.17) 

设 1x 、 2x 与 3x 如方程组(5.18)所示：  

                     

( )
⎪
⎪
⎪
⎪
⎪

⎩

⎪
⎪
⎪
⎪
⎪

⎨

⎧

−+=

=

−=

+=

δψψ

δ

δψ

ψψ
ψ

ψ

ocp

p

kpkk
kkT

u
kkT

x

T
x

T
p

kT
x

11

11
3

1
2

111
1

1

1

1

11

              (5.18) 

已知 3x 是 u 的常数倍数，因此 ( )uF 可替换为 ( )3xf ，其中的变化是由于常数倍

数引起，但不会改变其运算本质。设 1Tt=τ ， τddp = ，得方程组(5.19)，其中

ψ

ψγ
pk
kT1= ，

ψp

oc
kk
k

r
1

= 。  

                   
( )

( )
( ) ( )⎪

⎩

⎪
⎨

⎧

−+−=
−=

+−=

3213

32

311

1 xrfxxpx
xfpx

xfxpx

γγ
                      (5.19) 

5.3.3 李雅普诺夫函数V 及导数 ( )xV 的构造 

可采用递推叠加的方法设计函数，即通过叠加 1x 、 2x 与 ( )3xf 的平方项来构

造V 函数 [51]。根据方程组(5.19)，做以下设计，确保各个V 函数一定是正的，则

需考虑几个问题：  
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(1)如果取 ( )
2

2
1

11
xxV = ， ( ) ( )31

2
11 xfxxxV +−= 中的 ( )31 xfx 的正负如何确定？  

(2)如果取 ( )
2

2
2

22
x

xV = ， ( ) ( )3222 xfxxV −= 中的 ( )32 xfx 的正负如何确定？  

(3) 根 据 图 5.14 ， 已 知 03 >x 时 ， ( ) 03 ≥xf ， 取 ( ) ( )∫= 3

0 3333
x

dxxfxV ， 则

( ) ( )( ) ( ) ( )23231333 1 xrfxxfxxfxV −+−= γγ 中的 ( )( ) 13 1 xxf −γ ， ( ) 23 xxf γ 的正负为何？  
以上三点所提出的问题，最好的解决办法就是在将 ( )11 xV 、 ( )22 xV 与 ( )33 xV 三

项通过某种形式叠加后将不确定项消除。由此取叠加后V 函数如式(5.20)所示：  

                   ( ) ( )∫++
−

= 3

0 33
2
2

2
1 22

1 x
dxxfxxxV γγ                   (5.20) 

其中 1−γ 的正负还是无法确定，分两种情况讨论：  

(1)当 1−γ 时：得 ( )xV 函数如式(5.21)所示：  

               
( )

( ) ( )[ ] ( ) ( )[ ]23
2

13

3

3

2

2

1

1

11 xfrxxf

d
dx

x
V

d
dx

x
V

d
dx

x
VxV

+−−−−−=

∂
∂

+
∂
∂

+
∂
∂

=

γγ

τττ                (5.21) 

由式(5.21)可见 ( )xV 是为正值一定的函数，当 1−> γr 时， ( )xV 将是负值一定

的函数，此时系统将是稳定的，由此可得稳定性条件如式(5.22)所示：  

                        ( )⎪⎩

⎪
⎨
⎧

−>

<

11

1

kkkTk

kTk

poc

p

ψψ

ψψ
                       (5.22) 

(2)当 10 << γ 时：取V 函数如式(5.23)所示，并得 ( )xV 函数如式(5.24)所示。  

                        ( ) ( )∫++
−

= 3

0 33
2
2

2
1 22

1 x
dxxfxxxV γγ                (5.23) 

                         ( ) ( ) ( )[ ]23
2
11 xfrxxV −−−= γ                  (5.24) 

可见 ( )xV 是为正值一定的函数，如果 10 << γ ， 0>r ， ( )xV 将是负值一定的函

数，此时系统将是稳定的，由此可得稳定性条件如式(5.25)所示：  

                            
⎩
⎨
⎧

>

>

0
1

oc

p

k

kTk ψψ                           (5.25) 

结合式(5.22)和式(5.25)，可得式(5.26)。可发现式(5.26)中没有与非线性环节

( )uF 相关的参数，当对系统非线性环节具体特性了解较少，仅仅能确定出非线性

函数所在的区域范围，所讨论的系统稳定性是绝对稳定性，因此可以认为式(5.26)

是判定系统的绝对稳定性的重要依据。以下结合波波夫稳定判据与波波夫谐波线

性化对式(5.26)进行验证。  
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                       0111 >−+ ψψ kkTkkk poc                      (5.26) 

5.3.4 波波夫稳定判据的概念 

波波夫稳定判据理论认为一个标准非线性闭环控制系统，可化为只含有一个

线性环节和一个非线性环节的式样，这和波波夫谐波线性化的讨论方式是类似的。

其中线性环节的传递函数如式(5.27)所示：  
                       ( ) jYXjL +=ω                          (5.27) 

如果 ( )ωjL 的极点一定带有负实部，则特征线 ( )dxF 位于区域 [ ]mkk ,0 内

（ 00 =k ， mk 可以为 ∞+ ）；或者 ( )ωjL 的极点位于虚轴上，则特征线 ( )dxF 位于区

域 [ ]mkk ,0 内（ 00 >k ， 0>mk ），且闭环线性回路极限稳定。当以上条件满足时，

存在一个实数 h ，在所有 0≥ω 时满足式(5.28)，则该非线性控制系统在区域 [ ]mkk ,0

内是绝对稳定的 [114-116]。  

                    ( ) ( )
( ) 01

1
1Re

00
>

−
+

+
+

kkjLk
jLhj

mω
ω

ω                    (5.28) 

当 00 =k 时，典型的波波夫绝对稳定判据表示为：设 ( ) *** jYXjL +=ω ，其中 

XX =* ， YY ω=* 。可将式(5.28)化成式(5.29)所示：  

                  ( ) ( ) 01ImRe ** >+⋅−
mk

jLhjL ωω                    (5.29) 

式(5.29)可图解为当非线性特性曲线 ( )dxF 位于区间 [ ]mk,0 时，有一条在复平

面上的波波夫线，通过点 ( )0,1 jkm− ，斜率为 h1 ；修正后的线性特性 ( )ωjL* 的

Nyquist 曲线在全部 0>ω 频率范围内都在这条波波线的右边，如图 5.15 所示。  

∞=ω
0=ω( )0,1 mk−

 
图 5.15 符合波波夫稳定判据的 Nyquist 曲线图  

5.3.5 波波夫谐波线性化的应用 

设定飞机偏航控制非线性部分 ( )uF 分布在的 [ ]mq,0 区间内。根据第 3 章与第 4

章中对波波夫谐波线性化的阐述，当系统中存在自激振荡时，非线性环节可以等

效于一个取决于自振幅值的线性环节，整个系统相当于处在临界状态的线性系统，

因此可通过确定自振幅值来确定 mq 的值。  

在第 3 章中对具有不变分量 x 的对称死区非线性特性的自激振荡参数的进行

了计算，可知 ( )axF , 如式(3.65)所示， ( )axq , 如式(3.66)所示， ( ) 0, =′ axq 。本例
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中很明显如图 5.14 所示的传动装置的非线性特可以采用上述结果，再结合本例中

的参数设置，设定非线性部分 ( )uF 的输入为 xxu += * ，其中 tax ωsin* = 为周期分

量， x 为不变分量。 ( )uF 经过谐波线性化后得 ( ) ( ) ( )axFxaxquF ,, * += ，其中谐

波放大系数 ( )axq , 如式(5.30)所示，由于 ( )axF , 在本例中不参与讨论，因此不予

计算。由于以下仿真以单位阶跃响应为稳定性研究对象，所以设定 1=x ，并设定

53.0=β ， 05.0=b 。  

                     ( ) ⎟
⎠
⎞

⎜
⎝
⎛ ++
−=

π
β 3211, qqqtgaxq                     (5.30) 

式中，
a

xb
a

xbq +
+

−
= arcsinarcsin1 ；

2

12 ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛ −
−

−
=

a
xb

a
xbq ；  

2

13 ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛ +
−

+
=

a
xb

a
xbq ；  

根据式(5.30)可求出 q与 a之间的关系如图 5.16 所示。  

  

图 5.16 qa − 曲线图  

根据图 5.16，同时参考飞机控制系统的实际要求，求得 574.0=mq 。  

5.3.6 波波夫稳定判据仿真与分析 

根据以上分析，对系统中传动装置做谐波线性化，并取得其谐波放大系数

( )axq , 的计算公式及其取值范围 [ ]mq,0 。由式(5.15)可得式(5.31)： 
                       ( ) ( )ocp qkppkkq ++= ψψδ ψψ                  (5.31) 

结合式(5.16)可得系统特征方程为式(5.32)，其中线性部分传递函数为 ( )ωjG ： 

        ( ) [ ] ( )
0

11 11
2

1
3

1

=

+++++=+ qkkpkkkqpqkTpTqjG pococ ψψω      (5.32)            

根据式(5.32)， ( )ωjG 如式(5.33)所示：  

( )
( )

23
1

11
2

1

ppT

kkpkkkpkT
jG pococ

+

+++
= ψψω                    (5.33) 
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其中实部与虚部如方程组(5.34)所示，式中 ψψ kkTkkkN poc 111 −+= ，即为式

(5.26)所得的绝对稳定性条件，以下讨论中 N 将保持相同意义。  

                         
( ) ( )
( ) ( )

( )⎪
⎪

⎩

⎪
⎪

⎨

⎧

+
+

−=

+

+
−=

22
1

2

3
1

22
1

2
1

2
11

1
Im

1
Re

ωω
ωω

ω

ωω
ω

ω ψψ

T
kTN

jG

T
kkkkT

jG

oc

p

                (5.34) 

设置系统部分参数值如下： 07.0=ock ； 8.0=ψpk ； 4.2=ψk ； 1.01 =k 。这些

参数值在以下讨论中将保持不变。  

通过修改时间参数 1T 的值， N 值与 ( )ωjG* 的 Nyquist 曲线将会发生相应的变

化，反应了根据波波夫稳定性判据所判定的系统稳定性与 N 值的关系。因为已经 
求 得 574.0=mq ， 可 得 7422.11 −=− mq ， 所 以 相 应 的 波 波 夫 线 将 通 过 点

( )0,7422.1 j− 。现取 3 个较为典型的 1T 值，再结合根据表 5.2 计算得出的 N 值如表

5.4 所示。根据表 5.3 做波波夫稳定判据仿真，同时以单位阶跃响应来验证系统稳

定性。  

表 5.2 波波夫稳定判据仿真参数  

T1 N 

0.33 0.0708 

0.625 2.7756e-017

0.7 -0.0180 

根据表 5.3 进行仿真，有以下三种情况：  
(1)当确保 0>N 时，例如 33.01 =T 时，波波夫线的斜率 h1 有较大的变化空间，

( )ωjG* 的 Nyquist 曲线保持在波波夫线的右边，此时系统处于绝对稳定状态。相  
应的单位阶跃响应趋于稳定。如图 5.17 所示。  

               

Im

Re

∞→ω

0→ω ( )ωjG*

0
( )07422.1 ，−

 
a) 单位阶跃响应图                    b) Nyquist 图 

图 5.17 T1=0.33 时单位阶跃响应图与 Nyquist 图  

(2)当开始进入 0→N 的状态时，例如 625.01 =T 时，只有当 01 →h 时， ( )ωjG*

的 Nyquist 曲线才可能保持在波波夫线的右边，相应的单位阶跃响应出现长时间  
的振荡，系统趋于临界稳定状态。如图 5.18 所示。  
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Im

Re

∞→ω

0→ω

( )ωjG*
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a) 单位阶跃响应图                        b) Nyquist 图 

图 5.18 T1=0.625 时阶跃响应图与 Nyquist 图  

(3)当 0<N 的程度越来越大，例如 7.01 =T 时， ( )ωjG* 的 Nyquist 曲线将进入

第二象限，只要波波夫线的斜率 01 ≥h ，都无法找到一条合理的波波夫线，使得

( )ωjG* 的 Nyquist 曲线一直保持在其右边，系统将处于不稳定状态。相应的单位  
阶跃响应会产生发散性振荡，无法达到稳定状态。如图 5.19 所示。  

            

Im
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a) 单位阶跃响应图                   b) Nyquist 图 

图 5.19 T1=0.7 阶跃响应图与 Nyquist 图  

5.3.7 总结 

(1)根据飞机偏航角控制系统的系统结构，运用叠加法得出李雅普诺夫函数V
及其导数 ( )xV ，并求得 0111 >−+= ψψ kkTkkkN poc 为系统绝对稳定性的充分条件。 

(2) 考虑到自激振荡是系统临界稳定时的状态，运用波波夫谐波线性化方法求

得 574.0=mq ，由此设定系统非线性环节 ( ) [ ]mquF ,0∈ 。  

(3)使用波波夫稳定判据，仿真图解系统线性部分修正后的 Nyquist 曲线与波

波夫线的位置关系。通过改变 1T 的值调整 N 的大小，会得到不同的 Nyquist 曲线

与波波夫线的位置关系，并与单位阶跃响应相对应。由仿真结果可见 1T 较小时，

系统较为稳定，单位阶跃响应较为平稳；当 1T 增大，导致不能满足 0>N 的条件时，

系统将产生较大振荡，破坏系统稳定，这种现象与实际飞机偏航角控制系统的运

行是相吻合的。  
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5.4 总结 

波波夫谐波线性化可以对复杂的非线性环节进行较为完整的描述，因此可以

较为广泛和灵活的运用在实际工程的很多研究中。在本章中，根据前面章节中对

波波夫谐波线性化的研究结果，主要对以下两个方面进行了扩展研究：  

(1) 以电动摩托车双闭环永磁无刷直流电机为研究模型，以其中速度环比例

放大环节和电流环比例放大环节为非线性环节，对在具有多非线性环节的条件下

运用波波夫谐波线性化分析系统自激振荡进行实例性的阐述。将计算结果与实测

进行对比，有效的说明了在研究具有多非线性环节的非线性系统时，采用波波夫

谐波线性化需要具体考虑系统的运行机制及各个非线性环节的运行阶段，当每个

非线性环节都运行在不同的阶段时，可以在某一个具体阶段只考虑一种非线性环

节，对其进行线性化，而其他非线性环节应该是处在其线性阶段，可以当做线性

环节处理，而不用再线性化。  

(2) 以飞机偏航角控制系统为研究模型，以其中传动装置为非线性环节，综

合李雅普诺夫直接法，波波夫稳定判据和波波夫谐波线性化，完成了该系统绝对

稳定性的研究。这部分的研究首先说明了自激振荡本身是一种临界的稳定状态，

研究自激振荡对整个非线性系统的稳定性研究是非常有意义的。然后说明了对非

线性系统的研究是一种无限逼近的研究，由于非线性环节本身的时变性和复杂性，

在研究的过程中一般会采用近似性的方法，比如波波夫谐波线性化是将非线性环

节近似为线性环节，而李雅普诺夫直接法是将非线性系统的稳定性近似于一个能

量函数的变化等。但合理的运用这些近似法就可以较为准确的表达非线性系统的

运行情况，同时各自的研究结果又可以相互借鉴，从而达到综合研究的效果。  
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结 论 
避免和控制自激振荡是保障闭环控制系统正常运行非常重要的因素。相平面

与描述函数法在研究相关自激振荡方面各有特点，但各有局限性。本文提了使用

波波夫谐波线性化作为一种可以更广泛处理实际工程中自激振荡问题的研究理

论。详细阐述波波夫线性化的应用方法，结合典型的闭环控制系统进行仿真计算，

并在此基础上进行波波夫谐波线性化的扩展运用，取得了以下创新型成果。  

1、波波夫谐波线性化以描述函数法理论为基础，从自激振荡稳定性研究出发

完成对描述函数法的基本思想的讨论。其中着重从线性系统的特征根稳定判据出

发，认为经过谐波线性化的非线性系统主要可采用幅相稳定判据，米哈依诺夫判

据和霍尔维茨判据进行稳定性判定。其中将线性系统中的奈奎斯特判据与幅相稳

定判据进行了对比分析，使用矩阵运算证明霍尔维茨判据，是一种更透彻理解非

线性系统线性化的新的思路。  

2、以实例分析的方法完成波波夫谐波线性化理论的分析阐述，重点在求解描

述函数法无法解决的自激振荡问题部分，主要包括非线性环节有外部输入时的情

况和非线性环节的特性是非奇对称的情况。同时根据非线性特性的不同，分为对

称的非线性特性和非对称的非线性特性，对产生这两种非线性特性的自激振荡参

数求解做了详细图解和数学推导。这部分工作总结性的完成了十几种典型的非线

性特性的自激振荡参数的图解和求解工作，并做出各参数之间的相对关系图，对

于今后相关研究工作有很好的参考性。  

3、以直流矿井提升机系统为典型闭环控制系统，具体对晶闸管-电动机矿井

提升机系统进行自激振荡的研究与求解。运用 MATLAB 分别与 Mathematic 和 

MAPLE 相结合，首次求解出晶闸管自激振荡参数的求解公式，详细列出高阶微

分方程导数求解，高阶微分方程组求解和高阶微分方程导数求解的代码及其原理，

对今后相关实际工程研究有很好的参考性。  

4、在晶闸管-电动机系统的研究过程中提出了在一个非线性系统中有超过一

个非线性环节时求自激振荡参数的实例。延续此思路，以电动摩托车双闭环控制

系统为实例，全面展开在一个非线性系统中多个非线性环节的解决思路，即在大

部分时候由于各个非线性环节的作用与工作时段不同，往往这些非线性环节不会

同时产生自激振荡，因此可以分时研究，即根据每个非线性环节的特性在某一个

工作阶段只研究一个非线性环节的自激振荡情况。通过仿真计算和实际情况的比

较，可以得出这个思路大体上正确的。这部分内容在以前诸多的与自激振荡相关

的文档中是很少提到的。  

5、将波波夫谐波线性化与李雅普诺夫直接法、波波夫稳定判据相结合对某飞

机偏航角控制系统稳定性进行分析。运用波波夫谐波线性化得出波波夫稳定判据
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的边界数据，由此得出飞机控制系统的稳定范围，并与李雅普诺夫直接法所得到

的稳定性判据相对应。首次将这几种方法联系在一起使用，提供了一种综合研究

非线性系统的方法。  

在今后的工作中，需要对以下内容进一步的加强研究：  

1、多非线性环节的深层次研究。虽然在第 4 章和第 5 章中出现了多非线性环

节的研究内容，但都根据其具体运行原理，在同一时刻只研究一个非线性环节的

自激振荡，虽然与实际情况是基本吻合，但在更多的工程运用中，多个非线性环

节同时作用于自激振荡的情况是大量存在的，不可以避开这点。在文献[72]中就

讨论过同时处理多个非线性环节产生自激振荡的方法，包含了对多个非线性环节

的特性合成，图解求值等步骤，在这个过程中可以发现对数频率特性图解方法是

一种比较适合的研究方法，而这种方法在我国的研究领域也有了很大的进展。因

此应该考虑从这一方面出发，与数学计算平台相结合，发展出多种经典非线性环

节同时产生自激振荡的数学模型。  

2、波波夫谐波线性化与其它研究方法的结合。波波夫谐波线性化最大的特点

是考虑了周期分量与不变分量同时存在的情况，同时比较完整的保留了非线性系

统的特征，并没有做太多的简化。这使得求解自激振荡的计算过程是相对比较复

杂的，这也限制了它在实际系统中的应用。但现今先进的计算平台解决大部分的

计算问题，但应该意识到这种定量定性的运算并没有太多的考虑运算本身的成本，

在对运算时间和精度要求非常高的环境中，波波夫谐波线性化依然有较大的改进

空间。在今后的研究中需要考虑运用计算优化的方法，逐步提高波波夫谐波线性

化的运行效率。更值得注意的是，自激振荡具有触发-振荡-稳定振荡-对设备产生

危害这一过程中，如果能够对以往已有数据进行分析及挖掘，在前期阶段预测到

自激振荡的发生及状态，对于系统的控制和稳定是具有很大意义的，因此这也将

是今后研究的重点。  
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图 2 整理特征方程代码截图  

 

 

图 3 系数按阶层排序代码截图  
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图 4 保存系数数组代码截图  

 

 

图 5 求取
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与ω代码截图  

 

 

图 6 求取米哈依诺夫判据代码截图  
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图 7 绘制幅相特性图代码截图  
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