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摘要

本文采用“对角笛卡尔网格法”数值模拟包括复杂几何边界的二

维不可压缩流动。对角笛卡尔网格法同时使用笛卡尔网格线以及笛卡

尔网格节点的对角线来模拟复杂的几何边界。经过验证，使用对角笛

卡尔网格法生成的近似边界比用锯齿笛卡尔网格法生成的近似边界更

加精确。在数值计算过程中采用基于单元中心的非交错网格，将动量

方程用有限分析法，在较大的控制体积上离散，将连续性方程在较小

的控制体积上离散。通过这样处理在边界上不需要确定压力边界条

件，同时也消除了不正确的压力棋盘现象。最后计算了旋转后的空腔

内的流动问题验证了本文所提到的方法。

关键词：对角笛卡尔网格，复杂几何边界，有限分析法，非交错网格
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Abstract

This paper uses Diagonal Cartesian

incompressible flows over complex

method for

boundaries．

simulation of

The method

approximates the complex geometry boundaries using both Cartesian grid

lines and diagonal lines of grid nodes．Some examples indicate that the

approximate boundary made by Diagonal Cartesian method is more

accurate than by the traditional Saw-tooth Cartesian method under the

same grid size．Based on cell—center nodes on non-staggered grid，

momentum equations is discretized using Finite Analytical method in a

bigger control volume while continuous equation is discretized in a

smaller control volume．By this treatment，there is no need to define

pressure boundary condition and the wrong pressure check—board

phenomenon is eliminated．Finally the flow in a rotated cavity is

simulated to verify the validity of the above methods．

Keywords：Diagonal Cartesian method，complex geometry boundaries，

Finite Analytical method，non—staggered grid
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第一章：引言

本世纪，计算机技术得到了飞速的发展，计算流体力学应运而生，

它使用数值计算这一手段模拟流体的流动问题，打开了流体力学发展

的新局面。在流体力学中，一些问题用数值模拟比做实验在时间和费

用上都节省的多，而且它的应用范围又比理论研究更加广泛。因此，

数值模拟已经成为研究流动问题的一个重要手段，部分地代替一些实

验研究。

在计算流体力学的历史上，用差分格式求解流体动力学问题时，

求解域的离散网格及其边界都取直线，但是在实际应用中，有许多问

题都包含有复杂的、不规则的几何曲边。在数值模拟此类问题时，对

这些不规则的曲边准确的近似非常重要，它直接影响计算结果的好

坏。对不规则几何曲边问题的研究仍然是一项挑战性的工作。

1．1处理复杂几何边界的重要性

许多在工程上广泛应用的问题都包括有复杂的几何边界。在预测

全球气候以及海洋环境时需要知道海洋内的流动情况，地球上的陆地

以及岛屿都具有不规则的形状，对这种问题的研究显然包括如何处理

不规则的几何边界。对飞行器周围空气流动以及传热的研究是设计高

性能飞行器的关键，由于飞行器的外形不规则，要研究好这类问题也

必须处理好不规则的几何边界。许多散热器的外形也非常复杂，它的

传热性能与散热器内的流动情况密切相关，研究这类问题显然也要处

理好它的不规则的几何边界。事实上，大多数工程问题都包括不规则
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的几何边界，由于存在不规则的几何边界，用理论的方法几乎不可能

得出结果，用实验的方法或者不可能或者代价很大。一种切实可行的

方法就是利用计算机数值模拟，当前迫切需要找到一种简单、通用、

精确的处理复杂几何边界的方法。

1．2处理复杂几何边界的常用方法

许多工程问题都包括有复杂的几何边界，处理好它们复杂的几何

边界在工程上有广泛的应用价值。因此，多年来人们对此作了广泛的

研究，总结出许多方法。如贴体坐标法、无结构网格法、重叠网格法、

锯齿笛卡尔网格法等。

1．2．1贴体坐标

贴体坐标法首先根据求解域的边界生成曲线坐标系即贴体坐标

系，这样，求解域的边界与坐标曲面(线)相重合。求解域在物理空

间呈现复杂的形状，而在变换后的空间内是矩形或者矩形的组合(三

维问题时为长方体或者长方体的组合)。在确定适当的贴体坐标后，

再将控制方程转换为贴体曲线坐标下的形式。有关贴体坐标的详细用

法可以参见有关文献，这里不再赘述。

几十年来，贴体坐标生成技术迅速发展，贴体坐标也得到了日益

广泛的应用。它的出现无疑是数值模拟流动技术的一个巨大进步。但

是，应当认识到贴体坐标法也存在一些缺陷。首先，它需要为每一个

物体生成新的贴体坐标，而生成贴体坐标又是相当费时费力的。其次，

在曲线坐标下控制方程的形式远比在直角坐标下复杂，使得数值计算

更加烦琐。最后，由于坐标形式的复杂性和多样性，坐标变换一般不



南京理工大学硕士论文 第3页

能用解析的形式，而只能用离散的方法，多种参数的微分只能用差分

来代替，这样在计算时就会产生附加的误差。当采用非正交网格时更

是如此。

1．2．2无结构网格

无结构网格起源于有限元法。近年来，人们在有限元法的启发下

开拓了将有限差分法直接应用于无结构有限元网格中，这既大大扩展

了有限差分法的应用，又避免了有限元法生成大规模的代数方程组及

其因非线性而造成的求解的困难性。原则上讲，无结构网格具有任意

的形状，但为了容易实现，对二维问题多用三角形网格，对三维问题

多用四面体网格。由于无结构网格的安排无序，加之三角形(四面体)

的形状多变，它可以应用于求解具有复杂几何边界的问题。有关无结

构网格的详细用法可以参见有关文献，这里不再赘述。

无结构网格是一种有前途的新发展方向，但这一方向有一些棘手

的问题急需解决。首先，无结构网格的生成，特别是三维情况，是十

分耗时的烦琐工作，需要找到通用的高速有效的生成方法。其次，对

无结构网格，高精度的差分格式难以应用。最后，无结构网格应用于

不可压流场困难较大，主要原因是不可压缩流体流动方程中没有显式

的压力方程，压力耦合求解比较困难。

1．2．3重叠网格

重叠网格也可用于求解具有复杂几何边界的问题。对具有复杂几

何边界的问题，当难以采用单个网格时，可以生成几个矩形的规则网

格互相重叠，每个子网格可以具有不同的精细程度。这就是所谓的重
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叠网格。有关重叠网格的详细用法可以参见有关文献，这里不再赘述。

使用重叠网格后，整个计算区域被分成几个具有简单几何形状的

子区域，每个子区域可以分块计算，使问题得以简单化。但是，在区

域内边界上需要处理边界条件，这一点非常复杂。各个子区域之间需

要传递信息，以使整个物理区间上的计算是协调的，使用内插是传递

信息的最简单的方法，但不能保证守恒性。当计算包括类似激波那样

的间断流动时，计算格式的守恒性是重要的。此外，如果要解决的问

题的几何边界非常复杂，将造成子区域过多而使计算难以进行。

1．2．4锯齿笛卡尔网格

在计算中用锯齿形的折线来代替复杂的几何边界就叫做锯齿笛卡

尔网格法。这种方法的优点在于无论是在控制方程的形式，还是在数

值计算阶段，它都比较简单。另外，这种方法能够自动生成网格、自

动处理复杂的边界，便于编制出具有通用性的程序。其主要缺点在于

用这个方法构成的边界是锯齿形的，即使网格划分的很精细，用锯齿

形折线模拟的边界仍然是粗糙的，有时候难以满足人们的需要。

1．2．5对角笛卡尔网格

为了克服锯齿笛卡尔网格法模拟边界精度较差这一缺点，美国学

者Chen等提出了对锯齿笛卡尔网格法的改进，即对角笛卡尔网格法。

这一方法继承了锯齿笛卡尔网格法的优点，并在某种程度上克服了锯

齿笛卡尔网格法的缺点。锯齿笛卡尔网格法仅仅使用网格线来模拟复

杂的几何边界而造成精度较差，而对角笛卡尔网格法既使用网格线又

使用网格节点的对角线来模拟复杂几何边界。可以想象，其精确程度



南京理工大学硕士论文 第5页

较锯齿笛卡尔网格法高。

1．3本文的主要内容

本文拟采用对角笛卡尔网格法数值模拟包含有复杂几何边界条件

的不可压缩粘性流动问题。这一章已经讲述了处理复杂几何边界的重

要性以及常用的方法；第二章将给出不可压缩流动的控制方程及其边

界条件，并给出了用有限分析法离散动量方程的公式；第三章介绍如

何使用对角笛卡尔网格法自动模拟复杂的几何边界，同时将生成的模

拟边界同用锯齿笛卡尔网格法生成的模拟边界作比较，以此验证对角

笛卡尔网格法的精确程度；第四章讨论具体的计算方法，包括具体的

计算公式、在边界处对压力边界条件的处理、收敛的判据以及完整的

计算流程；第五章以空腔问题为例来验证对角笛卡尔网格法；第六章

总结了全文的工作并对后续工作提出了建议。
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第二章：不可压流的控制方程及其

离散方法

这一章讨论不可压粘性流动的控制方程及其边界条件和初始条

件，然后讨论如何使用有限分析法离散动量方程。在考虑控制方程时，

我们假设所研究的流体为不可压缩的牛顿流体，密度、粘度、热传导

系数均为常数。

2．1控制方程及其定解条件

2．1．1控制方程及其无量纲化

对二维不可压流，质量方程、动量方程、能量方程分别为：

u，+■=0 (2．1．1)

Ur+UU，+阿，=一鲁州Uxx+％)

_+u_+％=一告+V(％+％)
t+u0+矿0=口(k+乙)+5

其中，口=jKi，s为能量方程中的源项。

(2．1．2)

(2．1．3)

(2．1．4)
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旭常为』计算万便，-g常便用无量荆化的控制万程，即选择特征

长度L、特征速度U。、温度差AT、参考温度乙、以及密度。等对方

程(2．1．1)、(2．1 2)、(2．1．3)、(2．1．4)无量纲化。以下是由特征物理变量

定义的无量纲参数：

x‘=Zx，y．=Zy，，=丁rUo (2．1．5)

扩2护U—V0，P．2去 亿¨，
o’

’

p明
、 ’

口：T-．，T,ty (2．1．7)
△丁

、 7

使用上述无量纲变量，控制方程变成：

U，十K=0 (2．1．8)

ut+UUx+M已，y=一只+去(un+u∥) (2—1·9)

K+UV．+嘎=一0+面1(％+％) (2．1．10)

0t+U日x+VOy=去(铊+㈨+s (2．111)

其中，Re：Vo__LL，Pe=V--Re，s为无量纲化的源项。
V 口

2．1．2边界条件和初始条件

上一节所述的控制方程中，动量方程(2．1．9)、(2．1．10)在空间上是

椭圆形的，在时间上是抛物形的。因此，速度边界条件要定义在整个

边界上，初始条件则定义在整个区域内。与动量方程类似，能量方程
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(2．1．11)也是在空间上为椭圆形的，在时间上是抛物形，其温度边界

条件、初始条件也与动量方程类似。

可以看出，能量方程与动量方程以及连续性方程是互相独立的，

联立动量方程以及连续性方程就可以解出速度场。因此可以先解动量

方程以及连续性方程得出速度场后再解能量方程。因为没有状态方

程，而且能量方程与动量方程以及连续性方程独立，所以找不到显式

的压力方程求压力场。基于这个原因，在计算不可压流动时，如何采

用合适的压力边界条件仍然有必要作进一步的探讨。在第四章中将要

详细讨论一种处理压力边界条件的方法，它通过使用边界上速度的信

息来避免确定边界上的压力值。

2．2有限分析法

2．2．1有限分析法的基本理论

在求偏微分方程数值解时，有多种离散方法，如有限差分法、有

限元法、有限分析法等。有限分析法的基本思想就是在微分方程的数

值计算中嵌入局部解析解。这就是它与有限差分法和有限元法的不同

之处。它与有限差分法、有限元法的共同之处是仍然把计算区域分成

若干个小单元。

对于非线性或准线性的微分方程经过局部线化后，有限分析解可

表示为代数的形式，并重叠覆盖着计算域的每个区间。这样就得到一

组代数方程组，求解这些方程组而可以得到数值解。
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2．2．2九点有限分析解

假设计算区域如图2．2．1所示，对NS方程采用有限分析法离散后

l P

『
＼ rl

＼

图2．2．1计算区域

硎 虻 舵

-C P |c

-1 计 SC SE

图2．2．2九点有限分析解

对P点可以建立这一点与它相邻的八个点之间的关系，如图2．2．2所

示。这种离散方法建立了九个点之间的关系，可以称为九点有限分析

法。许多文献上有九点有限分析法的详细推导过程，这里我们直接给

出它们的关系式，具体的推导过程不再赘叙。

对二维非定常流，有限分析解表示为：

(，，=a，∑乙(C。。u抽)+(1一位，)U；一a，s1(o缸p) (2．2．1)

咋喝∑：：．‰¨+0呜”呜讳㈤ (22_2)

其中：

1口。2—1+(Cp—Re／At)
SP=CP Re

(2．2．3)

(2．2．4)
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这里上标0表示上一个时间步长的速度值，e。为有限分析系数，在

附录A中将给出计算九点有限分析系数的具体公式。

2．2．3五点有限分析解

从前面几章我们可以知道，对角笛

卡尔网格法在使用笛卡尔网格线的同时

也使用网格点的对角线来模拟复杂的边

界。考虑如图2．2．1所示的Pl点，因P1

点位于对角边界附近，在这一点上，我

们无法使用九点有限分析法离散。对这

样的点可以采用五点有限分析法，建立

这一点与它直接相邻的上、下、左、右

四个点，如图2．2．3所示，之间的关系。

虻

／ ＼
?lc

＼ e／
EC

SC

图2．2．3五点有限分析解

五点有限分析法的有限分析系数的计算公式在附录B中给出。这

里仅仅给出用五点有限分析法离散的公式如下：

吣口一∑4。。‰㈦+(1-郇"喝Q，(蓑) (22s)

％喝∑_‰咖m，”qQ，(刳 (2．2．s)

其中：

郎2讯翻 @·2‘7)

绋=CpRc (2．2．8)

同样，上标0表示上一个时间步长的速度值，C。。为有限分析系数。
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2．3小结

这一章首先给出了二维不可压流的控制方程以及定解所需的初始

条件和边界条件。在用有限分析法离散动量方程的时候，在流体区域

内部以及规则边界(边界为笛卡尔网格线)附近的点上用九点有限分

析法离散，在临近复杂边界(边界为笛卡尔网格节点的对角线)的点

上用五点有限分析法离散。
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第三章：生成模拟边界

这一章讨论用对角笛卡尔网格法根据原始的复杂几何边界在笛卡

尔网格下自动生成模拟边界。并把生成的模拟边界与用锯齿笛卡尔网

格法生成的模拟边界相比较，以验证对角笛卡尔网格法生成的模拟边

界的精确性。

3．1．1概述

3．1对角笛卡尔网格法简介

锯齿笛卡尔网格法应用笛卡尔网格线来模拟复杂的几何边界，而

图3．1．1用锯齿笛卡尔网格法模拟 图3．1．2用对角笛卡尔网格法模拟
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对角笛卡尔网格法同时用笛卡尔网格线以及笛卡尔网格节点的对角线

来模拟复杂的几何边界。用锯齿笛卡尔网格法生成的模拟边界以及用

对角笛卡尔网格法生成的模拟边界分别如图3．1．1和图3．1．2所示。

可以看出图3．1．2的模拟边界比图3．1．1的模拟边界更加接近原始边

界。以下讨论模拟方法上的一些考虑。

3．1．2最短距离原则

凭直观感觉可以模拟任何复杂

的边界。但是，对非常复杂的边界，

例如边界由大量的离散点组成，难

以想象用手工方法生成模拟边界。

必须找到一种通用的、利用计算机

高速、自动处理数据的特性、能在

笛卡尔坐标系下自动生成模拟边界

的方法。

]

y
，
／c
，

B／
●， b
^

本文采用最短距离法确定模拟 图3．1．3最短距离法确定模拟点

点。假设原始边界由曲线S描述，

如图3．1．3所示。‘A’、‘B’、‘C’是原始边界曲线给定的相邻的两

点。则距离A点最近的网格节点‘a’即是‘A’的模拟点，同样‘b’

为‘B’的模拟点，‘c’为‘C’的模拟点。在S上选择一系列能体

现S特征的点，分别找出它们的模拟点，模拟点即组成了原始边界

的模拟边界。
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3．1．3单调性原则

大多数复杂的几何边界可由一系列的离散点来描述，有些也可以

用一些解析函数来描述。为了数值处理的方便，我们假设所有的复杂

几何边界都由一系列的离散点描述，即使构成复杂边界的某一部分由

解析函数描述，也把它转换成一系列的离散点。

离散点的个数是有限的，考虑如图3．1．4所示的曲线s，如何从曲

线s上选择尽可能少的点，并能体现这个曲线大致的特征呢?本文

用单调性准则来作到这一点。单

调性准则定义为对任何相邻的

两个离散点(例如图3．1．4中的

A，B两点)之间的曲线段在X

方向和Y方向都是单调的。用数

学描述为：对任何相邻的两个离

散点之间的曲线段满足以下两

条：

1．在X方向和Y方向都没有最

大或最小值；

2．其二阶导数不变号；

H

图3．1．4用单调性准则选择离散点

使用这个准则，图3．1．4中的曲线可以用15个点来近似描述，把这1 5

个点用直线相连，就近似地认为所得到的轮廓线模拟原始的轮廓线。

3．1．4合理的离散点密度

仅仅通过单调性准则选择的离散点来描述原始的边界曲线仍然不

太精确。为了精确的模拟原始边界，还需要增加离散点的个数。但是，
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是否离散点越多，模拟出来的边界就越精确呢?事实情况并非如此。

如图3．1．5所示，假设曲线S是组成原始的边界的一段曲线，在

曲线上选择5个离散点(‘A’、‘B’、‘C’、‘D’、‘E’)来描述这个曲

线。‘a’、‘b’、‘c’、‘d’、‘e’是通过

最短距离法确定的5个模拟点。结果是

A．B．c．D—E被模拟为a．b．c．d．e，看起来

象是用锯齿笛卡尔网格法生成的模拟边

界。也许，用a．c．e来模拟A．B．C．D．E

更加合适。这种现象给我们的启示是有

时候给定的离散点过多时，模拟的边界

不一定好。为了避免这种不合理的现

象，当给定的一些离散点太近时，有必

E
d ，

C∥
，，彳
≮ b

奇
dI

图3．1．5离散点太密导

致模拟不精确

要去掉那些多余的离散点。这里采用如下的判据：

lXI—X 2I≤o．70dr

IYl—Y 2I≤0．70dy

如果两个相邻的离散点G．，Y．)和

b：，Y：)同时满足上述两式，那

么，这两个离散点中的一个应去

掉。

另外一种情况正好相反，如

果选择的离散点太少，得出来得

模拟边界也不精确。如图3．1．6

所示，对曲线如果只给定‘A’、

‘E’两点，那么得出来得模拟

曲线为a．e，显然，用a-b—c-d．e

来模拟原始曲线S更加精确。

(3．1．1)

(3．1．2)

^E
／

J，

／

／

J，
d

，

彳，
，

C

／‘

厶以／b
一

一

^ 茸
如

图3．1．6离散点太疏导致模拟不精确
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这意味着，如果给出得离散点太少，使得相邻两点的距离太远时，将

导致模拟边界不精确。为了精确的模拟原始边界，有必要增加离散点

的个数。判断相邻两点的距离是否太远时可以采用如下的判据：

lxl—x 2I≥1．40出 (3．1．3)

IYl—Y 2I≥1．40砂 (3．1．4)

如果两个相邻的离散点G。，Y，)和G：，Y：)同时满足上述两式，那么，就

要在这两个离散点中至少增加一个点。

3．2衡量模拟边界准确性的标准

从以上各节可以知道，通过对角笛卡尔网格法，复杂的几何边界

轮廓曲线可以用笛卡尔网格的网格线以及网格节点的对角线来模拟。

从直观感觉上很容易看出，用对角笛卡尔网格法生成的模拟边界比用

锯齿笛卡尔网格法生成的模拟边界要精细，与原始边界更加接近。然

而，如何定量的表示一个模拟边界与其原始边界的差距呢?下面我们

讨论三个衡量模拟边界准确性的标准。

3．2．1相对长度误差E1

首先是相对长度误差E1。我们已经知道，原始边界以及模拟边界

都是由一系列的离散点组成。假设叱表示描述原始边界的离散点的
个数，Ⅳ。表示模拟边界的离散点的个数，Ax和缈分别为两个相邻

点在x方向和Y方向上的差值，则原始边界的长度￡。。，模拟边界的

长度工。可以用数学公式表示为：

三。=∑：“(△o) (3．2．1)
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其中

k=∑?k)

(At。。)，：瓜砑瓣
(3．2．2)

(3．2．3)

(△，。l=√(砖。Z+(缈。Z (3t24)

我们定义相对长度误差为：

El：—]L—on=_-～Lom]×loo％ (3．2．5)
L州

理所当然，一个较好的对原始边界的模拟边界应该具有较小的相对长

度误差El。

3．2．2平均标准距离误差E2和最大标准距离误差E3

另外两个衡量模拟边界准确性的标准为平均标准距离误差E2和最

大标准距离误差E3。模拟边界与原始边界的标准距离越大就说明用

模拟边界来代替原始边界的可信度越低。

下面来讨论标准距离这个概念。图3．2．1

所示曲线S为复杂几何边界轮廓的一部分，

这里‘a’为组成模拟边界的离散点，‘A’、

‘B’为描述原始边界的离散点它和原始边

界的真实距离为am。但是正如前面所述的

那样，这个原始边界也是由一系列的离散点

描述，我们并不知道在离散点之间边界曲线

的变化，其真实距离也就难以求出。因此在

图3．2．1标准距离示意图
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这里我们用标准距离an来代替真实距离am。为了得到无量纲的平均

标准距离误差E2和最大标准距离误差E3，可以取计算区域的特征长

度为参考长度。用数学公式可以表示为：

E2：=—AN—D
￡o

(3．2．6)

E3：_MND (3．22．7)=一 (j．．，l

其中：

一ⅣD：攀盟 (32．8)
Napp

MND=max(an)f (3．2．9)

在本文中，计算区域的特征长度厶，由下式定义：

Lo：—Lx_+Ly 一．2．10)i．a一
^

··

这里，厶和巧分别表示计算区域在x方向和Y方向上的长度。

对原始边界的精确模拟，其模拟边界应该同时具有较小的El、

￡2和E3。从后面的章节可以知道用对角笛卡尔网格法生成的模拟边

界与用锯齿笛卡尔网格法生成的模拟边界相比，其E1、E2和E3值都

较小。

3．3模拟两维复杂几何边界的例子

为了证明用对角笛卡尔网格法生成的模拟边界比用锯齿笛卡尔网

格法生成的模拟边界更加精确，在这一节里，我们分别用这两种方法

来模拟一些常见的几何边界，并且比较它们的相对长度误差E1、平

均标准距离误差E2和最大标准距离误差E3。最后可以得出用对角笛
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卡尔网格法生成的模拟边晃比锯齿笛卡尔网格法生成的模拟边界更加

精确的结论。

3．3．1分别用两种方法模拟圆形

第一个例子为圆，在计算流体力学中，流体绕圆柱流动是一个经

典的问题。在笛卡尔网格下，圆是一个复杂的几何形，这里我们分别

使用锯齿笛卡尔网格法和对角笛卡尔网格法模拟圆形，并将两种方法

生成的模拟边界作比较。

在网格密度为51×51时，分别用锯齿笛卡尔网格法和对角笛卡尔

网格法生成一个圆的模拟边界如图3．3．1、图3．3．2所示。经过计算，

用锯齿笛卡尔网格法生成的模拟边界其E1=27．32％、E2=

O．7226×10‘2、E3=O．2202×10～；用对角笛卡尔网格法生成的模拟边

界其E1=9．611％、E2=0．4821 x10。2、E3=0．1232x10～。可见在这个

网格密度之下，用对角笛卡尔网格法能比用锯齿笛卡尔网格法更加精

确的模拟原始边界。在更加精密的网格下情况如何呢?图3．3．3、图

3．3．4是在网格密度为301×301时分别用对角笛卡尔网格法和锯齿笛卡

尔网格法生成的模拟边界。经过计算，用图3．3．3所示的模拟边界，

其E1=27．19％、E2=0．1214X10-2、E3=0．3414X104，图3．3．4所示的

模拟边界，其EI=13．57％、E2=0．9237X10一、E3=0．2278×10～。

图3．3．5、图3．3．6、图3．3．7给出了用对角笛卡尔网格法和锯齿笛

卡尔网格法方法分别模拟圆形，其误差E1、E2、E3变化与网格密度

之间的关系曲线。从这三个图，我们可以看出，在各种网格密度之下，

用对角笛卡尔网格法来模拟圆形总是比用锯齿笛卡尔网格法更加精

确。
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图3．3．1网格密度51 X 51 用

锯齿笛卡尔网格法模拟圆形

o．o 01 02 03 o．4 0．5 0．6 07 08 09 1 o

图3．3．3网格密度301x 301用

锯齿笛卡尔网格法模拟圆形

图3．3．2 网格密度51 x 51 用

对角笛卡尔网格法模拟圆形

图3 3．4网格密度301 x 301用

对角笛仁尔网格法模拟圆形

佃∞∞盯∞咕¨咐眈叫∞
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。——对角笛卡尔法
。

⋯⋯⋯⋯·锯齿笛卡尔法

．厂———、
网格密度HXH 网格密度HXH

图3．3·5模拟圆形时网格密度与
图3．3．6模拟圆形时网格密度与

E1之间的关系
E2之间的关系

f璐密度HXH

图3．3．7模拟圆形时网格密度与

E3之间的关系

g盎刺蕈匿*

oo=霜醐瞪矗叫掣蜂K哪
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3．3．2分别用两种方法模拟斜位正方形

第二个例子为斜位正方形。空腔内的流动问题也是验证数值计算

方法的一个经典问题。把空腔旋转一个角度(本例中为30度)，它在

笛卡尔坐标下就变成了一个复杂的几何形。

图3．3．8、图3．3．9是在网格密度为51X 51时，分别用锯齿笛卡尔

网格法和对角笛卡尔网格法生成的模拟边界。经过计算，用锯齿笛卡

尔网格法生成的模拟边界，其El=32．50％、E2=0．8624X10～、

E3=O．1971 X10～；用对角笛卡尔网格法生成的模拟边界其

E1=11．02％、E2=0．5945 X10‘2、E3=0．1239×10～。图3．3．10、图3．3．11

是在网格密度为301X301时，分别用锯齿笛卡尔网格法和对角笛卡尔

网格法生成的模拟边界。经过计算，用锯齿笛卡尔网格法生成的模拟

边界，其E1=36．67％、E2=0．1487×10～、E3=0．3628×10～；用对角

笛卡尔网格法生成的模拟边界，其E1=13．24％、E2=0．1008×10～、

E3=O．2232X10～。

图3．3．8网格密度5l×51 用锯

齿笛卡尔网格法模拟斜位正方形

图3．3．9网格密度51×51用对

角笛卡尔网格法模拟斜位正方形

仰∞∞叮∞帖¨们啦叫∞仙∞啪吖∞畦¨∞呛刚叩
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图3．3·10网格密度301×301用锯
图3．3．1l网格密度301×301 用

齿笛卡尔网格法模拟斜位正方形 对角笛卡尔网格法模拟斜位正方形

网格密度HXH 网格密度H XH

图3．3．12模拟斜位正方形时网 图3．3．13模拟斜位正方形时网

格密度与El之间的关系 格密度与E2之间的关系

一甚鬲躺噬螂半盔*
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． 图 3．3．12、 图

3．3．1 3、图3．3．14给出

了用对角笛卡尔网格法

和锯齿笛卡尔网格法方

法分别模拟斜位正方形

其误差E1、E2、E3的

变化与网格密度之间的

关系曲线。从这三个

图，我们可以看出，在

各种网格密度之下，用

对角笛卡尔网格法来模

拟斜位正方形同样总是

比用锯齿笛卡尔网格法

更加精确。

虽

磊
裂
罄
掣
蜷

菩

图3．3．14模拟斜位正方形时网格密

度与E3之间的关系

3．4小结

从以上两个例子我们可以看出，在相同的网格密度之下，使用对

角笛卡尔网格法生成的模拟边界总是比用锯齿笛卡尔网格法生成的模

拟边界更加精确。同锯齿笛卡尔网格法一样，对角笛卡尔网格法也能

够很方便的为复杂的几何边界自动生成模拟边界和计算网格。在自动

性与精确性中找到了更好的结合点正是对角笛卡尔网格法的优势所

在。
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第四章不可压流的数值分析

这一章讨论在笛卡尔坐标下数值模拟不可压流流过复杂边界的具

体方法。采用基于单元中心的非交错网格，把所有的变量都定义在单

元中心。对规则的边界同时在边界上定义速度，以此来避免确定压力

边界条件的困难。通过在一个选定的靠近边界的控制体积上的离散连

续性方程来保证质量守恒，从而消除了计算中的压力震荡(棋盘现

象)。对不规则的边界，由于使用了对角笛卡尔网格法，有一些边界

点位于笛卡尔网格点上，而另外一些点位于网格中心，即所谓对角表

面点，对它们的压力边界条件需要特殊的处理。采用控制体积法来保

证这些边界附近的质量守恒。

4．1网格排列方式

在数值模拟流动问题中，网格排列方式起着重要的作用。交错网

格和非交错网格是两种常见的网格排列方式。

uJ

uJ

u|

np uJ ，，p u’ ，，P uJ

^P仉 ‘P uJ np u，

图4．1．1基于单元顶点的

非交错网格示意图

uJ vJp u，vJp u，vJp
● _

uJ Up uJ vJp U vJ p
● ● -

图4．1．2基于单元中心的非

交错网格示意图
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4．1．1非交错网格

在非交错网格中，变量都存贮在网格的同一点上，既可以是网格

顶点也可以是网格单元的中心，分别如图4．1．1，图4．1．2所示。非交

错网格的主要优点是编程容易、占内存小。在非交错网格中，当质量

方程采用中心差分，同时动量方程的压力梯度也采用中心差分时，就

会产生非物理震荡，这就是所谓的压力棋盘现象。可能产生压力棋盘

现象是非交错网格的主要缺点。使用交错网格可以弥补这一点。

4．1．2交错网格

在交错网格中，压力点设置

在网格中心，而X方向速度u设

置在网格左右边，Y方向速度V

设置在网格上下边，如图4．1．3

示。

控制体积内的NS方程的有

限差分解要求速度既满足质量方

程，又满足动量方程。在交错网

格中，压力定义在网格中心，速

Vi．j+llg Vi+l，j+i12
一

Ui—l’ ‘2，J；i．uil‰屯一： +312，J
一

Vi，j-112 Vi+1．j-1，2

图4．1．3交错网格示意图

度定义在网格边界上，这样做的最大好处在于使相邻节点上的压力差

而不是相间节点上的压力差成为控制体界面上的速度分布的驱动力，

从而避免了棋盘式压力场的出现。

然而，在计算包括复杂几何边界的流动问题时，交错网格的速度

和压力存储在不同的节点上，这就导致所需的机时和内存加大。而且，

在复杂的几何边界下，不同变量以及在交错网格中的节点的位置难以
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确定。因此在解决具有复杂几何边界的问题时，不宜采用交错网格。

4．1．3基于单元中心的非交错网格

由于要讨论的问题包括复杂的几何边界，采用交错网格困难太大

而不可取。因此，本文采用非交错网格，并且所有的变量都定义在单

元中心。

在模拟不可压缩流动时，因为没有状态方程，而且能量方程独立

于动量方程以及质量方程，所以没有显式的压力方程来确定压力场。

本文首先通过采用有限分析法离散的动量方程求出预估速度，再

将预估速度代入用有限差分法离散的连续性方程中，在非交错网格上

直接得到压力方程而不是压力校正方程。为了消除压力棋盘现象，可

以将质量方程在较小的控制体积，如图4．1．4

中的‘senw’上离散，而将动量方程在较大

的控制体积，如图4．1．4中的‘SEWN’上

离散。单元表面上的速度U。、U。、K、以

可以从用有限分析法离散的动量方程式

(4．1．1)求出。

卟u-aeSe(箬)。 ∽¨，

其中单元表面预估速度以、u：、巧、巧

可以通过LIM(线性内插法)或者MWIM(动

量加权内插法)求出。

以u：为例，线性内插法的计算公式如下，

式如之类似。

l唧 NC NE
- - ●

n

WC·w然 e·EC
S

洲。
-

SC SE

图4．1．4选择在合适

的控制体上离散

计算u：、巧、《的公
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以：丝当 (4．1．2)

节点的预估速度，例如啡可以表达为：

啡=口，∑：。。‰U。)+(1一a，” (4．1．3)

计算单元表面预估速度以、U：、巧、巧还可以使用MWIM(动

量加权内插法)求得，以以为例，它的计算公式为：

以=佐吒叱l+(1一吼)啦 (4．1．4)

其中：

吒：篮箬 (4．15)

耻华 (41．6)

u?：丝掣 (4．1．7)
Z

MWIM(动量加权内插法)反映了动量方程的非线性，应该更加合

理，而LIM(线性内插法)比较简便、消耗更少的CPU时间和内存。

实际上用这两种计算方法计算的结果相差不大，在雷诺数不大、网格

不很精细的时候更是如此。因此，在计算程序中采用线性内插法。

通过这种安排的网格结构可以消除压力棋盘现象，而且其所需的

存贮量和计算量以及编程难度都比交错网格小。

4．2流体区域内部节点的计算方法

不可压缩流的无量纲化的连续性方程和动量方程如式(4．2．1)、

(4．2．2)、(4．2．3)所示：
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U，+∥。2 0 【4·2·1)

u·+【，【，x+矿己，y 2一只+志(u“+uw) (4·2·2)

K+u_+嘎2—0+面1(比+‰) (4-2·3)

相应的Dirichlet边界条件为：

V=V6。 (4．2．4)

在小控制体积，如图4．1．4所示的‘senw’，上满足连续性方程(4．2．1)，

而在大控制体积，如图4．1．4所示的‘SENW’，上满足动量方程(4．2．2)

和(4．2．3)。

在小控制体积‘senw’上离散连续性方程(4．2．1)可以得到如下的

离散的连续性方程：

—Ue-—Uw+Vn-Vs；0 (4．2．5)

方程(4．2．5)中的单元表面速度U。、U，、吒、一通过有限分析法可以

用下式表示：

卟小叫篆]。 ∽z∽

u。=u：一口，s，(篆)。 c4．2．，，

吒=巧飞&(爹)。 ㈤z∞

t以叫现 ∽2∽

在上述四式中的U：、u：、巧、一是不考虑压力影响的单元表面的
预估速度。用下式定!；[：
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以=吒∑：。．蛾％)+(1一吼雕

u：=a。∑：。峨％)+(1一吼赋

巧=％∑：。．慨％)+(1一％"

一=q∑：。‰％)+(1一％"

(4．2．10)

(4．2．11)

(4．2．12)

(4．2．13)

以上四式中，上标0表示上一个时间步长的速度值，e。为有限分析

系数。

式(4．2．6)、(4．2．7)、(4,2．8)、(4．2．9)中的压力梯度项通过中心差分用

下式计算：

(警]。=必XE--Xp
(a=姓Xw--Xp

(4．2．14)

(4．2．15)

f芸1-生墨 (4．2．16)
L砂J。YⅣ一Y，

⋯⋯

f芸1：姓 (4．2．17)
L勿J，Ys—YP

⋯⋯

式(4．2．6)、 (4．2．7)、 (4．2．8)、 (4．2．9)中的口。、口，、％、口，、Se、

S。、Sn和Ss表示为：

旷半
铲半
，铲堕≯

铲半
(4．2．I 8)

(4．2．19)
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c一苎亘±苎￡
o。一
2

’

耻攀，
c一点芝±曼￡
o”一

2

Ss：墅兰
Z

(4．2．20)

(4．2．21)

％、口Ⅳ、口Ⅳ、％、坼、SF、S∥、SⅣ、Ss和SP由下式给出：

％2百瓦l面面，口r=甬i1面面(4．2．22)

口w 2甬丽1，％=可丽l (4．2．23)

l
口P 2—1+(Cp—Re／At) (4．2．24)

SE=CERe，昂=CwRe (4．2．25)

SⅣ=CⅣRe，Ss=Cs Re (4．2．26)

SP=CpRe (4．2．27)

将式(4．2．6)、(4．2．7)、(4．2．8)、(4．2．9)、(4．2．14)、(4．2．15)、(4．2．16)

和(4．2．17)代入式(4．2．5)就可以得到下面的离散的压力方程：

nPPP=aEPE+矿P0+a“PN+nsPs一口 ¨．2．28)

其中：

D·：业+!皇三
xe—zw YH—Yf

系数口占、口∥、aⅣ、口3、口’由下式给出：

矿=F蓑高
∥=F‰

f4．2．29)

(4．2．30)

(4．2．3 1)
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口”2瓦刁tT丽。nSn万习(4．2．32)

口5

2瓦弓a历sSs_习(4．2．33)
aP=a5+aⅣ+aⅣ+a5 f4．2．34)

式(4．2．29)中的单元表面预估速度U：、u：、巧、一可以通过4．1节

介绍的线性内插法或者动量加权内插法计算。

从离散的压力方程(4．2．28)可以看出，单元中心点P的压力值与P

点的四个临近点‘E’、‘w’、‘N’和‘S’的压力值相关。因此不会

出现不正确的压力棋盘现象。

4．3处理规则边界附近的压力边界条件

4．3．1边界虚拟点

如果要研究包括传

热现象的流体流动的问

题，就存在内外两个边

界，内边界是流体和固

体的分界面，在流体区

域必须满足质量、动

量、能量守恒，在固体

区域只要考虑热传导。

应该注意到，在使用基

瑚 iN ：NE
-

7

i
⋯J

：n

一即篪 e 。E一⋯_
：s

例 卜拓～ _-●-●_ 一一《

SE

o——边界虚拟点
图4．3．1边界虚拟点示意图
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于单元中心的非交错网格时，内边界不经过任何节点，如图4．3．1所

示。为了保证内边界的边界条件，我们总是希望边界上也定义变量。

这里使用边界虚拟节点法。使用这个方法，内边界由一系列的虚拟节

点组成，这些点位于网格节点的中间，在图4．3．1中用小圆圈表示。

在这些虚拟节点上，可以使用相应的速度边界条件。使用边界虚拟节

点后，此类问题的压力方程同样不需要压力边界条件。

4．3．2靠近规则边界的点的处理

对临近规则边界(边界为网格

线)的单元中心点，如图4．3．2中

所示的P1点，在控制体积

‘Wsen’上离散连续性方程

(4．2．1)得到：

—U,-—Uw+丘当；o (4．3．11
xe—x∥ Y。一Y。

‘

NW

W

SW

⋯姬～ ：怒

：13．

彩 e-．iE—
is

⋯?§一一 ⋯?§E一

图4．3．2临近边界点的处理

％可以从边界条件中得知，而

不需要从(4．2．11)求出，同理，

可以导出下面得离散的压力方程：

n’PP=nEPE+矿％+aNPN+nsPs—D'

其中：

D·：妞+堕里
xe—x∥ YH—Yj

(4．3．2)

(4．3．3)

同时：

口”=0 (4．3．4)

从式(4．3．2)N(4．3．4)可以看出，虽然在动量方程中出现压力导数项
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但是在边界点‘W’上并不需要压力值。而且，临近边界点和内点同

样都能够保证质量和动量守恒。

4．4处理复杂边界附近的压力边界条件

4．4．1对角边界点

本文使用对角笛卡尔网格

法处理包括复杂几何边界的流

动问题。使用这个方法，复杂

的几何边界由笛卡尔坐标线以

及笛卡尔网格点的对角线模

拟，注意到在上一节中提到的

边界虚拟点法，可以看出，内

边界由边乔虚拟点以及对角边

界点组成，如图4．4．1所示。

在复杂的几何表面上使用

边界虚拟点的思想与上一节中

处理内边界的思想使同样的。

从上一节可以知道，在边界虚

⋯溉 ．一3l{一 ；陋 ∑
：rl ＼

⋯÷一II}‘篪 殳．!E一 7／
：S

⋯?例 。一一：IS⋯⋯佰豆

r-i--对角边界点
O——边界虚报点

图4．4．1对角边界点与边界虚拟点

拟点上的压力方程不需要压力边界条件。下面我们要讨论在对角边界

点上的情形。

在数值模拟流体流过复杂几何时，往往最重要的问题在于临近对

角边界点处的质量与动量守恒。在临近对角边界点处的动量方程用5

点有限分析法离散。因为只有合适的压力边界条件才能保证质量守
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恒。因此，在对角边界点处的压力边界条件需要特殊的处理。这里采

用两种方法，即本地控制体积质量守恒法和扩大的控制体积质量守恒

法。

4．4．2本地控制体积质量守恒法

首先讨论本地控制体积质量守恒法。考虑如图4．4．2中阴影部分

的质量守恒，连续性方程(4．2．1)的离散形式为

生生+生监：0 (4．4．1)

这里，U，、％由速度边界条件可知。U。、■

可以表示为：

讥=以荫(篆]。 ∽4国

K非％最(飘 ∽4引

将式(4．4．2)、(4．4．3)代入式(4．4．1)可以得到：

巡一型丑
X‘一Xp Xc—Xp

+l堕篮一
Yn—Ye

NN

．M．

n

K e E ：EE

图4．4．2本地控制体积守恒法

=0 (4．4．4)

上式中的压力梯度项可由中心差分法求出，整理上式可得：

口’耳=aEB+口”易+口”目+Ⅱ5B—D’ (4．4．5)

其中：

D·：堡二丝+监篓
xt—x P yn—yP

(4．4．6)
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Cl”=0、a5=0 (4．4．7)

口E。Fiae瓦Se习 ‘4·4·8)

口Ⅳ=瓦瓦a而nSn (4．4．9)

a9=a5+口∥+口”+口3 r4．4．10)

应当指出，预估速度以和嵋不能由(4．2．10)乘1(4．2．12)求出，因为在对

角边界点P处的有限分析系数c二、c二和c二无法确定。因此只能采

用线形内插法来计算U：和《：

略华(4．4．11)
巧=v；+2vj(4．4．12)

预估速度啡和昨可以用下式计算：

啦¨叫芸]，(4．4．1 3，

眸=帅4㈣(4．4．14)
压力梯度(芸)，和(茜)，采用下式慨
f訇：灶 (44．㈣JL良P ％一斗

、⋯⋯7

f訇：墨丝 (4．4．16，JL砂P YⅣ一YP
、。‘。
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在式(4．4．8)、(4．4．9)qu的口。、口一s。和S。可以通过下式计算：

口。=皇量笋、口。=旦尘子

墨=学^=学
这里，a和S的定义与式(4．2．22)到式(4．2．27)的定义相同。无法定义

的c，可以通过c。、cⅡ、c。和CⅣⅣ的值内插而得。

由式(4．4．5)和式(4．4．7)可知，采用本地控制体积守恒法，在对角

边界上不需要压力边界条件。

本地控制体积守恒法需要通过插值求出c。，在雷诺数较大，和／

或网格不很精密时会带来较大的误差，可能影响计算结果的收敛速

度。因此，本文采用下面将要提到的扩大的控制体积守恒法。

4．4．3扩大的控制体积守恒法

为了保证复杂边界处的质量

守恒，也可以使用扩大的控制体

积守恒法。与本地控制体积守恒

不同，扩大的控制体积守恒法在

如图4．4．3所示的阴影部分离散

连续性方程。得到下式：

⋯地一
In

，

黑淤 e E一 印⋯●
司

SW s

SW ‘g。

，gxi一1、 ，厶xi、

图4．4．3扩大的控制体积守恒法

妙。Ay，一U，Ay，)+(roAx，一■缸，)+％缸。一‰缸。=0 (4．4．19)

也就是：

乃

D

4

4

@

H



——一一要塞矍三盔兰塑主鲨苎 苎!!夏

百U。-UW+等+蛩Ax虮l-I=。缸， 衄． ．△v
。

通过形如式(4．2．10)到(4．2．13)定义的预估速度有

蜘睁q飘

_=巧飞瓯(筑
_=轴，鼠(勃，

(4．4．20)

(4．4．2I)

f4．4．22)

f4．4．23)

其中的压力梯度等、羔可以通过中心差分法求出。然后就可以得到Ox锄 1 ⋯1‘?⋯’⋯⋯

如下的压力方程：

其中：
口’耳=口5岛+口”名+口”目+aSPs一(D‘+D毒) (4．4．24)

^确aeSe出IbE～xP、
a”=0

扎莉岛弩|bN—yPl
矿2菇岛姆|bP～ysl
aP=aE+aw+aH+Ⅱs

D·：堕二坠+迎
△xi 弩i

巩2蛩峨。

(4．4．25)

(4．4．26)

f4．4．27)

(4．4．28)

(4．4．29)

(4．4．30)

(4．4．31)
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点‘sw’的速度‰可以表示为：

‰：％+·Zsw (4．4．32)肿 ^ 、 ，

通过式(4．4．24),n(4．4．26)nT"以知道，同样，使用扩大的控制体积法

在对角边界点处也不需要压力边界条件。

4．5具体计算步骤与收敛判据

4．5．1计算流程

在计算不可压流动问题过程中，质量守恒方程与动量守恒方程难

以同时满足通常是计算收敛速度慢的主要原因。1972年，Patanker

和Spalding提出SIMPLE方法用来解决在计算不可压流的速度场和

压力场不匹配现象。SIMPLE算法最主要的缺点是压力场收敛速度

慢。因此，Patanker又提出了SIMPLE算法的一种改进，即SIMPLER

算法。SIMPLER算法总体收敛性能较好，但是它的每一步计算更耗

时。VanDoormaal和Raithby提出的SIMPLEC算法比SIMPLE算法和

SIMPLER算法都要更好一些。Issa等，提出的PISO算法对不可压流

可以得到精确的结果，它对定常流和非定常流都有效，其收敛性也较

SIMPLE算法好。

本文采用的算法与PISO算法相类似，从速度场中直接得到压力

方程而不是压力校正方程，其具体的计算步骤如下：

1．确定初始速度场和压力场；

2．计算有限分析系数：

3．根据上一时间步的压力场计算速度场：
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4．返回第二步，直到获得收敛的速度场：

5．重新计算有限分析系数：

6．计算预估速度；

7．解压力方程得到压力场：

8．显式的求出速度场：

9．返回第五步，直到速度场和压力场都收敛

10．返回第二步开始计算下一时间步；

4．5．2收敛判据

在以上的计算过程中，需要判断速度场和压力场是否收敛，在计

算过程中引入咖、du、西来判断是否收敛。当咖、幽、咖中最大

的值小于预先给定的值，如l×10。3时，则认为这一个时间步的计算已

经收敛。咖、幽、西分别定义为：

而∑：：一卜段n％-I，咖=——乇赢产
d一∑：：灿P“：％u=—--------—-————．．!．．．．．．．．．．．．．．!．．．型

nfluid

d∑=～卜”!必Iv：=-————————．．．．．．!．．．．．．————．．!．．．型
明”id

以上三式中，nfluid表示流体区域网格点的个数。

(4．5．1)

(4．5．2)

(4．5．3)
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4．6小结

这一章，我们使用基于单元中心的非交错网格，选择在较小的控

制体积上离散连续性方程，在较大的控制体积上离散动量方程，有效

的消除了不正确的压力棋盘现象。介绍了两种确定单元表面速度的方

法。通过适当处理压力条件后避免了在边界上确定压力边界条件的困

难。同时介绍了两种保证复杂表面附近质量守恒的方法。最后说明了

计算步骤以及计算收敛性判据。
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第五章计算实例

为了验证第四章提出的处理压力边界的方法的正确性，在这一章

中，我们用对角笛卡尔网格法来计算空腔流动问题，并将计算结果与

前人的结果作比较。为了验证对角笛卡尔网格法处理复杂边界的性

能，将空腔旋转一个角度。一个斜置空腔的边界在笛卡尔网格下可以

认为是一个复杂的几何边界。

5．1计算平置的空腔内流动

这一节，我们先计算平置的空腔内流动问题以验证对角笛卡尔网

格法处理规则边界的方法。图5．1．1

显示了空腔内流动问题的计算区域。

在计算中，采用60×60的网格，边界

采用无扩散、无滑移速度边界条件，

时间步长取O．25、雷诺数分别取

100、400、1000，计算致定常。

图5．1．2—5．1．7分别为雷诺数取

100、400、1000时空腔中线上的速

X、

0 1

图5．1．1空腔流动计算区域

度分布。小方块所示为U．GHIA等在密度为129x129的多重网格上的

计算结果，图5．1．8—5．2．10分别为计算所得流函数图。图5．1．Il一

5．2．13分别为计算所得压力分布图。从图5．1．2—5．1．7可以看出在雷

诺数为100和400时，计算所得空腔中线上的速度和U．Ghia的结果

相当吻合，在雷诺数等于1000时，只有极细微的差异。
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～{乙i／／—一

≤
—— 本文的计篁结果

-u．Ghi-的计算结果

．02 o．13 02 0^ 06 0B 1D

图5．1．2空腔纵向轴线上X方向

速度(Re=100)

V’- j厂。
．<
图5．1．4空腔纵向轴线上x方向速

度(Re=400)

图5．1．3空腔横向轴线上Y方向

速度(Re=100)

图5．1．5空腔横向轴线上Y方向

速度(Re=400)

0

0

0

0

0

0

0

0

0



南京理工大学顽士论文 第44页

。51．厂
I<

0 4

0 2

0 0

·02

U。O·4

-0 4．0 2 0 0 0．2 0，4 0．6 0．8 1 0

V

厂≮子拦j
5 0．0＼ 呼‘

＼√
图5．1．6空腔纵向轴线上x方向速度图5．1．7空腔横向轴线上y方向速度

(Re=1000) (Re=1000)

图5．1．8空腔内流动流函数图 图5．1．9空腔内流动流函数图

rRe；1 oo) (Re=400)
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图5．1．10空腔内流动流函数图 图5．1．11空腔内流动压力分布图

(Re21000) (Re=100)

图5．1．12空腔内流动压力分布图

(Re=400)

图5．I．I 3空腔内流动压力分布图

(Re=1000)
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5．2计算斜置的空腔内流动

从上一节可以知道，对

规则的边界，采用本文所叙

的方法是合适的。如果把空

腔旋转30度，制造一个复

杂的几何边界，计算它内部

流动问题就可以验证对角笛

卡尔网格法处理不规则边界

的方法。图5．2．1为斜置的

空腔内流动问题的计算区

域。采用86×86的网格，

时间步长取0．2、雷诺数分

别取100、400、1000，计

算致定常。

、y

0 T

芗 j／＼
-0 7

＼／ 夕
0 T

一0 T

图5．2．1斜置的空腔内流动计算区域

图5．2．2—5．2．7分别为雷诺数取100、400、1000时斜置的空腔轴

线上的速度分布。小方块所示为U．GHIA等在密度为129×129的多

重网格上的计算结果。图5．2．10—5．2．12分别为计算所得流函数图。

图5．2．1 3—5．2．1 5分别为计算所得压力图。

图5．2．8—5．2．9为雷诺数取1000时，在各种网格密度之下文献中

采用锯齿笛卡尔网格法计算斜置的空腔所得轴线上的速度分布。从图

5．2．8—5．2．9可以看出用锯齿笛卡尔网格法计算斜置的空腔内流动其

结果与U．GHIA的计算结果存在较大差别。而从图5．2．2—5．2．7可以

看出用对角笛卡尔网格法计算的结果与空腔平置时计算所得结果基本

一致，与U．GHIA的计算结果也只有细微的差别。
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u。I
。『|，_／／少

≤0．0
-u Ghi·的计算结果

．0．2 0 0 0 2 0 4 0 6 0 8 1 0

图5．2．2斜置的空腔纵向轴线上

x方向速度(Re=100)

u。

F厂一

<
．0 4．0 2 0n 0 2 0鼻0 6 0B 1 0

图5．2．4斜置的空腔纵向轴线上x

方向速度(Re=400)

八强i．豹计篡结t．
5 o．o＼ 吵

! ＼／
图5．2．3斜置的空腔横向轴线上

Y方向速度(Re=100)

厂≮篇篓．
-|| ¨＼／
图5．2．5斜置的空腔横向轴线上Y

方向速度(Re=400)

0

0

0

0

0

0

0

0

0

0
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图5．2．6斜置的空腔纵向轴线上

x方向速度(Re=1000)

U

圈5．2．8斜置的空腔纵向轴线上

x方向速度(锯齿法，Re51000)

：p＼_。主：黼
／ ＼ x．

。j八V

V

图5．2．7斜置的空腔横向轴线上

Y方向速度(Re21000)

．

^

夕+一‘

一：：夕≯、j
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。
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⋯一～‘112x11 2
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▲

‘。。⋯’。。‘
125xi25

‘’

——144xl“ ‘

‘
Results ofoh嵋

图5．2．9斜置的空腔横向轴线上

y方向速度(锯齿法，Re21000)
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图5．2．10斜置的空腔内流动流

函数图(Re=100)

图5．2．11 斜置的空腔内流动流

函数图(Re=400)

图5．2．12 斜置的空腔内流动流函数 图5 2．1 3斜置的空腔内流动压力

图(Re=1000、 分布图(Re=1001
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图5．2．14斜置的空腔内流动压力

分布图(Re=400)

图5．2．1 5斜置的空腔内流动压力

分布图(Re=1000)

5．3小结

这一章，我们首先计算平置的空腔内流动问题，采用基于单元中

心的非交错网格，使用第四章介绍的处理压力条件的方法，得出了很

好得结果。为了验证对角笛卡尔网格法处理复杂边界的能力，我们把

空腔旋转了30度，人为地制造不规则的边界。由于不考虑重力的影

响，在理论情况下，二者的结果应该完全一致。把用对角笛卡尔网格

法计算所得的结果与用锯齿笛卡尔网格法计算所得的结果相比较，可

以看出，对角笛卡尔网格法比锯齿笛卡尔网格法更加适合处理包括复

杂几何边界的问题。
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第六章：结束语

6．1本文所做工作小结

为复杂的几何边界自动生成网格是计算流体力学的难题之一，本

文讨论了了解决这一难题的一种可行方法一对角笛卡尔网格法。可以

验证，用对角笛卡尔网格法生成的模拟边界较用锯齿笛卡尔网格法生

成的模拟边界的精度高。同时，在基于单元中心的非交错网格中采用

有限分析法离散动量方程，将离散后的动量方程代入连续性方程所得

到的压力方程在规则边界(边界为网格线)以及不规则边界处(边界

为网格节点的对角线)都不需要压力边界条件，这就避免了确定压力

边界条件的困难。最后计算空腔内的流动问题验证了对角笛卡尔网格

法以及本文处理压力边界条件的正确性。

在研究使用对角笛卡尔网格法计算有复杂几何边界的不可压粘性

流动的过程中编制了两个程序，第一个程序为复杂的几何边界自动生

成模拟边界，同时计算模拟边界与原始边界的误差；第二个程序使用

第～个程序生成的模拟边界计算不可压缩流动问题。第一个程序原则

上可以为任意复杂边界自动生成模拟边界，第二个程序主要用来计算

空腔内的流动问题，有一定的通用性，修改边界条件后，也可以用于

计算其他问题。这两个程序都采用Fortran90的标准编制，在Fortran

PowerStation 4．0下编译运行。

由于时间仓促，加之学识水平有限，作者虽作了很大的努力，仍
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难免存在不妥乃至错误之处，恳请各位不吝赐教，多提宝贵意见。

6．2对后续工作的建议

在流体力学中，处理复杂的几何边界是一个难题。单就对角笛卡

尔网格法来说，本文所做工作也是远远不够的。作者认为可以从以下

几个方面继续研究这种方法：

1 如何从CAD等绘图工具生成的文件中读取原始边界信息以避免

手工输入原始边界的离散点。

2 计算机技术的飞速发展为计算流体力学的可视化提供了必要的保

障，如何在生成模拟边界、生成计算网格以及流动计算中采用可视化

技术。

3 在流动计算中加入湍流模型，扩大应用范围。

4 在其它的控制方程中使用对角笛卡尔网格法。

5 将对角笛卡尔网格法扩展至三维，使对角笛卡尔网格法可以模拟

包括不规则几何边界的三维流动。
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附录A：九点有限分析系数计算公式

CNE
2 Ee一。h—Bk

CⅣ∥2Ee46一“

CsE=Ee一。6+8‘

Csw=Ee““

CW=EBe一。“

Cwc=EBe。‘

CⅨ=EAe8‘

Cuc=EAe一“

C P=志IcN一十C。+C。一CNE—C。一CsE、+

(A．1)

(A．2)

(A．3)

(A．4)

(A．5)

(A．6)

(A．7)

(A．8)

著‰[Csw+Csc+CsE-CN。-Cuc-CuE】 (们)

E=———：——i—AhE2cth(Ah)一BkE'2cth(Bk) (A．10)4ch(Ah)·ch(Bk)
2 7 7 、‘ 7

别：2爿^E，—ch2(—Ah)
‘sh(Ah)

EB：=2BkE；—ch2(—Bk)
sh(Bk)

耻等即而Bh．万th(A瓦h)-丽Ak．th(Bk)

(A．11)

(A．1 2)

(A．1 3)

E=∑～(一1)”(A：女)，[(B女)2+(A：女)2]2．c^(∥：^) (A．14)

∥：：√i≯jj嘶旯：：(2m—1)石／2k
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附录B：五点有限分析系数计算公式

C盯=e删删E

Cuc
2 e。’6。一8’6’E

C SC=e一舶+叭E

C牝=e舶+叭E

(B．1)

(B．2)

(B．3)

(B．4)

。一孝‰嘲～，+锵～， ㈣，，
+C蠢(彳’一B’)+‰(-A’-B7)】

E：=————．．．．．．．．．．．—二!———————一4ch(A 7h’)·ch(B～h) (B．6)

小坐42，B，：坐4，拈鱼而 (附)2 2’ ’ 一 ¨
L廿’，J
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